xref: /openbmc/linux/fs/btrfs/send.c (revision 81464192839de0b5bc84c5739381101e04d94f62)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 #include "xattr.h"
27 
28 /*
29  * Maximum number of references an extent can have in order for us to attempt to
30  * issue clone operations instead of write operations. This currently exists to
31  * avoid hitting limitations of the backreference walking code (taking a lot of
32  * time and using too much memory for extents with large number of references).
33  */
34 #define SEND_MAX_EXTENT_REFS	64
35 
36 /*
37  * A fs_path is a helper to dynamically build path names with unknown size.
38  * It reallocates the internal buffer on demand.
39  * It allows fast adding of path elements on the right side (normal path) and
40  * fast adding to the left side (reversed path). A reversed path can also be
41  * unreversed if needed.
42  */
43 struct fs_path {
44 	union {
45 		struct {
46 			char *start;
47 			char *end;
48 
49 			char *buf;
50 			unsigned short buf_len:15;
51 			unsigned short reversed:1;
52 			char inline_buf[];
53 		};
54 		/*
55 		 * Average path length does not exceed 200 bytes, we'll have
56 		 * better packing in the slab and higher chance to satisfy
57 		 * a allocation later during send.
58 		 */
59 		char pad[256];
60 	};
61 };
62 #define FS_PATH_INLINE_SIZE \
63 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64 
65 
66 /* reused for each extent */
67 struct clone_root {
68 	struct btrfs_root *root;
69 	u64 ino;
70 	u64 offset;
71 
72 	u64 found_refs;
73 };
74 
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77 
78 struct send_ctx {
79 	struct file *send_filp;
80 	loff_t send_off;
81 	char *send_buf;
82 	u32 send_size;
83 	u32 send_max_size;
84 	u64 total_send_size;
85 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
87 
88 	struct btrfs_root *send_root;
89 	struct btrfs_root *parent_root;
90 	struct clone_root *clone_roots;
91 	int clone_roots_cnt;
92 
93 	/* current state of the compare_tree call */
94 	struct btrfs_path *left_path;
95 	struct btrfs_path *right_path;
96 	struct btrfs_key *cmp_key;
97 
98 	/*
99 	 * infos of the currently processed inode. In case of deleted inodes,
100 	 * these are the values from the deleted inode.
101 	 */
102 	u64 cur_ino;
103 	u64 cur_inode_gen;
104 	int cur_inode_new;
105 	int cur_inode_new_gen;
106 	int cur_inode_deleted;
107 	u64 cur_inode_size;
108 	u64 cur_inode_mode;
109 	u64 cur_inode_rdev;
110 	u64 cur_inode_last_extent;
111 	u64 cur_inode_next_write_offset;
112 	bool ignore_cur_inode;
113 
114 	u64 send_progress;
115 
116 	struct list_head new_refs;
117 	struct list_head deleted_refs;
118 
119 	struct radix_tree_root name_cache;
120 	struct list_head name_cache_list;
121 	int name_cache_size;
122 
123 	struct file_ra_state ra;
124 
125 	char *read_buf;
126 
127 	/*
128 	 * We process inodes by their increasing order, so if before an
129 	 * incremental send we reverse the parent/child relationship of
130 	 * directories such that a directory with a lower inode number was
131 	 * the parent of a directory with a higher inode number, and the one
132 	 * becoming the new parent got renamed too, we can't rename/move the
133 	 * directory with lower inode number when we finish processing it - we
134 	 * must process the directory with higher inode number first, then
135 	 * rename/move it and then rename/move the directory with lower inode
136 	 * number. Example follows.
137 	 *
138 	 * Tree state when the first send was performed:
139 	 *
140 	 * .
141 	 * |-- a                   (ino 257)
142 	 *     |-- b               (ino 258)
143 	 *         |
144 	 *         |
145 	 *         |-- c           (ino 259)
146 	 *         |   |-- d       (ino 260)
147 	 *         |
148 	 *         |-- c2          (ino 261)
149 	 *
150 	 * Tree state when the second (incremental) send is performed:
151 	 *
152 	 * .
153 	 * |-- a                   (ino 257)
154 	 *     |-- b               (ino 258)
155 	 *         |-- c2          (ino 261)
156 	 *             |-- d2      (ino 260)
157 	 *                 |-- cc  (ino 259)
158 	 *
159 	 * The sequence of steps that lead to the second state was:
160 	 *
161 	 * mv /a/b/c/d /a/b/c2/d2
162 	 * mv /a/b/c /a/b/c2/d2/cc
163 	 *
164 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
165 	 * before we move "d", which has higher inode number.
166 	 *
167 	 * So we just memorize which move/rename operations must be performed
168 	 * later when their respective parent is processed and moved/renamed.
169 	 */
170 
171 	/* Indexed by parent directory inode number. */
172 	struct rb_root pending_dir_moves;
173 
174 	/*
175 	 * Reverse index, indexed by the inode number of a directory that
176 	 * is waiting for the move/rename of its immediate parent before its
177 	 * own move/rename can be performed.
178 	 */
179 	struct rb_root waiting_dir_moves;
180 
181 	/*
182 	 * A directory that is going to be rm'ed might have a child directory
183 	 * which is in the pending directory moves index above. In this case,
184 	 * the directory can only be removed after the move/rename of its child
185 	 * is performed. Example:
186 	 *
187 	 * Parent snapshot:
188 	 *
189 	 * .                        (ino 256)
190 	 * |-- a/                   (ino 257)
191 	 *     |-- b/               (ino 258)
192 	 *         |-- c/           (ino 259)
193 	 *         |   |-- x/       (ino 260)
194 	 *         |
195 	 *         |-- y/           (ino 261)
196 	 *
197 	 * Send snapshot:
198 	 *
199 	 * .                        (ino 256)
200 	 * |-- a/                   (ino 257)
201 	 *     |-- b/               (ino 258)
202 	 *         |-- YY/          (ino 261)
203 	 *              |-- x/      (ino 260)
204 	 *
205 	 * Sequence of steps that lead to the send snapshot:
206 	 * rm -f /a/b/c/foo.txt
207 	 * mv /a/b/y /a/b/YY
208 	 * mv /a/b/c/x /a/b/YY
209 	 * rmdir /a/b/c
210 	 *
211 	 * When the child is processed, its move/rename is delayed until its
212 	 * parent is processed (as explained above), but all other operations
213 	 * like update utimes, chown, chgrp, etc, are performed and the paths
214 	 * that it uses for those operations must use the orphanized name of
215 	 * its parent (the directory we're going to rm later), so we need to
216 	 * memorize that name.
217 	 *
218 	 * Indexed by the inode number of the directory to be deleted.
219 	 */
220 	struct rb_root orphan_dirs;
221 };
222 
223 struct pending_dir_move {
224 	struct rb_node node;
225 	struct list_head list;
226 	u64 parent_ino;
227 	u64 ino;
228 	u64 gen;
229 	struct list_head update_refs;
230 };
231 
232 struct waiting_dir_move {
233 	struct rb_node node;
234 	u64 ino;
235 	/*
236 	 * There might be some directory that could not be removed because it
237 	 * was waiting for this directory inode to be moved first. Therefore
238 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
239 	 */
240 	u64 rmdir_ino;
241 	bool orphanized;
242 };
243 
244 struct orphan_dir_info {
245 	struct rb_node node;
246 	u64 ino;
247 	u64 gen;
248 	u64 last_dir_index_offset;
249 };
250 
251 struct name_cache_entry {
252 	struct list_head list;
253 	/*
254 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 	 * more then one inum would fall into the same entry, we use radix_list
257 	 * to store the additional entries. radix_list is also used to store
258 	 * entries where two entries have the same inum but different
259 	 * generations.
260 	 */
261 	struct list_head radix_list;
262 	u64 ino;
263 	u64 gen;
264 	u64 parent_ino;
265 	u64 parent_gen;
266 	int ret;
267 	int need_later_update;
268 	int name_len;
269 	char name[];
270 };
271 
272 #define ADVANCE							1
273 #define ADVANCE_ONLY_NEXT					-1
274 
275 enum btrfs_compare_tree_result {
276 	BTRFS_COMPARE_TREE_NEW,
277 	BTRFS_COMPARE_TREE_DELETED,
278 	BTRFS_COMPARE_TREE_CHANGED,
279 	BTRFS_COMPARE_TREE_SAME,
280 };
281 typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
282 				  struct btrfs_path *right_path,
283 				  struct btrfs_key *key,
284 				  enum btrfs_compare_tree_result result,
285 				  void *ctx);
286 
287 __cold
288 static void inconsistent_snapshot_error(struct send_ctx *sctx,
289 					enum btrfs_compare_tree_result result,
290 					const char *what)
291 {
292 	const char *result_string;
293 
294 	switch (result) {
295 	case BTRFS_COMPARE_TREE_NEW:
296 		result_string = "new";
297 		break;
298 	case BTRFS_COMPARE_TREE_DELETED:
299 		result_string = "deleted";
300 		break;
301 	case BTRFS_COMPARE_TREE_CHANGED:
302 		result_string = "updated";
303 		break;
304 	case BTRFS_COMPARE_TREE_SAME:
305 		ASSERT(0);
306 		result_string = "unchanged";
307 		break;
308 	default:
309 		ASSERT(0);
310 		result_string = "unexpected";
311 	}
312 
313 	btrfs_err(sctx->send_root->fs_info,
314 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
315 		  result_string, what, sctx->cmp_key->objectid,
316 		  sctx->send_root->root_key.objectid,
317 		  (sctx->parent_root ?
318 		   sctx->parent_root->root_key.objectid : 0));
319 }
320 
321 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
322 
323 static struct waiting_dir_move *
324 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
325 
326 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
327 
328 static int need_send_hole(struct send_ctx *sctx)
329 {
330 	return (sctx->parent_root && !sctx->cur_inode_new &&
331 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
332 		S_ISREG(sctx->cur_inode_mode));
333 }
334 
335 static void fs_path_reset(struct fs_path *p)
336 {
337 	if (p->reversed) {
338 		p->start = p->buf + p->buf_len - 1;
339 		p->end = p->start;
340 		*p->start = 0;
341 	} else {
342 		p->start = p->buf;
343 		p->end = p->start;
344 		*p->start = 0;
345 	}
346 }
347 
348 static struct fs_path *fs_path_alloc(void)
349 {
350 	struct fs_path *p;
351 
352 	p = kmalloc(sizeof(*p), GFP_KERNEL);
353 	if (!p)
354 		return NULL;
355 	p->reversed = 0;
356 	p->buf = p->inline_buf;
357 	p->buf_len = FS_PATH_INLINE_SIZE;
358 	fs_path_reset(p);
359 	return p;
360 }
361 
362 static struct fs_path *fs_path_alloc_reversed(void)
363 {
364 	struct fs_path *p;
365 
366 	p = fs_path_alloc();
367 	if (!p)
368 		return NULL;
369 	p->reversed = 1;
370 	fs_path_reset(p);
371 	return p;
372 }
373 
374 static void fs_path_free(struct fs_path *p)
375 {
376 	if (!p)
377 		return;
378 	if (p->buf != p->inline_buf)
379 		kfree(p->buf);
380 	kfree(p);
381 }
382 
383 static int fs_path_len(struct fs_path *p)
384 {
385 	return p->end - p->start;
386 }
387 
388 static int fs_path_ensure_buf(struct fs_path *p, int len)
389 {
390 	char *tmp_buf;
391 	int path_len;
392 	int old_buf_len;
393 
394 	len++;
395 
396 	if (p->buf_len >= len)
397 		return 0;
398 
399 	if (len > PATH_MAX) {
400 		WARN_ON(1);
401 		return -ENOMEM;
402 	}
403 
404 	path_len = p->end - p->start;
405 	old_buf_len = p->buf_len;
406 
407 	/*
408 	 * First time the inline_buf does not suffice
409 	 */
410 	if (p->buf == p->inline_buf) {
411 		tmp_buf = kmalloc(len, GFP_KERNEL);
412 		if (tmp_buf)
413 			memcpy(tmp_buf, p->buf, old_buf_len);
414 	} else {
415 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
416 	}
417 	if (!tmp_buf)
418 		return -ENOMEM;
419 	p->buf = tmp_buf;
420 	/*
421 	 * The real size of the buffer is bigger, this will let the fast path
422 	 * happen most of the time
423 	 */
424 	p->buf_len = ksize(p->buf);
425 
426 	if (p->reversed) {
427 		tmp_buf = p->buf + old_buf_len - path_len - 1;
428 		p->end = p->buf + p->buf_len - 1;
429 		p->start = p->end - path_len;
430 		memmove(p->start, tmp_buf, path_len + 1);
431 	} else {
432 		p->start = p->buf;
433 		p->end = p->start + path_len;
434 	}
435 	return 0;
436 }
437 
438 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
439 				   char **prepared)
440 {
441 	int ret;
442 	int new_len;
443 
444 	new_len = p->end - p->start + name_len;
445 	if (p->start != p->end)
446 		new_len++;
447 	ret = fs_path_ensure_buf(p, new_len);
448 	if (ret < 0)
449 		goto out;
450 
451 	if (p->reversed) {
452 		if (p->start != p->end)
453 			*--p->start = '/';
454 		p->start -= name_len;
455 		*prepared = p->start;
456 	} else {
457 		if (p->start != p->end)
458 			*p->end++ = '/';
459 		*prepared = p->end;
460 		p->end += name_len;
461 		*p->end = 0;
462 	}
463 
464 out:
465 	return ret;
466 }
467 
468 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
469 {
470 	int ret;
471 	char *prepared;
472 
473 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
474 	if (ret < 0)
475 		goto out;
476 	memcpy(prepared, name, name_len);
477 
478 out:
479 	return ret;
480 }
481 
482 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
483 {
484 	int ret;
485 	char *prepared;
486 
487 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
488 	if (ret < 0)
489 		goto out;
490 	memcpy(prepared, p2->start, p2->end - p2->start);
491 
492 out:
493 	return ret;
494 }
495 
496 static int fs_path_add_from_extent_buffer(struct fs_path *p,
497 					  struct extent_buffer *eb,
498 					  unsigned long off, int len)
499 {
500 	int ret;
501 	char *prepared;
502 
503 	ret = fs_path_prepare_for_add(p, len, &prepared);
504 	if (ret < 0)
505 		goto out;
506 
507 	read_extent_buffer(eb, prepared, off, len);
508 
509 out:
510 	return ret;
511 }
512 
513 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
514 {
515 	int ret;
516 
517 	p->reversed = from->reversed;
518 	fs_path_reset(p);
519 
520 	ret = fs_path_add_path(p, from);
521 
522 	return ret;
523 }
524 
525 
526 static void fs_path_unreverse(struct fs_path *p)
527 {
528 	char *tmp;
529 	int len;
530 
531 	if (!p->reversed)
532 		return;
533 
534 	tmp = p->start;
535 	len = p->end - p->start;
536 	p->start = p->buf;
537 	p->end = p->start + len;
538 	memmove(p->start, tmp, len + 1);
539 	p->reversed = 0;
540 }
541 
542 static struct btrfs_path *alloc_path_for_send(void)
543 {
544 	struct btrfs_path *path;
545 
546 	path = btrfs_alloc_path();
547 	if (!path)
548 		return NULL;
549 	path->search_commit_root = 1;
550 	path->skip_locking = 1;
551 	path->need_commit_sem = 1;
552 	return path;
553 }
554 
555 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
556 {
557 	int ret;
558 	u32 pos = 0;
559 
560 	while (pos < len) {
561 		ret = kernel_write(filp, buf + pos, len - pos, off);
562 		/* TODO handle that correctly */
563 		/*if (ret == -ERESTARTSYS) {
564 			continue;
565 		}*/
566 		if (ret < 0)
567 			return ret;
568 		if (ret == 0) {
569 			return -EIO;
570 		}
571 		pos += ret;
572 	}
573 
574 	return 0;
575 }
576 
577 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
578 {
579 	struct btrfs_tlv_header *hdr;
580 	int total_len = sizeof(*hdr) + len;
581 	int left = sctx->send_max_size - sctx->send_size;
582 
583 	if (unlikely(left < total_len))
584 		return -EOVERFLOW;
585 
586 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
587 	hdr->tlv_type = cpu_to_le16(attr);
588 	hdr->tlv_len = cpu_to_le16(len);
589 	memcpy(hdr + 1, data, len);
590 	sctx->send_size += total_len;
591 
592 	return 0;
593 }
594 
595 #define TLV_PUT_DEFINE_INT(bits) \
596 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
597 			u##bits attr, u##bits value)			\
598 	{								\
599 		__le##bits __tmp = cpu_to_le##bits(value);		\
600 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
601 	}
602 
603 TLV_PUT_DEFINE_INT(64)
604 
605 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
606 			  const char *str, int len)
607 {
608 	if (len == -1)
609 		len = strlen(str);
610 	return tlv_put(sctx, attr, str, len);
611 }
612 
613 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
614 			const u8 *uuid)
615 {
616 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
617 }
618 
619 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
620 				  struct extent_buffer *eb,
621 				  struct btrfs_timespec *ts)
622 {
623 	struct btrfs_timespec bts;
624 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
625 	return tlv_put(sctx, attr, &bts, sizeof(bts));
626 }
627 
628 
629 #define TLV_PUT(sctx, attrtype, data, attrlen) \
630 	do { \
631 		ret = tlv_put(sctx, attrtype, data, attrlen); \
632 		if (ret < 0) \
633 			goto tlv_put_failure; \
634 	} while (0)
635 
636 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
637 	do { \
638 		ret = tlv_put_u##bits(sctx, attrtype, value); \
639 		if (ret < 0) \
640 			goto tlv_put_failure; \
641 	} while (0)
642 
643 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
644 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
645 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
646 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
647 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
648 	do { \
649 		ret = tlv_put_string(sctx, attrtype, str, len); \
650 		if (ret < 0) \
651 			goto tlv_put_failure; \
652 	} while (0)
653 #define TLV_PUT_PATH(sctx, attrtype, p) \
654 	do { \
655 		ret = tlv_put_string(sctx, attrtype, p->start, \
656 			p->end - p->start); \
657 		if (ret < 0) \
658 			goto tlv_put_failure; \
659 	} while(0)
660 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
661 	do { \
662 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
663 		if (ret < 0) \
664 			goto tlv_put_failure; \
665 	} while (0)
666 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
667 	do { \
668 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
669 		if (ret < 0) \
670 			goto tlv_put_failure; \
671 	} while (0)
672 
673 static int send_header(struct send_ctx *sctx)
674 {
675 	struct btrfs_stream_header hdr;
676 
677 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
678 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
679 
680 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
681 					&sctx->send_off);
682 }
683 
684 /*
685  * For each command/item we want to send to userspace, we call this function.
686  */
687 static int begin_cmd(struct send_ctx *sctx, int cmd)
688 {
689 	struct btrfs_cmd_header *hdr;
690 
691 	if (WARN_ON(!sctx->send_buf))
692 		return -EINVAL;
693 
694 	BUG_ON(sctx->send_size);
695 
696 	sctx->send_size += sizeof(*hdr);
697 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
698 	hdr->cmd = cpu_to_le16(cmd);
699 
700 	return 0;
701 }
702 
703 static int send_cmd(struct send_ctx *sctx)
704 {
705 	int ret;
706 	struct btrfs_cmd_header *hdr;
707 	u32 crc;
708 
709 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
710 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
711 	hdr->crc = 0;
712 
713 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
714 	hdr->crc = cpu_to_le32(crc);
715 
716 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
717 					&sctx->send_off);
718 
719 	sctx->total_send_size += sctx->send_size;
720 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
721 	sctx->send_size = 0;
722 
723 	return ret;
724 }
725 
726 /*
727  * Sends a move instruction to user space
728  */
729 static int send_rename(struct send_ctx *sctx,
730 		     struct fs_path *from, struct fs_path *to)
731 {
732 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
733 	int ret;
734 
735 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
736 
737 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
738 	if (ret < 0)
739 		goto out;
740 
741 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
742 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
743 
744 	ret = send_cmd(sctx);
745 
746 tlv_put_failure:
747 out:
748 	return ret;
749 }
750 
751 /*
752  * Sends a link instruction to user space
753  */
754 static int send_link(struct send_ctx *sctx,
755 		     struct fs_path *path, struct fs_path *lnk)
756 {
757 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
758 	int ret;
759 
760 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
761 
762 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
763 	if (ret < 0)
764 		goto out;
765 
766 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
767 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
768 
769 	ret = send_cmd(sctx);
770 
771 tlv_put_failure:
772 out:
773 	return ret;
774 }
775 
776 /*
777  * Sends an unlink instruction to user space
778  */
779 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
780 {
781 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
782 	int ret;
783 
784 	btrfs_debug(fs_info, "send_unlink %s", path->start);
785 
786 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
787 	if (ret < 0)
788 		goto out;
789 
790 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
791 
792 	ret = send_cmd(sctx);
793 
794 tlv_put_failure:
795 out:
796 	return ret;
797 }
798 
799 /*
800  * Sends a rmdir instruction to user space
801  */
802 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
803 {
804 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
805 	int ret;
806 
807 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
808 
809 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
810 	if (ret < 0)
811 		goto out;
812 
813 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
814 
815 	ret = send_cmd(sctx);
816 
817 tlv_put_failure:
818 out:
819 	return ret;
820 }
821 
822 /*
823  * Helper function to retrieve some fields from an inode item.
824  */
825 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
826 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
827 			  u64 *gid, u64 *rdev)
828 {
829 	int ret;
830 	struct btrfs_inode_item *ii;
831 	struct btrfs_key key;
832 
833 	key.objectid = ino;
834 	key.type = BTRFS_INODE_ITEM_KEY;
835 	key.offset = 0;
836 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
837 	if (ret) {
838 		if (ret > 0)
839 			ret = -ENOENT;
840 		return ret;
841 	}
842 
843 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
844 			struct btrfs_inode_item);
845 	if (size)
846 		*size = btrfs_inode_size(path->nodes[0], ii);
847 	if (gen)
848 		*gen = btrfs_inode_generation(path->nodes[0], ii);
849 	if (mode)
850 		*mode = btrfs_inode_mode(path->nodes[0], ii);
851 	if (uid)
852 		*uid = btrfs_inode_uid(path->nodes[0], ii);
853 	if (gid)
854 		*gid = btrfs_inode_gid(path->nodes[0], ii);
855 	if (rdev)
856 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
857 
858 	return ret;
859 }
860 
861 static int get_inode_info(struct btrfs_root *root,
862 			  u64 ino, u64 *size, u64 *gen,
863 			  u64 *mode, u64 *uid, u64 *gid,
864 			  u64 *rdev)
865 {
866 	struct btrfs_path *path;
867 	int ret;
868 
869 	path = alloc_path_for_send();
870 	if (!path)
871 		return -ENOMEM;
872 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
873 			       rdev);
874 	btrfs_free_path(path);
875 	return ret;
876 }
877 
878 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
879 				   struct fs_path *p,
880 				   void *ctx);
881 
882 /*
883  * Helper function to iterate the entries in ONE btrfs_inode_ref or
884  * btrfs_inode_extref.
885  * The iterate callback may return a non zero value to stop iteration. This can
886  * be a negative value for error codes or 1 to simply stop it.
887  *
888  * path must point to the INODE_REF or INODE_EXTREF when called.
889  */
890 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
891 			     struct btrfs_key *found_key, int resolve,
892 			     iterate_inode_ref_t iterate, void *ctx)
893 {
894 	struct extent_buffer *eb = path->nodes[0];
895 	struct btrfs_item *item;
896 	struct btrfs_inode_ref *iref;
897 	struct btrfs_inode_extref *extref;
898 	struct btrfs_path *tmp_path;
899 	struct fs_path *p;
900 	u32 cur = 0;
901 	u32 total;
902 	int slot = path->slots[0];
903 	u32 name_len;
904 	char *start;
905 	int ret = 0;
906 	int num = 0;
907 	int index;
908 	u64 dir;
909 	unsigned long name_off;
910 	unsigned long elem_size;
911 	unsigned long ptr;
912 
913 	p = fs_path_alloc_reversed();
914 	if (!p)
915 		return -ENOMEM;
916 
917 	tmp_path = alloc_path_for_send();
918 	if (!tmp_path) {
919 		fs_path_free(p);
920 		return -ENOMEM;
921 	}
922 
923 
924 	if (found_key->type == BTRFS_INODE_REF_KEY) {
925 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
926 						    struct btrfs_inode_ref);
927 		item = btrfs_item_nr(slot);
928 		total = btrfs_item_size(eb, item);
929 		elem_size = sizeof(*iref);
930 	} else {
931 		ptr = btrfs_item_ptr_offset(eb, slot);
932 		total = btrfs_item_size_nr(eb, slot);
933 		elem_size = sizeof(*extref);
934 	}
935 
936 	while (cur < total) {
937 		fs_path_reset(p);
938 
939 		if (found_key->type == BTRFS_INODE_REF_KEY) {
940 			iref = (struct btrfs_inode_ref *)(ptr + cur);
941 			name_len = btrfs_inode_ref_name_len(eb, iref);
942 			name_off = (unsigned long)(iref + 1);
943 			index = btrfs_inode_ref_index(eb, iref);
944 			dir = found_key->offset;
945 		} else {
946 			extref = (struct btrfs_inode_extref *)(ptr + cur);
947 			name_len = btrfs_inode_extref_name_len(eb, extref);
948 			name_off = (unsigned long)&extref->name;
949 			index = btrfs_inode_extref_index(eb, extref);
950 			dir = btrfs_inode_extref_parent(eb, extref);
951 		}
952 
953 		if (resolve) {
954 			start = btrfs_ref_to_path(root, tmp_path, name_len,
955 						  name_off, eb, dir,
956 						  p->buf, p->buf_len);
957 			if (IS_ERR(start)) {
958 				ret = PTR_ERR(start);
959 				goto out;
960 			}
961 			if (start < p->buf) {
962 				/* overflow , try again with larger buffer */
963 				ret = fs_path_ensure_buf(p,
964 						p->buf_len + p->buf - start);
965 				if (ret < 0)
966 					goto out;
967 				start = btrfs_ref_to_path(root, tmp_path,
968 							  name_len, name_off,
969 							  eb, dir,
970 							  p->buf, p->buf_len);
971 				if (IS_ERR(start)) {
972 					ret = PTR_ERR(start);
973 					goto out;
974 				}
975 				BUG_ON(start < p->buf);
976 			}
977 			p->start = start;
978 		} else {
979 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
980 							     name_len);
981 			if (ret < 0)
982 				goto out;
983 		}
984 
985 		cur += elem_size + name_len;
986 		ret = iterate(num, dir, index, p, ctx);
987 		if (ret)
988 			goto out;
989 		num++;
990 	}
991 
992 out:
993 	btrfs_free_path(tmp_path);
994 	fs_path_free(p);
995 	return ret;
996 }
997 
998 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
999 				  const char *name, int name_len,
1000 				  const char *data, int data_len,
1001 				  u8 type, void *ctx);
1002 
1003 /*
1004  * Helper function to iterate the entries in ONE btrfs_dir_item.
1005  * The iterate callback may return a non zero value to stop iteration. This can
1006  * be a negative value for error codes or 1 to simply stop it.
1007  *
1008  * path must point to the dir item when called.
