1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 #include "xattr.h" 27 28 /* 29 * Maximum number of references an extent can have in order for us to attempt to 30 * issue clone operations instead of write operations. This currently exists to 31 * avoid hitting limitations of the backreference walking code (taking a lot of 32 * time and using too much memory for extents with large number of references). 33 */ 34 #define SEND_MAX_EXTENT_REFS 64 35 36 /* 37 * A fs_path is a helper to dynamically build path names with unknown size. 38 * It reallocates the internal buffer on demand. 39 * It allows fast adding of path elements on the right side (normal path) and 40 * fast adding to the left side (reversed path). A reversed path can also be 41 * unreversed if needed. 42 */ 43 struct fs_path { 44 union { 45 struct { 46 char *start; 47 char *end; 48 49 char *buf; 50 unsigned short buf_len:15; 51 unsigned short reversed:1; 52 char inline_buf[]; 53 }; 54 /* 55 * Average path length does not exceed 200 bytes, we'll have 56 * better packing in the slab and higher chance to satisfy 57 * a allocation later during send. 58 */ 59 char pad[256]; 60 }; 61 }; 62 #define FS_PATH_INLINE_SIZE \ 63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 64 65 66 /* reused for each extent */ 67 struct clone_root { 68 struct btrfs_root *root; 69 u64 ino; 70 u64 offset; 71 72 u64 found_refs; 73 }; 74 75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 77 78 struct send_ctx { 79 struct file *send_filp; 80 loff_t send_off; 81 char *send_buf; 82 u32 send_size; 83 u32 send_max_size; 84 u64 total_send_size; 85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 87 88 struct btrfs_root *send_root; 89 struct btrfs_root *parent_root; 90 struct clone_root *clone_roots; 91 int clone_roots_cnt; 92 93 /* current state of the compare_tree call */ 94 struct btrfs_path *left_path; 95 struct btrfs_path *right_path; 96 struct btrfs_key *cmp_key; 97 98 /* 99 * infos of the currently processed inode. In case of deleted inodes, 100 * these are the values from the deleted inode. 101 */ 102 u64 cur_ino; 103 u64 cur_inode_gen; 104 int cur_inode_new; 105 int cur_inode_new_gen; 106 int cur_inode_deleted; 107 u64 cur_inode_size; 108 u64 cur_inode_mode; 109 u64 cur_inode_rdev; 110 u64 cur_inode_last_extent; 111 u64 cur_inode_next_write_offset; 112 bool ignore_cur_inode; 113 114 u64 send_progress; 115 116 struct list_head new_refs; 117 struct list_head deleted_refs; 118 119 struct radix_tree_root name_cache; 120 struct list_head name_cache_list; 121 int name_cache_size; 122 123 struct file_ra_state ra; 124 125 /* 126 * We process inodes by their increasing order, so if before an 127 * incremental send we reverse the parent/child relationship of 128 * directories such that a directory with a lower inode number was 129 * the parent of a directory with a higher inode number, and the one 130 * becoming the new parent got renamed too, we can't rename/move the 131 * directory with lower inode number when we finish processing it - we 132 * must process the directory with higher inode number first, then 133 * rename/move it and then rename/move the directory with lower inode 134 * number. Example follows. 135 * 136 * Tree state when the first send was performed: 137 * 138 * . 139 * |-- a (ino 257) 140 * |-- b (ino 258) 141 * | 142 * | 143 * |-- c (ino 259) 144 * | |-- d (ino 260) 145 * | 146 * |-- c2 (ino 261) 147 * 148 * Tree state when the second (incremental) send is performed: 149 * 150 * . 151 * |-- a (ino 257) 152 * |-- b (ino 258) 153 * |-- c2 (ino 261) 154 * |-- d2 (ino 260) 155 * |-- cc (ino 259) 156 * 157 * The sequence of steps that lead to the second state was: 158 * 159 * mv /a/b/c/d /a/b/c2/d2 160 * mv /a/b/c /a/b/c2/d2/cc 161 * 162 * "c" has lower inode number, but we can't move it (2nd mv operation) 163 * before we move "d", which has higher inode number. 164 * 165 * So we just memorize which move/rename operations must be performed 166 * later when their respective parent is processed and moved/renamed. 167 */ 168 169 /* Indexed by parent directory inode number. */ 170 struct rb_root pending_dir_moves; 171 172 /* 173 * Reverse index, indexed by the inode number of a directory that 174 * is waiting for the move/rename of its immediate parent before its 175 * own move/rename can be performed. 176 */ 177 struct rb_root waiting_dir_moves; 178 179 /* 180 * A directory that is going to be rm'ed might have a child directory 181 * which is in the pending directory moves index above. In this case, 182 * the directory can only be removed after the move/rename of its child 183 * is performed. Example: 184 * 185 * Parent snapshot: 186 * 187 * . (ino 256) 188 * |-- a/ (ino 257) 189 * |-- b/ (ino 258) 190 * |-- c/ (ino 259) 191 * | |-- x/ (ino 260) 192 * | 193 * |-- y/ (ino 261) 194 * 195 * Send snapshot: 196 * 197 * . (ino 256) 198 * |-- a/ (ino 257) 199 * |-- b/ (ino 258) 200 * |-- YY/ (ino 261) 201 * |-- x/ (ino 260) 202 * 203 * Sequence of steps that lead to the send snapshot: 204 * rm -f /a/b/c/foo.txt 205 * mv /a/b/y /a/b/YY 206 * mv /a/b/c/x /a/b/YY 207 * rmdir /a/b/c 208 * 209 * When the child is processed, its move/rename is delayed until its 210 * parent is processed (as explained above), but all other operations 211 * like update utimes, chown, chgrp, etc, are performed and the paths 212 * that it uses for those operations must use the orphanized name of 213 * its parent (the directory we're going to rm later), so we need to 214 * memorize that name. 215 * 216 * Indexed by the inode number of the directory to be deleted. 217 */ 218 struct rb_root orphan_dirs; 219 }; 220 221 struct pending_dir_move { 222 struct rb_node node; 223 struct list_head list; 224 u64 parent_ino; 225 u64 ino; 226 u64 gen; 227 struct list_head update_refs; 228 }; 229 230 struct waiting_dir_move { 231 struct rb_node node; 232 u64 ino; 233 /* 234 * There might be some directory that could not be removed because it 235 * was waiting for this directory inode to be moved first. Therefore 236 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 237 */ 238 u64 rmdir_ino; 239 u64 rmdir_gen; 240 bool orphanized; 241 }; 242 243 struct orphan_dir_info { 244 struct rb_node node; 245 u64 ino; 246 u64 gen; 247 u64 last_dir_index_offset; 248 }; 249 250 struct name_cache_entry { 251 struct list_head list; 252 /* 253 * radix_tree has only 32bit entries but we need to handle 64bit inums. 254 * We use the lower 32bit of the 64bit inum to store it in the tree. If 255 * more then one inum would fall into the same entry, we use radix_list 256 * to store the additional entries. radix_list is also used to store 257 * entries where two entries have the same inum but different 258 * generations. 259 */ 260 struct list_head radix_list; 261 u64 ino; 262 u64 gen; 263 u64 parent_ino; 264 u64 parent_gen; 265 int ret; 266 int need_later_update; 267 int name_len; 268 char name[]; 269 }; 270 271 #define ADVANCE 1 272 #define ADVANCE_ONLY_NEXT -1 273 274 enum btrfs_compare_tree_result { 275 BTRFS_COMPARE_TREE_NEW, 276 BTRFS_COMPARE_TREE_DELETED, 277 BTRFS_COMPARE_TREE_CHANGED, 278 BTRFS_COMPARE_TREE_SAME, 279 }; 280 281 __cold 282 static void inconsistent_snapshot_error(struct send_ctx *sctx, 283 enum btrfs_compare_tree_result result, 284 const char *what) 285 { 286 const char *result_string; 287 288 switch (result) { 289 case BTRFS_COMPARE_TREE_NEW: 290 result_string = "new"; 291 break; 292 case BTRFS_COMPARE_TREE_DELETED: 293 result_string = "deleted"; 294 break; 295 case BTRFS_COMPARE_TREE_CHANGED: 296 result_string = "updated"; 297 break; 298 case BTRFS_COMPARE_TREE_SAME: 299 ASSERT(0); 300 result_string = "unchanged"; 301 break; 302 default: 303 ASSERT(0); 304 result_string = "unexpected"; 305 } 306 307 btrfs_err(sctx->send_root->fs_info, 308 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 309 result_string, what, sctx->cmp_key->objectid, 310 sctx->send_root->root_key.objectid, 311 (sctx->parent_root ? 312 sctx->parent_root->root_key.objectid : 0)); 313 } 314 315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 316 317 static struct waiting_dir_move * 318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 319 320 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 321 322 static int need_send_hole(struct send_ctx *sctx) 323 { 324 return (sctx->parent_root && !sctx->cur_inode_new && 325 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 326 S_ISREG(sctx->cur_inode_mode)); 327 } 328 329 static void fs_path_reset(struct fs_path *p) 330 { 331 if (p->reversed) { 332 p->start = p->buf + p->buf_len - 1; 333 p->end = p->start; 334 *p->start = 0; 335 } else { 336 p->start = p->buf; 337 p->end = p->start; 338 *p->start = 0; 339 } 340 } 341 342 static struct fs_path *fs_path_alloc(void) 343 { 344 struct fs_path *p; 345 346 p = kmalloc(sizeof(*p), GFP_KERNEL); 347 if (!p) 348 return NULL; 349 p->reversed = 0; 350 p->buf = p->inline_buf; 351 p->buf_len = FS_PATH_INLINE_SIZE; 352 fs_path_reset(p); 353 return p; 354 } 355 356 static struct fs_path *fs_path_alloc_reversed(void) 357 { 358 struct fs_path *p; 359 360 p = fs_path_alloc(); 361 if (!p) 362 return NULL; 363 p->reversed = 1; 364 fs_path_reset(p); 365 return p; 366 } 367 368 static void fs_path_free(struct fs_path *p) 369 { 370 if (!p) 371 return; 372 if (p->buf != p->inline_buf) 373 kfree(p->buf); 374 kfree(p); 375 } 376 377 static int fs_path_len(struct fs_path *p) 378 { 379 return p->end - p->start; 380 } 381 382 static int fs_path_ensure_buf(struct fs_path *p, int len) 383 { 384 char *tmp_buf; 385 int path_len; 386 int old_buf_len; 387 388 len++; 389 390 if (p->buf_len >= len) 391 return 0; 392 393 if (len > PATH_MAX) { 394 WARN_ON(1); 395 return -ENOMEM; 396 } 397 398 path_len = p->end - p->start; 399 old_buf_len = p->buf_len; 400 401 /* 402 * First time the inline_buf does not suffice 403 */ 404 if (p->buf == p->inline_buf) { 405 tmp_buf = kmalloc(len, GFP_KERNEL); 406 if (tmp_buf) 407 memcpy(tmp_buf, p->buf, old_buf_len); 408 } else { 409 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 410 } 411 if (!tmp_buf) 412 return -ENOMEM; 413 p->buf = tmp_buf; 414 /* 415 * The real size of the buffer is bigger, this will let the fast path 416 * happen most of the time 417 */ 418 p->buf_len = ksize(p->buf); 419 420 if (p->reversed) { 421 tmp_buf = p->buf + old_buf_len - path_len - 1; 422 p->end = p->buf + p->buf_len - 1; 423 p->start = p->end - path_len; 424 memmove(p->start, tmp_buf, path_len + 1); 425 } else { 426 p->start = p->buf; 427 p->end = p->start + path_len; 428 } 429 return 0; 430 } 431 432 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 433 char **prepared) 434 { 435 int ret; 436 int new_len; 437 438 new_len = p->end - p->start + name_len; 439 if (p->start != p->end) 440 new_len++; 441 ret = fs_path_ensure_buf(p, new_len); 442 if (ret < 0) 443 goto out; 444 445 if (p->reversed) { 446 if (p->start != p->end) 447 *--p->start = '/'; 448 p->start -= name_len; 449 *prepared = p->start; 450 } else { 451 if (p->start != p->end) 452 *p->end++ = '/'; 453 *prepared = p->end; 454 p->end += name_len; 455 *p->end = 0; 456 } 457 458 out: 459 return ret; 460 } 461 462 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 463 { 464 int ret; 465 char *prepared; 466 467 ret = fs_path_prepare_for_add(p, name_len, &prepared); 468 if (ret < 0) 469 goto out; 470 memcpy(prepared, name, name_len); 471 472 out: 473 return ret; 474 } 475 476 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 477 { 478 int ret; 479 char *prepared; 480 481 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 482 if (ret < 0) 483 goto out; 484 memcpy(prepared, p2->start, p2->end - p2->start); 485 486 out: 487 return ret; 488 } 489 490 static int fs_path_add_from_extent_buffer(struct fs_path *p, 491 struct extent_buffer *eb, 492 unsigned long off, int len) 493 { 494 int ret; 495 char *prepared; 496 497 ret = fs_path_prepare_for_add(p, len, &prepared); 498 if (ret < 0) 499 goto out; 500 501 read_extent_buffer(eb, prepared, off, len); 502 503 out: 504 return ret; 505 } 506 507 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 508 { 509 int ret; 510 511 p->reversed = from->reversed; 512 fs_path_reset(p); 513 514 ret = fs_path_add_path(p, from); 515 516 return ret; 517 } 518 519 520 static void fs_path_unreverse(struct fs_path *p) 521 { 522 char *tmp; 523 int len; 524 525 if (!p->reversed) 526 return; 527 528 tmp = p->start; 529 len = p->end - p->start; 530 p->start = p->buf; 531 p->end = p->start + len; 532 memmove(p->start, tmp, len + 1); 533 p->reversed = 0; 534 } 535 536 static struct btrfs_path *alloc_path_for_send(void) 537 { 538 struct btrfs_path *path; 539 540 path = btrfs_alloc_path(); 541 if (!path) 542 return NULL; 543 path->search_commit_root = 1; 544 path->skip_locking = 1; 545 path->need_commit_sem = 1; 546 return path; 547 } 548 549 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 550 { 551 int ret; 552 u32 pos = 0; 553 554 while (pos < len) { 555 ret = kernel_write(filp, buf + pos, len - pos, off); 556 /* TODO handle that correctly */ 557 /*if (ret == -ERESTARTSYS) { 558 continue; 559 }*/ 560 if (ret < 0) 561 return ret; 562 if (ret == 0) { 563 return -EIO; 564 } 565 pos += ret; 566 } 567 568 return 0; 569 } 570 571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 572 { 573 struct btrfs_tlv_header *hdr; 574 int total_len = sizeof(*hdr) + len; 575 int left = sctx->send_max_size - sctx->send_size; 576 577 if (unlikely(left < total_len)) 578 return -EOVERFLOW; 579 580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 581 put_unaligned_le16(attr, &hdr->tlv_type); 582 put_unaligned_le16(len, &hdr->tlv_len); 583 memcpy(hdr + 1, data, len); 584 sctx->send_size += total_len; 585 586 return 0; 587 } 588 589 #define TLV_PUT_DEFINE_INT(bits) \ 590 static int tlv_put_u##bits(struct send_ctx *sctx, \ 591 u##bits attr, u##bits value) \ 592 { \ 593 __le##bits __tmp = cpu_to_le##bits(value); \ 594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 595 } 596 597 TLV_PUT_DEFINE_INT(64) 598 599 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 600 const char *str, int len) 601 { 602 if (len == -1) 603 len = strlen(str); 604 return tlv_put(sctx, attr, str, len); 605 } 606 607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 608 const u8 *uuid) 609 { 610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 611 } 612 613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 614 struct extent_buffer *eb, 615 struct btrfs_timespec *ts) 616 { 617 struct btrfs_timespec bts; 618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 619 return tlv_put(sctx, attr, &bts, sizeof(bts)); 620 } 621 622 623 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 624 do { \ 625 ret = tlv_put(sctx, attrtype, data, attrlen); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 631 do { \ 632 ret = tlv_put_u##bits(sctx, attrtype, value); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while (0) 636 637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 642 do { \ 643 ret = tlv_put_string(sctx, attrtype, str, len); \ 644 if (ret < 0) \ 645 goto tlv_put_failure; \ 646 } while (0) 647 #define TLV_PUT_PATH(sctx, attrtype, p) \ 648 do { \ 649 ret = tlv_put_string(sctx, attrtype, p->start, \ 650 p->end - p->start); \ 651 if (ret < 0) \ 652 goto tlv_put_failure; \ 653 } while(0) 654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 655 do { \ 656 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 657 if (ret < 0) \ 658 goto tlv_put_failure; \ 659 } while (0) 660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 661 do { \ 662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 663 if (ret < 0) \ 664 goto tlv_put_failure; \ 665 } while (0) 666 667 static int send_header(struct send_ctx *sctx) 668 { 669 struct btrfs_stream_header hdr; 670 671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 673 674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 675 &sctx->send_off); 676 } 677 678 /* 679 * For each command/item we want to send to userspace, we call this function. 680 */ 681 static int begin_cmd(struct send_ctx *sctx, int cmd) 682 { 683 struct btrfs_cmd_header *hdr; 684 685 if (WARN_ON(!sctx->send_buf)) 686 return -EINVAL; 687 688 BUG_ON(sctx->send_size); 689 690 sctx->send_size += sizeof(*hdr); 691 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 692 put_unaligned_le16(cmd, &hdr->cmd); 693 694 return 0; 695 } 696 697 static int send_cmd(struct send_ctx *sctx) 698 { 699 int ret; 700 struct btrfs_cmd_header *hdr; 701 u32 crc; 702 703 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 704 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 705 put_unaligned_le32(0, &hdr->crc); 706 707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 708 put_unaligned_le32(crc, &hdr->crc); 709 710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 711 &sctx->send_off); 712 713 sctx->total_send_size += sctx->send_size; 714 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size; 715 sctx->send_size = 0; 716 717 return ret; 718 } 719 720 /* 721 * Sends a move instruction to user space 722 */ 723 static int send_rename(struct send_ctx *sctx, 724 struct fs_path *from, struct fs_path *to) 725 { 726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 727 int ret; 728 729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 730 731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 732 if (ret < 0) 733 goto out; 734 735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 737 738 ret = send_cmd(sctx); 739 740 tlv_put_failure: 741 out: 742 return ret; 743 } 744 745 /* 746 * Sends a link instruction to user space 747 */ 748 static int send_link(struct send_ctx *sctx, 749 struct fs_path *path, struct fs_path *lnk) 750 { 751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 752 int ret; 753 754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 755 756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 757 if (ret < 0) 758 goto out; 759 760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 762 763 ret = send_cmd(sctx); 764 765 tlv_put_failure: 766 out: 767 return ret; 768 } 769 770 /* 771 * Sends an unlink instruction to user space 772 */ 773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 774 { 775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 776 int ret; 777 778 btrfs_debug(fs_info, "send_unlink %s", path->start); 779 780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 781 if (ret < 0) 782 goto out; 783 784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 785 786 ret = send_cmd(sctx); 787 788 tlv_put_failure: 789 out: 790 return ret; 791 } 792 793 /* 794 * Sends a rmdir instruction to user space 795 */ 796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 797 { 798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 799 int ret; 800 801 btrfs_debug(fs_info, "send_rmdir %s", path->start); 802 803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 804 if (ret < 0) 805 goto out; 806 807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 808 809 ret = send_cmd(sctx); 810 811 tlv_put_failure: 812 out: 813 return ret; 814 } 815 816 /* 817 * Helper function to retrieve some fields from an inode item. 818 */ 819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 821 u64 *gid, u64 *rdev) 822 { 823 int ret; 824 struct btrfs_inode_item *ii; 825 struct btrfs_key key; 826 827 key.objectid = ino; 828 key.type = BTRFS_INODE_ITEM_KEY; 829 key.offset = 0; 830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 831 if (ret) { 832 if (ret > 0) 833 ret = -ENOENT; 834 return ret; 835 } 836 837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 838 struct btrfs_inode_item); 839 if (size) 840 *size = btrfs_inode_size(path->nodes[0], ii); 841 if (gen) 842 *gen = btrfs_inode_generation(path->nodes[0], ii); 843 if (mode) 844 *mode = btrfs_inode_mode(path->nodes[0], ii); 845 if (uid) 846 *uid = btrfs_inode_uid(path->nodes[0], ii); 847 if (gid) 848 *gid = btrfs_inode_gid(path->nodes[0], ii); 849 if (rdev) 850 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 851 852 return ret; 853 } 854 855 static int get_inode_info(struct btrfs_root *root, 856 u64 ino, u64 *size, u64 *gen, 857 u64 *mode, u64 *uid, u64 *gid, 858 u64 *rdev) 859 { 860 struct btrfs_path *path; 861 int ret; 862 863 path = alloc_path_for_send(); 864 if (!path) 865 return -ENOMEM; 866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 867 rdev); 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 873 struct fs_path *p, 874 void *ctx); 875 876 /* 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or 878 * btrfs_inode_extref. 879 * The iterate callback may return a non zero value to stop iteration. This can 880 * be a negative value for error codes or 1 to simply stop it. 881 * 882 * path must point to the INODE_REF or INODE_EXTREF when called. 883 */ 884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 885 struct btrfs_key *found_key, int resolve, 886 iterate_inode_ref_t iterate, void *ctx) 887 { 888 struct extent_buffer *eb = path->nodes[0]; 889 struct btrfs_item *item; 890 struct btrfs_inode_ref *iref; 891 struct btrfs_inode_extref *extref; 892 struct btrfs_path *tmp_path; 893 struct fs_path *p; 894 u32 cur = 0; 895 u32 total; 896 int slot = path->slots[0]; 897 u32 name_len; 898 char *start; 899 int ret = 0; 900 int num = 0; 901 int index; 902 u64 dir; 903 unsigned long name_off; 904 unsigned long elem_size; 905 unsigned long ptr; 906 907 p = fs_path_alloc_reversed(); 908 if (!p) 909 return -ENOMEM; 910 911 tmp_path = alloc_path_for_send(); 912 if (!tmp_path) { 913 fs_path_free(p); 914 return -ENOMEM; 915 } 916 917 918 if (found_key->type == BTRFS_INODE_REF_KEY) { 919 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 920 struct btrfs_inode_ref); 921 item = btrfs_item_nr(slot); 922 total = btrfs_item_size(eb, item); 923 elem_size = sizeof(*iref); 924 } else { 925 ptr = btrfs_item_ptr_offset(eb, slot); 926 total = btrfs_item_size_nr(eb, slot); 927 elem_size = sizeof(*extref); 928 } 929 930 while (cur < total) { 931 fs_path_reset(p); 932 933 if (found_key->type == BTRFS_INODE_REF_KEY) { 934 iref = (struct btrfs_inode_ref *)(ptr + cur); 935 name_len = btrfs_inode_ref_name_len(eb, iref); 936 name_off = (unsigned long)(iref + 1); 937 index = btrfs_inode_ref_index(eb, iref); 938 dir = found_key->offset; 939 } else { 940 extref = (struct btrfs_inode_extref *)(ptr + cur); 941 name_len = btrfs_inode_extref_name_len(eb, extref); 942 name_off = (unsigned long)&extref->name; 943 index = btrfs_inode_extref_index(eb, extref); 944 dir = btrfs_inode_extref_parent(eb, extref); 945 } 946 947 if (resolve) { 948 start = btrfs_ref_to_path(root, tmp_path, name_len, 949 name_off, eb, dir, 950 p->buf, p->buf_len); 951 if (IS_ERR(start)) { 952 ret = PTR_ERR(start); 953 goto out; 954 } 955 if (start < p->buf) { 956 /* overflow , try again with larger buffer */ 957 ret = fs_path_ensure_buf(p, 958 p->buf_len + p->buf - start); 959 if (ret < 0) 960 goto out; 961 start = btrfs_ref_to_path(root, tmp_path, 962 name_len, name_off, 963 eb, dir, 964 p->buf, p->buf_len); 965 if (IS_ERR(start)) { 966 ret = PTR_ERR(start); 967 goto out; 968 } 969 BUG_ON(start < p->buf); 970 } 971 p->start = start; 972 } else { 973 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 974 name_len); 975 if (ret < 0) 976 goto out; 977 } 978 979 cur += elem_size + name_len; 980 ret = iterate(num, dir, index, p, ctx); 981 if (ret) 982 goto out; 983 num++; 984 } 985 986 out: 987 btrfs_free_path(tmp_path); 988 fs_path_free(p); 989 return ret; 990 } 991 992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 993 const char *name, int name_len, 994 const char *data, int data_len, 995 u8 type, void *ctx); 996 997 /* 998 * Helper function to iterate the entries in ONE btrfs_dir_item. 999 * The iterate callback may return a non zero value to stop iteration. This can 1000 * be a negative value for error codes or 1 to simply stop it. 1001 * 1002 * path must point to the dir item when called. 1003 */ 1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1005 iterate_dir_item_t iterate, void *ctx) 1006 { 1007 int ret = 0; 1008 struct extent_buffer *eb; 1009 struct btrfs_item *item; 1010 struct btrfs_dir_item *di; 1011 struct btrfs_key di_key; 1012 char *buf = NULL; 1013 int buf_len; 1014 u32 name_len; 1015 u32 data_len; 1016 u32 cur; 1017 u32 len; 1018 u32 total; 1019 int slot; 1020 int num; 1021 u8 type; 1022 1023 /* 1024 * Start with a small buffer (1 page). If later we end up needing more 1025 * space, which can happen for xattrs on a fs with a leaf size greater 1026 * then the page size, attempt to increase the buffer. Typically xattr 1027 * values are small. 