1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/smp_lock.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "ref-cache.h" 52 #include "compression.h" 53 #include "locking.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 static struct inode_operations btrfs_dir_inode_operations; 61 static struct inode_operations btrfs_symlink_inode_operations; 62 static struct inode_operations btrfs_dir_ro_inode_operations; 63 static struct inode_operations btrfs_special_inode_operations; 64 static struct inode_operations btrfs_file_inode_operations; 65 static struct address_space_operations btrfs_aops; 66 static struct address_space_operations btrfs_symlink_aops; 67 static struct file_operations btrfs_dir_file_operations; 68 static struct extent_io_ops btrfs_extent_io_ops; 69 70 static struct kmem_cache *btrfs_inode_cachep; 71 struct kmem_cache *btrfs_trans_handle_cachep; 72 struct kmem_cache *btrfs_transaction_cachep; 73 struct kmem_cache *btrfs_bit_radix_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 76 #define S_SHIFT 12 77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static void btrfs_truncate(struct inode *inode); 88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 89 static noinline int cow_file_range(struct inode *inode, 90 struct page *locked_page, 91 u64 start, u64 end, int *page_started, 92 unsigned long *nr_written, int unlock); 93 94 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir) 95 { 96 int err; 97 98 err = btrfs_init_acl(inode, dir); 99 if (!err) 100 err = btrfs_xattr_security_init(inode, dir); 101 return err; 102 } 103 104 /* 105 * a very lame attempt at stopping writes when the FS is 85% full. There 106 * are countless ways this is incorrect, but it is better than nothing. 107 */ 108 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required, 109 int for_del) 110 { 111 u64 total; 112 u64 used; 113 u64 thresh; 114 int ret = 0; 115 116 spin_lock(&root->fs_info->delalloc_lock); 117 total = btrfs_super_total_bytes(&root->fs_info->super_copy); 118 used = btrfs_super_bytes_used(&root->fs_info->super_copy); 119 if (for_del) 120 thresh = total * 90; 121 else 122 thresh = total * 85; 123 124 do_div(thresh, 100); 125 126 if (used + root->fs_info->delalloc_bytes + num_required > thresh) 127 ret = -ENOSPC; 128 spin_unlock(&root->fs_info->delalloc_lock); 129 return ret; 130 } 131 132 /* 133 * this does all the hard work for inserting an inline extent into 134 * the btree. The caller should have done a btrfs_drop_extents so that 135 * no overlapping inline items exist in the btree 136 */ 137 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 138 struct btrfs_root *root, struct inode *inode, 139 u64 start, size_t size, size_t compressed_size, 140 struct page **compressed_pages) 141 { 142 struct btrfs_key key; 143 struct btrfs_path *path; 144 struct extent_buffer *leaf; 145 struct page *page = NULL; 146 char *kaddr; 147 unsigned long ptr; 148 struct btrfs_file_extent_item *ei; 149 int err = 0; 150 int ret; 151 size_t cur_size = size; 152 size_t datasize; 153 unsigned long offset; 154 int use_compress = 0; 155 156 if (compressed_size && compressed_pages) { 157 use_compress = 1; 158 cur_size = compressed_size; 159 } 160 161 path = btrfs_alloc_path(); 162 if (!path) 163 return -ENOMEM; 164 165 btrfs_set_trans_block_group(trans, inode); 166 167 key.objectid = inode->i_ino; 168 key.offset = start; 169 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 170 datasize = btrfs_file_extent_calc_inline_size(cur_size); 171 172 inode_add_bytes(inode, size); 173 ret = btrfs_insert_empty_item(trans, root, path, &key, 174 datasize); 175 BUG_ON(ret); 176 if (ret) { 177 err = ret; 178 goto fail; 179 } 180 leaf = path->nodes[0]; 181 ei = btrfs_item_ptr(leaf, path->slots[0], 182 struct btrfs_file_extent_item); 183 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 184 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 185 btrfs_set_file_extent_encryption(leaf, ei, 0); 186 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 187 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 188 ptr = btrfs_file_extent_inline_start(ei); 189 190 if (use_compress) { 191 struct page *cpage; 192 int i = 0; 193 while (compressed_size > 0) { 194 cpage = compressed_pages[i]; 195 cur_size = min_t(unsigned long, compressed_size, 196 PAGE_CACHE_SIZE); 197 198 kaddr = kmap(cpage); 199 write_extent_buffer(leaf, kaddr, ptr, cur_size); 200 kunmap(cpage); 201 202 i++; 203 ptr += cur_size; 204 compressed_size -= cur_size; 205 } 206 btrfs_set_file_extent_compression(leaf, ei, 207 BTRFS_COMPRESS_ZLIB); 208 } else { 209 page = find_get_page(inode->i_mapping, 210 start >> PAGE_CACHE_SHIFT); 211 btrfs_set_file_extent_compression(leaf, ei, 0); 212 kaddr = kmap_atomic(page, KM_USER0); 213 offset = start & (PAGE_CACHE_SIZE - 1); 214 write_extent_buffer(leaf, kaddr + offset, ptr, size); 215 kunmap_atomic(kaddr, KM_USER0); 216 page_cache_release(page); 217 } 218 btrfs_mark_buffer_dirty(leaf); 219 btrfs_free_path(path); 220 221 BTRFS_I(inode)->disk_i_size = inode->i_size; 222 btrfs_update_inode(trans, root, inode); 223 return 0; 224 fail: 225 btrfs_free_path(path); 226 return err; 227 } 228 229 230 /* 231 * conditionally insert an inline extent into the file. This 232 * does the checks required to make sure the data is small enough 233 * to fit as an inline extent. 