1009  */
1010 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1011 			    iterate_dir_item_t iterate, void *ctx)
1012 {
1013 	int ret = 0;
1014 	struct extent_buffer *eb;
1015 	struct btrfs_item *item;
1016 	struct btrfs_dir_item *di;
1017 	struct btrfs_key di_key;
1018 	char *buf = NULL;
1019 	int buf_len;
1020 	u32 name_len;
1021 	u32 data_len;
1022 	u32 cur;
1023 	u32 len;
1024 	u32 total;
1025 	int slot;
1026 	int num;
1027 	u8 type;
1028 
1029 	/*
1030 	 * Start with a small buffer (1 page). If later we end up needing more
1031 	 * space, which can happen for xattrs on a fs with a leaf size greater
1032 	 * then the page size, attempt to increase the buffer. Typically xattr
1033 	 * values are small.
1034 	 */
1035 	buf_len = PATH_MAX;
1036 	buf = kmalloc(buf_len, GFP_KERNEL);
1037 	if (!buf) {
1038 		ret = -ENOMEM;
1039 		goto out;
1040 	}
1041 
1042 	eb = path->nodes[0];
1043 	slot = path->slots[0];
1044 	item = btrfs_item_nr(slot);
1045 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1046 	cur = 0;
1047 	len = 0;
1048 	total = btrfs_item_size(eb, item);
1049 
1050 	num = 0;
1051 	while (cur < total) {
1052 		name_len = btrfs_dir_name_len(eb, di);
1053 		data_len = btrfs_dir_data_len(eb, di);
1054 		type = btrfs_dir_type(eb, di);
1055 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1056 
1057 		if (type == BTRFS_FT_XATTR) {
1058 			if (name_len > XATTR_NAME_MAX) {
1059 				ret = -ENAMETOOLONG;
1060 				goto out;
1061 			}
1062 			if (name_len + data_len >
1063 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1064 				ret = -E2BIG;
1065 				goto out;
1066 			}
1067 		} else {
1068 			/*
1069 			 * Path too long
1070 			 */
1071 			if (name_len + data_len > PATH_MAX) {
1072 				ret = -ENAMETOOLONG;
1073 				goto out;
1074 			}
1075 		}
1076 
1077 		if (name_len + data_len > buf_len) {
1078 			buf_len = name_len + data_len;
1079 			if (is_vmalloc_addr(buf)) {
1080 				vfree(buf);
1081 				buf = NULL;
1082 			} else {
1083 				char *tmp = krealloc(buf, buf_len,
1084 						GFP_KERNEL | __GFP_NOWARN);
1085 
1086 				if (!tmp)
1087 					kfree(buf);
1088 				buf = tmp;
1089 			}
1090 			if (!buf) {
1091 				buf = kvmalloc(buf_len, GFP_KERNEL);
1092 				if (!buf) {
1093 					ret = -ENOMEM;
1094 					goto out;
1095 				}
1096 			}
1097 		}
1098 
1099 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1100 				name_len + data_len);
1101 
1102 		len = sizeof(*di) + name_len + data_len;
1103 		di = (struct btrfs_dir_item *)((char *)di + len);
1104 		cur += len;
1105 
1106 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1107 				data_len, type, ctx);
1108 		if (ret < 0)
1109 			goto out;
1110 		if (ret) {
1111 			ret = 0;
1112 			goto out;
1113 		}
1114 
1115 		num++;
1116 	}
1117 
1118 out:
1119 	kvfree(buf);
1120 	return ret;
1121 }
1122 
1123 static int __copy_first_ref(int num, u64 dir, int index,
1124 			    struct fs_path *p, void *ctx)
1125 {
1126 	int ret;
1127 	struct fs_path *pt = ctx;
1128 
1129 	ret = fs_path_copy(pt, p);
1130 	if (ret < 0)
1131 		return ret;
1132 
1133 	/* we want the first only */
1134 	return 1;
1135 }
1136 
1137 /*
1138  * Retrieve the first path of an inode. If an inode has more then one
1139  * ref/hardlink, this is ignored.
1140  */
1141 static int get_inode_path(struct btrfs_root *root,
1142 			  u64 ino, struct fs_path *path)
1143 {
1144 	int ret;
1145 	struct btrfs_key key, found_key;
1146 	struct btrfs_path *p;
1147 
1148 	p = alloc_path_for_send();
1149 	if (!p)
1150 		return -ENOMEM;
1151 
1152 	fs_path_reset(path);
1153 
1154 	key.objectid = ino;
1155 	key.type = BTRFS_INODE_REF_KEY;
1156 	key.offset = 0;
1157 
1158 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1159 	if (ret < 0)
1160 		goto out;
1161 	if (ret) {
1162 		ret = 1;
1163 		goto out;
1164 	}
1165 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1166 	if (found_key.objectid != ino ||
1167 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1168 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1169 		ret = -ENOENT;
1170 		goto out;
1171 	}
1172 
1173 	ret = iterate_inode_ref(root, p, &found_key, 1,
1174 				__copy_first_ref, path);
1175 	if (ret < 0)
1176 		goto out;
1177 	ret = 0;
1178 
1179 out:
1180 	btrfs_free_path(p);
1181 	return ret;
1182 }
1183 
1184 struct backref_ctx {
1185 	struct send_ctx *sctx;
1186 
1187 	/* number of total found references */
1188 	u64 found;
1189 
1190 	/*
1191 	 * used for clones found in send_root. clones found behind cur_objectid
1192 	 * and cur_offset are not considered as allowed clones.
1193 	 */
1194 	u64 cur_objectid;
1195 	u64 cur_offset;
1196 
1197 	/* may be truncated in case it's the last extent in a file */
1198 	u64 extent_len;
1199 
1200 	/* data offset in the file extent item */
1201 	u64 data_offset;
1202 
1203 	/* Just to check for bugs in backref resolving */
1204 	int found_itself;
1205 };
1206 
1207 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1208 {
1209 	u64 root = (u64)(uintptr_t)key;
1210 	struct clone_root *cr = (struct clone_root *)elt;
1211 
1212 	if (root < cr->root->root_key.objectid)
1213 		return -1;
1214 	if (root > cr->root->root_key.objectid)
1215 		return 1;
1216 	return 0;
1217 }
1218 
1219 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1220 {
1221 	struct clone_root *cr1 = (struct clone_root *)e1;
1222 	struct clone_root *cr2 = (struct clone_root *)e2;
1223 
1224 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1225 		return -1;
1226 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1227 		return 1;
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Called for every backref that is found for the current extent.
1233  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1234  */
1235 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1236 {
1237 	struct backref_ctx *bctx = ctx_;
1238 	struct clone_root *found;
1239 
1240 	/* First check if the root is in the list of accepted clone sources */
1241 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1242 			bctx->sctx->clone_roots_cnt,
1243 			sizeof(struct clone_root),
1244 			__clone_root_cmp_bsearch);
1245 	if (!found)
1246 		return 0;
1247 
1248 	if (found->root == bctx->sctx->send_root &&
1249 	    ino == bctx->cur_objectid &&
1250 	    offset == bctx->cur_offset) {
1251 		bctx->found_itself = 1;
1252 	}
1253 
1254 	/*
1255 	 * Make sure we don't consider clones from send_root that are
1256 	 * behind the current inode/offset.
1257 	 */
1258 	if (found->root == bctx->sctx->send_root) {
1259 		/*
1260 		 * If the source inode was not yet processed we can't issue a
1261 		 * clone operation, as the source extent does not exist yet at
1262 		 * the destination of the stream.
1263 		 */
1264 		if (ino > bctx->cur_objectid)
1265 			return 0;
1266 		/*
1267 		 * We clone from the inode currently being sent as long as the
1268 		 * source extent is already processed, otherwise we could try
1269 		 * to clone from an extent that does not exist yet at the
1270 		 * destination of the stream.
1271 		 */
1272 		if (ino == bctx->cur_objectid &&
1273 		    offset + bctx->extent_len >
1274 		    bctx->sctx->cur_inode_next_write_offset)
1275 			return 0;
1276 	}
1277 
1278 	bctx->found++;
1279 	found->found_refs++;
1280 	if (ino < found->ino) {
1281 		found->ino = ino;
1282 		found->offset = offset;
1283 	} else if (found->ino == ino) {
1284 		/*
1285 		 * same extent found more then once in the same file.
1286 		 */
1287 		if (found->offset > offset + bctx->extent_len)
1288 			found->offset = offset;
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Given an inode, offset and extent item, it finds a good clone for a clone
1296  * instruction. Returns -ENOENT when none could be found. The function makes
1297  * sure that the returned clone is usable at the point where sending is at the
1298  * moment. This means, that no clones are accepted which lie behind the current
1299  * inode+offset.
1300  *
1301  * path must point to the extent item when called.
1302  */
1303 static int find_extent_clone(struct send_ctx *sctx,
1304 			     struct btrfs_path *path,
1305 			     u64 ino, u64 data_offset,
1306 			     u64 ino_size,
1307 			     struct clone_root **found)
1308 {
1309 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1310 	int ret;
1311 	int extent_type;
1312 	u64 logical;
1313 	u64 disk_byte;
1314 	u64 num_bytes;
1315 	u64 extent_item_pos;
1316 	u64 flags = 0;
1317 	struct btrfs_file_extent_item *fi;
1318 	struct extent_buffer *eb = path->nodes[0];
1319 	struct backref_ctx *backref_ctx = NULL;
1320 	struct clone_root *cur_clone_root;
1321 	struct btrfs_key found_key;
1322 	struct btrfs_path *tmp_path;
1323 	struct btrfs_extent_item *ei;
1324 	int compressed;
1325 	u32 i;
1326 
1327 	tmp_path = alloc_path_for_send();
1328 	if (!tmp_path)
1329 		return -ENOMEM;
1330 
1331 	/* We only use this path under the commit sem */
1332 	tmp_path->need_commit_sem = 0;
1333 
1334 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1335 	if (!backref_ctx) {
1336 		ret = -ENOMEM;
1337 		goto out;
1338 	}
1339 
1340 	if (data_offset >= ino_size) {
1341 		/*
1342 		 * There may be extents that lie behind the file's size.
1343 		 * I at least had this in combination with snapshotting while
1344 		 * writing large files.
1345 		 */
1346 		ret = 0;
1347 		goto out;
1348 	}
1349 
1350 	fi = btrfs_item_ptr(eb, path->slots[0],
1351 			struct btrfs_file_extent_item);
1352 	extent_type = btrfs_file_extent_type(eb, fi);
1353 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1354 		ret = -ENOENT;
1355 		goto out;
1356 	}
1357 	compressed = btrfs_file_extent_compression(eb, fi);
1358 
1359 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1360 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1361 	if (disk_byte == 0) {
1362 		ret = -ENOENT;
1363 		goto out;
1364 	}
1365 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1366 
1367 	down_read(&fs_info->commit_root_sem);
1368 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1369 				  &found_key, &flags);
1370 	up_read(&fs_info->commit_root_sem);
1371 
1372 	if (ret < 0)
1373 		goto out;
1374 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1375 		ret = -EIO;
1376 		goto out;
1377 	}
1378 
1379 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1380 			    struct btrfs_extent_item);
1381 	/*
1382 	 * Backreference walking (iterate_extent_inodes() below) is currently
1383 	 * too expensive when an extent has a large number of references, both
1384 	 * in time spent and used memory. So for now just fallback to write
1385 	 * operations instead of clone operations when an extent has more than
1386 	 * a certain amount of references.
1387 	 */
1388 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1389 		ret = -ENOENT;
1390 		goto out;
1391 	}
1392 	btrfs_release_path(tmp_path);
1393 
1394 	/*
1395 	 * Setup the clone roots.
1396 	 */
1397 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1398 		cur_clone_root = sctx->clone_roots + i;
1399 		cur_clone_root->ino = (u64)-1;
1400 		cur_clone_root->offset = 0;
1401 		cur_clone_root->found_refs = 0;
1402 	}
1403 
1404 	backref_ctx->sctx = sctx;
1405 	backref_ctx->found = 0;
1406 	backref_ctx->cur_objectid = ino;
1407 	backref_ctx->cur_offset = data_offset;
1408 	backref_ctx->found_itself = 0;
1409 	backref_ctx->extent_len = num_bytes;
1410 	/*
1411 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1412 	 * offsets that already take into account the data offset, but not for
1413 	 * compressed extents, since the offset is logical and not relative to
1414 	 * the physical extent locations. We must take this into account to
1415 	 * avoid sending clone offsets that go beyond the source file's size,
1416 	 * which would result in the clone ioctl failing with -EINVAL on the
1417 	 * receiving end.
1418 	 */
1419 	if (compressed == BTRFS_COMPRESS_NONE)
1420 		backref_ctx->data_offset = 0;
1421 	else
1422 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1423 
1424 	/*
1425 	 * The last extent of a file may be too large due to page alignment.
1426 	 * We need to adjust extent_len in this case so that the checks in
1427 	 * __iterate_backrefs work.
1428 	 */
1429 	if (data_offset + num_bytes >= ino_size)
1430 		backref_ctx->extent_len = ino_size - data_offset;
1431 
1432 	/*
1433 	 * Now collect all backrefs.
1434 	 */
1435 	if (compressed == BTRFS_COMPRESS_NONE)
1436 		extent_item_pos = logical - found_key.objectid;
1437 	else
1438 		extent_item_pos = 0;
1439 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1440 				    extent_item_pos, 1, __iterate_backrefs,
1441 				    backref_ctx, false);
1442 
1443 	if (ret < 0)
1444 		goto out;
1445 
1446 	if (!backref_ctx->found_itself) {
1447 		/* found a bug in backref code? */
1448 		ret = -EIO;
1449 		btrfs_err(fs_info,
1450 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1451 			  ino, data_offset, disk_byte, found_key.objectid);
1452 		goto out;
1453 	}
1454 
1455 	btrfs_debug(fs_info,
1456 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1457 		    data_offset, ino, num_bytes, logical);
1458 
1459 	if (!backref_ctx->found)
1460 		btrfs_debug(fs_info, "no clones found");
1461 
1462 	cur_clone_root = NULL;
1463 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1464 		if (sctx->clone_roots[i].found_refs) {
1465 			if (!cur_clone_root)
1466 				cur_clone_root = sctx->clone_roots + i;
1467 			else if (sctx->clone_roots[i].root == sctx->send_root)
1468 				/* prefer clones from send_root over others */
1469 				cur_clone_root = sctx->clone_roots + i;
1470 		}
1471 
1472 	}
1473 
1474 	if (cur_clone_root) {
1475 		*found = cur_clone_root;
1476 		ret = 0;
1477 	} else {
1478 		ret = -ENOENT;
1479 	}
1480 
1481 out:
1482 	btrfs_free_path(tmp_path);
1483 	kfree(backref_ctx);
1484 	return ret;
1485 }
1486 
1487 static int read_symlink(struct btrfs_root *root,
1488 			u64 ino,
1489 			struct fs_path *dest)
1490 {
1491 	int ret;
1492 	struct btrfs_path *path;
1493 	struct btrfs_key key;
1494 	struct btrfs_file_extent_item *ei;
1495 	u8 type;
1496 	u8 compression;
1497 	unsigned long off;
1498 	int len;
1499 
1500 	path = alloc_path_for_send();
1501 	if (!path)
1502 		return -ENOMEM;
1503 
1504 	key.objectid = ino;
1505 	key.type = BTRFS_EXTENT_DATA_KEY;
1506 	key.offset = 0;
1507 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1508 	if (ret < 0)
1509 		goto out;
1510 	if (ret) {
1511 		/*
1512 		 * An empty symlink inode. Can happen in rare error paths when
1513 		 * creating a symlink (transaction committed before the inode
1514 		 * eviction handler removed the symlink inode items and a crash
1515 		 * happened in between or the subvol was snapshoted in between).
1516 		 * Print an informative message to dmesg/syslog so that the user
1517 		 * can delete the symlink.
1518 		 */
1519 		btrfs_err(root->fs_info,
1520 			  "Found empty symlink inode %llu at root %llu",
1521 			  ino, root->root_key.objectid);
1522 		ret = -EIO;
1523 		goto out;
1524 	}
1525 
1526 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1527 			struct btrfs_file_extent_item);
1528 	type = btrfs_file_extent_type(path->nodes[0], ei);
1529 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1530 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1531 	BUG_ON(compression);
1532 
1533 	off = btrfs_file_extent_inline_start(ei);
1534 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1535 
1536 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1537 
1538 out:
1539 	btrfs_free_path(path);
1540 	return ret;
1541 }
1542 
1543 /*
1544  * Helper function to generate a file name that is unique in the root of
1545  * send_root and parent_root. This is used to generate names for orphan inodes.
1546  */
1547 static int gen_unique_name(struct send_ctx *sctx,
1548 			   u64 ino, u64 gen,
1549 			   struct fs_path *dest)
1550 {
1551 	int ret = 0;
1552 	struct btrfs_path *path;
1553 	struct btrfs_dir_item *di;
1554 	char tmp[64];
1555 	int len;
1556 	u64 idx = 0;
1557 
1558 	path = alloc_path_for_send();
1559 	if (!path)
1560 		return -ENOMEM;
1561 
1562 	while (1) {
1563 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1564 				ino, gen, idx);
1565 		ASSERT(len < sizeof(tmp));
1566 
1567 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1568 				path, BTRFS_FIRST_FREE_OBJECTID,
1569 				tmp, strlen(tmp), 0);
1570 		btrfs_release_path(path);
1571 		if (IS_ERR(di)) {
1572 			ret = PTR_ERR(di);
1573 			goto out;
1574 		}
1575 		if (di) {
1576 			/* not unique, try again */
1577 			idx++;
1578 			continue;
1579 		}
1580 
1581 		if (!sctx->parent_root) {
1582 			/* unique */
1583 			ret = 0;
1584 			break;
1585 		}
1586 
1587 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1588 				path, BTRFS_FIRST_FREE_OBJECTID,
1589 				tmp, strlen(tmp), 0);
1590 		btrfs_release_path(path);
1591 		if (IS_ERR(di)) {
1592 			ret = PTR_ERR(di);
1593 			goto out;
1594 		}
1595 		if (di) {
1596 			/* not unique, try again */
1597 			idx++;
1598 			continue;
1599 		}
1600 		/* unique */
1601 		break;
1602 	}
1603 
1604 	ret = fs_path_add(dest, tmp, strlen(tmp));
1605 
1606 out:
1607 	btrfs_free_path(path);
1608 	return ret;
1609 }
1610 
1611 enum inode_state {
1612 	inode_state_no_change,
1613 	inode_state_will_create,
1614 	inode_state_did_create,
1615 	inode_state_will_delete,
1616 	inode_state_did_delete,
1617 };
1618 
1619 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1620 {
1621 	int ret;
1622 	int left_ret;
1623 	int right_ret;
1624 	u64 left_gen;
1625 	u64 right_gen;
1626 
1627 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1628 			NULL, NULL);
1629 	if (ret < 0 && ret != -ENOENT)
1630 		goto out;
1631 	left_ret = ret;
1632 
1633 	if (!sctx->parent_root) {
1634 		right_ret = -ENOENT;
1635 	} else {
1636 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1637 				NULL, NULL, NULL, NULL);
1638 		if (ret < 0 && ret != -ENOENT)
1639 			goto out;
1640 		right_ret = ret;
1641 	}
1642 
1643 	if (!left_ret && !right_ret) {
1644 		if (left_gen == gen && right_gen == gen) {
1645 			ret = inode_state_no_change;
1646 		} else if (left_gen == gen) {
1647 			if (ino < sctx->send_progress)
1648 				ret = inode_state_did_create;
1649 			else
1650 				ret = inode_state_will_create;
1651 		} else if (right_gen == gen) {
1652 			if (ino < sctx->send_progress)
1653 				ret = inode_state_did_delete;
1654 			else
1655 				ret = inode_state_will_delete;
1656 		} else  {
1657 			ret = -ENOENT;
1658 		}
1659 	} else if (!left_ret) {
1660 		if (left_gen == gen) {
1661 			if (ino < sctx->send_progress)
1662 				ret = inode_state_did_create;
1663 			else
1664 				ret = inode_state_will_create;
1665 		} else {
1666 			ret = -ENOENT;
1667 		}
1668 	} else if (!right_ret) {
1669 		if (right_gen == gen) {
1670 			if (ino < sctx->send_progress)
1671 				ret = inode_state_did_delete;
1672 			else
1673 				ret = inode_state_will_delete;
1674 		} else {
1675 			ret = -ENOENT;
1676 		}
1677 	} else {
1678 		ret = -ENOENT;
1679 	}
1680 
1681 out:
1682 	return ret;
1683 }
1684 
1685 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1686 {
1687 	int ret;
1688 
1689 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1690 		return 1;
1691 
1692 	ret = get_cur_inode_state(sctx, ino, gen);
1693 	if (ret < 0)
1694 		goto out;
1695 
1696 	if (ret == inode_state_no_change ||
1697 	    ret == inode_state_did_create ||
1698 	    ret == inode_state_will_delete)
1699 		ret = 1;
1700 	else
1701 		ret = 0;
1702 
1703 out:
1704 	return ret;
1705 }
1706 
1707 /*
1708  * Helper function to lookup a dir item in a dir.
1709  */
1710 static int lookup_dir_item_inode(struct btrfs_root *root,
1711 				 u64 dir, const char *name, int name_len,
1712 				 u64 *found_inode,
1713 				 u8 *found_type)
1714 {
1715 	int ret = 0;
1716 	struct btrfs_dir_item *di;
1717 	struct btrfs_key key;
1718 	struct btrfs_path *path;
1719 
1720 	path = alloc_path_for_send();
1721 	if (!path)
1722 		return -ENOMEM;
1723 
1724 	di = btrfs_lookup_dir_item(NULL, root, path,
1725 			dir, name, name_len, 0);
1726 	if (IS_ERR_OR_NULL(di)) {
1727 		ret = di ? PTR_ERR(di) : -ENOENT;
1728 		goto out;
1729 	}
1730 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1731 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1732 		ret = -ENOENT;
1733 		goto out;
1734 	}
1735 	*found_inode = key.objectid;
1736 	*found_type = btrfs_dir_type(path->nodes[0], di);
1737 
1738 out:
1739 	btrfs_free_path(path);
1740 	return ret;
1741 }
1742 
1743 /*
1744  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1745  * generation of the parent dir and the name of the dir entry.
1746  */
1747 static int get_first_ref(struct btrfs_root *root, u64 ino,
1748 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1749 {
1750 	int ret;
1751 	struct btrfs_key key;
1752 	struct btrfs_key found_key;
1753 	struct btrfs_path *path;
1754 	int len;
1755 	u64 parent_dir;
1756 
1757 	path = alloc_path_for_send();
1758 	if (!path)
1759 		return -ENOMEM;
1760 
1761 	key.objectid = ino;
1762 	key.type = BTRFS_INODE_REF_KEY;
1763 	key.offset = 0;
1764 
1765 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1766 	if (ret < 0)
1767 		goto out;
1768 	if (!ret)
1769 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1770 				path->slots[0]);
1771 	if (ret || found_key.objectid != ino ||
1772 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1773 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1774 		ret = -ENOENT;
1775 		goto out;
1776 	}
1777 
1778 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1779 		struct btrfs_inode_ref *iref;
1780 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1781 				      struct btrfs_inode_ref);
1782 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1783 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1784 						     (unsigned long)(iref + 1),
1785 						     len);
1786 		parent_dir = found_key.offset;
1787 	} else {
1788 		struct btrfs_inode_extref *extref;
1789 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1790 					struct btrfs_inode_extref);
1791 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1792 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1793 					(unsigned long)&extref->name, len);
1794 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1795 	}
1796 	if (ret < 0)
1797 		goto out;
1798 	btrfs_release_path(path);
1799 
1800 	if (dir_gen) {
1801 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1802 				     NULL, NULL, NULL);
1803 		if (ret < 0)
1804 			goto out;
1805 	}
1806 
1807 	*dir = parent_dir;
1808 
1809 out:
1810 	btrfs_free_path(path);
1811 	return ret;
1812 }
1813 
1814 static int is_first_ref(struct btrfs_root *root,
1815 			u64 ino, u64 dir,
1816 			const char *name, int name_len)
1817 {
1818 	int ret;
1819 	struct fs_path *tmp_name;
1820 	u64 tmp_dir;
1821 
1822 	tmp_name = fs_path_alloc();
1823 	if (!tmp_name)
1824 		return -ENOMEM;
1825 
1826 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1827 	if (ret < 0)
1828 		goto out;
1829 
1830 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1831 		ret = 0;
1832 		goto out;
1833 	}
1834 
1835 	ret = !memcmp(tmp_name->start, name, name_len);
1836 
1837 out:
1838 	fs_path_free(tmp_name);
1839 	return ret;
1840 }
1841 
1842 /*
1843  * Used by process_recorded_refs to determine if a new ref would overwrite an
1844  * already existing ref. In case it detects an overwrite, it returns the
1845  * inode/gen in who_ino/who_gen.
1846  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1847  * to make sure later references to the overwritten inode are possible.
1848  * Orphanizing is however only required for the first ref of an inode.
1849  * process_recorded_refs does an additional is_first_ref check to see if
1850  * orphanizing is really required.
1851  */
1852 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1853 			      const char *name, int name_len,
1854 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1855 {
1856 	int ret = 0;
1857 	u64 gen;
1858 	u64 other_inode = 0;
1859 	u8 other_type = 0;
1860 
1861 	if (!sctx->parent_root)
1862 		goto out;
1863 
1864 	ret = is_inode_existent(sctx, dir, dir_gen);
1865 	if (ret <= 0)
1866 		goto out;
1867 
1868 	/*
1869 	 * If we have a parent root we need to verify that the parent dir was
1870 	 * not deleted and then re-created, if it was then we have no overwrite
1871 	 * and we can just unlink this entry.
1872 	 */
1873 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1874 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1875 				     NULL, NULL, NULL);
1876 		if (ret < 0 && ret != -ENOENT)
1877 			goto out;
1878 		if (ret) {
1879 			ret = 0;
1880 			goto out;
1881 		}
1882 		if (gen != dir_gen)
1883 			goto out;
1884 	}
1885 
1886 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1887 			&other_inode, &other_type);
1888 	if (ret < 0 && ret != -ENOENT)
1889 		goto out;
1890 	if (ret) {
1891 		ret = 0;
1892 		goto out;
1893 	}
1894 
1895 	/*
1896 	 * Check if the overwritten ref was already processed. If yes, the ref
1897 	 * was already unlinked/moved, so we can safely assume that we will not
1898 	 * overwrite anything at this point in time.
1899 	 */
1900 	if (other_inode > sctx->send_progress ||
1901 	    is_waiting_for_move(sctx, other_inode)) {
1902 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1903 				who_gen, who_mode, NULL, NULL, NULL);
1904 		if (ret < 0)
1905 			goto out;
1906 
1907 		ret = 1;
1908 		*who_ino = other_inode;
1909 	} else {
1910 		ret = 0;
1911 	}
1912 
1913 out:
1914 	return ret;
1915 }
1916 
1917 /*
1918  * Checks if the ref was overwritten by an already processed inode. This is
1919  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1920  * thus the orphan name needs be used.
1921  * process_recorded_refs also uses it to avoid unlinking of refs that were
1922  * overwritten.