1028 */ 1029 buf_len = PATH_MAX; 1030 buf = kmalloc(buf_len, GFP_KERNEL); 1031 if (!buf) { 1032 ret = -ENOMEM; 1033 goto out; 1034 } 1035 1036 eb = path->nodes[0]; 1037 slot = path->slots[0]; 1038 item = btrfs_item_nr(slot); 1039 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1040 cur = 0; 1041 len = 0; 1042 total = btrfs_item_size(eb, item); 1043 1044 num = 0; 1045 while (cur < total) { 1046 name_len = btrfs_dir_name_len(eb, di); 1047 data_len = btrfs_dir_data_len(eb, di); 1048 type = btrfs_dir_type(eb, di); 1049 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1050 1051 if (type == BTRFS_FT_XATTR) { 1052 if (name_len > XATTR_NAME_MAX) { 1053 ret = -ENAMETOOLONG; 1054 goto out; 1055 } 1056 if (name_len + data_len > 1057 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1058 ret = -E2BIG; 1059 goto out; 1060 } 1061 } else { 1062 /* 1063 * Path too long 1064 */ 1065 if (name_len + data_len > PATH_MAX) { 1066 ret = -ENAMETOOLONG; 1067 goto out; 1068 } 1069 } 1070 1071 if (name_len + data_len > buf_len) { 1072 buf_len = name_len + data_len; 1073 if (is_vmalloc_addr(buf)) { 1074 vfree(buf); 1075 buf = NULL; 1076 } else { 1077 char *tmp = krealloc(buf, buf_len, 1078 GFP_KERNEL | __GFP_NOWARN); 1079 1080 if (!tmp) 1081 kfree(buf); 1082 buf = tmp; 1083 } 1084 if (!buf) { 1085 buf = kvmalloc(buf_len, GFP_KERNEL); 1086 if (!buf) { 1087 ret = -ENOMEM; 1088 goto out; 1089 } 1090 } 1091 } 1092 1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1094 name_len + data_len); 1095 1096 len = sizeof(*di) + name_len + data_len; 1097 di = (struct btrfs_dir_item *)((char *)di + len); 1098 cur += len; 1099 1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1101 data_len, type, ctx); 1102 if (ret < 0) 1103 goto out; 1104 if (ret) { 1105 ret = 0; 1106 goto out; 1107 } 1108 1109 num++; 1110 } 1111 1112 out: 1113 kvfree(buf); 1114 return ret; 1115 } 1116 1117 static int __copy_first_ref(int num, u64 dir, int index, 1118 struct fs_path *p, void *ctx) 1119 { 1120 int ret; 1121 struct fs_path *pt = ctx; 1122 1123 ret = fs_path_copy(pt, p); 1124 if (ret < 0) 1125 return ret; 1126 1127 /* we want the first only */ 1128 return 1; 1129 } 1130 1131 /* 1132 * Retrieve the first path of an inode. If an inode has more then one 1133 * ref/hardlink, this is ignored. 1134 */ 1135 static int get_inode_path(struct btrfs_root *root, 1136 u64 ino, struct fs_path *path) 1137 { 1138 int ret; 1139 struct btrfs_key key, found_key; 1140 struct btrfs_path *p; 1141 1142 p = alloc_path_for_send(); 1143 if (!p) 1144 return -ENOMEM; 1145 1146 fs_path_reset(path); 1147 1148 key.objectid = ino; 1149 key.type = BTRFS_INODE_REF_KEY; 1150 key.offset = 0; 1151 1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1153 if (ret < 0) 1154 goto out; 1155 if (ret) { 1156 ret = 1; 1157 goto out; 1158 } 1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1160 if (found_key.objectid != ino || 1161 (found_key.type != BTRFS_INODE_REF_KEY && 1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1163 ret = -ENOENT; 1164 goto out; 1165 } 1166 1167 ret = iterate_inode_ref(root, p, &found_key, 1, 1168 __copy_first_ref, path); 1169 if (ret < 0) 1170 goto out; 1171 ret = 0; 1172 1173 out: 1174 btrfs_free_path(p); 1175 return ret; 1176 } 1177 1178 struct backref_ctx { 1179 struct send_ctx *sctx; 1180 1181 /* number of total found references */ 1182 u64 found; 1183 1184 /* 1185 * used for clones found in send_root. clones found behind cur_objectid 1186 * and cur_offset are not considered as allowed clones. 1187 */ 1188 u64 cur_objectid; 1189 u64 cur_offset; 1190 1191 /* may be truncated in case it's the last extent in a file */ 1192 u64 extent_len; 1193 1194 /* data offset in the file extent item */ 1195 u64 data_offset; 1196 1197 /* Just to check for bugs in backref resolving */ 1198 int found_itself; 1199 }; 1200 1201 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1202 { 1203 u64 root = (u64)(uintptr_t)key; 1204 struct clone_root *cr = (struct clone_root *)elt; 1205 1206 if (root < cr->root->root_key.objectid) 1207 return -1; 1208 if (root > cr->root->root_key.objectid) 1209 return 1; 1210 return 0; 1211 } 1212 1213 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1214 { 1215 struct clone_root *cr1 = (struct clone_root *)e1; 1216 struct clone_root *cr2 = (struct clone_root *)e2; 1217 1218 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1219 return -1; 1220 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1221 return 1; 1222 return 0; 1223 } 1224 1225 /* 1226 * Called for every backref that is found for the current extent. 1227 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1228 */ 1229 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1230 { 1231 struct backref_ctx *bctx = ctx_; 1232 struct clone_root *found; 1233 1234 /* First check if the root is in the list of accepted clone sources */ 1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1236 bctx->sctx->clone_roots_cnt, 1237 sizeof(struct clone_root), 1238 __clone_root_cmp_bsearch); 1239 if (!found) 1240 return 0; 1241 1242 if (found->root == bctx->sctx->send_root && 1243 ino == bctx->cur_objectid && 1244 offset == bctx->cur_offset) { 1245 bctx->found_itself = 1; 1246 } 1247 1248 /* 1249 * Make sure we don't consider clones from send_root that are 1250 * behind the current inode/offset. 1251 */ 1252 if (found->root == bctx->sctx->send_root) { 1253 /* 1254 * If the source inode was not yet processed we can't issue a 1255 * clone operation, as the source extent does not exist yet at 1256 * the destination of the stream. 1257 */ 1258 if (ino > bctx->cur_objectid) 1259 return 0; 1260 /* 1261 * We clone from the inode currently being sent as long as the 1262 * source extent is already processed, otherwise we could try 1263 * to clone from an extent that does not exist yet at the 1264 * destination of the stream. 1265 */ 1266 if (ino == bctx->cur_objectid && 1267 offset + bctx->extent_len > 1268 bctx->sctx->cur_inode_next_write_offset) 1269 return 0; 1270 } 1271 1272 bctx->found++; 1273 found->found_refs++; 1274 if (ino < found->ino) { 1275 found->ino = ino; 1276 found->offset = offset; 1277 } else if (found->ino == ino) { 1278 /* 1279 * same extent found more then once in the same file. 1280 */ 1281 if (found->offset > offset + bctx->extent_len) 1282 found->offset = offset; 1283 } 1284 1285 return 0; 1286 } 1287 1288 /* 1289 * Given an inode, offset and extent item, it finds a good clone for a clone 1290 * instruction. Returns -ENOENT when none could be found. The function makes 1291 * sure that the returned clone is usable at the point where sending is at the 1292 * moment. This means, that no clones are accepted which lie behind the current 1293 * inode+offset. 1294 * 1295 * path must point to the extent item when called. 1296 */ 1297 static int find_extent_clone(struct send_ctx *sctx, 1298 struct btrfs_path *path, 1299 u64 ino, u64 data_offset, 1300 u64 ino_size, 1301 struct clone_root **found) 1302 { 1303 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1304 int ret; 1305 int extent_type; 1306 u64 logical; 1307 u64 disk_byte; 1308 u64 num_bytes; 1309 u64 extent_item_pos; 1310 u64 flags = 0; 1311 struct btrfs_file_extent_item *fi; 1312 struct extent_buffer *eb = path->nodes[0]; 1313 struct backref_ctx *backref_ctx = NULL; 1314 struct clone_root *cur_clone_root; 1315 struct btrfs_key found_key; 1316 struct btrfs_path *tmp_path; 1317 struct btrfs_extent_item *ei; 1318 int compressed; 1319 u32 i; 1320 1321 tmp_path = alloc_path_for_send(); 1322 if (!tmp_path) 1323 return -ENOMEM; 1324 1325 /* We only use this path under the commit sem */ 1326 tmp_path->need_commit_sem = 0; 1327 1328 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1329 if (!backref_ctx) { 1330 ret = -ENOMEM; 1331 goto out; 1332 } 1333 1334 if (data_offset >= ino_size) { 1335 /* 1336 * There may be extents that lie behind the file's size. 1337 * I at least had this in combination with snapshotting while 1338 * writing large files. 1339 */ 1340 ret = 0; 1341 goto out; 1342 } 1343 1344 fi = btrfs_item_ptr(eb, path->slots[0], 1345 struct btrfs_file_extent_item); 1346 extent_type = btrfs_file_extent_type(eb, fi); 1347 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1348 ret = -ENOENT; 1349 goto out; 1350 } 1351 compressed = btrfs_file_extent_compression(eb, fi); 1352 1353 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1354 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1355 if (disk_byte == 0) { 1356 ret = -ENOENT; 1357 goto out; 1358 } 1359 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1360 1361 down_read(&fs_info->commit_root_sem); 1362 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1363 &found_key, &flags); 1364 up_read(&fs_info->commit_root_sem); 1365 1366 if (ret < 0) 1367 goto out; 1368 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1369 ret = -EIO; 1370 goto out; 1371 } 1372 1373 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1374 struct btrfs_extent_item); 1375 /* 1376 * Backreference walking (iterate_extent_inodes() below) is currently 1377 * too expensive when an extent has a large number of references, both 1378 * in time spent and used memory. So for now just fallback to write 1379 * operations instead of clone operations when an extent has more than 1380 * a certain amount of references. 1381 */ 1382 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1383 ret = -ENOENT; 1384 goto out; 1385 } 1386 btrfs_release_path(tmp_path); 1387 1388 /* 1389 * Setup the clone roots. 1390 */ 1391 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1392 cur_clone_root = sctx->clone_roots + i; 1393 cur_clone_root->ino = (u64)-1; 1394 cur_clone_root->offset = 0; 1395 cur_clone_root->found_refs = 0; 1396 } 1397 1398 backref_ctx->sctx = sctx; 1399 backref_ctx->found = 0; 1400 backref_ctx->cur_objectid = ino; 1401 backref_ctx->cur_offset = data_offset; 1402 backref_ctx->found_itself = 0; 1403 backref_ctx->extent_len = num_bytes; 1404 /* 1405 * For non-compressed extents iterate_extent_inodes() gives us extent 1406 * offsets that already take into account the data offset, but not for 1407 * compressed extents, since the offset is logical and not relative to 1408 * the physical extent locations. We must take this into account to 1409 * avoid sending clone offsets that go beyond the source file's size, 1410 * which would result in the clone ioctl failing with -EINVAL on the 1411 * receiving end. 1412 */ 1413 if (compressed == BTRFS_COMPRESS_NONE) 1414 backref_ctx->data_offset = 0; 1415 else 1416 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1417 1418 /* 1419 * The last extent of a file may be too large due to page alignment. 1420 * We need to adjust extent_len in this case so that the checks in 1421 * __iterate_backrefs work. 1422 */ 1423 if (data_offset + num_bytes >= ino_size) 1424 backref_ctx->extent_len = ino_size - data_offset; 1425 1426 /* 1427 * Now collect all backrefs. 1428 */ 1429 if (compressed == BTRFS_COMPRESS_NONE) 1430 extent_item_pos = logical - found_key.objectid; 1431 else 1432 extent_item_pos = 0; 1433 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1434 extent_item_pos, 1, __iterate_backrefs, 1435 backref_ctx, false); 1436 1437 if (ret < 0) 1438 goto out; 1439 1440 if (!backref_ctx->found_itself) { 1441 /* found a bug in backref code? */ 1442 ret = -EIO; 1443 btrfs_err(fs_info, 1444 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1445 ino, data_offset, disk_byte, found_key.objectid); 1446 goto out; 1447 } 1448 1449 btrfs_debug(fs_info, 1450 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1451 data_offset, ino, num_bytes, logical); 1452 1453 if (!backref_ctx->found) 1454 btrfs_debug(fs_info, "no clones found"); 1455 1456 cur_clone_root = NULL; 1457 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1458 if (sctx->clone_roots[i].found_refs) { 1459 if (!cur_clone_root) 1460 cur_clone_root = sctx->clone_roots + i; 1461 else if (sctx->clone_roots[i].root == sctx->send_root) 1462 /* prefer clones from send_root over others */ 1463 cur_clone_root = sctx->clone_roots + i; 1464 } 1465 1466 } 1467 1468 if (cur_clone_root) { 1469 *found = cur_clone_root; 1470 ret = 0; 1471 } else { 1472 ret = -ENOENT; 1473 } 1474 1475 out: 1476 btrfs_free_path(tmp_path); 1477 kfree(backref_ctx); 1478 return ret; 1479 } 1480 1481 static int read_symlink(struct btrfs_root *root, 1482 u64 ino, 1483 struct fs_path *dest) 1484 { 1485 int ret; 1486 struct btrfs_path *path; 1487 struct btrfs_key key; 1488 struct btrfs_file_extent_item *ei; 1489 u8 type; 1490 u8 compression; 1491 unsigned long off; 1492 int len; 1493 1494 path = alloc_path_for_send(); 1495 if (!path) 1496 return -ENOMEM; 1497 1498 key.objectid = ino; 1499 key.type = BTRFS_EXTENT_DATA_KEY; 1500 key.offset = 0; 1501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1502 if (ret < 0) 1503 goto out; 1504 if (ret) { 1505 /* 1506 * An empty symlink inode. Can happen in rare error paths when 1507 * creating a symlink (transaction committed before the inode 1508 * eviction handler removed the symlink inode items and a crash 1509 * happened in between or the subvol was snapshoted in between). 1510 * Print an informative message to dmesg/syslog so that the user 1511 * can delete the symlink. 1512 */ 1513 btrfs_err(root->fs_info, 1514 "Found empty symlink inode %llu at root %llu", 1515 ino, root->root_key.objectid); 1516 ret = -EIO; 1517 goto out; 1518 } 1519 1520 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1521 struct btrfs_file_extent_item); 1522 type = btrfs_file_extent_type(path->nodes[0], ei); 1523 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1524 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1525 BUG_ON(compression); 1526 1527 off = btrfs_file_extent_inline_start(ei); 1528 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1529 1530 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1531 1532 out: 1533 btrfs_free_path(path); 1534 return ret; 1535 } 1536 1537 /* 1538 * Helper function to generate a file name that is unique in the root of 1539 * send_root and parent_root. This is used to generate names for orphan inodes. 1540 */ 1541 static int gen_unique_name(struct send_ctx *sctx, 1542 u64 ino, u64 gen, 1543 struct fs_path *dest) 1544 { 1545 int ret = 0; 1546 struct btrfs_path *path; 1547 struct btrfs_dir_item *di; 1548 char tmp[64]; 1549 int len; 1550 u64 idx = 0; 1551 1552 path = alloc_path_for_send(); 1553 if (!path) 1554 return -ENOMEM; 1555 1556 while (1) { 1557 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1558 ino, gen, idx); 1559 ASSERT(len < sizeof(tmp)); 1560 1561 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1562 path, BTRFS_FIRST_FREE_OBJECTID, 1563 tmp, strlen(tmp), 0); 1564 btrfs_release_path(path); 1565 if (IS_ERR(di)) { 1566 ret = PTR_ERR(di); 1567 goto out; 1568 } 1569 if (di) { 1570 /* not unique, try again */ 1571 idx++; 1572 continue; 1573 } 1574 1575 if (!sctx->parent_root) { 1576 /* unique */ 1577 ret = 0; 1578 break; 1579 } 1580 1581 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1582 path, BTRFS_FIRST_FREE_OBJECTID, 1583 tmp, strlen(tmp), 0); 1584 btrfs_release_path(path); 1585 if (IS_ERR(di)) { 1586 ret = PTR_ERR(di); 1587 goto out; 1588 } 1589 if (di) { 1590 /* not unique, try again */ 1591 idx++; 1592 continue; 1593 } 1594 /* unique */ 1595 break; 1596 } 1597 1598 ret = fs_path_add(dest, tmp, strlen(tmp)); 1599 1600 out: 1601 btrfs_free_path(path); 1602 return ret; 1603 } 1604 1605 enum inode_state { 1606 inode_state_no_change, 1607 inode_state_will_create, 1608 inode_state_did_create, 1609 inode_state_will_delete, 1610 inode_state_did_delete, 1611 }; 1612 1613 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1614 { 1615 int ret; 1616 int left_ret; 1617 int right_ret; 1618 u64 left_gen; 1619 u64 right_gen; 1620 1621 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1622 NULL, NULL); 1623 if (ret < 0 && ret != -ENOENT) 1624 goto out; 1625 left_ret = ret; 1626 1627 if (!sctx->parent_root) { 1628 right_ret = -ENOENT; 1629 } else { 1630 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1631 NULL, NULL, NULL, NULL); 1632 if (ret < 0 && ret != -ENOENT) 1633 goto out; 1634 right_ret = ret; 1635 } 1636 1637 if (!left_ret && !right_ret) { 1638 if (left_gen == gen && right_gen == gen) { 1639 ret = inode_state_no_change; 1640 } else if (left_gen == gen) { 1641 if (ino < sctx->send_progress) 1642 ret = inode_state_did_create; 1643 else 1644 ret = inode_state_will_create; 1645 } else if (right_gen == gen) { 1646 if (ino < sctx->send_progress) 1647 ret = inode_state_did_delete; 1648 else 1649 ret = inode_state_will_delete; 1650 } else { 1651 ret = -ENOENT; 1652 } 1653 } else if (!left_ret) { 1654 if (left_gen == gen) { 1655 if (ino < sctx->send_progress) 1656 ret = inode_state_did_create; 1657 else 1658 ret = inode_state_will_create; 1659 } else { 1660 ret = -ENOENT; 1661 } 1662 } else if (!right_ret) { 1663 if (right_gen == gen) { 1664 if (ino < sctx->send_progress) 1665 ret = inode_state_did_delete; 1666 else 1667 ret = inode_state_will_delete; 1668 } else { 1669 ret = -ENOENT; 1670 } 1671 } else { 1672 ret = -ENOENT; 1673 } 1674 1675 out: 1676 return ret; 1677 } 1678 1679 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1680 { 1681 int ret; 1682 1683 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1684 return 1; 1685 1686 ret = get_cur_inode_state(sctx, ino, gen); 1687 if (ret < 0) 1688 goto out; 1689 1690 if (ret == inode_state_no_change || 1691 ret == inode_state_did_create || 1692 ret == inode_state_will_delete) 1693 ret = 1; 1694 else 1695 ret = 0; 1696 1697 out: 1698 return ret; 1699 } 1700 1701 /* 1702 * Helper function to lookup a dir item in a dir. 1703 */ 1704 static int lookup_dir_item_inode(struct btrfs_root *root, 1705 u64 dir, const char *name, int name_len, 1706 u64 *found_inode, 1707 u8 *found_type) 1708 { 1709 int ret = 0; 1710 struct btrfs_dir_item *di; 1711 struct btrfs_key key; 1712 struct btrfs_path *path; 1713 1714 path = alloc_path_for_send(); 1715 if (!path) 1716 return -ENOMEM; 1717 1718 di = btrfs_lookup_dir_item(NULL, root, path, 1719 dir, name, name_len, 0); 1720 if (IS_ERR_OR_NULL(di)) { 1721 ret = di ? PTR_ERR(di) : -ENOENT; 1722 goto out; 1723 } 1724 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1725 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1726 ret = -ENOENT; 1727 goto out; 1728 } 1729 *found_inode = key.objectid; 1730 *found_type = btrfs_dir_type(path->nodes[0], di); 1731 1732 out: 1733 btrfs_free_path(path); 1734 return ret; 1735 } 1736 1737 /* 1738 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1739 * generation of the parent dir and the name of the dir entry. 1740 */ 1741 static int get_first_ref(struct btrfs_root *root, u64 ino, 1742 u64 *dir, u64 *dir_gen, struct fs_path *name) 1743 { 1744 int ret; 1745 struct btrfs_key key; 1746 struct btrfs_key found_key; 1747 struct btrfs_path *path; 1748 int len; 1749 u64 parent_dir; 1750 1751 path = alloc_path_for_send(); 1752 if (!path) 1753 return -ENOMEM; 1754 1755 key.objectid = ino; 1756 key.type = BTRFS_INODE_REF_KEY; 1757 key.offset = 0; 1758 1759 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1760 if (ret < 0) 1761 goto out; 1762 if (!ret) 1763 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1764 path->slots[0]); 1765 if (ret || found_key.objectid != ino || 1766 (found_key.type != BTRFS_INODE_REF_KEY && 1767 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1768 ret = -ENOENT; 1769 goto out; 1770 } 1771 1772 if (found_key.type == BTRFS_INODE_REF_KEY) { 1773 struct btrfs_inode_ref *iref; 1774 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1775 struct btrfs_inode_ref); 1776 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1777 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1778 (unsigned long)(iref + 1), 1779 len); 1780 parent_dir = found_key.offset; 1781 } else { 1782 struct btrfs_inode_extref *extref; 1783 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1784 struct btrfs_inode_extref); 1785 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1786 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1787 (unsigned long)&extref->name, len); 1788 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1789 } 1790 if (ret < 0) 1791 goto out; 1792 btrfs_release_path(path); 1793 1794 if (dir_gen) { 1795 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1796 NULL, NULL, NULL); 1797 if (ret < 0) 1798 goto out; 1799 } 1800 1801 *dir = parent_dir; 1802 1803 out: 1804 btrfs_free_path(path); 1805 return ret; 1806 } 1807 1808 static int is_first_ref(struct btrfs_root *root, 1809 u64 ino, u64 dir, 1810 const char *name, int name_len) 1811 { 1812 int ret; 1813 struct fs_path *tmp_name; 1814 u64 tmp_dir; 1815 1816 tmp_name = fs_path_alloc(); 1817 if (!tmp_name) 1818 return -ENOMEM; 1819 1820 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1821 if (ret < 0) 1822 goto out; 1823 1824 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1825 ret = 0; 1826 goto out; 1827 } 1828 1829 ret = !memcmp(tmp_name->start, name, name_len); 1830 1831 out: 1832 fs_path_free(tmp_name); 1833 return ret; 1834 } 1835 1836 /* 1837 * Used by process_recorded_refs to determine if a new ref would overwrite an 1838 * already existing ref. In case it detects an overwrite, it returns the 1839 * inode/gen in who_ino/who_gen. 1840 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1841 * to make sure later references to the overwritten inode are possible. 1842 * Orphanizing is however only required for the first ref of an inode. 1843 * process_recorded_refs does an additional is_first_ref check to see if 1844 * orphanizing is really required. 1845 */ 1846 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1847 const char *name, int name_len, 1848 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1849 { 1850 int ret = 0; 1851 u64 gen; 1852 u64 other_inode = 0; 1853 u8 other_type = 0; 1854 1855 if (!sctx->parent_root) 1856 goto out; 1857 1858 ret = is_inode_existent(sctx, dir, dir_gen); 1859 if (ret <= 0) 1860 goto out; 1861 1862 /* 1863 * If we have a parent root we need to verify that the parent dir was 1864 * not deleted and then re-created, if it was then we have no overwrite 1865 * and we can just unlink this entry. 1866 */ 1867 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1868 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1869 NULL, NULL, NULL); 1870 if (ret < 0 && ret != -ENOENT) 1871 goto out; 1872 if (ret) { 1873 ret = 0; 1874 goto out; 1875 } 1876 if (gen != dir_gen) 1877 goto out; 1878 } 1879 1880 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1881 &other_inode, &other_type); 1882 if (ret < 0 && ret != -ENOENT) 1883 goto out; 1884 if (ret) { 1885 ret = 0; 1886 goto out; 1887 } 1888 1889 /* 1890 * Check if the overwritten ref was already processed. If yes, the ref 1891 * was already unlinked/moved, so we can safely assume that we will not 1892 * overwrite anything at this point in time. 1893 */ 1894 if (other_inode > sctx->send_progress || 1895 is_waiting_for_move(sctx, other_inode)) { 1896 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1897 who_gen, who_mode, NULL, NULL, NULL); 1898 if (ret < 0) 1899 goto out; 1900 1901 ret = 1; 1902 *who_ino = other_inode; 1903 } else { 1904 ret = 0; 1905 } 1906 1907 out: 1908 return ret; 1909 } 1910 1911 /* 1912 * Checks if the ref was overwritten by an already processed inode. This is 1913 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1914 * thus the orphan name needs be used. 1915 * process_recorded_refs also uses it to avoid unlinking of refs that were 1916 * overwritten. 1917 */ 1918 static int did_overwrite_ref(struct send_ctx *sctx, 1919 u64 dir, u64 dir_gen, 1920 u64 ino, u64 ino_gen, 1921 const char *name, int name_len) 1922 { 1923 int ret = 0; 1924 u64 gen; 1925 u64 ow_inode; 1926 u8 other_type; 1927 1928 if (!sctx->parent_root) 1929 goto out; 1930 1931 ret = is_inode_existent(sctx, dir, dir_gen); 1932 if (ret <= 0) 1933 goto out; 1934 1935 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1936 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1937 NULL, NULL, NULL); 1938 if (ret < 0 && ret != -ENOENT) 1939 goto out; 1940 if (ret) { 1941 ret = 0; 1942 goto out; 1943 } 1944 if (gen != dir_gen) 1945 goto out; 1946 } 1947 1948 /* check if the ref was overwritten by another ref */ 1949 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1950 &ow_inode, &other_type); 1951 if (ret < 0 && ret != -ENOENT) 1952 goto out; 1953 if (ret) { 1954 /* was never and will never be overwritten */ 1955 ret = 0; 1956 goto out; 1957 } 1958 1959 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1960 NULL, NULL); 1961 if (ret < 0) 1962 goto out; 1963 1964 if (ow_inode == ino && gen == ino_gen) { 1965 ret = 0; 1966 goto out; 1967 } 1968 1969 /* 1970 * We know that it is or will be overwritten. Check this now. 1971 * The current inode being processed might have been the one that caused 1972 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1973 * the current inode being processed. 1974 */ 1975 if ((ow_inode < sctx->send_progress) || 1976 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1977 gen == sctx->cur_inode_gen)) 1978 ret = 1; 1979 else 1980 ret = 0; 1981 1982 out: 1983 return ret; 1984 } 1985 1986 /* 1987 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1988 * that got overwritten. This is used by process_recorded_refs to determine 1989 * if it has to use the path as returned by get_cur_path or the orphan name. 1990 */ 1991 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1992 { 1993 int ret = 0; 1994 struct fs_path *name = NULL; 1995 u64 dir; 1996 u64 dir_gen; 1997 1998 if (!sctx->parent_root) 1999 goto out; 2000 2001 name = fs_path_alloc(); 2002 if (!name) 2003 return -ENOMEM; 2004 2005 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2006 if (ret < 0) 2007 goto out; 2008 2009 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2010 name->start, fs_path_len(name)); 2011 2012 out: 2013 fs_path_free(name); 2014 return ret; 2015 } 2016 2017 /* 2018 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2019 * so we need to do some special handling in case we have clashes. This function 2020 * takes care of this with the help of name_cache_entry::radix_list. 2021 * In case of error, nce is kfreed. 