xref: /openbmc/linux/fs/btrfs/send.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	struct list_head update_refs;
234 };
235 
236 struct waiting_dir_move {
237 	struct rb_node node;
238 	u64 ino;
239 	/*
240 	 * There might be some directory that could not be removed because it
241 	 * was waiting for this directory inode to be moved first. Therefore
242 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
243 	 */
244 	u64 rmdir_ino;
245 };
246 
247 struct orphan_dir_info {
248 	struct rb_node node;
249 	u64 ino;
250 	u64 gen;
251 };
252 
253 struct name_cache_entry {
254 	struct list_head list;
255 	/*
256 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
257 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
258 	 * more then one inum would fall into the same entry, we use radix_list
259 	 * to store the additional entries. radix_list is also used to store
260 	 * entries where two entries have the same inum but different
261 	 * generations.
262 	 */
263 	struct list_head radix_list;
264 	u64 ino;
265 	u64 gen;
266 	u64 parent_ino;
267 	u64 parent_gen;
268 	int ret;
269 	int need_later_update;
270 	int name_len;
271 	char name[];
272 };
273 
274 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
275 
276 static struct waiting_dir_move *
277 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
278 
279 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
280 
281 static int need_send_hole(struct send_ctx *sctx)
282 {
283 	return (sctx->parent_root && !sctx->cur_inode_new &&
284 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
285 		S_ISREG(sctx->cur_inode_mode));
286 }
287 
288 static void fs_path_reset(struct fs_path *p)
289 {
290 	if (p->reversed) {
291 		p->start = p->buf + p->buf_len - 1;
292 		p->end = p->start;
293 		*p->start = 0;
294 	} else {
295 		p->start = p->buf;
296 		p->end = p->start;
297 		*p->start = 0;
298 	}
299 }
300 
301 static struct fs_path *fs_path_alloc(void)
302 {
303 	struct fs_path *p;
304 
305 	p = kmalloc(sizeof(*p), GFP_NOFS);
306 	if (!p)
307 		return NULL;
308 	p->reversed = 0;
309 	p->buf = p->inline_buf;
310 	p->buf_len = FS_PATH_INLINE_SIZE;
311 	fs_path_reset(p);
312 	return p;
313 }
314 
315 static struct fs_path *fs_path_alloc_reversed(void)
316 {
317 	struct fs_path *p;
318 
319 	p = fs_path_alloc();
320 	if (!p)
321 		return NULL;
322 	p->reversed = 1;
323 	fs_path_reset(p);
324 	return p;
325 }
326 
327 static void fs_path_free(struct fs_path *p)
328 {
329 	if (!p)
330 		return;
331 	if (p->buf != p->inline_buf)
332 		kfree(p->buf);
333 	kfree(p);
334 }
335 
336 static int fs_path_len(struct fs_path *p)
337 {
338 	return p->end - p->start;
339 }
340 
341 static int fs_path_ensure_buf(struct fs_path *p, int len)
342 {
343 	char *tmp_buf;
344 	int path_len;
345 	int old_buf_len;
346 
347 	len++;
348 
349 	if (p->buf_len >= len)
350 		return 0;
351 
352 	if (len > PATH_MAX) {
353 		WARN_ON(1);
354 		return -ENOMEM;
355 	}
356 
357 	path_len = p->end - p->start;
358 	old_buf_len = p->buf_len;
359 
360 	/*
361 	 * First time the inline_buf does not suffice
362 	 */
363 	if (p->buf == p->inline_buf) {
364 		tmp_buf = kmalloc(len, GFP_NOFS);
365 		if (tmp_buf)
366 			memcpy(tmp_buf, p->buf, old_buf_len);
367 	} else {
368 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
369 	}
370 	if (!tmp_buf)
371 		return -ENOMEM;
372 	p->buf = tmp_buf;
373 	/*
374 	 * The real size of the buffer is bigger, this will let the fast path
375 	 * happen most of the time
376 	 */
377 	p->buf_len = ksize(p->buf);
378 
379 	if (p->reversed) {
380 		tmp_buf = p->buf + old_buf_len - path_len - 1;
381 		p->end = p->buf + p->buf_len - 1;
382 		p->start = p->end - path_len;
383 		memmove(p->start, tmp_buf, path_len + 1);
384 	} else {
385 		p->start = p->buf;
386 		p->end = p->start + path_len;
387 	}
388 	return 0;
389 }
390 
391 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
392 				   char **prepared)
393 {
394 	int ret;
395 	int new_len;
396 
397 	new_len = p->end - p->start + name_len;
398 	if (p->start != p->end)
399 		new_len++;
400 	ret = fs_path_ensure_buf(p, new_len);
401 	if (ret < 0)
402 		goto out;
403 
404 	if (p->reversed) {
405 		if (p->start != p->end)
406 			*--p->start = '/';
407 		p->start -= name_len;
408 		*prepared = p->start;
409 	} else {
410 		if (p->start != p->end)
411 			*p->end++ = '/';
412 		*prepared = p->end;
413 		p->end += name_len;
414 		*p->end = 0;
415 	}
416 
417 out:
418 	return ret;
419 }
420 
421 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
422 {
423 	int ret;
424 	char *prepared;
425 
426 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
427 	if (ret < 0)
428 		goto out;
429 	memcpy(prepared, name, name_len);
430 
431 out:
432 	return ret;
433 }
434 
435 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
436 {
437 	int ret;
438 	char *prepared;
439 
440 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
441 	if (ret < 0)
442 		goto out;
443 	memcpy(prepared, p2->start, p2->end - p2->start);
444 
445 out:
446 	return ret;
447 }
448 
449 static int fs_path_add_from_extent_buffer(struct fs_path *p,
450 					  struct extent_buffer *eb,
451 					  unsigned long off, int len)
452 {
453 	int ret;
454 	char *prepared;
455 
456 	ret = fs_path_prepare_for_add(p, len, &prepared);
457 	if (ret < 0)
458 		goto out;
459 
460 	read_extent_buffer(eb, prepared, off, len);
461 
462 out:
463 	return ret;
464 }
465 
466 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
467 {
468 	int ret;
469 
470 	p->reversed = from->reversed;
471 	fs_path_reset(p);
472 
473 	ret = fs_path_add_path(p, from);
474 
475 	return ret;
476 }
477 
478 
479 static void fs_path_unreverse(struct fs_path *p)
480 {
481 	char *tmp;
482 	int len;
483 
484 	if (!p->reversed)
485 		return;
486 
487 	tmp = p->start;
488 	len = p->end - p->start;
489 	p->start = p->buf;
490 	p->end = p->start + len;
491 	memmove(p->start, tmp, len + 1);
492 	p->reversed = 0;
493 }
494 
495 static struct btrfs_path *alloc_path_for_send(void)
496 {
497 	struct btrfs_path *path;
498 
499 	path = btrfs_alloc_path();
500 	if (!path)
501 		return NULL;
502 	path->search_commit_root = 1;
503 	path->skip_locking = 1;
504 	path->need_commit_sem = 1;
505 	return path;
506 }
507 
508 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
509 {
510 	int ret;
511 	mm_segment_t old_fs;
512 	u32 pos = 0;
513 
514 	old_fs = get_fs();
515 	set_fs(KERNEL_DS);
516 
517 	while (pos < len) {
518 		ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
519 		/* TODO handle that correctly */
520 		/*if (ret == -ERESTARTSYS) {
521 			continue;
522 		}*/
523 		if (ret < 0)
524 			goto out;
525 		if (ret == 0) {
526 			ret = -EIO;
527 			goto out;
528 		}
529 		pos += ret;
530 	}
531 
532 	ret = 0;
533 
534 out:
535 	set_fs(old_fs);
536 	return ret;
537 }
538 
539 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
540 {
541 	struct btrfs_tlv_header *hdr;
542 	int total_len = sizeof(*hdr) + len;
543 	int left = sctx->send_max_size - sctx->send_size;
544 
545 	if (unlikely(left < total_len))
546 		return -EOVERFLOW;
547 
548 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
549 	hdr->tlv_type = cpu_to_le16(attr);
550 	hdr->tlv_len = cpu_to_le16(len);
551 	memcpy(hdr + 1, data, len);
552 	sctx->send_size += total_len;
553 
554 	return 0;
555 }
556 
557 #define TLV_PUT_DEFINE_INT(bits) \
558 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
559 			u##bits attr, u##bits value)			\
560 	{								\
561 		__le##bits __tmp = cpu_to_le##bits(value);		\
562 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
563 	}
564 
565 TLV_PUT_DEFINE_INT(64)
566 
567 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
568 			  const char *str, int len)
569 {
570 	if (len == -1)
571 		len = strlen(str);
572 	return tlv_put(sctx, attr, str, len);
573 }
574 
575 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
576 			const u8 *uuid)
577 {
578 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
579 }
580 
581 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
582 				  struct extent_buffer *eb,
583 				  struct btrfs_timespec *ts)
584 {
585 	struct btrfs_timespec bts;
586 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
587 	return tlv_put(sctx, attr, &bts, sizeof(bts));
588 }
589 
590 
591 #define TLV_PUT(sctx, attrtype, attrlen, data) \
592 	do { \
593 		ret = tlv_put(sctx, attrtype, attrlen, data); \
594 		if (ret < 0) \
595 			goto tlv_put_failure; \
596 	} while (0)
597 
598 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
599 	do { \
600 		ret = tlv_put_u##bits(sctx, attrtype, value); \
601 		if (ret < 0) \
602 			goto tlv_put_failure; \
603 	} while (0)
604 
605 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
606 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
607 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
608 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
609 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
610 	do { \
611 		ret = tlv_put_string(sctx, attrtype, str, len); \
612 		if (ret < 0) \
613 			goto tlv_put_failure; \
614 	} while (0)
615 #define TLV_PUT_PATH(sctx, attrtype, p) \
616 	do { \
617 		ret = tlv_put_string(sctx, attrtype, p->start, \
618 			p->end - p->start); \
619 		if (ret < 0) \
620 			goto tlv_put_failure; \
621 	} while(0)
622 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
623 	do { \
624 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
625 		if (ret < 0) \
626 			goto tlv_put_failure; \
627 	} while (0)
628 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
629 	do { \
630 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
631 		if (ret < 0) \
632 			goto tlv_put_failure; \
633 	} while (0)
634 
635 static int send_header(struct send_ctx *sctx)
636 {
637 	struct btrfs_stream_header hdr;
638 
639 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
640 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
641 
642 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
643 					&sctx->send_off);
644 }
645 
646 /*
647  * For each command/item we want to send to userspace, we call this function.
648  */
649 static int begin_cmd(struct send_ctx *sctx, int cmd)
650 {
651 	struct btrfs_cmd_header *hdr;
652 
653 	if (WARN_ON(!sctx->send_buf))
654 		return -EINVAL;
655 
656 	BUG_ON(sctx->send_size);
657 
658 	sctx->send_size += sizeof(*hdr);
659 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
660 	hdr->cmd = cpu_to_le16(cmd);
661 
662 	return 0;
663 }
664 
665 static int send_cmd(struct send_ctx *sctx)
666 {
667 	int ret;
668 	struct btrfs_cmd_header *hdr;
669 	u32 crc;
670 
671 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
672 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
673 	hdr->crc = 0;
674 
675 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
676 	hdr->crc = cpu_to_le32(crc);
677 
678 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
679 					&sctx->send_off);
680 
681 	sctx->total_send_size += sctx->send_size;
682 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
683 	sctx->send_size = 0;
684 
685 	return ret;
686 }
687 
688 /*
689  * Sends a move instruction to user space
690  */
691 static int send_rename(struct send_ctx *sctx,
692 		     struct fs_path *from, struct fs_path *to)
693 {
694 	int ret;
695 
696 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
697 
698 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
699 	if (ret < 0)
700 		goto out;
701 
702 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
703 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
704 
705 	ret = send_cmd(sctx);
706 
707 tlv_put_failure:
708 out:
709 	return ret;
710 }
711 
712 /*
713  * Sends a link instruction to user space
714  */
715 static int send_link(struct send_ctx *sctx,
716 		     struct fs_path *path, struct fs_path *lnk)
717 {
718 	int ret;
719 
720 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
721 
722 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
723 	if (ret < 0)
724 		goto out;
725 
726 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
727 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
728 
729 	ret = send_cmd(sctx);
730 
731 tlv_put_failure:
732 out:
733 	return ret;
734 }
735 
736 /*
737  * Sends an unlink instruction to user space
738  */
739 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
740 {
741 	int ret;
742 
743 verbose_printk("btrfs: send_unlink %s\n", path->start);
744 
745 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
746 	if (ret < 0)
747 		goto out;
748 
749 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
750 
751 	ret = send_cmd(sctx);
752 
753 tlv_put_failure:
754 out:
755 	return ret;
756 }
757 
758 /*
759  * Sends a rmdir instruction to user space
760  */
761 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
762 {
763 	int ret;
764 
765 verbose_printk("btrfs: send_rmdir %s\n", path->start);
766 
767 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
768 	if (ret < 0)
769 		goto out;
770 
771 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
772 
773 	ret = send_cmd(sctx);
774 
775 tlv_put_failure:
776 out:
777 	return ret;
778 }
779 
780 /*
781  * Helper function to retrieve some fields from an inode item.
782  */
783 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
784 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
785 			  u64 *gid, u64 *rdev)
786 {
787 	int ret;
788 	struct btrfs_inode_item *ii;
789 	struct btrfs_key key;
790 
791 	key.objectid = ino;
792 	key.type = BTRFS_INODE_ITEM_KEY;
793 	key.offset = 0;
794 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
795 	if (ret) {
796 		if (ret > 0)
797 			ret = -ENOENT;
798 		return ret;
799 	}
800 
801 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
802 			struct btrfs_inode_item);
803 	if (size)
804 		*size = btrfs_inode_size(path->nodes[0], ii);
805 	if (gen)
806 		*gen = btrfs_inode_generation(path->nodes[0], ii);
807 	if (mode)
808 		*mode = btrfs_inode_mode(path->nodes[0], ii);
809 	if (uid)
810 		*uid = btrfs_inode_uid(path->nodes[0], ii);
811 	if (gid)
812 		*gid = btrfs_inode_gid(path->nodes[0], ii);
813 	if (rdev)
814 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
815 
816 	return ret;
817 }
818 
819 static int get_inode_info(struct btrfs_root *root,
820 			  u64 ino, u64 *size, u64 *gen,
821 			  u64 *mode, u64 *uid, u64 *gid,
822 			  u64 *rdev)
823 {
824 	struct btrfs_path *path;
825 	int ret;
826 
827 	path = alloc_path_for_send();
828 	if (!path)
829 		return -ENOMEM;
830 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
831 			       rdev);
832 	btrfs_free_path(path);
833 	return ret;
834 }
835 
836 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
837 				   struct fs_path *p,
838 				   void *ctx);
839 
840 /*
841  * Helper function to iterate the entries in ONE btrfs_inode_ref or
842  * btrfs_inode_extref.
843  * The iterate callback may return a non zero value to stop iteration. This can
844  * be a negative value for error codes or 1 to simply stop it.
845  *
846  * path must point to the INODE_REF or INODE_EXTREF when called.
847  */
848 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
849 			     struct btrfs_key *found_key, int resolve,
850 			     iterate_inode_ref_t iterate, void *ctx)
851 {
852 	struct extent_buffer *eb = path->nodes[0];
853 	struct btrfs_item *item;
854 	struct btrfs_inode_ref *iref;
855 	struct btrfs_inode_extref *extref;
856 	struct btrfs_path *tmp_path;
857 	struct fs_path *p;
858 	u32 cur = 0;
859 	u32 total;
860 	int slot = path->slots[0];
861 	u32 name_len;
862 	char *start;
863 	int ret = 0;
864 	int num = 0;
865 	int index;
866 	u64 dir;
867 	unsigned long name_off;
868 	unsigned long elem_size;
869 	unsigned long ptr;
870 
871 	p = fs_path_alloc_reversed();
872 	if (!p)
873 		return -ENOMEM;
874 
875 	tmp_path = alloc_path_for_send();
876 	if (!tmp_path) {
877 		fs_path_free(p);
878 		return -ENOMEM;
879 	}
880 
881 
882 	if (found_key->type == BTRFS_INODE_REF_KEY) {
883 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
884 						    struct btrfs_inode_ref);
885 		item = btrfs_item_nr(slot);
886 		total = btrfs_item_size(eb, item);
887 		elem_size = sizeof(*iref);
888 	} else {
889 		ptr = btrfs_item_ptr_offset(eb, slot);
890 		total = btrfs_item_size_nr(eb, slot);
891 		elem_size = sizeof(*extref);
892 	}
893 
894 	while (cur < total) {
895 		fs_path_reset(p);
896 
897 		if (found_key->type == BTRFS_INODE_REF_KEY) {
898 			iref = (struct btrfs_inode_ref *)(ptr + cur);
899 			name_len = btrfs_inode_ref_name_len(eb, iref);
900 			name_off = (unsigned long)(iref + 1);
901 			index = btrfs_inode_ref_index(eb, iref);
902 			dir = found_key->offset;
903 		} else {
904 			extref = (struct btrfs_inode_extref *)(ptr + cur);
905 			name_len = btrfs_inode_extref_name_len(eb, extref);
906 			name_off = (unsigned long)&extref->name;
907 			index = btrfs_inode_extref_index(eb, extref);
908 			dir = btrfs_inode_extref_parent(eb, extref);
909 		}
910 
911 		if (resolve) {
912 			start = btrfs_ref_to_path(root, tmp_path, name_len,
913 						  name_off, eb, dir,
914 						  p->buf, p->buf_len);
915 			if (IS_ERR(start)) {
916 				ret = PTR_ERR(start);
917 				goto out;
918 			}
919 			if (start < p->buf) {
920 				/* overflow , try again with larger buffer */
921 				ret = fs_path_ensure_buf(p,
922 						p->buf_len + p->buf - start);
923 				if (ret < 0)
924 					goto out;
925 				start = btrfs_ref_to_path(root, tmp_path,
926 							  name_len, name_off,
927 							  eb, dir,
928 							  p->buf, p->buf_len);
929 				if (IS_ERR(start)) {
930 					ret = PTR_ERR(start);
931 					goto out;
932 				}
933 				BUG_ON(start < p->buf);
934 			}
935 			p->start = start;
936 		} else {
937 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
938 							     name_len);
939 			if (ret < 0)
940 				goto out;
941 		}
942 
943 		cur += elem_size + name_len;
944 		ret = iterate(num, dir, index, p, ctx);
945 		if (ret)
946 			goto out;
947 		num++;
948 	}
949 
950 out:
951 	btrfs_free_path(tmp_path);
952 	fs_path_free(p);
953 	return ret;
954 }
955 
956 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
957 				  const char *name, int name_len,
958 				  const char *data, int data_len,
959 				  u8 type, void *ctx);
960 
961 /*
962  * Helper function to iterate the entries in ONE btrfs_dir_item.
963  * The iterate callback may return a non zero value to stop iteration. This can
964  * be a negative value for error codes or 1 to simply stop it.
965  *
966  * path must point to the dir item when called.