1923  */
1924 static int did_overwrite_ref(struct send_ctx *sctx,
1925 			    u64 dir, u64 dir_gen,
1926 			    u64 ino, u64 ino_gen,
1927 			    const char *name, int name_len)
1928 {
1929 	int ret = 0;
1930 	u64 gen;
1931 	u64 ow_inode;
1932 	u8 other_type;
1933 
1934 	if (!sctx->parent_root)
1935 		goto out;
1936 
1937 	ret = is_inode_existent(sctx, dir, dir_gen);
1938 	if (ret <= 0)
1939 		goto out;
1940 
1941 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1942 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1943 				     NULL, NULL, NULL);
1944 		if (ret < 0 && ret != -ENOENT)
1945 			goto out;
1946 		if (ret) {
1947 			ret = 0;
1948 			goto out;
1949 		}
1950 		if (gen != dir_gen)
1951 			goto out;
1952 	}
1953 
1954 	/* check if the ref was overwritten by another ref */
1955 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1956 			&ow_inode, &other_type);
1957 	if (ret < 0 && ret != -ENOENT)
1958 		goto out;
1959 	if (ret) {
1960 		/* was never and will never be overwritten */
1961 		ret = 0;
1962 		goto out;
1963 	}
1964 
1965 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1966 			NULL, NULL);
1967 	if (ret < 0)
1968 		goto out;
1969 
1970 	if (ow_inode == ino && gen == ino_gen) {
1971 		ret = 0;
1972 		goto out;
1973 	}
1974 
1975 	/*
1976 	 * We know that it is or will be overwritten. Check this now.
1977 	 * The current inode being processed might have been the one that caused
1978 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1979 	 * the current inode being processed.
1980 	 */
1981 	if ((ow_inode < sctx->send_progress) ||
1982 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1983 	     gen == sctx->cur_inode_gen))
1984 		ret = 1;
1985 	else
1986 		ret = 0;
1987 
1988 out:
1989 	return ret;
1990 }
1991 
1992 /*
1993  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1994  * that got overwritten. This is used by process_recorded_refs to determine
1995  * if it has to use the path as returned by get_cur_path or the orphan name.
1996  */
1997 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1998 {
1999 	int ret = 0;
2000 	struct fs_path *name = NULL;
2001 	u64 dir;
2002 	u64 dir_gen;
2003 
2004 	if (!sctx->parent_root)
2005 		goto out;
2006 
2007 	name = fs_path_alloc();
2008 	if (!name)
2009 		return -ENOMEM;
2010 
2011 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2012 	if (ret < 0)
2013 		goto out;
2014 
2015 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2016 			name->start, fs_path_len(name));
2017 
2018 out:
2019 	fs_path_free(name);
2020 	return ret;
2021 }
2022 
2023 /*
2024  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2025  * so we need to do some special handling in case we have clashes. This function
2026  * takes care of this with the help of name_cache_entry::radix_list.
2027  * In case of error, nce is kfreed.
2028  */
2029 static int name_cache_insert(struct send_ctx *sctx,
2030 			     struct name_cache_entry *nce)
2031 {
2032 	int ret = 0;
2033 	struct list_head *nce_head;
2034 
2035 	nce_head = radix_tree_lookup(&sctx->name_cache,
2036 			(unsigned long)nce->ino);
2037 	if (!nce_head) {
2038 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2039 		if (!nce_head) {
2040 			kfree(nce);
2041 			return -ENOMEM;
2042 		}
2043 		INIT_LIST_HEAD(nce_head);
2044 
2045 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2046 		if (ret < 0) {
2047 			kfree(nce_head);
2048 			kfree(nce);
2049 			return ret;
2050 		}
2051 	}
2052 	list_add_tail(&nce->radix_list, nce_head);
2053 	list_add_tail(&nce->list, &sctx->name_cache_list);
2054 	sctx->name_cache_size++;
2055 
2056 	return ret;
2057 }
2058 
2059 static void name_cache_delete(struct send_ctx *sctx,
2060 			      struct name_cache_entry *nce)
2061 {
2062 	struct list_head *nce_head;
2063 
2064 	nce_head = radix_tree_lookup(&sctx->name_cache,
2065 			(unsigned long)nce->ino);
2066 	if (!nce_head) {
2067 		btrfs_err(sctx->send_root->fs_info,
2068 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2069 			nce->ino, sctx->name_cache_size);
2070 	}
2071 
2072 	list_del(&nce->radix_list);
2073 	list_del(&nce->list);
2074 	sctx->name_cache_size--;
2075 
2076 	/*
2077 	 * We may not get to the final release of nce_head if the lookup fails
2078 	 */
2079 	if (nce_head && list_empty(nce_head)) {
2080 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2081 		kfree(nce_head);
2082 	}
2083 }
2084 
2085 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2086 						    u64 ino, u64 gen)
2087 {
2088 	struct list_head *nce_head;
2089 	struct name_cache_entry *cur;
2090 
2091 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2092 	if (!nce_head)
2093 		return NULL;
2094 
2095 	list_for_each_entry(cur, nce_head, radix_list) {
2096 		if (cur->ino == ino && cur->gen == gen)
2097 			return cur;
2098 	}
2099 	return NULL;
2100 }
2101 
2102 /*
2103  * Removes the entry from the list and adds it back to the end. This marks the
2104  * entry as recently used so that name_cache_clean_unused does not remove it.
2105  */
2106 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2107 {
2108 	list_del(&nce->list);
2109 	list_add_tail(&nce->list, &sctx->name_cache_list);
2110 }
2111 
2112 /*
2113  * Remove some entries from the beginning of name_cache_list.
2114  */
2115 static void name_cache_clean_unused(struct send_ctx *sctx)
2116 {
2117 	struct name_cache_entry *nce;
2118 
2119 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2120 		return;
2121 
2122 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2123 		nce = list_entry(sctx->name_cache_list.next,
2124 				struct name_cache_entry, list);
2125 		name_cache_delete(sctx, nce);
2126 		kfree(nce);
2127 	}
2128 }
2129 
2130 static void name_cache_free(struct send_ctx *sctx)
2131 {
2132 	struct name_cache_entry *nce;
2133 
2134 	while (!list_empty(&sctx->name_cache_list)) {
2135 		nce = list_entry(sctx->name_cache_list.next,
2136 				struct name_cache_entry, list);
2137 		name_cache_delete(sctx, nce);
2138 		kfree(nce);
2139 	}
2140 }
2141 
2142 /*
2143  * Used by get_cur_path for each ref up to the root.
2144  * Returns 0 if it succeeded.
2145  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2146  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2147  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2148  * Returns <0 in case of error.
2149  */
2150 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2151 				     u64 ino, u64 gen,
2152 				     u64 *parent_ino,
2153 				     u64 *parent_gen,
2154 				     struct fs_path *dest)
2155 {
2156 	int ret;
2157 	int nce_ret;
2158 	struct name_cache_entry *nce = NULL;
2159 
2160 	/*
2161 	 * First check if we already did a call to this function with the same
2162 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2163 	 * return the cached result.
2164 	 */
2165 	nce = name_cache_search(sctx, ino, gen);
2166 	if (nce) {
2167 		if (ino < sctx->send_progress && nce->need_later_update) {
2168 			name_cache_delete(sctx, nce);
2169 			kfree(nce);
2170 			nce = NULL;
2171 		} else {
2172 			name_cache_used(sctx, nce);
2173 			*parent_ino = nce->parent_ino;
2174 			*parent_gen = nce->parent_gen;
2175 			ret = fs_path_add(dest, nce->name, nce->name_len);
2176 			if (ret < 0)
2177 				goto out;
2178 			ret = nce->ret;
2179 			goto out;
2180 		}
2181 	}
2182 
2183 	/*
2184 	 * If the inode is not existent yet, add the orphan name and return 1.
2185 	 * This should only happen for the parent dir that we determine in
2186 	 * __record_new_ref
2187 	 */
2188 	ret = is_inode_existent(sctx, ino, gen);
2189 	if (ret < 0)
2190 		goto out;
2191 
2192 	if (!ret) {
2193 		ret = gen_unique_name(sctx, ino, gen, dest);
2194 		if (ret < 0)
2195 			goto out;
2196 		ret = 1;
2197 		goto out_cache;
2198 	}
2199 
2200 	/*
2201 	 * Depending on whether the inode was already processed or not, use
2202 	 * send_root or parent_root for ref lookup.
2203 	 */
2204 	if (ino < sctx->send_progress)
2205 		ret = get_first_ref(sctx->send_root, ino,
2206 				    parent_ino, parent_gen, dest);
2207 	else
2208 		ret = get_first_ref(sctx->parent_root, ino,
2209 				    parent_ino, parent_gen, dest);
2210 	if (ret < 0)
2211 		goto out;
2212 
2213 	/*
2214 	 * Check if the ref was overwritten by an inode's ref that was processed
2215 	 * earlier. If yes, treat as orphan and return 1.
2216 	 */
2217 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2218 			dest->start, dest->end - dest->start);
2219 	if (ret < 0)
2220 		goto out;
2221 	if (ret) {
2222 		fs_path_reset(dest);
2223 		ret = gen_unique_name(sctx, ino, gen, dest);
2224 		if (ret < 0)
2225 			goto out;
2226 		ret = 1;
2227 	}
2228 
2229 out_cache:
2230 	/*
2231 	 * Store the result of the lookup in the name cache.
2232 	 */
2233 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2234 	if (!nce) {
2235 		ret = -ENOMEM;
2236 		goto out;
2237 	}
2238 
2239 	nce->ino = ino;
2240 	nce->gen = gen;
2241 	nce->parent_ino = *parent_ino;
2242 	nce->parent_gen = *parent_gen;
2243 	nce->name_len = fs_path_len(dest);
2244 	nce->ret = ret;
2245 	strcpy(nce->name, dest->start);
2246 
2247 	if (ino < sctx->send_progress)
2248 		nce->need_later_update = 0;
2249 	else
2250 		nce->need_later_update = 1;
2251 
2252 	nce_ret = name_cache_insert(sctx, nce);
2253 	if (nce_ret < 0)
2254 		ret = nce_ret;
2255 	name_cache_clean_unused(sctx);
2256 
2257 out:
2258 	return ret;
2259 }
2260 
2261 /*
2262  * Magic happens here. This function returns the first ref to an inode as it
2263  * would look like while receiving the stream at this point in time.
2264  * We walk the path up to the root. For every inode in between, we check if it
2265  * was already processed/sent. If yes, we continue with the parent as found
2266  * in send_root. If not, we continue with the parent as found in parent_root.
2267  * If we encounter an inode that was deleted at this point in time, we use the
2268  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2269  * that were not created yet and overwritten inodes/refs.
2270  *
2271  * When do we have orphan inodes:
2272  * 1. When an inode is freshly created and thus no valid refs are available yet
2273  * 2. When a directory lost all it's refs (deleted) but still has dir items
2274  *    inside which were not processed yet (pending for move/delete). If anyone
2275  *    tried to get the path to the dir items, it would get a path inside that
2276  *    orphan directory.
2277  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2278  *    of an unprocessed inode. If in that case the first ref would be
2279  *    overwritten, the overwritten inode gets "orphanized". Later when we
2280  *    process this overwritten inode, it is restored at a new place by moving
2281  *    the orphan inode.
2282  *
2283  * sctx->send_progress tells this function at which point in time receiving
2284  * would be.
2285  */
2286 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2287 			struct fs_path *dest)
2288 {
2289 	int ret = 0;
2290 	struct fs_path *name = NULL;
2291 	u64 parent_inode = 0;
2292 	u64 parent_gen = 0;
2293 	int stop = 0;
2294 
2295 	name = fs_path_alloc();
2296 	if (!name) {
2297 		ret = -ENOMEM;
2298 		goto out;
2299 	}
2300 
2301 	dest->reversed = 1;
2302 	fs_path_reset(dest);
2303 
2304 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2305 		struct waiting_dir_move *wdm;
2306 
2307 		fs_path_reset(name);
2308 
2309 		if (is_waiting_for_rm(sctx, ino)) {
2310 			ret = gen_unique_name(sctx, ino, gen, name);
2311 			if (ret < 0)
2312 				goto out;
2313 			ret = fs_path_add_path(dest, name);
2314 			break;
2315 		}
2316 
2317 		wdm = get_waiting_dir_move(sctx, ino);
2318 		if (wdm && wdm->orphanized) {
2319 			ret = gen_unique_name(sctx, ino, gen, name);
2320 			stop = 1;
2321 		} else if (wdm) {
2322 			ret = get_first_ref(sctx->parent_root, ino,
2323 					    &parent_inode, &parent_gen, name);
2324 		} else {
2325 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2326 							&parent_inode,
2327 							&parent_gen, name);
2328 			if (ret)
2329 				stop = 1;
2330 		}
2331 
2332 		if (ret < 0)
2333 			goto out;
2334 
2335 		ret = fs_path_add_path(dest, name);
2336 		if (ret < 0)
2337 			goto out;
2338 
2339 		ino = parent_inode;
2340 		gen = parent_gen;
2341 	}
2342 
2343 out:
2344 	fs_path_free(name);
2345 	if (!ret)
2346 		fs_path_unreverse(dest);
2347 	return ret;
2348 }
2349 
2350 /*
2351  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2352  */
2353 static int send_subvol_begin(struct send_ctx *sctx)
2354 {
2355 	int ret;
2356 	struct btrfs_root *send_root = sctx->send_root;
2357 	struct btrfs_root *parent_root = sctx->parent_root;
2358 	struct btrfs_path *path;
2359 	struct btrfs_key key;
2360 	struct btrfs_root_ref *ref;
2361 	struct extent_buffer *leaf;
2362 	char *name = NULL;
2363 	int namelen;
2364 
2365 	path = btrfs_alloc_path();
2366 	if (!path)
2367 		return -ENOMEM;
2368 
2369 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2370 	if (!name) {
2371 		btrfs_free_path(path);
2372 		return -ENOMEM;
2373 	}
2374 
2375 	key.objectid = send_root->root_key.objectid;
2376 	key.type = BTRFS_ROOT_BACKREF_KEY;
2377 	key.offset = 0;
2378 
2379 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2380 				&key, path, 1, 0);
2381 	if (ret < 0)
2382 		goto out;
2383 	if (ret) {
2384 		ret = -ENOENT;
2385 		goto out;
2386 	}
2387 
2388 	leaf = path->nodes[0];
2389 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2390 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2391 	    key.objectid != send_root->root_key.objectid) {
2392 		ret = -ENOENT;
2393 		goto out;
2394 	}
2395 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2396 	namelen = btrfs_root_ref_name_len(leaf, ref);
2397 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2398 	btrfs_release_path(path);
2399 
2400 	if (parent_root) {
2401 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2402 		if (ret < 0)
2403 			goto out;
2404 	} else {
2405 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2406 		if (ret < 0)
2407 			goto out;
2408 	}
2409 
2410 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2411 
2412 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2413 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2414 			    sctx->send_root->root_item.received_uuid);
2415 	else
2416 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2417 			    sctx->send_root->root_item.uuid);
2418 
2419 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2420 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2421 	if (parent_root) {
2422 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2423 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2424 				     parent_root->root_item.received_uuid);
2425 		else
2426 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2427 				     parent_root->root_item.uuid);
2428 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2429 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2430 	}
2431 
2432 	ret = send_cmd(sctx);
2433 
2434 tlv_put_failure:
2435 out:
2436 	btrfs_free_path(path);
2437 	kfree(name);
2438 	return ret;
2439 }
2440 
2441 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2442 {
2443 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2444 	int ret = 0;
2445 	struct fs_path *p;
2446 
2447 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2448 
2449 	p = fs_path_alloc();
2450 	if (!p)
2451 		return -ENOMEM;
2452 
2453 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2454 	if (ret < 0)
2455 		goto out;
2456 
2457 	ret = get_cur_path(sctx, ino, gen, p);
2458 	if (ret < 0)
2459 		goto out;
2460 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2461 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2462 
2463 	ret = send_cmd(sctx);
2464 
2465 tlv_put_failure:
2466 out:
2467 	fs_path_free(p);
2468 	return ret;
2469 }
2470 
2471 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2472 {
2473 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2474 	int ret = 0;
2475 	struct fs_path *p;
2476 
2477 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2478 
2479 	p = fs_path_alloc();
2480 	if (!p)
2481 		return -ENOMEM;
2482 
2483 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2484 	if (ret < 0)
2485 		goto out;
2486 
2487 	ret = get_cur_path(sctx, ino, gen, p);
2488 	if (ret < 0)
2489 		goto out;
2490 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2491 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2492 
2493 	ret = send_cmd(sctx);
2494 
2495 tlv_put_failure:
2496 out:
2497 	fs_path_free(p);
2498 	return ret;
2499 }
2500 
2501 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2502 {
2503 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2504 	int ret = 0;
2505 	struct fs_path *p;
2506 
2507 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2508 		    ino, uid, gid);
2509 
2510 	p = fs_path_alloc();
2511 	if (!p)
2512 		return -ENOMEM;
2513 
2514 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2515 	if (ret < 0)
2516 		goto out;
2517 
2518 	ret = get_cur_path(sctx, ino, gen, p);
2519 	if (ret < 0)
2520 		goto out;
2521 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2522 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2523 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2524 
2525 	ret = send_cmd(sctx);
2526 
2527 tlv_put_failure:
2528 out:
2529 	fs_path_free(p);
2530 	return ret;
2531 }
2532 
2533 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2534 {
2535 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2536 	int ret = 0;
2537 	struct fs_path *p = NULL;
2538 	struct btrfs_inode_item *ii;
2539 	struct btrfs_path *path = NULL;
2540 	struct extent_buffer *eb;
2541 	struct btrfs_key key;
2542 	int slot;
2543 
2544 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2545 
2546 	p = fs_path_alloc();
2547 	if (!p)
2548 		return -ENOMEM;
2549 
2550 	path = alloc_path_for_send();
2551 	if (!path) {
2552 		ret = -ENOMEM;
2553 		goto out;
2554 	}
2555 
2556 	key.objectid = ino;
2557 	key.type = BTRFS_INODE_ITEM_KEY;
2558 	key.offset = 0;
2559 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2560 	if (ret > 0)
2561 		ret = -ENOENT;
2562 	if (ret < 0)
2563 		goto out;
2564 
2565 	eb = path->nodes[0];
2566 	slot = path->slots[0];
2567 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2568 
2569 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2570 	if (ret < 0)
2571 		goto out;
2572 
2573 	ret = get_cur_path(sctx, ino, gen, p);
2574 	if (ret < 0)
2575 		goto out;
2576 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2577 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2578 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2579 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2580 	/* TODO Add otime support when the otime patches get into upstream */
2581 
2582 	ret = send_cmd(sctx);
2583 
2584 tlv_put_failure:
2585 out:
2586 	fs_path_free(p);
2587 	btrfs_free_path(path);
2588 	return ret;
2589 }
2590 
2591 /*
2592  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2593  * a valid path yet because we did not process the refs yet. So, the inode
2594  * is created as orphan.
2595  */
2596 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2597 {
2598 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2599 	int ret = 0;
2600 	struct fs_path *p;
2601 	int cmd;
2602 	u64 gen;
2603 	u64 mode;
2604 	u64 rdev;
2605 
2606 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2607 
2608 	p = fs_path_alloc();
2609 	if (!p)
2610 		return -ENOMEM;
2611 
2612 	if (ino != sctx->cur_ino) {
2613 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2614 				     NULL, NULL, &rdev);
2615 		if (ret < 0)
2616 			goto out;
2617 	} else {
2618 		gen = sctx->cur_inode_gen;
2619 		mode = sctx->cur_inode_mode;
2620 		rdev = sctx->cur_inode_rdev;
2621 	}
2622 
2623 	if (S_ISREG(mode)) {
2624 		cmd = BTRFS_SEND_C_MKFILE;
2625 	} else if (S_ISDIR(mode)) {
2626 		cmd = BTRFS_SEND_C_MKDIR;
2627 	} else if (S_ISLNK(mode)) {
2628 		cmd = BTRFS_SEND_C_SYMLINK;
2629 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2630 		cmd = BTRFS_SEND_C_MKNOD;
2631 	} else if (S_ISFIFO(mode)) {
2632 		cmd = BTRFS_SEND_C_MKFIFO;
2633 	} else if (S_ISSOCK(mode)) {
2634 		cmd = BTRFS_SEND_C_MKSOCK;
2635 	} else {
2636 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2637 				(int)(mode & S_IFMT));
2638 		ret = -EOPNOTSUPP;
2639 		goto out;
2640 	}
2641 
2642 	ret = begin_cmd(sctx, cmd);
2643 	if (ret < 0)
2644 		goto out;
2645 
2646 	ret = gen_unique_name(sctx, ino, gen, p);
2647 	if (ret < 0)
2648 		goto out;
2649 
2650 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2651 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2652 
2653 	if (S_ISLNK(mode)) {
2654 		fs_path_reset(p);
2655 		ret = read_symlink(sctx->send_root, ino, p);
2656 		if (ret < 0)
2657 			goto out;
2658 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2659 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2660 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2661 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2662 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2663 	}
2664 
2665 	ret = send_cmd(sctx);
2666 	if (ret < 0)
2667 		goto out;
2668 
2669 
2670 tlv_put_failure:
2671 out:
2672 	fs_path_free(p);
2673 	return ret;
2674 }
2675 
2676 /*
2677  * We need some special handling for inodes that get processed before the parent
2678  * directory got created. See process_recorded_refs for details.
2679  * This function does the check if we already created the dir out of order.
2680  */
2681 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2682 {
2683 	int ret = 0;
2684 	struct btrfs_path *path = NULL;
2685 	struct btrfs_key key;
2686 	struct btrfs_key found_key;
2687 	struct btrfs_key di_key;
2688 	struct extent_buffer *eb;
2689 	struct btrfs_dir_item *di;
2690 	int slot;
2691 
2692 	path = alloc_path_for_send();
2693 	if (!path) {
2694 		ret = -ENOMEM;
2695 		goto out;
2696 	}
2697 
2698 	key.objectid = dir;
2699 	key.type = BTRFS_DIR_INDEX_KEY;
2700 	key.offset = 0;
2701 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2702 	if (ret < 0)
2703 		goto out;
2704 
2705 	while (1) {
2706 		eb = path->nodes[0];
2707 		slot = path->slots[0];
2708 		if (slot >= btrfs_header_nritems(eb)) {
2709 			ret = btrfs_next_leaf(sctx->send_root, path);
2710 			if (ret < 0) {
2711 				goto out;
2712 			} else if (ret > 0) {
2713 				ret = 0;
2714 				break;
2715 			}
2716 			continue;
2717 		}
2718 
2719 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2720 		if (found_key.objectid != key.objectid ||
2721 		    found_key.type != key.type) {
2722 			ret = 0;
2723 			goto out;
2724 		}
2725 
2726 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2727 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2728 
2729 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2730 		    di_key.objectid < sctx->send_progress) {
2731 			ret = 1;
2732 			goto out;
2733 		}
2734 
2735 		path->slots[0]++;
2736 	}
2737 
2738 out:
2739 	btrfs_free_path(path);
2740 	return ret;
2741 }
2742 
2743 /*
2744  * Only creates the inode if it is:
2745  * 1. Not a directory
2746  * 2. Or a directory which was not created already due to out of order
2747  *    directories. See did_create_dir and process_recorded_refs for details.
2748  */
2749 static int send_create_inode_if_needed(struct send_ctx *sctx)
2750 {
2751 	int ret;
2752 
2753 	if (S_ISDIR(sctx->cur_inode_mode)) {
2754 		ret = did_create_dir(sctx, sctx->cur_ino);
2755 		if (ret < 0)
2756 			goto out;
2757 		if (ret) {
2758 			ret = 0;
2759 			goto out;
2760 		}
2761 	}
2762 
2763 	ret = send_create_inode(sctx, sctx->cur_ino);
2764 	if (ret < 0)
2765 		goto out;
2766 
2767 out:
2768 	return ret;
2769 }
2770 
2771 struct recorded_ref {
2772 	struct list_head list;
2773 	char *name;
2774 	struct fs_path *full_path;
2775 	u64 dir;
2776 	u64 dir_gen;
2777 	int name_len;
2778 };
2779 
2780 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2781 {
2782 	ref->full_path = path;
2783 	ref->name = (char *)kbasename(ref->full_path->start);
2784 	ref->name_len = ref->full_path->end - ref->name;
2785 }
2786 
2787 /*
2788  * We need to process new refs before deleted refs, but compare_tree gives us
2789  * everything mixed. So we first record all refs and later process them.
2790  * This function is a helper to record one ref.
2791  */
2792 static int __record_ref(struct list_head *head, u64 dir,
2793 		      u64 dir_gen, struct fs_path *path)
2794 {
2795 	struct recorded_ref *ref;
2796 
2797 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2798 	if (!ref)
2799 		return -ENOMEM;
2800 
2801 	ref->dir = dir;
2802 	ref->dir_gen = dir_gen;
2803 	set_ref_path(ref, path);
2804 	list_add_tail(&ref->list, head);
2805 	return 0;
2806 }
2807 
2808 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2809 {
2810 	struct recorded_ref *new;
2811 
2812 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2813 	if (!new)
2814 		return -ENOMEM;
2815 
2816 	new->dir = ref->dir;
2817 	new->dir_gen = ref->dir_gen;
2818 	new->full_path = NULL;
2819 	INIT_LIST_HEAD(&new->list);
2820 	list_add_tail(&new->list, list);
2821 	return 0;
2822 }
2823 
2824 static void __free_recorded_refs(struct list_head *head)
2825 {
2826 	struct recorded_ref *cur;
2827 
2828 	while (!list_empty(head)) {
2829 		cur = list_entry(head->next, struct recorded_ref, list);
2830 		fs_path_free(cur->full_path);
2831 		list_del(&cur->list);
2832 		kfree(cur);
2833 	}
2834 }
2835 
2836 static void free_recorded_refs(struct send_ctx *sctx)
2837 {
2838 	__free_recorded_refs(&sctx->new_refs);
2839 	__free_recorded_refs(&sctx->deleted_refs);
2840 }
2841 
2842 /*
2843  * Renames/moves a file/dir to its orphan name. Used when the first
2844  * ref of an unprocessed inode gets overwritten and for all non empty
2845  * directories.
2846  */
2847 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2848 			  struct fs_path *path)
2849 {
2850 	int ret;
2851 	struct fs_path *orphan;
2852 
2853 	orphan = fs_path_alloc();
2854 	if (!orphan)
2855 		return -ENOMEM;
2856 
2857 	ret = gen_unique_name(sctx, ino, gen, orphan);
2858 	if (ret < 0)
2859 		goto out;
2860 
2861 	ret = send_rename(sctx, path, orphan);
2862 
2863 out:
2864 	fs_path_free(orphan);
2865 	return ret;
2866 }
2867 
2868 static struct orphan_dir_info *
2869 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2870 {
2871 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2872 	struct rb_node *parent = NULL;
2873 	struct orphan_dir_info *entry, *odi;
2874 
2875 	while (*p) {
2876 		parent = *p;
2877 		entry = rb_entry(parent, struct orphan_dir_info, node);
2878 		if (dir_ino < entry->ino) {
2879 			p = &(*p)->rb_left;
2880 		} else if (dir_ino > entry->ino) {
2881 			p = &(*p)->rb_right;
2882 		} else {
2883 			return entry;
2884 		}
2885 	}
2886 
2887 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2888 	if (!odi)
2889 		return ERR_PTR(-ENOMEM);
2890 	odi->ino = dir_ino;
2891 	odi->gen = 0;
2892 	odi->last_dir_index_offset = 0;
2893 
2894 	rb_link_node(&odi->node, parent, p);
2895 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2896 	return odi;
2897 }
2898 
2899 static struct orphan_dir_info *
2900 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2901 {
2902 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2903 	struct orphan_dir_info *entry;
2904 
2905 	while (n) {
2906 		entry = rb_entry(n, struct orphan_dir_info, node);
2907 		if (dir_ino < entry->ino)
2908 			n = n->rb_left;
2909 		else if (dir_ino > entry->ino)
2910 			n = n->rb_right;
2911 		else
2912 			return entry;
2913 	}
2914 	return NULL;
2915 }
2916 
2917 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2918 {
2919 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2920 
2921 	return odi != NULL;
2922 }
2923 
2924 static void free_orphan_dir_info(struct send_ctx *sctx,
2925 				 struct orphan_dir_info *odi)
2926 {
2927 	if (!odi)
2928 		return;
2929 	rb_erase(&odi->node, &sctx->orphan_dirs);
2930 	kfree(odi);
2931 }
2932 
2933 /*
2934  * Returns 1 if a directory can be removed at this point in time.