2022 */ 2023 static int name_cache_insert(struct send_ctx *sctx, 2024 struct name_cache_entry *nce) 2025 { 2026 int ret = 0; 2027 struct list_head *nce_head; 2028 2029 nce_head = radix_tree_lookup(&sctx->name_cache, 2030 (unsigned long)nce->ino); 2031 if (!nce_head) { 2032 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2033 if (!nce_head) { 2034 kfree(nce); 2035 return -ENOMEM; 2036 } 2037 INIT_LIST_HEAD(nce_head); 2038 2039 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2040 if (ret < 0) { 2041 kfree(nce_head); 2042 kfree(nce); 2043 return ret; 2044 } 2045 } 2046 list_add_tail(&nce->radix_list, nce_head); 2047 list_add_tail(&nce->list, &sctx->name_cache_list); 2048 sctx->name_cache_size++; 2049 2050 return ret; 2051 } 2052 2053 static void name_cache_delete(struct send_ctx *sctx, 2054 struct name_cache_entry *nce) 2055 { 2056 struct list_head *nce_head; 2057 2058 nce_head = radix_tree_lookup(&sctx->name_cache, 2059 (unsigned long)nce->ino); 2060 if (!nce_head) { 2061 btrfs_err(sctx->send_root->fs_info, 2062 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2063 nce->ino, sctx->name_cache_size); 2064 } 2065 2066 list_del(&nce->radix_list); 2067 list_del(&nce->list); 2068 sctx->name_cache_size--; 2069 2070 /* 2071 * We may not get to the final release of nce_head if the lookup fails 2072 */ 2073 if (nce_head && list_empty(nce_head)) { 2074 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2075 kfree(nce_head); 2076 } 2077 } 2078 2079 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2080 u64 ino, u64 gen) 2081 { 2082 struct list_head *nce_head; 2083 struct name_cache_entry *cur; 2084 2085 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2086 if (!nce_head) 2087 return NULL; 2088 2089 list_for_each_entry(cur, nce_head, radix_list) { 2090 if (cur->ino == ino && cur->gen == gen) 2091 return cur; 2092 } 2093 return NULL; 2094 } 2095 2096 /* 2097 * Removes the entry from the list and adds it back to the end. This marks the 2098 * entry as recently used so that name_cache_clean_unused does not remove it. 2099 */ 2100 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2101 { 2102 list_del(&nce->list); 2103 list_add_tail(&nce->list, &sctx->name_cache_list); 2104 } 2105 2106 /* 2107 * Remove some entries from the beginning of name_cache_list. 2108 */ 2109 static void name_cache_clean_unused(struct send_ctx *sctx) 2110 { 2111 struct name_cache_entry *nce; 2112 2113 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2114 return; 2115 2116 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2117 nce = list_entry(sctx->name_cache_list.next, 2118 struct name_cache_entry, list); 2119 name_cache_delete(sctx, nce); 2120 kfree(nce); 2121 } 2122 } 2123 2124 static void name_cache_free(struct send_ctx *sctx) 2125 { 2126 struct name_cache_entry *nce; 2127 2128 while (!list_empty(&sctx->name_cache_list)) { 2129 nce = list_entry(sctx->name_cache_list.next, 2130 struct name_cache_entry, list); 2131 name_cache_delete(sctx, nce); 2132 kfree(nce); 2133 } 2134 } 2135 2136 /* 2137 * Used by get_cur_path for each ref up to the root. 2138 * Returns 0 if it succeeded. 2139 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2140 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2141 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2142 * Returns <0 in case of error. 2143 */ 2144 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2145 u64 ino, u64 gen, 2146 u64 *parent_ino, 2147 u64 *parent_gen, 2148 struct fs_path *dest) 2149 { 2150 int ret; 2151 int nce_ret; 2152 struct name_cache_entry *nce = NULL; 2153 2154 /* 2155 * First check if we already did a call to this function with the same 2156 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2157 * return the cached result. 2158 */ 2159 nce = name_cache_search(sctx, ino, gen); 2160 if (nce) { 2161 if (ino < sctx->send_progress && nce->need_later_update) { 2162 name_cache_delete(sctx, nce); 2163 kfree(nce); 2164 nce = NULL; 2165 } else { 2166 name_cache_used(sctx, nce); 2167 *parent_ino = nce->parent_ino; 2168 *parent_gen = nce->parent_gen; 2169 ret = fs_path_add(dest, nce->name, nce->name_len); 2170 if (ret < 0) 2171 goto out; 2172 ret = nce->ret; 2173 goto out; 2174 } 2175 } 2176 2177 /* 2178 * If the inode is not existent yet, add the orphan name and return 1. 2179 * This should only happen for the parent dir that we determine in 2180 * __record_new_ref 2181 */ 2182 ret = is_inode_existent(sctx, ino, gen); 2183 if (ret < 0) 2184 goto out; 2185 2186 if (!ret) { 2187 ret = gen_unique_name(sctx, ino, gen, dest); 2188 if (ret < 0) 2189 goto out; 2190 ret = 1; 2191 goto out_cache; 2192 } 2193 2194 /* 2195 * Depending on whether the inode was already processed or not, use 2196 * send_root or parent_root for ref lookup. 2197 */ 2198 if (ino < sctx->send_progress) 2199 ret = get_first_ref(sctx->send_root, ino, 2200 parent_ino, parent_gen, dest); 2201 else 2202 ret = get_first_ref(sctx->parent_root, ino, 2203 parent_ino, parent_gen, dest); 2204 if (ret < 0) 2205 goto out; 2206 2207 /* 2208 * Check if the ref was overwritten by an inode's ref that was processed 2209 * earlier. If yes, treat as orphan and return 1. 2210 */ 2211 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2212 dest->start, dest->end - dest->start); 2213 if (ret < 0) 2214 goto out; 2215 if (ret) { 2216 fs_path_reset(dest); 2217 ret = gen_unique_name(sctx, ino, gen, dest); 2218 if (ret < 0) 2219 goto out; 2220 ret = 1; 2221 } 2222 2223 out_cache: 2224 /* 2225 * Store the result of the lookup in the name cache. 2226 */ 2227 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2228 if (!nce) { 2229 ret = -ENOMEM; 2230 goto out; 2231 } 2232 2233 nce->ino = ino; 2234 nce->gen = gen; 2235 nce->parent_ino = *parent_ino; 2236 nce->parent_gen = *parent_gen; 2237 nce->name_len = fs_path_len(dest); 2238 nce->ret = ret; 2239 strcpy(nce->name, dest->start); 2240 2241 if (ino < sctx->send_progress) 2242 nce->need_later_update = 0; 2243 else 2244 nce->need_later_update = 1; 2245 2246 nce_ret = name_cache_insert(sctx, nce); 2247 if (nce_ret < 0) 2248 ret = nce_ret; 2249 name_cache_clean_unused(sctx); 2250 2251 out: 2252 return ret; 2253 } 2254 2255 /* 2256 * Magic happens here. This function returns the first ref to an inode as it 2257 * would look like while receiving the stream at this point in time. 2258 * We walk the path up to the root. For every inode in between, we check if it 2259 * was already processed/sent. If yes, we continue with the parent as found 2260 * in send_root. If not, we continue with the parent as found in parent_root. 2261 * If we encounter an inode that was deleted at this point in time, we use the 2262 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2263 * that were not created yet and overwritten inodes/refs. 2264 * 2265 * When do we have orphan inodes: 2266 * 1. When an inode is freshly created and thus no valid refs are available yet 2267 * 2. When a directory lost all it's refs (deleted) but still has dir items 2268 * inside which were not processed yet (pending for move/delete). If anyone 2269 * tried to get the path to the dir items, it would get a path inside that 2270 * orphan directory. 2271 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2272 * of an unprocessed inode. If in that case the first ref would be 2273 * overwritten, the overwritten inode gets "orphanized". Later when we 2274 * process this overwritten inode, it is restored at a new place by moving 2275 * the orphan inode. 2276 * 2277 * sctx->send_progress tells this function at which point in time receiving 2278 * would be. 2279 */ 2280 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2281 struct fs_path *dest) 2282 { 2283 int ret = 0; 2284 struct fs_path *name = NULL; 2285 u64 parent_inode = 0; 2286 u64 parent_gen = 0; 2287 int stop = 0; 2288 2289 name = fs_path_alloc(); 2290 if (!name) { 2291 ret = -ENOMEM; 2292 goto out; 2293 } 2294 2295 dest->reversed = 1; 2296 fs_path_reset(dest); 2297 2298 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2299 struct waiting_dir_move *wdm; 2300 2301 fs_path_reset(name); 2302 2303 if (is_waiting_for_rm(sctx, ino, gen)) { 2304 ret = gen_unique_name(sctx, ino, gen, name); 2305 if (ret < 0) 2306 goto out; 2307 ret = fs_path_add_path(dest, name); 2308 break; 2309 } 2310 2311 wdm = get_waiting_dir_move(sctx, ino); 2312 if (wdm && wdm->orphanized) { 2313 ret = gen_unique_name(sctx, ino, gen, name); 2314 stop = 1; 2315 } else if (wdm) { 2316 ret = get_first_ref(sctx->parent_root, ino, 2317 &parent_inode, &parent_gen, name); 2318 } else { 2319 ret = __get_cur_name_and_parent(sctx, ino, gen, 2320 &parent_inode, 2321 &parent_gen, name); 2322 if (ret) 2323 stop = 1; 2324 } 2325 2326 if (ret < 0) 2327 goto out; 2328 2329 ret = fs_path_add_path(dest, name); 2330 if (ret < 0) 2331 goto out; 2332 2333 ino = parent_inode; 2334 gen = parent_gen; 2335 } 2336 2337 out: 2338 fs_path_free(name); 2339 if (!ret) 2340 fs_path_unreverse(dest); 2341 return ret; 2342 } 2343 2344 /* 2345 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2346 */ 2347 static int send_subvol_begin(struct send_ctx *sctx) 2348 { 2349 int ret; 2350 struct btrfs_root *send_root = sctx->send_root; 2351 struct btrfs_root *parent_root = sctx->parent_root; 2352 struct btrfs_path *path; 2353 struct btrfs_key key; 2354 struct btrfs_root_ref *ref; 2355 struct extent_buffer *leaf; 2356 char *name = NULL; 2357 int namelen; 2358 2359 path = btrfs_alloc_path(); 2360 if (!path) 2361 return -ENOMEM; 2362 2363 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2364 if (!name) { 2365 btrfs_free_path(path); 2366 return -ENOMEM; 2367 } 2368 2369 key.objectid = send_root->root_key.objectid; 2370 key.type = BTRFS_ROOT_BACKREF_KEY; 2371 key.offset = 0; 2372 2373 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2374 &key, path, 1, 0); 2375 if (ret < 0) 2376 goto out; 2377 if (ret) { 2378 ret = -ENOENT; 2379 goto out; 2380 } 2381 2382 leaf = path->nodes[0]; 2383 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2384 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2385 key.objectid != send_root->root_key.objectid) { 2386 ret = -ENOENT; 2387 goto out; 2388 } 2389 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2390 namelen = btrfs_root_ref_name_len(leaf, ref); 2391 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2392 btrfs_release_path(path); 2393 2394 if (parent_root) { 2395 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2396 if (ret < 0) 2397 goto out; 2398 } else { 2399 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2400 if (ret < 0) 2401 goto out; 2402 } 2403 2404 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2405 2406 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2407 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2408 sctx->send_root->root_item.received_uuid); 2409 else 2410 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2411 sctx->send_root->root_item.uuid); 2412 2413 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2414 btrfs_root_ctransid(&sctx->send_root->root_item)); 2415 if (parent_root) { 2416 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2417 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2418 parent_root->root_item.received_uuid); 2419 else 2420 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2421 parent_root->root_item.uuid); 2422 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2423 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2424 } 2425 2426 ret = send_cmd(sctx); 2427 2428 tlv_put_failure: 2429 out: 2430 btrfs_free_path(path); 2431 kfree(name); 2432 return ret; 2433 } 2434 2435 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2436 { 2437 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2438 int ret = 0; 2439 struct fs_path *p; 2440 2441 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2442 2443 p = fs_path_alloc(); 2444 if (!p) 2445 return -ENOMEM; 2446 2447 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2448 if (ret < 0) 2449 goto out; 2450 2451 ret = get_cur_path(sctx, ino, gen, p); 2452 if (ret < 0) 2453 goto out; 2454 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2455 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2456 2457 ret = send_cmd(sctx); 2458 2459 tlv_put_failure: 2460 out: 2461 fs_path_free(p); 2462 return ret; 2463 } 2464 2465 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2466 { 2467 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2468 int ret = 0; 2469 struct fs_path *p; 2470 2471 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2472 2473 p = fs_path_alloc(); 2474 if (!p) 2475 return -ENOMEM; 2476 2477 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2478 if (ret < 0) 2479 goto out; 2480 2481 ret = get_cur_path(sctx, ino, gen, p); 2482 if (ret < 0) 2483 goto out; 2484 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2485 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2486 2487 ret = send_cmd(sctx); 2488 2489 tlv_put_failure: 2490 out: 2491 fs_path_free(p); 2492 return ret; 2493 } 2494 2495 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2496 { 2497 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2498 int ret = 0; 2499 struct fs_path *p; 2500 2501 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2502 ino, uid, gid); 2503 2504 p = fs_path_alloc(); 2505 if (!p) 2506 return -ENOMEM; 2507 2508 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2509 if (ret < 0) 2510 goto out; 2511 2512 ret = get_cur_path(sctx, ino, gen, p); 2513 if (ret < 0) 2514 goto out; 2515 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2516 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2517 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2518 2519 ret = send_cmd(sctx); 2520 2521 tlv_put_failure: 2522 out: 2523 fs_path_free(p); 2524 return ret; 2525 } 2526 2527 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2528 { 2529 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2530 int ret = 0; 2531 struct fs_path *p = NULL; 2532 struct btrfs_inode_item *ii; 2533 struct btrfs_path *path = NULL; 2534 struct extent_buffer *eb; 2535 struct btrfs_key key; 2536 int slot; 2537 2538 btrfs_debug(fs_info, "send_utimes %llu", ino); 2539 2540 p = fs_path_alloc(); 2541 if (!p) 2542 return -ENOMEM; 2543 2544 path = alloc_path_for_send(); 2545 if (!path) { 2546 ret = -ENOMEM; 2547 goto out; 2548 } 2549 2550 key.objectid = ino; 2551 key.type = BTRFS_INODE_ITEM_KEY; 2552 key.offset = 0; 2553 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2554 if (ret > 0) 2555 ret = -ENOENT; 2556 if (ret < 0) 2557 goto out; 2558 2559 eb = path->nodes[0]; 2560 slot = path->slots[0]; 2561 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2562 2563 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2564 if (ret < 0) 2565 goto out; 2566 2567 ret = get_cur_path(sctx, ino, gen, p); 2568 if (ret < 0) 2569 goto out; 2570 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2571 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2572 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2573 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2574 /* TODO Add otime support when the otime patches get into upstream */ 2575 2576 ret = send_cmd(sctx); 2577 2578 tlv_put_failure: 2579 out: 2580 fs_path_free(p); 2581 btrfs_free_path(path); 2582 return ret; 2583 } 2584 2585 /* 2586 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2587 * a valid path yet because we did not process the refs yet. So, the inode 2588 * is created as orphan. 2589 */ 2590 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2591 { 2592 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2593 int ret = 0; 2594 struct fs_path *p; 2595 int cmd; 2596 u64 gen; 2597 u64 mode; 2598 u64 rdev; 2599 2600 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2601 2602 p = fs_path_alloc(); 2603 if (!p) 2604 return -ENOMEM; 2605 2606 if (ino != sctx->cur_ino) { 2607 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2608 NULL, NULL, &rdev); 2609 if (ret < 0) 2610 goto out; 2611 } else { 2612 gen = sctx->cur_inode_gen; 2613 mode = sctx->cur_inode_mode; 2614 rdev = sctx->cur_inode_rdev; 2615 } 2616 2617 if (S_ISREG(mode)) { 2618 cmd = BTRFS_SEND_C_MKFILE; 2619 } else if (S_ISDIR(mode)) { 2620 cmd = BTRFS_SEND_C_MKDIR; 2621 } else if (S_ISLNK(mode)) { 2622 cmd = BTRFS_SEND_C_SYMLINK; 2623 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2624 cmd = BTRFS_SEND_C_MKNOD; 2625 } else if (S_ISFIFO(mode)) { 2626 cmd = BTRFS_SEND_C_MKFIFO; 2627 } else if (S_ISSOCK(mode)) { 2628 cmd = BTRFS_SEND_C_MKSOCK; 2629 } else { 2630 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2631 (int)(mode & S_IFMT)); 2632 ret = -EOPNOTSUPP; 2633 goto out; 2634 } 2635 2636 ret = begin_cmd(sctx, cmd); 2637 if (ret < 0) 2638 goto out; 2639 2640 ret = gen_unique_name(sctx, ino, gen, p); 2641 if (ret < 0) 2642 goto out; 2643 2644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2646 2647 if (S_ISLNK(mode)) { 2648 fs_path_reset(p); 2649 ret = read_symlink(sctx->send_root, ino, p); 2650 if (ret < 0) 2651 goto out; 2652 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2653 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2654 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2655 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2656 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2657 } 2658 2659 ret = send_cmd(sctx); 2660 if (ret < 0) 2661 goto out; 2662 2663 2664 tlv_put_failure: 2665 out: 2666 fs_path_free(p); 2667 return ret; 2668 } 2669 2670 /* 2671 * We need some special handling for inodes that get processed before the parent 2672 * directory got created. See process_recorded_refs for details. 2673 * This function does the check if we already created the dir out of order. 2674 */ 2675 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2676 { 2677 int ret = 0; 2678 struct btrfs_path *path = NULL; 2679 struct btrfs_key key; 2680 struct btrfs_key found_key; 2681 struct btrfs_key di_key; 2682 struct extent_buffer *eb; 2683 struct btrfs_dir_item *di; 2684 int slot; 2685 2686 path = alloc_path_for_send(); 2687 if (!path) { 2688 ret = -ENOMEM; 2689 goto out; 2690 } 2691 2692 key.objectid = dir; 2693 key.type = BTRFS_DIR_INDEX_KEY; 2694 key.offset = 0; 2695 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2696 if (ret < 0) 2697 goto out; 2698 2699 while (1) { 2700 eb = path->nodes[0]; 2701 slot = path->slots[0]; 2702 if (slot >= btrfs_header_nritems(eb)) { 2703 ret = btrfs_next_leaf(sctx->send_root, path); 2704 if (ret < 0) { 2705 goto out; 2706 } else if (ret > 0) { 2707 ret = 0; 2708 break; 2709 } 2710 continue; 2711 } 2712 2713 btrfs_item_key_to_cpu(eb, &found_key, slot); 2714 if (found_key.objectid != key.objectid || 2715 found_key.type != key.type) { 2716 ret = 0; 2717 goto out; 2718 } 2719 2720 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2721 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2722 2723 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2724 di_key.objectid < sctx->send_progress) { 2725 ret = 1; 2726 goto out; 2727 } 2728 2729 path->slots[0]++; 2730 } 2731 2732 out: 2733 btrfs_free_path(path); 2734 return ret; 2735 } 2736 2737 /* 2738 * Only creates the inode if it is: 2739 * 1. Not a directory 2740 * 2. Or a directory which was not created already due to out of order 2741 * directories. See did_create_dir and process_recorded_refs for details. 2742 */ 2743 static int send_create_inode_if_needed(struct send_ctx *sctx) 2744 { 2745 int ret; 2746 2747 if (S_ISDIR(sctx->cur_inode_mode)) { 2748 ret = did_create_dir(sctx, sctx->cur_ino); 2749 if (ret < 0) 2750 goto out; 2751 if (ret) { 2752 ret = 0; 2753 goto out; 2754 } 2755 } 2756 2757 ret = send_create_inode(sctx, sctx->cur_ino); 2758 if (ret < 0) 2759 goto out; 2760 2761 out: 2762 return ret; 2763 } 2764 2765 struct recorded_ref { 2766 struct list_head list; 2767 char *name; 2768 struct fs_path *full_path; 2769 u64 dir; 2770 u64 dir_gen; 2771 int name_len; 2772 }; 2773 2774 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2775 { 2776 ref->full_path = path; 2777 ref->name = (char *)kbasename(ref->full_path->start); 2778 ref->name_len = ref->full_path->end - ref->name; 2779 } 2780 2781 /* 2782 * We need to process new refs before deleted refs, but compare_tree gives us 2783 * everything mixed. So we first record all refs and later process them. 2784 * This function is a helper to record one ref. 2785 */ 2786 static int __record_ref(struct list_head *head, u64 dir, 2787 u64 dir_gen, struct fs_path *path) 2788 { 2789 struct recorded_ref *ref; 2790 2791 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2792 if (!ref) 2793 return -ENOMEM; 2794 2795 ref->dir = dir; 2796 ref->dir_gen = dir_gen; 2797 set_ref_path(ref, path); 2798 list_add_tail(&ref->list, head); 2799 return 0; 2800 } 2801 2802 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2803 { 2804 struct recorded_ref *new; 2805 2806 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2807 if (!new) 2808 return -ENOMEM; 2809 2810 new->dir = ref->dir; 2811 new->dir_gen = ref->dir_gen; 2812 new->full_path = NULL; 2813 INIT_LIST_HEAD(&new->list); 2814 list_add_tail(&new->list, list); 2815 return 0; 2816 } 2817 2818 static void __free_recorded_refs(struct list_head *head) 2819 { 2820 struct recorded_ref *cur; 2821 2822 while (!list_empty(head)) { 2823 cur = list_entry(head->next, struct recorded_ref, list); 2824 fs_path_free(cur->full_path); 2825 list_del(&cur->list); 2826 kfree(cur); 2827 } 2828 } 2829 2830 static void free_recorded_refs(struct send_ctx *sctx) 2831 { 2832 __free_recorded_refs(&sctx->new_refs); 2833 __free_recorded_refs(&sctx->deleted_refs); 2834 } 2835 2836 /* 2837 * Renames/moves a file/dir to its orphan name. Used when the first 2838 * ref of an unprocessed inode gets overwritten and for all non empty 2839 * directories. 2840 */ 2841 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2842 struct fs_path *path) 2843 { 2844 int ret; 2845 struct fs_path *orphan; 2846 2847 orphan = fs_path_alloc(); 2848 if (!orphan) 2849 return -ENOMEM; 2850 2851 ret = gen_unique_name(sctx, ino, gen, orphan); 2852 if (ret < 0) 2853 goto out; 2854 2855 ret = send_rename(sctx, path, orphan); 2856 2857 out: 2858 fs_path_free(orphan); 2859 return ret; 2860 } 2861 2862 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2863 u64 dir_ino, u64 dir_gen) 2864 { 2865 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2866 struct rb_node *parent = NULL; 2867 struct orphan_dir_info *entry, *odi; 2868 2869 while (*p) { 2870 parent = *p; 2871 entry = rb_entry(parent, struct orphan_dir_info, node); 2872 if (dir_ino < entry->ino) 2873 p = &(*p)->rb_left; 2874 else if (dir_ino > entry->ino) 2875 p = &(*p)->rb_right; 2876 else if (dir_gen < entry->gen) 2877 p = &(*p)->rb_left; 2878 else if (dir_gen > entry->gen) 2879 p = &(*p)->rb_right; 2880 else 2881 return entry; 2882 } 2883 2884 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2885 if (!odi) 2886 return ERR_PTR(-ENOMEM); 2887 odi->ino = dir_ino; 2888 odi->gen = dir_gen; 2889 odi->last_dir_index_offset = 0; 2890 2891 rb_link_node(&odi->node, parent, p); 2892 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2893 return odi; 2894 } 2895 2896 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2897 u64 dir_ino, u64 gen) 2898 { 2899 struct rb_node *n = sctx->orphan_dirs.rb_node; 2900 struct orphan_dir_info *entry; 2901 2902 while (n) { 2903 entry = rb_entry(n, struct orphan_dir_info, node); 2904 if (dir_ino < entry->ino) 2905 n = n->rb_left; 2906 else if (dir_ino > entry->ino) 2907 n = n->rb_right; 2908 else if (gen < entry->gen) 2909 n = n->rb_left; 2910 else if (gen > entry->gen) 2911 n = n->rb_right; 2912 else 2913 return entry; 2914 } 2915 return NULL; 2916 } 2917 2918 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2919 { 2920 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2921 2922 return odi != NULL; 2923 } 2924 2925 static void free_orphan_dir_info(struct send_ctx *sctx, 2926 struct orphan_dir_info *odi) 2927 { 2928 if (!odi) 2929 return; 2930 rb_erase(&odi->node, &sctx->orphan_dirs); 2931 kfree(odi); 2932 } 2933 2934 /* 2935 * Returns 1 if a directory can be removed at this point in time. 2936 * We check this by iterating all dir items and checking if the inode behind 2937 * the dir item was already processed. 