234 */ 235 static int cow_file_range_inline(struct btrfs_trans_handle *trans, 236 struct btrfs_root *root, 237 struct inode *inode, u64 start, u64 end, 238 size_t compressed_size, 239 struct page **compressed_pages) 240 { 241 u64 isize = i_size_read(inode); 242 u64 actual_end = min(end + 1, isize); 243 u64 inline_len = actual_end - start; 244 u64 aligned_end = (end + root->sectorsize - 1) & 245 ~((u64)root->sectorsize - 1); 246 u64 hint_byte; 247 u64 data_len = inline_len; 248 int ret; 249 250 if (compressed_size) 251 data_len = compressed_size; 252 253 if (start > 0 || 254 actual_end >= PAGE_CACHE_SIZE || 255 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 256 (!compressed_size && 257 (actual_end & (root->sectorsize - 1)) == 0) || 258 end + 1 < isize || 259 data_len > root->fs_info->max_inline) { 260 return 1; 261 } 262 263 ret = btrfs_drop_extents(trans, root, inode, start, 264 aligned_end, start, &hint_byte); 265 BUG_ON(ret); 266 267 if (isize > actual_end) 268 inline_len = min_t(u64, isize, actual_end); 269 ret = insert_inline_extent(trans, root, inode, start, 270 inline_len, compressed_size, 271 compressed_pages); 272 BUG_ON(ret); 273 btrfs_drop_extent_cache(inode, start, aligned_end, 0); 274 return 0; 275 } 276 277 struct async_extent { 278 u64 start; 279 u64 ram_size; 280 u64 compressed_size; 281 struct page **pages; 282 unsigned long nr_pages; 283 struct list_head list; 284 }; 285 286 struct async_cow { 287 struct inode *inode; 288 struct btrfs_root *root; 289 struct page *locked_page; 290 u64 start; 291 u64 end; 292 struct list_head extents; 293 struct btrfs_work work; 294 }; 295 296 static noinline int add_async_extent(struct async_cow *cow, 297 u64 start, u64 ram_size, 298 u64 compressed_size, 299 struct page **pages, 300 unsigned long nr_pages) 301 { 302 struct async_extent *async_extent; 303 304 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 305 async_extent->start = start; 306 async_extent->ram_size = ram_size; 307 async_extent->compressed_size = compressed_size; 308 async_extent->pages = pages; 309 async_extent->nr_pages = nr_pages; 310 list_add_tail(&async_extent->list, &cow->extents); 311 return 0; 312 } 313 314 /* 315 * we create compressed extents in two phases. The first 316 * phase compresses a range of pages that have already been 317 * locked (both pages and state bits are locked). 318 * 319 * This is done inside an ordered work queue, and the compression 320 * is spread across many cpus. The actual IO submission is step 321 * two, and the ordered work queue takes care of making sure that 322 * happens in the same order things were put onto the queue by 323 * writepages and friends. 324 * 325 * If this code finds it can't get good compression, it puts an 326 * entry onto the work queue to write the uncompressed bytes. This 327 * makes sure that both compressed inodes and uncompressed inodes 328 * are written in the same order that pdflush sent them down. 329 */ 330 static noinline int compress_file_range(struct inode *inode, 331 struct page *locked_page, 332 u64 start, u64 end, 333 struct async_cow *async_cow, 334 int *num_added) 335 { 336 struct btrfs_root *root = BTRFS_I(inode)->root; 337 struct btrfs_trans_handle *trans; 338 u64 num_bytes; 339 u64 orig_start; 340 u64 disk_num_bytes; 341 u64 blocksize = root->sectorsize; 342 u64 actual_end; 343 u64 isize = i_size_read(inode); 344 int ret = 0; 345 struct page **pages = NULL; 346 unsigned long nr_pages; 347 unsigned long nr_pages_ret = 0; 348 unsigned long total_compressed = 0; 349 unsigned long total_in = 0; 350 unsigned long max_compressed = 128 * 1024; 351 unsigned long max_uncompressed = 128 * 1024; 352 int i; 353 int will_compress; 354 355 orig_start = start; 356 357 actual_end = min_t(u64, isize, end + 1); 358 again: 359 will_compress = 0; 360 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 361 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 362 363 /* 364 * we don't want to send crud past the end of i_size through 365 * compression, that's just a waste of CPU time. So, if the 366 * end of the file is before the start of our current 367 * requested range of bytes, we bail out to the uncompressed 368 * cleanup code that can deal with all of this. 369 * 370 * It isn't really the fastest way to fix things, but this is a 371 * very uncommon corner. 372 */ 373 if (actual_end <= start) 374 goto cleanup_and_bail_uncompressed; 375 376 total_compressed = actual_end - start; 377 378 /* we want to make sure that amount of ram required to uncompress 379 * an extent is reasonable, so we limit the total size in ram 380 * of a compressed extent to 128k. This is a crucial number 381 * because it also controls how easily we can spread reads across 382 * cpus for decompression. 