2935  * We check this by iterating all dir items and checking if the inode behind
2936  * the dir item was already processed.
2937  */
2938 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2939 		     u64 send_progress)
2940 {
2941 	int ret = 0;
2942 	struct btrfs_root *root = sctx->parent_root;
2943 	struct btrfs_path *path;
2944 	struct btrfs_key key;
2945 	struct btrfs_key found_key;
2946 	struct btrfs_key loc;
2947 	struct btrfs_dir_item *di;
2948 	struct orphan_dir_info *odi = NULL;
2949 
2950 	/*
2951 	 * Don't try to rmdir the top/root subvolume dir.
2952 	 */
2953 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2954 		return 0;
2955 
2956 	path = alloc_path_for_send();
2957 	if (!path)
2958 		return -ENOMEM;
2959 
2960 	key.objectid = dir;
2961 	key.type = BTRFS_DIR_INDEX_KEY;
2962 	key.offset = 0;
2963 
2964 	odi = get_orphan_dir_info(sctx, dir);
2965 	if (odi)
2966 		key.offset = odi->last_dir_index_offset;
2967 
2968 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2969 	if (ret < 0)
2970 		goto out;
2971 
2972 	while (1) {
2973 		struct waiting_dir_move *dm;
2974 
2975 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2976 			ret = btrfs_next_leaf(root, path);
2977 			if (ret < 0)
2978 				goto out;
2979 			else if (ret > 0)
2980 				break;
2981 			continue;
2982 		}
2983 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2984 				      path->slots[0]);
2985 		if (found_key.objectid != key.objectid ||
2986 		    found_key.type != key.type)
2987 			break;
2988 
2989 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2990 				struct btrfs_dir_item);
2991 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2992 
2993 		dm = get_waiting_dir_move(sctx, loc.objectid);
2994 		if (dm) {
2995 			odi = add_orphan_dir_info(sctx, dir);
2996 			if (IS_ERR(odi)) {
2997 				ret = PTR_ERR(odi);
2998 				goto out;
2999 			}
3000 			odi->gen = dir_gen;
3001 			odi->last_dir_index_offset = found_key.offset;
3002 			dm->rmdir_ino = dir;
3003 			ret = 0;
3004 			goto out;
3005 		}
3006 
3007 		if (loc.objectid > send_progress) {
3008 			odi = add_orphan_dir_info(sctx, dir);
3009 			if (IS_ERR(odi)) {
3010 				ret = PTR_ERR(odi);
3011 				goto out;
3012 			}
3013 			odi->gen = dir_gen;
3014 			odi->last_dir_index_offset = found_key.offset;
3015 			ret = 0;
3016 			goto out;
3017 		}
3018 
3019 		path->slots[0]++;
3020 	}
3021 	free_orphan_dir_info(sctx, odi);
3022 
3023 	ret = 1;
3024 
3025 out:
3026 	btrfs_free_path(path);
3027 	return ret;
3028 }
3029 
3030 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3031 {
3032 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3033 
3034 	return entry != NULL;
3035 }
3036 
3037 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3038 {
3039 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3040 	struct rb_node *parent = NULL;
3041 	struct waiting_dir_move *entry, *dm;
3042 
3043 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3044 	if (!dm)
3045 		return -ENOMEM;
3046 	dm->ino = ino;
3047 	dm->rmdir_ino = 0;
3048 	dm->orphanized = orphanized;
3049 
3050 	while (*p) {
3051 		parent = *p;
3052 		entry = rb_entry(parent, struct waiting_dir_move, node);
3053 		if (ino < entry->ino) {
3054 			p = &(*p)->rb_left;
3055 		} else if (ino > entry->ino) {
3056 			p = &(*p)->rb_right;
3057 		} else {
3058 			kfree(dm);
3059 			return -EEXIST;
3060 		}
3061 	}
3062 
3063 	rb_link_node(&dm->node, parent, p);
3064 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3065 	return 0;
3066 }
3067 
3068 static struct waiting_dir_move *
3069 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3070 {
3071 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3072 	struct waiting_dir_move *entry;
3073 
3074 	while (n) {
3075 		entry = rb_entry(n, struct waiting_dir_move, node);
3076 		if (ino < entry->ino)
3077 			n = n->rb_left;
3078 		else if (ino > entry->ino)
3079 			n = n->rb_right;
3080 		else
3081 			return entry;
3082 	}
3083 	return NULL;
3084 }
3085 
3086 static void free_waiting_dir_move(struct send_ctx *sctx,
3087 				  struct waiting_dir_move *dm)
3088 {
3089 	if (!dm)
3090 		return;
3091 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3092 	kfree(dm);
3093 }
3094 
3095 static int add_pending_dir_move(struct send_ctx *sctx,
3096 				u64 ino,
3097 				u64 ino_gen,
3098 				u64 parent_ino,
3099 				struct list_head *new_refs,
3100 				struct list_head *deleted_refs,
3101 				const bool is_orphan)
3102 {
3103 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3104 	struct rb_node *parent = NULL;
3105 	struct pending_dir_move *entry = NULL, *pm;
3106 	struct recorded_ref *cur;
3107 	int exists = 0;
3108 	int ret;
3109 
3110 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3111 	if (!pm)
3112 		return -ENOMEM;
3113 	pm->parent_ino = parent_ino;
3114 	pm->ino = ino;
3115 	pm->gen = ino_gen;
3116 	INIT_LIST_HEAD(&pm->list);
3117 	INIT_LIST_HEAD(&pm->update_refs);
3118 	RB_CLEAR_NODE(&pm->node);
3119 
3120 	while (*p) {
3121 		parent = *p;
3122 		entry = rb_entry(parent, struct pending_dir_move, node);
3123 		if (parent_ino < entry->parent_ino) {
3124 			p = &(*p)->rb_left;
3125 		} else if (parent_ino > entry->parent_ino) {
3126 			p = &(*p)->rb_right;
3127 		} else {
3128 			exists = 1;
3129 			break;
3130 		}
3131 	}
3132 
3133 	list_for_each_entry(cur, deleted_refs, list) {
3134 		ret = dup_ref(cur, &pm->update_refs);
3135 		if (ret < 0)
3136 			goto out;
3137 	}
3138 	list_for_each_entry(cur, new_refs, list) {
3139 		ret = dup_ref(cur, &pm->update_refs);
3140 		if (ret < 0)
3141 			goto out;
3142 	}
3143 
3144 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3145 	if (ret)
3146 		goto out;
3147 
3148 	if (exists) {
3149 		list_add_tail(&pm->list, &entry->list);
3150 	} else {
3151 		rb_link_node(&pm->node, parent, p);
3152 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3153 	}
3154 	ret = 0;
3155 out:
3156 	if (ret) {
3157 		__free_recorded_refs(&pm->update_refs);
3158 		kfree(pm);
3159 	}
3160 	return ret;
3161 }
3162 
3163 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3164 						      u64 parent_ino)
3165 {
3166 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3167 	struct pending_dir_move *entry;
3168 
3169 	while (n) {
3170 		entry = rb_entry(n, struct pending_dir_move, node);
3171 		if (parent_ino < entry->parent_ino)
3172 			n = n->rb_left;
3173 		else if (parent_ino > entry->parent_ino)
3174 			n = n->rb_right;
3175 		else
3176 			return entry;
3177 	}
3178 	return NULL;
3179 }
3180 
3181 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3182 		     u64 ino, u64 gen, u64 *ancestor_ino)
3183 {
3184 	int ret = 0;
3185 	u64 parent_inode = 0;
3186 	u64 parent_gen = 0;
3187 	u64 start_ino = ino;
3188 
3189 	*ancestor_ino = 0;
3190 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3191 		fs_path_reset(name);
3192 
3193 		if (is_waiting_for_rm(sctx, ino))
3194 			break;
3195 		if (is_waiting_for_move(sctx, ino)) {
3196 			if (*ancestor_ino == 0)
3197 				*ancestor_ino = ino;
3198 			ret = get_first_ref(sctx->parent_root, ino,
3199 					    &parent_inode, &parent_gen, name);
3200 		} else {
3201 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3202 							&parent_inode,
3203 							&parent_gen, name);
3204 			if (ret > 0) {
3205 				ret = 0;
3206 				break;
3207 			}
3208 		}
3209 		if (ret < 0)
3210 			break;
3211 		if (parent_inode == start_ino) {
3212 			ret = 1;
3213 			if (*ancestor_ino == 0)
3214 				*ancestor_ino = ino;
3215 			break;
3216 		}
3217 		ino = parent_inode;
3218 		gen = parent_gen;
3219 	}
3220 	return ret;
3221 }
3222 
3223 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3224 {
3225 	struct fs_path *from_path = NULL;
3226 	struct fs_path *to_path = NULL;
3227 	struct fs_path *name = NULL;
3228 	u64 orig_progress = sctx->send_progress;
3229 	struct recorded_ref *cur;
3230 	u64 parent_ino, parent_gen;
3231 	struct waiting_dir_move *dm = NULL;
3232 	u64 rmdir_ino = 0;
3233 	u64 ancestor;
3234 	bool is_orphan;
3235 	int ret;
3236 
3237 	name = fs_path_alloc();
3238 	from_path = fs_path_alloc();
3239 	if (!name || !from_path) {
3240 		ret = -ENOMEM;
3241 		goto out;
3242 	}
3243 
3244 	dm = get_waiting_dir_move(sctx, pm->ino);
3245 	ASSERT(dm);
3246 	rmdir_ino = dm->rmdir_ino;
3247 	is_orphan = dm->orphanized;
3248 	free_waiting_dir_move(sctx, dm);
3249 
3250 	if (is_orphan) {
3251 		ret = gen_unique_name(sctx, pm->ino,
3252 				      pm->gen, from_path);
3253 	} else {
3254 		ret = get_first_ref(sctx->parent_root, pm->ino,
3255 				    &parent_ino, &parent_gen, name);
3256 		if (ret < 0)
3257 			goto out;
3258 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3259 				   from_path);
3260 		if (ret < 0)
3261 			goto out;
3262 		ret = fs_path_add_path(from_path, name);
3263 	}
3264 	if (ret < 0)
3265 		goto out;
3266 
3267 	sctx->send_progress = sctx->cur_ino + 1;
3268 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3269 	if (ret < 0)
3270 		goto out;
3271 	if (ret) {
3272 		LIST_HEAD(deleted_refs);
3273 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3274 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3275 					   &pm->update_refs, &deleted_refs,
3276 					   is_orphan);
3277 		if (ret < 0)
3278 			goto out;
3279 		if (rmdir_ino) {
3280 			dm = get_waiting_dir_move(sctx, pm->ino);
3281 			ASSERT(dm);
3282 			dm->rmdir_ino = rmdir_ino;
3283 		}
3284 		goto out;
3285 	}
3286 	fs_path_reset(name);
3287 	to_path = name;
3288 	name = NULL;
3289 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3290 	if (ret < 0)
3291 		goto out;
3292 
3293 	ret = send_rename(sctx, from_path, to_path);
3294 	if (ret < 0)
3295 		goto out;
3296 
3297 	if (rmdir_ino) {
3298 		struct orphan_dir_info *odi;
3299 		u64 gen;
3300 
3301 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3302 		if (!odi) {
3303 			/* already deleted */
3304 			goto finish;
3305 		}
3306 		gen = odi->gen;
3307 
3308 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3309 		if (ret < 0)
3310 			goto out;
3311 		if (!ret)
3312 			goto finish;
3313 
3314 		name = fs_path_alloc();
3315 		if (!name) {
3316 			ret = -ENOMEM;
3317 			goto out;
3318 		}
3319 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3320 		if (ret < 0)
3321 			goto out;
3322 		ret = send_rmdir(sctx, name);
3323 		if (ret < 0)
3324 			goto out;
3325 	}
3326 
3327 finish:
3328 	ret = send_utimes(sctx, pm->ino, pm->gen);
3329 	if (ret < 0)
3330 		goto out;
3331 
3332 	/*
3333 	 * After rename/move, need to update the utimes of both new parent(s)
3334 	 * and old parent(s).
3335 	 */
3336 	list_for_each_entry(cur, &pm->update_refs, list) {
3337 		/*
3338 		 * The parent inode might have been deleted in the send snapshot
3339 		 */
3340 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3341 				     NULL, NULL, NULL, NULL, NULL);
3342 		if (ret == -ENOENT) {
3343 			ret = 0;
3344 			continue;
3345 		}
3346 		if (ret < 0)
3347 			goto out;
3348 
3349 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3350 		if (ret < 0)
3351 			goto out;
3352 	}
3353 
3354 out:
3355 	fs_path_free(name);
3356 	fs_path_free(from_path);
3357 	fs_path_free(to_path);
3358 	sctx->send_progress = orig_progress;
3359 
3360 	return ret;
3361 }
3362 
3363 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3364 {
3365 	if (!list_empty(&m->list))
3366 		list_del(&m->list);
3367 	if (!RB_EMPTY_NODE(&m->node))
3368 		rb_erase(&m->node, &sctx->pending_dir_moves);
3369 	__free_recorded_refs(&m->update_refs);
3370 	kfree(m);
3371 }
3372 
3373 static void tail_append_pending_moves(struct send_ctx *sctx,
3374 				      struct pending_dir_move *moves,
3375 				      struct list_head *stack)
3376 {
3377 	if (list_empty(&moves->list)) {
3378 		list_add_tail(&moves->list, stack);
3379 	} else {
3380 		LIST_HEAD(list);
3381 		list_splice_init(&moves->list, &list);
3382 		list_add_tail(&moves->list, stack);
3383 		list_splice_tail(&list, stack);
3384 	}
3385 	if (!RB_EMPTY_NODE(&moves->node)) {
3386 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3387 		RB_CLEAR_NODE(&moves->node);
3388 	}
3389 }
3390 
3391 static int apply_children_dir_moves(struct send_ctx *sctx)
3392 {
3393 	struct pending_dir_move *pm;
3394 	struct list_head stack;
3395 	u64 parent_ino = sctx->cur_ino;
3396 	int ret = 0;
3397 
3398 	pm = get_pending_dir_moves(sctx, parent_ino);
3399 	if (!pm)
3400 		return 0;
3401 
3402 	INIT_LIST_HEAD(&stack);
3403 	tail_append_pending_moves(sctx, pm, &stack);
3404 
3405 	while (!list_empty(&stack)) {
3406 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3407 		parent_ino = pm->ino;
3408 		ret = apply_dir_move(sctx, pm);
3409 		free_pending_move(sctx, pm);
3410 		if (ret)
3411 			goto out;
3412 		pm = get_pending_dir_moves(sctx, parent_ino);
3413 		if (pm)
3414 			tail_append_pending_moves(sctx, pm, &stack);
3415 	}
3416 	return 0;
3417 
3418 out:
3419 	while (!list_empty(&stack)) {
3420 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3421 		free_pending_move(sctx, pm);
3422 	}
3423 	return ret;
3424 }
3425 
3426 /*
3427  * We might need to delay a directory rename even when no ancestor directory
3428  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3429  * renamed. This happens when we rename a directory to the old name (the name
3430  * in the parent root) of some other unrelated directory that got its rename
3431  * delayed due to some ancestor with higher number that got renamed.
3432  *
3433  * Example:
3434  *
3435  * Parent snapshot:
3436  * .                                       (ino 256)
3437  * |---- a/                                (ino 257)
3438  * |     |---- file                        (ino 260)
3439  * |
3440  * |---- b/                                (ino 258)
3441  * |---- c/                                (ino 259)
3442  *
3443  * Send snapshot:
3444  * .                                       (ino 256)
3445  * |---- a/                                (ino 258)
3446  * |---- x/                                (ino 259)
3447  *       |---- y/                          (ino 257)
3448  *             |----- file                 (ino 260)
3449  *
3450  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3451  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3452  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3453  * must issue is:
3454  *
3455  * 1 - rename 259 from 'c' to 'x'
3456  * 2 - rename 257 from 'a' to 'x/y'
3457  * 3 - rename 258 from 'b' to 'a'
3458  *
3459  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3460  * be done right away and < 0 on error.
3461  */
3462 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3463 				  struct recorded_ref *parent_ref,
3464 				  const bool is_orphan)
3465 {
3466 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3467 	struct btrfs_path *path;
3468 	struct btrfs_key key;
3469 	struct btrfs_key di_key;
3470 	struct btrfs_dir_item *di;
3471 	u64 left_gen;
3472 	u64 right_gen;
3473 	int ret = 0;
3474 	struct waiting_dir_move *wdm;
3475 
3476 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3477 		return 0;
3478 
3479 	path = alloc_path_for_send();
3480 	if (!path)
3481 		return -ENOMEM;
3482 
3483 	key.objectid = parent_ref->dir;
3484 	key.type = BTRFS_DIR_ITEM_KEY;
3485 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3486 
3487 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3488 	if (ret < 0) {
3489 		goto out;
3490 	} else if (ret > 0) {
3491 		ret = 0;
3492 		goto out;
3493 	}
3494 
3495 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3496 				       parent_ref->name_len);
3497 	if (!di) {
3498 		ret = 0;
3499 		goto out;
3500 	}
3501 	/*
3502 	 * di_key.objectid has the number of the inode that has a dentry in the
3503 	 * parent directory with the same name that sctx->cur_ino is being
3504 	 * renamed to. We need to check if that inode is in the send root as
3505 	 * well and if it is currently marked as an inode with a pending rename,
3506 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3507 	 * that it happens after that other inode is renamed.
3508 	 */
3509 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3510 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3511 		ret = 0;
3512 		goto out;
3513 	}
3514 
3515 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3516 			     &left_gen, NULL, NULL, NULL, NULL);
3517 	if (ret < 0)
3518 		goto out;
3519 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3520 			     &right_gen, NULL, NULL, NULL, NULL);
3521 	if (ret < 0) {
3522 		if (ret == -ENOENT)
3523 			ret = 0;
3524 		goto out;
3525 	}
3526 
3527 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3528 	if (right_gen != left_gen) {
3529 		ret = 0;
3530 		goto out;
3531 	}
3532 
3533 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3534 	if (wdm && !wdm->orphanized) {
3535 		ret = add_pending_dir_move(sctx,
3536 					   sctx->cur_ino,
3537 					   sctx->cur_inode_gen,
3538 					   di_key.objectid,
3539 					   &sctx->new_refs,
3540 					   &sctx->deleted_refs,
3541 					   is_orphan);
3542 		if (!ret)
3543 			ret = 1;
3544 	}
3545 out:
3546 	btrfs_free_path(path);
3547 	return ret;
3548 }
3549 
3550 /*
3551  * Check if inode ino2, or any of its ancestors, is inode ino1.
3552  * Return 1 if true, 0 if false and < 0 on error.
3553  */
3554 static int check_ino_in_path(struct btrfs_root *root,
3555 			     const u64 ino1,
3556 			     const u64 ino1_gen,
3557 			     const u64 ino2,
3558 			     const u64 ino2_gen,
3559 			     struct fs_path *fs_path)
3560 {
3561 	u64 ino = ino2;
3562 
3563 	if (ino1 == ino2)
3564 		return ino1_gen == ino2_gen;
3565 
3566 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3567 		u64 parent;
3568 		u64 parent_gen;
3569 		int ret;
3570 
3571 		fs_path_reset(fs_path);
3572 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3573 		if (ret < 0)
3574 			return ret;
3575 		if (parent == ino1)
3576 			return parent_gen == ino1_gen;
3577 		ino = parent;
3578 	}
3579 	return 0;
3580 }
3581 
3582 /*
3583  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3584  * possible path (in case ino2 is not a directory and has multiple hard links).
3585  * Return 1 if true, 0 if false and < 0 on error.
3586  */
3587 static int is_ancestor(struct btrfs_root *root,
3588 		       const u64 ino1,
3589 		       const u64 ino1_gen,
3590 		       const u64 ino2,
3591 		       struct fs_path *fs_path)
3592 {
3593 	bool free_fs_path = false;
3594 	int ret = 0;
3595 	struct btrfs_path *path = NULL;
3596 	struct btrfs_key key;
3597 
3598 	if (!fs_path) {
3599 		fs_path = fs_path_alloc();
3600 		if (!fs_path)
3601 			return -ENOMEM;
3602 		free_fs_path = true;
3603 	}
3604 
3605 	path = alloc_path_for_send();
3606 	if (!path) {
3607 		ret = -ENOMEM;
3608 		goto out;
3609 	}
3610 
3611 	key.objectid = ino2;
3612 	key.type = BTRFS_INODE_REF_KEY;
3613 	key.offset = 0;
3614 
3615 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3616 	if (ret < 0)
3617 		goto out;
3618 
3619 	while (true) {
3620 		struct extent_buffer *leaf = path->nodes[0];
3621 		int slot = path->slots[0];
3622 		u32 cur_offset = 0;
3623 		u32 item_size;
3624 
3625 		if (slot >= btrfs_header_nritems(leaf)) {
3626 			ret = btrfs_next_leaf(root, path);
3627 			if (ret < 0)
3628 				goto out;
3629 			if (ret > 0)
3630 				break;
3631 			continue;
3632 		}
3633 
3634 		btrfs_item_key_to_cpu(leaf, &key, slot);
3635 		if (key.objectid != ino2)
3636 			break;
3637 		if (key.type != BTRFS_INODE_REF_KEY &&
3638 		    key.type != BTRFS_INODE_EXTREF_KEY)
3639 			break;
3640 
3641 		item_size = btrfs_item_size_nr(leaf, slot);
3642 		while (cur_offset < item_size) {
3643 			u64 parent;
3644 			u64 parent_gen;
3645 
3646 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3647 				unsigned long ptr;
3648 				struct btrfs_inode_extref *extref;
3649 
3650 				ptr = btrfs_item_ptr_offset(leaf, slot);
3651 				extref = (struct btrfs_inode_extref *)
3652 					(ptr + cur_offset);
3653 				parent = btrfs_inode_extref_parent(leaf,
3654 								   extref);
3655 				cur_offset += sizeof(*extref);
3656 				cur_offset += btrfs_inode_extref_name_len(leaf,
3657 								  extref);
3658 			} else {
3659 				parent = key.offset;
3660 				cur_offset = item_size;
3661 			}
3662 
3663 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3664 					     NULL, NULL, NULL, NULL);
3665 			if (ret < 0)
3666 				goto out;
3667 			ret = check_ino_in_path(root, ino1, ino1_gen,
3668 						parent, parent_gen, fs_path);
3669 			if (ret)
3670 				goto out;
3671 		}
3672 		path->slots[0]++;
3673 	}
3674 	ret = 0;
3675  out:
3676 	btrfs_free_path(path);
3677 	if (free_fs_path)
3678 		fs_path_free(fs_path);
3679 	return ret;
3680 }
3681 
3682 static int wait_for_parent_move(struct send_ctx *sctx,
3683 				struct recorded_ref *parent_ref,
3684 				const bool is_orphan)
3685 {
3686 	int ret = 0;
3687 	u64 ino = parent_ref->dir;
3688 	u64 ino_gen = parent_ref->dir_gen;
3689 	u64 parent_ino_before, parent_ino_after;
3690 	struct fs_path *path_before = NULL;
3691 	struct fs_path *path_after = NULL;
3692 	int len1, len2;
3693 
3694 	path_after = fs_path_alloc();
3695 	path_before = fs_path_alloc();
3696 	if (!path_after || !path_before) {
3697 		ret = -ENOMEM;
3698 		goto out;
3699 	}
3700 
3701 	/*
3702 	 * Our current directory inode may not yet be renamed/moved because some
3703 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3704 	 * such ancestor exists and make sure our own rename/move happens after
3705 	 * that ancestor is processed to avoid path build infinite loops (done
3706 	 * at get_cur_path()).
3707 	 */
3708 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3709 		u64 parent_ino_after_gen;
3710 
3711 		if (is_waiting_for_move(sctx, ino)) {
3712 			/*
3713 			 * If the current inode is an ancestor of ino in the
3714 			 * parent root, we need to delay the rename of the
3715 			 * current inode, otherwise don't delayed the rename
3716 			 * because we can end up with a circular dependency
3717 			 * of renames, resulting in some directories never
3718 			 * getting the respective rename operations issued in
3719 			 * the send stream or getting into infinite path build
3720 			 * loops.
3721 			 */
3722 			ret = is_ancestor(sctx->parent_root,
3723 					  sctx->cur_ino, sctx->cur_inode_gen,
3724 					  ino, path_before);
3725 			if (ret)
3726 				break;
3727 		}
3728 
3729 		fs_path_reset(path_before);
3730 		fs_path_reset(path_after);
3731 
3732 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3733 				    &parent_ino_after_gen, path_after);
3734 		if (ret < 0)
3735 			goto out;
3736 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3737 				    NULL, path_before);
3738 		if (ret < 0 && ret != -ENOENT) {
3739 			goto out;
3740 		} else if (ret == -ENOENT) {
3741 			ret = 0;
3742 			break;
3743 		}
3744 
3745 		len1 = fs_path_len(path_before);
3746 		len2 = fs_path_len(path_after);
3747 		if (ino > sctx->cur_ino &&
3748 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3749 		     memcmp(path_before->start, path_after->start, len1))) {
3750 			u64 parent_ino_gen;
3751 
3752 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3753 					     &parent_ino_gen, NULL, NULL, NULL,
3754 					     NULL);
3755 			if (ret < 0)
3756 				goto out;
3757 			if (ino_gen == parent_ino_gen) {
3758 				ret = 1;
3759 				break;
3760 			}
3761 		}
3762 		ino = parent_ino_after;
3763 		ino_gen = parent_ino_after_gen;
3764 	}
3765 
3766 out:
3767 	fs_path_free(path_before);
3768 	fs_path_free(path_after);
3769 
3770 	if (ret == 1) {
3771 		ret = add_pending_dir_move(sctx,
3772 					   sctx->cur_ino,
3773 					   sctx->cur_inode_gen,
3774 					   ino,
3775 					   &sctx->new_refs,
3776 					   &sctx->deleted_refs,
3777 					   is_orphan);
3778 		if (!ret)
3779 			ret = 1;
3780 	}
3781 
3782 	return ret;
3783 }
3784 
3785 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3786 {
3787 	int ret;
3788 	struct fs_path *new_path;
3789 
3790 	/*
3791 	 * Our reference's name member points to its full_path member string, so
3792 	 * we use here a new path.
3793 	 */
3794 	new_path = fs_path_alloc();
3795 	if (!new_path)
3796 		return -ENOMEM;
3797 
3798 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3799 	if (ret < 0) {
3800 		fs_path_free(new_path);
3801 		return ret;
3802 	}
3803 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3804 	if (ret < 0) {
3805 		fs_path_free(new_path);
3806 		return ret;
3807 	}
3808 
3809 	fs_path_free(ref->full_path);
3810 	set_ref_path(ref, new_path);
3811 
3812 	return 0;
3813 }
3814 
3815 /*
3816  * This does all the move/link/unlink/rmdir magic.
3817  */
3818 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3819 {
3820 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3821 	int ret = 0;
3822 	struct recorded_ref *cur;
3823 	struct recorded_ref *cur2;
3824 	struct list_head check_dirs;
3825 	struct fs_path *valid_path = NULL;
3826 	u64 ow_inode = 0;
3827 	u64 ow_gen;
3828 	u64 ow_mode;
3829 	int did_overwrite = 0;
3830 	int is_orphan = 0;
3831 	u64 last_dir_ino_rm = 0;
3832 	bool can_rename = true;
3833 	bool orphanized_dir = false;
3834 	bool orphanized_ancestor = false;
3835 
3836 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3837 
3838 	/*
3839 	 * This should never happen as the root dir always has the same ref
3840 	 * which is always '..'