967  */
968 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
969 			    struct btrfs_key *found_key,
970 			    iterate_dir_item_t iterate, void *ctx)
971 {
972 	int ret = 0;
973 	struct extent_buffer *eb;
974 	struct btrfs_item *item;
975 	struct btrfs_dir_item *di;
976 	struct btrfs_key di_key;
977 	char *buf = NULL;
978 	int buf_len;
979 	u32 name_len;
980 	u32 data_len;
981 	u32 cur;
982 	u32 len;
983 	u32 total;
984 	int slot;
985 	int num;
986 	u8 type;
987 
988 	if (found_key->type == BTRFS_XATTR_ITEM_KEY)
989 		buf_len = BTRFS_MAX_XATTR_SIZE(root);
990 	else
991 		buf_len = PATH_MAX;
992 
993 	buf = kmalloc(buf_len, GFP_NOFS);
994 	if (!buf) {
995 		ret = -ENOMEM;
996 		goto out;
997 	}
998 
999 	eb = path->nodes[0];
1000 	slot = path->slots[0];
1001 	item = btrfs_item_nr(slot);
1002 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1003 	cur = 0;
1004 	len = 0;
1005 	total = btrfs_item_size(eb, item);
1006 
1007 	num = 0;
1008 	while (cur < total) {
1009 		name_len = btrfs_dir_name_len(eb, di);
1010 		data_len = btrfs_dir_data_len(eb, di);
1011 		type = btrfs_dir_type(eb, di);
1012 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1013 
1014 		if (type == BTRFS_FT_XATTR) {
1015 			if (name_len > XATTR_NAME_MAX) {
1016 				ret = -ENAMETOOLONG;
1017 				goto out;
1018 			}
1019 			if (name_len + data_len > buf_len) {
1020 				ret = -E2BIG;
1021 				goto out;
1022 			}
1023 		} else {
1024 			/*
1025 			 * Path too long
1026 			 */
1027 			if (name_len + data_len > buf_len) {
1028 				ret = -ENAMETOOLONG;
1029 				goto out;
1030 			}
1031 		}
1032 
1033 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1034 				name_len + data_len);
1035 
1036 		len = sizeof(*di) + name_len + data_len;
1037 		di = (struct btrfs_dir_item *)((char *)di + len);
1038 		cur += len;
1039 
1040 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1041 				data_len, type, ctx);
1042 		if (ret < 0)
1043 			goto out;
1044 		if (ret) {
1045 			ret = 0;
1046 			goto out;
1047 		}
1048 
1049 		num++;
1050 	}
1051 
1052 out:
1053 	kfree(buf);
1054 	return ret;
1055 }
1056 
1057 static int __copy_first_ref(int num, u64 dir, int index,
1058 			    struct fs_path *p, void *ctx)
1059 {
1060 	int ret;
1061 	struct fs_path *pt = ctx;
1062 
1063 	ret = fs_path_copy(pt, p);
1064 	if (ret < 0)
1065 		return ret;
1066 
1067 	/* we want the first only */
1068 	return 1;
1069 }
1070 
1071 /*
1072  * Retrieve the first path of an inode. If an inode has more then one
1073  * ref/hardlink, this is ignored.
1074  */
1075 static int get_inode_path(struct btrfs_root *root,
1076 			  u64 ino, struct fs_path *path)
1077 {
1078 	int ret;
1079 	struct btrfs_key key, found_key;
1080 	struct btrfs_path *p;
1081 
1082 	p = alloc_path_for_send();
1083 	if (!p)
1084 		return -ENOMEM;
1085 
1086 	fs_path_reset(path);
1087 
1088 	key.objectid = ino;
1089 	key.type = BTRFS_INODE_REF_KEY;
1090 	key.offset = 0;
1091 
1092 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1093 	if (ret < 0)
1094 		goto out;
1095 	if (ret) {
1096 		ret = 1;
1097 		goto out;
1098 	}
1099 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1100 	if (found_key.objectid != ino ||
1101 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1102 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1103 		ret = -ENOENT;
1104 		goto out;
1105 	}
1106 
1107 	ret = iterate_inode_ref(root, p, &found_key, 1,
1108 				__copy_first_ref, path);
1109 	if (ret < 0)
1110 		goto out;
1111 	ret = 0;
1112 
1113 out:
1114 	btrfs_free_path(p);
1115 	return ret;
1116 }
1117 
1118 struct backref_ctx {
1119 	struct send_ctx *sctx;
1120 
1121 	struct btrfs_path *path;
1122 	/* number of total found references */
1123 	u64 found;
1124 
1125 	/*
1126 	 * used for clones found in send_root. clones found behind cur_objectid
1127 	 * and cur_offset are not considered as allowed clones.
1128 	 */
1129 	u64 cur_objectid;
1130 	u64 cur_offset;
1131 
1132 	/* may be truncated in case it's the last extent in a file */
1133 	u64 extent_len;
1134 
1135 	/* Just to check for bugs in backref resolving */
1136 	int found_itself;
1137 };
1138 
1139 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1140 {
1141 	u64 root = (u64)(uintptr_t)key;
1142 	struct clone_root *cr = (struct clone_root *)elt;
1143 
1144 	if (root < cr->root->objectid)
1145 		return -1;
1146 	if (root > cr->root->objectid)
1147 		return 1;
1148 	return 0;
1149 }
1150 
1151 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1152 {
1153 	struct clone_root *cr1 = (struct clone_root *)e1;
1154 	struct clone_root *cr2 = (struct clone_root *)e2;
1155 
1156 	if (cr1->root->objectid < cr2->root->objectid)
1157 		return -1;
1158 	if (cr1->root->objectid > cr2->root->objectid)
1159 		return 1;
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Called for every backref that is found for the current extent.
1165  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1166  */
1167 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1168 {
1169 	struct backref_ctx *bctx = ctx_;
1170 	struct clone_root *found;
1171 	int ret;
1172 	u64 i_size;
1173 
1174 	/* First check if the root is in the list of accepted clone sources */
1175 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1176 			bctx->sctx->clone_roots_cnt,
1177 			sizeof(struct clone_root),
1178 			__clone_root_cmp_bsearch);
1179 	if (!found)
1180 		return 0;
1181 
1182 	if (found->root == bctx->sctx->send_root &&
1183 	    ino == bctx->cur_objectid &&
1184 	    offset == bctx->cur_offset) {
1185 		bctx->found_itself = 1;
1186 	}
1187 
1188 	/*
1189 	 * There are inodes that have extents that lie behind its i_size. Don't
1190 	 * accept clones from these extents.
1191 	 */
1192 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1193 			       NULL, NULL, NULL);
1194 	btrfs_release_path(bctx->path);
1195 	if (ret < 0)
1196 		return ret;
1197 
1198 	if (offset + bctx->extent_len > i_size)
1199 		return 0;
1200 
1201 	/*
1202 	 * Make sure we don't consider clones from send_root that are
1203 	 * behind the current inode/offset.
1204 	 */
1205 	if (found->root == bctx->sctx->send_root) {
1206 		/*
1207 		 * TODO for the moment we don't accept clones from the inode
1208 		 * that is currently send. We may change this when
1209 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1210 		 * file.
1211 		 */
1212 		if (ino >= bctx->cur_objectid)
1213 			return 0;
1214 #if 0
1215 		if (ino > bctx->cur_objectid)
1216 			return 0;
1217 		if (offset + bctx->extent_len > bctx->cur_offset)
1218 			return 0;
1219 #endif
1220 	}
1221 
1222 	bctx->found++;
1223 	found->found_refs++;
1224 	if (ino < found->ino) {
1225 		found->ino = ino;
1226 		found->offset = offset;
1227 	} else if (found->ino == ino) {
1228 		/*
1229 		 * same extent found more then once in the same file.
1230 		 */
1231 		if (found->offset > offset + bctx->extent_len)
1232 			found->offset = offset;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 /*
1239  * Given an inode, offset and extent item, it finds a good clone for a clone
1240  * instruction. Returns -ENOENT when none could be found. The function makes
1241  * sure that the returned clone is usable at the point where sending is at the
1242  * moment. This means, that no clones are accepted which lie behind the current
1243  * inode+offset.
1244  *
1245  * path must point to the extent item when called.
1246  */
1247 static int find_extent_clone(struct send_ctx *sctx,
1248 			     struct btrfs_path *path,
1249 			     u64 ino, u64 data_offset,
1250 			     u64 ino_size,
1251 			     struct clone_root **found)
1252 {
1253 	int ret;
1254 	int extent_type;
1255 	u64 logical;
1256 	u64 disk_byte;
1257 	u64 num_bytes;
1258 	u64 extent_item_pos;
1259 	u64 flags = 0;
1260 	struct btrfs_file_extent_item *fi;
1261 	struct extent_buffer *eb = path->nodes[0];
1262 	struct backref_ctx *backref_ctx = NULL;
1263 	struct clone_root *cur_clone_root;
1264 	struct btrfs_key found_key;
1265 	struct btrfs_path *tmp_path;
1266 	int compressed;
1267 	u32 i;
1268 
1269 	tmp_path = alloc_path_for_send();
1270 	if (!tmp_path)
1271 		return -ENOMEM;
1272 
1273 	/* We only use this path under the commit sem */
1274 	tmp_path->need_commit_sem = 0;
1275 
1276 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1277 	if (!backref_ctx) {
1278 		ret = -ENOMEM;
1279 		goto out;
1280 	}
1281 
1282 	backref_ctx->path = tmp_path;
1283 
1284 	if (data_offset >= ino_size) {
1285 		/*
1286 		 * There may be extents that lie behind the file's size.
1287 		 * I at least had this in combination with snapshotting while
1288 		 * writing large files.
1289 		 */
1290 		ret = 0;
1291 		goto out;
1292 	}
1293 
1294 	fi = btrfs_item_ptr(eb, path->slots[0],
1295 			struct btrfs_file_extent_item);
1296 	extent_type = btrfs_file_extent_type(eb, fi);
1297 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1298 		ret = -ENOENT;
1299 		goto out;
1300 	}
1301 	compressed = btrfs_file_extent_compression(eb, fi);
1302 
1303 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1304 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1305 	if (disk_byte == 0) {
1306 		ret = -ENOENT;
1307 		goto out;
1308 	}
1309 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1310 
1311 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1312 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1313 				  &found_key, &flags);
1314 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1315 	btrfs_release_path(tmp_path);
1316 
1317 	if (ret < 0)
1318 		goto out;
1319 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1320 		ret = -EIO;
1321 		goto out;
1322 	}
1323 
1324 	/*
1325 	 * Setup the clone roots.
1326 	 */
1327 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1328 		cur_clone_root = sctx->clone_roots + i;
1329 		cur_clone_root->ino = (u64)-1;
1330 		cur_clone_root->offset = 0;
1331 		cur_clone_root->found_refs = 0;
1332 	}
1333 
1334 	backref_ctx->sctx = sctx;
1335 	backref_ctx->found = 0;
1336 	backref_ctx->cur_objectid = ino;
1337 	backref_ctx->cur_offset = data_offset;
1338 	backref_ctx->found_itself = 0;
1339 	backref_ctx->extent_len = num_bytes;
1340 
1341 	/*
1342 	 * The last extent of a file may be too large due to page alignment.
1343 	 * We need to adjust extent_len in this case so that the checks in
1344 	 * __iterate_backrefs work.
1345 	 */
1346 	if (data_offset + num_bytes >= ino_size)
1347 		backref_ctx->extent_len = ino_size - data_offset;
1348 
1349 	/*
1350 	 * Now collect all backrefs.
1351 	 */
1352 	if (compressed == BTRFS_COMPRESS_NONE)
1353 		extent_item_pos = logical - found_key.objectid;
1354 	else
1355 		extent_item_pos = 0;
1356 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1357 					found_key.objectid, extent_item_pos, 1,
1358 					__iterate_backrefs, backref_ctx);
1359 
1360 	if (ret < 0)
1361 		goto out;
1362 
1363 	if (!backref_ctx->found_itself) {
1364 		/* found a bug in backref code? */
1365 		ret = -EIO;
1366 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1367 				"send_root. inode=%llu, offset=%llu, "
1368 				"disk_byte=%llu found extent=%llu",
1369 				ino, data_offset, disk_byte, found_key.objectid);
1370 		goto out;
1371 	}
1372 
1373 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1374 		"ino=%llu, "
1375 		"num_bytes=%llu, logical=%llu\n",
1376 		data_offset, ino, num_bytes, logical);
1377 
1378 	if (!backref_ctx->found)
1379 		verbose_printk("btrfs:    no clones found\n");
1380 
1381 	cur_clone_root = NULL;
1382 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1383 		if (sctx->clone_roots[i].found_refs) {
1384 			if (!cur_clone_root)
1385 				cur_clone_root = sctx->clone_roots + i;
1386 			else if (sctx->clone_roots[i].root == sctx->send_root)
1387 				/* prefer clones from send_root over others */
1388 				cur_clone_root = sctx->clone_roots + i;
1389 		}
1390 
1391 	}
1392 
1393 	if (cur_clone_root) {
1394 		if (compressed != BTRFS_COMPRESS_NONE) {
1395 			/*
1396 			 * Offsets given by iterate_extent_inodes() are relative
1397 			 * to the start of the extent, we need to add logical
1398 			 * offset from the file extent item.
1399 			 * (See why at backref.c:check_extent_in_eb())
1400 			 */
1401 			cur_clone_root->offset += btrfs_file_extent_offset(eb,
1402 									   fi);
1403 		}
1404 		*found = cur_clone_root;
1405 		ret = 0;
1406 	} else {
1407 		ret = -ENOENT;
1408 	}
1409 
1410 out:
1411 	btrfs_free_path(tmp_path);
1412 	kfree(backref_ctx);
1413 	return ret;
1414 }
1415 
1416 static int read_symlink(struct btrfs_root *root,
1417 			u64 ino,
1418 			struct fs_path *dest)
1419 {
1420 	int ret;
1421 	struct btrfs_path *path;
1422 	struct btrfs_key key;
1423 	struct btrfs_file_extent_item *ei;
1424 	u8 type;
1425 	u8 compression;
1426 	unsigned long off;
1427 	int len;
1428 
1429 	path = alloc_path_for_send();
1430 	if (!path)
1431 		return -ENOMEM;
1432 
1433 	key.objectid = ino;
1434 	key.type = BTRFS_EXTENT_DATA_KEY;
1435 	key.offset = 0;
1436 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1437 	if (ret < 0)
1438 		goto out;
1439 	BUG_ON(ret);
1440 
1441 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1442 			struct btrfs_file_extent_item);
1443 	type = btrfs_file_extent_type(path->nodes[0], ei);
1444 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1445 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1446 	BUG_ON(compression);
1447 
1448 	off = btrfs_file_extent_inline_start(ei);
1449 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1450 
1451 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1452 
1453 out:
1454 	btrfs_free_path(path);
1455 	return ret;
1456 }
1457 
1458 /*
1459  * Helper function to generate a file name that is unique in the root of
1460  * send_root and parent_root. This is used to generate names for orphan inodes.
1461  */
1462 static int gen_unique_name(struct send_ctx *sctx,
1463 			   u64 ino, u64 gen,
1464 			   struct fs_path *dest)
1465 {
1466 	int ret = 0;
1467 	struct btrfs_path *path;
1468 	struct btrfs_dir_item *di;
1469 	char tmp[64];
1470 	int len;
1471 	u64 idx = 0;
1472 
1473 	path = alloc_path_for_send();
1474 	if (!path)
1475 		return -ENOMEM;
1476 
1477 	while (1) {
1478 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1479 				ino, gen, idx);
1480 		ASSERT(len < sizeof(tmp));
1481 
1482 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1483 				path, BTRFS_FIRST_FREE_OBJECTID,
1484 				tmp, strlen(tmp), 0);
1485 		btrfs_release_path(path);
1486 		if (IS_ERR(di)) {
1487 			ret = PTR_ERR(di);
1488 			goto out;
1489 		}
1490 		if (di) {
1491 			/* not unique, try again */
1492 			idx++;
1493 			continue;
1494 		}
1495 
1496 		if (!sctx->parent_root) {
1497 			/* unique */
1498 			ret = 0;
1499 			break;
1500 		}
1501 
1502 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1503 				path, BTRFS_FIRST_FREE_OBJECTID,
1504 				tmp, strlen(tmp), 0);
1505 		btrfs_release_path(path);
1506 		if (IS_ERR(di)) {
1507 			ret = PTR_ERR(di);
1508 			goto out;
1509 		}
1510 		if (di) {
1511 			/* not unique, try again */
1512 			idx++;
1513 			continue;
1514 		}
1515 		/* unique */
1516 		break;
1517 	}
1518 
1519 	ret = fs_path_add(dest, tmp, strlen(tmp));
1520 
1521 out:
1522 	btrfs_free_path(path);
1523 	return ret;
1524 }
1525 
1526 enum inode_state {
1527 	inode_state_no_change,
1528 	inode_state_will_create,
1529 	inode_state_did_create,
1530 	inode_state_will_delete,
1531 	inode_state_did_delete,
1532 };
1533 
1534 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1535 {
1536 	int ret;
1537 	int left_ret;
1538 	int right_ret;
1539 	u64 left_gen;
1540 	u64 right_gen;
1541 
1542 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1543 			NULL, NULL);
1544 	if (ret < 0 && ret != -ENOENT)
1545 		goto out;
1546 	left_ret = ret;
1547 
1548 	if (!sctx->parent_root) {
1549 		right_ret = -ENOENT;
1550 	} else {
1551 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1552 				NULL, NULL, NULL, NULL);
1553 		if (ret < 0 && ret != -ENOENT)
1554 			goto out;
1555 		right_ret = ret;
1556 	}
1557 
1558 	if (!left_ret && !right_ret) {
1559 		if (left_gen == gen && right_gen == gen) {
1560 			ret = inode_state_no_change;
1561 		} else if (left_gen == gen) {
1562 			if (ino < sctx->send_progress)
1563 				ret = inode_state_did_create;
1564 			else
1565 				ret = inode_state_will_create;
1566 		} else if (right_gen == gen) {
1567 			if (ino < sctx->send_progress)
1568 				ret = inode_state_did_delete;
1569 			else
1570 				ret = inode_state_will_delete;
1571 		} else  {
1572 			ret = -ENOENT;
1573 		}
1574 	} else if (!left_ret) {
1575 		if (left_gen == gen) {
1576 			if (ino < sctx->send_progress)
1577 				ret = inode_state_did_create;
1578 			else
1579 				ret = inode_state_will_create;
1580 		} else {
1581 			ret = -ENOENT;
1582 		}
1583 	} else if (!right_ret) {
1584 		if (right_gen == gen) {
1585 			if (ino < sctx->send_progress)
1586 				ret = inode_state_did_delete;
1587 			else
1588 				ret = inode_state_will_delete;
1589 		} else {
1590 			ret = -ENOENT;
1591 		}
1592 	} else {
1593 		ret = -ENOENT;
1594 	}
1595 
1596 out:
1597 	return ret;
1598 }
1599 
1600 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1601 {
1602 	int ret;
1603 
1604 	ret = get_cur_inode_state(sctx, ino, gen);
1605 	if (ret < 0)
1606 		goto out;
1607 
1608 	if (ret == inode_state_no_change ||
1609 	    ret == inode_state_did_create ||
1610 	    ret == inode_state_will_delete)
1611 		ret = 1;
1612 	else
1613 		ret = 0;
1614 
1615 out:
1616 	return ret;
1617 }
1618 
1619 /*
1620  * Helper function to lookup a dir item in a dir.
1621  */
1622 static int lookup_dir_item_inode(struct btrfs_root *root,
1623 				 u64 dir, const char *name, int name_len,
1624 				 u64 *found_inode,
1625 				 u8 *found_type)
1626 {
1627 	int ret = 0;
1628 	struct btrfs_dir_item *di;
1629 	struct btrfs_key key;
1630 	struct btrfs_path *path;
1631 
1632 	path = alloc_path_for_send();
1633 	if (!path)
1634 		return -ENOMEM;
1635 
1636 	di = btrfs_lookup_dir_item(NULL, root, path,
1637 			dir, name, name_len, 0);
1638 	if (!di) {
1639 		ret = -ENOENT;
1640 		goto out;
1641 	}
1642 	if (IS_ERR(di)) {
1643 		ret = PTR_ERR(di);
1644 		goto out;
1645 	}
1646 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1647 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1648 		ret = -ENOENT;
1649 		goto out;
1650 	}
1651 	*found_inode = key.objectid;
1652 	*found_type = btrfs_dir_type(path->nodes[0], di);
1653 
1654 out:
1655 	btrfs_free_path(path);
1656 	return ret;
1657 }
1658 
1659 /*
1660  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1661  * generation of the parent dir and the name of the dir entry.