383 * 384 * We also want to make sure the amount of IO required to do 385 * a random read is reasonably small, so we limit the size of 386 * a compressed extent to 128k. 387 */ 388 total_compressed = min(total_compressed, max_uncompressed); 389 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 390 num_bytes = max(blocksize, num_bytes); 391 disk_num_bytes = num_bytes; 392 total_in = 0; 393 ret = 0; 394 395 /* 396 * we do compression for mount -o compress and when the 397 * inode has not been flagged as nocompress. This flag can 398 * change at any time if we discover bad compression ratios. 399 */ 400 if (!btrfs_test_flag(inode, NOCOMPRESS) && 401 btrfs_test_opt(root, COMPRESS)) { 402 WARN_ON(pages); 403 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 404 405 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 406 total_compressed, pages, 407 nr_pages, &nr_pages_ret, 408 &total_in, 409 &total_compressed, 410 max_compressed); 411 412 if (!ret) { 413 unsigned long offset = total_compressed & 414 (PAGE_CACHE_SIZE - 1); 415 struct page *page = pages[nr_pages_ret - 1]; 416 char *kaddr; 417 418 /* zero the tail end of the last page, we might be 419 * sending it down to disk 420 */ 421 if (offset) { 422 kaddr = kmap_atomic(page, KM_USER0); 423 memset(kaddr + offset, 0, 424 PAGE_CACHE_SIZE - offset); 425 kunmap_atomic(kaddr, KM_USER0); 426 } 427 will_compress = 1; 428 } 429 } 430 if (start == 0) { 431 trans = btrfs_join_transaction(root, 1); 432 BUG_ON(!trans); 433 btrfs_set_trans_block_group(trans, inode); 434 435 /* lets try to make an inline extent */ 436 if (ret || total_in < (actual_end - start)) { 437 /* we didn't compress the entire range, try 438 * to make an uncompressed inline extent. 439 */ 440 ret = cow_file_range_inline(trans, root, inode, 441 start, end, 0, NULL); 442 } else { 443 /* try making a compressed inline extent */ 444 ret = cow_file_range_inline(trans, root, inode, 445 start, end, 446 total_compressed, pages); 447 } 448 btrfs_end_transaction(trans, root); 449 if (ret == 0) { 450 /* 451 * inline extent creation worked, we don't need 452 * to create any more async work items. Unlock 453 * and free up our temp pages. 454 */ 455 extent_clear_unlock_delalloc(inode, 456 &BTRFS_I(inode)->io_tree, 457 start, end, NULL, 1, 0, 458 0, 1, 1, 1); 459 ret = 0; 460 goto free_pages_out; 461 } 462 } 463 464 if (will_compress) { 465 /* 466 * we aren't doing an inline extent round the compressed size 467 * up to a block size boundary so the allocator does sane 468 * things 469 */ 470 total_compressed = (total_compressed + blocksize - 1) & 471 ~(blocksize - 1); 472 473 /* 474 * one last check to make sure the compression is really a 475 * win, compare the page count read with the blocks on disk 476 */ 477 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 478 ~(PAGE_CACHE_SIZE - 1); 479 if (total_compressed >= total_in) { 480 will_compress = 0; 481 } else { 482 disk_num_bytes = total_compressed; 483 num_bytes = total_in; 484 } 485 } 486 if (!will_compress && pages) { 487 /* 488 * the compression code ran but failed to make things smaller, 489 * free any pages it allocated and our page pointer array 490 */ 491 for (i = 0; i < nr_pages_ret; i++) { 492 WARN_ON(pages[i]->mapping); 493 page_cache_release(pages[i]); 494 } 495 kfree(pages); 496 pages = NULL; 497 total_compressed = 0; 498 nr_pages_ret = 0; 499 500 /* flag the file so we don't compress in the future */ 501 btrfs_set_flag(inode, NOCOMPRESS); 502 } 503 if (will_compress) { 504 *num_added += 1; 505 506 /* the async work queues will take care of doing actual 507 * allocation on disk for these compressed pages, 508 * and will submit them to the elevator. 509 */ 510 add_async_extent(async_cow, start, num_bytes, 511 total_compressed, pages, nr_pages_ret); 512 513 if (start + num_bytes < end && start + num_bytes < actual_end) { 514 start += num_bytes; 515 pages = NULL; 516 cond_resched(); 517 goto again; 518 } 519 } else { 520 cleanup_and_bail_uncompressed: 521 /* 522 * No compression, but we still need to write the pages in 523 * the file we've been given so far. redirty the locked 524 * page if it corresponds to our extent and set things up 525 * for the async work queue to run cow_file_range to do 526 * the normal delalloc dance 527 */ 528 if (page_offset(locked_page) >= start && 529 page_offset(locked_page) <= end) { 530 __set_page_dirty_nobuffers(locked_page); 531 /* unlocked later on in the async handlers */ 532 } 533 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 534 *num_added += 1; 535 } 536 537 out: 538 return 0; 539 540 free_pages_out: 541 for (i = 0; i < nr_pages_ret; i++) { 542 WARN_ON(pages[i]->mapping); 543 page_cache_release(pages[i]); 544 } 545 kfree(pages); 546 547 goto out; 548 } 549 550 /* 551 * phase