3841 	 */
3842 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3843 	INIT_LIST_HEAD(&check_dirs);
3844 
3845 	valid_path = fs_path_alloc();
3846 	if (!valid_path) {
3847 		ret = -ENOMEM;
3848 		goto out;
3849 	}
3850 
3851 	/*
3852 	 * First, check if the first ref of the current inode was overwritten
3853 	 * before. If yes, we know that the current inode was already orphanized
3854 	 * and thus use the orphan name. If not, we can use get_cur_path to
3855 	 * get the path of the first ref as it would like while receiving at
3856 	 * this point in time.
3857 	 * New inodes are always orphan at the beginning, so force to use the
3858 	 * orphan name in this case.
3859 	 * The first ref is stored in valid_path and will be updated if it
3860 	 * gets moved around.
3861 	 */
3862 	if (!sctx->cur_inode_new) {
3863 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3864 				sctx->cur_inode_gen);
3865 		if (ret < 0)
3866 			goto out;
3867 		if (ret)
3868 			did_overwrite = 1;
3869 	}
3870 	if (sctx->cur_inode_new || did_overwrite) {
3871 		ret = gen_unique_name(sctx, sctx->cur_ino,
3872 				sctx->cur_inode_gen, valid_path);
3873 		if (ret < 0)
3874 			goto out;
3875 		is_orphan = 1;
3876 	} else {
3877 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3878 				valid_path);
3879 		if (ret < 0)
3880 			goto out;
3881 	}
3882 
3883 	list_for_each_entry(cur, &sctx->new_refs, list) {
3884 		/*
3885 		 * We may have refs where the parent directory does not exist
3886 		 * yet. This happens if the parent directories inum is higher
3887 		 * than the current inum. To handle this case, we create the
3888 		 * parent directory out of order. But we need to check if this
3889 		 * did already happen before due to other refs in the same dir.
3890 		 */
3891 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3892 		if (ret < 0)
3893 			goto out;
3894 		if (ret == inode_state_will_create) {
3895 			ret = 0;
3896 			/*
3897 			 * First check if any of the current inodes refs did
3898 			 * already create the dir.
3899 			 */
3900 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3901 				if (cur == cur2)
3902 					break;
3903 				if (cur2->dir == cur->dir) {
3904 					ret = 1;
3905 					break;
3906 				}
3907 			}
3908 
3909 			/*
3910 			 * If that did not happen, check if a previous inode
3911 			 * did already create the dir.
3912 			 */
3913 			if (!ret)
3914 				ret = did_create_dir(sctx, cur->dir);
3915 			if (ret < 0)
3916 				goto out;
3917 			if (!ret) {
3918 				ret = send_create_inode(sctx, cur->dir);
3919 				if (ret < 0)
3920 					goto out;
3921 			}
3922 		}
3923 
3924 		/*
3925 		 * Check if this new ref would overwrite the first ref of
3926 		 * another unprocessed inode. If yes, orphanize the
3927 		 * overwritten inode. If we find an overwritten ref that is
3928 		 * not the first ref, simply unlink it.
3929 		 */
3930 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3931 				cur->name, cur->name_len,
3932 				&ow_inode, &ow_gen, &ow_mode);
3933 		if (ret < 0)
3934 			goto out;
3935 		if (ret) {
3936 			ret = is_first_ref(sctx->parent_root,
3937 					   ow_inode, cur->dir, cur->name,
3938 					   cur->name_len);
3939 			if (ret < 0)
3940 				goto out;
3941 			if (ret) {
3942 				struct name_cache_entry *nce;
3943 				struct waiting_dir_move *wdm;
3944 
3945 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3946 						cur->full_path);
3947 				if (ret < 0)
3948 					goto out;
3949 				if (S_ISDIR(ow_mode))
3950 					orphanized_dir = true;
3951 
3952 				/*
3953 				 * If ow_inode has its rename operation delayed
3954 				 * make sure that its orphanized name is used in
3955 				 * the source path when performing its rename
3956 				 * operation.
3957 				 */
3958 				if (is_waiting_for_move(sctx, ow_inode)) {
3959 					wdm = get_waiting_dir_move(sctx,
3960 								   ow_inode);
3961 					ASSERT(wdm);
3962 					wdm->orphanized = true;
3963 				}
3964 
3965 				/*
3966 				 * Make sure we clear our orphanized inode's
3967 				 * name from the name cache. This is because the
3968 				 * inode ow_inode might be an ancestor of some
3969 				 * other inode that will be orphanized as well
3970 				 * later and has an inode number greater than
3971 				 * sctx->send_progress. We need to prevent
3972 				 * future name lookups from using the old name
3973 				 * and get instead the orphan name.
3974 				 */
3975 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3976 				if (nce) {
3977 					name_cache_delete(sctx, nce);
3978 					kfree(nce);
3979 				}
3980 
3981 				/*
3982 				 * ow_inode might currently be an ancestor of
3983 				 * cur_ino, therefore compute valid_path (the
3984 				 * current path of cur_ino) again because it
3985 				 * might contain the pre-orphanization name of
3986 				 * ow_inode, which is no longer valid.
3987 				 */
3988 				ret = is_ancestor(sctx->parent_root,
3989 						  ow_inode, ow_gen,
3990 						  sctx->cur_ino, NULL);
3991 				if (ret > 0) {
3992 					orphanized_ancestor = true;
3993 					fs_path_reset(valid_path);
3994 					ret = get_cur_path(sctx, sctx->cur_ino,
3995 							   sctx->cur_inode_gen,
3996 							   valid_path);
3997 				}
3998 				if (ret < 0)
3999 					goto out;
4000 			} else {
4001 				ret = send_unlink(sctx, cur->full_path);
4002 				if (ret < 0)
4003 					goto out;
4004 			}
4005 		}
4006 
4007 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4008 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4009 			if (ret < 0)
4010 				goto out;
4011 			if (ret == 1) {
4012 				can_rename = false;
4013 				*pending_move = 1;
4014 			}
4015 		}
4016 
4017 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4018 		    can_rename) {
4019 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4020 			if (ret < 0)
4021 				goto out;
4022 			if (ret == 1) {
4023 				can_rename = false;
4024 				*pending_move = 1;
4025 			}
4026 		}
4027 
4028 		/*
4029 		 * link/move the ref to the new place. If we have an orphan
4030 		 * inode, move it and update valid_path. If not, link or move
4031 		 * it depending on the inode mode.
4032 		 */
4033 		if (is_orphan && can_rename) {
4034 			ret = send_rename(sctx, valid_path, cur->full_path);
4035 			if (ret < 0)
4036 				goto out;
4037 			is_orphan = 0;
4038 			ret = fs_path_copy(valid_path, cur->full_path);
4039 			if (ret < 0)
4040 				goto out;
4041 		} else if (can_rename) {
4042 			if (S_ISDIR(sctx->cur_inode_mode)) {
4043 				/*
4044 				 * Dirs can't be linked, so move it. For moved
4045 				 * dirs, we always have one new and one deleted
4046 				 * ref. The deleted ref is ignored later.
4047 				 */
4048 				ret = send_rename(sctx, valid_path,
4049 						  cur->full_path);
4050 				if (!ret)
4051 					ret = fs_path_copy(valid_path,
4052 							   cur->full_path);
4053 				if (ret < 0)
4054 					goto out;
4055 			} else {
4056 				/*
4057 				 * We might have previously orphanized an inode
4058 				 * which is an ancestor of our current inode,
4059 				 * so our reference's full path, which was
4060 				 * computed before any such orphanizations, must
4061 				 * be updated.
4062 				 */
4063 				if (orphanized_dir) {
4064 					ret = update_ref_path(sctx, cur);
4065 					if (ret < 0)
4066 						goto out;
4067 				}
4068 				ret = send_link(sctx, cur->full_path,
4069 						valid_path);
4070 				if (ret < 0)
4071 					goto out;
4072 			}
4073 		}
4074 		ret = dup_ref(cur, &check_dirs);
4075 		if (ret < 0)
4076 			goto out;
4077 	}
4078 
4079 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4080 		/*
4081 		 * Check if we can already rmdir the directory. If not,
4082 		 * orphanize it. For every dir item inside that gets deleted
4083 		 * later, we do this check again and rmdir it then if possible.
4084 		 * See the use of check_dirs for more details.
4085 		 */
4086 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4087 				sctx->cur_ino);
4088 		if (ret < 0)
4089 			goto out;
4090 		if (ret) {
4091 			ret = send_rmdir(sctx, valid_path);
4092 			if (ret < 0)
4093 				goto out;
4094 		} else if (!is_orphan) {
4095 			ret = orphanize_inode(sctx, sctx->cur_ino,
4096 					sctx->cur_inode_gen, valid_path);
4097 			if (ret < 0)
4098 				goto out;
4099 			is_orphan = 1;
4100 		}
4101 
4102 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4103 			ret = dup_ref(cur, &check_dirs);
4104 			if (ret < 0)
4105 				goto out;
4106 		}
4107 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4108 		   !list_empty(&sctx->deleted_refs)) {
4109 		/*
4110 		 * We have a moved dir. Add the old parent to check_dirs
4111 		 */
4112 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4113 				list);
4114 		ret = dup_ref(cur, &check_dirs);
4115 		if (ret < 0)
4116 			goto out;
4117 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4118 		/*
4119 		 * We have a non dir inode. Go through all deleted refs and
4120 		 * unlink them if they were not already overwritten by other
4121 		 * inodes.
4122 		 */
4123 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4124 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4125 					sctx->cur_ino, sctx->cur_inode_gen,
4126 					cur->name, cur->name_len);
4127 			if (ret < 0)
4128 				goto out;
4129 			if (!ret) {
4130 				/*
4131 				 * If we orphanized any ancestor before, we need
4132 				 * to recompute the full path for deleted names,
4133 				 * since any such path was computed before we
4134 				 * processed any references and orphanized any
4135 				 * ancestor inode.
4136 				 */
4137 				if (orphanized_ancestor) {
4138 					ret = update_ref_path(sctx, cur);
4139 					if (ret < 0)
4140 						goto out;
4141 				}
4142 				ret = send_unlink(sctx, cur->full_path);
4143 				if (ret < 0)
4144 					goto out;
4145 			}
4146 			ret = dup_ref(cur, &check_dirs);
4147 			if (ret < 0)
4148 				goto out;
4149 		}
4150 		/*
4151 		 * If the inode is still orphan, unlink the orphan. This may
4152 		 * happen when a previous inode did overwrite the first ref
4153 		 * of this inode and no new refs were added for the current
4154 		 * inode. Unlinking does not mean that the inode is deleted in
4155 		 * all cases. There may still be links to this inode in other
4156 		 * places.
4157 		 */
4158 		if (is_orphan) {
4159 			ret = send_unlink(sctx, valid_path);
4160 			if (ret < 0)
4161 				goto out;
4162 		}
4163 	}
4164 
4165 	/*
4166 	 * We did collect all parent dirs where cur_inode was once located. We
4167 	 * now go through all these dirs and check if they are pending for
4168 	 * deletion and if it's finally possible to perform the rmdir now.
4169 	 * We also update the inode stats of the parent dirs here.
4170 	 */
4171 	list_for_each_entry(cur, &check_dirs, list) {
4172 		/*
4173 		 * In case we had refs into dirs that were not processed yet,
4174 		 * we don't need to do the utime and rmdir logic for these dirs.
4175 		 * The dir will be processed later.
4176 		 */
4177 		if (cur->dir > sctx->cur_ino)
4178 			continue;
4179 
4180 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4181 		if (ret < 0)
4182 			goto out;
4183 
4184 		if (ret == inode_state_did_create ||
4185 		    ret == inode_state_no_change) {
4186 			/* TODO delayed utimes */
4187 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4188 			if (ret < 0)
4189 				goto out;
4190 		} else if (ret == inode_state_did_delete &&
4191 			   cur->dir != last_dir_ino_rm) {
4192 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4193 					sctx->cur_ino);
4194 			if (ret < 0)
4195 				goto out;
4196 			if (ret) {
4197 				ret = get_cur_path(sctx, cur->dir,
4198 						   cur->dir_gen, valid_path);
4199 				if (ret < 0)
4200 					goto out;
4201 				ret = send_rmdir(sctx, valid_path);
4202 				if (ret < 0)
4203 					goto out;
4204 				last_dir_ino_rm = cur->dir;
4205 			}
4206 		}
4207 	}
4208 
4209 	ret = 0;
4210 
4211 out:
4212 	__free_recorded_refs(&check_dirs);
4213 	free_recorded_refs(sctx);
4214 	fs_path_free(valid_path);
4215 	return ret;
4216 }
4217 
4218 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4219 		      void *ctx, struct list_head *refs)
4220 {
4221 	int ret = 0;
4222 	struct send_ctx *sctx = ctx;
4223 	struct fs_path *p;
4224 	u64 gen;
4225 
4226 	p = fs_path_alloc();
4227 	if (!p)
4228 		return -ENOMEM;
4229 
4230 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4231 			NULL, NULL);
4232 	if (ret < 0)
4233 		goto out;
4234 
4235 	ret = get_cur_path(sctx, dir, gen, p);
4236 	if (ret < 0)
4237 		goto out;
4238 	ret = fs_path_add_path(p, name);
4239 	if (ret < 0)
4240 		goto out;
4241 
4242 	ret = __record_ref(refs, dir, gen, p);
4243 
4244 out:
4245 	if (ret)
4246 		fs_path_free(p);
4247 	return ret;
4248 }
4249 
4250 static int __record_new_ref(int num, u64 dir, int index,
4251 			    struct fs_path *name,
4252 			    void *ctx)
4253 {
4254 	struct send_ctx *sctx = ctx;
4255 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4256 }
4257 
4258 
4259 static int __record_deleted_ref(int num, u64 dir, int index,
4260 				struct fs_path *name,
4261 				void *ctx)
4262 {
4263 	struct send_ctx *sctx = ctx;
4264 	return record_ref(sctx->parent_root, dir, name, ctx,
4265 			  &sctx->deleted_refs);
4266 }
4267 
4268 static int record_new_ref(struct send_ctx *sctx)
4269 {
4270 	int ret;
4271 
4272 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4273 				sctx->cmp_key, 0, __record_new_ref, sctx);
4274 	if (ret < 0)
4275 		goto out;
4276 	ret = 0;
4277 
4278 out:
4279 	return ret;
4280 }
4281 
4282 static int record_deleted_ref(struct send_ctx *sctx)
4283 {
4284 	int ret;
4285 
4286 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4287 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4288 	if (ret < 0)
4289 		goto out;
4290 	ret = 0;
4291 
4292 out:
4293 	return ret;
4294 }
4295 
4296 struct find_ref_ctx {
4297 	u64 dir;
4298 	u64 dir_gen;
4299 	struct btrfs_root *root;
4300 	struct fs_path *name;
4301 	int found_idx;
4302 };
4303 
4304 static int __find_iref(int num, u64 dir, int index,
4305 		       struct fs_path *name,
4306 		       void *ctx_)
4307 {
4308 	struct find_ref_ctx *ctx = ctx_;
4309 	u64 dir_gen;
4310 	int ret;
4311 
4312 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4313 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4314 		/*
4315 		 * To avoid doing extra lookups we'll only do this if everything
4316 		 * else matches.
4317 		 */
4318 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4319 				     NULL, NULL, NULL);
4320 		if (ret)
4321 			return ret;
4322 		if (dir_gen != ctx->dir_gen)
4323 			return 0;
4324 		ctx->found_idx = num;
4325 		return 1;
4326 	}
4327 	return 0;
4328 }
4329 
4330 static int find_iref(struct btrfs_root *root,
4331 		     struct btrfs_path *path,
4332 		     struct btrfs_key *key,
4333 		     u64 dir, u64 dir_gen, struct fs_path *name)
4334 {
4335 	int ret;
4336 	struct find_ref_ctx ctx;
4337 
4338 	ctx.dir = dir;
4339 	ctx.name = name;
4340 	ctx.dir_gen = dir_gen;
4341 	ctx.found_idx = -1;
4342 	ctx.root = root;
4343 
4344 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4345 	if (ret < 0)
4346 		return ret;
4347 
4348 	if (ctx.found_idx == -1)
4349 		return -ENOENT;
4350 
4351 	return ctx.found_idx;
4352 }
4353 
4354 static int __record_changed_new_ref(int num, u64 dir, int index,
4355 				    struct fs_path *name,
4356 				    void *ctx)
4357 {
4358 	u64 dir_gen;
4359 	int ret;
4360 	struct send_ctx *sctx = ctx;
4361 
4362 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4363 			     NULL, NULL, NULL);
4364 	if (ret)
4365 		return ret;
4366 
4367 	ret = find_iref(sctx->parent_root, sctx->right_path,
4368 			sctx->cmp_key, dir, dir_gen, name);
4369 	if (ret == -ENOENT)
4370 		ret = __record_new_ref(num, dir, index, name, sctx);
4371 	else if (ret > 0)
4372 		ret = 0;
4373 
4374 	return ret;
4375 }
4376 
4377 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4378 					struct fs_path *name,
4379 					void *ctx)
4380 {
4381 	u64 dir_gen;
4382 	int ret;
4383 	struct send_ctx *sctx = ctx;
4384 
4385 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4386 			     NULL, NULL, NULL);
4387 	if (ret)
4388 		return ret;
4389 
4390 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4391 			dir, dir_gen, name);
4392 	if (ret == -ENOENT)
4393 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4394 	else if (ret > 0)
4395 		ret = 0;
4396 
4397 	return ret;
4398 }
4399 
4400 static int record_changed_ref(struct send_ctx *sctx)
4401 {
4402 	int ret = 0;
4403 
4404 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4405 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4406 	if (ret < 0)
4407 		goto out;
4408 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4409 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4410 	if (ret < 0)
4411 		goto out;
4412 	ret = 0;
4413 
4414 out:
4415 	return ret;
4416 }
4417 
4418 /*
4419  * Record and process all refs at once. Needed when an inode changes the
4420  * generation number, which means that it was deleted and recreated.
4421  */
4422 static int process_all_refs(struct send_ctx *sctx,
4423 			    enum btrfs_compare_tree_result cmd)
4424 {
4425 	int ret;
4426 	struct btrfs_root *root;
4427 	struct btrfs_path *path;
4428 	struct btrfs_key key;
4429 	struct btrfs_key found_key;
4430 	struct extent_buffer *eb;
4431 	int slot;
4432 	iterate_inode_ref_t cb;
4433 	int pending_move = 0;
4434 
4435 	path = alloc_path_for_send();
4436 	if (!path)
4437 		return -ENOMEM;
4438 
4439 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4440 		root = sctx->send_root;
4441 		cb = __record_new_ref;
4442 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4443 		root = sctx->parent_root;
4444 		cb = __record_deleted_ref;
4445 	} else {
4446 		btrfs_err(sctx->send_root->fs_info,
4447 				"Wrong command %d in process_all_refs", cmd);
4448 		ret = -EINVAL;
4449 		goto out;
4450 	}
4451 
4452 	key.objectid = sctx->cmp_key->objectid;
4453 	key.type = BTRFS_INODE_REF_KEY;
4454 	key.offset = 0;
4455 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4456 	if (ret < 0)
4457 		goto out;
4458 
4459 	while (1) {
4460 		eb = path->nodes[0];
4461 		slot = path->slots[0];
4462 		if (slot >= btrfs_header_nritems(eb)) {
4463 			ret = btrfs_next_leaf(root, path);
4464 			if (ret < 0)
4465 				goto out;
4466 			else if (ret > 0)
4467 				break;
4468 			continue;
4469 		}
4470 
4471 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4472 
4473 		if (found_key.objectid != key.objectid ||
4474 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4475 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4476 			break;
4477 
4478 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4479 		if (ret < 0)
4480 			goto out;
4481 
4482 		path->slots[0]++;
4483 	}
4484 	btrfs_release_path(path);
4485 
4486 	/*
4487 	 * We don't actually care about pending_move as we are simply
4488 	 * re-creating this inode and will be rename'ing it into place once we
4489 	 * rename the parent directory.
4490 	 */
4491 	ret = process_recorded_refs(sctx, &pending_move);
4492 out:
4493 	btrfs_free_path(path);
4494 	return ret;
4495 }
4496 
4497 static int send_set_xattr(struct send_ctx *sctx,
4498 			  struct fs_path *path,
4499 			  const char *name, int name_len,
4500 			  const char *data, int data_len)
4501 {
4502 	int ret = 0;
4503 
4504 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4505 	if (ret < 0)
4506 		goto out;
4507 
4508 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4509 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4510 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4511 
4512 	ret = send_cmd(sctx);
4513 
4514 tlv_put_failure:
4515 out:
4516 	return ret;
4517 }
4518 
4519 static int send_remove_xattr(struct send_ctx *sctx,
4520 			  struct fs_path *path,
4521 			  const char *name, int name_len)
4522 {
4523 	int ret = 0;
4524 
4525 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4526 	if (ret < 0)
4527 		goto out;
4528 
4529 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4530 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4531 
4532 	ret = send_cmd(sctx);
4533 
4534 tlv_put_failure:
4535 out:
4536 	return ret;
4537 }
4538 
4539 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4540 			       const char *name, int name_len,
4541 			       const char *data, int data_len,
4542 			       u8 type, void *ctx)
4543 {
4544 	int ret;
4545 	struct send_ctx *sctx = ctx;
4546 	struct fs_path *p;
4547 	struct posix_acl_xattr_header dummy_acl;
4548 
4549 	/* Capabilities are emitted by finish_inode_if_needed */
4550 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4551 		return 0;
4552 
4553 	p = fs_path_alloc();
4554 	if (!p)
4555 		return -ENOMEM;
4556 
4557 	/*
4558 	 * This hack is needed because empty acls are stored as zero byte
4559 	 * data in xattrs. Problem with that is, that receiving these zero byte
4560 	 * acls will fail later. To fix this, we send a dummy acl list that
4561 	 * only contains the version number and no entries.
4562 	 */
4563 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4564 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4565 		if (data_len == 0) {
4566 			dummy_acl.a_version =
4567 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4568 			data = (char *)&dummy_acl;
4569 			data_len = sizeof(dummy_acl);
4570 		}
4571 	}
4572 
4573 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4574 	if (ret < 0)
4575 		goto out;
4576 
4577 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4578 
4579 out:
4580 	fs_path_free(p);
4581 	return ret;
4582 }
4583 
4584 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4585 				   const char *name, int name_len,
4586 				   const char *data, int data_len,
4587 				   u8 type, void *ctx)
4588 {
4589 	int ret;
4590 	struct send_ctx *sctx = ctx;
4591 	struct fs_path *p;
4592 
4593 	p = fs_path_alloc();
4594 	if (!p)
4595 		return -ENOMEM;
4596 
4597 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4598 	if (ret < 0)
4599 		goto out;
4600 
4601 	ret = send_remove_xattr(sctx, p, name, name_len);
4602 
4603 out:
4604 	fs_path_free(p);
4605 	return ret;
4606 }
4607 
4608 static int process_new_xattr(struct send_ctx *sctx)
4609 {
4610 	int ret = 0;
4611 
4612 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4613 			       __process_new_xattr, sctx);
4614 
4615 	return ret;
4616 }
4617 
4618 static int process_deleted_xattr(struct send_ctx *sctx)
4619 {
4620 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4621 				__process_deleted_xattr, sctx);
4622 }
4623 
4624 struct find_xattr_ctx {
4625 	const char *name;
4626 	int name_len;
4627 	int found_idx;
4628 	char *found_data;
4629 	int found_data_len;
4630 };
4631 
4632 static int __find_xattr(int num, struct btrfs_key *di_key,
4633 			const char *name, int name_len,
4634 			const char *data, int data_len,
4635 			u8 type, void *vctx)
4636 {
4637 	struct find_xattr_ctx *ctx = vctx;
4638 
4639 	if (name_len == ctx->name_len &&
4640 	    strncmp(name, ctx->name, name_len) == 0) {
4641 		ctx->found_idx = num;
4642 		ctx->found_data_len = data_len;
4643 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4644 		if (!ctx->found_data)
4645 			return -ENOMEM;
4646 		return 1;
4647 	}
4648 	return 0;
4649 }
4650 
4651 static int find_xattr(struct btrfs_root *root,
4652 		      struct btrfs_path *path,
4653 		      struct btrfs_key *key,
4654 		      const char *name, int name_len,
4655 		      char **data, int *data_len)
4656 {
4657 	int ret;
4658 	struct find_xattr_ctx ctx;
4659 
4660 	ctx.name = name;
4661 	ctx.name_len = name_len;
4662 	ctx.found_idx = -1;
4663 	ctx.found_data = NULL;
4664 	ctx.found_data_len = 0;
4665 
4666 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4667 	if (ret < 0)
4668 		return ret;
4669 
4670 	if (ctx.found_idx == -1)
4671 		return -ENOENT;
4672 	if (data) {
4673 		*data = ctx.found_data;
4674 		*data_len = ctx.found_data_len;
4675 	} else {
4676 		kfree(ctx.found_data);
4677 	}
4678 	return ctx.found_idx;
4679 }
4680 
4681 
4682 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4683 				       const char *name, int name_len,
4684 				       const char *data, int data_len,
4685 				       u8 type, void *ctx)
4686 {
4687 	int ret;
4688 	struct send_ctx *sctx = ctx;
4689 	char *found_data = NULL;
4690 	int found_data_len  = 0;
4691 
4692 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4693 			 sctx->cmp_key, name, name_len, &found_data,
4694 			 &found_data_len);
4695 	if (ret == -ENOENT) {
4696 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4697 				data_len, type, ctx);
4698 	} else if (ret >= 0) {
4699 		if (data_len != found_data_len ||
4700 		    memcmp(data, found_data, data_len)) {
4701 			ret = __process_new_xattr(num, di_key, name, name_len,
4702 					data, data_len, type, ctx);
4703 		} else {
4704 			ret = 0;
4705 		}
4706 	}
4707 
4708 	kfree(found_data);
4709 	return ret;
4710 }
4711 
4712 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4713 					   const char *name, int name_len,
4714 					   const char *data, int data_len,
4715 					   u8 type, void *ctx)
4716 {
4717 	int ret;
4718 	struct send_ctx *sctx = ctx;
4719 
4720 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4721 			 name, name_len, NULL, NULL);
4722 	if (ret == -ENOENT)
4723 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4724 				data_len, type, ctx);
4725 	else if (ret >= 0)
4726 		ret = 0;
4727 
4728 	return ret;
4729 }
4730 
4731 static int process_changed_xattr(struct send_ctx *sctx)
4732 {
4733 	int ret = 0;
4734 
4735 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4736 			__process_changed_new_xattr, sctx);
4737 	if (ret < 0)
4738 		goto out;
4739 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4740 			__process_changed_deleted_xattr, sctx);
4741 
4742 out:
4743 	return ret;
4744 }
4745 
4746 static int process_all_new_xattrs(struct send_ctx *sctx)
4747 {
4748 	int ret;
4749 	struct btrfs_root *root;
4750 	struct btrfs_path *path;
4751 	struct btrfs_key key;
4752 	struct btrfs_key found_key;
4753 	struct extent_buffer *eb;
4754 	int slot;
4755 
4756 	path = alloc_path_for_send();
4757 	if (!path)
4758 		return -ENOMEM;
4759 
4760 	root = sctx->send_root;
4761 
4762 	key.objectid = sctx->cmp_key->objectid;
4763 	key.type = BTRFS_XATTR_ITEM_KEY;
4764 	key.offset = 0;
4765 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4766 	if (ret < 0)
4767 		goto out;
4768 
4769 	while (1) {
4770 		eb = path->nodes[0];
4771 		slot = path->slots[0];
4772 		if (slot >= btrfs_header_nritems(eb)) {
4773 			ret = btrfs_next_leaf(root, path);
4774 			if (ret < 0) {
4775 				goto out;
4776 			} else if (ret > 0) {
4777 				ret = 0;
4778 				break;
4779 			}
4780 			continue;
4781 		}
4782 
4783 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4784 		if (found_key.objectid != key.objectid ||
4785 		    found_key.type != key.type) {
4786 			ret = 0;
4787 			goto out;
4788 		}
4789 
4790 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4791 		if (ret < 0)
4792 			goto out;
4793 
4794 		path->slots[0]++;
4795 	}
4796 
4797 out:
4798 	btrfs_free_path(path);
4799 	return ret;
4800 }
4801 
4802 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4803 {
4804 	struct btrfs_root *root = sctx->send_root;
4805 	struct btrfs_fs_info *fs_info = root->fs_info;
4806 	struct inode *inode;
4807 	struct page *page;
4808 	char *addr;
4809 	pgoff_t index = offset >> PAGE_SHIFT;
4810 	pgoff_t last_index;
4811 	unsigned pg_offset = offset_in_page(offset);
4812 	ssize_t ret = 0;
4813 
4814 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4815 	if (IS_ERR(inode))
4816 		return PTR_ERR(inode);
4817 
4818 	if (offset + len > i_size_read(inode)) {
4819 		if (offset > i_size_read(inode))
4820 			len = 0;
4821 		else
4822 			len = offset - i_size_read(inode);
4823 	}
4824 	if (len == 0)
4825 		goto out;
4826 
4827 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4828 
4829 	/* initial readahead */
4830 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4831 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4832 
4833 	while (index <= last_index) {
4834 		unsigned cur_len = min_t(unsigned, len,
4835 					 PAGE_SIZE - pg_offset);
4836 
4837 		page = find_lock_page(inode->i_mapping, index);
4838 		if (!page) {
4839 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4840 				NULL, index, last_index + 1 - index);
4841 
4842 			page = find_or_create_page(inode->i_mapping, index,
4843 					GFP_KERNEL);
4844 			if (!page) {
4845 				ret = -ENOMEM;
4846 				break;
4847 			}
4848 		}
4849 
4850 		if (PageReadahead(page)) {
4851 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4852 				NULL, page, index, last_index + 1 - index);
4853 		}
4854 
4855 		if (!PageUptodate(page)) {
4856 			btrfs_readpage(NULL, page);
4857 			lock_page(page);
4858 			if (!PageUptodate(page)) {
4859 				unlock_page(page);
4860 				put_page(page);
4861 				ret = -EIO;
4862 				break;
4863 			}
4864 		}
4865 
4866 		addr = kmap(page);
4867 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4868 		kunmap(page);
4869 		unlock_page(page);
4870 		put_page(page);
4871 		index++;
4872 		pg_offset = 0;
4873 		len -= cur_len;
4874 		ret += cur_len;
4875 	}
4876 out:
4877 	iput(inode);
4878 	return ret;
4879 }
4880 
4881 /*
4882  * Read some bytes from the current inode/file and send a write command to
4883  * user space.