1662  */
1663 static int get_first_ref(struct btrfs_root *root, u64 ino,
1664 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1665 {
1666 	int ret;
1667 	struct btrfs_key key;
1668 	struct btrfs_key found_key;
1669 	struct btrfs_path *path;
1670 	int len;
1671 	u64 parent_dir;
1672 
1673 	path = alloc_path_for_send();
1674 	if (!path)
1675 		return -ENOMEM;
1676 
1677 	key.objectid = ino;
1678 	key.type = BTRFS_INODE_REF_KEY;
1679 	key.offset = 0;
1680 
1681 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1682 	if (ret < 0)
1683 		goto out;
1684 	if (!ret)
1685 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1686 				path->slots[0]);
1687 	if (ret || found_key.objectid != ino ||
1688 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1689 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1690 		ret = -ENOENT;
1691 		goto out;
1692 	}
1693 
1694 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1695 		struct btrfs_inode_ref *iref;
1696 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1697 				      struct btrfs_inode_ref);
1698 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1699 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1700 						     (unsigned long)(iref + 1),
1701 						     len);
1702 		parent_dir = found_key.offset;
1703 	} else {
1704 		struct btrfs_inode_extref *extref;
1705 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1706 					struct btrfs_inode_extref);
1707 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1708 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1709 					(unsigned long)&extref->name, len);
1710 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1711 	}
1712 	if (ret < 0)
1713 		goto out;
1714 	btrfs_release_path(path);
1715 
1716 	if (dir_gen) {
1717 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1718 				     NULL, NULL, NULL);
1719 		if (ret < 0)
1720 			goto out;
1721 	}
1722 
1723 	*dir = parent_dir;
1724 
1725 out:
1726 	btrfs_free_path(path);
1727 	return ret;
1728 }
1729 
1730 static int is_first_ref(struct btrfs_root *root,
1731 			u64 ino, u64 dir,
1732 			const char *name, int name_len)
1733 {
1734 	int ret;
1735 	struct fs_path *tmp_name;
1736 	u64 tmp_dir;
1737 
1738 	tmp_name = fs_path_alloc();
1739 	if (!tmp_name)
1740 		return -ENOMEM;
1741 
1742 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1743 	if (ret < 0)
1744 		goto out;
1745 
1746 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1747 		ret = 0;
1748 		goto out;
1749 	}
1750 
1751 	ret = !memcmp(tmp_name->start, name, name_len);
1752 
1753 out:
1754 	fs_path_free(tmp_name);
1755 	return ret;
1756 }
1757 
1758 /*
1759  * Used by process_recorded_refs to determine if a new ref would overwrite an
1760  * already existing ref. In case it detects an overwrite, it returns the
1761  * inode/gen in who_ino/who_gen.
1762  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1763  * to make sure later references to the overwritten inode are possible.
1764  * Orphanizing is however only required for the first ref of an inode.
1765  * process_recorded_refs does an additional is_first_ref check to see if
1766  * orphanizing is really required.
1767  */
1768 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1769 			      const char *name, int name_len,
1770 			      u64 *who_ino, u64 *who_gen)
1771 {
1772 	int ret = 0;
1773 	u64 gen;
1774 	u64 other_inode = 0;
1775 	u8 other_type = 0;
1776 
1777 	if (!sctx->parent_root)
1778 		goto out;
1779 
1780 	ret = is_inode_existent(sctx, dir, dir_gen);
1781 	if (ret <= 0)
1782 		goto out;
1783 
1784 	/*
1785 	 * If we have a parent root we need to verify that the parent dir was
1786 	 * not delted and then re-created, if it was then we have no overwrite
1787 	 * and we can just unlink this entry.
1788 	 */
1789 	if (sctx->parent_root) {
1790 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1791 				     NULL, NULL, NULL);
1792 		if (ret < 0 && ret != -ENOENT)
1793 			goto out;
1794 		if (ret) {
1795 			ret = 0;
1796 			goto out;
1797 		}
1798 		if (gen != dir_gen)
1799 			goto out;
1800 	}
1801 
1802 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1803 			&other_inode, &other_type);
1804 	if (ret < 0 && ret != -ENOENT)
1805 		goto out;
1806 	if (ret) {
1807 		ret = 0;
1808 		goto out;
1809 	}
1810 
1811 	/*
1812 	 * Check if the overwritten ref was already processed. If yes, the ref
1813 	 * was already unlinked/moved, so we can safely assume that we will not
1814 	 * overwrite anything at this point in time.
1815 	 */
1816 	if (other_inode > sctx->send_progress) {
1817 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1818 				who_gen, NULL, NULL, NULL, NULL);
1819 		if (ret < 0)
1820 			goto out;
1821 
1822 		ret = 1;
1823 		*who_ino = other_inode;
1824 	} else {
1825 		ret = 0;
1826 	}
1827 
1828 out:
1829 	return ret;
1830 }
1831 
1832 /*
1833  * Checks if the ref was overwritten by an already processed inode. This is
1834  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1835  * thus the orphan name needs be used.
1836  * process_recorded_refs also uses it to avoid unlinking of refs that were
1837  * overwritten.
1838  */
1839 static int did_overwrite_ref(struct send_ctx *sctx,
1840 			    u64 dir, u64 dir_gen,
1841 			    u64 ino, u64 ino_gen,
1842 			    const char *name, int name_len)
1843 {
1844 	int ret = 0;
1845 	u64 gen;
1846 	u64 ow_inode;
1847 	u8 other_type;
1848 
1849 	if (!sctx->parent_root)
1850 		goto out;
1851 
1852 	ret = is_inode_existent(sctx, dir, dir_gen);
1853 	if (ret <= 0)
1854 		goto out;
1855 
1856 	/* check if the ref was overwritten by another ref */
1857 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1858 			&ow_inode, &other_type);
1859 	if (ret < 0 && ret != -ENOENT)
1860 		goto out;
1861 	if (ret) {
1862 		/* was never and will never be overwritten */
1863 		ret = 0;
1864 		goto out;
1865 	}
1866 
1867 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1868 			NULL, NULL);
1869 	if (ret < 0)
1870 		goto out;
1871 
1872 	if (ow_inode == ino && gen == ino_gen) {
1873 		ret = 0;
1874 		goto out;
1875 	}
1876 
1877 	/* we know that it is or will be overwritten. check this now */
1878 	if (ow_inode < sctx->send_progress)
1879 		ret = 1;
1880 	else
1881 		ret = 0;
1882 
1883 out:
1884 	return ret;
1885 }
1886 
1887 /*
1888  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1889  * that got overwritten. This is used by process_recorded_refs to determine
1890  * if it has to use the path as returned by get_cur_path or the orphan name.
1891  */
1892 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1893 {
1894 	int ret = 0;
1895 	struct fs_path *name = NULL;
1896 	u64 dir;
1897 	u64 dir_gen;
1898 
1899 	if (!sctx->parent_root)
1900 		goto out;
1901 
1902 	name = fs_path_alloc();
1903 	if (!name)
1904 		return -ENOMEM;
1905 
1906 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1907 	if (ret < 0)
1908 		goto out;
1909 
1910 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1911 			name->start, fs_path_len(name));
1912 
1913 out:
1914 	fs_path_free(name);
1915 	return ret;
1916 }
1917 
1918 /*
1919  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1920  * so we need to do some special handling in case we have clashes. This function
1921  * takes care of this with the help of name_cache_entry::radix_list.
1922  * In case of error, nce is kfreed.
1923  */
1924 static int name_cache_insert(struct send_ctx *sctx,
1925 			     struct name_cache_entry *nce)
1926 {
1927 	int ret = 0;
1928 	struct list_head *nce_head;
1929 
1930 	nce_head = radix_tree_lookup(&sctx->name_cache,
1931 			(unsigned long)nce->ino);
1932 	if (!nce_head) {
1933 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1934 		if (!nce_head) {
1935 			kfree(nce);
1936 			return -ENOMEM;
1937 		}
1938 		INIT_LIST_HEAD(nce_head);
1939 
1940 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1941 		if (ret < 0) {
1942 			kfree(nce_head);
1943 			kfree(nce);
1944 			return ret;
1945 		}
1946 	}
1947 	list_add_tail(&nce->radix_list, nce_head);
1948 	list_add_tail(&nce->list, &sctx->name_cache_list);
1949 	sctx->name_cache_size++;
1950 
1951 	return ret;
1952 }
1953 
1954 static void name_cache_delete(struct send_ctx *sctx,
1955 			      struct name_cache_entry *nce)
1956 {
1957 	struct list_head *nce_head;
1958 
1959 	nce_head = radix_tree_lookup(&sctx->name_cache,
1960 			(unsigned long)nce->ino);
1961 	if (!nce_head) {
1962 		btrfs_err(sctx->send_root->fs_info,
1963 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1964 			nce->ino, sctx->name_cache_size);
1965 	}
1966 
1967 	list_del(&nce->radix_list);
1968 	list_del(&nce->list);
1969 	sctx->name_cache_size--;
1970 
1971 	/*
1972 	 * We may not get to the final release of nce_head if the lookup fails
1973 	 */
1974 	if (nce_head && list_empty(nce_head)) {
1975 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1976 		kfree(nce_head);
1977 	}
1978 }
1979 
1980 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1981 						    u64 ino, u64 gen)
1982 {
1983 	struct list_head *nce_head;
1984 	struct name_cache_entry *cur;
1985 
1986 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1987 	if (!nce_head)
1988 		return NULL;
1989 
1990 	list_for_each_entry(cur, nce_head, radix_list) {
1991 		if (cur->ino == ino && cur->gen == gen)
1992 			return cur;
1993 	}
1994 	return NULL;
1995 }
1996 
1997 /*
1998  * Removes the entry from the list and adds it back to the end. This marks the
1999  * entry as recently used so that name_cache_clean_unused does not remove it.
2000  */
2001 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2002 {
2003 	list_del(&nce->list);
2004 	list_add_tail(&nce->list, &sctx->name_cache_list);
2005 }
2006 
2007 /*
2008  * Remove some entries from the beginning of name_cache_list.
2009  */
2010 static void name_cache_clean_unused(struct send_ctx *sctx)
2011 {
2012 	struct name_cache_entry *nce;
2013 
2014 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2015 		return;
2016 
2017 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2018 		nce = list_entry(sctx->name_cache_list.next,
2019 				struct name_cache_entry, list);
2020 		name_cache_delete(sctx, nce);
2021 		kfree(nce);
2022 	}
2023 }
2024 
2025 static void name_cache_free(struct send_ctx *sctx)
2026 {
2027 	struct name_cache_entry *nce;
2028 
2029 	while (!list_empty(&sctx->name_cache_list)) {
2030 		nce = list_entry(sctx->name_cache_list.next,
2031 				struct name_cache_entry, list);
2032 		name_cache_delete(sctx, nce);
2033 		kfree(nce);
2034 	}
2035 }
2036 
2037 /*
2038  * Used by get_cur_path for each ref up to the root.
2039  * Returns 0 if it succeeded.
2040  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2041  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2042  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2043  * Returns <0 in case of error.
2044  */
2045 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2046 				     u64 ino, u64 gen,
2047 				     u64 *parent_ino,
2048 				     u64 *parent_gen,
2049 				     struct fs_path *dest)
2050 {
2051 	int ret;
2052 	int nce_ret;
2053 	struct name_cache_entry *nce = NULL;
2054 
2055 	/*
2056 	 * First check if we already did a call to this function with the same
2057 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2058 	 * return the cached result.
2059 	 */
2060 	nce = name_cache_search(sctx, ino, gen);
2061 	if (nce) {
2062 		if (ino < sctx->send_progress && nce->need_later_update) {
2063 			name_cache_delete(sctx, nce);
2064 			kfree(nce);
2065 			nce = NULL;
2066 		} else {
2067 			name_cache_used(sctx, nce);
2068 			*parent_ino = nce->parent_ino;
2069 			*parent_gen = nce->parent_gen;
2070 			ret = fs_path_add(dest, nce->name, nce->name_len);
2071 			if (ret < 0)
2072 				goto out;
2073 			ret = nce->ret;
2074 			goto out;
2075 		}
2076 	}
2077 
2078 	/*
2079 	 * If the inode is not existent yet, add the orphan name and return 1.
2080 	 * This should only happen for the parent dir that we determine in
2081 	 * __record_new_ref
2082 	 */
2083 	ret = is_inode_existent(sctx, ino, gen);
2084 	if (ret < 0)
2085 		goto out;
2086 
2087 	if (!ret) {
2088 		ret = gen_unique_name(sctx, ino, gen, dest);
2089 		if (ret < 0)
2090 			goto out;
2091 		ret = 1;
2092 		goto out_cache;
2093 	}
2094 
2095 	/*
2096 	 * Depending on whether the inode was already processed or not, use
2097 	 * send_root or parent_root for ref lookup.
2098 	 */
2099 	if (ino < sctx->send_progress)
2100 		ret = get_first_ref(sctx->send_root, ino,
2101 				    parent_ino, parent_gen, dest);
2102 	else
2103 		ret = get_first_ref(sctx->parent_root, ino,
2104 				    parent_ino, parent_gen, dest);
2105 	if (ret < 0)
2106 		goto out;
2107 
2108 	/*
2109 	 * Check if the ref was overwritten by an inode's ref that was processed
2110 	 * earlier. If yes, treat as orphan and return 1.
2111 	 */
2112 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2113 			dest->start, dest->end - dest->start);
2114 	if (ret < 0)
2115 		goto out;
2116 	if (ret) {
2117 		fs_path_reset(dest);
2118 		ret = gen_unique_name(sctx, ino, gen, dest);
2119 		if (ret < 0)
2120 			goto out;
2121 		ret = 1;
2122 	}
2123 
2124 out_cache:
2125 	/*
2126 	 * Store the result of the lookup in the name cache.
2127 	 */
2128 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2129 	if (!nce) {
2130 		ret = -ENOMEM;
2131 		goto out;
2132 	}
2133 
2134 	nce->ino = ino;
2135 	nce->gen = gen;
2136 	nce->parent_ino = *parent_ino;
2137 	nce->parent_gen = *parent_gen;
2138 	nce->name_len = fs_path_len(dest);
2139 	nce->ret = ret;
2140 	strcpy(nce->name, dest->start);
2141 
2142 	if (ino < sctx->send_progress)
2143 		nce->need_later_update = 0;
2144 	else
2145 		nce->need_later_update = 1;
2146 
2147 	nce_ret = name_cache_insert(sctx, nce);
2148 	if (nce_ret < 0)
2149 		ret = nce_ret;
2150 	name_cache_clean_unused(sctx);
2151 
2152 out:
2153 	return ret;
2154 }
2155 
2156 /*
2157  * Magic happens here. This function returns the first ref to an inode as it
2158  * would look like while receiving the stream at this point in time.
2159  * We walk the path up to the root. For every inode in between, we check if it
2160  * was already processed/sent. If yes, we continue with the parent as found
2161  * in send_root. If not, we continue with the parent as found in parent_root.
2162  * If we encounter an inode that was deleted at this point in time, we use the
2163  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2164  * that were not created yet and overwritten inodes/refs.
2165  *
2166  * When do we have have orphan inodes:
2167  * 1. When an inode is freshly created and thus no valid refs are available yet
2168  * 2. When a directory lost all it's refs (deleted) but still has dir items
2169  *    inside which were not processed yet (pending for move/delete). If anyone
2170  *    tried to get the path to the dir items, it would get a path inside that
2171  *    orphan directory.
2172  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2173  *    of an unprocessed inode. If in that case the first ref would be
2174  *    overwritten, the overwritten inode gets "orphanized". Later when we
2175  *    process this overwritten inode, it is restored at a new place by moving
2176  *    the orphan inode.
2177  *
2178  * sctx->send_progress tells this function at which point in time receiving
2179  * would be.
2180  */
2181 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2182 			struct fs_path *dest)
2183 {
2184 	int ret = 0;
2185 	struct fs_path *name = NULL;
2186 	u64 parent_inode = 0;
2187 	u64 parent_gen = 0;
2188 	int stop = 0;
2189 
2190 	name = fs_path_alloc();
2191 	if (!name) {
2192 		ret = -ENOMEM;
2193 		goto out;
2194 	}
2195 
2196 	dest->reversed = 1;
2197 	fs_path_reset(dest);
2198 
2199 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2200 		fs_path_reset(name);
2201 
2202 		if (is_waiting_for_rm(sctx, ino)) {
2203 			ret = gen_unique_name(sctx, ino, gen, name);
2204 			if (ret < 0)
2205 				goto out;
2206 			ret = fs_path_add_path(dest, name);
2207 			break;
2208 		}
2209 
2210 		if (is_waiting_for_move(sctx, ino)) {
2211 			ret = get_first_ref(sctx->parent_root, ino,
2212 					    &parent_inode, &parent_gen, name);
2213 		} else {
2214 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2215 							&parent_inode,
2216 							&parent_gen, name);
2217 			if (ret)
2218 				stop = 1;
2219 		}
2220 
2221 		if (ret < 0)
2222 			goto out;
2223 
2224 		ret = fs_path_add_path(dest, name);
2225 		if (ret < 0)
2226 			goto out;
2227 
2228 		ino = parent_inode;
2229 		gen = parent_gen;
2230 	}
2231 
2232 out:
2233 	fs_path_free(name);
2234 	if (!ret)
2235 		fs_path_unreverse(dest);
2236 	return ret;
2237 }
2238 
2239 /*
2240  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2241  */
2242 static int send_subvol_begin(struct send_ctx *sctx)
2243 {
2244 	int ret;
2245 	struct btrfs_root *send_root = sctx->send_root;
2246 	struct btrfs_root *parent_root = sctx->parent_root;
2247 	struct btrfs_path *path;
2248 	struct btrfs_key key;
2249 	struct btrfs_root_ref *ref;
2250 	struct extent_buffer *leaf;
2251 	char *name = NULL;
2252 	int namelen;
2253 
2254 	path = btrfs_alloc_path();
2255 	if (!path)
2256 		return -ENOMEM;
2257 
2258 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2259 	if (!name) {
2260 		btrfs_free_path(path);
2261 		return -ENOMEM;
2262 	}
2263 
2264 	key.objectid = send_root->objectid;
2265 	key.type = BTRFS_ROOT_BACKREF_KEY;
2266 	key.offset = 0;
2267 
2268 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2269 				&key, path, 1, 0);
2270 	if (ret < 0)
2271 		goto out;
2272 	if (ret) {
2273 		ret = -ENOENT;
2274 		goto out;
2275 	}
2276 
2277 	leaf = path->nodes[0];
2278 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2280 	    key.objectid != send_root->objectid) {
2281 		ret = -ENOENT;
2282 		goto out;
2283 	}
2284 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2285 	namelen = btrfs_root_ref_name_len(leaf, ref);
2286 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2287 	btrfs_release_path(path);
2288 
2289 	if (parent_root) {
2290 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2291 		if (ret < 0)
2292 			goto out;
2293 	} else {
2294 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2295 		if (ret < 0)
2296 			goto out;
2297 	}
2298 
2299 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2300 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2301 			sctx->send_root->root_item.uuid);
2302 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2303 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2304 	if (parent_root) {
2305 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2306 				sctx->parent_root->root_item.uuid);
2307 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2308 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2309 	}
2310 
2311 	ret = send_cmd(sctx);
2312 
2313 tlv_put_failure:
2314 out:
2315 	btrfs_free_path(path);
2316 	kfree(name);
2317 	return ret;
2318 }
2319 
2320 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2321 {
2322 	int ret = 0;
2323 	struct fs_path *p;
2324 
2325 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2326 
2327 	p = fs_path_alloc();
2328 	if (!p)
2329 		return -ENOMEM;
2330 
2331 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2332 	if (ret < 0)
2333 		goto out;
2334 
2335 	ret = get_cur_path(sctx, ino, gen, p);
2336 	if (ret < 0)
2337 		goto out;
2338 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2339 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2340 
2341 	ret = send_cmd(sctx);
2342 
2343 tlv_put_failure:
2344 out:
2345 	fs_path_free(p);
2346 	return ret;
2347 }
2348 
2349 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2350 {
2351 	int ret = 0;
2352 	struct fs_path *p;
2353 
2354 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2355 
2356 	p = fs_path_alloc();
2357 	if (!p)
2358 		return -ENOMEM;
2359 
2360 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2361 	if (ret < 0)
2362 		goto out;
2363 
2364 	ret = get_cur_path(sctx, ino, gen, p);
2365 	if (ret < 0)
2366 		goto out;
2367 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2368 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2369 
2370 	ret = send_cmd(sctx);
2371 
2372 tlv_put_failure:
2373 out:
2374 	fs_path_free(p);
2375 	return ret;
2376 }
2377 
2378 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2379 {
2380 	int ret = 0;
2381 	struct fs_path *p;
2382 
2383 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2384 
2385 	p = fs_path_alloc();
2386 	if (!p)
2387 		return -ENOMEM;
2388 
2389 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2390 	if (ret < 0)
2391 		goto out;
2392 
2393 	ret = get_cur_path(sctx, ino, gen, p);
2394 	if (ret < 0)
2395 		goto out;
2396 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2397 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2398 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2399 
2400 	ret = send_cmd(sctx);
2401 
2402 tlv_put_failure:
2403 out:
2404 	fs_path_free(p);
2405 	return ret;
2406 }
2407 
2408 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2409 {
2410 	int ret = 0;
2411 	struct fs_path *p = NULL;
2412 	struct btrfs_inode_item *ii;
2413 	struct btrfs_path *path = NULL;
2414 	struct extent_buffer *eb;
2415 	struct btrfs_key key;
2416 	int slot;
2417 
2418 verbose_printk("btrfs: send_utimes %llu\n", ino);
2419 
2420 	p = fs_path_alloc();
2421 	if (!p)
2422 		return -ENOMEM;
2423 
2424 	path = alloc_path_for_send();
2425 	if (!path) {
2426 		ret = -ENOMEM;
2427 		goto out;
2428 	}
2429 
2430 	key.objectid = ino;
2431 	key.type = BTRFS_INODE_ITEM_KEY;
2432 	key.offset = 0;
2433 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2434 	if (ret < 0)
2435 		goto out;
2436 
2437 	eb = path->nodes[0];
2438 	slot = path->slots[0];
2439 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2440 
2441 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2442 	if (ret < 0)
2443 		goto out;
2444 
2445 	ret = get_cur_path(sctx, ino, gen, p);
2446 	if (ret < 0)
2447 		goto out;
2448 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2449 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2450 			btrfs_inode_atime(ii));
2451 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2452 			btrfs_inode_mtime(ii));
2453 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2454 			btrfs_inode_ctime(ii));
2455 	/* TODO Add otime support when the otime patches get into upstream */
2456 
2457 	ret = send_cmd(sctx);
2458 
2459 tlv_put_failure:
2460 out:
2461 	fs_path_free(p);
2462 	btrfs_free_path(path);
2463 	return ret;
2464 }
2465 
2466 /*
2467  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2468  * a valid path yet because we did not process the refs yet. So, the inode
2469  * is created as orphan.