two of compressed writeback. This is the ordered portion 552 * of the code, which only gets called in the order the work was 553 * queued. We walk all the async extents created by compress_file_range 554 * and send them down to the disk. 555 */ 556 static noinline int submit_compressed_extents(struct inode *inode, 557 struct async_cow *async_cow) 558 { 559 struct async_extent *async_extent; 560 u64 alloc_hint = 0; 561 struct btrfs_trans_handle *trans; 562 struct btrfs_key ins; 563 struct extent_map *em; 564 struct btrfs_root *root = BTRFS_I(inode)->root; 565 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 566 struct extent_io_tree *io_tree; 567 int ret; 568 569 if (list_empty(&async_cow->extents)) 570 return 0; 571 572 trans = btrfs_join_transaction(root, 1); 573 574 while (!list_empty(&async_cow->extents)) { 575 async_extent = list_entry(async_cow->extents.next, 576 struct async_extent, list); 577 list_del(&async_extent->list); 578 579 io_tree = &BTRFS_I(inode)->io_tree; 580 581 /* did the compression code fall back to uncompressed IO? */ 582 if (!async_extent->pages) { 583 int page_started = 0; 584 unsigned long nr_written = 0; 585 586 lock_extent(io_tree, async_extent->start, 587 async_extent->start + 588 async_extent->ram_size - 1, GFP_NOFS); 589 590 /* allocate blocks */ 591 cow_file_range(inode, async_cow->locked_page, 592 async_extent->start, 593 async_extent->start + 594 async_extent->ram_size - 1, 595 &page_started, &nr_written, 0); 596 597 /* 598 * if page_started, cow_file_range inserted an 599 * inline extent and took care of all the unlocking 600 * and IO for us. Otherwise, we need to submit 601 * all those pages down to the drive. 602 */ 603 if (!page_started) 604 extent_write_locked_range(io_tree, 605 inode, async_extent->start, 606 async_extent->start + 607 async_extent->ram_size - 1, 608 btrfs_get_extent, 609 WB_SYNC_ALL); 610 kfree(async_extent); 611 cond_resched(); 612 continue; 613 } 614 615 lock_extent(io_tree, async_extent->start, 616 async_extent->start + async_extent->ram_size - 1, 617 GFP_NOFS); 618 /* 619 * here we're doing allocation and writeback of the 620 * compressed pages 621 */ 622 btrfs_drop_extent_cache(inode, async_extent->start, 623 async_extent->start + 624 async_extent->ram_size - 1, 0); 625 626 ret = btrfs_reserve_extent(trans, root, 627 async_extent->compressed_size, 628 async_extent->compressed_size, 629 0, alloc_hint, 630 (u64)-1, &ins, 1); 631 BUG_ON(ret); 632 em = alloc_extent_map(GFP_NOFS); 633 em->start = async_extent->start; 634 em->len = async_extent->ram_size; 635 em->orig_start = em->start; 636 637 em->block_start = ins.objectid; 638 em->block_len = ins.offset; 639 em->bdev = root->fs_info->fs_devices->latest_bdev; 640 set_bit(EXTENT_FLAG_PINNED, &em->flags); 641 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 642 643 while (1) { 644 spin_lock(&em_tree->lock); 645 ret = add_extent_mapping(em_tree, em); 646 spin_unlock(&em_tree->lock); 647 if (ret != -EEXIST) { 648 free_extent_map(em); 649 break; 650 } 651 btrfs_drop_extent_cache(inode, async_extent->start, 652 async_extent->start + 653 async_extent->ram_size - 1, 0); 654 } 655 656 ret = btrfs_add_ordered_extent(inode, async_extent->start, 657 ins.objectid, 658 async_extent->ram_size, 659 ins.offset, 660 BTRFS_ORDERED_COMPRESSED); 661 BUG_ON(ret); 662 663 btrfs_end_transaction(trans, root); 664 665 /* 666 * clear dirty, set writeback and unlock the pages. 667 */ 668 extent_clear_unlock_delalloc(inode, 669 &BTRFS_I(inode)->io_tree, 670 async_extent->start, 671 async_extent->start + 672 async_extent->ram_size - 1, 673 NULL, 1, 1, 0, 1, 1, 0); 674 675 ret = btrfs_submit_compressed_write(inode, 676 async_extent->start, 677 async_extent->ram_size, 678 ins.objectid, 679 ins.offset, async_extent->pages, 680 async_extent->nr_pages); 681 682 BUG_ON(ret); 683 trans = btrfs_join_transaction(root, 1); 684 alloc_hint = ins.objectid + ins.offset; 685 kfree(async_extent); 686 cond_resched(); 687 } 688 689 btrfs_end_transaction(trans, root); 690 return 0; 691 } 692 693 /* 694 * when extent_io.c finds a delayed allocation range in the file, 695 * the call backs end up in this code. The basic idea is to 696 * allocate extents on disk for the range, and create ordered data structs 697 * in ram to track those extents. 698 * 699 * locked_page is the page that writepage had locked already. We use 700 * it to make sure we don't do extra locks or unlocks. 701 * 702 * *page_started is set to one if we unlock locked_page and do everything 703 * required to start IO on it. It may be clean and already done with 704 * IO when we return. 