4884  */
4885 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4886 {
4887 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4888 	int ret = 0;
4889 	struct fs_path *p;
4890 	ssize_t num_read = 0;
4891 
4892 	p = fs_path_alloc();
4893 	if (!p)
4894 		return -ENOMEM;
4895 
4896 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4897 
4898 	num_read = fill_read_buf(sctx, offset, len);
4899 	if (num_read <= 0) {
4900 		if (num_read < 0)
4901 			ret = num_read;
4902 		goto out;
4903 	}
4904 
4905 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4906 	if (ret < 0)
4907 		goto out;
4908 
4909 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4910 	if (ret < 0)
4911 		goto out;
4912 
4913 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4914 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4915 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4916 
4917 	ret = send_cmd(sctx);
4918 
4919 tlv_put_failure:
4920 out:
4921 	fs_path_free(p);
4922 	if (ret < 0)
4923 		return ret;
4924 	return num_read;
4925 }
4926 
4927 /*
4928  * Send a clone command to user space.
4929  */
4930 static int send_clone(struct send_ctx *sctx,
4931 		      u64 offset, u32 len,
4932 		      struct clone_root *clone_root)
4933 {
4934 	int ret = 0;
4935 	struct fs_path *p;
4936 	u64 gen;
4937 
4938 	btrfs_debug(sctx->send_root->fs_info,
4939 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4940 		    offset, len, clone_root->root->root_key.objectid,
4941 		    clone_root->ino, clone_root->offset);
4942 
4943 	p = fs_path_alloc();
4944 	if (!p)
4945 		return -ENOMEM;
4946 
4947 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4948 	if (ret < 0)
4949 		goto out;
4950 
4951 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4952 	if (ret < 0)
4953 		goto out;
4954 
4955 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4956 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4957 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4958 
4959 	if (clone_root->root == sctx->send_root) {
4960 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4961 				&gen, NULL, NULL, NULL, NULL);
4962 		if (ret < 0)
4963 			goto out;
4964 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4965 	} else {
4966 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4967 	}
4968 	if (ret < 0)
4969 		goto out;
4970 
4971 	/*
4972 	 * If the parent we're using has a received_uuid set then use that as
4973 	 * our clone source as that is what we will look for when doing a
4974 	 * receive.
4975 	 *
4976 	 * This covers the case that we create a snapshot off of a received
4977 	 * subvolume and then use that as the parent and try to receive on a
4978 	 * different host.
4979 	 */
4980 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4981 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4982 			     clone_root->root->root_item.received_uuid);
4983 	else
4984 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4985 			     clone_root->root->root_item.uuid);
4986 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4987 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4988 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4989 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4990 			clone_root->offset);
4991 
4992 	ret = send_cmd(sctx);
4993 
4994 tlv_put_failure:
4995 out:
4996 	fs_path_free(p);
4997 	return ret;
4998 }
4999 
5000 /*
5001  * Send an update extent command to user space.
5002  */
5003 static int send_update_extent(struct send_ctx *sctx,
5004 			      u64 offset, u32 len)
5005 {
5006 	int ret = 0;
5007 	struct fs_path *p;
5008 
5009 	p = fs_path_alloc();
5010 	if (!p)
5011 		return -ENOMEM;
5012 
5013 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5014 	if (ret < 0)
5015 		goto out;
5016 
5017 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5018 	if (ret < 0)
5019 		goto out;
5020 
5021 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5022 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5023 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5024 
5025 	ret = send_cmd(sctx);
5026 
5027 tlv_put_failure:
5028 out:
5029 	fs_path_free(p);
5030 	return ret;
5031 }
5032 
5033 static int send_hole(struct send_ctx *sctx, u64 end)
5034 {
5035 	struct fs_path *p = NULL;
5036 	u64 offset = sctx->cur_inode_last_extent;
5037 	u64 len;
5038 	int ret = 0;
5039 
5040 	/*
5041 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5042 	 * fallocate (for extent preallocation and hole punching), sending a
5043 	 * write of zeroes starting at EOF or beyond would later require issuing
5044 	 * a truncate operation which would undo the write and achieve nothing.
5045 	 */
5046 	if (offset >= sctx->cur_inode_size)
5047 		return 0;
5048 
5049 	/*
5050 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5051 	 * after the i_size.
5052 	 */
5053 	end = min_t(u64, end, sctx->cur_inode_size);
5054 
5055 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5056 		return send_update_extent(sctx, offset, end - offset);
5057 
5058 	p = fs_path_alloc();
5059 	if (!p)
5060 		return -ENOMEM;
5061 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5062 	if (ret < 0)
5063 		goto tlv_put_failure;
5064 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5065 	while (offset < end) {
5066 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5067 
5068 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5069 		if (ret < 0)
5070 			break;
5071 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5072 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5073 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5074 		ret = send_cmd(sctx);
5075 		if (ret < 0)
5076 			break;
5077 		offset += len;
5078 	}
5079 	sctx->cur_inode_next_write_offset = offset;
5080 tlv_put_failure:
5081 	fs_path_free(p);
5082 	return ret;
5083 }
5084 
5085 static int send_extent_data(struct send_ctx *sctx,
5086 			    const u64 offset,
5087 			    const u64 len)
5088 {
5089 	u64 sent = 0;
5090 
5091 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5092 		return send_update_extent(sctx, offset, len);
5093 
5094 	while (sent < len) {
5095 		u64 size = len - sent;
5096 		int ret;
5097 
5098 		if (size > BTRFS_SEND_READ_SIZE)
5099 			size = BTRFS_SEND_READ_SIZE;
5100 		ret = send_write(sctx, offset + sent, size);
5101 		if (ret < 0)
5102 			return ret;
5103 		if (!ret)
5104 			break;
5105 		sent += ret;
5106 	}
5107 	return 0;
5108 }
5109 
5110 /*
5111  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5112  * found, call send_set_xattr function to emit it.
5113  *
5114  * Return 0 if there isn't a capability, or when the capability was emitted
5115  * successfully, or < 0 if an error occurred.
5116  */
5117 static int send_capabilities(struct send_ctx *sctx)
5118 {
5119 	struct fs_path *fspath = NULL;
5120 	struct btrfs_path *path;
5121 	struct btrfs_dir_item *di;
5122 	struct extent_buffer *leaf;
5123 	unsigned long data_ptr;
5124 	char *buf = NULL;
5125 	int buf_len;
5126 	int ret = 0;
5127 
5128 	path = alloc_path_for_send();
5129 	if (!path)
5130 		return -ENOMEM;
5131 
5132 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5133 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5134 	if (!di) {
5135 		/* There is no xattr for this inode */
5136 		goto out;
5137 	} else if (IS_ERR(di)) {
5138 		ret = PTR_ERR(di);
5139 		goto out;
5140 	}
5141 
5142 	leaf = path->nodes[0];
5143 	buf_len = btrfs_dir_data_len(leaf, di);
5144 
5145 	fspath = fs_path_alloc();
5146 	buf = kmalloc(buf_len, GFP_KERNEL);
5147 	if (!fspath || !buf) {
5148 		ret = -ENOMEM;
5149 		goto out;
5150 	}
5151 
5152 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5153 	if (ret < 0)
5154 		goto out;
5155 
5156 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5157 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5158 
5159 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5160 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5161 out:
5162 	kfree(buf);
5163 	fs_path_free(fspath);
5164 	btrfs_free_path(path);
5165 	return ret;
5166 }
5167 
5168 static int clone_range(struct send_ctx *sctx,
5169 		       struct clone_root *clone_root,
5170 		       const u64 disk_byte,
5171 		       u64 data_offset,
5172 		       u64 offset,
5173 		       u64 len)
5174 {
5175 	struct btrfs_path *path;
5176 	struct btrfs_key key;
5177 	int ret;
5178 	u64 clone_src_i_size = 0;
5179 
5180 	/*
5181 	 * Prevent cloning from a zero offset with a length matching the sector
5182 	 * size because in some scenarios this will make the receiver fail.
5183 	 *
5184 	 * For example, if in the source filesystem the extent at offset 0
5185 	 * has a length of sectorsize and it was written using direct IO, then
5186 	 * it can never be an inline extent (even if compression is enabled).
5187 	 * Then this extent can be cloned in the original filesystem to a non
5188 	 * zero file offset, but it may not be possible to clone in the
5189 	 * destination filesystem because it can be inlined due to compression
5190 	 * on the destination filesystem (as the receiver's write operations are
5191 	 * always done using buffered IO). The same happens when the original
5192 	 * filesystem does not have compression enabled but the destination
5193 	 * filesystem has.
5194 	 */
5195 	if (clone_root->offset == 0 &&
5196 	    len == sctx->send_root->fs_info->sectorsize)
5197 		return send_extent_data(sctx, offset, len);
5198 
5199 	path = alloc_path_for_send();
5200 	if (!path)
5201 		return -ENOMEM;
5202 
5203 	/*
5204 	 * There are inodes that have extents that lie behind its i_size. Don't
5205 	 * accept clones from these extents.
5206 	 */
5207 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5208 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5209 	btrfs_release_path(path);
5210 	if (ret < 0)
5211 		goto out;
5212 
5213 	/*
5214 	 * We can't send a clone operation for the entire range if we find
5215 	 * extent items in the respective range in the source file that
5216 	 * refer to different extents or if we find holes.
5217 	 * So check for that and do a mix of clone and regular write/copy
5218 	 * operations if needed.
5219 	 *
5220 	 * Example:
5221 	 *
5222 	 * mkfs.btrfs -f /dev/sda
5223 	 * mount /dev/sda /mnt
5224 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5225 	 * cp --reflink=always /mnt/foo /mnt/bar
5226 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5227 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5228 	 *
5229 	 * If when we send the snapshot and we are processing file bar (which
5230 	 * has a higher inode number than foo) we blindly send a clone operation
5231 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5232 	 * a file bar that matches the content of file foo - iow, doesn't match
5233 	 * the content from bar in the original filesystem.
5234 	 */
5235 	key.objectid = clone_root->ino;
5236 	key.type = BTRFS_EXTENT_DATA_KEY;
5237 	key.offset = clone_root->offset;
5238 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5239 	if (ret < 0)
5240 		goto out;
5241 	if (ret > 0 && path->slots[0] > 0) {
5242 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5243 		if (key.objectid == clone_root->ino &&
5244 		    key.type == BTRFS_EXTENT_DATA_KEY)
5245 			path->slots[0]--;
5246 	}
5247 
5248 	while (true) {
5249 		struct extent_buffer *leaf = path->nodes[0];
5250 		int slot = path->slots[0];
5251 		struct btrfs_file_extent_item *ei;
5252 		u8 type;
5253 		u64 ext_len;
5254 		u64 clone_len;
5255 		u64 clone_data_offset;
5256 
5257 		if (slot >= btrfs_header_nritems(leaf)) {
5258 			ret = btrfs_next_leaf(clone_root->root, path);
5259 			if (ret < 0)
5260 				goto out;
5261 			else if (ret > 0)
5262 				break;
5263 			continue;
5264 		}
5265 
5266 		btrfs_item_key_to_cpu(leaf, &key, slot);
5267 
5268 		/*
5269 		 * We might have an implicit trailing hole (NO_HOLES feature
5270 		 * enabled). We deal with it after leaving this loop.
5271 		 */
5272 		if (key.objectid != clone_root->ino ||
5273 		    key.type != BTRFS_EXTENT_DATA_KEY)
5274 			break;
5275 
5276 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5277 		type = btrfs_file_extent_type(leaf, ei);
5278 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5279 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5280 			ext_len = PAGE_ALIGN(ext_len);
5281 		} else {
5282 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5283 		}
5284 
5285 		if (key.offset + ext_len <= clone_root->offset)
5286 			goto next;
5287 
5288 		if (key.offset > clone_root->offset) {
5289 			/* Implicit hole, NO_HOLES feature enabled. */
5290 			u64 hole_len = key.offset - clone_root->offset;
5291 
5292 			if (hole_len > len)
5293 				hole_len = len;
5294 			ret = send_extent_data(sctx, offset, hole_len);
5295 			if (ret < 0)
5296 				goto out;
5297 
5298 			len -= hole_len;
5299 			if (len == 0)
5300 				break;
5301 			offset += hole_len;
5302 			clone_root->offset += hole_len;
5303 			data_offset += hole_len;
5304 		}
5305 
5306 		if (key.offset >= clone_root->offset + len)
5307 			break;
5308 
5309 		if (key.offset >= clone_src_i_size)
5310 			break;
5311 
5312 		if (key.offset + ext_len > clone_src_i_size)
5313 			ext_len = clone_src_i_size - key.offset;
5314 
5315 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5316 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5317 			clone_root->offset = key.offset;
5318 			if (clone_data_offset < data_offset &&
5319 				clone_data_offset + ext_len > data_offset) {
5320 				u64 extent_offset;
5321 
5322 				extent_offset = data_offset - clone_data_offset;
5323 				ext_len -= extent_offset;
5324 				clone_data_offset += extent_offset;
5325 				clone_root->offset += extent_offset;
5326 			}
5327 		}
5328 
5329 		clone_len = min_t(u64, ext_len, len);
5330 
5331 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5332 		    clone_data_offset == data_offset) {
5333 			const u64 src_end = clone_root->offset + clone_len;
5334 			const u64 sectorsize = SZ_64K;
5335 
5336 			/*
5337 			 * We can't clone the last block, when its size is not
5338 			 * sector size aligned, into the middle of a file. If we
5339 			 * do so, the receiver will get a failure (-EINVAL) when
5340 			 * trying to clone or will silently corrupt the data in
5341 			 * the destination file if it's on a kernel without the
5342 			 * fix introduced by commit ac765f83f1397646
5343 			 * ("Btrfs: fix data corruption due to cloning of eof
5344 			 * block).
5345 			 *
5346 			 * So issue a clone of the aligned down range plus a
5347 			 * regular write for the eof block, if we hit that case.
5348 			 *
5349 			 * Also, we use the maximum possible sector size, 64K,
5350 			 * because we don't know what's the sector size of the
5351 			 * filesystem that receives the stream, so we have to
5352 			 * assume the largest possible sector size.
5353 			 */
5354 			if (src_end == clone_src_i_size &&
5355 			    !IS_ALIGNED(src_end, sectorsize) &&
5356 			    offset + clone_len < sctx->cur_inode_size) {
5357 				u64 slen;
5358 
5359 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5360 						  sectorsize);
5361 				if (slen > 0) {
5362 					ret = send_clone(sctx, offset, slen,
5363 							 clone_root);
5364 					if (ret < 0)
5365 						goto out;
5366 				}
5367 				ret = send_extent_data(sctx, offset + slen,
5368 						       clone_len - slen);
5369 			} else {
5370 				ret = send_clone(sctx, offset, clone_len,
5371 						 clone_root);
5372 			}
5373 		} else {
5374 			ret = send_extent_data(sctx, offset, clone_len);
5375 		}
5376 
5377 		if (ret < 0)
5378 			goto out;
5379 
5380 		len -= clone_len;
5381 		if (len == 0)
5382 			break;
5383 		offset += clone_len;
5384 		clone_root->offset += clone_len;
5385 		data_offset += clone_len;
5386 next:
5387 		path->slots[0]++;
5388 	}
5389 
5390 	if (len > 0)
5391 		ret = send_extent_data(sctx, offset, len);
5392 	else
5393 		ret = 0;
5394 out:
5395 	btrfs_free_path(path);
5396 	return ret;
5397 }
5398 
5399 static int send_write_or_clone(struct send_ctx *sctx,
5400 			       struct btrfs_path *path,
5401 			       struct btrfs_key *key,
5402 			       struct clone_root *clone_root)
5403 {
5404 	int ret = 0;
5405 	struct btrfs_file_extent_item *ei;
5406 	u64 offset = key->offset;
5407 	u64 len;
5408 	u8 type;
5409 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5410 
5411 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5412 			struct btrfs_file_extent_item);
5413 	type = btrfs_file_extent_type(path->nodes[0], ei);
5414 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5415 		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5416 		/*
5417 		 * it is possible the inline item won't cover the whole page,
5418 		 * but there may be items after this page.  Make
5419 		 * sure to send the whole thing
5420 		 */
5421 		len = PAGE_ALIGN(len);
5422 	} else {
5423 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5424 	}
5425 
5426 	if (offset >= sctx->cur_inode_size) {
5427 		ret = 0;
5428 		goto out;
5429 	}
5430 	if (offset + len > sctx->cur_inode_size)
5431 		len = sctx->cur_inode_size - offset;
5432 	if (len == 0) {
5433 		ret = 0;
5434 		goto out;
5435 	}
5436 
5437 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5438 		u64 disk_byte;
5439 		u64 data_offset;
5440 
5441 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5442 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5443 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5444 				  offset, len);
5445 	} else {
5446 		ret = send_extent_data(sctx, offset, len);
5447 	}
5448 	sctx->cur_inode_next_write_offset = offset + len;
5449 out:
5450 	return ret;
5451 }
5452 
5453 static int is_extent_unchanged(struct send_ctx *sctx,
5454 			       struct btrfs_path *left_path,
5455 			       struct btrfs_key *ekey)
5456 {
5457 	int ret = 0;
5458 	struct btrfs_key key;
5459 	struct btrfs_path *path = NULL;
5460 	struct extent_buffer *eb;
5461 	int slot;
5462 	struct btrfs_key found_key;
5463 	struct btrfs_file_extent_item *ei;
5464 	u64 left_disknr;
5465 	u64 right_disknr;
5466 	u64 left_offset;
5467 	u64 right_offset;
5468 	u64 left_offset_fixed;
5469 	u64 left_len;
5470 	u64 right_len;
5471 	u64 left_gen;
5472 	u64 right_gen;
5473 	u8 left_type;
5474 	u8 right_type;
5475 
5476 	path = alloc_path_for_send();
5477 	if (!path)
5478 		return -ENOMEM;
5479 
5480 	eb = left_path->nodes[0];
5481 	slot = left_path->slots[0];
5482 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5483 	left_type = btrfs_file_extent_type(eb, ei);
5484 
5485 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5486 		ret = 0;
5487 		goto out;
5488 	}
5489 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5490 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5491 	left_offset = btrfs_file_extent_offset(eb, ei);
5492 	left_gen = btrfs_file_extent_generation(eb, ei);
5493 
5494 	/*
5495 	 * Following comments will refer to these graphics. L is the left
5496 	 * extents which we are checking at the moment. 1-8 are the right
5497 	 * extents that we iterate.
5498 	 *
5499 	 *       |-----L-----|
5500 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5501 	 *
5502 	 *       |-----L-----|
5503 	 * |--1--|-2b-|...(same as above)
5504 	 *
5505 	 * Alternative situation. Happens on files where extents got split.
5506 	 *       |-----L-----|
5507 	 * |-----------7-----------|-6-|
5508 	 *
5509 	 * Alternative situation. Happens on files which got larger.
5510 	 *       |-----L-----|
5511 	 * |-8-|
5512 	 * Nothing follows after 8.
5513 	 */
5514 
5515 	key.objectid = ekey->objectid;
5516 	key.type = BTRFS_EXTENT_DATA_KEY;
5517 	key.offset = ekey->offset;
5518 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5519 	if (ret < 0)
5520 		goto out;
5521 	if (ret) {
5522 		ret = 0;
5523 		goto out;
5524 	}
5525 
5526 	/*
5527 	 * Handle special case where the right side has no extents at all.
5528 	 */
5529 	eb = path->nodes[0];
5530 	slot = path->slots[0];
5531 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5532 	if (found_key.objectid != key.objectid ||
5533 	    found_key.type != key.type) {
5534 		/* If we're a hole then just pretend nothing changed */
5535 		ret = (left_disknr) ? 0 : 1;
5536 		goto out;
5537 	}
5538 
5539 	/*
5540 	 * We're now on 2a, 2b or 7.
5541 	 */
5542 	key = found_key;
5543 	while (key.offset < ekey->offset + left_len) {
5544 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5545 		right_type = btrfs_file_extent_type(eb, ei);
5546 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5547 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5548 			ret = 0;
5549 			goto out;
5550 		}
5551 
5552 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5553 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5554 			right_len = PAGE_ALIGN(right_len);
5555 		} else {
5556 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5557 		}
5558 
5559 		/*
5560 		 * Are we at extent 8? If yes, we know the extent is changed.
5561 		 * This may only happen on the first iteration.
5562 		 */
5563 		if (found_key.offset + right_len <= ekey->offset) {
5564 			/* If we're a hole just pretend nothing changed */
5565 			ret = (left_disknr) ? 0 : 1;
5566 			goto out;
5567 		}
5568 
5569 		/*
5570 		 * We just wanted to see if when we have an inline extent, what
5571 		 * follows it is a regular extent (wanted to check the above
5572 		 * condition for inline extents too). This should normally not
5573 		 * happen but it's possible for example when we have an inline
5574 		 * compressed extent representing data with a size matching
5575 		 * the page size (currently the same as sector size).
5576 		 */
5577 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5578 			ret = 0;
5579 			goto out;
5580 		}
5581 
5582 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5583 		right_offset = btrfs_file_extent_offset(eb, ei);
5584 		right_gen = btrfs_file_extent_generation(eb, ei);
5585 
5586 		left_offset_fixed = left_offset;
5587 		if (key.offset < ekey->offset) {
5588 			/* Fix the right offset for 2a and 7. */
5589 			right_offset += ekey->offset - key.offset;
5590 		} else {
5591 			/* Fix the left offset for all behind 2a and 2b */
5592 			left_offset_fixed += key.offset - ekey->offset;
5593 		}
5594 
5595 		/*
5596 		 * Check if we have the same extent.
5597 		 */
5598 		if (left_disknr != right_disknr ||
5599 		    left_offset_fixed != right_offset ||
5600 		    left_gen != right_gen) {
5601 			ret = 0;
5602 			goto out;
5603 		}
5604 
5605 		/*
5606 		 * Go to the next extent.
5607 		 */
5608 		ret = btrfs_next_item(sctx->parent_root, path);
5609 		if (ret < 0)
5610 			goto out;
5611 		if (!ret) {
5612 			eb = path->nodes[0];
5613 			slot = path->slots[0];
5614 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5615 		}
5616 		if (ret || found_key.objectid != key.objectid ||
5617 		    found_key.type != key.type) {
5618 			key.offset += right_len;
5619 			break;
5620 		}
5621 		if (found_key.offset != key.offset + right_len) {
5622 			ret = 0;
5623 			goto out;
5624 		}
5625 		key = found_key;
5626 	}
5627 
5628 	/*
5629 	 * We're now behind the left extent (treat as unchanged) or at the end
5630 	 * of the right side (treat as changed).