2470  */
2471 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2472 {
2473 	int ret = 0;
2474 	struct fs_path *p;
2475 	int cmd;
2476 	u64 gen;
2477 	u64 mode;
2478 	u64 rdev;
2479 
2480 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2481 
2482 	p = fs_path_alloc();
2483 	if (!p)
2484 		return -ENOMEM;
2485 
2486 	if (ino != sctx->cur_ino) {
2487 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2488 				     NULL, NULL, &rdev);
2489 		if (ret < 0)
2490 			goto out;
2491 	} else {
2492 		gen = sctx->cur_inode_gen;
2493 		mode = sctx->cur_inode_mode;
2494 		rdev = sctx->cur_inode_rdev;
2495 	}
2496 
2497 	if (S_ISREG(mode)) {
2498 		cmd = BTRFS_SEND_C_MKFILE;
2499 	} else if (S_ISDIR(mode)) {
2500 		cmd = BTRFS_SEND_C_MKDIR;
2501 	} else if (S_ISLNK(mode)) {
2502 		cmd = BTRFS_SEND_C_SYMLINK;
2503 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2504 		cmd = BTRFS_SEND_C_MKNOD;
2505 	} else if (S_ISFIFO(mode)) {
2506 		cmd = BTRFS_SEND_C_MKFIFO;
2507 	} else if (S_ISSOCK(mode)) {
2508 		cmd = BTRFS_SEND_C_MKSOCK;
2509 	} else {
2510 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2511 				(int)(mode & S_IFMT));
2512 		ret = -ENOTSUPP;
2513 		goto out;
2514 	}
2515 
2516 	ret = begin_cmd(sctx, cmd);
2517 	if (ret < 0)
2518 		goto out;
2519 
2520 	ret = gen_unique_name(sctx, ino, gen, p);
2521 	if (ret < 0)
2522 		goto out;
2523 
2524 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2525 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2526 
2527 	if (S_ISLNK(mode)) {
2528 		fs_path_reset(p);
2529 		ret = read_symlink(sctx->send_root, ino, p);
2530 		if (ret < 0)
2531 			goto out;
2532 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2533 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2534 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2535 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2536 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2537 	}
2538 
2539 	ret = send_cmd(sctx);
2540 	if (ret < 0)
2541 		goto out;
2542 
2543 
2544 tlv_put_failure:
2545 out:
2546 	fs_path_free(p);
2547 	return ret;
2548 }
2549 
2550 /*
2551  * We need some special handling for inodes that get processed before the parent
2552  * directory got created. See process_recorded_refs for details.
2553  * This function does the check if we already created the dir out of order.
2554  */
2555 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2556 {
2557 	int ret = 0;
2558 	struct btrfs_path *path = NULL;
2559 	struct btrfs_key key;
2560 	struct btrfs_key found_key;
2561 	struct btrfs_key di_key;
2562 	struct extent_buffer *eb;
2563 	struct btrfs_dir_item *di;
2564 	int slot;
2565 
2566 	path = alloc_path_for_send();
2567 	if (!path) {
2568 		ret = -ENOMEM;
2569 		goto out;
2570 	}
2571 
2572 	key.objectid = dir;
2573 	key.type = BTRFS_DIR_INDEX_KEY;
2574 	key.offset = 0;
2575 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2576 	if (ret < 0)
2577 		goto out;
2578 
2579 	while (1) {
2580 		eb = path->nodes[0];
2581 		slot = path->slots[0];
2582 		if (slot >= btrfs_header_nritems(eb)) {
2583 			ret = btrfs_next_leaf(sctx->send_root, path);
2584 			if (ret < 0) {
2585 				goto out;
2586 			} else if (ret > 0) {
2587 				ret = 0;
2588 				break;
2589 			}
2590 			continue;
2591 		}
2592 
2593 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2594 		if (found_key.objectid != key.objectid ||
2595 		    found_key.type != key.type) {
2596 			ret = 0;
2597 			goto out;
2598 		}
2599 
2600 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2601 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2602 
2603 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2604 		    di_key.objectid < sctx->send_progress) {
2605 			ret = 1;
2606 			goto out;
2607 		}
2608 
2609 		path->slots[0]++;
2610 	}
2611 
2612 out:
2613 	btrfs_free_path(path);
2614 	return ret;
2615 }
2616 
2617 /*
2618  * Only creates the inode if it is:
2619  * 1. Not a directory
2620  * 2. Or a directory which was not created already due to out of order
2621  *    directories. See did_create_dir and process_recorded_refs for details.
2622  */
2623 static int send_create_inode_if_needed(struct send_ctx *sctx)
2624 {
2625 	int ret;
2626 
2627 	if (S_ISDIR(sctx->cur_inode_mode)) {
2628 		ret = did_create_dir(sctx, sctx->cur_ino);
2629 		if (ret < 0)
2630 			goto out;
2631 		if (ret) {
2632 			ret = 0;
2633 			goto out;
2634 		}
2635 	}
2636 
2637 	ret = send_create_inode(sctx, sctx->cur_ino);
2638 	if (ret < 0)
2639 		goto out;
2640 
2641 out:
2642 	return ret;
2643 }
2644 
2645 struct recorded_ref {
2646 	struct list_head list;
2647 	char *dir_path;
2648 	char *name;
2649 	struct fs_path *full_path;
2650 	u64 dir;
2651 	u64 dir_gen;
2652 	int dir_path_len;
2653 	int name_len;
2654 };
2655 
2656 /*
2657  * We need to process new refs before deleted refs, but compare_tree gives us
2658  * everything mixed. So we first record all refs and later process them.
2659  * This function is a helper to record one ref.
2660  */
2661 static int __record_ref(struct list_head *head, u64 dir,
2662 		      u64 dir_gen, struct fs_path *path)
2663 {
2664 	struct recorded_ref *ref;
2665 
2666 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2667 	if (!ref)
2668 		return -ENOMEM;
2669 
2670 	ref->dir = dir;
2671 	ref->dir_gen = dir_gen;
2672 	ref->full_path = path;
2673 
2674 	ref->name = (char *)kbasename(ref->full_path->start);
2675 	ref->name_len = ref->full_path->end - ref->name;
2676 	ref->dir_path = ref->full_path->start;
2677 	if (ref->name == ref->full_path->start)
2678 		ref->dir_path_len = 0;
2679 	else
2680 		ref->dir_path_len = ref->full_path->end -
2681 				ref->full_path->start - 1 - ref->name_len;
2682 
2683 	list_add_tail(&ref->list, head);
2684 	return 0;
2685 }
2686 
2687 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2688 {
2689 	struct recorded_ref *new;
2690 
2691 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2692 	if (!new)
2693 		return -ENOMEM;
2694 
2695 	new->dir = ref->dir;
2696 	new->dir_gen = ref->dir_gen;
2697 	new->full_path = NULL;
2698 	INIT_LIST_HEAD(&new->list);
2699 	list_add_tail(&new->list, list);
2700 	return 0;
2701 }
2702 
2703 static void __free_recorded_refs(struct list_head *head)
2704 {
2705 	struct recorded_ref *cur;
2706 
2707 	while (!list_empty(head)) {
2708 		cur = list_entry(head->next, struct recorded_ref, list);
2709 		fs_path_free(cur->full_path);
2710 		list_del(&cur->list);
2711 		kfree(cur);
2712 	}
2713 }
2714 
2715 static void free_recorded_refs(struct send_ctx *sctx)
2716 {
2717 	__free_recorded_refs(&sctx->new_refs);
2718 	__free_recorded_refs(&sctx->deleted_refs);
2719 }
2720 
2721 /*
2722  * Renames/moves a file/dir to its orphan name. Used when the first
2723  * ref of an unprocessed inode gets overwritten and for all non empty
2724  * directories.
2725  */
2726 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2727 			  struct fs_path *path)
2728 {
2729 	int ret;
2730 	struct fs_path *orphan;
2731 
2732 	orphan = fs_path_alloc();
2733 	if (!orphan)
2734 		return -ENOMEM;
2735 
2736 	ret = gen_unique_name(sctx, ino, gen, orphan);
2737 	if (ret < 0)
2738 		goto out;
2739 
2740 	ret = send_rename(sctx, path, orphan);
2741 
2742 out:
2743 	fs_path_free(orphan);
2744 	return ret;
2745 }
2746 
2747 static struct orphan_dir_info *
2748 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2749 {
2750 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2751 	struct rb_node *parent = NULL;
2752 	struct orphan_dir_info *entry, *odi;
2753 
2754 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2755 	if (!odi)
2756 		return ERR_PTR(-ENOMEM);
2757 	odi->ino = dir_ino;
2758 	odi->gen = 0;
2759 
2760 	while (*p) {
2761 		parent = *p;
2762 		entry = rb_entry(parent, struct orphan_dir_info, node);
2763 		if (dir_ino < entry->ino) {
2764 			p = &(*p)->rb_left;
2765 		} else if (dir_ino > entry->ino) {
2766 			p = &(*p)->rb_right;
2767 		} else {
2768 			kfree(odi);
2769 			return entry;
2770 		}
2771 	}
2772 
2773 	rb_link_node(&odi->node, parent, p);
2774 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2775 	return odi;
2776 }
2777 
2778 static struct orphan_dir_info *
2779 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2780 {
2781 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2782 	struct orphan_dir_info *entry;
2783 
2784 	while (n) {
2785 		entry = rb_entry(n, struct orphan_dir_info, node);
2786 		if (dir_ino < entry->ino)
2787 			n = n->rb_left;
2788 		else if (dir_ino > entry->ino)
2789 			n = n->rb_right;
2790 		else
2791 			return entry;
2792 	}
2793 	return NULL;
2794 }
2795 
2796 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2797 {
2798 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2799 
2800 	return odi != NULL;
2801 }
2802 
2803 static void free_orphan_dir_info(struct send_ctx *sctx,
2804 				 struct orphan_dir_info *odi)
2805 {
2806 	if (!odi)
2807 		return;
2808 	rb_erase(&odi->node, &sctx->orphan_dirs);
2809 	kfree(odi);
2810 }
2811 
2812 /*
2813  * Returns 1 if a directory can be removed at this point in time.
2814  * We check this by iterating all dir items and checking if the inode behind
2815  * the dir item was already processed.
2816  */
2817 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2818 		     u64 send_progress)
2819 {
2820 	int ret = 0;
2821 	struct btrfs_root *root = sctx->parent_root;
2822 	struct btrfs_path *path;
2823 	struct btrfs_key key;
2824 	struct btrfs_key found_key;
2825 	struct btrfs_key loc;
2826 	struct btrfs_dir_item *di;
2827 
2828 	/*
2829 	 * Don't try to rmdir the top/root subvolume dir.
2830 	 */
2831 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2832 		return 0;
2833 
2834 	path = alloc_path_for_send();
2835 	if (!path)
2836 		return -ENOMEM;
2837 
2838 	key.objectid = dir;
2839 	key.type = BTRFS_DIR_INDEX_KEY;
2840 	key.offset = 0;
2841 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2842 	if (ret < 0)
2843 		goto out;
2844 
2845 	while (1) {
2846 		struct waiting_dir_move *dm;
2847 
2848 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2849 			ret = btrfs_next_leaf(root, path);
2850 			if (ret < 0)
2851 				goto out;
2852 			else if (ret > 0)
2853 				break;
2854 			continue;
2855 		}
2856 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2857 				      path->slots[0]);
2858 		if (found_key.objectid != key.objectid ||
2859 		    found_key.type != key.type)
2860 			break;
2861 
2862 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2863 				struct btrfs_dir_item);
2864 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2865 
2866 		dm = get_waiting_dir_move(sctx, loc.objectid);
2867 		if (dm) {
2868 			struct orphan_dir_info *odi;
2869 
2870 			odi = add_orphan_dir_info(sctx, dir);
2871 			if (IS_ERR(odi)) {
2872 				ret = PTR_ERR(odi);
2873 				goto out;
2874 			}
2875 			odi->gen = dir_gen;
2876 			dm->rmdir_ino = dir;
2877 			ret = 0;
2878 			goto out;
2879 		}
2880 
2881 		if (loc.objectid > send_progress) {
2882 			ret = 0;
2883 			goto out;
2884 		}
2885 
2886 		path->slots[0]++;
2887 	}
2888 
2889 	ret = 1;
2890 
2891 out:
2892 	btrfs_free_path(path);
2893 	return ret;
2894 }
2895 
2896 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2897 {
2898 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2899 
2900 	return entry != NULL;
2901 }
2902 
2903 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2904 {
2905 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2906 	struct rb_node *parent = NULL;
2907 	struct waiting_dir_move *entry, *dm;
2908 
2909 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2910 	if (!dm)
2911 		return -ENOMEM;
2912 	dm->ino = ino;
2913 	dm->rmdir_ino = 0;
2914 
2915 	while (*p) {
2916 		parent = *p;
2917 		entry = rb_entry(parent, struct waiting_dir_move, node);
2918 		if (ino < entry->ino) {
2919 			p = &(*p)->rb_left;
2920 		} else if (ino > entry->ino) {
2921 			p = &(*p)->rb_right;
2922 		} else {
2923 			kfree(dm);
2924 			return -EEXIST;
2925 		}
2926 	}
2927 
2928 	rb_link_node(&dm->node, parent, p);
2929 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2930 	return 0;
2931 }
2932 
2933 static struct waiting_dir_move *
2934 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2935 {
2936 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2937 	struct waiting_dir_move *entry;
2938 
2939 	while (n) {
2940 		entry = rb_entry(n, struct waiting_dir_move, node);
2941 		if (ino < entry->ino)
2942 			n = n->rb_left;
2943 		else if (ino > entry->ino)
2944 			n = n->rb_right;
2945 		else
2946 			return entry;
2947 	}
2948 	return NULL;
2949 }
2950 
2951 static void free_waiting_dir_move(struct send_ctx *sctx,
2952 				  struct waiting_dir_move *dm)
2953 {
2954 	if (!dm)
2955 		return;
2956 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
2957 	kfree(dm);
2958 }
2959 
2960 static int add_pending_dir_move(struct send_ctx *sctx,
2961 				u64 ino,
2962 				u64 ino_gen,
2963 				u64 parent_ino,
2964 				struct list_head *new_refs,
2965 				struct list_head *deleted_refs)
2966 {
2967 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2968 	struct rb_node *parent = NULL;
2969 	struct pending_dir_move *entry = NULL, *pm;
2970 	struct recorded_ref *cur;
2971 	int exists = 0;
2972 	int ret;
2973 
2974 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
2975 	if (!pm)
2976 		return -ENOMEM;
2977 	pm->parent_ino = parent_ino;
2978 	pm->ino = ino;
2979 	pm->gen = ino_gen;
2980 	INIT_LIST_HEAD(&pm->list);
2981 	INIT_LIST_HEAD(&pm->update_refs);
2982 	RB_CLEAR_NODE(&pm->node);
2983 
2984 	while (*p) {
2985 		parent = *p;
2986 		entry = rb_entry(parent, struct pending_dir_move, node);
2987 		if (parent_ino < entry->parent_ino) {
2988 			p = &(*p)->rb_left;
2989 		} else if (parent_ino > entry->parent_ino) {
2990 			p = &(*p)->rb_right;
2991 		} else {
2992 			exists = 1;
2993 			break;
2994 		}
2995 	}
2996 
2997 	list_for_each_entry(cur, deleted_refs, list) {
2998 		ret = dup_ref(cur, &pm->update_refs);
2999 		if (ret < 0)
3000 			goto out;
3001 	}
3002 	list_for_each_entry(cur, new_refs, list) {
3003 		ret = dup_ref(cur, &pm->update_refs);
3004 		if (ret < 0)
3005 			goto out;
3006 	}
3007 
3008 	ret = add_waiting_dir_move(sctx, pm->ino);
3009 	if (ret)
3010 		goto out;
3011 
3012 	if (exists) {
3013 		list_add_tail(&pm->list, &entry->list);
3014 	} else {
3015 		rb_link_node(&pm->node, parent, p);
3016 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3017 	}
3018 	ret = 0;
3019 out:
3020 	if (ret) {
3021 		__free_recorded_refs(&pm->update_refs);
3022 		kfree(pm);
3023 	}
3024 	return ret;
3025 }
3026 
3027 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3028 						      u64 parent_ino)
3029 {
3030 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3031 	struct pending_dir_move *entry;
3032 
3033 	while (n) {
3034 		entry = rb_entry(n, struct pending_dir_move, node);
3035 		if (parent_ino < entry->parent_ino)
3036 			n = n->rb_left;
3037 		else if (parent_ino > entry->parent_ino)
3038 			n = n->rb_right;
3039 		else
3040 			return entry;
3041 	}
3042 	return NULL;
3043 }
3044 
3045 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3046 		     u64 ino, u64 gen, u64 *ancestor_ino)
3047 {
3048 	int ret = 0;
3049 	u64 parent_inode = 0;
3050 	u64 parent_gen = 0;
3051 	u64 start_ino = ino;
3052 
3053 	*ancestor_ino = 0;
3054 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3055 		fs_path_reset(name);
3056 
3057 		if (is_waiting_for_rm(sctx, ino))
3058 			break;
3059 		if (is_waiting_for_move(sctx, ino)) {
3060 			if (*ancestor_ino == 0)
3061 				*ancestor_ino = ino;
3062 			ret = get_first_ref(sctx->parent_root, ino,
3063 					    &parent_inode, &parent_gen, name);
3064 		} else {
3065 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3066 							&parent_inode,
3067 							&parent_gen, name);
3068 			if (ret > 0) {
3069 				ret = 0;
3070 				break;
3071 			}
3072 		}
3073 		if (ret < 0)
3074 			break;
3075 		if (parent_inode == start_ino) {
3076 			ret = 1;
3077 			if (*ancestor_ino == 0)
3078 				*ancestor_ino = ino;
3079 			break;
3080 		}
3081 		ino = parent_inode;
3082 		gen = parent_gen;
3083 	}
3084 	return ret;
3085 }
3086 
3087 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3088 {
3089 	struct fs_path *from_path = NULL;
3090 	struct fs_path *to_path = NULL;
3091 	struct fs_path *name = NULL;
3092 	u64 orig_progress = sctx->send_progress;
3093 	struct recorded_ref *cur;
3094 	u64 parent_ino, parent_gen;
3095 	struct waiting_dir_move *dm = NULL;
3096 	u64 rmdir_ino = 0;
3097 	int ret;
3098 	u64 ancestor = 0;
3099 
3100 	name = fs_path_alloc();
3101 	from_path = fs_path_alloc();
3102 	if (!name || !from_path) {
3103 		ret = -ENOMEM;
3104 		goto out;
3105 	}
3106 
3107 	dm = get_waiting_dir_move(sctx, pm->ino);
3108 	ASSERT(dm);
3109 	rmdir_ino = dm->rmdir_ino;
3110 	free_waiting_dir_move(sctx, dm);
3111 
3112 	ret = get_first_ref(sctx->parent_root, pm->ino,
3113 			    &parent_ino, &parent_gen, name);
3114 	if (ret < 0)
3115 		goto out;
3116 
3117 	ret = get_cur_path(sctx, parent_ino, parent_gen,
3118 			   from_path);
3119 	if (ret < 0)
3120 		goto out;
3121 	ret = fs_path_add_path(from_path, name);
3122 	if (ret < 0)
3123 		goto out;
3124 
3125 	sctx->send_progress = sctx->cur_ino + 1;
3126 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3127 	if (ret) {
3128 		LIST_HEAD(deleted_refs);
3129 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3130 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3131 					   &pm->update_refs, &deleted_refs);
3132 		if (ret < 0)
3133 			goto out;
3134 		if (rmdir_ino) {
3135 			dm = get_waiting_dir_move(sctx, pm->ino);
3136 			ASSERT(dm);
3137 			dm->rmdir_ino = rmdir_ino;
3138 		}
3139 		goto out;
3140 	}
3141 	fs_path_reset(name);
3142 	to_path = name;
3143 	name = NULL;
3144 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3145 	if (ret < 0)
3146 		goto out;
3147 
3148 	ret = send_rename(sctx, from_path, to_path);
3149 	if (ret < 0)
3150 		goto out;
3151 
3152 	if (rmdir_ino) {
3153 		struct orphan_dir_info *odi;
3154 
3155 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3156 		if (!odi) {
3157 			/* already deleted */
3158 			goto finish;
3159 		}
3160 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3161 		if (ret < 0)
3162 			goto out;
3163 		if (!ret)
3164 			goto finish;
3165 
3166 		name = fs_path_alloc();
3167 		if (!name) {
3168 			ret = -ENOMEM;
3169 			goto out;
3170 		}
3171 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3172 		if (ret < 0)
3173 			goto out;
3174 		ret = send_rmdir(sctx, name);
3175 		if (ret < 0)
3176 			goto out;
3177 		free_orphan_dir_info(sctx, odi);
3178 	}
3179 
3180 finish:
3181 	ret = send_utimes(sctx, pm->ino, pm->gen);
3182 	if (ret < 0)
3183 		goto out;
3184 
3185 	/*
3186 	 * After rename/move, need to update the utimes of both new parent(s)
3187 	 * and old parent(s).