705 */ 706 static noinline int cow_file_range(struct inode *inode, 707 struct page *locked_page, 708 u64 start, u64 end, int *page_started, 709 unsigned long *nr_written, 710 int unlock) 711 { 712 struct btrfs_root *root = BTRFS_I(inode)->root; 713 struct btrfs_trans_handle *trans; 714 u64 alloc_hint = 0; 715 u64 num_bytes; 716 unsigned long ram_size; 717 u64 disk_num_bytes; 718 u64 cur_alloc_size; 719 u64 blocksize = root->sectorsize; 720 u64 actual_end; 721 u64 isize = i_size_read(inode); 722 struct btrfs_key ins; 723 struct extent_map *em; 724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 725 int ret = 0; 726 727 trans = btrfs_join_transaction(root, 1); 728 BUG_ON(!trans); 729 btrfs_set_trans_block_group(trans, inode); 730 731 actual_end = min_t(u64, isize, end + 1); 732 733 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 734 num_bytes = max(blocksize, num_bytes); 735 disk_num_bytes = num_bytes; 736 ret = 0; 737 738 if (start == 0) { 739 /* lets try to make an inline extent */ 740 ret = cow_file_range_inline(trans, root, inode, 741 start, end, 0, NULL); 742 if (ret == 0) { 743 extent_clear_unlock_delalloc(inode, 744 &BTRFS_I(inode)->io_tree, 745 start, end, NULL, 1, 1, 746 1, 1, 1, 1); 747 *nr_written = *nr_written + 748 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 749 *page_started = 1; 750 ret = 0; 751 goto out; 752 } 753 } 754 755 BUG_ON(disk_num_bytes > 756 btrfs_super_total_bytes(&root->fs_info->super_copy)); 757 758 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 759 760 while (disk_num_bytes > 0) { 761 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 762 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 763 root->sectorsize, 0, alloc_hint, 764 (u64)-1, &ins, 1); 765 BUG_ON(ret); 766 767 em = alloc_extent_map(GFP_NOFS); 768 em->start = start; 769 em->orig_start = em->start; 770 771 ram_size = ins.offset; 772 em->len = ins.offset; 773 774 em->block_start = ins.objectid; 775 em->block_len = ins.offset; 776 em->bdev = root->fs_info->fs_devices->latest_bdev; 777 set_bit(EXTENT_FLAG_PINNED, &em->flags); 778 779 while (1) { 780 spin_lock(&em_tree->lock); 781 ret = add_extent_mapping(em_tree, em); 782 spin_unlock(&em_tree->lock); 783 if (ret != -EEXIST) { 784 free_extent_map(em); 785 break; 786 } 787 btrfs_drop_extent_cache(inode, start, 788 start + ram_size - 1, 0); 789 } 790 791 cur_alloc_size = ins.offset; 792 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 793 ram_size, cur_alloc_size, 0); 794 BUG_ON(ret); 795 796 if (root->root_key.objectid == 797 BTRFS_DATA_RELOC_TREE_OBJECTID) { 798 ret = btrfs_reloc_clone_csums(inode, start, 799 cur_alloc_size); 800 BUG_ON(ret); 801 } 802 803 if (disk_num_bytes < cur_alloc_size) 804 break; 805 806 /* we're not doing compressed IO, don't unlock the first 807 * page (which the caller expects to stay locked), don't 808 * clear any dirty bits and don't set any writeback bits 809 */ 810 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 811 start, start + ram_size - 1, 812 locked_page, unlock, 1, 813 1, 0, 0, 0); 814 disk_num_bytes -= cur_alloc_size; 815 num_bytes -= cur_alloc_size; 816 alloc_hint = ins.objectid + ins.offset; 817 start += cur_alloc_size; 818 } 819 out: 820 ret = 0; 821 btrfs_end_transaction(trans, root); 822 823 return ret; 824 } 825 826 /* 827 * work queue call back to started compression on a file and pages 828 */ 829 static noinline void async_cow_start(struct btrfs_work *work) 830 { 831 struct async_cow *async_cow; 832 int num_added = 0; 833 async_cow = container_of(work, struct async_cow, work); 834 835 compress_file_range(async_cow->inode, async_cow->locked_page, 836 async_cow->start, async_cow->end, async_cow, 837 &num_added); 838 if (num_added == 0) 839 async_cow->inode = NULL; 840 } 841 842 /* 843 * work queue call back to submit previously compressed pages 844 */ 845 static noinline void async_cow_submit(struct btrfs_work *work) 846 { 847 struct async_cow *async_cow; 848 struct btrfs_root *root; 849 unsigned long nr_pages; 850 851 async_cow = container_of(work, struct async_cow, work); 852 853 root = async_cow->root; 854 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 855 PAGE_CACHE_SHIFT; 856 857 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 858 859 if (atomic_read(&root->fs_info->async_delalloc_pages) < 860 5 * 1042 * 1024 && 861 waitqueue_active(&root->fs_info->async_submit_wait)) 862 wake_up(&root->fs_info->async_submit_wait); 863 864 if (async_cow->inode) 865 submit_compressed_extents(async_cow->inode, async_cow); 866 } 867 868 static noinline void async_cow_free(struct btrfs_work *work) 869 { 870 struct async_cow *async_cow; 871 async_cow = container_of(work, struct async_cow, work); 872 kfree(async_cow); 873 } 874 875 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 876 u64 start, u64 end, int *page_started, 877 unsigned long *nr_written) 878 { 879 struct async_cow *async_cow; 880 struct btrfs_root *root = BTRFS_I(inode)->root; 881 unsigned long nr_pages; 882 u64 cur_end; 883 int limit = 10 * 1024 * 1042; 884 885 if (!btrfs_test_opt(root, COMPRESS)) { 886 return cow_file_range(inode, locked_page, start, end, 887 page_started, nr_written, 1); 888 } 889 890 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | 891 EXTENT_DELALLOC, 1, 0, GFP_NOFS); 892 while (start < end) { 893 