2938 */ 2939 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2940 u64 send_progress) 2941 { 2942 int ret = 0; 2943 struct btrfs_root *root = sctx->parent_root; 2944 struct btrfs_path *path; 2945 struct btrfs_key key; 2946 struct btrfs_key found_key; 2947 struct btrfs_key loc; 2948 struct btrfs_dir_item *di; 2949 struct orphan_dir_info *odi = NULL; 2950 2951 /* 2952 * Don't try to rmdir the top/root subvolume dir. 2953 */ 2954 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2955 return 0; 2956 2957 path = alloc_path_for_send(); 2958 if (!path) 2959 return -ENOMEM; 2960 2961 key.objectid = dir; 2962 key.type = BTRFS_DIR_INDEX_KEY; 2963 key.offset = 0; 2964 2965 odi = get_orphan_dir_info(sctx, dir, dir_gen); 2966 if (odi) 2967 key.offset = odi->last_dir_index_offset; 2968 2969 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2970 if (ret < 0) 2971 goto out; 2972 2973 while (1) { 2974 struct waiting_dir_move *dm; 2975 2976 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2977 ret = btrfs_next_leaf(root, path); 2978 if (ret < 0) 2979 goto out; 2980 else if (ret > 0) 2981 break; 2982 continue; 2983 } 2984 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2985 path->slots[0]); 2986 if (found_key.objectid != key.objectid || 2987 found_key.type != key.type) 2988 break; 2989 2990 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2991 struct btrfs_dir_item); 2992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2993 2994 dm = get_waiting_dir_move(sctx, loc.objectid); 2995 if (dm) { 2996 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2997 if (IS_ERR(odi)) { 2998 ret = PTR_ERR(odi); 2999 goto out; 3000 } 3001 odi->gen = dir_gen; 3002 odi->last_dir_index_offset = found_key.offset; 3003 dm->rmdir_ino = dir; 3004 dm->rmdir_gen = dir_gen; 3005 ret = 0; 3006 goto out; 3007 } 3008 3009 if (loc.objectid > send_progress) { 3010 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3011 if (IS_ERR(odi)) { 3012 ret = PTR_ERR(odi); 3013 goto out; 3014 } 3015 odi->gen = dir_gen; 3016 odi->last_dir_index_offset = found_key.offset; 3017 ret = 0; 3018 goto out; 3019 } 3020 3021 path->slots[0]++; 3022 } 3023 free_orphan_dir_info(sctx, odi); 3024 3025 ret = 1; 3026 3027 out: 3028 btrfs_free_path(path); 3029 return ret; 3030 } 3031 3032 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3033 { 3034 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3035 3036 return entry != NULL; 3037 } 3038 3039 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3040 { 3041 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3042 struct rb_node *parent = NULL; 3043 struct waiting_dir_move *entry, *dm; 3044 3045 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3046 if (!dm) 3047 return -ENOMEM; 3048 dm->ino = ino; 3049 dm->rmdir_ino = 0; 3050 dm->rmdir_gen = 0; 3051 dm->orphanized = orphanized; 3052 3053 while (*p) { 3054 parent = *p; 3055 entry = rb_entry(parent, struct waiting_dir_move, node); 3056 if (ino < entry->ino) { 3057 p = &(*p)->rb_left; 3058 } else if (ino > entry->ino) { 3059 p = &(*p)->rb_right; 3060 } else { 3061 kfree(dm); 3062 return -EEXIST; 3063 } 3064 } 3065 3066 rb_link_node(&dm->node, parent, p); 3067 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3068 return 0; 3069 } 3070 3071 static struct waiting_dir_move * 3072 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3073 { 3074 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3075 struct waiting_dir_move *entry; 3076 3077 while (n) { 3078 entry = rb_entry(n, struct waiting_dir_move, node); 3079 if (ino < entry->ino) 3080 n = n->rb_left; 3081 else if (ino > entry->ino) 3082 n = n->rb_right; 3083 else 3084 return entry; 3085 } 3086 return NULL; 3087 } 3088 3089 static void free_waiting_dir_move(struct send_ctx *sctx, 3090 struct waiting_dir_move *dm) 3091 { 3092 if (!dm) 3093 return; 3094 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3095 kfree(dm); 3096 } 3097 3098 static int add_pending_dir_move(struct send_ctx *sctx, 3099 u64 ino, 3100 u64 ino_gen, 3101 u64 parent_ino, 3102 struct list_head *new_refs, 3103 struct list_head *deleted_refs, 3104 const bool is_orphan) 3105 { 3106 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3107 struct rb_node *parent = NULL; 3108 struct pending_dir_move *entry = NULL, *pm; 3109 struct recorded_ref *cur; 3110 int exists = 0; 3111 int ret; 3112 3113 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3114 if (!pm) 3115 return -ENOMEM; 3116 pm->parent_ino = parent_ino; 3117 pm->ino = ino; 3118 pm->gen = ino_gen; 3119 INIT_LIST_HEAD(&pm->list); 3120 INIT_LIST_HEAD(&pm->update_refs); 3121 RB_CLEAR_NODE(&pm->node); 3122 3123 while (*p) { 3124 parent = *p; 3125 entry = rb_entry(parent, struct pending_dir_move, node); 3126 if (parent_ino < entry->parent_ino) { 3127 p = &(*p)->rb_left; 3128 } else if (parent_ino > entry->parent_ino) { 3129 p = &(*p)->rb_right; 3130 } else { 3131 exists = 1; 3132 break; 3133 } 3134 } 3135 3136 list_for_each_entry(cur, deleted_refs, list) { 3137 ret = dup_ref(cur, &pm->update_refs); 3138 if (ret < 0) 3139 goto out; 3140 } 3141 list_for_each_entry(cur, new_refs, list) { 3142 ret = dup_ref(cur, &pm->update_refs); 3143 if (ret < 0) 3144 goto out; 3145 } 3146 3147 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3148 if (ret) 3149 goto out; 3150 3151 if (exists) { 3152 list_add_tail(&pm->list, &entry->list); 3153 } else { 3154 rb_link_node(&pm->node, parent, p); 3155 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3156 } 3157 ret = 0; 3158 out: 3159 if (ret) { 3160 __free_recorded_refs(&pm->update_refs); 3161 kfree(pm); 3162 } 3163 return ret; 3164 } 3165 3166 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3167 u64 parent_ino) 3168 { 3169 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3170 struct pending_dir_move *entry; 3171 3172 while (n) { 3173 entry = rb_entry(n, struct pending_dir_move, node); 3174 if (parent_ino < entry->parent_ino) 3175 n = n->rb_left; 3176 else if (parent_ino > entry->parent_ino) 3177 n = n->rb_right; 3178 else 3179 return entry; 3180 } 3181 return NULL; 3182 } 3183 3184 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3185 u64 ino, u64 gen, u64 *ancestor_ino) 3186 { 3187 int ret = 0; 3188 u64 parent_inode = 0; 3189 u64 parent_gen = 0; 3190 u64 start_ino = ino; 3191 3192 *ancestor_ino = 0; 3193 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3194 fs_path_reset(name); 3195 3196 if (is_waiting_for_rm(sctx, ino, gen)) 3197 break; 3198 if (is_waiting_for_move(sctx, ino)) { 3199 if (*ancestor_ino == 0) 3200 *ancestor_ino = ino; 3201 ret = get_first_ref(sctx->parent_root, ino, 3202 &parent_inode, &parent_gen, name); 3203 } else { 3204 ret = __get_cur_name_and_parent(sctx, ino, gen, 3205 &parent_inode, 3206 &parent_gen, name); 3207 if (ret > 0) { 3208 ret = 0; 3209 break; 3210 } 3211 } 3212 if (ret < 0) 3213 break; 3214 if (parent_inode == start_ino) { 3215 ret = 1; 3216 if (*ancestor_ino == 0) 3217 *ancestor_ino = ino; 3218 break; 3219 } 3220 ino = parent_inode; 3221 gen = parent_gen; 3222 } 3223 return ret; 3224 } 3225 3226 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3227 { 3228 struct fs_path *from_path = NULL; 3229 struct fs_path *to_path = NULL; 3230 struct fs_path *name = NULL; 3231 u64 orig_progress = sctx->send_progress; 3232 struct recorded_ref *cur; 3233 u64 parent_ino, parent_gen; 3234 struct waiting_dir_move *dm = NULL; 3235 u64 rmdir_ino = 0; 3236 u64 rmdir_gen; 3237 u64 ancestor; 3238 bool is_orphan; 3239 int ret; 3240 3241 name = fs_path_alloc(); 3242 from_path = fs_path_alloc(); 3243 if (!name || !from_path) { 3244 ret = -ENOMEM; 3245 goto out; 3246 } 3247 3248 dm = get_waiting_dir_move(sctx, pm->ino); 3249 ASSERT(dm); 3250 rmdir_ino = dm->rmdir_ino; 3251 rmdir_gen = dm->rmdir_gen; 3252 is_orphan = dm->orphanized; 3253 free_waiting_dir_move(sctx, dm); 3254 3255 if (is_orphan) { 3256 ret = gen_unique_name(sctx, pm->ino, 3257 pm->gen, from_path); 3258 } else { 3259 ret = get_first_ref(sctx->parent_root, pm->ino, 3260 &parent_ino, &parent_gen, name); 3261 if (ret < 0) 3262 goto out; 3263 ret = get_cur_path(sctx, parent_ino, parent_gen, 3264 from_path); 3265 if (ret < 0) 3266 goto out; 3267 ret = fs_path_add_path(from_path, name); 3268 } 3269 if (ret < 0) 3270 goto out; 3271 3272 sctx->send_progress = sctx->cur_ino + 1; 3273 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3274 if (ret < 0) 3275 goto out; 3276 if (ret) { 3277 LIST_HEAD(deleted_refs); 3278 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3279 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3280 &pm->update_refs, &deleted_refs, 3281 is_orphan); 3282 if (ret < 0) 3283 goto out; 3284 if (rmdir_ino) { 3285 dm = get_waiting_dir_move(sctx, pm->ino); 3286 ASSERT(dm); 3287 dm->rmdir_ino = rmdir_ino; 3288 dm->rmdir_gen = rmdir_gen; 3289 } 3290 goto out; 3291 } 3292 fs_path_reset(name); 3293 to_path = name; 3294 name = NULL; 3295 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3296 if (ret < 0) 3297 goto out; 3298 3299 ret = send_rename(sctx, from_path, to_path); 3300 if (ret < 0) 3301 goto out; 3302 3303 if (rmdir_ino) { 3304 struct orphan_dir_info *odi; 3305 u64 gen; 3306 3307 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3308 if (!odi) { 3309 /* already deleted */ 3310 goto finish; 3311 } 3312 gen = odi->gen; 3313 3314 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3315 if (ret < 0) 3316 goto out; 3317 if (!ret) 3318 goto finish; 3319 3320 name = fs_path_alloc(); 3321 if (!name) { 3322 ret = -ENOMEM; 3323 goto out; 3324 } 3325 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3326 if (ret < 0) 3327 goto out; 3328 ret = send_rmdir(sctx, name); 3329 if (ret < 0) 3330 goto out; 3331 } 3332 3333 finish: 3334 ret = send_utimes(sctx, pm->ino, pm->gen); 3335 if (ret < 0) 3336 goto out; 3337 3338 /* 3339 * After rename/move, need to update the utimes of both new parent(s) 3340 * and old parent(s). 3341 */ 3342 list_for_each_entry(cur, &pm->update_refs, list) { 3343 /* 3344 * The parent inode might have been deleted in the send snapshot 3345 */ 3346 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3347 NULL, NULL, NULL, NULL, NULL); 3348 if (ret == -ENOENT) { 3349 ret = 0; 3350 continue; 3351 } 3352 if (ret < 0) 3353 goto out; 3354 3355 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3356 if (ret < 0) 3357 goto out; 3358 } 3359 3360 out: 3361 fs_path_free(name); 3362 fs_path_free(from_path); 3363 fs_path_free(to_path); 3364 sctx->send_progress = orig_progress; 3365 3366 return ret; 3367 } 3368 3369 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3370 { 3371 if (!list_empty(&m->list)) 3372 list_del(&m->list); 3373 if (!RB_EMPTY_NODE(&m->node)) 3374 rb_erase(&m->node, &sctx->pending_dir_moves); 3375 __free_recorded_refs(&m->update_refs); 3376 kfree(m); 3377 } 3378 3379 static void tail_append_pending_moves(struct send_ctx *sctx, 3380 struct pending_dir_move *moves, 3381 struct list_head *stack) 3382 { 3383 if (list_empty(&moves->list)) { 3384 list_add_tail(&moves->list, stack); 3385 } else { 3386 LIST_HEAD(list); 3387 list_splice_init(&moves->list, &list); 3388 list_add_tail(&moves->list, stack); 3389 list_splice_tail(&list, stack); 3390 } 3391 if (!RB_EMPTY_NODE(&moves->node)) { 3392 rb_erase(&moves->node, &sctx->pending_dir_moves); 3393 RB_CLEAR_NODE(&moves->node); 3394 } 3395 } 3396 3397 static int apply_children_dir_moves(struct send_ctx *sctx) 3398 { 3399 struct pending_dir_move *pm; 3400 struct list_head stack; 3401 u64 parent_ino = sctx->cur_ino; 3402 int ret = 0; 3403 3404 pm = get_pending_dir_moves(sctx, parent_ino); 3405 if (!pm) 3406 return 0; 3407 3408 INIT_LIST_HEAD(&stack); 3409 tail_append_pending_moves(sctx, pm, &stack); 3410 3411 while (!list_empty(&stack)) { 3412 pm = list_first_entry(&stack, struct pending_dir_move, list); 3413 parent_ino = pm->ino; 3414 ret = apply_dir_move(sctx, pm); 3415 free_pending_move(sctx, pm); 3416 if (ret) 3417 goto out; 3418 pm = get_pending_dir_moves(sctx, parent_ino); 3419 if (pm) 3420 tail_append_pending_moves(sctx, pm, &stack); 3421 } 3422 return 0; 3423 3424 out: 3425 while (!list_empty(&stack)) { 3426 pm = list_first_entry(&stack, struct pending_dir_move, list); 3427 free_pending_move(sctx, pm); 3428 } 3429 return ret; 3430 } 3431 3432 /* 3433 * We might need to delay a directory rename even when no ancestor directory 3434 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3435 * renamed. This happens when we rename a directory to the old name (the name 3436 * in the parent root) of some other unrelated directory that got its rename 3437 * delayed due to some ancestor with higher number that got renamed. 3438 * 3439 * Example: 3440 * 3441 * Parent snapshot: 3442 * . (ino 256) 3443 * |---- a/ (ino 257) 3444 * | |---- file (ino 260) 3445 * | 3446 * |---- b/ (ino 258) 3447 * |---- c/ (ino 259) 3448 * 3449 * Send snapshot: 3450 * . (ino 256) 3451 * |---- a/ (ino 258) 3452 * |---- x/ (ino 259) 3453 * |---- y/ (ino 257) 3454 * |----- file (ino 260) 3455 * 3456 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3457 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3458 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3459 * must issue is: 3460 * 3461 * 1 - rename 259 from 'c' to 'x' 3462 * 2 - rename 257 from 'a' to 'x/y' 3463 * 3 - rename 258 from 'b' to 'a' 3464 * 3465 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3466 * be done right away and < 0 on error. 3467 */ 3468 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3469 struct recorded_ref *parent_ref, 3470 const bool is_orphan) 3471 { 3472 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3473 struct btrfs_path *path; 3474 struct btrfs_key key; 3475 struct btrfs_key di_key; 3476 struct btrfs_dir_item *di; 3477 u64 left_gen; 3478 u64 right_gen; 3479 int ret = 0; 3480 struct waiting_dir_move *wdm; 3481 3482 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3483 return 0; 3484 3485 path = alloc_path_for_send(); 3486 if (!path) 3487 return -ENOMEM; 3488 3489 key.objectid = parent_ref->dir; 3490 key.type = BTRFS_DIR_ITEM_KEY; 3491 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3492 3493 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3494 if (ret < 0) { 3495 goto out; 3496 } else if (ret > 0) { 3497 ret = 0; 3498 goto out; 3499 } 3500 3501 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3502 parent_ref->name_len); 3503 if (!di) { 3504 ret = 0; 3505 goto out; 3506 } 3507 /* 3508 * di_key.objectid has the number of the inode that has a dentry in the 3509 * parent directory with the same name that sctx->cur_ino is being 3510 * renamed to. We need to check if that inode is in the send root as 3511 * well and if it is currently marked as an inode with a pending rename, 3512 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3513 * that it happens after that other inode is renamed. 3514 */ 3515 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3516 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3517 ret = 0; 3518 goto out; 3519 } 3520 3521 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3522 &left_gen, NULL, NULL, NULL, NULL); 3523 if (ret < 0) 3524 goto out; 3525 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3526 &right_gen, NULL, NULL, NULL, NULL); 3527 if (ret < 0) { 3528 if (ret == -ENOENT) 3529 ret = 0; 3530 goto out; 3531 } 3532 3533 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3534 if (right_gen != left_gen) { 3535 ret = 0; 3536 goto out; 3537 } 3538 3539 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3540 if (wdm && !wdm->orphanized) { 3541 ret = add_pending_dir_move(sctx, 3542 sctx->cur_ino, 3543 sctx->cur_inode_gen, 3544 di_key.objectid, 3545 &sctx->new_refs, 3546 &sctx->deleted_refs, 3547 is_orphan); 3548 if (!ret) 3549 ret = 1; 3550 } 3551 out: 3552 btrfs_free_path(path); 3553 return ret; 3554 } 3555 3556 /* 3557 * Check if inode ino2, or any of its ancestors, is inode ino1. 3558 * Return 1 if true, 0 if false and < 0 on error. 3559 */ 3560 static int check_ino_in_path(struct btrfs_root *root, 3561 const u64 ino1, 3562 const u64 ino1_gen, 3563 const u64 ino2, 3564 const u64 ino2_gen, 3565 struct fs_path *fs_path) 3566 { 3567 u64 ino = ino2; 3568 3569 if (ino1 == ino2) 3570 return ino1_gen == ino2_gen; 3571 3572 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3573 u64 parent; 3574 u64 parent_gen; 3575 int ret; 3576 3577 fs_path_reset(fs_path); 3578 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3579 if (ret < 0) 3580 return ret; 3581 if (parent == ino1) 3582 return parent_gen == ino1_gen; 3583 ino = parent; 3584 } 3585 return 0; 3586 } 3587 3588 /* 3589 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3590 * possible path (in case ino2 is not a directory and has multiple hard links). 3591 * Return 1 if true, 0 if false and < 0 on error. 3592 */ 3593 static int is_ancestor(struct btrfs_root *root, 3594 const u64 ino1, 3595 const u64 ino1_gen, 3596 const u64 ino2, 3597 struct fs_path *fs_path) 3598 { 3599 bool free_fs_path = false; 3600 int ret = 0; 3601 struct btrfs_path *path = NULL; 3602 struct btrfs_key key; 3603 3604 if (!fs_path) { 3605 fs_path = fs_path_alloc(); 3606 if (!fs_path) 3607 return -ENOMEM; 3608 free_fs_path = true; 3609 } 3610 3611 path = alloc_path_for_send(); 3612 if (!path) { 3613 ret = -ENOMEM; 3614 goto out; 3615 } 3616 3617 key.objectid = ino2; 3618 key.type = BTRFS_INODE_REF_KEY; 3619 key.offset = 0; 3620 3621 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3622 if (ret < 0) 3623 goto out; 3624 3625 while (true) { 3626 struct extent_buffer *leaf = path->nodes[0]; 3627 int slot = path->slots[0]; 3628 u32 cur_offset = 0; 3629 u32 item_size; 3630 3631 if (slot >= btrfs_header_nritems(leaf)) { 3632 ret = btrfs_next_leaf(root, path); 3633 if (ret < 0) 3634 goto out; 3635 if (ret > 0) 3636 break; 3637 continue; 3638 } 3639 3640 btrfs_item_key_to_cpu(leaf, &key, slot); 3641 if (key.objectid != ino2) 3642 break; 3643 if (key.type != BTRFS_INODE_REF_KEY && 3644 key.type != BTRFS_INODE_EXTREF_KEY) 3645 break; 3646 3647 item_size = btrfs_item_size_nr(leaf, slot); 3648 while (cur_offset < item_size) { 3649 u64 parent; 3650 u64 parent_gen; 3651 3652 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3653 unsigned long ptr; 3654 struct btrfs_inode_extref *extref; 3655 3656 ptr = btrfs_item_ptr_offset(leaf, slot); 3657 extref = (struct btrfs_inode_extref *) 3658 (ptr + cur_offset); 3659 parent = btrfs_inode_extref_parent(leaf, 3660 extref); 3661 cur_offset += sizeof(*extref); 3662 cur_offset += btrfs_inode_extref_name_len(leaf, 3663 extref); 3664 } else { 3665 parent = key.offset; 3666 cur_offset = item_size; 3667 } 3668 3669 ret = get_inode_info(root, parent, NULL, &parent_gen, 3670 NULL, NULL, NULL, NULL); 3671 if (ret < 0) 3672 goto out; 3673 ret = check_ino_in_path(root, ino1, ino1_gen, 3674 parent, parent_gen, fs_path); 3675 if (ret) 3676 goto out; 3677 } 3678 path->slots[0]++; 3679 } 3680 ret = 0; 3681 out: 3682 btrfs_free_path(path); 3683 if (free_fs_path) 3684 fs_path_free(fs_path); 3685 return ret; 3686 } 3687 3688 static int wait_for_parent_move(struct send_ctx *sctx, 3689 struct recorded_ref *parent_ref, 3690 const bool is_orphan) 3691 { 3692 int ret = 0; 3693 u64 ino = parent_ref->dir; 3694 u64 ino_gen = parent_ref->dir_gen; 3695 u64 parent_ino_before, parent_ino_after; 3696 struct fs_path *path_before = NULL; 3697 struct fs_path *path_after = NULL; 3698 int len1, len2; 3699 3700 path_after = fs_path_alloc(); 3701 path_before = fs_path_alloc(); 3702 if (!path_after || !path_before) { 3703 ret = -ENOMEM; 3704 goto out; 3705 } 3706 3707 /* 3708 * Our current directory inode may not yet be renamed/moved because some 3709 * ancestor (immediate or not) has to be renamed/moved first. So find if 3710 * such ancestor exists and make sure our own rename/move happens after 3711 * that ancestor is processed to avoid path build infinite loops (done 3712 * at get_cur_path()). 3713 */ 3714 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3715 u64 parent_ino_after_gen; 3716 3717 if (is_waiting_for_move(sctx, ino)) { 3718 /* 3719 * If the current inode is an ancestor of ino in the 3720 * parent root, we need to delay the rename of the 3721 * current inode, otherwise don't delayed the rename 3722 * because we can end up with a circular dependency 3723 * of renames, resulting in some directories never 3724 * getting the respective rename operations issued in 3725 * the send stream or getting into infinite path build 3726 * loops. 3727 */ 3728 ret = is_ancestor(sctx->parent_root, 3729 sctx->cur_ino, sctx->cur_inode_gen, 3730 ino, path_before); 3731 if (ret) 3732 break; 3733 } 3734 3735 fs_path_reset(path_before); 3736 fs_path_reset(path_after); 3737 3738 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3739 &parent_ino_after_gen, path_after); 3740 if (ret < 0) 3741 goto out; 3742 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3743 NULL, path_before); 3744 if (ret < 0 && ret != -ENOENT) { 3745 goto out; 3746 } else if (ret == -ENOENT) { 3747 ret = 0; 3748 break; 3749 } 3750 3751 len1 = fs_path_len(path_before); 3752 len2 = fs_path_len(path_after); 3753 if (ino > sctx->cur_ino && 3754 (parent_ino_before != parent_ino_after || len1 != len2 || 3755 memcmp(path_before->start, path_after->start, len1))) { 3756 u64 parent_ino_gen; 3757 3758 ret = get_inode_info(sctx->parent_root, ino, NULL, 3759 &parent_ino_gen, NULL, NULL, NULL, 3760 NULL); 3761 if (ret < 0) 3762 goto out; 3763 if (ino_gen == parent_ino_gen) { 3764 ret = 1; 3765 break; 3766 } 3767 } 3768 ino = parent_ino_after; 3769 ino_gen = parent_ino_after_gen; 3770 } 3771 3772 out: 3773 fs_path_free(path_before); 3774 fs_path_free(path_after); 3775 3776 if (ret == 1) { 3777 ret = add_pending_dir_move(sctx, 3778 sctx->cur_ino, 3779 sctx->cur_inode_gen, 3780 ino, 3781 &sctx->new_refs, 3782 &sctx->deleted_refs, 3783 is_orphan); 3784 if (!ret) 3785 ret = 1; 3786 } 3787 3788 return ret; 3789 } 3790 3791 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3792 { 3793 int ret; 3794 struct fs_path *new_path; 3795 3796 /* 3797 * Our reference's name member points to its full_path member string, so 3798 * we use here a new path. 3799 */ 3800 new_path = fs_path_alloc(); 3801 if (!new_path) 3802 return -ENOMEM; 3803 3804 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3805 if (ret < 0) { 3806 fs_path_free(new_path); 3807 return ret; 3808 } 3809 ret = fs_path_add(new_path, ref->name, ref->name_len); 3810 if (ret < 0) { 3811 fs_path_free(new_path); 3812 return ret; 3813 } 3814 3815 fs_path_free(ref->full_path); 3816 set_ref_path(ref, new_path); 3817 3818 return 0; 3819 } 3820 3821 /* 3822 * When processing the new references for an inode we may orphanize an existing 3823 * directory inode because its old name conflicts with one of the new references 3824 * of the current inode. Later, when processing another new reference of our 3825 * inode, we might need to orphanize another inode, but the path we have in the 3826 * reference reflects the pre-orphanization name of the directory we previously 3827 * orphanized. For example: 3828 * 3829 * parent snapshot looks like: 3830 * 3831 * . (ino 256) 3832 * |----- f1 (ino 257) 3833 * |----- f2 (ino 258) 3834 * |----- d1/ (ino 259) 3835 * |----- d2/ (ino 260) 3836 * 3837 * send snapshot looks like: 3838 * 3839 * . (ino 256) 3840 * |----- d1 (ino 258) 3841 * |----- f2/ (ino 259) 3842 * |----- f2_link/ (ino 260) 3843 * | |----- f1 (ino 257) 3844 * | 3845 * |----- d2 (ino 258) 3846 * 3847 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3848 * cache it in the name cache. Later when we start processing inode 258, when 3849 * collecting all its new references we set a full path of "d1/d2" for its new 3850 * reference with name "d2". When we start processing the new references we 3851 * start by processing the new reference with name "d1", and this results in 3852 * orphanizing inode 259, since its old reference causes a conflict. Then we 3853 * move on the next new reference, with name "d2", and we find out we must 3854 * orphanize inode 260, as its old reference conflicts with ours - but for the 3855 * orphanization we use a source path corresponding to the path we stored in the 3856 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3857 * receiver fail since the path component "d1/" no longer exists, it was renamed 3858 * to "o259-6-0/" when processing the previous new reference. So in this case we 3859 * must recompute the path in the new reference and use it for the new 3860 * orphanization operation. 3861 */ 3862 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3863 { 3864 char *name; 3865 int ret; 3866 3867 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3868 if (!name) 3869 return -ENOMEM; 3870 3871 fs_path_reset(ref->full_path); 3872 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3873 if (ret < 0) 3874 goto out; 3875 3876 ret = fs_path_add(ref->full_path, name, ref->name_len); 3877 if (ret < 0) 3878 goto out; 3879 3880 /* Update the reference's base name pointer. */ 3881 set_ref_path(ref, ref->full_path); 3882 out: 3883 kfree(name); 3884 return ret; 3885 } 3886 3887 /* 3888 * This does all the move/link/unlink/rmdir magic. 3889 */ 3890 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3891 { 3892 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3893 int ret = 0; 3894 struct recorded_ref *cur; 3895 struct recorded_ref *cur2; 3896 struct list_head check_dirs; 3897 struct fs_path *valid_path = NULL; 3898 u64 ow_inode = 0; 3899 u64 ow_gen; 3900 u64 ow_mode; 3901 int did_overwrite = 0; 3902 int is_orphan = 0; 3903 u64 last_dir_ino_rm = 0; 3904 bool can_rename = true; 3905 bool orphanized_dir = false; 3906 bool orphanized_ancestor = false; 3907 3908 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3909 3910 /* 3911 * This should never happen as the root dir always has the same ref 3912 * which is always '..' 