3188 	 */
3189 	list_for_each_entry(cur, &pm->update_refs, list) {
3190 		if (cur->dir == rmdir_ino)
3191 			continue;
3192 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3193 		if (ret < 0)
3194 			goto out;
3195 	}
3196 
3197 out:
3198 	fs_path_free(name);
3199 	fs_path_free(from_path);
3200 	fs_path_free(to_path);
3201 	sctx->send_progress = orig_progress;
3202 
3203 	return ret;
3204 }
3205 
3206 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3207 {
3208 	if (!list_empty(&m->list))
3209 		list_del(&m->list);
3210 	if (!RB_EMPTY_NODE(&m->node))
3211 		rb_erase(&m->node, &sctx->pending_dir_moves);
3212 	__free_recorded_refs(&m->update_refs);
3213 	kfree(m);
3214 }
3215 
3216 static void tail_append_pending_moves(struct pending_dir_move *moves,
3217 				      struct list_head *stack)
3218 {
3219 	if (list_empty(&moves->list)) {
3220 		list_add_tail(&moves->list, stack);
3221 	} else {
3222 		LIST_HEAD(list);
3223 		list_splice_init(&moves->list, &list);
3224 		list_add_tail(&moves->list, stack);
3225 		list_splice_tail(&list, stack);
3226 	}
3227 }
3228 
3229 static int apply_children_dir_moves(struct send_ctx *sctx)
3230 {
3231 	struct pending_dir_move *pm;
3232 	struct list_head stack;
3233 	u64 parent_ino = sctx->cur_ino;
3234 	int ret = 0;
3235 
3236 	pm = get_pending_dir_moves(sctx, parent_ino);
3237 	if (!pm)
3238 		return 0;
3239 
3240 	INIT_LIST_HEAD(&stack);
3241 	tail_append_pending_moves(pm, &stack);
3242 
3243 	while (!list_empty(&stack)) {
3244 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3245 		parent_ino = pm->ino;
3246 		ret = apply_dir_move(sctx, pm);
3247 		free_pending_move(sctx, pm);
3248 		if (ret)
3249 			goto out;
3250 		pm = get_pending_dir_moves(sctx, parent_ino);
3251 		if (pm)
3252 			tail_append_pending_moves(pm, &stack);
3253 	}
3254 	return 0;
3255 
3256 out:
3257 	while (!list_empty(&stack)) {
3258 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3259 		free_pending_move(sctx, pm);
3260 	}
3261 	return ret;
3262 }
3263 
3264 static int wait_for_parent_move(struct send_ctx *sctx,
3265 				struct recorded_ref *parent_ref)
3266 {
3267 	int ret = 0;
3268 	u64 ino = parent_ref->dir;
3269 	u64 parent_ino_before, parent_ino_after;
3270 	struct fs_path *path_before = NULL;
3271 	struct fs_path *path_after = NULL;
3272 	int len1, len2;
3273 
3274 	path_after = fs_path_alloc();
3275 	path_before = fs_path_alloc();
3276 	if (!path_after || !path_before) {
3277 		ret = -ENOMEM;
3278 		goto out;
3279 	}
3280 
3281 	/*
3282 	 * Our current directory inode may not yet be renamed/moved because some
3283 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3284 	 * such ancestor exists and make sure our own rename/move happens after
3285 	 * that ancestor is processed.
3286 	 */
3287 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3288 		if (is_waiting_for_move(sctx, ino)) {
3289 			ret = 1;
3290 			break;
3291 		}
3292 
3293 		fs_path_reset(path_before);
3294 		fs_path_reset(path_after);
3295 
3296 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3297 				    NULL, path_after);
3298 		if (ret < 0)
3299 			goto out;
3300 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3301 				    NULL, path_before);
3302 		if (ret < 0 && ret != -ENOENT) {
3303 			goto out;
3304 		} else if (ret == -ENOENT) {
3305 			ret = 1;
3306 			break;
3307 		}
3308 
3309 		len1 = fs_path_len(path_before);
3310 		len2 = fs_path_len(path_after);
3311 		if (ino > sctx->cur_ino &&
3312 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3313 		     memcmp(path_before->start, path_after->start, len1))) {
3314 			ret = 1;
3315 			break;
3316 		}
3317 		ino = parent_ino_after;
3318 	}
3319 
3320 out:
3321 	fs_path_free(path_before);
3322 	fs_path_free(path_after);
3323 
3324 	if (ret == 1) {
3325 		ret = add_pending_dir_move(sctx,
3326 					   sctx->cur_ino,
3327 					   sctx->cur_inode_gen,
3328 					   ino,
3329 					   &sctx->new_refs,
3330 					   &sctx->deleted_refs);
3331 		if (!ret)
3332 			ret = 1;
3333 	}
3334 
3335 	return ret;
3336 }
3337 
3338 /*
3339  * This does all the move/link/unlink/rmdir magic.
3340  */
3341 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3342 {
3343 	int ret = 0;
3344 	struct recorded_ref *cur;
3345 	struct recorded_ref *cur2;
3346 	struct list_head check_dirs;
3347 	struct fs_path *valid_path = NULL;
3348 	u64 ow_inode = 0;
3349 	u64 ow_gen;
3350 	int did_overwrite = 0;
3351 	int is_orphan = 0;
3352 	u64 last_dir_ino_rm = 0;
3353 
3354 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3355 
3356 	/*
3357 	 * This should never happen as the root dir always has the same ref
3358 	 * which is always '..'
3359 	 */
3360 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3361 	INIT_LIST_HEAD(&check_dirs);
3362 
3363 	valid_path = fs_path_alloc();
3364 	if (!valid_path) {
3365 		ret = -ENOMEM;
3366 		goto out;
3367 	}
3368 
3369 	/*
3370 	 * First, check if the first ref of the current inode was overwritten
3371 	 * before. If yes, we know that the current inode was already orphanized
3372 	 * and thus use the orphan name. If not, we can use get_cur_path to
3373 	 * get the path of the first ref as it would like while receiving at
3374 	 * this point in time.
3375 	 * New inodes are always orphan at the beginning, so force to use the
3376 	 * orphan name in this case.
3377 	 * The first ref is stored in valid_path and will be updated if it
3378 	 * gets moved around.
3379 	 */
3380 	if (!sctx->cur_inode_new) {
3381 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3382 				sctx->cur_inode_gen);
3383 		if (ret < 0)
3384 			goto out;
3385 		if (ret)
3386 			did_overwrite = 1;
3387 	}
3388 	if (sctx->cur_inode_new || did_overwrite) {
3389 		ret = gen_unique_name(sctx, sctx->cur_ino,
3390 				sctx->cur_inode_gen, valid_path);
3391 		if (ret < 0)
3392 			goto out;
3393 		is_orphan = 1;
3394 	} else {
3395 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3396 				valid_path);
3397 		if (ret < 0)
3398 			goto out;
3399 	}
3400 
3401 	list_for_each_entry(cur, &sctx->new_refs, list) {
3402 		/*
3403 		 * We may have refs where the parent directory does not exist
3404 		 * yet. This happens if the parent directories inum is higher
3405 		 * the the current inum. To handle this case, we create the
3406 		 * parent directory out of order. But we need to check if this
3407 		 * did already happen before due to other refs in the same dir.
3408 		 */
3409 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3410 		if (ret < 0)
3411 			goto out;
3412 		if (ret == inode_state_will_create) {
3413 			ret = 0;
3414 			/*
3415 			 * First check if any of the current inodes refs did
3416 			 * already create the dir.
3417 			 */
3418 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3419 				if (cur == cur2)
3420 					break;
3421 				if (cur2->dir == cur->dir) {
3422 					ret = 1;
3423 					break;
3424 				}
3425 			}
3426 
3427 			/*
3428 			 * If that did not happen, check if a previous inode
3429 			 * did already create the dir.
3430 			 */
3431 			if (!ret)
3432 				ret = did_create_dir(sctx, cur->dir);
3433 			if (ret < 0)
3434 				goto out;
3435 			if (!ret) {
3436 				ret = send_create_inode(sctx, cur->dir);
3437 				if (ret < 0)
3438 					goto out;
3439 			}
3440 		}
3441 
3442 		/*
3443 		 * Check if this new ref would overwrite the first ref of
3444 		 * another unprocessed inode. If yes, orphanize the
3445 		 * overwritten inode. If we find an overwritten ref that is
3446 		 * not the first ref, simply unlink it.
3447 		 */
3448 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3449 				cur->name, cur->name_len,
3450 				&ow_inode, &ow_gen);
3451 		if (ret < 0)
3452 			goto out;
3453 		if (ret) {
3454 			ret = is_first_ref(sctx->parent_root,
3455 					   ow_inode, cur->dir, cur->name,
3456 					   cur->name_len);
3457 			if (ret < 0)
3458 				goto out;
3459 			if (ret) {
3460 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3461 						cur->full_path);
3462 				if (ret < 0)
3463 					goto out;
3464 			} else {
3465 				ret = send_unlink(sctx, cur->full_path);
3466 				if (ret < 0)
3467 					goto out;
3468 			}
3469 		}
3470 
3471 		/*
3472 		 * link/move the ref to the new place. If we have an orphan
3473 		 * inode, move it and update valid_path. If not, link or move
3474 		 * it depending on the inode mode.
3475 		 */
3476 		if (is_orphan) {
3477 			ret = send_rename(sctx, valid_path, cur->full_path);
3478 			if (ret < 0)
3479 				goto out;
3480 			is_orphan = 0;
3481 			ret = fs_path_copy(valid_path, cur->full_path);
3482 			if (ret < 0)
3483 				goto out;
3484 		} else {
3485 			if (S_ISDIR(sctx->cur_inode_mode)) {
3486 				/*
3487 				 * Dirs can't be linked, so move it. For moved
3488 				 * dirs, we always have one new and one deleted
3489 				 * ref. The deleted ref is ignored later.
3490 				 */
3491 				ret = wait_for_parent_move(sctx, cur);
3492 				if (ret < 0)
3493 					goto out;
3494 				if (ret) {
3495 					*pending_move = 1;
3496 				} else {
3497 					ret = send_rename(sctx, valid_path,
3498 							  cur->full_path);
3499 					if (!ret)
3500 						ret = fs_path_copy(valid_path,
3501 							       cur->full_path);
3502 				}
3503 				if (ret < 0)
3504 					goto out;
3505 			} else {
3506 				ret = send_link(sctx, cur->full_path,
3507 						valid_path);
3508 				if (ret < 0)
3509 					goto out;
3510 			}
3511 		}
3512 		ret = dup_ref(cur, &check_dirs);
3513 		if (ret < 0)
3514 			goto out;
3515 	}
3516 
3517 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3518 		/*
3519 		 * Check if we can already rmdir the directory. If not,
3520 		 * orphanize it. For every dir item inside that gets deleted
3521 		 * later, we do this check again and rmdir it then if possible.
3522 		 * See the use of check_dirs for more details.
3523 		 */
3524 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3525 				sctx->cur_ino);
3526 		if (ret < 0)
3527 			goto out;
3528 		if (ret) {
3529 			ret = send_rmdir(sctx, valid_path);
3530 			if (ret < 0)
3531 				goto out;
3532 		} else if (!is_orphan) {
3533 			ret = orphanize_inode(sctx, sctx->cur_ino,
3534 					sctx->cur_inode_gen, valid_path);
3535 			if (ret < 0)
3536 				goto out;
3537 			is_orphan = 1;
3538 		}
3539 
3540 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3541 			ret = dup_ref(cur, &check_dirs);
3542 			if (ret < 0)
3543 				goto out;
3544 		}
3545 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3546 		   !list_empty(&sctx->deleted_refs)) {
3547 		/*
3548 		 * We have a moved dir. Add the old parent to check_dirs
3549 		 */
3550 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3551 				list);
3552 		ret = dup_ref(cur, &check_dirs);
3553 		if (ret < 0)
3554 			goto out;
3555 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3556 		/*
3557 		 * We have a non dir inode. Go through all deleted refs and
3558 		 * unlink them if they were not already overwritten by other
3559 		 * inodes.
3560 		 */
3561 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3562 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3563 					sctx->cur_ino, sctx->cur_inode_gen,
3564 					cur->name, cur->name_len);
3565 			if (ret < 0)
3566 				goto out;
3567 			if (!ret) {
3568 				ret = send_unlink(sctx, cur->full_path);
3569 				if (ret < 0)
3570 					goto out;
3571 			}
3572 			ret = dup_ref(cur, &check_dirs);
3573 			if (ret < 0)
3574 				goto out;
3575 		}
3576 		/*
3577 		 * If the inode is still orphan, unlink the orphan. This may
3578 		 * happen when a previous inode did overwrite the first ref
3579 		 * of this inode and no new refs were added for the current
3580 		 * inode. Unlinking does not mean that the inode is deleted in
3581 		 * all cases. There may still be links to this inode in other
3582 		 * places.
3583 		 */
3584 		if (is_orphan) {
3585 			ret = send_unlink(sctx, valid_path);
3586 			if (ret < 0)
3587 				goto out;
3588 		}
3589 	}
3590 
3591 	/*
3592 	 * We did collect all parent dirs where cur_inode was once located. We
3593 	 * now go through all these dirs and check if they are pending for
3594 	 * deletion and if it's finally possible to perform the rmdir now.
3595 	 * We also update the inode stats of the parent dirs here.
3596 	 */
3597 	list_for_each_entry(cur, &check_dirs, list) {
3598 		/*
3599 		 * In case we had refs into dirs that were not processed yet,
3600 		 * we don't need to do the utime and rmdir logic for these dirs.
3601 		 * The dir will be processed later.
3602 		 */
3603 		if (cur->dir > sctx->cur_ino)
3604 			continue;
3605 
3606 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3607 		if (ret < 0)
3608 			goto out;
3609 
3610 		if (ret == inode_state_did_create ||
3611 		    ret == inode_state_no_change) {
3612 			/* TODO delayed utimes */
3613 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3614 			if (ret < 0)
3615 				goto out;
3616 		} else if (ret == inode_state_did_delete &&
3617 			   cur->dir != last_dir_ino_rm) {
3618 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3619 					sctx->cur_ino);
3620 			if (ret < 0)
3621 				goto out;
3622 			if (ret) {
3623 				ret = get_cur_path(sctx, cur->dir,
3624 						   cur->dir_gen, valid_path);
3625 				if (ret < 0)
3626 					goto out;
3627 				ret = send_rmdir(sctx, valid_path);
3628 				if (ret < 0)
3629 					goto out;
3630 				last_dir_ino_rm = cur->dir;
3631 			}
3632 		}
3633 	}
3634 
3635 	ret = 0;
3636 
3637 out:
3638 	__free_recorded_refs(&check_dirs);
3639 	free_recorded_refs(sctx);
3640 	fs_path_free(valid_path);
3641 	return ret;
3642 }
3643 
3644 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3645 		      struct fs_path *name, void *ctx, struct list_head *refs)
3646 {
3647 	int ret = 0;
3648 	struct send_ctx *sctx = ctx;
3649 	struct fs_path *p;
3650 	u64 gen;
3651 
3652 	p = fs_path_alloc();
3653 	if (!p)
3654 		return -ENOMEM;
3655 
3656 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3657 			NULL, NULL);
3658 	if (ret < 0)
3659 		goto out;
3660 
3661 	ret = get_cur_path(sctx, dir, gen, p);
3662 	if (ret < 0)
3663 		goto out;
3664 	ret = fs_path_add_path(p, name);
3665 	if (ret < 0)
3666 		goto out;
3667 
3668 	ret = __record_ref(refs, dir, gen, p);
3669 
3670 out:
3671 	if (ret)
3672 		fs_path_free(p);
3673 	return ret;
3674 }
3675 
3676 static int __record_new_ref(int num, u64 dir, int index,
3677 			    struct fs_path *name,
3678 			    void *ctx)
3679 {
3680 	struct send_ctx *sctx = ctx;
3681 	return record_ref(sctx->send_root, num, dir, index, name,
3682 			  ctx, &sctx->new_refs);
3683 }
3684 
3685 
3686 static int __record_deleted_ref(int num, u64 dir, int index,
3687 				struct fs_path *name,
3688 				void *ctx)
3689 {
3690 	struct send_ctx *sctx = ctx;
3691 	return record_ref(sctx->parent_root, num, dir, index, name,
3692 			  ctx, &sctx->deleted_refs);
3693 }
3694 
3695 static int record_new_ref(struct send_ctx *sctx)
3696 {
3697 	int ret;
3698 
3699 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3700 				sctx->cmp_key, 0, __record_new_ref, sctx);
3701 	if (ret < 0)
3702 		goto out;
3703 	ret = 0;
3704 
3705 out:
3706 	return ret;
3707 }
3708 
3709 static int record_deleted_ref(struct send_ctx *sctx)
3710 {
3711 	int ret;
3712 
3713 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3714 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3715 	if (ret < 0)
3716 		goto out;
3717 	ret = 0;
3718 
3719 out:
3720 	return ret;
3721 }
3722 
3723 struct find_ref_ctx {
3724 	u64 dir;
3725 	u64 dir_gen;
3726 	struct btrfs_root *root;
3727 	struct fs_path *name;
3728 	int found_idx;
3729 };
3730 
3731 static int __find_iref(int num, u64 dir, int index,
3732 		       struct fs_path *name,
3733 		       void *ctx_)
3734 {
3735 	struct find_ref_ctx *ctx = ctx_;
3736 	u64 dir_gen;
3737 	int ret;
3738 
3739 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3740 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3741 		/*
3742 		 * To avoid doing extra lookups we'll only do this if everything
3743 		 * else matches.