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 894 async_cow->inode = inode; 895 async_cow->root = root; 896 async_cow->locked_page = locked_page; 897 async_cow->start = start; 898 899 if (btrfs_test_flag(inode, NOCOMPRESS)) 900 cur_end = end; 901 else 902 cur_end = min(end, start + 512 * 1024 - 1); 903 904 async_cow->end = cur_end; 905 INIT_LIST_HEAD(&async_cow->extents); 906 907 async_cow->work.func = async_cow_start; 908 async_cow->work.ordered_func = async_cow_submit; 909 async_cow->work.ordered_free = async_cow_free; 910 async_cow->work.flags = 0; 911 912 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 913 PAGE_CACHE_SHIFT; 914 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 915 916 btrfs_queue_worker(&root->fs_info->delalloc_workers, 917 &async_cow->work); 918 919 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 920 wait_event(root->fs_info->async_submit_wait, 921 (atomic_read(&root->fs_info->async_delalloc_pages) < 922 limit)); 923 } 924 925 while (atomic_read(&root->fs_info->async_submit_draining) && 926 atomic_read(&root->fs_info->async_delalloc_pages)) { 927 wait_event(root->fs_info->async_submit_wait, 928 (atomic_read(&root->fs_info->async_delalloc_pages) == 929 0)); 930 } 931 932 *nr_written += nr_pages; 933 start = cur_end + 1; 934 } 935 *page_started = 1; 936 return 0; 937 } 938 939 static noinline int csum_exist_in_range(struct btrfs_root *root, 940 u64 bytenr, u64 num_bytes) 941 { 942 int ret; 943 struct btrfs_ordered_sum *sums; 944 LIST_HEAD(list); 945 946 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 947 bytenr + num_bytes - 1, &list); 948 if (ret == 0 && list_empty(&list)) 949 return 0; 950 951 while (!list_empty(&list)) { 952 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 953 list_del(&sums->list); 954 kfree(sums); 955 } 956 return 1; 957 } 958 959 /* 960 * when nowcow writeback call back. This checks for snapshots or COW copies 961 * of the extents that exist in the file, and COWs the file as required. 962 * 963 * If no cow copies or snapshots exist, we write directly to the existing 964 * blocks on disk 965 */ 966 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page, 967 u64 start, u64 end, int *page_started, int force, 968 unsigned long *nr_written) 969 { 970 struct btrfs_root *root = BTRFS_I(inode)->root; 971 struct btrfs_trans_handle *trans; 972 struct extent_buffer *leaf; 973 struct btrfs_path *path; 974 struct btrfs_file_extent_item *fi; 975 struct btrfs_key found_key; 976 u64 cow_start; 977 u64 cur_offset; 978 u64 extent_end; 979 u64 disk_bytenr; 980 u64 num_bytes; 981 int extent_type; 982 int ret; 983 int type; 984 int nocow; 985 int check_prev = 1; 986 987 path = btrfs_alloc_path(); 988 BUG_ON(!path); 989 trans = btrfs_join_transaction(root, 1); 990 BUG_ON(!trans); 991 992 cow_start = (u64)-1; 993 cur_offset = start; 994 while (1) { 995 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 996 cur_offset, 0); 997 BUG_ON(ret < 0); 998 if (ret > 0 && path->slots[0] > 0 && check_prev) { 999 leaf = path->nodes[0]; 1000 btrfs_item_key_to_cpu(leaf, &found_key, 1001 path->slots[0] - 1); 1002 if (found_key.objectid == inode->i_ino && 1003 found_key.type == BTRFS_EXTENT_DATA_KEY) 1004 path->slots[0]--; 1005 } 1006 check_prev = 0; 1007 next_slot: 1008 leaf = path->nodes[0]; 1009 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1010 ret = btrfs_next_leaf(root, path); 1011 if (ret < 0) 1012 BUG_ON(1); 1013 if (ret > 0) 1014 break; 1015 leaf = path->nodes[0]; 1016 } 1017 1018 nocow = 0; 1019 disk_bytenr = 0; 1020 num_bytes = 0; 1021 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1022 1023 if (found_key.objectid > inode->i_ino || 1024 found_key.type > BTRFS_EXTENT_DATA_KEY || 1025 found_key.offset > end) 1026 break; 1027 1028 if (found_key.offset > cur_offset) { 1029 extent_end = found_key.offset; 1030 goto out_check; 1031 } 1032 1033 fi = btrfs_item_ptr(leaf, path->slots[0], 1034 struct btrfs_file_extent_item); 1035 extent_type = btrfs_file_extent_type(leaf, fi); 1036 1037 if (extent_type == BTRFS_FILE_EXTENT_REG || 1038 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1039 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1040 extent_end = found_key.offset + 1041 btrfs_file_extent_num_bytes(leaf, fi); 1042 if (extent_end <= start) { 1043 path->slots[0]++; 1044 goto next_slot; 1045 } 1046 if (disk_bytenr == 0) 1047 goto out_check; 1048 if (btrfs_file_extent_compression(leaf, fi) || 1049 btrfs_file_extent_encryption(leaf, fi) || 1050 btrfs_file_extent_other_encoding(leaf, fi)) 1051 goto out_check; 1052 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1053 goto out_check; 1054 if (btrfs_extent_readonly(root, disk_bytenr)) 1055 goto out_check; 1056 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1057 disk_bytenr)) 1058 goto out_check; 1059 disk_bytenr += btrfs_file_extent_offset(leaf, fi); 1060 disk_bytenr += cur_offset - found_key.offset; 1061 num_bytes = min(end + 1, extent_end) - cur_offset; 1062 /* 1063 * force cow if csum exists in the range. 