3913 */ 3914 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3915 INIT_LIST_HEAD(&check_dirs); 3916 3917 valid_path = fs_path_alloc(); 3918 if (!valid_path) { 3919 ret = -ENOMEM; 3920 goto out; 3921 } 3922 3923 /* 3924 * First, check if the first ref of the current inode was overwritten 3925 * before. If yes, we know that the current inode was already orphanized 3926 * and thus use the orphan name. If not, we can use get_cur_path to 3927 * get the path of the first ref as it would like while receiving at 3928 * this point in time. 3929 * New inodes are always orphan at the beginning, so force to use the 3930 * orphan name in this case. 3931 * The first ref is stored in valid_path and will be updated if it 3932 * gets moved around. 3933 */ 3934 if (!sctx->cur_inode_new) { 3935 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3936 sctx->cur_inode_gen); 3937 if (ret < 0) 3938 goto out; 3939 if (ret) 3940 did_overwrite = 1; 3941 } 3942 if (sctx->cur_inode_new || did_overwrite) { 3943 ret = gen_unique_name(sctx, sctx->cur_ino, 3944 sctx->cur_inode_gen, valid_path); 3945 if (ret < 0) 3946 goto out; 3947 is_orphan = 1; 3948 } else { 3949 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3950 valid_path); 3951 if (ret < 0) 3952 goto out; 3953 } 3954 3955 /* 3956 * Before doing any rename and link operations, do a first pass on the 3957 * new references to orphanize any unprocessed inodes that may have a 3958 * reference that conflicts with one of the new references of the current 3959 * inode. This needs to happen first because a new reference may conflict 3960 * with the old reference of a parent directory, so we must make sure 3961 * that the path used for link and rename commands don't use an 3962 * orphanized name when an ancestor was not yet orphanized. 3963 * 3964 * Example: 3965 * 3966 * Parent snapshot: 3967 * 3968 * . (ino 256) 3969 * |----- testdir/ (ino 259) 3970 * | |----- a (ino 257) 3971 * | 3972 * |----- b (ino 258) 3973 * 3974 * Send snapshot: 3975 * 3976 * . (ino 256) 3977 * |----- testdir_2/ (ino 259) 3978 * | |----- a (ino 260) 3979 * | 3980 * |----- testdir (ino 257) 3981 * |----- b (ino 257) 3982 * |----- b2 (ino 258) 3983 * 3984 * Processing the new reference for inode 257 with name "b" may happen 3985 * before processing the new reference with name "testdir". If so, we 3986 * must make sure that by the time we send a link command to create the 3987 * hard link "b", inode 259 was already orphanized, since the generated 3988 * path in "valid_path" already contains the orphanized name for 259. 3989 * We are processing inode 257, so only later when processing 259 we do 3990 * the rename operation to change its temporary (orphanized) name to 3991 * "testdir_2". 3992 */ 3993 list_for_each_entry(cur, &sctx->new_refs, list) { 3994 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3995 if (ret < 0) 3996 goto out; 3997 if (ret == inode_state_will_create) 3998 continue; 3999 4000 /* 4001 * Check if this new ref would overwrite the first ref of another 4002 * unprocessed inode. If yes, orphanize the overwritten inode. 4003 * If we find an overwritten ref that is not the first ref, 4004 * simply unlink it. 4005 */ 4006 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4007 cur->name, cur->name_len, 4008 &ow_inode, &ow_gen, &ow_mode); 4009 if (ret < 0) 4010 goto out; 4011 if (ret) { 4012 ret = is_first_ref(sctx->parent_root, 4013 ow_inode, cur->dir, cur->name, 4014 cur->name_len); 4015 if (ret < 0) 4016 goto out; 4017 if (ret) { 4018 struct name_cache_entry *nce; 4019 struct waiting_dir_move *wdm; 4020 4021 if (orphanized_dir) { 4022 ret = refresh_ref_path(sctx, cur); 4023 if (ret < 0) 4024 goto out; 4025 } 4026 4027 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4028 cur->full_path); 4029 if (ret < 0) 4030 goto out; 4031 if (S_ISDIR(ow_mode)) 4032 orphanized_dir = true; 4033 4034 /* 4035 * If ow_inode has its rename operation delayed 4036 * make sure that its orphanized name is used in 4037 * the source path when performing its rename 4038 * operation. 4039 */ 4040 if (is_waiting_for_move(sctx, ow_inode)) { 4041 wdm = get_waiting_dir_move(sctx, 4042 ow_inode); 4043 ASSERT(wdm); 4044 wdm->orphanized = true; 4045 } 4046 4047 /* 4048 * Make sure we clear our orphanized inode's 4049 * name from the name cache. This is because the 4050 * inode ow_inode might be an ancestor of some 4051 * other inode that will be orphanized as well 4052 * later and has an inode number greater than 4053 * sctx->send_progress. We need to prevent 4054 * future name lookups from using the old name 4055 * and get instead the orphan name. 4056 */ 4057 nce = name_cache_search(sctx, ow_inode, ow_gen); 4058 if (nce) { 4059 name_cache_delete(sctx, nce); 4060 kfree(nce); 4061 } 4062 4063 /* 4064 * ow_inode might currently be an ancestor of 4065 * cur_ino, therefore compute valid_path (the 4066 * current path of cur_ino) again because it 4067 * might contain the pre-orphanization name of 4068 * ow_inode, which is no longer valid. 4069 */ 4070 ret = is_ancestor(sctx->parent_root, 4071 ow_inode, ow_gen, 4072 sctx->cur_ino, NULL); 4073 if (ret > 0) { 4074 orphanized_ancestor = true; 4075 fs_path_reset(valid_path); 4076 ret = get_cur_path(sctx, sctx->cur_ino, 4077 sctx->cur_inode_gen, 4078 valid_path); 4079 } 4080 if (ret < 0) 4081 goto out; 4082 } else { 4083 ret = send_unlink(sctx, cur->full_path); 4084 if (ret < 0) 4085 goto out; 4086 } 4087 } 4088 4089 } 4090 4091 list_for_each_entry(cur, &sctx->new_refs, list) { 4092 /* 4093 * We may have refs where the parent directory does not exist 4094 * yet. This happens if the parent directories inum is higher 4095 * than the current inum. To handle this case, we create the 4096 * parent directory out of order. But we need to check if this 4097 * did already happen before due to other refs in the same dir. 4098 */ 4099 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4100 if (ret < 0) 4101 goto out; 4102 if (ret == inode_state_will_create) { 4103 ret = 0; 4104 /* 4105 * First check if any of the current inodes refs did 4106 * already create the dir. 4107 */ 4108 list_for_each_entry(cur2, &sctx->new_refs, list) { 4109 if (cur == cur2) 4110 break; 4111 if (cur2->dir == cur->dir) { 4112 ret = 1; 4113 break; 4114 } 4115 } 4116 4117 /* 4118 * If that did not happen, check if a previous inode 4119 * did already create the dir. 4120 */ 4121 if (!ret) 4122 ret = did_create_dir(sctx, cur->dir); 4123 if (ret < 0) 4124 goto out; 4125 if (!ret) { 4126 ret = send_create_inode(sctx, cur->dir); 4127 if (ret < 0) 4128 goto out; 4129 } 4130 } 4131 4132 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4133 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4134 if (ret < 0) 4135 goto out; 4136 if (ret == 1) { 4137 can_rename = false; 4138 *pending_move = 1; 4139 } 4140 } 4141 4142 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4143 can_rename) { 4144 ret = wait_for_parent_move(sctx, cur, is_orphan); 4145 if (ret < 0) 4146 goto out; 4147 if (ret == 1) { 4148 can_rename = false; 4149 *pending_move = 1; 4150 } 4151 } 4152 4153 /* 4154 * link/move the ref to the new place. If we have an orphan 4155 * inode, move it and update valid_path. If not, link or move 4156 * it depending on the inode mode. 4157 */ 4158 if (is_orphan && can_rename) { 4159 ret = send_rename(sctx, valid_path, cur->full_path); 4160 if (ret < 0) 4161 goto out; 4162 is_orphan = 0; 4163 ret = fs_path_copy(valid_path, cur->full_path); 4164 if (ret < 0) 4165 goto out; 4166 } else if (can_rename) { 4167 if (S_ISDIR(sctx->cur_inode_mode)) { 4168 /* 4169 * Dirs can't be linked, so move it. For moved 4170 * dirs, we always have one new and one deleted 4171 * ref. The deleted ref is ignored later. 4172 */ 4173 ret = send_rename(sctx, valid_path, 4174 cur->full_path); 4175 if (!ret) 4176 ret = fs_path_copy(valid_path, 4177 cur->full_path); 4178 if (ret < 0) 4179 goto out; 4180 } else { 4181 /* 4182 * We might have previously orphanized an inode 4183 * which is an ancestor of our current inode, 4184 * so our reference's full path, which was 4185 * computed before any such orphanizations, must 4186 * be updated. 4187 */ 4188 if (orphanized_dir) { 4189 ret = update_ref_path(sctx, cur); 4190 if (ret < 0) 4191 goto out; 4192 } 4193 ret = send_link(sctx, cur->full_path, 4194 valid_path); 4195 if (ret < 0) 4196 goto out; 4197 } 4198 } 4199 ret = dup_ref(cur, &check_dirs); 4200 if (ret < 0) 4201 goto out; 4202 } 4203 4204 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4205 /* 4206 * Check if we can already rmdir the directory. If not, 4207 * orphanize it. For every dir item inside that gets deleted 4208 * later, we do this check again and rmdir it then if possible. 4209 * See the use of check_dirs for more details. 4210 */ 4211 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4212 sctx->cur_ino); 4213 if (ret < 0) 4214 goto out; 4215 if (ret) { 4216 ret = send_rmdir(sctx, valid_path); 4217 if (ret < 0) 4218 goto out; 4219 } else if (!is_orphan) { 4220 ret = orphanize_inode(sctx, sctx->cur_ino, 4221 sctx->cur_inode_gen, valid_path); 4222 if (ret < 0) 4223 goto out; 4224 is_orphan = 1; 4225 } 4226 4227 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4228 ret = dup_ref(cur, &check_dirs); 4229 if (ret < 0) 4230 goto out; 4231 } 4232 } else if (S_ISDIR(sctx->cur_inode_mode) && 4233 !list_empty(&sctx->deleted_refs)) { 4234 /* 4235 * We have a moved dir. Add the old parent to check_dirs 4236 */ 4237 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4238 list); 4239 ret = dup_ref(cur, &check_dirs); 4240 if (ret < 0) 4241 goto out; 4242 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4243 /* 4244 * We have a non dir inode. Go through all deleted refs and 4245 * unlink them if they were not already overwritten by other 4246 * inodes. 4247 */ 4248 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4249 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4250 sctx->cur_ino, sctx->cur_inode_gen, 4251 cur->name, cur->name_len); 4252 if (ret < 0) 4253 goto out; 4254 if (!ret) { 4255 /* 4256 * If we orphanized any ancestor before, we need 4257 * to recompute the full path for deleted names, 4258 * since any such path was computed before we 4259 * processed any references and orphanized any 4260 * ancestor inode. 4261 */ 4262 if (orphanized_ancestor) { 4263 ret = update_ref_path(sctx, cur); 4264 if (ret < 0) 4265 goto out; 4266 } 4267 ret = send_unlink(sctx, cur->full_path); 4268 if (ret < 0) 4269 goto out; 4270 } 4271 ret = dup_ref(cur, &check_dirs); 4272 if (ret < 0) 4273 goto out; 4274 } 4275 /* 4276 * If the inode is still orphan, unlink the orphan. This may 4277 * happen when a previous inode did overwrite the first ref 4278 * of this inode and no new refs were added for the current 4279 * inode. Unlinking does not mean that the inode is deleted in 4280 * all cases. There may still be links to this inode in other 4281 * places. 4282 */ 4283 if (is_orphan) { 4284 ret = send_unlink(sctx, valid_path); 4285 if (ret < 0) 4286 goto out; 4287 } 4288 } 4289 4290 /* 4291 * We did collect all parent dirs where cur_inode was once located. We 4292 * now go through all these dirs and check if they are pending for 4293 * deletion and if it's finally possible to perform the rmdir now. 4294 * We also update the inode stats of the parent dirs here. 4295 */ 4296 list_for_each_entry(cur, &check_dirs, list) { 4297 /* 4298 * In case we had refs into dirs that were not processed yet, 4299 * we don't need to do the utime and rmdir logic for these dirs. 4300 * The dir will be processed later. 4301 */ 4302 if (cur->dir > sctx->cur_ino) 4303 continue; 4304 4305 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4306 if (ret < 0) 4307 goto out; 4308 4309 if (ret == inode_state_did_create || 4310 ret == inode_state_no_change) { 4311 /* TODO delayed utimes */ 4312 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4313 if (ret < 0) 4314 goto out; 4315 } else if (ret == inode_state_did_delete && 4316 cur->dir != last_dir_ino_rm) { 4317 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4318 sctx->cur_ino); 4319 if (ret < 0) 4320 goto out; 4321 if (ret) { 4322 ret = get_cur_path(sctx, cur->dir, 4323 cur->dir_gen, valid_path); 4324 if (ret < 0) 4325 goto out; 4326 ret = send_rmdir(sctx, valid_path); 4327 if (ret < 0) 4328 goto out; 4329 last_dir_ino_rm = cur->dir; 4330 } 4331 } 4332 } 4333 4334 ret = 0; 4335 4336 out: 4337 __free_recorded_refs(&check_dirs); 4338 free_recorded_refs(sctx); 4339 fs_path_free(valid_path); 4340 return ret; 4341 } 4342 4343 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4344 void *ctx, struct list_head *refs) 4345 { 4346 int ret = 0; 4347 struct send_ctx *sctx = ctx; 4348 struct fs_path *p; 4349 u64 gen; 4350 4351 p = fs_path_alloc(); 4352 if (!p) 4353 return -ENOMEM; 4354 4355 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4356 NULL, NULL); 4357 if (ret < 0) 4358 goto out; 4359 4360 ret = get_cur_path(sctx, dir, gen, p); 4361 if (ret < 0) 4362 goto out; 4363 ret = fs_path_add_path(p, name); 4364 if (ret < 0) 4365 goto out; 4366 4367 ret = __record_ref(refs, dir, gen, p); 4368 4369 out: 4370 if (ret) 4371 fs_path_free(p); 4372 return ret; 4373 } 4374 4375 static int __record_new_ref(int num, u64 dir, int index, 4376 struct fs_path *name, 4377 void *ctx) 4378 { 4379 struct send_ctx *sctx = ctx; 4380 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4381 } 4382 4383 4384 static int __record_deleted_ref(int num, u64 dir, int index, 4385 struct fs_path *name, 4386 void *ctx) 4387 { 4388 struct send_ctx *sctx = ctx; 4389 return record_ref(sctx->parent_root, dir, name, ctx, 4390 &sctx->deleted_refs); 4391 } 4392 4393 static int record_new_ref(struct send_ctx *sctx) 4394 { 4395 int ret; 4396 4397 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4398 sctx->cmp_key, 0, __record_new_ref, sctx); 4399 if (ret < 0) 4400 goto out; 4401 ret = 0; 4402 4403 out: 4404 return ret; 4405 } 4406 4407 static int record_deleted_ref(struct send_ctx *sctx) 4408 { 4409 int ret; 4410 4411 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4412 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4413 if (ret < 0) 4414 goto out; 4415 ret = 0; 4416 4417 out: 4418 return ret; 4419 } 4420 4421 struct find_ref_ctx { 4422 u64 dir; 4423 u64 dir_gen; 4424 struct btrfs_root *root; 4425 struct fs_path *name; 4426 int found_idx; 4427 }; 4428 4429 static int __find_iref(int num, u64 dir, int index, 4430 struct fs_path *name, 4431 void *ctx_) 4432 { 4433 struct find_ref_ctx *ctx = ctx_; 4434 u64 dir_gen; 4435 int ret; 4436 4437 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4438 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4439 /* 4440 * To avoid doing extra lookups we'll only do this if everything 4441 * else matches. 4442 */ 4443 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4444 NULL, NULL, NULL); 4445 if (ret) 4446 return ret; 4447 if (dir_gen != ctx->dir_gen) 4448 return 0; 4449 ctx->found_idx = num; 4450 return 1; 4451 } 4452 return 0; 4453 } 4454 4455 static int find_iref(struct btrfs_root *root, 4456 struct btrfs_path *path, 4457 struct btrfs_key *key, 4458 u64 dir, u64 dir_gen, struct fs_path *name) 4459 { 4460 int ret; 4461 struct find_ref_ctx ctx; 4462 4463 ctx.dir = dir; 4464 ctx.name = name; 4465 ctx.dir_gen = dir_gen; 4466 ctx.found_idx = -1; 4467 ctx.root = root; 4468 4469 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4470 if (ret < 0) 4471 return ret; 4472 4473 if (ctx.found_idx == -1) 4474 return -ENOENT; 4475 4476 return ctx.found_idx; 4477 } 4478 4479 static int __record_changed_new_ref(int num, u64 dir, int index, 4480 struct fs_path *name, 4481 void *ctx) 4482 { 4483 u64 dir_gen; 4484 int ret; 4485 struct send_ctx *sctx = ctx; 4486 4487 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4488 NULL, NULL, NULL); 4489 if (ret) 4490 return ret; 4491 4492 ret = find_iref(sctx->parent_root, sctx->right_path, 4493 sctx->cmp_key, dir, dir_gen, name); 4494 if (ret == -ENOENT) 4495 ret = __record_new_ref(num, dir, index, name, sctx); 4496 else if (ret > 0) 4497 ret = 0; 4498 4499 return ret; 4500 } 4501 4502 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4503 struct fs_path *name, 4504 void *ctx) 4505 { 4506 u64 dir_gen; 4507 int ret; 4508 struct send_ctx *sctx = ctx; 4509 4510 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4511 NULL, NULL, NULL); 4512 if (ret) 4513 return ret; 4514 4515 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4516 dir, dir_gen, name); 4517 if (ret == -ENOENT) 4518 ret = __record_deleted_ref(num, dir, index, name, sctx); 4519 else if (ret > 0) 4520 ret = 0; 4521 4522 return ret; 4523 } 4524 4525 static int record_changed_ref(struct send_ctx *sctx) 4526 { 4527 int ret = 0; 4528 4529 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4530 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4531 if (ret < 0) 4532 goto out; 4533 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4534 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4535 if (ret < 0) 4536 goto out; 4537 ret = 0; 4538 4539 out: 4540 return ret; 4541 } 4542 4543 /* 4544 * Record and process all refs at once. Needed when an inode changes the 4545 * generation number, which means that it was deleted and recreated. 4546 */ 4547 static int process_all_refs(struct send_ctx *sctx, 4548 enum btrfs_compare_tree_result cmd) 4549 { 4550 int ret; 4551 struct btrfs_root *root; 4552 struct btrfs_path *path; 4553 struct btrfs_key key; 4554 struct btrfs_key found_key; 4555 struct extent_buffer *eb; 4556 int slot; 4557 iterate_inode_ref_t cb; 4558 int pending_move = 0; 4559 4560 path = alloc_path_for_send(); 4561 if (!path) 4562 return -ENOMEM; 4563 4564 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4565 root = sctx->send_root; 4566 cb = __record_new_ref; 4567 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4568 root = sctx->parent_root; 4569 cb = __record_deleted_ref; 4570 } else { 4571 btrfs_err(sctx->send_root->fs_info, 4572 "Wrong command %d in process_all_refs", cmd); 4573 ret = -EINVAL; 4574 goto out; 4575 } 4576 4577 key.objectid = sctx->cmp_key->objectid; 4578 key.type = BTRFS_INODE_REF_KEY; 4579 key.offset = 0; 4580 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4581 if (ret < 0) 4582 goto out; 4583 4584 while (1) { 4585 eb = path->nodes[0]; 4586 slot = path->slots[0]; 4587 if (slot >= btrfs_header_nritems(eb)) { 4588 ret = btrfs_next_leaf(root, path); 4589 if (ret < 0) 4590 goto out; 4591 else if (ret > 0) 4592 break; 4593 continue; 4594 } 4595 4596 btrfs_item_key_to_cpu(eb, &found_key, slot); 4597 4598 if (found_key.objectid != key.objectid || 4599 (found_key.type != BTRFS_INODE_REF_KEY && 4600 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4601 break; 4602 4603 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4604 if (ret < 0) 4605 goto out; 4606 4607 path->slots[0]++; 4608 } 4609 btrfs_release_path(path); 4610 4611 /* 4612 * We don't actually care about pending_move as we are simply 4613 * re-creating this inode and will be rename'ing it into place once we 4614 * rename the parent directory. 4615 */ 4616 ret = process_recorded_refs(sctx, &pending_move); 4617 out: 4618 btrfs_free_path(path); 4619 return ret; 4620 } 4621 4622 static int send_set_xattr(struct send_ctx *sctx, 4623 struct fs_path *path, 4624 const char *name, int name_len, 4625 const char *data, int data_len) 4626 { 4627 int ret = 0; 4628 4629 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4630 if (ret < 0) 4631 goto out; 4632 4633 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4634 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4635 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4636 4637 ret = send_cmd(sctx); 4638 4639 tlv_put_failure: 4640 out: 4641 return ret; 4642 } 4643 4644 static int send_remove_xattr(struct send_ctx *sctx, 4645 struct fs_path *path, 4646 const char *name, int name_len) 4647 { 4648 int ret = 0; 4649 4650 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4651 if (ret < 0) 4652 goto out; 4653 4654 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4655 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4656 4657 ret = send_cmd(sctx); 4658 4659 tlv_put_failure: 4660 out: 4661 return ret; 4662 } 4663 4664 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4665 const char *name, int name_len, 4666 const char *data, int data_len, 4667 u8 type, void *ctx) 4668 { 4669 int ret; 4670 struct send_ctx *sctx = ctx; 4671 struct fs_path *p; 4672 struct posix_acl_xattr_header dummy_acl; 4673 4674 /* Capabilities are emitted by finish_inode_if_needed */ 4675 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4676 return 0; 4677 4678 p = fs_path_alloc(); 4679 if (!p) 4680 return -ENOMEM; 4681 4682 /* 4683 * This hack is needed because empty acls are stored as zero byte 4684 * data in xattrs. Problem with that is, that receiving these zero byte 4685 * acls will fail later. To fix this, we send a dummy acl list that 4686 * only contains the version number and no entries. 4687 */ 4688 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4689 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4690 if (data_len == 0) { 4691 dummy_acl.a_version = 4692 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4693 data = (char *)&dummy_acl; 4694 data_len = sizeof(dummy_acl); 4695 } 4696 } 4697 4698 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4699 if (ret < 0) 4700 goto out; 4701 4702 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4703 4704 out: 4705 fs_path_free(p); 4706 return ret; 4707 } 4708 4709 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4710 const char *name, int name_len, 4711 const char *data, int data_len, 4712 u8 type, void *ctx) 4713 { 4714 int ret; 4715 struct send_ctx *sctx = ctx; 4716 struct fs_path *p; 4717 4718 p = fs_path_alloc(); 4719 if (!p) 4720 return -ENOMEM; 4721 4722 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4723 if (ret < 0) 4724 goto out; 4725 4726 ret = send_remove_xattr(sctx, p, name, name_len); 4727 4728 out: 4729 fs_path_free(p); 4730 return ret; 4731 } 4732 4733 static int process_new_xattr(struct send_ctx *sctx) 4734 { 4735 int ret = 0; 4736 4737 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4738 __process_new_xattr, sctx); 4739 4740 return ret; 4741 } 4742 4743 static int process_deleted_xattr(struct send_ctx *sctx) 4744 { 4745 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4746 __process_deleted_xattr, sctx); 4747 } 4748 4749 struct find_xattr_ctx { 4750 const char *name; 4751 int name_len; 4752 int found_idx; 4753 char *found_data; 4754 int found_data_len; 4755 }; 4756 4757 static int __find_xattr(int num, struct btrfs_key *di_key, 4758 const char *name, int name_len, 4759 const char *data, int data_len, 4760 u8 type, void *vctx) 4761 { 4762 struct find_xattr_ctx *ctx = vctx; 4763 4764 if (name_len == ctx->name_len && 4765 strncmp(name, ctx->name, name_len) == 0) { 4766 ctx->found_idx = num; 4767 ctx->found_data_len = data_len; 4768 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4769 if (!ctx->found_data) 4770 return -ENOMEM; 4771 return 1; 4772 } 4773 return 0; 4774 } 4775 4776 static int find_xattr(struct btrfs_root *root, 4777 struct btrfs_path *path, 4778 struct btrfs_key *key, 4779 const char *name, int name_len, 4780 char **data, int *data_len) 4781 { 4782 int ret; 4783 struct find_xattr_ctx ctx; 4784 4785 ctx.name = name; 4786 ctx.name_len = name_len; 4787 ctx.found_idx = -1; 4788 ctx.found_data = NULL; 4789 ctx.found_data_len = 0; 4790 4791 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4792 if (ret < 0) 4793 return ret; 4794 4795 if (ctx.found_idx == -1) 4796 return -ENOENT; 4797 if (data) { 4798 *data = ctx.found_data; 4799 *data_len = ctx.found_data_len; 4800 } else { 4801 kfree(ctx.found_data); 4802 } 4803 return ctx.found_idx; 4804 } 4805 4806 4807 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4808 const char *name, int name_len, 4809 const char *data, int data_len, 4810 u8 type, void *ctx) 4811 { 4812 int ret; 4813 struct send_ctx *sctx = ctx; 4814 char *found_data = NULL; 4815 int found_data_len = 0; 4816 4817 ret = find_xattr(sctx->parent_root, sctx->right_path, 4818 sctx->cmp_key, name, name_len, &found_data, 4819 &found_data_len); 4820 if (ret == -ENOENT) { 4821 ret = __process_new_xattr(num, di_key, name, name_len, data, 4822 data_len, type, ctx); 4823 } else if (ret >= 0) { 4824 if (data_len != found_data_len || 4825 memcmp(data, found_data, data_len)) { 4826 ret = __process_new_xattr(num, di_key, name, name_len, 4827 data, data_len, type, ctx); 4828 } else { 4829 ret = 0; 4830 } 4831 } 4832 4833 kfree(found_data); 4834 return ret; 4835 } 4836 4837 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4838 const char *name, int name_len, 4839 const char *data, int data_len, 4840 u8 type, void *ctx) 4841 { 4842 int ret; 4843 struct send_ctx *sctx = ctx; 4844 4845 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4846 name, name_len, NULL, NULL); 