3744 		 */
3745 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3746 				     NULL, NULL, NULL);
3747 		if (ret)
3748 			return ret;
3749 		if (dir_gen != ctx->dir_gen)
3750 			return 0;
3751 		ctx->found_idx = num;
3752 		return 1;
3753 	}
3754 	return 0;
3755 }
3756 
3757 static int find_iref(struct btrfs_root *root,
3758 		     struct btrfs_path *path,
3759 		     struct btrfs_key *key,
3760 		     u64 dir, u64 dir_gen, struct fs_path *name)
3761 {
3762 	int ret;
3763 	struct find_ref_ctx ctx;
3764 
3765 	ctx.dir = dir;
3766 	ctx.name = name;
3767 	ctx.dir_gen = dir_gen;
3768 	ctx.found_idx = -1;
3769 	ctx.root = root;
3770 
3771 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3772 	if (ret < 0)
3773 		return ret;
3774 
3775 	if (ctx.found_idx == -1)
3776 		return -ENOENT;
3777 
3778 	return ctx.found_idx;
3779 }
3780 
3781 static int __record_changed_new_ref(int num, u64 dir, int index,
3782 				    struct fs_path *name,
3783 				    void *ctx)
3784 {
3785 	u64 dir_gen;
3786 	int ret;
3787 	struct send_ctx *sctx = ctx;
3788 
3789 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3790 			     NULL, NULL, NULL);
3791 	if (ret)
3792 		return ret;
3793 
3794 	ret = find_iref(sctx->parent_root, sctx->right_path,
3795 			sctx->cmp_key, dir, dir_gen, name);
3796 	if (ret == -ENOENT)
3797 		ret = __record_new_ref(num, dir, index, name, sctx);
3798 	else if (ret > 0)
3799 		ret = 0;
3800 
3801 	return ret;
3802 }
3803 
3804 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3805 					struct fs_path *name,
3806 					void *ctx)
3807 {
3808 	u64 dir_gen;
3809 	int ret;
3810 	struct send_ctx *sctx = ctx;
3811 
3812 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3813 			     NULL, NULL, NULL);
3814 	if (ret)
3815 		return ret;
3816 
3817 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3818 			dir, dir_gen, name);
3819 	if (ret == -ENOENT)
3820 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3821 	else if (ret > 0)
3822 		ret = 0;
3823 
3824 	return ret;
3825 }
3826 
3827 static int record_changed_ref(struct send_ctx *sctx)
3828 {
3829 	int ret = 0;
3830 
3831 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3832 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3833 	if (ret < 0)
3834 		goto out;
3835 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3836 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3837 	if (ret < 0)
3838 		goto out;
3839 	ret = 0;
3840 
3841 out:
3842 	return ret;
3843 }
3844 
3845 /*
3846  * Record and process all refs at once. Needed when an inode changes the
3847  * generation number, which means that it was deleted and recreated.
3848  */
3849 static int process_all_refs(struct send_ctx *sctx,
3850 			    enum btrfs_compare_tree_result cmd)
3851 {
3852 	int ret;
3853 	struct btrfs_root *root;
3854 	struct btrfs_path *path;
3855 	struct btrfs_key key;
3856 	struct btrfs_key found_key;
3857 	struct extent_buffer *eb;
3858 	int slot;
3859 	iterate_inode_ref_t cb;
3860 	int pending_move = 0;
3861 
3862 	path = alloc_path_for_send();
3863 	if (!path)
3864 		return -ENOMEM;
3865 
3866 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3867 		root = sctx->send_root;
3868 		cb = __record_new_ref;
3869 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3870 		root = sctx->parent_root;
3871 		cb = __record_deleted_ref;
3872 	} else {
3873 		btrfs_err(sctx->send_root->fs_info,
3874 				"Wrong command %d in process_all_refs", cmd);
3875 		ret = -EINVAL;
3876 		goto out;
3877 	}
3878 
3879 	key.objectid = sctx->cmp_key->objectid;
3880 	key.type = BTRFS_INODE_REF_KEY;
3881 	key.offset = 0;
3882 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3883 	if (ret < 0)
3884 		goto out;
3885 
3886 	while (1) {
3887 		eb = path->nodes[0];
3888 		slot = path->slots[0];
3889 		if (slot >= btrfs_header_nritems(eb)) {
3890 			ret = btrfs_next_leaf(root, path);
3891 			if (ret < 0)
3892 				goto out;
3893 			else if (ret > 0)
3894 				break;
3895 			continue;
3896 		}
3897 
3898 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3899 
3900 		if (found_key.objectid != key.objectid ||
3901 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3902 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3903 			break;
3904 
3905 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3906 		if (ret < 0)
3907 			goto out;
3908 
3909 		path->slots[0]++;
3910 	}
3911 	btrfs_release_path(path);
3912 
3913 	ret = process_recorded_refs(sctx, &pending_move);
3914 	/* Only applicable to an incremental send. */
3915 	ASSERT(pending_move == 0);
3916 
3917 out:
3918 	btrfs_free_path(path);
3919 	return ret;
3920 }
3921 
3922 static int send_set_xattr(struct send_ctx *sctx,
3923 			  struct fs_path *path,
3924 			  const char *name, int name_len,
3925 			  const char *data, int data_len)
3926 {
3927 	int ret = 0;
3928 
3929 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3930 	if (ret < 0)
3931 		goto out;
3932 
3933 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3934 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3935 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3936 
3937 	ret = send_cmd(sctx);
3938 
3939 tlv_put_failure:
3940 out:
3941 	return ret;
3942 }
3943 
3944 static int send_remove_xattr(struct send_ctx *sctx,
3945 			  struct fs_path *path,
3946 			  const char *name, int name_len)
3947 {
3948 	int ret = 0;
3949 
3950 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3951 	if (ret < 0)
3952 		goto out;
3953 
3954 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3955 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3956 
3957 	ret = send_cmd(sctx);
3958 
3959 tlv_put_failure:
3960 out:
3961 	return ret;
3962 }
3963 
3964 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3965 			       const char *name, int name_len,
3966 			       const char *data, int data_len,
3967 			       u8 type, void *ctx)
3968 {
3969 	int ret;
3970 	struct send_ctx *sctx = ctx;
3971 	struct fs_path *p;
3972 	posix_acl_xattr_header dummy_acl;
3973 
3974 	p = fs_path_alloc();
3975 	if (!p)
3976 		return -ENOMEM;
3977 
3978 	/*
3979 	 * This hack is needed because empty acl's are stored as zero byte
3980 	 * data in xattrs. Problem with that is, that receiving these zero byte
3981 	 * acl's will fail later. To fix this, we send a dummy acl list that
3982 	 * only contains the version number and no entries.
3983 	 */
3984 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3985 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3986 		if (data_len == 0) {
3987 			dummy_acl.a_version =
3988 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3989 			data = (char *)&dummy_acl;
3990 			data_len = sizeof(dummy_acl);
3991 		}
3992 	}
3993 
3994 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3995 	if (ret < 0)
3996 		goto out;
3997 
3998 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3999 
4000 out:
4001 	fs_path_free(p);
4002 	return ret;
4003 }
4004 
4005 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4006 				   const char *name, int name_len,
4007 				   const char *data, int data_len,
4008 				   u8 type, void *ctx)
4009 {
4010 	int ret;
4011 	struct send_ctx *sctx = ctx;
4012 	struct fs_path *p;
4013 
4014 	p = fs_path_alloc();
4015 	if (!p)
4016 		return -ENOMEM;
4017 
4018 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4019 	if (ret < 0)
4020 		goto out;
4021 
4022 	ret = send_remove_xattr(sctx, p, name, name_len);
4023 
4024 out:
4025 	fs_path_free(p);
4026 	return ret;
4027 }
4028 
4029 static int process_new_xattr(struct send_ctx *sctx)
4030 {
4031 	int ret = 0;
4032 
4033 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4034 			       sctx->cmp_key, __process_new_xattr, sctx);
4035 
4036 	return ret;
4037 }
4038 
4039 static int process_deleted_xattr(struct send_ctx *sctx)
4040 {
4041 	int ret;
4042 
4043 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4044 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4045 
4046 	return ret;
4047 }
4048 
4049 struct find_xattr_ctx {
4050 	const char *name;
4051 	int name_len;
4052 	int found_idx;
4053 	char *found_data;
4054 	int found_data_len;
4055 };
4056 
4057 static int __find_xattr(int num, struct btrfs_key *di_key,
4058 			const char *name, int name_len,
4059 			const char *data, int data_len,
4060 			u8 type, void *vctx)
4061 {
4062 	struct find_xattr_ctx *ctx = vctx;
4063 
4064 	if (name_len == ctx->name_len &&
4065 	    strncmp(name, ctx->name, name_len) == 0) {
4066 		ctx->found_idx = num;
4067 		ctx->found_data_len = data_len;
4068 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4069 		if (!ctx->found_data)
4070 			return -ENOMEM;
4071 		return 1;
4072 	}
4073 	return 0;
4074 }
4075 
4076 static int find_xattr(struct btrfs_root *root,
4077 		      struct btrfs_path *path,
4078 		      struct btrfs_key *key,
4079 		      const char *name, int name_len,
4080 		      char **data, int *data_len)
4081 {
4082 	int ret;
4083 	struct find_xattr_ctx ctx;
4084 
4085 	ctx.name = name;
4086 	ctx.name_len = name_len;
4087 	ctx.found_idx = -1;
4088 	ctx.found_data = NULL;
4089 	ctx.found_data_len = 0;
4090 
4091 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4092 	if (ret < 0)
4093 		return ret;
4094 
4095 	if (ctx.found_idx == -1)
4096 		return -ENOENT;
4097 	if (data) {
4098 		*data = ctx.found_data;
4099 		*data_len = ctx.found_data_len;
4100 	} else {
4101 		kfree(ctx.found_data);
4102 	}
4103 	return ctx.found_idx;
4104 }
4105 
4106 
4107 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4108 				       const char *name, int name_len,
4109 				       const char *data, int data_len,
4110 				       u8 type, void *ctx)
4111 {
4112 	int ret;
4113 	struct send_ctx *sctx = ctx;
4114 	char *found_data = NULL;
4115 	int found_data_len  = 0;
4116 
4117 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4118 			 sctx->cmp_key, name, name_len, &found_data,
4119 			 &found_data_len);
4120 	if (ret == -ENOENT) {
4121 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4122 				data_len, type, ctx);
4123 	} else if (ret >= 0) {
4124 		if (data_len != found_data_len ||
4125 		    memcmp(data, found_data, data_len)) {
4126 			ret = __process_new_xattr(num, di_key, name, name_len,
4127 					data, data_len, type, ctx);
4128 		} else {
4129 			ret = 0;
4130 		}
4131 	}
4132 
4133 	kfree(found_data);
4134 	return ret;
4135 }
4136 
4137 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4138 					   const char *name, int name_len,
4139 					   const char *data, int data_len,
4140 					   u8 type, void *ctx)
4141 {
4142 	int ret;
4143 	struct send_ctx *sctx = ctx;
4144 
4145 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4146 			 name, name_len, NULL, NULL);
4147 	if (ret == -ENOENT)
4148 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4149 				data_len, type, ctx);
4150 	else if (ret >= 0)
4151 		ret = 0;
4152 
4153 	return ret;
4154 }
4155 
4156 static int process_changed_xattr(struct send_ctx *sctx)
4157 {
4158 	int ret = 0;
4159 
4160 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4161 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4162 	if (ret < 0)
4163 		goto out;
4164 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4165 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4166 
4167 out:
4168 	return ret;
4169 }
4170 
4171 static int process_all_new_xattrs(struct send_ctx *sctx)
4172 {
4173 	int ret;
4174 	struct btrfs_root *root;
4175 	struct btrfs_path *path;
4176 	struct btrfs_key key;
4177 	struct btrfs_key found_key;
4178 	struct extent_buffer *eb;
4179 	int slot;
4180 
4181 	path = alloc_path_for_send();
4182 	if (!path)
4183 		return -ENOMEM;
4184 
4185 	root = sctx->send_root;
4186 
4187 	key.objectid = sctx->cmp_key->objectid;
4188 	key.type = BTRFS_XATTR_ITEM_KEY;
4189 	key.offset = 0;
4190 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4191 	if (ret < 0)
4192 		goto out;
4193 
4194 	while (1) {
4195 		eb = path->nodes[0];
4196 		slot = path->slots[0];
4197 		if (slot >= btrfs_header_nritems(eb)) {
4198 			ret = btrfs_next_leaf(root, path);
4199 			if (ret < 0) {
4200 				goto out;
4201 			} else if (ret > 0) {
4202 				ret = 0;
4203 				break;
4204 			}
4205 			continue;
4206 		}
4207 
4208 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4209 		if (found_key.objectid != key.objectid ||
4210 		    found_key.type != key.type) {
4211 			ret = 0;
4212 			goto out;
4213 		}
4214 
4215 		ret = iterate_dir_item(root, path, &found_key,
4216 				       __process_new_xattr, sctx);
4217 		if (ret < 0)
4218 			goto out;
4219 
4220 		path->slots[0]++;
4221 	}
4222 
4223 out:
4224 	btrfs_free_path(path);
4225 	return ret;
4226 }
4227 
4228 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4229 {
4230 	struct btrfs_root *root = sctx->send_root;
4231 	struct btrfs_fs_info *fs_info = root->fs_info;
4232 	struct inode *inode;
4233 	struct page *page;
4234 	char *addr;
4235 	struct btrfs_key key;
4236 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4237 	pgoff_t last_index;
4238 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4239 	ssize_t ret = 0;
4240 
4241 	key.objectid = sctx->cur_ino;
4242 	key.type = BTRFS_INODE_ITEM_KEY;
4243 	key.offset = 0;
4244 
4245 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4246 	if (IS_ERR(inode))
4247 		return PTR_ERR(inode);
4248 
4249 	if (offset + len > i_size_read(inode)) {
4250 		if (offset > i_size_read(inode))
4251 			len = 0;
4252 		else
4253 			len = offset - i_size_read(inode);
4254 	}
4255 	if (len == 0)
4256 		goto out;
4257 
4258 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4259 
4260 	/* initial readahead */
4261 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4262 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4263 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4264 		       last_index - index + 1);
4265 
4266 	while (index <= last_index) {
4267 		unsigned cur_len = min_t(unsigned, len,
4268 					 PAGE_CACHE_SIZE - pg_offset);
4269 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4270 		if (!page) {
4271 			ret = -ENOMEM;
4272 			break;
4273 		}
4274 
4275 		if (!PageUptodate(page)) {
4276 			btrfs_readpage(NULL, page);
4277 			lock_page(page);
4278 			if (!PageUptodate(page)) {
4279 				unlock_page(page);
4280 				page_cache_release(page);
4281 				ret = -EIO;
4282 				break;
4283 			}
4284 		}
4285 
4286 		addr = kmap(page);
4287 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4288 		kunmap(page);
4289 		unlock_page(page);
4290 		page_cache_release(page);
4291 		index++;
4292 		pg_offset = 0;
4293 		len -= cur_len;
4294 		ret += cur_len;
4295 	}
4296 out:
4297 	iput(inode);
4298 	return ret;
4299 }
4300 
4301 /*
4302  * Read some bytes from the current inode/file and send a write command to
4303  * user space.
4304  */
4305 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4306 {
4307 	int ret = 0;
4308 	struct fs_path *p;
4309 	ssize_t num_read = 0;
4310 
4311 	p = fs_path_alloc();
4312 	if (!p)
4313 		return -ENOMEM;
4314 
4315 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4316 
4317 	num_read = fill_read_buf(sctx, offset, len);
4318 	if (num_read <= 0) {
4319 		if (num_read < 0)
4320 			ret = num_read;
4321 		goto out;
4322 	}
4323 
4324 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4325 	if (ret < 0)
4326 		goto out;
4327 
4328 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4329 	if (ret < 0)
4330 		goto out;
4331 
4332 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4333 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4334 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4335 
4336 	ret = send_cmd(sctx);
4337 
4338 tlv_put_failure:
4339 out:
4340 	fs_path_free(p);
4341 	if (ret < 0)
4342 		return ret;
4343 	return num_read;
4344 }
4345 
4346 /*
4347  * Send a clone command to user space.
4348  */
4349 static int send_clone(struct send_ctx *sctx,
4350 		      u64 offset, u32 len,
4351 		      struct clone_root *clone_root)
4352 {
4353 	int ret = 0;
4354 	struct fs_path *p;
4355 	u64 gen;
4356 
4357 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4358 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4359 		clone_root->root->objectid, clone_root->ino,
4360 		clone_root->offset);
4361 
4362 	p = fs_path_alloc();
4363 	if (!p)
4364 		return -ENOMEM;
4365 
4366 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4367 	if (ret < 0)
4368 		goto out;
4369 
4370 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4371 	if (ret < 0)
4372 		goto out;
4373 
4374 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4375 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4376 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4377 
4378 	if (clone_root->root == sctx->send_root) {
4379 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4380 				&gen, NULL, NULL, NULL, NULL);
4381 		if (ret < 0)
4382 			goto out;
4383 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4384 	} else {
4385 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4386 	}
4387 	if (ret < 0)
4388 		goto out;
4389 
4390 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4391 			clone_root->root->root_item.uuid);
4392 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4393 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4394 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4395 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4396 			clone_root->offset);
4397 
4398 	ret = send_cmd(sctx);
4399 
4400 tlv_put_failure:
4401 out:
4402 	fs_path_free(p);
4403 	return ret;
4404 }
4405 
4406 /*
4407  * Send an update extent command to user space.
4408  */
4409 static int send_update_extent(struct send_ctx *sctx,
4410 			      u64 offset, u32 len)
4411 {
4412 	int ret = 0;
4413 	struct fs_path *p;
4414 
4415 	p = fs_path_alloc();
4416 	if (!p)
4417 		return -ENOMEM;
4418 
4419 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4420 	if (ret < 0)
4421 		goto out;
4422 
4423 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4424 	if (ret < 0)
4425 		goto out;
4426 
4427 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4428 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4429 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4430 
4431 	ret = send_cmd(sctx);
4432 
4433 tlv_put_failure:
4434 out:
4435 	fs_path_free(p);
4436 	return ret;
4437 }
4438 
4439 static int send_hole(struct send_ctx *sctx, u64 end)
4440 {
4441 	struct fs_path *p = NULL;
4442 	u64 offset = sctx->cur_inode_last_extent;
4443 	u64 len;
4444 	int ret = 0;
4445 
4446 	p = fs_path_alloc();
4447 	if (!p)
4448 		return -ENOMEM;
4449 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4450 	if (ret < 0)
4451 		goto tlv_put_failure;
4452 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4453 	while (offset < end) {
4454 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4455 
4456 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4457 		if (ret < 0)
4458 			break;
4459 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4460 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4461 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4462 		ret = send_cmd(sctx);
4463 		if (ret < 0)
4464 			break;
4465 		offset += len;
4466 	}
4467 tlv_put_failure:
4468 	fs_path_free(p);
4469 	return ret;
4470 }
4471 
4472 static int send_write_or_clone(struct send_ctx *sctx,
4473 			       struct btrfs_path *path,
4474 			       struct btrfs_key *key,
4475 			       struct clone_root *clone_root)
4476 {
4477 	int ret = 0;
4478 	struct btrfs_file_extent_item *ei;
4479 	u64 offset = key->offset;
4480 	u64 pos = 0;
4481 	u64 len;
4482 	u32 l;
4483 	u8 type;
4484 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4485 
4486 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4487 			struct btrfs_file_extent_item);
4488 	type = btrfs_file_extent_type(path->nodes[0], ei);
4489 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4490 		len = btrfs_file_extent_inline_len(path->nodes[0],
4491 						   path->slots[0], ei);
4492 		/*
4493 		 * it is possible the inline item won't cover the whole page,
4494 		 * but there may be items after this page.  Make
4495 		 * sure to send the whole thing
4496 		 */
4497 		len = PAGE_CACHE_ALIGN(len);
4498 	} else {
4499 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4500 	}
4501 
4502 	if (offset + len > sctx->cur_inode_size)
4503 		len = sctx->cur_inode_size - offset;
4504 	if (len == 0) {
4505 		ret = 0;
4506 		goto out;
4507 	}
4508 
4509 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4510 		ret = send_clone(sctx, offset, len, clone_root);
4511 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4512 		ret = send_update_extent(sctx, offset, len);
4513 	} else {
4514 		while (pos < len) {
4515 			l = len - pos;
4516 			if (l > BTRFS_SEND_READ_SIZE)
4517 				l = BTRFS_SEND_READ_SIZE;
4518 			ret = send_write(sctx, pos + offset, l);
4519 			if (ret < 0)
4520 				goto out;
4521 			if (!ret)
4522 				break;
4523 			pos += ret;
4524 		}
4525 		ret = 0;
4526 	}
4527 out:
4528 	return ret;
4529 }
4530 
4531 static int is_extent_unchanged(struct send_ctx *sctx,
4532 			       struct btrfs_path *left_path,
4533 			       struct btrfs_key *ekey)
4534 {
4535 	int ret = 0;
4536 	struct btrfs_key key;
4537 	struct btrfs_path *path = NULL;
4538 	struct extent_buffer *eb;
4539 	int slot;
4540 	struct btrfs_key found_key;
4541 	struct btrfs_file_extent_item *ei;
4542 	u64 left_disknr;
4543 	u64 right_disknr;
4544 	u64 left_offset;
4545 	u64 right_offset;
4546 	u64 left_offset_fixed;
4547 	u64 left_len;
4548 	u64 right_len;
4549 	u64 left_gen;
4550 	u64 right_gen;
4551 	u8 left_type;
4552 	u8 right_type;
4553 
4554 	path = alloc_path_for_send();
4555 	if (!path)
4556 		return -ENOMEM;
4557 
4558 	eb = left_path->nodes[0];
4559 	slot = left_path->slots[0];
4560 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4561 	left_type = btrfs_file_extent_type(eb, ei);
4562 
4563 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4564 		ret = 0;
4565 		goto out;
4566 	}
4567 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4568 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4569 	left_offset = btrfs_file_extent_offset(eb, ei);
4570 	left_gen = btrfs_file_extent_generation(eb, ei);
4571 
4572 	/*
4573 	 * Following comments will refer to these graphics. L is the left
4574 	 * extents which we are checking at the moment. 1-8 are the right
4575 	 * extents that we iterate.