1064 * this ensure that csum for a given extent are 1065 * either valid or do not exist. 1066 */ 1067 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1068 goto out_check; 1069 nocow = 1; 1070 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1071 extent_end = found_key.offset + 1072 btrfs_file_extent_inline_len(leaf, fi); 1073 extent_end = ALIGN(extent_end, root->sectorsize); 1074 } else { 1075 BUG_ON(1); 1076 } 1077 out_check: 1078 if (extent_end <= start) { 1079 path->slots[0]++; 1080 goto next_slot; 1081 } 1082 if (!nocow) { 1083 if (cow_start == (u64)-1) 1084 cow_start = cur_offset; 1085 cur_offset = extent_end; 1086 if (cur_offset > end) 1087 break; 1088 path->slots[0]++; 1089 goto next_slot; 1090 } 1091 1092 btrfs_release_path(root, path); 1093 if (cow_start != (u64)-1) { 1094 ret = cow_file_range(inode, locked_page, cow_start, 1095 found_key.offset - 1, page_started, 1096 nr_written, 1); 1097 BUG_ON(ret); 1098 cow_start = (u64)-1; 1099 } 1100 1101 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1102 struct extent_map *em; 1103 struct extent_map_tree *em_tree; 1104 em_tree = &BTRFS_I(inode)->extent_tree; 1105 em = alloc_extent_map(GFP_NOFS); 1106 em->start = cur_offset; 1107 em->orig_start = em->start; 1108 em->len = num_bytes; 1109 em->block_len = num_bytes; 1110 em->block_start = disk_bytenr; 1111 em->bdev = root->fs_info->fs_devices->latest_bdev; 1112 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1113 while (1) { 1114 spin_lock(&em_tree->lock); 1115 ret = add_extent_mapping(em_tree, em); 1116 spin_unlock(&em_tree->lock); 1117 if (ret != -EEXIST) { 1118 free_extent_map(em); 1119 break; 1120 } 1121 btrfs_drop_extent_cache(inode, em->start, 1122 em->start + em->len - 1, 0); 1123 } 1124 type = BTRFS_ORDERED_PREALLOC; 1125 } else { 1126 type = BTRFS_ORDERED_NOCOW; 1127 } 1128 1129 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1130 num_bytes, num_bytes, type); 1131 BUG_ON(ret); 1132 1133 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1134 cur_offset, cur_offset + num_bytes - 1, 1135 locked_page, 1, 1, 1, 0, 0, 0); 1136 cur_offset = extent_end; 1137 if (cur_offset > end) 1138 break; 1139 } 1140 btrfs_release_path(root, path); 1141 1142 if (cur_offset <= end && cow_start == (u64)-1) 1143 cow_start = cur_offset; 1144 if (cow_start != (u64)-1) { 1145 ret = cow_file_range(inode, locked_page, cow_start, end, 1146 page_started, nr_written, 1); 1147 BUG_ON(ret); 1148 } 1149 1150 ret = btrfs_end_transaction(trans, root); 1151 BUG_ON(ret); 1152 btrfs_free_path(path); 1153 return 0; 1154 } 1155 1156 /* 1157 * extent_io.c call back to do delayed allocation processing 1158 */ 1159 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1160 u64 start, u64 end, int *page_started, 1161 unsigned long *nr_written) 1162 { 1163 int ret; 1164 1165 if (btrfs_test_flag(inode, NODATACOW)) 1166 ret = run_delalloc_nocow(inode, locked_page, start, end, 1167 page_started, 1, nr_written); 1168 else if (btrfs_test_flag(inode, PREALLOC)) 1169 ret = run_delalloc_nocow(inode, locked_page, start, end, 1170 page_started, 0, nr_written); 1171 else 1172 ret = cow_file_range_async(inode, locked_page, start, end, 1173 page_started, nr_written); 1174 1175 return ret; 1176 } 1177 1178 /* 1179 * extent_io.c set_bit_hook, used to track delayed allocation 1180 * bytes in this file, and to maintain the list of inodes that 1181 * have pending delalloc work to be done. 1182 */ 1183 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1184 unsigned long old, unsigned long bits) 1185 { 1186 /* 1187 * set_bit and clear bit hooks normally require _irqsave/restore 1188 * but in this case, we are only testeing for the DELALLOC 1189 * bit, which is only set or cleared with irqs on 1190 */ 1191 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1192 struct btrfs_root *root = BTRFS_I(inode)->root; 1193 spin_lock(&root->fs_info->delalloc_lock); 1194 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1195 root->fs_info->delalloc_bytes += end - start + 1; 1196 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1197 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1198 &root->fs_info->delalloc_inodes); 1199 } 1200 spin_unlock(&root->fs_info->delalloc_lock); 1201 } 1202 return 0; 1203 } 1204 1205 /* 1206 * extent_io.c clear_bit_hook, see set_bit_hook for why 1207 */ 1208 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, 1209 unsigned long old, unsigned long bits) 1210 { 1211 /* 1212 * set_bit and clear bit hooks normally require _irqsave/restore 1213 * but in this case, we are only testeing for the DELALLOC 1214 * bit, which is only set or cleared with irqs on 1215 */ 1216 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1217 struct btrfs_root *root = BTRFS_I(inode)->root; 1218 1219 spin_lock(&root->fs_info->delalloc_lock); 1220 if (end - start + 1 > root->fs_info->delalloc_bytes) { 1221 printk(KERN_INFO "btrfs