4847 if (ret == -ENOENT) 4848 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4849 data_len, type, ctx); 4850 else if (ret >= 0) 4851 ret = 0; 4852 4853 return ret; 4854 } 4855 4856 static int process_changed_xattr(struct send_ctx *sctx) 4857 { 4858 int ret = 0; 4859 4860 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4861 __process_changed_new_xattr, sctx); 4862 if (ret < 0) 4863 goto out; 4864 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4865 __process_changed_deleted_xattr, sctx); 4866 4867 out: 4868 return ret; 4869 } 4870 4871 static int process_all_new_xattrs(struct send_ctx *sctx) 4872 { 4873 int ret; 4874 struct btrfs_root *root; 4875 struct btrfs_path *path; 4876 struct btrfs_key key; 4877 struct btrfs_key found_key; 4878 struct extent_buffer *eb; 4879 int slot; 4880 4881 path = alloc_path_for_send(); 4882 if (!path) 4883 return -ENOMEM; 4884 4885 root = sctx->send_root; 4886 4887 key.objectid = sctx->cmp_key->objectid; 4888 key.type = BTRFS_XATTR_ITEM_KEY; 4889 key.offset = 0; 4890 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4891 if (ret < 0) 4892 goto out; 4893 4894 while (1) { 4895 eb = path->nodes[0]; 4896 slot = path->slots[0]; 4897 if (slot >= btrfs_header_nritems(eb)) { 4898 ret = btrfs_next_leaf(root, path); 4899 if (ret < 0) { 4900 goto out; 4901 } else if (ret > 0) { 4902 ret = 0; 4903 break; 4904 } 4905 continue; 4906 } 4907 4908 btrfs_item_key_to_cpu(eb, &found_key, slot); 4909 if (found_key.objectid != key.objectid || 4910 found_key.type != key.type) { 4911 ret = 0; 4912 goto out; 4913 } 4914 4915 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4916 if (ret < 0) 4917 goto out; 4918 4919 path->slots[0]++; 4920 } 4921 4922 out: 4923 btrfs_free_path(path); 4924 return ret; 4925 } 4926 4927 static inline u64 max_send_read_size(const struct send_ctx *sctx) 4928 { 4929 return sctx->send_max_size - SZ_16K; 4930 } 4931 4932 static int put_data_header(struct send_ctx *sctx, u32 len) 4933 { 4934 struct btrfs_tlv_header *hdr; 4935 4936 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4937 return -EOVERFLOW; 4938 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 4939 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 4940 put_unaligned_le16(len, &hdr->tlv_len); 4941 sctx->send_size += sizeof(*hdr); 4942 return 0; 4943 } 4944 4945 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 4946 { 4947 struct btrfs_root *root = sctx->send_root; 4948 struct btrfs_fs_info *fs_info = root->fs_info; 4949 struct inode *inode; 4950 struct page *page; 4951 char *addr; 4952 pgoff_t index = offset >> PAGE_SHIFT; 4953 pgoff_t last_index; 4954 unsigned pg_offset = offset_in_page(offset); 4955 int ret; 4956 4957 ret = put_data_header(sctx, len); 4958 if (ret) 4959 return ret; 4960 4961 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 4962 if (IS_ERR(inode)) 4963 return PTR_ERR(inode); 4964 4965 last_index = (offset + len - 1) >> PAGE_SHIFT; 4966 4967 /* initial readahead */ 4968 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4969 file_ra_state_init(&sctx->ra, inode->i_mapping); 4970 4971 while (index <= last_index) { 4972 unsigned cur_len = min_t(unsigned, len, 4973 PAGE_SIZE - pg_offset); 4974 4975 page = find_lock_page(inode->i_mapping, index); 4976 if (!page) { 4977 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4978 NULL, index, last_index + 1 - index); 4979 4980 page = find_or_create_page(inode->i_mapping, index, 4981 GFP_KERNEL); 4982 if (!page) { 4983 ret = -ENOMEM; 4984 break; 4985 } 4986 } 4987 4988 if (PageReadahead(page)) { 4989 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4990 NULL, page, index, last_index + 1 - index); 4991 } 4992 4993 if (!PageUptodate(page)) { 4994 btrfs_readpage(NULL, page); 4995 lock_page(page); 4996 if (!PageUptodate(page)) { 4997 unlock_page(page); 4998 put_page(page); 4999 ret = -EIO; 5000 break; 5001 } 5002 } 5003 5004 addr = kmap(page); 5005 memcpy(sctx->send_buf + sctx->send_size, addr + pg_offset, 5006 cur_len); 5007 kunmap(page); 5008 unlock_page(page); 5009 put_page(page); 5010 index++; 5011 pg_offset = 0; 5012 len -= cur_len; 5013 sctx->send_size += cur_len; 5014 } 5015 iput(inode); 5016 return ret; 5017 } 5018 5019 /* 5020 * Read some bytes from the current inode/file and send a write command to 5021 * user space. 5022 */ 5023 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5024 { 5025 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5026 int ret = 0; 5027 struct fs_path *p; 5028 5029 p = fs_path_alloc(); 5030 if (!p) 5031 return -ENOMEM; 5032 5033 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5034 5035 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5036 if (ret < 0) 5037 goto out; 5038 5039 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5040 if (ret < 0) 5041 goto out; 5042 5043 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5044 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5045 ret = put_file_data(sctx, offset, len); 5046 if (ret < 0) 5047 goto out; 5048 5049 ret = send_cmd(sctx); 5050 5051 tlv_put_failure: 5052 out: 5053 fs_path_free(p); 5054 return ret; 5055 } 5056 5057 /* 5058 * Send a clone command to user space. 5059 */ 5060 static int send_clone(struct send_ctx *sctx, 5061 u64 offset, u32 len, 5062 struct clone_root *clone_root) 5063 { 5064 int ret = 0; 5065 struct fs_path *p; 5066 u64 gen; 5067 5068 btrfs_debug(sctx->send_root->fs_info, 5069 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5070 offset, len, clone_root->root->root_key.objectid, 5071 clone_root->ino, clone_root->offset); 5072 5073 p = fs_path_alloc(); 5074 if (!p) 5075 return -ENOMEM; 5076 5077 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5078 if (ret < 0) 5079 goto out; 5080 5081 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5082 if (ret < 0) 5083 goto out; 5084 5085 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5086 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5087 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5088 5089 if (clone_root->root == sctx->send_root) { 5090 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 5091 &gen, NULL, NULL, NULL, NULL); 5092 if (ret < 0) 5093 goto out; 5094 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5095 } else { 5096 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5097 } 5098 if (ret < 0) 5099 goto out; 5100 5101 /* 5102 * If the parent we're using has a received_uuid set then use that as 5103 * our clone source as that is what we will look for when doing a 5104 * receive. 5105 * 5106 * This covers the case that we create a snapshot off of a received 5107 * subvolume and then use that as the parent and try to receive on a 5108 * different host. 5109 */ 5110 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5111 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5112 clone_root->root->root_item.received_uuid); 5113 else 5114 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5115 clone_root->root->root_item.uuid); 5116 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5117 btrfs_root_ctransid(&clone_root->root->root_item)); 5118 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5119 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5120 clone_root->offset); 5121 5122 ret = send_cmd(sctx); 5123 5124 tlv_put_failure: 5125 out: 5126 fs_path_free(p); 5127 return ret; 5128 } 5129 5130 /* 5131 * Send an update extent command to user space. 5132 */ 5133 static int send_update_extent(struct send_ctx *sctx, 5134 u64 offset, u32 len) 5135 { 5136 int ret = 0; 5137 struct fs_path *p; 5138 5139 p = fs_path_alloc(); 5140 if (!p) 5141 return -ENOMEM; 5142 5143 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5144 if (ret < 0) 5145 goto out; 5146 5147 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5148 if (ret < 0) 5149 goto out; 5150 5151 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5152 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5153 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5154 5155 ret = send_cmd(sctx); 5156 5157 tlv_put_failure: 5158 out: 5159 fs_path_free(p); 5160 return ret; 5161 } 5162 5163 static int send_hole(struct send_ctx *sctx, u64 end) 5164 { 5165 struct fs_path *p = NULL; 5166 u64 read_size = max_send_read_size(sctx); 5167 u64 offset = sctx->cur_inode_last_extent; 5168 int ret = 0; 5169 5170 /* 5171 * A hole that starts at EOF or beyond it. Since we do not yet support 5172 * fallocate (for extent preallocation and hole punching), sending a 5173 * write of zeroes starting at EOF or beyond would later require issuing 5174 * a truncate operation which would undo the write and achieve nothing. 5175 */ 5176 if (offset >= sctx->cur_inode_size) 5177 return 0; 5178 5179 /* 5180 * Don't go beyond the inode's i_size due to prealloc extents that start 5181 * after the i_size. 5182 */ 5183 end = min_t(u64, end, sctx->cur_inode_size); 5184 5185 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5186 return send_update_extent(sctx, offset, end - offset); 5187 5188 p = fs_path_alloc(); 5189 if (!p) 5190 return -ENOMEM; 5191 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5192 if (ret < 0) 5193 goto tlv_put_failure; 5194 while (offset < end) { 5195 u64 len = min(end - offset, read_size); 5196 5197 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5198 if (ret < 0) 5199 break; 5200 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5201 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5202 ret = put_data_header(sctx, len); 5203 if (ret < 0) 5204 break; 5205 memset(sctx->send_buf + sctx->send_size, 0, len); 5206 sctx->send_size += len; 5207 ret = send_cmd(sctx); 5208 if (ret < 0) 5209 break; 5210 offset += len; 5211 } 5212 sctx->cur_inode_next_write_offset = offset; 5213 tlv_put_failure: 5214 fs_path_free(p); 5215 return ret; 5216 } 5217 5218 static int send_extent_data(struct send_ctx *sctx, 5219 const u64 offset, 5220 const u64 len) 5221 { 5222 u64 read_size = max_send_read_size(sctx); 5223 u64 sent = 0; 5224 5225 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5226 return send_update_extent(sctx, offset, len); 5227 5228 while (sent < len) { 5229 u64 size = min(len - sent, read_size); 5230 int ret; 5231 5232 ret = send_write(sctx, offset + sent, size); 5233 if (ret < 0) 5234 return ret; 5235 sent += size; 5236 } 5237 return 0; 5238 } 5239 5240 /* 5241 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5242 * found, call send_set_xattr function to emit it. 5243 * 5244 * Return 0 if there isn't a capability, or when the capability was emitted 5245 * successfully, or < 0 if an error occurred. 5246 */ 5247 static int send_capabilities(struct send_ctx *sctx) 5248 { 5249 struct fs_path *fspath = NULL; 5250 struct btrfs_path *path; 5251 struct btrfs_dir_item *di; 5252 struct extent_buffer *leaf; 5253 unsigned long data_ptr; 5254 char *buf = NULL; 5255 int buf_len; 5256 int ret = 0; 5257 5258 path = alloc_path_for_send(); 5259 if (!path) 5260 return -ENOMEM; 5261 5262 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5263 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5264 if (!di) { 5265 /* There is no xattr for this inode */ 5266 goto out; 5267 } else if (IS_ERR(di)) { 5268 ret = PTR_ERR(di); 5269 goto out; 5270 } 5271 5272 leaf = path->nodes[0]; 5273 buf_len = btrfs_dir_data_len(leaf, di); 5274 5275 fspath = fs_path_alloc(); 5276 buf = kmalloc(buf_len, GFP_KERNEL); 5277 if (!fspath || !buf) { 5278 ret = -ENOMEM; 5279 goto out; 5280 } 5281 5282 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5283 if (ret < 0) 5284 goto out; 5285 5286 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5287 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5288 5289 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5290 strlen(XATTR_NAME_CAPS), buf, buf_len); 5291 out: 5292 kfree(buf); 5293 fs_path_free(fspath); 5294 btrfs_free_path(path); 5295 return ret; 5296 } 5297 5298 static int clone_range(struct send_ctx *sctx, 5299 struct clone_root *clone_root, 5300 const u64 disk_byte, 5301 u64 data_offset, 5302 u64 offset, 5303 u64 len) 5304 { 5305 struct btrfs_path *path; 5306 struct btrfs_key key; 5307 int ret; 5308 u64 clone_src_i_size = 0; 5309 5310 /* 5311 * Prevent cloning from a zero offset with a length matching the sector 5312 * size because in some scenarios this will make the receiver fail. 5313 * 5314 * For example, if in the source filesystem the extent at offset 0 5315 * has a length of sectorsize and it was written using direct IO, then 5316 * it can never be an inline extent (even if compression is enabled). 5317 * Then this extent can be cloned in the original filesystem to a non 5318 * zero file offset, but it may not be possible to clone in the 5319 * destination filesystem because it can be inlined due to compression 5320 * on the destination filesystem (as the receiver's write operations are 5321 * always done using buffered IO). The same happens when the original 5322 * filesystem does not have compression enabled but the destination 5323 * filesystem has. 5324 */ 5325 if (clone_root->offset == 0 && 5326 len == sctx->send_root->fs_info->sectorsize) 5327 return send_extent_data(sctx, offset, len); 5328 5329 path = alloc_path_for_send(); 5330 if (!path) 5331 return -ENOMEM; 5332 5333 /* 5334 * There are inodes that have extents that lie behind its i_size. Don't 5335 * accept clones from these extents. 5336 */ 5337 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5338 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5339 btrfs_release_path(path); 5340 if (ret < 0) 5341 goto out; 5342 5343 /* 5344 * We can't send a clone operation for the entire range if we find 5345 * extent items in the respective range in the source file that 5346 * refer to different extents or if we find holes. 5347 * So check for that and do a mix of clone and regular write/copy 5348 * operations if needed. 5349 * 5350 * Example: 5351 * 5352 * mkfs.btrfs -f /dev/sda 5353 * mount /dev/sda /mnt 5354 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5355 * cp --reflink=always /mnt/foo /mnt/bar 5356 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5357 * btrfs subvolume snapshot -r /mnt /mnt/snap 5358 * 5359 * If when we send the snapshot and we are processing file bar (which 5360 * has a higher inode number than foo) we blindly send a clone operation 5361 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5362 * a file bar that matches the content of file foo - iow, doesn't match 5363 * the content from bar in the original filesystem. 5364 */ 5365 key.objectid = clone_root->ino; 5366 key.type = BTRFS_EXTENT_DATA_KEY; 5367 key.offset = clone_root->offset; 5368 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5369 if (ret < 0) 5370 goto out; 5371 if (ret > 0 && path->slots[0] > 0) { 5372 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5373 if (key.objectid == clone_root->ino && 5374 key.type == BTRFS_EXTENT_DATA_KEY) 5375 path->slots[0]--; 5376 } 5377 5378 while (true) { 5379 struct extent_buffer *leaf = path->nodes[0]; 5380 int slot = path->slots[0]; 5381 struct btrfs_file_extent_item *ei; 5382 u8 type; 5383 u64 ext_len; 5384 u64 clone_len; 5385 u64 clone_data_offset; 5386 5387 if (slot >= btrfs_header_nritems(leaf)) { 5388 ret = btrfs_next_leaf(clone_root->root, path); 5389 if (ret < 0) 5390 goto out; 5391 else if (ret > 0) 5392 break; 5393 continue; 5394 } 5395 5396 btrfs_item_key_to_cpu(leaf, &key, slot); 5397 5398 /* 5399 * We might have an implicit trailing hole (NO_HOLES feature 5400 * enabled). We deal with it after leaving this loop. 5401 */ 5402 if (key.objectid != clone_root->ino || 5403 key.type != BTRFS_EXTENT_DATA_KEY) 5404 break; 5405 5406 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5407 type = btrfs_file_extent_type(leaf, ei); 5408 if (type == BTRFS_FILE_EXTENT_INLINE) { 5409 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5410 ext_len = PAGE_ALIGN(ext_len); 5411 } else { 5412 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5413 } 5414 5415 if (key.offset + ext_len <= clone_root->offset) 5416 goto next; 5417 5418 if (key.offset > clone_root->offset) { 5419 /* Implicit hole, NO_HOLES feature enabled. */ 5420 u64 hole_len = key.offset - clone_root->offset; 5421 5422 if (hole_len > len) 5423 hole_len = len; 5424 ret = send_extent_data(sctx, offset, hole_len); 5425 if (ret < 0) 5426 goto out; 5427 5428 len -= hole_len; 5429 if (len == 0) 5430 break; 5431 offset += hole_len; 5432 clone_root->offset += hole_len; 5433 data_offset += hole_len; 5434 } 5435 5436 if (key.offset >= clone_root->offset + len) 5437 break; 5438 5439 if (key.offset >= clone_src_i_size) 5440 break; 5441 5442 if (key.offset + ext_len > clone_src_i_size) 5443 ext_len = clone_src_i_size - key.offset; 5444 5445 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5446 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5447 clone_root->offset = key.offset; 5448 if (clone_data_offset < data_offset && 5449 clone_data_offset + ext_len > data_offset) { 5450 u64 extent_offset; 5451 5452 extent_offset = data_offset - clone_data_offset; 5453 ext_len -= extent_offset; 5454 clone_data_offset += extent_offset; 5455 clone_root->offset += extent_offset; 5456 } 5457 } 5458 5459 clone_len = min_t(u64, ext_len, len); 5460 5461 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5462 clone_data_offset == data_offset) { 5463 const u64 src_end = clone_root->offset + clone_len; 5464 const u64 sectorsize = SZ_64K; 5465 5466 /* 5467 * We can't clone the last block, when its size is not 5468 * sector size aligned, into the middle of a file. If we 5469 * do so, the receiver will get a failure (-EINVAL) when 5470 * trying to clone or will silently corrupt the data in 5471 * the destination file if it's on a kernel without the 5472 * fix introduced by commit ac765f83f1397646 5473 * ("Btrfs: fix data corruption due to cloning of eof 5474 * block). 5475 * 5476 * So issue a clone of the aligned down range plus a 5477 * regular write for the eof block, if we hit that case. 5478 * 5479 * Also, we use the maximum possible sector size, 64K, 5480 * because we don't know what's the sector size of the 5481 * filesystem that receives the stream, so we have to 5482 * assume the largest possible sector size. 5483 */ 5484 if (src_end == clone_src_i_size && 5485 !IS_ALIGNED(src_end, sectorsize) && 5486 offset + clone_len < sctx->cur_inode_size) { 5487 u64 slen; 5488 5489 slen = ALIGN_DOWN(src_end - clone_root->offset, 5490 sectorsize); 5491 if (slen > 0) { 5492 ret = send_clone(sctx, offset, slen, 5493 clone_root); 5494 if (ret < 0) 5495 goto out; 5496 } 5497 ret = send_extent_data(sctx, offset + slen, 5498 clone_len - slen); 5499 } else { 5500 ret = send_clone(sctx, offset, clone_len, 5501 clone_root); 5502 } 5503 } else { 5504 ret = send_extent_data(sctx, offset, clone_len); 5505 } 5506 5507 if (ret < 0) 5508 goto out; 5509 5510 len -= clone_len; 5511 if (len == 0) 5512 break; 5513 offset += clone_len; 5514 clone_root->offset += clone_len; 5515 data_offset += clone_len; 5516 next: 5517 path->slots[0]++; 5518 } 5519 5520 if (len > 0) 5521 ret = send_extent_data(sctx, offset, len); 5522 else 5523 ret = 0; 5524 out: 5525 btrfs_free_path(path); 5526 return ret; 5527 } 5528 5529 static int send_write_or_clone(struct send_ctx *sctx, 5530 struct btrfs_path *path, 5531 struct btrfs_key *key, 5532 struct clone_root *clone_root) 5533 { 5534 int ret = 0; 5535 u64 offset = key->offset; 5536 u64 end; 5537 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5538 5539 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5540 if (offset >= end) 5541 return 0; 5542 5543 if (clone_root && IS_ALIGNED(end, bs)) { 5544 struct btrfs_file_extent_item *ei; 5545 u64 disk_byte; 5546 u64 data_offset; 5547 5548 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5549 struct btrfs_file_extent_item); 5550 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5551 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5552 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5553 offset, end - offset); 5554 } else { 5555 ret = send_extent_data(sctx, offset, end - offset); 5556 } 5557 sctx->cur_inode_next_write_offset = end; 5558 return ret; 5559 } 5560 5561 static int is_extent_unchanged(struct send_ctx *sctx, 5562 struct btrfs_path *left_path, 5563 struct btrfs_key *ekey) 5564 { 5565 int ret = 0; 5566 struct btrfs_key key; 5567 struct btrfs_path *path = NULL; 5568 struct extent_buffer *eb; 5569 int slot; 5570 struct btrfs_key found_key; 5571 struct btrfs_file_extent_item *ei; 5572 u64 left_disknr; 5573 u64 right_disknr; 5574 u64 left_offset; 5575 u64 right_offset; 5576 u64 left_offset_fixed; 5577 u64 left_len; 5578 u64 right_len; 5579 u64 left_gen; 5580 u64 right_gen; 5581 u8 left_type; 5582 u8 right_type; 5583 5584 path = alloc_path_for_send(); 5585 if (!path) 5586 return -ENOMEM; 5587 5588 eb = left_path->nodes[0]; 5589 slot = left_path->slots[0]; 5590 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5591 left_type = btrfs_file_extent_type(eb, ei); 5592 5593 if (left_type != BTRFS_FILE_EXTENT_REG) { 5594 ret = 0; 5595 goto out; 5596 } 5597 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5598 left_len = btrfs_file_extent_num_bytes(eb, ei); 5599 left_offset = btrfs_file_extent_offset(eb, ei); 5600 left_gen = btrfs_file_extent_generation(eb, ei); 5601 5602 /* 5603 * Following comments will refer to these graphics. L is the left 5604 * extents which we are checking at the moment. 1-8 are the right 5605 * extents that we iterate. 5606 * 5607 * |-----L-----| 5608 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5609 * 5610 * |-----L-----| 5611 * |--1--|-2b-|...(same as above) 5612 * 5613 * Alternative situation. Happens on files where extents got split. 5614 * |-----L-----| 5615 * |-----------7-----------|-6-| 5616 * 5617 * Alternative situation. Happens on files which got larger. 5618 * |-----L-----| 5619 * |-8-| 5620 * Nothing follows after 8. 5621 */ 5622 5623 key.objectid = ekey->objectid; 5624 key.type = BTRFS_EXTENT_DATA_KEY; 5625 key.offset = ekey->offset; 5626 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5627 if (ret < 0) 5628 goto out; 5629 if (ret) { 5630 ret = 0; 5631 goto out; 5632 } 5633 5634 /* 5635 * Handle special case where the right side has no extents at all. 5636 */ 5637 eb = path->nodes[0]; 5638 slot = path->slots[0]; 5639 btrfs_item_key_to_cpu(eb, &found_key, slot); 5640 if (found_key.objectid != key.objectid || 5641 found_key.type != key.type) { 5642 /* If we're a hole then just pretend nothing changed */ 5643 ret = (left_disknr) ? 0 : 1; 5644 goto out; 5645 } 5646 5647 /* 5648 * We're now on 2a, 2b or 7. 5649 */ 5650 key = found_key; 5651 while (key.offset < ekey->offset + left_len) { 5652 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5653 right_type = btrfs_file_extent_type(eb, ei); 5654 if (right_type != BTRFS_FILE_EXTENT_REG && 5655 right_type != BTRFS_FILE_EXTENT_INLINE) { 5656 ret = 0; 5657 goto out; 5658 } 5659 5660 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5661 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5662 right_len = PAGE_ALIGN(right_len); 5663 } else { 5664 right_len = btrfs_file_extent_num_bytes(eb, ei); 5665 } 5666 5667 /* 5668 * Are we at extent 8? If yes, we know the extent is changed. 5669 * This may only happen on the first iteration. 5670 */ 5671 if (found_key.offset + right_len <= ekey->offset) { 5672 /* If we're a hole just pretend nothing changed */ 5673 ret = (left_disknr) ? 0 : 1; 5674 goto out; 5675 } 5676 5677 /* 5678 * We just wanted to see if when we have an inline extent, what 5679 * follows it is a regular extent (wanted to check the above 5680 * condition for inline extents too). This should normally not 5681 * happen but it's possible for example when we have an inline 5682 * compressed extent representing data with a size matching 5683 * the page size (currently the same as sector size). 5684 */ 5685 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5686 ret = 0; 5687 goto out; 5688 } 5689 5690 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5691 right_offset = btrfs_file_extent_offset(eb, ei); 5692 right_gen = btrfs_file_extent_generation(eb, ei); 5693 5694 left_offset_fixed = left_offset; 5695 if (key.offset < ekey->offset) { 5696 /* Fix the right offset for 2a and 7. */ 5697 right_offset += ekey->offset - key.offset; 5698 } else { 5699 /* Fix the left offset for all behind 2a and 2b */ 5700 left_offset_fixed += key.offset - ekey->offset; 5701 } 5702 5703 /* 5704 * Check if we have the same extent. 5705 */ 5706 if (left_disknr != right_disknr || 5707 left_offset_fixed != right_offset || 5708 left_gen != right_gen) { 5709 ret = 0; 5710 goto out; 5711 } 5712 5713 /* 5714 * Go to the next extent. 5715 */ 5716 ret = btrfs_next_item(sctx->parent_root, path); 5717 if (ret < 0) 5718 goto out; 5719 if (!ret) { 5720 eb = path->nodes[0]; 5721 slot = path->slots[0]; 5722 btrfs_item_key_to_cpu(eb, &found_key, slot); 5723 } 5724 if (ret || found_key.objectid != key.objectid || 5725 found_key.type != key.type) { 5726 key.offset += right_len; 5727 break; 5728 } 5729 if (found_key.offset != key.offset + right_len) { 5730 ret = 0; 5731 goto out; 5732 } 5733 key = found_key; 5734 } 5735 5736 /* 5737 * We're now behind the left extent (treat as unchanged) or at the end 5738 * of the right side (treat as changed). 