4576 	 *
4577 	 *       |-----L-----|
4578 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4579 	 *
4580 	 *       |-----L-----|
4581 	 * |--1--|-2b-|...(same as above)
4582 	 *
4583 	 * Alternative situation. Happens on files where extents got split.
4584 	 *       |-----L-----|
4585 	 * |-----------7-----------|-6-|
4586 	 *
4587 	 * Alternative situation. Happens on files which got larger.
4588 	 *       |-----L-----|
4589 	 * |-8-|
4590 	 * Nothing follows after 8.
4591 	 */
4592 
4593 	key.objectid = ekey->objectid;
4594 	key.type = BTRFS_EXTENT_DATA_KEY;
4595 	key.offset = ekey->offset;
4596 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4597 	if (ret < 0)
4598 		goto out;
4599 	if (ret) {
4600 		ret = 0;
4601 		goto out;
4602 	}
4603 
4604 	/*
4605 	 * Handle special case where the right side has no extents at all.
4606 	 */
4607 	eb = path->nodes[0];
4608 	slot = path->slots[0];
4609 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4610 	if (found_key.objectid != key.objectid ||
4611 	    found_key.type != key.type) {
4612 		/* If we're a hole then just pretend nothing changed */
4613 		ret = (left_disknr) ? 0 : 1;
4614 		goto out;
4615 	}
4616 
4617 	/*
4618 	 * We're now on 2a, 2b or 7.
4619 	 */
4620 	key = found_key;
4621 	while (key.offset < ekey->offset + left_len) {
4622 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4623 		right_type = btrfs_file_extent_type(eb, ei);
4624 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4625 			ret = 0;
4626 			goto out;
4627 		}
4628 
4629 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4630 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4631 		right_offset = btrfs_file_extent_offset(eb, ei);
4632 		right_gen = btrfs_file_extent_generation(eb, ei);
4633 
4634 		/*
4635 		 * Are we at extent 8? If yes, we know the extent is changed.
4636 		 * This may only happen on the first iteration.
4637 		 */
4638 		if (found_key.offset + right_len <= ekey->offset) {
4639 			/* If we're a hole just pretend nothing changed */
4640 			ret = (left_disknr) ? 0 : 1;
4641 			goto out;
4642 		}
4643 
4644 		left_offset_fixed = left_offset;
4645 		if (key.offset < ekey->offset) {
4646 			/* Fix the right offset for 2a and 7. */
4647 			right_offset += ekey->offset - key.offset;
4648 		} else {
4649 			/* Fix the left offset for all behind 2a and 2b */
4650 			left_offset_fixed += key.offset - ekey->offset;
4651 		}
4652 
4653 		/*
4654 		 * Check if we have the same extent.
4655 		 */
4656 		if (left_disknr != right_disknr ||
4657 		    left_offset_fixed != right_offset ||
4658 		    left_gen != right_gen) {
4659 			ret = 0;
4660 			goto out;
4661 		}
4662 
4663 		/*
4664 		 * Go to the next extent.
4665 		 */
4666 		ret = btrfs_next_item(sctx->parent_root, path);
4667 		if (ret < 0)
4668 			goto out;
4669 		if (!ret) {
4670 			eb = path->nodes[0];
4671 			slot = path->slots[0];
4672 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4673 		}
4674 		if (ret || found_key.objectid != key.objectid ||
4675 		    found_key.type != key.type) {
4676 			key.offset += right_len;
4677 			break;
4678 		}
4679 		if (found_key.offset != key.offset + right_len) {
4680 			ret = 0;
4681 			goto out;
4682 		}
4683 		key = found_key;
4684 	}
4685 
4686 	/*
4687 	 * We're now behind the left extent (treat as unchanged) or at the end
4688 	 * of the right side (treat as changed).
4689 	 */
4690 	if (key.offset >= ekey->offset + left_len)
4691 		ret = 1;
4692 	else
4693 		ret = 0;
4694 
4695 
4696 out:
4697 	btrfs_free_path(path);
4698 	return ret;
4699 }
4700 
4701 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4702 {
4703 	struct btrfs_path *path;
4704 	struct btrfs_root *root = sctx->send_root;
4705 	struct btrfs_file_extent_item *fi;
4706 	struct btrfs_key key;
4707 	u64 extent_end;
4708 	u8 type;
4709 	int ret;
4710 
4711 	path = alloc_path_for_send();
4712 	if (!path)
4713 		return -ENOMEM;
4714 
4715 	sctx->cur_inode_last_extent = 0;
4716 
4717 	key.objectid = sctx->cur_ino;
4718 	key.type = BTRFS_EXTENT_DATA_KEY;
4719 	key.offset = offset;
4720 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4721 	if (ret < 0)
4722 		goto out;
4723 	ret = 0;
4724 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4725 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4726 		goto out;
4727 
4728 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4729 			    struct btrfs_file_extent_item);
4730 	type = btrfs_file_extent_type(path->nodes[0], fi);
4731 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4732 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4733 							path->slots[0], fi);
4734 		extent_end = ALIGN(key.offset + size,
4735 				   sctx->send_root->sectorsize);
4736 	} else {
4737 		extent_end = key.offset +
4738 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4739 	}
4740 	sctx->cur_inode_last_extent = extent_end;
4741 out:
4742 	btrfs_free_path(path);
4743 	return ret;
4744 }
4745 
4746 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4747 			   struct btrfs_key *key)
4748 {
4749 	struct btrfs_file_extent_item *fi;
4750 	u64 extent_end;
4751 	u8 type;
4752 	int ret = 0;
4753 
4754 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4755 		return 0;
4756 
4757 	if (sctx->cur_inode_last_extent == (u64)-1) {
4758 		ret = get_last_extent(sctx, key->offset - 1);
4759 		if (ret)
4760 			return ret;
4761 	}
4762 
4763 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4764 			    struct btrfs_file_extent_item);
4765 	type = btrfs_file_extent_type(path->nodes[0], fi);
4766 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4767 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4768 							path->slots[0], fi);
4769 		extent_end = ALIGN(key->offset + size,
4770 				   sctx->send_root->sectorsize);
4771 	} else {
4772 		extent_end = key->offset +
4773 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4774 	}
4775 
4776 	if (path->slots[0] == 0 &&
4777 	    sctx->cur_inode_last_extent < key->offset) {
4778 		/*
4779 		 * We might have skipped entire leafs that contained only
4780 		 * file extent items for our current inode. These leafs have
4781 		 * a generation number smaller (older) than the one in the
4782 		 * current leaf and the leaf our last extent came from, and
4783 		 * are located between these 2 leafs.
4784 		 */
4785 		ret = get_last_extent(sctx, key->offset - 1);
4786 		if (ret)
4787 			return ret;
4788 	}
4789 
4790 	if (sctx->cur_inode_last_extent < key->offset)
4791 		ret = send_hole(sctx, key->offset);
4792 	sctx->cur_inode_last_extent = extent_end;
4793 	return ret;
4794 }
4795 
4796 static int process_extent(struct send_ctx *sctx,
4797 			  struct btrfs_path *path,
4798 			  struct btrfs_key *key)
4799 {
4800 	struct clone_root *found_clone = NULL;
4801 	int ret = 0;
4802 
4803 	if (S_ISLNK(sctx->cur_inode_mode))
4804 		return 0;
4805 
4806 	if (sctx->parent_root && !sctx->cur_inode_new) {
4807 		ret = is_extent_unchanged(sctx, path, key);
4808 		if (ret < 0)
4809 			goto out;
4810 		if (ret) {
4811 			ret = 0;
4812 			goto out_hole;
4813 		}
4814 	} else {
4815 		struct btrfs_file_extent_item *ei;
4816 		u8 type;
4817 
4818 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4819 				    struct btrfs_file_extent_item);
4820 		type = btrfs_file_extent_type(path->nodes[0], ei);
4821 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4822 		    type == BTRFS_FILE_EXTENT_REG) {
4823 			/*
4824 			 * The send spec does not have a prealloc command yet,
4825 			 * so just leave a hole for prealloc'ed extents until
4826 			 * we have enough commands queued up to justify rev'ing
4827 			 * the send spec.
4828 			 */
4829 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4830 				ret = 0;
4831 				goto out;
4832 			}
4833 
4834 			/* Have a hole, just skip it. */
4835 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4836 				ret = 0;
4837 				goto out;
4838 			}
4839 		}
4840 	}
4841 
4842 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4843 			sctx->cur_inode_size, &found_clone);
4844 	if (ret != -ENOENT && ret < 0)
4845 		goto out;
4846 
4847 	ret = send_write_or_clone(sctx, path, key, found_clone);
4848 	if (ret)
4849 		goto out;
4850 out_hole:
4851 	ret = maybe_send_hole(sctx, path, key);
4852 out:
4853 	return ret;
4854 }
4855 
4856 static int process_all_extents(struct send_ctx *sctx)
4857 {
4858 	int ret;
4859 	struct btrfs_root *root;
4860 	struct btrfs_path *path;
4861 	struct btrfs_key key;
4862 	struct btrfs_key found_key;
4863 	struct extent_buffer *eb;
4864 	int slot;
4865 
4866 	root = sctx->send_root;
4867 	path = alloc_path_for_send();
4868 	if (!path)
4869 		return -ENOMEM;
4870 
4871 	key.objectid = sctx->cmp_key->objectid;
4872 	key.type = BTRFS_EXTENT_DATA_KEY;
4873 	key.offset = 0;
4874 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4875 	if (ret < 0)
4876 		goto out;
4877 
4878 	while (1) {
4879 		eb = path->nodes[0];
4880 		slot = path->slots[0];
4881 
4882 		if (slot >= btrfs_header_nritems(eb)) {
4883 			ret = btrfs_next_leaf(root, path);
4884 			if (ret < 0) {
4885 				goto out;
4886 			} else if (ret > 0) {
4887 				ret = 0;
4888 				break;
4889 			}
4890 			continue;
4891 		}
4892 
4893 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4894 
4895 		if (found_key.objectid != key.objectid ||
4896 		    found_key.type != key.type) {
4897 			ret = 0;
4898 			goto out;
4899 		}
4900 
4901 		ret = process_extent(sctx, path, &found_key);
4902 		if (ret < 0)
4903 			goto out;
4904 
4905 		path->slots[0]++;
4906 	}
4907 
4908 out:
4909 	btrfs_free_path(path);
4910 	return ret;
4911 }
4912 
4913 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4914 					   int *pending_move,
4915 					   int *refs_processed)
4916 {
4917 	int ret = 0;
4918 
4919 	if (sctx->cur_ino == 0)
4920 		goto out;
4921 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4922 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4923 		goto out;
4924 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4925 		goto out;
4926 
4927 	ret = process_recorded_refs(sctx, pending_move);
4928 	if (ret < 0)
4929 		goto out;
4930 
4931 	*refs_processed = 1;
4932 out:
4933 	return ret;
4934 }
4935 
4936 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4937 {
4938 	int ret = 0;
4939 	u64 left_mode;
4940 	u64 left_uid;
4941 	u64 left_gid;
4942 	u64 right_mode;
4943 	u64 right_uid;
4944 	u64 right_gid;
4945 	int need_chmod = 0;
4946 	int need_chown = 0;
4947 	int pending_move = 0;
4948 	int refs_processed = 0;
4949 
4950 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4951 					      &refs_processed);
4952 	if (ret < 0)
4953 		goto out;
4954 
4955 	/*
4956 	 * We have processed the refs and thus need to advance send_progress.
4957 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4958 	 * inode into account.
4959 	 *
4960 	 * On the other hand, if our current inode is a directory and couldn't
4961 	 * be moved/renamed because its parent was renamed/moved too and it has
4962 	 * a higher inode number, we can only move/rename our current inode
4963 	 * after we moved/renamed its parent. Therefore in this case operate on
4964 	 * the old path (pre move/rename) of our current inode, and the
4965 	 * move/rename will be performed later.
4966 	 */
4967 	if (refs_processed && !pending_move)
4968 		sctx->send_progress = sctx->cur_ino + 1;
4969 
4970 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4971 		goto out;
4972 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4973 		goto out;
4974 
4975 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4976 			&left_mode, &left_uid, &left_gid, NULL);
4977 	if (ret < 0)
4978 		goto out;
4979 
4980 	if (!sctx->parent_root || sctx->cur_inode_new) {
4981 		need_chown = 1;
4982 		if (!S_ISLNK(sctx->cur_inode_mode))
4983 			need_chmod = 1;
4984 	} else {
4985 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4986 				NULL, NULL, &right_mode, &right_uid,
4987 				&right_gid, NULL);
4988 		if (ret < 0)
4989 			goto out;
4990 
4991 		if (left_uid != right_uid || left_gid != right_gid)
4992 			need_chown = 1;
4993 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4994 			need_chmod = 1;
4995 	}
4996 
4997 	if (S_ISREG(sctx->cur_inode_mode)) {
4998 		if (need_send_hole(sctx)) {
4999 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5000 			    sctx->cur_inode_last_extent <
5001 			    sctx->cur_inode_size) {
5002 				ret = get_last_extent(sctx, (u64)-1);
5003 				if (ret)
5004 					goto out;
5005 			}
5006 			if (sctx->cur_inode_last_extent <
5007 			    sctx->cur_inode_size) {
5008 				ret = send_hole(sctx, sctx->cur_inode_size);
5009 				if (ret)
5010 					goto out;
5011 			}
5012 		}
5013 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5014 				sctx->cur_inode_size);
5015 		if (ret < 0)
5016 			goto out;
5017 	}
5018 
5019 	if (need_chown) {
5020 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5021 				left_uid, left_gid);
5022 		if (ret < 0)
5023 			goto out;
5024 	}
5025 	if (need_chmod) {
5026 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5027 				left_mode);
5028 		if (ret < 0)
5029 			goto out;
5030 	}
5031 
5032 	/*
5033 	 * If other directory inodes depended on our current directory
5034 	 * inode's move/rename, now do their move/rename operations.
5035 	 */
5036 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5037 		ret = apply_children_dir_moves(sctx);
5038 		if (ret)
5039 			goto out;
5040 		/*
5041 		 * Need to send that every time, no matter if it actually
5042 		 * changed between the two trees as we have done changes to
5043 		 * the inode before. If our inode is a directory and it's
5044 		 * waiting to be moved/renamed, we will send its utimes when
5045 		 * it's moved/renamed, therefore we don't need to do it here.
5046 		 */
5047 		sctx->send_progress = sctx->cur_ino + 1;
5048 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5049 		if (ret < 0)
5050 			goto out;
5051 	}
5052 
5053 out:
5054 	return ret;
5055 }
5056 
5057 static int changed_inode(struct send_ctx *sctx,
5058 			 enum btrfs_compare_tree_result result)
5059 {
5060 	int ret = 0;
5061 	struct btrfs_key *key = sctx->cmp_key;
5062 	struct btrfs_inode_item *left_ii = NULL;
5063 	struct btrfs_inode_item *right_ii = NULL;
5064 	u64 left_gen = 0;
5065 	u64 right_gen = 0;
5066 
5067 	sctx->cur_ino = key->objectid;
5068 	sctx->cur_inode_new_gen = 0;
5069 	sctx->cur_inode_last_extent = (u64)-1;
5070 
5071 	/*
5072 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5073 	 * functions that the current inode's refs are not updated yet. Later,
5074 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5075 	 */
5076 	sctx->send_progress = sctx->cur_ino;
5077 
5078 	if (result == BTRFS_COMPARE_TREE_NEW ||
5079 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5080 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5081 				sctx->left_path->slots[0],
5082 				struct btrfs_inode_item);
5083 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5084 				left_ii);
5085 	} else {
5086 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5087 				sctx->right_path->slots[0],
5088 				struct btrfs_inode_item);
5089 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5090 				right_ii);
5091 	}
5092 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5093 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5094 				sctx->right_path->slots[0],
5095 				struct btrfs_inode_item);
5096 
5097 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5098 				right_ii);
5099 
5100 		/*
5101 		 * The cur_ino = root dir case is special here. We can't treat
5102 		 * the inode as deleted+reused because it would generate a
5103 		 * stream that tries to delete/mkdir the root dir.
5104 		 */
5105 		if (left_gen != right_gen &&
5106 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5107 			sctx->cur_inode_new_gen = 1;
5108 	}
5109 
5110 	if (result == BTRFS_COMPARE_TREE_NEW) {
5111 		sctx->cur_inode_gen = left_gen;
5112 		sctx->cur_inode_new = 1;
5113 		sctx->cur_inode_deleted = 0;
5114 		sctx->cur_inode_size = btrfs_inode_size(
5115 				sctx->left_path->nodes[0], left_ii);
5116 		sctx->cur_inode_mode = btrfs_inode_mode(
5117 				sctx->left_path->nodes[0], left_ii);
5118 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5119 				sctx->left_path->nodes[0], left_ii);
5120 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5121 			ret = send_create_inode_if_needed(sctx);
5122 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5123 		sctx->cur_inode_gen = right_gen;
5124 		sctx->cur_inode_new = 0;
5125 		sctx->cur_inode_deleted = 1;
5126 		sctx->cur_inode_size = btrfs_inode_size(
5127 				sctx->right_path->nodes[0], right_ii);
5128 		sctx->cur_inode_mode = btrfs_inode_mode(
5129 				sctx->right_path->nodes[0], right_ii);
5130 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5131 		/*
5132 		 * We need to do some special handling in case the inode was
5133 		 * reported as changed with a changed generation number. This
5134 		 * means that the original inode was deleted and new inode
5135 		 * reused the same inum. So we have to treat the old inode as
5136 		 * deleted and the new one as new.
5137 		 */
5138 		if (sctx->cur_inode_new_gen) {
5139 			/*
5140 			 * First, process the inode as if it was deleted.
5141 			 */
5142 			sctx->cur_inode_gen = right_gen;
5143 			sctx->cur_inode_new = 0;
5144 			sctx->cur_inode_deleted = 1;
5145 			sctx->cur_inode_size = btrfs_inode_size(
5146 					sctx->right_path->nodes[0], right_ii);
5147 			sctx->cur_inode_mode = btrfs_inode_mode(
5148 					sctx->right_path->nodes[0], right_ii);
5149 			ret = process_all_refs(sctx,
5150 					BTRFS_COMPARE_TREE_DELETED);
5151 			if (ret < 0)
5152 				goto out;
5153 
5154 			/*
5155 			 * Now process the inode as if it was new.