5631 	 */
5632 	if (key.offset >= ekey->offset + left_len)
5633 		ret = 1;
5634 	else
5635 		ret = 0;
5636 
5637 
5638 out:
5639 	btrfs_free_path(path);
5640 	return ret;
5641 }
5642 
5643 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5644 {
5645 	struct btrfs_path *path;
5646 	struct btrfs_root *root = sctx->send_root;
5647 	struct btrfs_key key;
5648 	int ret;
5649 
5650 	path = alloc_path_for_send();
5651 	if (!path)
5652 		return -ENOMEM;
5653 
5654 	sctx->cur_inode_last_extent = 0;
5655 
5656 	key.objectid = sctx->cur_ino;
5657 	key.type = BTRFS_EXTENT_DATA_KEY;
5658 	key.offset = offset;
5659 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5660 	if (ret < 0)
5661 		goto out;
5662 	ret = 0;
5663 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5664 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5665 		goto out;
5666 
5667 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5668 out:
5669 	btrfs_free_path(path);
5670 	return ret;
5671 }
5672 
5673 static int range_is_hole_in_parent(struct send_ctx *sctx,
5674 				   const u64 start,
5675 				   const u64 end)
5676 {
5677 	struct btrfs_path *path;
5678 	struct btrfs_key key;
5679 	struct btrfs_root *root = sctx->parent_root;
5680 	u64 search_start = start;
5681 	int ret;
5682 
5683 	path = alloc_path_for_send();
5684 	if (!path)
5685 		return -ENOMEM;
5686 
5687 	key.objectid = sctx->cur_ino;
5688 	key.type = BTRFS_EXTENT_DATA_KEY;
5689 	key.offset = search_start;
5690 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5691 	if (ret < 0)
5692 		goto out;
5693 	if (ret > 0 && path->slots[0] > 0)
5694 		path->slots[0]--;
5695 
5696 	while (search_start < end) {
5697 		struct extent_buffer *leaf = path->nodes[0];
5698 		int slot = path->slots[0];
5699 		struct btrfs_file_extent_item *fi;
5700 		u64 extent_end;
5701 
5702 		if (slot >= btrfs_header_nritems(leaf)) {
5703 			ret = btrfs_next_leaf(root, path);
5704 			if (ret < 0)
5705 				goto out;
5706 			else if (ret > 0)
5707 				break;
5708 			continue;
5709 		}
5710 
5711 		btrfs_item_key_to_cpu(leaf, &key, slot);
5712 		if (key.objectid < sctx->cur_ino ||
5713 		    key.type < BTRFS_EXTENT_DATA_KEY)
5714 			goto next;
5715 		if (key.objectid > sctx->cur_ino ||
5716 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5717 		    key.offset >= end)
5718 			break;
5719 
5720 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5721 		extent_end = btrfs_file_extent_end(path);
5722 		if (extent_end <= start)
5723 			goto next;
5724 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5725 			search_start = extent_end;
5726 			goto next;
5727 		}
5728 		ret = 0;
5729 		goto out;
5730 next:
5731 		path->slots[0]++;
5732 	}
5733 	ret = 1;
5734 out:
5735 	btrfs_free_path(path);
5736 	return ret;
5737 }
5738 
5739 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5740 			   struct btrfs_key *key)
5741 {
5742 	int ret = 0;
5743 
5744 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5745 		return 0;
5746 
5747 	if (sctx->cur_inode_last_extent == (u64)-1) {
5748 		ret = get_last_extent(sctx, key->offset - 1);
5749 		if (ret)
5750 			return ret;
5751 	}
5752 
5753 	if (path->slots[0] == 0 &&
5754 	    sctx->cur_inode_last_extent < key->offset) {
5755 		/*
5756 		 * We might have skipped entire leafs that contained only
5757 		 * file extent items for our current inode. These leafs have
5758 		 * a generation number smaller (older) than the one in the
5759 		 * current leaf and the leaf our last extent came from, and
5760 		 * are located between these 2 leafs.
5761 		 */
5762 		ret = get_last_extent(sctx, key->offset - 1);
5763 		if (ret)
5764 			return ret;
5765 	}
5766 
5767 	if (sctx->cur_inode_last_extent < key->offset) {
5768 		ret = range_is_hole_in_parent(sctx,
5769 					      sctx->cur_inode_last_extent,
5770 					      key->offset);
5771 		if (ret < 0)
5772 			return ret;
5773 		else if (ret == 0)
5774 			ret = send_hole(sctx, key->offset);
5775 		else
5776 			ret = 0;
5777 	}
5778 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5779 	return ret;
5780 }
5781 
5782 static int process_extent(struct send_ctx *sctx,
5783 			  struct btrfs_path *path,
5784 			  struct btrfs_key *key)
5785 {
5786 	struct clone_root *found_clone = NULL;
5787 	int ret = 0;
5788 
5789 	if (S_ISLNK(sctx->cur_inode_mode))
5790 		return 0;
5791 
5792 	if (sctx->parent_root && !sctx->cur_inode_new) {
5793 		ret = is_extent_unchanged(sctx, path, key);
5794 		if (ret < 0)
5795 			goto out;
5796 		if (ret) {
5797 			ret = 0;
5798 			goto out_hole;
5799 		}
5800 	} else {
5801 		struct btrfs_file_extent_item *ei;
5802 		u8 type;
5803 
5804 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5805 				    struct btrfs_file_extent_item);
5806 		type = btrfs_file_extent_type(path->nodes[0], ei);
5807 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5808 		    type == BTRFS_FILE_EXTENT_REG) {
5809 			/*
5810 			 * The send spec does not have a prealloc command yet,
5811 			 * so just leave a hole for prealloc'ed extents until
5812 			 * we have enough commands queued up to justify rev'ing
5813 			 * the send spec.
5814 			 */
5815 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5816 				ret = 0;
5817 				goto out;
5818 			}
5819 
5820 			/* Have a hole, just skip it. */
5821 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5822 				ret = 0;
5823 				goto out;
5824 			}
5825 		}
5826 	}
5827 
5828 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5829 			sctx->cur_inode_size, &found_clone);
5830 	if (ret != -ENOENT && ret < 0)
5831 		goto out;
5832 
5833 	ret = send_write_or_clone(sctx, path, key, found_clone);
5834 	if (ret)
5835 		goto out;
5836 out_hole:
5837 	ret = maybe_send_hole(sctx, path, key);
5838 out:
5839 	return ret;
5840 }
5841 
5842 static int process_all_extents(struct send_ctx *sctx)
5843 {
5844 	int ret;
5845 	struct btrfs_root *root;
5846 	struct btrfs_path *path;
5847 	struct btrfs_key key;
5848 	struct btrfs_key found_key;
5849 	struct extent_buffer *eb;
5850 	int slot;
5851 
5852 	root = sctx->send_root;
5853 	path = alloc_path_for_send();
5854 	if (!path)
5855 		return -ENOMEM;
5856 
5857 	key.objectid = sctx->cmp_key->objectid;
5858 	key.type = BTRFS_EXTENT_DATA_KEY;
5859 	key.offset = 0;
5860 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5861 	if (ret < 0)
5862 		goto out;
5863 
5864 	while (1) {
5865 		eb = path->nodes[0];
5866 		slot = path->slots[0];
5867 
5868 		if (slot >= btrfs_header_nritems(eb)) {
5869 			ret = btrfs_next_leaf(root, path);
5870 			if (ret < 0) {
5871 				goto out;
5872 			} else if (ret > 0) {
5873 				ret = 0;
5874 				break;
5875 			}
5876 			continue;
5877 		}
5878 
5879 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5880 
5881 		if (found_key.objectid != key.objectid ||
5882 		    found_key.type != key.type) {
5883 			ret = 0;
5884 			goto out;
5885 		}
5886 
5887 		ret = process_extent(sctx, path, &found_key);
5888 		if (ret < 0)
5889 			goto out;
5890 
5891 		path->slots[0]++;
5892 	}
5893 
5894 out:
5895 	btrfs_free_path(path);
5896 	return ret;
5897 }
5898 
5899 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5900 					   int *pending_move,
5901 					   int *refs_processed)
5902 {
5903 	int ret = 0;
5904 
5905 	if (sctx->cur_ino == 0)
5906 		goto out;
5907 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5908 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5909 		goto out;
5910 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5911 		goto out;
5912 
5913 	ret = process_recorded_refs(sctx, pending_move);
5914 	if (ret < 0)
5915 		goto out;
5916 
5917 	*refs_processed = 1;
5918 out:
5919 	return ret;
5920 }
5921 
5922 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5923 {
5924 	int ret = 0;
5925 	u64 left_mode;
5926 	u64 left_uid;
5927 	u64 left_gid;
5928 	u64 right_mode;
5929 	u64 right_uid;
5930 	u64 right_gid;
5931 	int need_chmod = 0;
5932 	int need_chown = 0;
5933 	int need_truncate = 1;
5934 	int pending_move = 0;
5935 	int refs_processed = 0;
5936 
5937 	if (sctx->ignore_cur_inode)
5938 		return 0;
5939 
5940 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5941 					      &refs_processed);
5942 	if (ret < 0)
5943 		goto out;
5944 
5945 	/*
5946 	 * We have processed the refs and thus need to advance send_progress.
5947 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5948 	 * inode into account.
5949 	 *
5950 	 * On the other hand, if our current inode is a directory and couldn't
5951 	 * be moved/renamed because its parent was renamed/moved too and it has
5952 	 * a higher inode number, we can only move/rename our current inode
5953 	 * after we moved/renamed its parent. Therefore in this case operate on
5954 	 * the old path (pre move/rename) of our current inode, and the
5955 	 * move/rename will be performed later.
5956 	 */
5957 	if (refs_processed && !pending_move)
5958 		sctx->send_progress = sctx->cur_ino + 1;
5959 
5960 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5961 		goto out;
5962 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5963 		goto out;
5964 
5965 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5966 			&left_mode, &left_uid, &left_gid, NULL);
5967 	if (ret < 0)
5968 		goto out;
5969 
5970 	if (!sctx->parent_root || sctx->cur_inode_new) {
5971 		need_chown = 1;
5972 		if (!S_ISLNK(sctx->cur_inode_mode))
5973 			need_chmod = 1;
5974 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5975 			need_truncate = 0;
5976 	} else {
5977 		u64 old_size;
5978 
5979 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5980 				&old_size, NULL, &right_mode, &right_uid,
5981 				&right_gid, NULL);
5982 		if (ret < 0)
5983 			goto out;
5984 
5985 		if (left_uid != right_uid || left_gid != right_gid)
5986 			need_chown = 1;
5987 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5988 			need_chmod = 1;
5989 		if ((old_size == sctx->cur_inode_size) ||
5990 		    (sctx->cur_inode_size > old_size &&
5991 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5992 			need_truncate = 0;
5993 	}
5994 
5995 	if (S_ISREG(sctx->cur_inode_mode)) {
5996 		if (need_send_hole(sctx)) {
5997 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5998 			    sctx->cur_inode_last_extent <
5999 			    sctx->cur_inode_size) {
6000 				ret = get_last_extent(sctx, (u64)-1);
6001 				if (ret)
6002 					goto out;
6003 			}
6004 			if (sctx->cur_inode_last_extent <
6005 			    sctx->cur_inode_size) {
6006 				ret = send_hole(sctx, sctx->cur_inode_size);
6007 				if (ret)
6008 					goto out;
6009 			}
6010 		}
6011 		if (need_truncate) {
6012 			ret = send_truncate(sctx, sctx->cur_ino,
6013 					    sctx->cur_inode_gen,
6014 					    sctx->cur_inode_size);
6015 			if (ret < 0)
6016 				goto out;
6017 		}
6018 	}
6019 
6020 	if (need_chown) {
6021 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6022 				left_uid, left_gid);
6023 		if (ret < 0)
6024 			goto out;
6025 	}
6026 	if (need_chmod) {
6027 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6028 				left_mode);
6029 		if (ret < 0)
6030 			goto out;
6031 	}
6032 
6033 	ret = send_capabilities(sctx);
6034 	if (ret < 0)
6035 		goto out;
6036 
6037 	/*
6038 	 * If other directory inodes depended on our current directory
6039 	 * inode's move/rename, now do their move/rename operations.
6040 	 */
6041 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6042 		ret = apply_children_dir_moves(sctx);
6043 		if (ret)
6044 			goto out;
6045 		/*
6046 		 * Need to send that every time, no matter if it actually
6047 		 * changed between the two trees as we have done changes to
6048 		 * the inode before. If our inode is a directory and it's
6049 		 * waiting to be moved/renamed, we will send its utimes when
6050 		 * it's moved/renamed, therefore we don't need to do it here.
6051 		 */
6052 		sctx->send_progress = sctx->cur_ino + 1;
6053 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6054 		if (ret < 0)
6055 			goto out;
6056 	}
6057 
6058 out:
6059 	return ret;
6060 }
6061 
6062 struct parent_paths_ctx {
6063 	struct list_head *refs;
6064 	struct send_ctx *sctx;
6065 };
6066 
6067 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6068 			     void *ctx)
6069 {
6070 	struct parent_paths_ctx *ppctx = ctx;
6071 
6072 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6073 			  ppctx->refs);
6074 }
6075 
6076 /*
6077  * Issue unlink operations for all paths of the current inode found in the
6078  * parent snapshot.
6079  */
6080 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6081 {
6082 	LIST_HEAD(deleted_refs);
6083 	struct btrfs_path *path;
6084 	struct btrfs_key key;
6085 	struct parent_paths_ctx ctx;
6086 	int ret;
6087 
6088 	path = alloc_path_for_send();
6089 	if (!path)
6090 		return -ENOMEM;
6091 
6092 	key.objectid = sctx->cur_ino;
6093 	key.type = BTRFS_INODE_REF_KEY;
6094 	key.offset = 0;
6095 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6096 	if (ret < 0)
6097 		goto out;
6098 
6099 	ctx.refs = &deleted_refs;
6100 	ctx.sctx = sctx;
6101 
6102 	while (true) {
6103 		struct extent_buffer *eb = path->nodes[0];
6104 		int slot = path->slots[0];
6105 
6106 		if (slot >= btrfs_header_nritems(eb)) {
6107 			ret = btrfs_next_leaf(sctx->parent_root, path);
6108 			if (ret < 0)
6109 				goto out;
6110 			else if (ret > 0)
6111 				break;
6112 			continue;
6113 		}
6114 
6115 		btrfs_item_key_to_cpu(eb, &key, slot);
6116 		if (key.objectid != sctx->cur_ino)
6117 			break;
6118 		if (key.type != BTRFS_INODE_REF_KEY &&
6119 		    key.type != BTRFS_INODE_EXTREF_KEY)
6120 			break;
6121 
6122 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6123 					record_parent_ref, &ctx);
6124 		if (ret < 0)
6125 			goto out;
6126 
6127 		path->slots[0]++;
6128 	}
6129 
6130 	while (!list_empty(&deleted_refs)) {
6131 		struct recorded_ref *ref;
6132 
6133 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6134 		ret = send_unlink(sctx, ref->full_path);
6135 		if (ret < 0)
6136 			goto out;
6137 		fs_path_free(ref->full_path);
6138 		list_del(&ref->list);
6139 		kfree(ref);
6140 	}
6141 	ret = 0;
6142 out:
6143 	btrfs_free_path(path);
6144 	if (ret)
6145 		__free_recorded_refs(&deleted_refs);
6146 	return ret;
6147 }
6148 
6149 static int changed_inode(struct send_ctx *sctx,
6150 			 enum btrfs_compare_tree_result result)
6151 {
6152 	int ret = 0;
6153 	struct btrfs_key *key = sctx->cmp_key;
6154 	struct btrfs_inode_item *left_ii = NULL;
6155 	struct btrfs_inode_item *right_ii = NULL;
6156 	u64 left_gen = 0;
6157 	u64 right_gen = 0;
6158 
6159 	sctx->cur_ino = key->objectid;
6160 	sctx->cur_inode_new_gen = 0;
6161 	sctx->cur_inode_last_extent = (u64)-1;
6162 	sctx->cur_inode_next_write_offset = 0;
6163 	sctx->ignore_cur_inode = false;
6164 
6165 	/*
6166 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6167 	 * functions that the current inode's refs are not updated yet. Later,
6168 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6169 	 */
6170 	sctx->send_progress = sctx->cur_ino;
6171 
6172 	if (result == BTRFS_COMPARE_TREE_NEW ||
6173 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6174 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6175 				sctx->left_path->slots[0],
6176 				struct btrfs_inode_item);
6177 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6178 				left_ii);
6179 	} else {
6180 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6181 				sctx->right_path->slots[0],
6182 				struct btrfs_inode_item);
6183 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6184 				right_ii);
6185 	}
6186 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6187 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6188 				sctx->right_path->slots[0],
6189 				struct btrfs_inode_item);
6190 
6191 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6192 				right_ii);
6193 
6194 		/*
6195 		 * The cur_ino = root dir case is special here. We can't treat
6196 		 * the inode as deleted+reused because it would generate a
6197 		 * stream that tries to delete/mkdir the root dir.
6198 		 */
6199 		if (left_gen != right_gen &&
6200 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6201 			sctx->cur_inode_new_gen = 1;
6202 	}
6203 
6204 	/*
6205 	 * Normally we do not find inodes with a link count of zero (orphans)
6206 	 * because the most common case is to create a snapshot and use it
6207 	 * for a send operation. However other less common use cases involve
6208 	 * using a subvolume and send it after turning it to RO mode just
6209 	 * after deleting all hard links of a file while holding an open
6210 	 * file descriptor against it or turning a RO snapshot into RW mode,
6211 	 * keep an open file descriptor against a file, delete it and then
6212 	 * turn the snapshot back to RO mode before using it for a send
6213 	 * operation. So if we find such cases, ignore the inode and all its
6214 	 * items completely if it's a new inode, or if it's a changed inode
6215 	 * make sure all its previous paths (from the parent snapshot) are all
6216 	 * unlinked and all other the inode items are ignored.
6217 	 */
6218 	if (result == BTRFS_COMPARE_TREE_NEW ||
6219 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6220 		u32 nlinks;
6221 
6222 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6223 		if (nlinks == 0) {
6224 			sctx->ignore_cur_inode = true;
6225 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6226 				ret = btrfs_unlink_all_paths(sctx);
6227 			goto out;
6228 		}
6229 	}
6230 
6231 	if (result == BTRFS_COMPARE_TREE_NEW) {
6232 		sctx->cur_inode_gen = left_gen;
6233 		sctx->cur_inode_new = 1;
6234 		sctx->cur_inode_deleted = 0;
6235 		sctx->cur_inode_size = btrfs_inode_size(
6236 				sctx->left_path->nodes[0], left_ii);
6237 		sctx->cur_inode_mode = btrfs_inode_mode(
6238 				sctx->left_path->nodes[0], left_ii);
6239 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6240 				sctx->left_path->nodes[0], left_ii);
6241 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6242 			ret = send_create_inode_if_needed(sctx);
6243 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6244 		sctx->cur_inode_gen = right_gen;
6245 		sctx->cur_inode_new = 0;
6246 		sctx->cur_inode_deleted = 1;
6247 		sctx->cur_inode_size = btrfs_inode_size(
6248 				sctx->right_path->nodes[0], right_ii);
6249 		sctx->cur_inode_mode = btrfs_inode_mode(
6250 				sctx->right_path->nodes[0], right_ii);
6251 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6252 		/*
6253 		 * We need to do some special handling in case the inode was
6254 		 * reported as changed with a changed generation number. This
6255 		 * means that the original inode was deleted and new inode
6256 		 * reused the same inum. So we have to treat the old inode as
6257 		 * deleted and the new one as new.
6258 		 */
6259 		if (sctx->cur_inode_new_gen) {
6260 			/*
6261 			 * First, process the inode as if it was deleted.
6262 			 */
6263 			sctx->cur_inode_gen = right_gen;
6264 			sctx->cur_inode_new = 0;
6265 			sctx->cur_inode_deleted = 1;
6266 			sctx->cur_inode_size = btrfs_inode_size(
6267 					sctx->right_path->nodes[0], right_ii);
6268 			sctx->cur_inode_mode = btrfs_inode_mode(
6269 					sctx->right_path->nodes[0], right_ii);
6270 			ret = process_all_refs(sctx,
6271 					BTRFS_COMPARE_TREE_DELETED);
6272 			if (ret < 0)
6273 				goto out;
6274 
6275 			/*
6276 			 * Now process the inode as if it was new.
6277 			 */
6278 			sctx->cur_inode_gen = left_gen;
6279 			sctx->cur_inode_new = 1;
6280 			sctx->cur_inode_deleted = 0;
6281 			sctx->cur_inode_size = btrfs_inode_size(
6282 					sctx->left_path->nodes[0], left_ii);
6283 			sctx->cur_inode_mode = btrfs_inode_mode(
6284 					sctx->left_path->nodes[0], left_ii);
6285 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6286 					sctx->left_path->nodes[0], left_ii);
6287 			ret = send_create_inode_if_needed(sctx);
6288 			if (ret < 0)
6289 				goto out;
6290 
6291 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6292 			if (ret < 0)
6293 				goto out;
6294 			/*
6295 			 * Advance send_progress now as we did not get into
6296 			 * process_recorded_refs_if_needed in the new_gen case.
6297 			 */
6298 			sctx->send_progress = sctx->cur_ino + 1;
6299 
6300 			/*
6301 			 * Now process all extents and xattrs of the inode as if
6302 			 * they were all new.
6303 			 */
6304 			ret = process_all_extents(sctx);
6305 			if (ret < 0)
6306 				goto out;
6307 			ret = process_all_new_xattrs(sctx);
6308 			if (ret < 0)
6309 				goto out;
6310 		} else {
6311 			sctx->cur_inode_gen = left_gen;
6312 			sctx->cur_inode_new = 0;
6313 			sctx->cur_inode_new_gen = 0;
6314 			sctx->cur_inode_deleted = 0;
6315 			sctx->cur_inode_size = btrfs_inode_size(
6316 					sctx->left_path->nodes[0], left_ii);
6317 			sctx->cur_inode_mode = btrfs_inode_mode(
6318 					sctx->left_path->nodes[0], left_ii);
6319 		}
6320 	}
6321 
6322 out:
6323 	return ret;
6324 }
6325 
6326 /*
6327  * We have to process new refs before deleted refs, but compare_trees gives us
6328  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6329  * first and later process them in process_recorded_refs.
6330  * For the cur_inode_new_gen case, we skip recording completely because
6331  * changed_inode did already initiate processing of refs. The reason for this is
6332  * that in this case, compare_tree actually compares the refs of 2 different
6333  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6334  * refs of the right tree as deleted and all refs of the left tree as new.
6335  */
6336 static int changed_ref(struct send_ctx *sctx,
6337 		       enum btrfs_compare_tree_result result)
6338 {
6339 	int ret = 0;
6340 
6341 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6342 		inconsistent_snapshot_error(sctx, result, "reference");
6343 		return -EIO;
6344 	}
6345 
6346 	if (!sctx->cur_inode_new_gen &&
6347 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6348 		if (result == BTRFS_COMPARE_TREE_NEW)
6349 			ret = record_new_ref(sctx);
6350 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6351 			ret = record_deleted_ref(sctx);
6352 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6353 			ret = record_changed_ref(sctx);
6354 	}
6355 
6356 	return ret;
6357 }
6358 
6359 /*
6360  * Process new/deleted/changed xattrs. We skip processing in the
6361  * cur_inode_new_gen case because changed_inode did already initiate processing
6362  * of xattrs. The reason is the same as in changed_ref
6363  */
6364 static int changed_xattr(struct send_ctx *sctx,
6365 			 enum btrfs_compare_tree_result result)
6366 {
6367 	int ret = 0;
6368 
6369 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6370 		inconsistent_snapshot_error(sctx, result, "xattr");
6371 		return -EIO;
6372 	}
6373 
6374 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6375 		if (result == BTRFS_COMPARE_TREE_NEW)
6376 			ret = process_new_xattr(sctx);
6377 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6378 			ret = process_deleted_xattr(sctx);
6379 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6380 			ret = process_changed_xattr(sctx);
6381 	}
6382 
6383 	return ret;
6384 }
6385 
6386 /*
6387  * Process new/deleted/changed extents. We skip processing in the
6388  * cur_inode_new_gen case because changed_inode did already initiate processing
6389  * of extents. The reason is the same as in changed_ref
6390  */
6391 static int changed_extent(struct send_ctx *sctx,
6392 			  enum btrfs_compare_tree_result result)
6393 {
6394 	int ret = 0;
6395 
6396 	/*
6397 	 * We have found an extent item that changed without the inode item
6398 	 * having changed. This can happen either after relocation (where the
6399 	 * disk_bytenr of an extent item is replaced at
6400 	 * relocation.c:replace_file_extents()) or after deduplication into a
6401 	 * file in both the parent and send snapshots (where an extent item can
6402 	 * get modified or replaced with a new one). Note that deduplication
6403 	 * updates the inode item, but it only changes the iversion (sequence
6404 	 * field in the inode item) of the inode, so if a file is deduplicated
6405 	 * the same amount of times in both the parent and send snapshots, its
6406 	 * iversion becames the same in both snapshots, whence the inode item is
6407 	 * the same on both snapshots.
6408 	 */
6409 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6410 		return 0;
6411 
6412 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6413 		if (result != BTRFS_COMPARE_TREE_DELETED)
6414 			ret = process_extent(sctx, sctx->left_path,
6415 					sctx->cmp_key);
6416 	}
6417 
6418 	return ret;
6419 }
6420 
6421 static int dir_changed(struct send_ctx *sctx, u64 dir)
6422 {
6423 	u64 orig_gen, new_gen;
6424 	int ret;
6425 
6426 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6427 			     NULL, NULL);
6428 	if (ret)
6429 		return ret;
6430 
6431 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6432 			     NULL, NULL, NULL);
6433 	if (ret)
6434 		return ret;
6435 
6436 	return (orig_gen != new_gen) ? 1 : 0;
6437 }
6438 
6439 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6440 			struct btrfs_key *key)
6441 {
6442 	struct btrfs_inode_extref *extref;
6443 	struct extent_buffer *leaf;
6444 	u64 dirid = 0, last_dirid = 0;
6445 	unsigned long ptr;
6446 	u32 item_size;
6447 	u32 cur_offset = 0;
6448 	int ref_name_len;
6449 	int ret = 0;
6450 
6451 	/* Easy case, just check this one dirid */
6452 	if (key->type == BTRFS_INODE_REF_KEY) {
6453 		dirid = key->offset;
6454 
6455 		ret = dir_changed(sctx, dirid);
6456 		goto out;
6457 	}
6458 
6459 	leaf = path->nodes[0];
6460 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6461 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6462 	while (cur_offset < item_size) {
6463 		extref = (struct btrfs_inode_extref *)(ptr +
6464 						       cur_offset);
6465 		dirid = btrfs_inode_extref_parent(leaf, extref);
6466 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6467 		cur_offset += ref_name_len + sizeof(*extref);
6468 		if (dirid == last_dirid)
6469 			continue;
6470 		ret = dir_changed(sctx, dirid);
6471 		if (ret)
6472 			break;
6473 		last_dirid = dirid;
6474 	}
6475 out:
6476 	return ret;
6477 }
6478 
6479 /*
6480  * Updates compare related fields in sctx and simply forwards to the actual
6481  * changed_xxx functions.