5739 */ 5740 if (key.offset >= ekey->offset + left_len) 5741 ret = 1; 5742 else 5743 ret = 0; 5744 5745 5746 out: 5747 btrfs_free_path(path); 5748 return ret; 5749 } 5750 5751 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5752 { 5753 struct btrfs_path *path; 5754 struct btrfs_root *root = sctx->send_root; 5755 struct btrfs_key key; 5756 int ret; 5757 5758 path = alloc_path_for_send(); 5759 if (!path) 5760 return -ENOMEM; 5761 5762 sctx->cur_inode_last_extent = 0; 5763 5764 key.objectid = sctx->cur_ino; 5765 key.type = BTRFS_EXTENT_DATA_KEY; 5766 key.offset = offset; 5767 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5768 if (ret < 0) 5769 goto out; 5770 ret = 0; 5771 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5772 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5773 goto out; 5774 5775 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5776 out: 5777 btrfs_free_path(path); 5778 return ret; 5779 } 5780 5781 static int range_is_hole_in_parent(struct send_ctx *sctx, 5782 const u64 start, 5783 const u64 end) 5784 { 5785 struct btrfs_path *path; 5786 struct btrfs_key key; 5787 struct btrfs_root *root = sctx->parent_root; 5788 u64 search_start = start; 5789 int ret; 5790 5791 path = alloc_path_for_send(); 5792 if (!path) 5793 return -ENOMEM; 5794 5795 key.objectid = sctx->cur_ino; 5796 key.type = BTRFS_EXTENT_DATA_KEY; 5797 key.offset = search_start; 5798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5799 if (ret < 0) 5800 goto out; 5801 if (ret > 0 && path->slots[0] > 0) 5802 path->slots[0]--; 5803 5804 while (search_start < end) { 5805 struct extent_buffer *leaf = path->nodes[0]; 5806 int slot = path->slots[0]; 5807 struct btrfs_file_extent_item *fi; 5808 u64 extent_end; 5809 5810 if (slot >= btrfs_header_nritems(leaf)) { 5811 ret = btrfs_next_leaf(root, path); 5812 if (ret < 0) 5813 goto out; 5814 else if (ret > 0) 5815 break; 5816 continue; 5817 } 5818 5819 btrfs_item_key_to_cpu(leaf, &key, slot); 5820 if (key.objectid < sctx->cur_ino || 5821 key.type < BTRFS_EXTENT_DATA_KEY) 5822 goto next; 5823 if (key.objectid > sctx->cur_ino || 5824 key.type > BTRFS_EXTENT_DATA_KEY || 5825 key.offset >= end) 5826 break; 5827 5828 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5829 extent_end = btrfs_file_extent_end(path); 5830 if (extent_end <= start) 5831 goto next; 5832 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5833 search_start = extent_end; 5834 goto next; 5835 } 5836 ret = 0; 5837 goto out; 5838 next: 5839 path->slots[0]++; 5840 } 5841 ret = 1; 5842 out: 5843 btrfs_free_path(path); 5844 return ret; 5845 } 5846 5847 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5848 struct btrfs_key *key) 5849 { 5850 int ret = 0; 5851 5852 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5853 return 0; 5854 5855 if (sctx->cur_inode_last_extent == (u64)-1) { 5856 ret = get_last_extent(sctx, key->offset - 1); 5857 if (ret) 5858 return ret; 5859 } 5860 5861 if (path->slots[0] == 0 && 5862 sctx->cur_inode_last_extent < key->offset) { 5863 /* 5864 * We might have skipped entire leafs that contained only 5865 * file extent items for our current inode. These leafs have 5866 * a generation number smaller (older) than the one in the 5867 * current leaf and the leaf our last extent came from, and 5868 * are located between these 2 leafs. 5869 */ 5870 ret = get_last_extent(sctx, key->offset - 1); 5871 if (ret) 5872 return ret; 5873 } 5874 5875 if (sctx->cur_inode_last_extent < key->offset) { 5876 ret = range_is_hole_in_parent(sctx, 5877 sctx->cur_inode_last_extent, 5878 key->offset); 5879 if (ret < 0) 5880 return ret; 5881 else if (ret == 0) 5882 ret = send_hole(sctx, key->offset); 5883 else 5884 ret = 0; 5885 } 5886 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5887 return ret; 5888 } 5889 5890 static int process_extent(struct send_ctx *sctx, 5891 struct btrfs_path *path, 5892 struct btrfs_key *key) 5893 { 5894 struct clone_root *found_clone = NULL; 5895 int ret = 0; 5896 5897 if (S_ISLNK(sctx->cur_inode_mode)) 5898 return 0; 5899 5900 if (sctx->parent_root && !sctx->cur_inode_new) { 5901 ret = is_extent_unchanged(sctx, path, key); 5902 if (ret < 0) 5903 goto out; 5904 if (ret) { 5905 ret = 0; 5906 goto out_hole; 5907 } 5908 } else { 5909 struct btrfs_file_extent_item *ei; 5910 u8 type; 5911 5912 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5913 struct btrfs_file_extent_item); 5914 type = btrfs_file_extent_type(path->nodes[0], ei); 5915 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5916 type == BTRFS_FILE_EXTENT_REG) { 5917 /* 5918 * The send spec does not have a prealloc command yet, 5919 * so just leave a hole for prealloc'ed extents until 5920 * we have enough commands queued up to justify rev'ing 5921 * the send spec. 5922 */ 5923 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5924 ret = 0; 5925 goto out; 5926 } 5927 5928 /* Have a hole, just skip it. */ 5929 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5930 ret = 0; 5931 goto out; 5932 } 5933 } 5934 } 5935 5936 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5937 sctx->cur_inode_size, &found_clone); 5938 if (ret != -ENOENT && ret < 0) 5939 goto out; 5940 5941 ret = send_write_or_clone(sctx, path, key, found_clone); 5942 if (ret) 5943 goto out; 5944 out_hole: 5945 ret = maybe_send_hole(sctx, path, key); 5946 out: 5947 return ret; 5948 } 5949 5950 static int process_all_extents(struct send_ctx *sctx) 5951 { 5952 int ret; 5953 struct btrfs_root *root; 5954 struct btrfs_path *path; 5955 struct btrfs_key key; 5956 struct btrfs_key found_key; 5957 struct extent_buffer *eb; 5958 int slot; 5959 5960 root = sctx->send_root; 5961 path = alloc_path_for_send(); 5962 if (!path) 5963 return -ENOMEM; 5964 5965 key.objectid = sctx->cmp_key->objectid; 5966 key.type = BTRFS_EXTENT_DATA_KEY; 5967 key.offset = 0; 5968 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5969 if (ret < 0) 5970 goto out; 5971 5972 while (1) { 5973 eb = path->nodes[0]; 5974 slot = path->slots[0]; 5975 5976 if (slot >= btrfs_header_nritems(eb)) { 5977 ret = btrfs_next_leaf(root, path); 5978 if (ret < 0) { 5979 goto out; 5980 } else if (ret > 0) { 5981 ret = 0; 5982 break; 5983 } 5984 continue; 5985 } 5986 5987 btrfs_item_key_to_cpu(eb, &found_key, slot); 5988 5989 if (found_key.objectid != key.objectid || 5990 found_key.type != key.type) { 5991 ret = 0; 5992 goto out; 5993 } 5994 5995 ret = process_extent(sctx, path, &found_key); 5996 if (ret < 0) 5997 goto out; 5998 5999 path->slots[0]++; 6000 } 6001 6002 out: 6003 btrfs_free_path(path); 6004 return ret; 6005 } 6006 6007 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6008 int *pending_move, 6009 int *refs_processed) 6010 { 6011 int ret = 0; 6012 6013 if (sctx->cur_ino == 0) 6014 goto out; 6015 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6016 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6017 goto out; 6018 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6019 goto out; 6020 6021 ret = process_recorded_refs(sctx, pending_move); 6022 if (ret < 0) 6023 goto out; 6024 6025 *refs_processed = 1; 6026 out: 6027 return ret; 6028 } 6029 6030 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6031 { 6032 int ret = 0; 6033 u64 left_mode; 6034 u64 left_uid; 6035 u64 left_gid; 6036 u64 right_mode; 6037 u64 right_uid; 6038 u64 right_gid; 6039 int need_chmod = 0; 6040 int need_chown = 0; 6041 int need_truncate = 1; 6042 int pending_move = 0; 6043 int refs_processed = 0; 6044 6045 if (sctx->ignore_cur_inode) 6046 return 0; 6047 6048 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6049 &refs_processed); 6050 if (ret < 0) 6051 goto out; 6052 6053 /* 6054 * We have processed the refs and thus need to advance send_progress. 6055 * Now, calls to get_cur_xxx will take the updated refs of the current 6056 * inode into account. 6057 * 6058 * On the other hand, if our current inode is a directory and couldn't 6059 * be moved/renamed because its parent was renamed/moved too and it has 6060 * a higher inode number, we can only move/rename our current inode 6061 * after we moved/renamed its parent. Therefore in this case operate on 6062 * the old path (pre move/rename) of our current inode, and the 6063 * move/rename will be performed later. 6064 */ 6065 if (refs_processed && !pending_move) 6066 sctx->send_progress = sctx->cur_ino + 1; 6067 6068 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6069 goto out; 6070 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6071 goto out; 6072 6073 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 6074 &left_mode, &left_uid, &left_gid, NULL); 6075 if (ret < 0) 6076 goto out; 6077 6078 if (!sctx->parent_root || sctx->cur_inode_new) { 6079 need_chown = 1; 6080 if (!S_ISLNK(sctx->cur_inode_mode)) 6081 need_chmod = 1; 6082 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6083 need_truncate = 0; 6084 } else { 6085 u64 old_size; 6086 6087 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 6088 &old_size, NULL, &right_mode, &right_uid, 6089 &right_gid, NULL); 6090 if (ret < 0) 6091 goto out; 6092 6093 if (left_uid != right_uid || left_gid != right_gid) 6094 need_chown = 1; 6095 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6096 need_chmod = 1; 6097 if ((old_size == sctx->cur_inode_size) || 6098 (sctx->cur_inode_size > old_size && 6099 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6100 need_truncate = 0; 6101 } 6102 6103 if (S_ISREG(sctx->cur_inode_mode)) { 6104 if (need_send_hole(sctx)) { 6105 if (sctx->cur_inode_last_extent == (u64)-1 || 6106 sctx->cur_inode_last_extent < 6107 sctx->cur_inode_size) { 6108 ret = get_last_extent(sctx, (u64)-1); 6109 if (ret) 6110 goto out; 6111 } 6112 if (sctx->cur_inode_last_extent < 6113 sctx->cur_inode_size) { 6114 ret = send_hole(sctx, sctx->cur_inode_size); 6115 if (ret) 6116 goto out; 6117 } 6118 } 6119 if (need_truncate) { 6120 ret = send_truncate(sctx, sctx->cur_ino, 6121 sctx->cur_inode_gen, 6122 sctx->cur_inode_size); 6123 if (ret < 0) 6124 goto out; 6125 } 6126 } 6127 6128 if (need_chown) { 6129 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6130 left_uid, left_gid); 6131 if (ret < 0) 6132 goto out; 6133 } 6134 if (need_chmod) { 6135 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6136 left_mode); 6137 if (ret < 0) 6138 goto out; 6139 } 6140 6141 ret = send_capabilities(sctx); 6142 if (ret < 0) 6143 goto out; 6144 6145 /* 6146 * If other directory inodes depended on our current directory 6147 * inode's move/rename, now do their move/rename operations. 6148 */ 6149 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6150 ret = apply_children_dir_moves(sctx); 6151 if (ret) 6152 goto out; 6153 /* 6154 * Need to send that every time, no matter if it actually 6155 * changed between the two trees as we have done changes to 6156 * the inode before. If our inode is a directory and it's 6157 * waiting to be moved/renamed, we will send its utimes when 6158 * it's moved/renamed, therefore we don't need to do it here. 6159 */ 6160 sctx->send_progress = sctx->cur_ino + 1; 6161 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6162 if (ret < 0) 6163 goto out; 6164 } 6165 6166 out: 6167 return ret; 6168 } 6169 6170 struct parent_paths_ctx { 6171 struct list_head *refs; 6172 struct send_ctx *sctx; 6173 }; 6174 6175 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6176 void *ctx) 6177 { 6178 struct parent_paths_ctx *ppctx = ctx; 6179 6180 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6181 ppctx->refs); 6182 } 6183 6184 /* 6185 * Issue unlink operations for all paths of the current inode found in the 6186 * parent snapshot. 6187 */ 6188 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6189 { 6190 LIST_HEAD(deleted_refs); 6191 struct btrfs_path *path; 6192 struct btrfs_key key; 6193 struct parent_paths_ctx ctx; 6194 int ret; 6195 6196 path = alloc_path_for_send(); 6197 if (!path) 6198 return -ENOMEM; 6199 6200 key.objectid = sctx->cur_ino; 6201 key.type = BTRFS_INODE_REF_KEY; 6202 key.offset = 0; 6203 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6204 if (ret < 0) 6205 goto out; 6206 6207 ctx.refs = &deleted_refs; 6208 ctx.sctx = sctx; 6209 6210 while (true) { 6211 struct extent_buffer *eb = path->nodes[0]; 6212 int slot = path->slots[0]; 6213 6214 if (slot >= btrfs_header_nritems(eb)) { 6215 ret = btrfs_next_leaf(sctx->parent_root, path); 6216 if (ret < 0) 6217 goto out; 6218 else if (ret > 0) 6219 break; 6220 continue; 6221 } 6222 6223 btrfs_item_key_to_cpu(eb, &key, slot); 6224 if (key.objectid != sctx->cur_ino) 6225 break; 6226 if (key.type != BTRFS_INODE_REF_KEY && 6227 key.type != BTRFS_INODE_EXTREF_KEY) 6228 break; 6229 6230 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6231 record_parent_ref, &ctx); 6232 if (ret < 0) 6233 goto out; 6234 6235 path->slots[0]++; 6236 } 6237 6238 while (!list_empty(&deleted_refs)) { 6239 struct recorded_ref *ref; 6240 6241 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6242 ret = send_unlink(sctx, ref->full_path); 6243 if (ret < 0) 6244 goto out; 6245 fs_path_free(ref->full_path); 6246 list_del(&ref->list); 6247 kfree(ref); 6248 } 6249 ret = 0; 6250 out: 6251 btrfs_free_path(path); 6252 if (ret) 6253 __free_recorded_refs(&deleted_refs); 6254 return ret; 6255 } 6256 6257 static int changed_inode(struct send_ctx *sctx, 6258 enum btrfs_compare_tree_result result) 6259 { 6260 int ret = 0; 6261 struct btrfs_key *key = sctx->cmp_key; 6262 struct btrfs_inode_item *left_ii = NULL; 6263 struct btrfs_inode_item *right_ii = NULL; 6264 u64 left_gen = 0; 6265 u64 right_gen = 0; 6266 6267 sctx->cur_ino = key->objectid; 6268 sctx->cur_inode_new_gen = 0; 6269 sctx->cur_inode_last_extent = (u64)-1; 6270 sctx->cur_inode_next_write_offset = 0; 6271 sctx->ignore_cur_inode = false; 6272 6273 /* 6274 * Set send_progress to current inode. This will tell all get_cur_xxx 6275 * functions that the current inode's refs are not updated yet. Later, 6276 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6277 */ 6278 sctx->send_progress = sctx->cur_ino; 6279 6280 if (result == BTRFS_COMPARE_TREE_NEW || 6281 result == BTRFS_COMPARE_TREE_CHANGED) { 6282 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6283 sctx->left_path->slots[0], 6284 struct btrfs_inode_item); 6285 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6286 left_ii); 6287 } else { 6288 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6289 sctx->right_path->slots[0], 6290 struct btrfs_inode_item); 6291 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6292 right_ii); 6293 } 6294 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6295 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6296 sctx->right_path->slots[0], 6297 struct btrfs_inode_item); 6298 6299 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6300 right_ii); 6301 6302 /* 6303 * The cur_ino = root dir case is special here. We can't treat 6304 * the inode as deleted+reused because it would generate a 6305 * stream that tries to delete/mkdir the root dir. 6306 */ 6307 if (left_gen != right_gen && 6308 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6309 sctx->cur_inode_new_gen = 1; 6310 } 6311 6312 /* 6313 * Normally we do not find inodes with a link count of zero (orphans) 6314 * because the most common case is to create a snapshot and use it 6315 * for a send operation. However other less common use cases involve 6316 * using a subvolume and send it after turning it to RO mode just 6317 * after deleting all hard links of a file while holding an open 6318 * file descriptor against it or turning a RO snapshot into RW mode, 6319 * keep an open file descriptor against a file, delete it and then 6320 * turn the snapshot back to RO mode before using it for a send 6321 * operation. So if we find such cases, ignore the inode and all its 6322 * items completely if it's a new inode, or if it's a changed inode 6323 * make sure all its previous paths (from the parent snapshot) are all 6324 * unlinked and all other the inode items are ignored. 6325 */ 6326 if (result == BTRFS_COMPARE_TREE_NEW || 6327 result == BTRFS_COMPARE_TREE_CHANGED) { 6328 u32 nlinks; 6329 6330 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6331 if (nlinks == 0) { 6332 sctx->ignore_cur_inode = true; 6333 if (result == BTRFS_COMPARE_TREE_CHANGED) 6334 ret = btrfs_unlink_all_paths(sctx); 6335 goto out; 6336 } 6337 } 6338 6339 if (result == BTRFS_COMPARE_TREE_NEW) { 6340 sctx->cur_inode_gen = left_gen; 6341 sctx->cur_inode_new = 1; 6342 sctx->cur_inode_deleted = 0; 6343 sctx->cur_inode_size = btrfs_inode_size( 6344 sctx->left_path->nodes[0], left_ii); 6345 sctx->cur_inode_mode = btrfs_inode_mode( 6346 sctx->left_path->nodes[0], left_ii); 6347 sctx->cur_inode_rdev = btrfs_inode_rdev( 6348 sctx->left_path->nodes[0], left_ii); 6349 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6350 ret = send_create_inode_if_needed(sctx); 6351 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6352 sctx->cur_inode_gen = right_gen; 6353 sctx->cur_inode_new = 0; 6354 sctx->cur_inode_deleted = 1; 6355 sctx->cur_inode_size = btrfs_inode_size( 6356 sctx->right_path->nodes[0], right_ii); 6357 sctx->cur_inode_mode = btrfs_inode_mode( 6358 sctx->right_path->nodes[0], right_ii); 6359 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6360 /* 6361 * We need to do some special handling in case the inode was 6362 * reported as changed with a changed generation number. This 6363 * means that the original inode was deleted and new inode 6364 * reused the same inum. So we have to treat the old inode as 6365 * deleted and the new one as new. 6366 */ 6367 if (sctx->cur_inode_new_gen) { 6368 /* 6369 * First, process the inode as if it was deleted. 6370 */ 6371 sctx->cur_inode_gen = right_gen; 6372 sctx->cur_inode_new = 0; 6373 sctx->cur_inode_deleted = 1; 6374 sctx->cur_inode_size = btrfs_inode_size( 6375 sctx->right_path->nodes[0], right_ii); 6376 sctx->cur_inode_mode = btrfs_inode_mode( 6377 sctx->right_path->nodes[0], right_ii); 6378 ret = process_all_refs(sctx, 6379 BTRFS_COMPARE_TREE_DELETED); 6380 if (ret < 0) 6381 goto out; 6382 6383 /* 6384 * Now process the inode as if it was new. 6385 */ 6386 sctx->cur_inode_gen = left_gen; 6387 sctx->cur_inode_new = 1; 6388 sctx->cur_inode_deleted = 0; 6389 sctx->cur_inode_size = btrfs_inode_size( 6390 sctx->left_path->nodes[0], left_ii); 6391 sctx->cur_inode_mode = btrfs_inode_mode( 6392 sctx->left_path->nodes[0], left_ii); 6393 sctx->cur_inode_rdev = btrfs_inode_rdev( 6394 sctx->left_path->nodes[0], left_ii); 6395 ret = send_create_inode_if_needed(sctx); 6396 if (ret < 0) 6397 goto out; 6398 6399 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6400 if (ret < 0) 6401 goto out; 6402 /* 6403 * Advance send_progress now as we did not get into 6404 * process_recorded_refs_if_needed in the new_gen case. 6405 */ 6406 sctx->send_progress = sctx->cur_ino + 1; 6407 6408 /* 6409 * Now process all extents and xattrs of the inode as if 6410 * they were all new. 6411 */ 6412 ret = process_all_extents(sctx); 6413 if (ret < 0) 6414 goto out; 6415 ret = process_all_new_xattrs(sctx); 6416 if (ret < 0) 6417 goto out; 6418 } else { 6419 sctx->cur_inode_gen = left_gen; 6420 sctx->cur_inode_new = 0; 6421 sctx->cur_inode_new_gen = 0; 6422 sctx->cur_inode_deleted = 0; 6423 sctx->cur_inode_size = btrfs_inode_size( 6424 sctx->left_path->nodes[0], left_ii); 6425 sctx->cur_inode_mode = btrfs_inode_mode( 6426 sctx->left_path->nodes[0], left_ii); 6427 } 6428 } 6429 6430 out: 6431 return ret; 6432 } 6433 6434 /* 6435 * We have to process new refs before deleted refs, but compare_trees gives us 6436 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6437 * first and later process them in process_recorded_refs. 6438 * For the cur_inode_new_gen case, we skip recording completely because 6439 * changed_inode did already initiate processing of refs. The reason for this is 6440 * that in this case, compare_tree actually compares the refs of 2 different 6441 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6442 * refs of the right tree as deleted and all refs of the left tree as new. 6443 */ 6444 static int changed_ref(struct send_ctx *sctx, 6445 enum btrfs_compare_tree_result result) 6446 { 6447 int ret = 0; 6448 6449 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6450 inconsistent_snapshot_error(sctx, result, "reference"); 6451 return -EIO; 6452 } 6453 6454 if (!sctx->cur_inode_new_gen && 6455 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6456 if (result == BTRFS_COMPARE_TREE_NEW) 6457 ret = record_new_ref(sctx); 6458 else if (result == BTRFS_COMPARE_TREE_DELETED) 6459 ret = record_deleted_ref(sctx); 6460 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6461 ret = record_changed_ref(sctx); 6462 } 6463 6464 return ret; 6465 } 6466 6467 /* 6468 * Process new/deleted/changed xattrs. We skip processing in the 6469 * cur_inode_new_gen case because changed_inode did already initiate processing 6470 * of xattrs. The reason is the same as in changed_ref 6471 */ 6472 static int changed_xattr(struct send_ctx *sctx, 6473 enum btrfs_compare_tree_result result) 6474 { 6475 int ret = 0; 6476 6477 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6478 inconsistent_snapshot_error(sctx, result, "xattr"); 6479 return -EIO; 6480 } 6481 6482 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6483 if (result == BTRFS_COMPARE_TREE_NEW) 6484 ret = process_new_xattr(sctx); 6485 else if (result == BTRFS_COMPARE_TREE_DELETED) 6486 ret = process_deleted_xattr(sctx); 6487 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6488 ret = process_changed_xattr(sctx); 6489 } 6490 6491 return ret; 6492 } 6493 6494 /* 6495 * Process new/deleted/changed extents. We skip processing in the 6496 * cur_inode_new_gen case because changed_inode did already initiate processing 6497 * of extents. The reason is the same as in changed_ref 6498 */ 6499 static int changed_extent(struct send_ctx *sctx, 6500 enum btrfs_compare_tree_result result) 6501 { 6502 int ret = 0; 6503 6504 /* 6505 * We have found an extent item that changed without the inode item 6506 * having changed. This can happen either after relocation (where the 6507 * disk_bytenr of an extent item is replaced at 6508 * relocation.c:replace_file_extents()) or after deduplication into a 6509 * file in both the parent and send snapshots (where an extent item can 6510 * get modified or replaced with a new one). Note that deduplication 6511 * updates the inode item, but it only changes the iversion (sequence 6512 * field in the inode item) of the inode, so if a file is deduplicated 6513 * the same amount of times in both the parent and send snapshots, its 6514 * iversion becames the same in both snapshots, whence the inode item is 6515 * the same on both snapshots. 6516 */ 6517 if (sctx->cur_ino != sctx->cmp_key->objectid) 6518 return 0; 6519 6520 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6521 if (result != BTRFS_COMPARE_TREE_DELETED) 6522 ret = process_extent(sctx, sctx->left_path, 6523 sctx->cmp_key); 6524 } 6525 6526 return ret; 6527 } 6528 6529 static int dir_changed(struct send_ctx *sctx, u64 dir) 6530 { 6531 u64 orig_gen, new_gen; 6532 int ret; 6533 6534 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6535 NULL, NULL); 6536 if (ret) 6537 return ret; 6538 6539 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6540 NULL, NULL, NULL); 6541 if (ret) 6542 return ret; 6543 6544 return (orig_gen != new_gen) ? 1 : 0; 6545 } 6546 6547 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6548 struct btrfs_key *key) 6549 { 6550 struct btrfs_inode_extref *extref; 6551 struct extent_buffer *leaf; 6552 u64 dirid = 0, last_dirid = 0; 6553 unsigned long ptr; 6554 u32 item_size; 6555 u32 cur_offset = 0; 6556 int ref_name_len; 6557 int ret = 0; 6558 6559 /* Easy case, just check this one dirid */ 6560 if (key->type == BTRFS_INODE_REF_KEY) { 6561 dirid = key->offset; 6562 6563 ret = dir_changed(sctx, dirid); 6564 goto out; 6565 } 6566 6567 leaf = path->nodes[0]; 6568 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6569 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6570 while (cur_offset < item_size) { 6571 extref = (struct btrfs_inode_extref *)(ptr + 6572 cur_offset); 6573 dirid = btrfs_inode_extref_parent(leaf, extref); 6574 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6575 cur_offset += ref_name_len + sizeof(*extref); 6576 if (dirid == last_dirid) 6577 continue; 6578 ret = dir_changed(sctx, dirid); 6579 if (ret) 6580 break; 6581 last_dirid = dirid; 6582 } 6583 out: 6584 return ret; 6585 } 6586 6587 /* 6588 * Updates compare related fields in sctx and simply forwards to the actual 6589 * changed_xxx functions. 