5156 			 */
5157 			sctx->cur_inode_gen = left_gen;
5158 			sctx->cur_inode_new = 1;
5159 			sctx->cur_inode_deleted = 0;
5160 			sctx->cur_inode_size = btrfs_inode_size(
5161 					sctx->left_path->nodes[0], left_ii);
5162 			sctx->cur_inode_mode = btrfs_inode_mode(
5163 					sctx->left_path->nodes[0], left_ii);
5164 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5165 					sctx->left_path->nodes[0], left_ii);
5166 			ret = send_create_inode_if_needed(sctx);
5167 			if (ret < 0)
5168 				goto out;
5169 
5170 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5171 			if (ret < 0)
5172 				goto out;
5173 			/*
5174 			 * Advance send_progress now as we did not get into
5175 			 * process_recorded_refs_if_needed in the new_gen case.
5176 			 */
5177 			sctx->send_progress = sctx->cur_ino + 1;
5178 
5179 			/*
5180 			 * Now process all extents and xattrs of the inode as if
5181 			 * they were all new.
5182 			 */
5183 			ret = process_all_extents(sctx);
5184 			if (ret < 0)
5185 				goto out;
5186 			ret = process_all_new_xattrs(sctx);
5187 			if (ret < 0)
5188 				goto out;
5189 		} else {
5190 			sctx->cur_inode_gen = left_gen;
5191 			sctx->cur_inode_new = 0;
5192 			sctx->cur_inode_new_gen = 0;
5193 			sctx->cur_inode_deleted = 0;
5194 			sctx->cur_inode_size = btrfs_inode_size(
5195 					sctx->left_path->nodes[0], left_ii);
5196 			sctx->cur_inode_mode = btrfs_inode_mode(
5197 					sctx->left_path->nodes[0], left_ii);
5198 		}
5199 	}
5200 
5201 out:
5202 	return ret;
5203 }
5204 
5205 /*
5206  * We have to process new refs before deleted refs, but compare_trees gives us
5207  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5208  * first and later process them in process_recorded_refs.
5209  * For the cur_inode_new_gen case, we skip recording completely because
5210  * changed_inode did already initiate processing of refs. The reason for this is
5211  * that in this case, compare_tree actually compares the refs of 2 different
5212  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5213  * refs of the right tree as deleted and all refs of the left tree as new.
5214  */
5215 static int changed_ref(struct send_ctx *sctx,
5216 		       enum btrfs_compare_tree_result result)
5217 {
5218 	int ret = 0;
5219 
5220 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5221 
5222 	if (!sctx->cur_inode_new_gen &&
5223 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5224 		if (result == BTRFS_COMPARE_TREE_NEW)
5225 			ret = record_new_ref(sctx);
5226 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5227 			ret = record_deleted_ref(sctx);
5228 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5229 			ret = record_changed_ref(sctx);
5230 	}
5231 
5232 	return ret;
5233 }
5234 
5235 /*
5236  * Process new/deleted/changed xattrs. We skip processing in the
5237  * cur_inode_new_gen case because changed_inode did already initiate processing
5238  * of xattrs. The reason is the same as in changed_ref
5239  */
5240 static int changed_xattr(struct send_ctx *sctx,
5241 			 enum btrfs_compare_tree_result result)
5242 {
5243 	int ret = 0;
5244 
5245 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5246 
5247 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5248 		if (result == BTRFS_COMPARE_TREE_NEW)
5249 			ret = process_new_xattr(sctx);
5250 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5251 			ret = process_deleted_xattr(sctx);
5252 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5253 			ret = process_changed_xattr(sctx);
5254 	}
5255 
5256 	return ret;
5257 }
5258 
5259 /*
5260  * Process new/deleted/changed extents. We skip processing in the
5261  * cur_inode_new_gen case because changed_inode did already initiate processing
5262  * of extents. The reason is the same as in changed_ref
5263  */
5264 static int changed_extent(struct send_ctx *sctx,
5265 			  enum btrfs_compare_tree_result result)
5266 {
5267 	int ret = 0;
5268 
5269 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5270 
5271 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5272 		if (result != BTRFS_COMPARE_TREE_DELETED)
5273 			ret = process_extent(sctx, sctx->left_path,
5274 					sctx->cmp_key);
5275 	}
5276 
5277 	return ret;
5278 }
5279 
5280 static int dir_changed(struct send_ctx *sctx, u64 dir)
5281 {
5282 	u64 orig_gen, new_gen;
5283 	int ret;
5284 
5285 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5286 			     NULL, NULL);
5287 	if (ret)
5288 		return ret;
5289 
5290 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5291 			     NULL, NULL, NULL);
5292 	if (ret)
5293 		return ret;
5294 
5295 	return (orig_gen != new_gen) ? 1 : 0;
5296 }
5297 
5298 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5299 			struct btrfs_key *key)
5300 {
5301 	struct btrfs_inode_extref *extref;
5302 	struct extent_buffer *leaf;
5303 	u64 dirid = 0, last_dirid = 0;
5304 	unsigned long ptr;
5305 	u32 item_size;
5306 	u32 cur_offset = 0;
5307 	int ref_name_len;
5308 	int ret = 0;
5309 
5310 	/* Easy case, just check this one dirid */
5311 	if (key->type == BTRFS_INODE_REF_KEY) {
5312 		dirid = key->offset;
5313 
5314 		ret = dir_changed(sctx, dirid);
5315 		goto out;
5316 	}
5317 
5318 	leaf = path->nodes[0];
5319 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5320 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5321 	while (cur_offset < item_size) {
5322 		extref = (struct btrfs_inode_extref *)(ptr +
5323 						       cur_offset);
5324 		dirid = btrfs_inode_extref_parent(leaf, extref);
5325 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5326 		cur_offset += ref_name_len + sizeof(*extref);
5327 		if (dirid == last_dirid)
5328 			continue;
5329 		ret = dir_changed(sctx, dirid);
5330 		if (ret)
5331 			break;
5332 		last_dirid = dirid;
5333 	}
5334 out:
5335 	return ret;
5336 }
5337 
5338 /*
5339  * Updates compare related fields in sctx and simply forwards to the actual
5340  * changed_xxx functions.
5341  */
5342 static int changed_cb(struct btrfs_root *left_root,
5343 		      struct btrfs_root *right_root,
5344 		      struct btrfs_path *left_path,
5345 		      struct btrfs_path *right_path,
5346 		      struct btrfs_key *key,
5347 		      enum btrfs_compare_tree_result result,
5348 		      void *ctx)
5349 {
5350 	int ret = 0;
5351 	struct send_ctx *sctx = ctx;
5352 
5353 	if (result == BTRFS_COMPARE_TREE_SAME) {
5354 		if (key->type == BTRFS_INODE_REF_KEY ||
5355 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5356 			ret = compare_refs(sctx, left_path, key);
5357 			if (!ret)
5358 				return 0;
5359 			if (ret < 0)
5360 				return ret;
5361 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5362 			return maybe_send_hole(sctx, left_path, key);
5363 		} else {
5364 			return 0;
5365 		}
5366 		result = BTRFS_COMPARE_TREE_CHANGED;
5367 		ret = 0;
5368 	}
5369 
5370 	sctx->left_path = left_path;
5371 	sctx->right_path = right_path;
5372 	sctx->cmp_key = key;
5373 
5374 	ret = finish_inode_if_needed(sctx, 0);
5375 	if (ret < 0)
5376 		goto out;
5377 
5378 	/* Ignore non-FS objects */
5379 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5380 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5381 		goto out;
5382 
5383 	if (key->type == BTRFS_INODE_ITEM_KEY)
5384 		ret = changed_inode(sctx, result);
5385 	else if (key->type == BTRFS_INODE_REF_KEY ||
5386 		 key->type == BTRFS_INODE_EXTREF_KEY)
5387 		ret = changed_ref(sctx, result);
5388 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5389 		ret = changed_xattr(sctx, result);
5390 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5391 		ret = changed_extent(sctx, result);
5392 
5393 out:
5394 	return ret;
5395 }
5396 
5397 static int full_send_tree(struct send_ctx *sctx)
5398 {
5399 	int ret;
5400 	struct btrfs_root *send_root = sctx->send_root;
5401 	struct btrfs_key key;
5402 	struct btrfs_key found_key;
5403 	struct btrfs_path *path;
5404 	struct extent_buffer *eb;
5405 	int slot;
5406 
5407 	path = alloc_path_for_send();
5408 	if (!path)
5409 		return -ENOMEM;
5410 
5411 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5412 	key.type = BTRFS_INODE_ITEM_KEY;
5413 	key.offset = 0;
5414 
5415 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5416 	if (ret < 0)
5417 		goto out;
5418 	if (ret)
5419 		goto out_finish;
5420 
5421 	while (1) {
5422 		eb = path->nodes[0];
5423 		slot = path->slots[0];
5424 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5425 
5426 		ret = changed_cb(send_root, NULL, path, NULL,
5427 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5428 		if (ret < 0)
5429 			goto out;
5430 
5431 		key.objectid = found_key.objectid;
5432 		key.type = found_key.type;
5433 		key.offset = found_key.offset + 1;
5434 
5435 		ret = btrfs_next_item(send_root, path);
5436 		if (ret < 0)
5437 			goto out;
5438 		if (ret) {
5439 			ret  = 0;
5440 			break;
5441 		}
5442 	}
5443 
5444 out_finish:
5445 	ret = finish_inode_if_needed(sctx, 1);
5446 
5447 out:
5448 	btrfs_free_path(path);
5449 	return ret;
5450 }
5451 
5452 static int send_subvol(struct send_ctx *sctx)
5453 {
5454 	int ret;
5455 
5456 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5457 		ret = send_header(sctx);
5458 		if (ret < 0)
5459 			goto out;
5460 	}
5461 
5462 	ret = send_subvol_begin(sctx);
5463 	if (ret < 0)
5464 		goto out;
5465 
5466 	if (sctx->parent_root) {
5467 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5468 				changed_cb, sctx);
5469 		if (ret < 0)
5470 			goto out;
5471 		ret = finish_inode_if_needed(sctx, 1);
5472 		if (ret < 0)
5473 			goto out;
5474 	} else {
5475 		ret = full_send_tree(sctx);
5476 		if (ret < 0)
5477 			goto out;
5478 	}
5479 
5480 out:
5481 	free_recorded_refs(sctx);
5482 	return ret;
5483 }
5484 
5485 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5486 {
5487 	spin_lock(&root->root_item_lock);
5488 	root->send_in_progress--;
5489 	/*
5490 	 * Not much left to do, we don't know why it's unbalanced and
5491 	 * can't blindly reset it to 0.
5492 	 */
5493 	if (root->send_in_progress < 0)
5494 		btrfs_err(root->fs_info,
5495 			"send_in_progres unbalanced %d root %llu",
5496 			root->send_in_progress, root->root_key.objectid);
5497 	spin_unlock(&root->root_item_lock);
5498 }
5499 
5500 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5501 {
5502 	int ret = 0;
5503 	struct btrfs_root *send_root;
5504 	struct btrfs_root *clone_root;
5505 	struct btrfs_fs_info *fs_info;
5506 	struct btrfs_ioctl_send_args *arg = NULL;
5507 	struct btrfs_key key;
5508 	struct send_ctx *sctx = NULL;
5509 	u32 i;
5510 	u64 *clone_sources_tmp = NULL;
5511 	int clone_sources_to_rollback = 0;
5512 	int sort_clone_roots = 0;
5513 	int index;
5514 
5515 	if (!capable(CAP_SYS_ADMIN))
5516 		return -EPERM;
5517 
5518 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5519 	fs_info = send_root->fs_info;
5520 
5521 	/*
5522 	 * The subvolume must remain read-only during send, protect against
5523 	 * making it RW. This also protects against deletion.
5524 	 */
5525 	spin_lock(&send_root->root_item_lock);
5526 	send_root->send_in_progress++;
5527 	spin_unlock(&send_root->root_item_lock);
5528 
5529 	/*
5530 	 * This is done when we lookup the root, it should already be complete
5531 	 * by the time we get here.
5532 	 */
5533 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5534 
5535 	/*
5536 	 * Userspace tools do the checks and warn the user if it's
5537 	 * not RO.
5538 	 */
5539 	if (!btrfs_root_readonly(send_root)) {
5540 		ret = -EPERM;
5541 		goto out;
5542 	}
5543 
5544 	arg = memdup_user(arg_, sizeof(*arg));
5545 	if (IS_ERR(arg)) {
5546 		ret = PTR_ERR(arg);
5547 		arg = NULL;
5548 		goto out;
5549 	}
5550 
5551 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5552 			sizeof(*arg->clone_sources) *
5553 			arg->clone_sources_count)) {
5554 		ret = -EFAULT;
5555 		goto out;
5556 	}
5557 
5558 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5559 		ret = -EINVAL;
5560 		goto out;
5561 	}
5562 
5563 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5564 	if (!sctx) {
5565 		ret = -ENOMEM;
5566 		goto out;
5567 	}
5568 
5569 	INIT_LIST_HEAD(&sctx->new_refs);
5570 	INIT_LIST_HEAD(&sctx->deleted_refs);
5571 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5572 	INIT_LIST_HEAD(&sctx->name_cache_list);
5573 
5574 	sctx->flags = arg->flags;
5575 
5576 	sctx->send_filp = fget(arg->send_fd);
5577 	if (!sctx->send_filp) {
5578 		ret = -EBADF;
5579 		goto out;
5580 	}
5581 
5582 	sctx->send_root = send_root;
5583 	/*
5584 	 * Unlikely but possible, if the subvolume is marked for deletion but
5585 	 * is slow to remove the directory entry, send can still be started
5586 	 */
5587 	if (btrfs_root_dead(sctx->send_root)) {
5588 		ret = -EPERM;
5589 		goto out;
5590 	}
5591 
5592 	sctx->clone_roots_cnt = arg->clone_sources_count;
5593 
5594 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5595 	sctx->send_buf = vmalloc(sctx->send_max_size);
5596 	if (!sctx->send_buf) {
5597 		ret = -ENOMEM;
5598 		goto out;
5599 	}
5600 
5601 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5602 	if (!sctx->read_buf) {
5603 		ret = -ENOMEM;
5604 		goto out;
5605 	}
5606 
5607 	sctx->pending_dir_moves = RB_ROOT;
5608 	sctx->waiting_dir_moves = RB_ROOT;
5609 	sctx->orphan_dirs = RB_ROOT;
5610 
5611 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5612 			(arg->clone_sources_count + 1));
5613 	if (!sctx->clone_roots) {
5614 		ret = -ENOMEM;
5615 		goto out;
5616 	}
5617 
5618 	if (arg->clone_sources_count) {
5619 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5620 				sizeof(*arg->clone_sources));
5621 		if (!clone_sources_tmp) {
5622 			ret = -ENOMEM;
5623 			goto out;
5624 		}
5625 
5626 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5627 				arg->clone_sources_count *
5628 				sizeof(*arg->clone_sources));
5629 		if (ret) {
5630 			ret = -EFAULT;
5631 			goto out;
5632 		}
5633 
5634 		for (i = 0; i < arg->clone_sources_count; i++) {
5635 			key.objectid = clone_sources_tmp[i];
5636 			key.type = BTRFS_ROOT_ITEM_KEY;
5637 			key.offset = (u64)-1;
5638 
5639 			index = srcu_read_lock(&fs_info->subvol_srcu);
5640 
5641 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5642 			if (IS_ERR(clone_root)) {
5643 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5644 				ret = PTR_ERR(clone_root);
5645 				goto out;
5646 			}
5647 			clone_sources_to_rollback = i + 1;
5648 			spin_lock(&clone_root->root_item_lock);
5649 			clone_root->send_in_progress++;
5650 			if (!btrfs_root_readonly(clone_root)) {
5651 				spin_unlock(&clone_root->root_item_lock);
5652 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5653 				ret = -EPERM;
5654 				goto out;
5655 			}
5656 			spin_unlock(&clone_root->root_item_lock);
5657 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5658 
5659 			sctx->clone_roots[i].root = clone_root;
5660 		}
5661 		vfree(clone_sources_tmp);
5662 		clone_sources_tmp = NULL;
5663 	}
5664 
5665 	if (arg->parent_root) {
5666 		key.objectid = arg->parent_root;
5667 		key.type = BTRFS_ROOT_ITEM_KEY;
5668 		key.offset = (u64)-1;
5669 
5670 		index = srcu_read_lock(&fs_info->subvol_srcu);
5671 
5672 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5673 		if (IS_ERR(sctx->parent_root)) {
5674 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5675 			ret = PTR_ERR(sctx->parent_root);
5676 			goto out;
5677 		}
5678 
5679 		spin_lock(&sctx->parent_root->root_item_lock);
5680 		sctx->parent_root->send_in_progress++;
5681 		if (!btrfs_root_readonly(sctx->parent_root) ||
5682 				btrfs_root_dead(sctx->parent_root)) {
5683 			spin_unlock(&sctx->parent_root->root_item_lock);
5684 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5685 			ret = -EPERM;
5686 			goto out;
5687 		}
5688 		spin_unlock(&sctx->parent_root->root_item_lock);
5689 
5690 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5691 	}
5692 
5693 	/*
5694 	 * Clones from send_root are allowed, but only if the clone source
5695 	 * is behind the current send position. This is checked while searching
5696 	 * for possible clone sources.
5697 	 */
5698 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5699 
5700 	/* We do a bsearch later */
5701 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5702 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5703 			NULL);
5704 	sort_clone_roots = 1;
5705 
5706 	current->journal_info = (void *)BTRFS_SEND_TRANS_STUB;
5707 	ret = send_subvol(sctx);
5708 	current->journal_info = NULL;
5709 	if (ret < 0)
5710 		goto out;
5711 
5712 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5713 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5714 		if (ret < 0)
5715 			goto out;
5716 		ret = send_cmd(sctx);
5717 		if (ret < 0)
5718 			goto out;
5719 	}
5720 
5721 out:
5722 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5723 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5724 		struct rb_node *n;
5725 		struct pending_dir_move *pm;
5726 
5727 		n = rb_first(&sctx->pending_dir_moves);
5728 		pm = rb_entry(n, struct pending_dir_move, node);
5729 		while (!list_empty(&pm->list)) {
5730 			struct pending_dir_move *pm2;
5731 
5732 			pm2 = list_first_entry(&pm->list,
5733 					       struct pending_dir_move, list);
5734 			free_pending_move(sctx, pm2);
5735 		}
5736 		free_pending_move(sctx, pm);
5737 	}
5738 
5739 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5740 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5741 		struct rb_node *n;
5742 		struct waiting_dir_move *dm;
5743 
5744 		n = rb_first(&sctx->waiting_dir_moves);
5745 		dm = rb_entry(n, struct waiting_dir_move, node);
5746 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
5747 		kfree(dm);
5748 	}
5749 
5750 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5751 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5752 		struct rb_node *n;
5753 		struct orphan_dir_info *odi;
5754 
5755 		n = rb_first(&sctx->orphan_dirs);
5756 		odi = rb_entry(n, struct orphan_dir_info, node);
5757 		free_orphan_dir_info(sctx, odi);
5758 	}
5759 
5760 	if (sort_clone_roots) {
5761 		for (i = 0; i < sctx->clone_roots_cnt; i++)
5762 			btrfs_root_dec_send_in_progress(
5763 					sctx->clone_roots[i].root);
5764 	} else {
5765 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5766 			btrfs_root_dec_send_in_progress(
5767 					sctx->clone_roots[i].root);
5768 
5769 		btrfs_root_dec_send_in_progress(send_root);
5770 	}
5771 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5772 		btrfs_root_dec_send_in_progress(sctx->parent_root);
5773 
5774 	kfree(arg);
5775 	vfree(clone_sources_tmp);
5776 
5777 	if (sctx) {
5778 		if (sctx->send_filp)
5779 			fput(sctx->send_filp);
5780 
5781 		vfree(sctx->clone_roots);
5782 		vfree(sctx->send_buf);
5783 		vfree(sctx->read_buf);
5784 
5785 		name_cache_free(sctx);
5786 
5787 		kfree(sctx);
5788 	}
5789 
5790 	return ret;
5791 }
5792