6482  */
6483 static int changed_cb(struct btrfs_path *left_path,
6484 		      struct btrfs_path *right_path,
6485 		      struct btrfs_key *key,
6486 		      enum btrfs_compare_tree_result result,
6487 		      void *ctx)
6488 {
6489 	int ret = 0;
6490 	struct send_ctx *sctx = ctx;
6491 
6492 	if (result == BTRFS_COMPARE_TREE_SAME) {
6493 		if (key->type == BTRFS_INODE_REF_KEY ||
6494 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6495 			ret = compare_refs(sctx, left_path, key);
6496 			if (!ret)
6497 				return 0;
6498 			if (ret < 0)
6499 				return ret;
6500 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6501 			return maybe_send_hole(sctx, left_path, key);
6502 		} else {
6503 			return 0;
6504 		}
6505 		result = BTRFS_COMPARE_TREE_CHANGED;
6506 		ret = 0;
6507 	}
6508 
6509 	sctx->left_path = left_path;
6510 	sctx->right_path = right_path;
6511 	sctx->cmp_key = key;
6512 
6513 	ret = finish_inode_if_needed(sctx, 0);
6514 	if (ret < 0)
6515 		goto out;
6516 
6517 	/* Ignore non-FS objects */
6518 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6519 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6520 		goto out;
6521 
6522 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6523 		ret = changed_inode(sctx, result);
6524 	} else if (!sctx->ignore_cur_inode) {
6525 		if (key->type == BTRFS_INODE_REF_KEY ||
6526 		    key->type == BTRFS_INODE_EXTREF_KEY)
6527 			ret = changed_ref(sctx, result);
6528 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6529 			ret = changed_xattr(sctx, result);
6530 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6531 			ret = changed_extent(sctx, result);
6532 	}
6533 
6534 out:
6535 	return ret;
6536 }
6537 
6538 static int full_send_tree(struct send_ctx *sctx)
6539 {
6540 	int ret;
6541 	struct btrfs_root *send_root = sctx->send_root;
6542 	struct btrfs_key key;
6543 	struct btrfs_path *path;
6544 	struct extent_buffer *eb;
6545 	int slot;
6546 
6547 	path = alloc_path_for_send();
6548 	if (!path)
6549 		return -ENOMEM;
6550 
6551 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6552 	key.type = BTRFS_INODE_ITEM_KEY;
6553 	key.offset = 0;
6554 
6555 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6556 	if (ret < 0)
6557 		goto out;
6558 	if (ret)
6559 		goto out_finish;
6560 
6561 	while (1) {
6562 		eb = path->nodes[0];
6563 		slot = path->slots[0];
6564 		btrfs_item_key_to_cpu(eb, &key, slot);
6565 
6566 		ret = changed_cb(path, NULL, &key,
6567 				 BTRFS_COMPARE_TREE_NEW, sctx);
6568 		if (ret < 0)
6569 			goto out;
6570 
6571 		ret = btrfs_next_item(send_root, path);
6572 		if (ret < 0)
6573 			goto out;
6574 		if (ret) {
6575 			ret  = 0;
6576 			break;
6577 		}
6578 	}
6579 
6580 out_finish:
6581 	ret = finish_inode_if_needed(sctx, 1);
6582 
6583 out:
6584 	btrfs_free_path(path);
6585 	return ret;
6586 }
6587 
6588 static int tree_move_down(struct btrfs_path *path, int *level)
6589 {
6590 	struct extent_buffer *eb;
6591 
6592 	BUG_ON(*level == 0);
6593 	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6594 	if (IS_ERR(eb))
6595 		return PTR_ERR(eb);
6596 
6597 	path->nodes[*level - 1] = eb;
6598 	path->slots[*level - 1] = 0;
6599 	(*level)--;
6600 	return 0;
6601 }
6602 
6603 static int tree_move_next_or_upnext(struct btrfs_path *path,
6604 				    int *level, int root_level)
6605 {
6606 	int ret = 0;
6607 	int nritems;
6608 	nritems = btrfs_header_nritems(path->nodes[*level]);
6609 
6610 	path->slots[*level]++;
6611 
6612 	while (path->slots[*level] >= nritems) {
6613 		if (*level == root_level)
6614 			return -1;
6615 
6616 		/* move upnext */
6617 		path->slots[*level] = 0;
6618 		free_extent_buffer(path->nodes[*level]);
6619 		path->nodes[*level] = NULL;
6620 		(*level)++;
6621 		path->slots[*level]++;
6622 
6623 		nritems = btrfs_header_nritems(path->nodes[*level]);
6624 		ret = 1;
6625 	}
6626 	return ret;
6627 }
6628 
6629 /*
6630  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6631  * or down.
6632  */
6633 static int tree_advance(struct btrfs_path *path,
6634 			int *level, int root_level,
6635 			int allow_down,
6636 			struct btrfs_key *key)
6637 {
6638 	int ret;
6639 
6640 	if (*level == 0 || !allow_down) {
6641 		ret = tree_move_next_or_upnext(path, level, root_level);
6642 	} else {
6643 		ret = tree_move_down(path, level);
6644 	}
6645 	if (ret >= 0) {
6646 		if (*level == 0)
6647 			btrfs_item_key_to_cpu(path->nodes[*level], key,
6648 					path->slots[*level]);
6649 		else
6650 			btrfs_node_key_to_cpu(path->nodes[*level], key,
6651 					path->slots[*level]);
6652 	}
6653 	return ret;
6654 }
6655 
6656 static int tree_compare_item(struct btrfs_path *left_path,
6657 			     struct btrfs_path *right_path,
6658 			     char *tmp_buf)
6659 {
6660 	int cmp;
6661 	int len1, len2;
6662 	unsigned long off1, off2;
6663 
6664 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6665 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6666 	if (len1 != len2)
6667 		return 1;
6668 
6669 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6670 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6671 				right_path->slots[0]);
6672 
6673 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6674 
6675 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6676 	if (cmp)
6677 		return 1;
6678 	return 0;
6679 }
6680 
6681 /*
6682  * This function compares two trees and calls the provided callback for
6683  * every changed/new/deleted item it finds.
6684  * If shared tree blocks are encountered, whole subtrees are skipped, making
6685  * the compare pretty fast on snapshotted subvolumes.
6686  *
6687  * This currently works on commit roots only. As commit roots are read only,
6688  * we don't do any locking. The commit roots are protected with transactions.
6689  * Transactions are ended and rejoined when a commit is tried in between.
6690  *
6691  * This function checks for modifications done to the trees while comparing.
6692  * If it detects a change, it aborts immediately.
6693  */
6694 static int btrfs_compare_trees(struct btrfs_root *left_root,
6695 			struct btrfs_root *right_root,
6696 			btrfs_changed_cb_t changed_cb, void *ctx)
6697 {
6698 	struct btrfs_fs_info *fs_info = left_root->fs_info;
6699 	int ret;
6700 	int cmp;
6701 	struct btrfs_path *left_path = NULL;
6702 	struct btrfs_path *right_path = NULL;
6703 	struct btrfs_key left_key;
6704 	struct btrfs_key right_key;
6705 	char *tmp_buf = NULL;
6706 	int left_root_level;
6707 	int right_root_level;
6708 	int left_level;
6709 	int right_level;
6710 	int left_end_reached;
6711 	int right_end_reached;
6712 	int advance_left;
6713 	int advance_right;
6714 	u64 left_blockptr;
6715 	u64 right_blockptr;
6716 	u64 left_gen;
6717 	u64 right_gen;
6718 
6719 	left_path = btrfs_alloc_path();
6720 	if (!left_path) {
6721 		ret = -ENOMEM;
6722 		goto out;
6723 	}
6724 	right_path = btrfs_alloc_path();
6725 	if (!right_path) {
6726 		ret = -ENOMEM;
6727 		goto out;
6728 	}
6729 
6730 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6731 	if (!tmp_buf) {
6732 		ret = -ENOMEM;
6733 		goto out;
6734 	}
6735 
6736 	left_path->search_commit_root = 1;
6737 	left_path->skip_locking = 1;
6738 	right_path->search_commit_root = 1;
6739 	right_path->skip_locking = 1;
6740 
6741 	/*
6742 	 * Strategy: Go to the first items of both trees. Then do
6743 	 *
6744 	 * If both trees are at level 0
6745 	 *   Compare keys of current items
6746 	 *     If left < right treat left item as new, advance left tree
6747 	 *       and repeat
6748 	 *     If left > right treat right item as deleted, advance right tree
6749 	 *       and repeat
6750 	 *     If left == right do deep compare of items, treat as changed if
6751 	 *       needed, advance both trees and repeat
6752 	 * If both trees are at the same level but not at level 0
6753 	 *   Compare keys of current nodes/leafs
6754 	 *     If left < right advance left tree and repeat
6755 	 *     If left > right advance right tree and repeat
6756 	 *     If left == right compare blockptrs of the next nodes/leafs
6757 	 *       If they match advance both trees but stay at the same level
6758 	 *         and repeat
6759 	 *       If they don't match advance both trees while allowing to go
6760 	 *         deeper and repeat
6761 	 * If tree levels are different
6762 	 *   Advance the tree that needs it and repeat
6763 	 *
6764 	 * Advancing a tree means:
6765 	 *   If we are at level 0, try to go to the next slot. If that's not
6766 	 *   possible, go one level up and repeat. Stop when we found a level
6767 	 *   where we could go to the next slot. We may at this point be on a
6768 	 *   node or a leaf.
6769 	 *
6770 	 *   If we are not at level 0 and not on shared tree blocks, go one
6771 	 *   level deeper.
6772 	 *
6773 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6774 	 *   the right if possible or go up and right.
6775 	 */
6776 
6777 	down_read(&fs_info->commit_root_sem);
6778 	left_level = btrfs_header_level(left_root->commit_root);
6779 	left_root_level = left_level;
6780 	left_path->nodes[left_level] =
6781 			btrfs_clone_extent_buffer(left_root->commit_root);
6782 	if (!left_path->nodes[left_level]) {
6783 		up_read(&fs_info->commit_root_sem);
6784 		ret = -ENOMEM;
6785 		goto out;
6786 	}
6787 
6788 	right_level = btrfs_header_level(right_root->commit_root);
6789 	right_root_level = right_level;
6790 	right_path->nodes[right_level] =
6791 			btrfs_clone_extent_buffer(right_root->commit_root);
6792 	if (!right_path->nodes[right_level]) {
6793 		up_read(&fs_info->commit_root_sem);
6794 		ret = -ENOMEM;
6795 		goto out;
6796 	}
6797 	up_read(&fs_info->commit_root_sem);
6798 
6799 	if (left_level == 0)
6800 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6801 				&left_key, left_path->slots[left_level]);
6802 	else
6803 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6804 				&left_key, left_path->slots[left_level]);
6805 	if (right_level == 0)
6806 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6807 				&right_key, right_path->slots[right_level]);
6808 	else
6809 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6810 				&right_key, right_path->slots[right_level]);
6811 
6812 	left_end_reached = right_end_reached = 0;
6813 	advance_left = advance_right = 0;
6814 
6815 	while (1) {
6816 		cond_resched();
6817 		if (advance_left && !left_end_reached) {
6818 			ret = tree_advance(left_path, &left_level,
6819 					left_root_level,
6820 					advance_left != ADVANCE_ONLY_NEXT,
6821 					&left_key);
6822 			if (ret == -1)
6823 				left_end_reached = ADVANCE;
6824 			else if (ret < 0)
6825 				goto out;
6826 			advance_left = 0;
6827 		}
6828 		if (advance_right && !right_end_reached) {
6829 			ret = tree_advance(right_path, &right_level,
6830 					right_root_level,
6831 					advance_right != ADVANCE_ONLY_NEXT,
6832 					&right_key);
6833 			if (ret == -1)
6834 				right_end_reached = ADVANCE;
6835 			else if (ret < 0)
6836 				goto out;
6837 			advance_right = 0;
6838 		}
6839 
6840 		if (left_end_reached && right_end_reached) {
6841 			ret = 0;
6842 			goto out;
6843 		} else if (left_end_reached) {
6844 			if (right_level == 0) {
6845 				ret = changed_cb(left_path, right_path,
6846 						&right_key,
6847 						BTRFS_COMPARE_TREE_DELETED,
6848 						ctx);
6849 				if (ret < 0)
6850 					goto out;
6851 			}
6852 			advance_right = ADVANCE;
6853 			continue;
6854 		} else if (right_end_reached) {
6855 			if (left_level == 0) {
6856 				ret = changed_cb(left_path, right_path,
6857 						&left_key,
6858 						BTRFS_COMPARE_TREE_NEW,
6859 						ctx);
6860 				if (ret < 0)
6861 					goto out;
6862 			}
6863 			advance_left = ADVANCE;
6864 			continue;
6865 		}
6866 
6867 		if (left_level == 0 && right_level == 0) {
6868 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6869 			if (cmp < 0) {
6870 				ret = changed_cb(left_path, right_path,
6871 						&left_key,
6872 						BTRFS_COMPARE_TREE_NEW,
6873 						ctx);
6874 				if (ret < 0)
6875 					goto out;
6876 				advance_left = ADVANCE;
6877 			} else if (cmp > 0) {
6878 				ret = changed_cb(left_path, right_path,
6879 						&right_key,
6880 						BTRFS_COMPARE_TREE_DELETED,
6881 						ctx);
6882 				if (ret < 0)
6883 					goto out;
6884 				advance_right = ADVANCE;
6885 			} else {
6886 				enum btrfs_compare_tree_result result;
6887 
6888 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6889 				ret = tree_compare_item(left_path, right_path,
6890 							tmp_buf);
6891 				if (ret)
6892 					result = BTRFS_COMPARE_TREE_CHANGED;
6893 				else
6894 					result = BTRFS_COMPARE_TREE_SAME;
6895 				ret = changed_cb(left_path, right_path,
6896 						 &left_key, result, ctx);
6897 				if (ret < 0)
6898 					goto out;
6899 				advance_left = ADVANCE;
6900 				advance_right = ADVANCE;
6901 			}
6902 		} else if (left_level == right_level) {
6903 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6904 			if (cmp < 0) {
6905 				advance_left = ADVANCE;
6906 			} else if (cmp > 0) {
6907 				advance_right = ADVANCE;
6908 			} else {
6909 				left_blockptr = btrfs_node_blockptr(
6910 						left_path->nodes[left_level],
6911 						left_path->slots[left_level]);
6912 				right_blockptr = btrfs_node_blockptr(
6913 						right_path->nodes[right_level],
6914 						right_path->slots[right_level]);
6915 				left_gen = btrfs_node_ptr_generation(
6916 						left_path->nodes[left_level],
6917 						left_path->slots[left_level]);
6918 				right_gen = btrfs_node_ptr_generation(
6919 						right_path->nodes[right_level],
6920 						right_path->slots[right_level]);
6921 				if (left_blockptr == right_blockptr &&
6922 				    left_gen == right_gen) {
6923 					/*
6924 					 * As we're on a shared block, don't
6925 					 * allow to go deeper.
6926 					 */
6927 					advance_left = ADVANCE_ONLY_NEXT;
6928 					advance_right = ADVANCE_ONLY_NEXT;
6929 				} else {
6930 					advance_left = ADVANCE;
6931 					advance_right = ADVANCE;
6932 				}
6933 			}
6934 		} else if (left_level < right_level) {
6935 			advance_right = ADVANCE;
6936 		} else {
6937 			advance_left = ADVANCE;
6938 		}
6939 	}
6940 
6941 out:
6942 	btrfs_free_path(left_path);
6943 	btrfs_free_path(right_path);
6944 	kvfree(tmp_buf);
6945 	return ret;
6946 }
6947 
6948 static int send_subvol(struct send_ctx *sctx)
6949 {
6950 	int ret;
6951 
6952 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6953 		ret = send_header(sctx);
6954 		if (ret < 0)
6955 			goto out;
6956 	}
6957 
6958 	ret = send_subvol_begin(sctx);
6959 	if (ret < 0)
6960 		goto out;
6961 
6962 	if (sctx->parent_root) {
6963 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6964 				changed_cb, sctx);
6965 		if (ret < 0)
6966 			goto out;
6967 		ret = finish_inode_if_needed(sctx, 1);
6968 		if (ret < 0)
6969 			goto out;
6970 	} else {
6971 		ret = full_send_tree(sctx);
6972 		if (ret < 0)
6973 			goto out;
6974 	}
6975 
6976 out:
6977 	free_recorded_refs(sctx);
6978 	return ret;
6979 }
6980 
6981 /*
6982  * If orphan cleanup did remove any orphans from a root, it means the tree
6983  * was modified and therefore the commit root is not the same as the current
6984  * root anymore. This is a problem, because send uses the commit root and
6985  * therefore can see inode items that don't exist in the current root anymore,
6986  * and for example make calls to btrfs_iget, which will do tree lookups based
6987  * on the current root and not on the commit root. Those lookups will fail,
6988  * returning a -ESTALE error, and making send fail with that error. So make
6989  * sure a send does not see any orphans we have just removed, and that it will
6990  * see the same inodes regardless of whether a transaction commit happened
6991  * before it started (meaning that the commit root will be the same as the
6992  * current root) or not.
6993  */
6994 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6995 {
6996 	int i;
6997 	struct btrfs_trans_handle *trans = NULL;
6998 
6999 again:
7000 	if (sctx->parent_root &&
7001 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7002 		goto commit_trans;
7003 
7004 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7005 		if (sctx->clone_roots[i].root->node !=
7006 		    sctx->clone_roots[i].root->commit_root)
7007 			goto commit_trans;
7008 
7009 	if (trans)
7010 		return btrfs_end_transaction(trans);
7011 
7012 	return 0;
7013 
7014 commit_trans:
7015 	/* Use any root, all fs roots will get their commit roots updated. */
7016 	if (!trans) {
7017 		trans = btrfs_join_transaction(sctx->send_root);
7018 		if (IS_ERR(trans))
7019 			return PTR_ERR(trans);
7020 		goto again;
7021 	}
7022 
7023 	return btrfs_commit_transaction(trans);
7024 }
7025 
7026 /*
7027  * Make sure any existing dellaloc is flushed for any root used by a send
7028  * operation so that we do not miss any data and we do not race with writeback
7029  * finishing and changing a tree while send is using the tree. This could
7030  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7031  * a send operation then uses the subvolume.
7032  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7033  */
7034 static int flush_delalloc_roots(struct send_ctx *sctx)
7035 {
7036 	struct btrfs_root *root = sctx->parent_root;
7037 	int ret;
7038 	int i;
7039 
7040 	if (root) {
7041 		ret = btrfs_start_delalloc_snapshot(root);
7042 		if (ret)
7043 			return ret;
7044 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7045 	}
7046 
7047 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7048 		root = sctx->clone_roots[i].root;
7049 		ret = btrfs_start_delalloc_snapshot(root);
7050 		if (ret)
7051 			return ret;
7052 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7053 	}
7054 
7055 	return 0;
7056 }
7057 
7058 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7059 {
7060 	spin_lock(&root->root_item_lock);
7061 	root->send_in_progress--;
7062 	/*
7063 	 * Not much left to do, we don't know why it's unbalanced and
7064 	 * can't blindly reset it to 0.
7065 	 */
7066 	if (root->send_in_progress < 0)
7067 		btrfs_err(root->fs_info,
7068 			  "send_in_progress unbalanced %d root %llu",
7069 			  root->send_in_progress, root->root_key.objectid);
7070 	spin_unlock(&root->root_item_lock);
7071 }
7072 
7073 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7074 {
7075 	btrfs_warn_rl(root->fs_info,
7076 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7077 		      root->root_key.objectid, root->dedupe_in_progress);
7078 }
7079 
7080 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7081 {
7082 	int ret = 0;
7083 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7084 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7085 	struct btrfs_root *clone_root;
7086 	struct send_ctx *sctx = NULL;
7087 	u32 i;
7088 	u64 *clone_sources_tmp = NULL;
7089 	int clone_sources_to_rollback = 0;
7090 	unsigned alloc_size;
7091 	int sort_clone_roots = 0;
7092 
7093 	if (!capable(CAP_SYS_ADMIN))
7094 		return -EPERM;
7095 
7096 	/*
7097 	 * The subvolume must remain read-only during send, protect against
7098 	 * making it RW. This also protects against deletion.
7099 	 */
7100 	spin_lock(&send_root->root_item_lock);
7101 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7102 		dedupe_in_progress_warn(send_root);
7103 		spin_unlock(&send_root->root_item_lock);
7104 		return -EAGAIN;
7105 	}
7106 	send_root->send_in_progress++;
7107 	spin_unlock(&send_root->root_item_lock);
7108 
7109 	/*
7110 	 * Userspace tools do the checks and warn the user if it's
7111 	 * not RO.
7112 	 */
7113 	if (!btrfs_root_readonly(send_root)) {
7114 		ret = -EPERM;
7115 		goto out;
7116 	}
7117 
7118 	/*
7119 	 * Check that we don't overflow at later allocations, we request
7120 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7121 	 * access_ok.
7122 	 */
7123 	if (arg->clone_sources_count >
7124 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7125 		ret = -EINVAL;
7126 		goto out;
7127 	}
7128 
7129 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7130 		ret = -EINVAL;
7131 		goto out;
7132 	}
7133 
7134 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7135 	if (!sctx) {
7136 		ret = -ENOMEM;
7137 		goto out;
7138 	}
7139 
7140 	INIT_LIST_HEAD(&sctx->new_refs);
7141 	INIT_LIST_HEAD(&sctx->deleted_refs);
7142 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7143 	INIT_LIST_HEAD(&sctx->name_cache_list);
7144 
7145 	sctx->flags = arg->flags;
7146 
7147 	sctx->send_filp = fget(arg->send_fd);
7148 	if (!sctx->send_filp) {
7149 		ret = -EBADF;
7150 		goto out;
7151 	}
7152 
7153 	sctx->send_root = send_root;
7154 	/*
7155 	 * Unlikely but possible, if the subvolume is marked for deletion but
7156 	 * is slow to remove the directory entry, send can still be started
7157 	 */
7158 	if (btrfs_root_dead(sctx->send_root)) {
7159 		ret = -EPERM;
7160 		goto out;
7161 	}
7162 
7163 	sctx->clone_roots_cnt = arg->clone_sources_count;
7164 
7165 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7166 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7167 	if (!sctx->send_buf) {
7168 		ret = -ENOMEM;
7169 		goto out;
7170 	}
7171 
7172 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7173 	if (!sctx->read_buf) {
7174 		ret = -ENOMEM;
7175 		goto out;
7176 	}
7177 
7178 	sctx->pending_dir_moves = RB_ROOT;
7179 	sctx->waiting_dir_moves = RB_ROOT;
7180 	sctx->orphan_dirs = RB_ROOT;
7181 
7182 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7183 
7184 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
7185 	if (!sctx->clone_roots) {
7186 		ret = -ENOMEM;
7187 		goto out;
7188 	}
7189 
7190 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7191 
7192 	if (arg->clone_sources_count) {
7193 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7194 		if (!clone_sources_tmp) {
7195 			ret = -ENOMEM;
7196 			goto out;
7197 		}
7198 
7199 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7200 				alloc_size);
7201 		if (ret) {
7202 			ret = -EFAULT;
7203 			goto out;
7204 		}
7205 
7206 		for (i = 0; i < arg->clone_sources_count; i++) {
7207 			clone_root = btrfs_get_fs_root(fs_info,
7208 						clone_sources_tmp[i], true);
7209 			if (IS_ERR(clone_root)) {
7210 				ret = PTR_ERR(clone_root);
7211 				goto out;
7212 			}
7213 			spin_lock(&clone_root->root_item_lock);
7214 			if (!btrfs_root_readonly(clone_root) ||
7215 			    btrfs_root_dead(clone_root)) {
7216 				spin_unlock(&clone_root->root_item_lock);
7217 				btrfs_put_root(clone_root);
7218 				ret = -EPERM;
7219 				goto out;
7220 			}
7221 			if (clone_root->dedupe_in_progress) {
7222 				dedupe_in_progress_warn(clone_root);
7223 				spin_unlock(&clone_root->root_item_lock);
7224 				btrfs_put_root(clone_root);
7225 				ret = -EAGAIN;
7226 				goto out;
7227 			}
7228 			clone_root->send_in_progress++;
7229 			spin_unlock(&clone_root->root_item_lock);
7230 
7231 			sctx->clone_roots[i].root = clone_root;
7232 			clone_sources_to_rollback = i + 1;
7233 		}
7234 		kvfree(clone_sources_tmp);
7235 		clone_sources_tmp = NULL;
7236 	}
7237 
7238 	if (arg->parent_root) {
7239 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7240 						      true);
7241 		if (IS_ERR(sctx->parent_root)) {
7242 			ret = PTR_ERR(sctx->parent_root);
7243 			goto out;
7244 		}
7245 
7246 		spin_lock(&sctx->parent_root->root_item_lock);
7247 		sctx->parent_root->send_in_progress++;
7248 		if (!btrfs_root_readonly(sctx->parent_root) ||
7249 				btrfs_root_dead(sctx->parent_root)) {
7250 			spin_unlock(&sctx->parent_root->root_item_lock);
7251 			ret = -EPERM;
7252 			goto out;
7253 		}
7254 		if (sctx->parent_root->dedupe_in_progress) {
7255 			dedupe_in_progress_warn(sctx->parent_root);
7256 			spin_unlock(&sctx->parent_root->root_item_lock);
7257 			ret = -EAGAIN;
7258 			goto out;
7259 		}
7260 		spin_unlock(&sctx->parent_root->root_item_lock);
7261 	}
7262 
7263 	/*
7264 	 * Clones from send_root are allowed, but only if the clone source
7265 	 * is behind the current send position. This is checked while searching
7266 	 * for possible clone sources.
7267 	 */
7268 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7269 		btrfs_grab_root(sctx->send_root);
7270 
7271 	/* We do a bsearch later */
7272 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7273 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7274 			NULL);
7275 	sort_clone_roots = 1;
7276 
7277 	ret = flush_delalloc_roots(sctx);
7278 	if (ret)
7279 		goto out;
7280 
7281 	ret = ensure_commit_roots_uptodate(sctx);
7282 	if (ret)
7283 		goto out;
7284 
7285 	mutex_lock(&fs_info->balance_mutex);
7286 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7287 		mutex_unlock(&fs_info->balance_mutex);
7288 		btrfs_warn_rl(fs_info,
7289 		"cannot run send because a balance operation is in progress");
7290 		ret = -EAGAIN;
7291 		goto out;
7292 	}
7293 	fs_info->send_in_progress++;
7294 	mutex_unlock(&fs_info->balance_mutex);
7295 
7296 	current->journal_info = BTRFS_SEND_TRANS_STUB;
7297 	ret = send_subvol(sctx);
7298 	current->journal_info = NULL;
7299 	mutex_lock(&fs_info->balance_mutex);
7300 	fs_info->send_in_progress--;
7301 	mutex_unlock(&fs_info->balance_mutex);
7302 	if (ret < 0)
7303 		goto out;
7304 
7305 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7306 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7307 		if (ret < 0)
7308 			goto out;
7309 		ret = send_cmd(sctx);
7310 		if (ret < 0)
7311 			goto out;
7312 	}
7313 
7314 out:
7315 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7316 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7317 		struct rb_node *n;
7318 		struct pending_dir_move *pm;
7319 
7320 		n = rb_first(&sctx->pending_dir_moves);
7321 		pm = rb_entry(n, struct pending_dir_move, node);
7322 		while (!list_empty(&pm->list)) {
7323 			struct pending_dir_move *pm2;
7324 
7325 			pm2 = list_first_entry(&pm->list,
7326 					       struct pending_dir_move, list);
7327 			free_pending_move(sctx, pm2);
7328 		}
7329 		free_pending_move(sctx, pm);
7330 	}
7331 
7332 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7333 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7334 		struct rb_node *n;
7335 		struct waiting_dir_move *dm;
7336 
7337 		n = rb_first(&sctx->waiting_dir_moves);
7338 		dm = rb_entry(n, struct waiting_dir_move, node);
7339 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7340 		kfree(dm);
7341 	}
7342 
7343 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7344 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7345 		struct rb_node *n;
7346 		struct orphan_dir_info *odi;
7347 
7348 		n = rb_first(&sctx->orphan_dirs);
7349 		odi = rb_entry(n, struct orphan_dir_info, node);
7350 		free_orphan_dir_info(sctx, odi);
7351 	}
7352 
7353 	if (sort_clone_roots) {
7354 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7355 			btrfs_root_dec_send_in_progress(
7356 					sctx->clone_roots[i].root);
7357 			btrfs_put_root(sctx->clone_roots[i].root);
7358 		}
7359 	} else {
7360 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7361 			btrfs_root_dec_send_in_progress(
7362 					sctx->clone_roots[i].root);
7363 			btrfs_put_root(sctx->clone_roots[i].root);
7364 		}
7365 
7366 		btrfs_root_dec_send_in_progress(send_root);
7367 	}
7368 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7369 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7370 		btrfs_put_root(sctx->parent_root);
7371 	}
7372 
7373 	kvfree(clone_sources_tmp);
7374 
7375 	if (sctx) {
7376 		if (sctx->send_filp)
7377 			fput(sctx->send_filp);
7378 
7379 		kvfree(sctx->clone_roots);
7380 		kvfree(sctx->send_buf);
7381 		kvfree(sctx->read_buf);
7382 
7383 		name_cache_free(sctx);
7384 
7385 		kfree(sctx);
7386 	}
7387 
7388 	return ret;
7389 }
7390