6590 */ 6591 static int changed_cb(struct btrfs_path *left_path, 6592 struct btrfs_path *right_path, 6593 struct btrfs_key *key, 6594 enum btrfs_compare_tree_result result, 6595 void *ctx) 6596 { 6597 int ret = 0; 6598 struct send_ctx *sctx = ctx; 6599 6600 if (result == BTRFS_COMPARE_TREE_SAME) { 6601 if (key->type == BTRFS_INODE_REF_KEY || 6602 key->type == BTRFS_INODE_EXTREF_KEY) { 6603 ret = compare_refs(sctx, left_path, key); 6604 if (!ret) 6605 return 0; 6606 if (ret < 0) 6607 return ret; 6608 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6609 return maybe_send_hole(sctx, left_path, key); 6610 } else { 6611 return 0; 6612 } 6613 result = BTRFS_COMPARE_TREE_CHANGED; 6614 ret = 0; 6615 } 6616 6617 sctx->left_path = left_path; 6618 sctx->right_path = right_path; 6619 sctx->cmp_key = key; 6620 6621 ret = finish_inode_if_needed(sctx, 0); 6622 if (ret < 0) 6623 goto out; 6624 6625 /* Ignore non-FS objects */ 6626 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6627 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6628 goto out; 6629 6630 if (key->type == BTRFS_INODE_ITEM_KEY) { 6631 ret = changed_inode(sctx, result); 6632 } else if (!sctx->ignore_cur_inode) { 6633 if (key->type == BTRFS_INODE_REF_KEY || 6634 key->type == BTRFS_INODE_EXTREF_KEY) 6635 ret = changed_ref(sctx, result); 6636 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6637 ret = changed_xattr(sctx, result); 6638 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6639 ret = changed_extent(sctx, result); 6640 } 6641 6642 out: 6643 return ret; 6644 } 6645 6646 static int full_send_tree(struct send_ctx *sctx) 6647 { 6648 int ret; 6649 struct btrfs_root *send_root = sctx->send_root; 6650 struct btrfs_key key; 6651 struct btrfs_path *path; 6652 struct extent_buffer *eb; 6653 int slot; 6654 6655 path = alloc_path_for_send(); 6656 if (!path) 6657 return -ENOMEM; 6658 6659 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6660 key.type = BTRFS_INODE_ITEM_KEY; 6661 key.offset = 0; 6662 6663 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6664 if (ret < 0) 6665 goto out; 6666 if (ret) 6667 goto out_finish; 6668 6669 while (1) { 6670 eb = path->nodes[0]; 6671 slot = path->slots[0]; 6672 btrfs_item_key_to_cpu(eb, &key, slot); 6673 6674 ret = changed_cb(path, NULL, &key, 6675 BTRFS_COMPARE_TREE_NEW, sctx); 6676 if (ret < 0) 6677 goto out; 6678 6679 ret = btrfs_next_item(send_root, path); 6680 if (ret < 0) 6681 goto out; 6682 if (ret) { 6683 ret = 0; 6684 break; 6685 } 6686 } 6687 6688 out_finish: 6689 ret = finish_inode_if_needed(sctx, 1); 6690 6691 out: 6692 btrfs_free_path(path); 6693 return ret; 6694 } 6695 6696 static int tree_move_down(struct btrfs_path *path, int *level) 6697 { 6698 struct extent_buffer *eb; 6699 6700 BUG_ON(*level == 0); 6701 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]); 6702 if (IS_ERR(eb)) 6703 return PTR_ERR(eb); 6704 6705 path->nodes[*level - 1] = eb; 6706 path->slots[*level - 1] = 0; 6707 (*level)--; 6708 return 0; 6709 } 6710 6711 static int tree_move_next_or_upnext(struct btrfs_path *path, 6712 int *level, int root_level) 6713 { 6714 int ret = 0; 6715 int nritems; 6716 nritems = btrfs_header_nritems(path->nodes[*level]); 6717 6718 path->slots[*level]++; 6719 6720 while (path->slots[*level] >= nritems) { 6721 if (*level == root_level) 6722 return -1; 6723 6724 /* move upnext */ 6725 path->slots[*level] = 0; 6726 free_extent_buffer(path->nodes[*level]); 6727 path->nodes[*level] = NULL; 6728 (*level)++; 6729 path->slots[*level]++; 6730 6731 nritems = btrfs_header_nritems(path->nodes[*level]); 6732 ret = 1; 6733 } 6734 return ret; 6735 } 6736 6737 /* 6738 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6739 * or down. 6740 */ 6741 static int tree_advance(struct btrfs_path *path, 6742 int *level, int root_level, 6743 int allow_down, 6744 struct btrfs_key *key) 6745 { 6746 int ret; 6747 6748 if (*level == 0 || !allow_down) { 6749 ret = tree_move_next_or_upnext(path, level, root_level); 6750 } else { 6751 ret = tree_move_down(path, level); 6752 } 6753 if (ret >= 0) { 6754 if (*level == 0) 6755 btrfs_item_key_to_cpu(path->nodes[*level], key, 6756 path->slots[*level]); 6757 else 6758 btrfs_node_key_to_cpu(path->nodes[*level], key, 6759 path->slots[*level]); 6760 } 6761 return ret; 6762 } 6763 6764 static int tree_compare_item(struct btrfs_path *left_path, 6765 struct btrfs_path *right_path, 6766 char *tmp_buf) 6767 { 6768 int cmp; 6769 int len1, len2; 6770 unsigned long off1, off2; 6771 6772 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 6773 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 6774 if (len1 != len2) 6775 return 1; 6776 6777 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6778 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6779 right_path->slots[0]); 6780 6781 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6782 6783 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6784 if (cmp) 6785 return 1; 6786 return 0; 6787 } 6788 6789 /* 6790 * This function compares two trees and calls the provided callback for 6791 * every changed/new/deleted item it finds. 6792 * If shared tree blocks are encountered, whole subtrees are skipped, making 6793 * the compare pretty fast on snapshotted subvolumes. 6794 * 6795 * This currently works on commit roots only. As commit roots are read only, 6796 * we don't do any locking. The commit roots are protected with transactions. 6797 * Transactions are ended and rejoined when a commit is tried in between. 6798 * 6799 * This function checks for modifications done to the trees while comparing. 6800 * If it detects a change, it aborts immediately. 6801 */ 6802 static int btrfs_compare_trees(struct btrfs_root *left_root, 6803 struct btrfs_root *right_root, void *ctx) 6804 { 6805 struct btrfs_fs_info *fs_info = left_root->fs_info; 6806 int ret; 6807 int cmp; 6808 struct btrfs_path *left_path = NULL; 6809 struct btrfs_path *right_path = NULL; 6810 struct btrfs_key left_key; 6811 struct btrfs_key right_key; 6812 char *tmp_buf = NULL; 6813 int left_root_level; 6814 int right_root_level; 6815 int left_level; 6816 int right_level; 6817 int left_end_reached; 6818 int right_end_reached; 6819 int advance_left; 6820 int advance_right; 6821 u64 left_blockptr; 6822 u64 right_blockptr; 6823 u64 left_gen; 6824 u64 right_gen; 6825 6826 left_path = btrfs_alloc_path(); 6827 if (!left_path) { 6828 ret = -ENOMEM; 6829 goto out; 6830 } 6831 right_path = btrfs_alloc_path(); 6832 if (!right_path) { 6833 ret = -ENOMEM; 6834 goto out; 6835 } 6836 6837 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 6838 if (!tmp_buf) { 6839 ret = -ENOMEM; 6840 goto out; 6841 } 6842 6843 left_path->search_commit_root = 1; 6844 left_path->skip_locking = 1; 6845 right_path->search_commit_root = 1; 6846 right_path->skip_locking = 1; 6847 6848 /* 6849 * Strategy: Go to the first items of both trees. Then do 6850 * 6851 * If both trees are at level 0 6852 * Compare keys of current items 6853 * If left < right treat left item as new, advance left tree 6854 * and repeat 6855 * If left > right treat right item as deleted, advance right tree 6856 * and repeat 6857 * If left == right do deep compare of items, treat as changed if 6858 * needed, advance both trees and repeat 6859 * If both trees are at the same level but not at level 0 6860 * Compare keys of current nodes/leafs 6861 * If left < right advance left tree and repeat 6862 * If left > right advance right tree and repeat 6863 * If left == right compare blockptrs of the next nodes/leafs 6864 * If they match advance both trees but stay at the same level 6865 * and repeat 6866 * If they don't match advance both trees while allowing to go 6867 * deeper and repeat 6868 * If tree levels are different 6869 * Advance the tree that needs it and repeat 6870 * 6871 * Advancing a tree means: 6872 * If we are at level 0, try to go to the next slot. If that's not 6873 * possible, go one level up and repeat. Stop when we found a level 6874 * where we could go to the next slot. We may at this point be on a 6875 * node or a leaf. 6876 * 6877 * If we are not at level 0 and not on shared tree blocks, go one 6878 * level deeper. 6879 * 6880 * If we are not at level 0 and on shared tree blocks, go one slot to 6881 * the right if possible or go up and right. 6882 */ 6883 6884 down_read(&fs_info->commit_root_sem); 6885 left_level = btrfs_header_level(left_root->commit_root); 6886 left_root_level = left_level; 6887 left_path->nodes[left_level] = 6888 btrfs_clone_extent_buffer(left_root->commit_root); 6889 if (!left_path->nodes[left_level]) { 6890 up_read(&fs_info->commit_root_sem); 6891 ret = -ENOMEM; 6892 goto out; 6893 } 6894 6895 right_level = btrfs_header_level(right_root->commit_root); 6896 right_root_level = right_level; 6897 right_path->nodes[right_level] = 6898 btrfs_clone_extent_buffer(right_root->commit_root); 6899 if (!right_path->nodes[right_level]) { 6900 up_read(&fs_info->commit_root_sem); 6901 ret = -ENOMEM; 6902 goto out; 6903 } 6904 up_read(&fs_info->commit_root_sem); 6905 6906 if (left_level == 0) 6907 btrfs_item_key_to_cpu(left_path->nodes[left_level], 6908 &left_key, left_path->slots[left_level]); 6909 else 6910 btrfs_node_key_to_cpu(left_path->nodes[left_level], 6911 &left_key, left_path->slots[left_level]); 6912 if (right_level == 0) 6913 btrfs_item_key_to_cpu(right_path->nodes[right_level], 6914 &right_key, right_path->slots[right_level]); 6915 else 6916 btrfs_node_key_to_cpu(right_path->nodes[right_level], 6917 &right_key, right_path->slots[right_level]); 6918 6919 left_end_reached = right_end_reached = 0; 6920 advance_left = advance_right = 0; 6921 6922 while (1) { 6923 cond_resched(); 6924 if (advance_left && !left_end_reached) { 6925 ret = tree_advance(left_path, &left_level, 6926 left_root_level, 6927 advance_left != ADVANCE_ONLY_NEXT, 6928 &left_key); 6929 if (ret == -1) 6930 left_end_reached = ADVANCE; 6931 else if (ret < 0) 6932 goto out; 6933 advance_left = 0; 6934 } 6935 if (advance_right && !right_end_reached) { 6936 ret = tree_advance(right_path, &right_level, 6937 right_root_level, 6938 advance_right != ADVANCE_ONLY_NEXT, 6939 &right_key); 6940 if (ret == -1) 6941 right_end_reached = ADVANCE; 6942 else if (ret < 0) 6943 goto out; 6944 advance_right = 0; 6945 } 6946 6947 if (left_end_reached && right_end_reached) { 6948 ret = 0; 6949 goto out; 6950 } else if (left_end_reached) { 6951 if (right_level == 0) { 6952 ret = changed_cb(left_path, right_path, 6953 &right_key, 6954 BTRFS_COMPARE_TREE_DELETED, 6955 ctx); 6956 if (ret < 0) 6957 goto out; 6958 } 6959 advance_right = ADVANCE; 6960 continue; 6961 } else if (right_end_reached) { 6962 if (left_level == 0) { 6963 ret = changed_cb(left_path, right_path, 6964 &left_key, 6965 BTRFS_COMPARE_TREE_NEW, 6966 ctx); 6967 if (ret < 0) 6968 goto out; 6969 } 6970 advance_left = ADVANCE; 6971 continue; 6972 } 6973 6974 if (left_level == 0 && right_level == 0) { 6975 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 6976 if (cmp < 0) { 6977 ret = changed_cb(left_path, right_path, 6978 &left_key, 6979 BTRFS_COMPARE_TREE_NEW, 6980 ctx); 6981 if (ret < 0) 6982 goto out; 6983 advance_left = ADVANCE; 6984 } else if (cmp > 0) { 6985 ret = changed_cb(left_path, right_path, 6986 &right_key, 6987 BTRFS_COMPARE_TREE_DELETED, 6988 ctx); 6989 if (ret < 0) 6990 goto out; 6991 advance_right = ADVANCE; 6992 } else { 6993 enum btrfs_compare_tree_result result; 6994 6995 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 6996 ret = tree_compare_item(left_path, right_path, 6997 tmp_buf); 6998 if (ret) 6999 result = BTRFS_COMPARE_TREE_CHANGED; 7000 else 7001 result = BTRFS_COMPARE_TREE_SAME; 7002 ret = changed_cb(left_path, right_path, 7003 &left_key, result, ctx); 7004 if (ret < 0) 7005 goto out; 7006 advance_left = ADVANCE; 7007 advance_right = ADVANCE; 7008 } 7009 } else if (left_level == right_level) { 7010 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7011 if (cmp < 0) { 7012 advance_left = ADVANCE; 7013 } else if (cmp > 0) { 7014 advance_right = ADVANCE; 7015 } else { 7016 left_blockptr = btrfs_node_blockptr( 7017 left_path->nodes[left_level], 7018 left_path->slots[left_level]); 7019 right_blockptr = btrfs_node_blockptr( 7020 right_path->nodes[right_level], 7021 right_path->slots[right_level]); 7022 left_gen = btrfs_node_ptr_generation( 7023 left_path->nodes[left_level], 7024 left_path->slots[left_level]); 7025 right_gen = btrfs_node_ptr_generation( 7026 right_path->nodes[right_level], 7027 right_path->slots[right_level]); 7028 if (left_blockptr == right_blockptr && 7029 left_gen == right_gen) { 7030 /* 7031 * As we're on a shared block, don't 7032 * allow to go deeper. 7033 */ 7034 advance_left = ADVANCE_ONLY_NEXT; 7035 advance_right = ADVANCE_ONLY_NEXT; 7036 } else { 7037 advance_left = ADVANCE; 7038 advance_right = ADVANCE; 7039 } 7040 } 7041 } else if (left_level < right_level) { 7042 advance_right = ADVANCE; 7043 } else { 7044 advance_left = ADVANCE; 7045 } 7046 } 7047 7048 out: 7049 btrfs_free_path(left_path); 7050 btrfs_free_path(right_path); 7051 kvfree(tmp_buf); 7052 return ret; 7053 } 7054 7055 static int send_subvol(struct send_ctx *sctx) 7056 { 7057 int ret; 7058 7059 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7060 ret = send_header(sctx); 7061 if (ret < 0) 7062 goto out; 7063 } 7064 7065 ret = send_subvol_begin(sctx); 7066 if (ret < 0) 7067 goto out; 7068 7069 if (sctx->parent_root) { 7070 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7071 if (ret < 0) 7072 goto out; 7073 ret = finish_inode_if_needed(sctx, 1); 7074 if (ret < 0) 7075 goto out; 7076 } else { 7077 ret = full_send_tree(sctx); 7078 if (ret < 0) 7079 goto out; 7080 } 7081 7082 out: 7083 free_recorded_refs(sctx); 7084 return ret; 7085 } 7086 7087 /* 7088 * If orphan cleanup did remove any orphans from a root, it means the tree 7089 * was modified and therefore the commit root is not the same as the current 7090 * root anymore. This is a problem, because send uses the commit root and 7091 * therefore can see inode items that don't exist in the current root anymore, 7092 * and for example make calls to btrfs_iget, which will do tree lookups based 7093 * on the current root and not on the commit root. Those lookups will fail, 7094 * returning a -ESTALE error, and making send fail with that error. So make 7095 * sure a send does not see any orphans we have just removed, and that it will 7096 * see the same inodes regardless of whether a transaction commit happened 7097 * before it started (meaning that the commit root will be the same as the 7098 * current root) or not. 7099 */ 7100 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7101 { 7102 int i; 7103 struct btrfs_trans_handle *trans = NULL; 7104 7105 again: 7106 if (sctx->parent_root && 7107 sctx->parent_root->node != sctx->parent_root->commit_root) 7108 goto commit_trans; 7109 7110 for (i = 0; i < sctx->clone_roots_cnt; i++) 7111 if (sctx->clone_roots[i].root->node != 7112 sctx->clone_roots[i].root->commit_root) 7113 goto commit_trans; 7114 7115 if (trans) 7116 return btrfs_end_transaction(trans); 7117 7118 return 0; 7119 7120 commit_trans: 7121 /* Use any root, all fs roots will get their commit roots updated. */ 7122 if (!trans) { 7123 trans = btrfs_join_transaction(sctx->send_root); 7124 if (IS_ERR(trans)) 7125 return PTR_ERR(trans); 7126 goto again; 7127 } 7128 7129 return btrfs_commit_transaction(trans); 7130 } 7131 7132 /* 7133 * Make sure any existing dellaloc is flushed for any root used by a send 7134 * operation so that we do not miss any data and we do not race with writeback 7135 * finishing and changing a tree while send is using the tree. This could 7136 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7137 * a send operation then uses the subvolume. 7138 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7139 */ 7140 static int flush_delalloc_roots(struct send_ctx *sctx) 7141 { 7142 struct btrfs_root *root = sctx->parent_root; 7143 int ret; 7144 int i; 7145 7146 if (root) { 7147 ret = btrfs_start_delalloc_snapshot(root); 7148 if (ret) 7149 return ret; 7150 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7151 } 7152 7153 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7154 root = sctx->clone_roots[i].root; 7155 ret = btrfs_start_delalloc_snapshot(root); 7156 if (ret) 7157 return ret; 7158 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7159 } 7160 7161 return 0; 7162 } 7163 7164 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7165 { 7166 spin_lock(&root->root_item_lock); 7167 root->send_in_progress--; 7168 /* 7169 * Not much left to do, we don't know why it's unbalanced and 7170 * can't blindly reset it to 0. 7171 */ 7172 if (root->send_in_progress < 0) 7173 btrfs_err(root->fs_info, 7174 "send_in_progress unbalanced %d root %llu", 7175 root->send_in_progress, root->root_key.objectid); 7176 spin_unlock(&root->root_item_lock); 7177 } 7178 7179 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7180 { 7181 btrfs_warn_rl(root->fs_info, 7182 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7183 root->root_key.objectid, root->dedupe_in_progress); 7184 } 7185 7186 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 7187 { 7188 int ret = 0; 7189 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 7190 struct btrfs_fs_info *fs_info = send_root->fs_info; 7191 struct btrfs_root *clone_root; 7192 struct send_ctx *sctx = NULL; 7193 u32 i; 7194 u64 *clone_sources_tmp = NULL; 7195 int clone_sources_to_rollback = 0; 7196 size_t alloc_size; 7197 int sort_clone_roots = 0; 7198 7199 if (!capable(CAP_SYS_ADMIN)) 7200 return -EPERM; 7201 7202 /* 7203 * The subvolume must remain read-only during send, protect against 7204 * making it RW. This also protects against deletion. 7205 */ 7206 spin_lock(&send_root->root_item_lock); 7207 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7208 dedupe_in_progress_warn(send_root); 7209 spin_unlock(&send_root->root_item_lock); 7210 return -EAGAIN; 7211 } 7212 send_root->send_in_progress++; 7213 spin_unlock(&send_root->root_item_lock); 7214 7215 /* 7216 * Userspace tools do the checks and warn the user if it's 7217 * not RO. 7218 */ 7219 if (!btrfs_root_readonly(send_root)) { 7220 ret = -EPERM; 7221 goto out; 7222 } 7223 7224 /* 7225 * Check that we don't overflow at later allocations, we request 7226 * clone_sources_count + 1 items, and compare to unsigned long inside 7227 * access_ok. 7228 */ 7229 if (arg->clone_sources_count > 7230 ULONG_MAX / sizeof(struct clone_root) - 1) { 7231 ret = -EINVAL; 7232 goto out; 7233 } 7234 7235 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7236 ret = -EINVAL; 7237 goto out; 7238 } 7239 7240 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7241 if (!sctx) { 7242 ret = -ENOMEM; 7243 goto out; 7244 } 7245 7246 INIT_LIST_HEAD(&sctx->new_refs); 7247 INIT_LIST_HEAD(&sctx->deleted_refs); 7248 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7249 INIT_LIST_HEAD(&sctx->name_cache_list); 7250 7251 sctx->flags = arg->flags; 7252 7253 sctx->send_filp = fget(arg->send_fd); 7254 if (!sctx->send_filp) { 7255 ret = -EBADF; 7256 goto out; 7257 } 7258 7259 sctx->send_root = send_root; 7260 /* 7261 * Unlikely but possible, if the subvolume is marked for deletion but 7262 * is slow to remove the directory entry, send can still be started 7263 */ 7264 if (btrfs_root_dead(sctx->send_root)) { 7265 ret = -EPERM; 7266 goto out; 7267 } 7268 7269 sctx->clone_roots_cnt = arg->clone_sources_count; 7270 7271 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7272 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7273 if (!sctx->send_buf) { 7274 ret = -ENOMEM; 7275 goto out; 7276 } 7277 7278 sctx->pending_dir_moves = RB_ROOT; 7279 sctx->waiting_dir_moves = RB_ROOT; 7280 sctx->orphan_dirs = RB_ROOT; 7281 7282 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7283 arg->clone_sources_count + 1, 7284 GFP_KERNEL); 7285 if (!sctx->clone_roots) { 7286 ret = -ENOMEM; 7287 goto out; 7288 } 7289 7290 alloc_size = array_size(sizeof(*arg->clone_sources), 7291 arg->clone_sources_count); 7292 7293 if (arg->clone_sources_count) { 7294 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7295 if (!clone_sources_tmp) { 7296 ret = -ENOMEM; 7297 goto out; 7298 } 7299 7300 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7301 alloc_size); 7302 if (ret) { 7303 ret = -EFAULT; 7304 goto out; 7305 } 7306 7307 for (i = 0; i < arg->clone_sources_count; i++) { 7308 clone_root = btrfs_get_fs_root(fs_info, 7309 clone_sources_tmp[i], true); 7310 if (IS_ERR(clone_root)) { 7311 ret = PTR_ERR(clone_root); 7312 goto out; 7313 } 7314 spin_lock(&clone_root->root_item_lock); 7315 if (!btrfs_root_readonly(clone_root) || 7316 btrfs_root_dead(clone_root)) { 7317 spin_unlock(&clone_root->root_item_lock); 7318 btrfs_put_root(clone_root); 7319 ret = -EPERM; 7320 goto out; 7321 } 7322 if (clone_root->dedupe_in_progress) { 7323 dedupe_in_progress_warn(clone_root); 7324 spin_unlock(&clone_root->root_item_lock); 7325 btrfs_put_root(clone_root); 7326 ret = -EAGAIN; 7327 goto out; 7328 } 7329 clone_root->send_in_progress++; 7330 spin_unlock(&clone_root->root_item_lock); 7331 7332 sctx->clone_roots[i].root = clone_root; 7333 clone_sources_to_rollback = i + 1; 7334 } 7335 kvfree(clone_sources_tmp); 7336 clone_sources_tmp = NULL; 7337 } 7338 7339 if (arg->parent_root) { 7340 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7341 true); 7342 if (IS_ERR(sctx->parent_root)) { 7343 ret = PTR_ERR(sctx->parent_root); 7344 goto out; 7345 } 7346 7347 spin_lock(&sctx->parent_root->root_item_lock); 7348 sctx->parent_root->send_in_progress++; 7349 if (!btrfs_root_readonly(sctx->parent_root) || 7350 btrfs_root_dead(sctx->parent_root)) { 7351 spin_unlock(&sctx->parent_root->root_item_lock); 7352 ret = -EPERM; 7353 goto out; 7354 } 7355 if (sctx->parent_root->dedupe_in_progress) { 7356 dedupe_in_progress_warn(sctx->parent_root); 7357 spin_unlock(&sctx->parent_root->root_item_lock); 7358 ret = -EAGAIN; 7359 goto out; 7360 } 7361 spin_unlock(&sctx->parent_root->root_item_lock); 7362 } 7363 7364 /* 7365 * Clones from send_root are allowed, but only if the clone source 7366 * is behind the current send position. This is checked while searching 7367 * for possible clone sources. 7368 */ 7369 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7370 btrfs_grab_root(sctx->send_root); 7371 7372 /* We do a bsearch later */ 7373 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7374 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7375 NULL); 7376 sort_clone_roots = 1; 7377 7378 ret = flush_delalloc_roots(sctx); 7379 if (ret) 7380 goto out; 7381 7382 ret = ensure_commit_roots_uptodate(sctx); 7383 if (ret) 7384 goto out; 7385 7386 mutex_lock(&fs_info->balance_mutex); 7387 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 7388 mutex_unlock(&fs_info->balance_mutex); 7389 btrfs_warn_rl(fs_info, 7390 "cannot run send because a balance operation is in progress"); 7391 ret = -EAGAIN; 7392 goto out; 7393 } 7394 fs_info->send_in_progress++; 7395 mutex_unlock(&fs_info->balance_mutex); 7396 7397 current->journal_info = BTRFS_SEND_TRANS_STUB; 7398 ret = send_subvol(sctx); 7399 current->journal_info = NULL; 7400 mutex_lock(&fs_info->balance_mutex); 7401 fs_info->send_in_progress--; 7402 mutex_unlock(&fs_info->balance_mutex); 7403 if (ret < 0) 7404 goto out; 7405 7406 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7407 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7408 if (ret < 0) 7409 goto out; 7410 ret = send_cmd(sctx); 7411 if (ret < 0) 7412 goto out; 7413 } 7414 7415 out: 7416 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7417 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7418 struct rb_node *n; 7419 struct pending_dir_move *pm; 7420 7421 n = rb_first(&sctx->pending_dir_moves); 7422 pm = rb_entry(n, struct pending_dir_move, node); 7423 while (!list_empty(&pm->list)) { 7424 struct pending_dir_move *pm2; 7425 7426 pm2 = list_first_entry(&pm->list, 7427 struct pending_dir_move, list); 7428 free_pending_move(sctx, pm2); 7429 } 7430 free_pending_move(sctx, pm); 7431 } 7432 7433 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7434 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7435 struct rb_node *n; 7436 struct waiting_dir_move *dm; 7437 7438 n = rb_first(&sctx->waiting_dir_moves); 7439 dm = rb_entry(n, struct waiting_dir_move, node); 7440 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7441 kfree(dm); 7442 } 7443 7444 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7445 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7446 struct rb_node *n; 7447 struct orphan_dir_info *odi; 7448 7449 n = rb_first(&sctx->orphan_dirs); 7450 odi = rb_entry(n, struct orphan_dir_info, node); 7451 free_orphan_dir_info(sctx, odi); 7452 } 7453 7454 if (sort_clone_roots) { 7455 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7456 btrfs_root_dec_send_in_progress( 7457 sctx->clone_roots[i].root); 7458 btrfs_put_root(sctx->clone_roots[i].root); 7459 } 7460 } else { 7461 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 7462 btrfs_root_dec_send_in_progress( 7463 sctx->clone_roots[i].root); 7464 btrfs_put_root(sctx->clone_roots[i].root); 7465 } 7466 7467 btrfs_root_dec_send_in_progress(send_root); 7468 } 7469 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 7470 btrfs_root_dec_send_in_progress(sctx->parent_root); 7471 btrfs_put_root(sctx->parent_root); 7472 } 7473 7474 kvfree(clone_sources_tmp); 7475 7476 if (sctx) { 7477 if (sctx->send_filp) 7478 fput(sctx->send_filp); 7479 7480 kvfree(sctx->clone_roots); 7481 kvfree(sctx->send_buf); 7482 7483 name_cache_free(sctx); 7484 7485 kfree(sctx); 7486 } 7487 7488 return ret; 7489 } 7490