warning: delalloc account " 1222 "%llu %llu\n", 1223 (unsigned long long)end - start + 1, 1224 (unsigned long long) 1225 root->fs_info->delalloc_bytes); 1226 root->fs_info->delalloc_bytes = 0; 1227 BTRFS_I(inode)->delalloc_bytes = 0; 1228 } else { 1229 root->fs_info->delalloc_bytes -= end - start + 1; 1230 BTRFS_I(inode)->delalloc_bytes -= end - start + 1; 1231 } 1232 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1233 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1234 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1235 } 1236 spin_unlock(&root->fs_info->delalloc_lock); 1237 } 1238 return 0; 1239 } 1240 1241 /* 1242 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1243 * we don't create bios that span stripes or chunks 1244 */ 1245 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1246 size_t size, struct bio *bio, 1247 unsigned long bio_flags) 1248 { 1249 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1250 struct btrfs_mapping_tree *map_tree; 1251 u64 logical = (u64)bio->bi_sector << 9; 1252 u64 length = 0; 1253 u64 map_length; 1254 int ret; 1255 1256 if (bio_flags & EXTENT_BIO_COMPRESSED) 1257 return 0; 1258 1259 length = bio->bi_size; 1260 map_tree = &root->fs_info->mapping_tree; 1261 map_length = length; 1262 ret = btrfs_map_block(map_tree, READ, logical, 1263 &map_length, NULL, 0); 1264 1265 if (map_length < length + size) 1266 return 1; 1267 return 0; 1268 } 1269 1270 /* 1271 * in order to insert checksums into the metadata in large chunks, 1272 * we wait until bio submission time. All the pages in the bio are 1273 * checksummed and sums are attached onto the ordered extent record. 1274 * 1275 * At IO completion time the cums attached on the ordered extent record 1276 * are inserted into the btree 1277 */ 1278 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1279 struct bio *bio, int mirror_num, 1280 unsigned long bio_flags) 1281 { 1282 struct btrfs_root *root = BTRFS_I(inode)->root; 1283 int ret = 0; 1284 1285 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1286 BUG_ON(ret); 1287 return 0; 1288 } 1289 1290 /* 1291 * in order to insert checksums into the metadata in large chunks, 1292 * we wait until bio submission time. All the pages in the bio are 1293 * checksummed and sums are attached onto the ordered extent record. 1294 * 1295 * At IO completion time the cums attached on the ordered extent record 1296 * are inserted into the btree 1297 */ 1298 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1299 int mirror_num, unsigned long bio_flags) 1300 { 1301 struct btrfs_root *root = BTRFS_I(inode)->root; 1302 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1303 } 1304 1305 /* 1306 * extent_io.c submission hook. This does the right thing for csum calculation 1307 * on write, or reading the csums from the tree before a read 1308 */ 1309 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1310 int mirror_num, unsigned long bio_flags) 1311 { 1312 struct btrfs_root *root = BTRFS_I(inode)->root; 1313 int ret = 0; 1314 int skip_sum; 1315 1316 skip_sum = btrfs_test_flag(inode, NODATASUM); 1317 1318 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1319 BUG_ON(ret); 1320 1321 if (!(rw & (1 << BIO_RW))) { 1322 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1323 return btrfs_submit_compressed_read(inode, bio, 1324 mirror_num, bio_flags); 1325 } else if (!skip_sum) 1326 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1327 goto mapit; 1328 } else if (!skip_sum) { 1329 /* csum items have already been cloned */ 1330 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1331 goto mapit; 1332 /* we're doing a write, do the async checksumming */ 1333 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1334 inode, rw, bio, mirror_num, 1335 bio_flags, __btrfs_submit_bio_start, 1336 __btrfs_submit_bio_done); 1337 } 1338 1339 mapit: 1340 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1341 } 1342 1343 /* 1344 * given a list of ordered sums record them in the inode. This happens 1345 * at IO completion time based on sums calculated at bio submission time. 1346 */ 1347 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1348 struct inode *inode, u64 file_offset, 1349 struct list_head *list) 1350 { 1351 struct btrfs_ordered_sum *sum; 1352 1353 btrfs_set_trans_block_group(trans, inode); 1354 1355 list_for_each_entry(sum, list, list) { 1356 btrfs_csum_file_blocks(trans, 1357 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1358 } 1359 return 0; 1360 } 1361 1362 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1363 { 1364 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1365 WARN_ON(1); 1366 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1367 GFP_NOFS); 1368 } 1369 1370 /* see btrfs_writepage_start_hook for details on why this is required */ 1371 struct btrfs_writepage_fixup { 1372 struct page *page; 1373 struct btrfs_work work; 1374 }; 1375 1376 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1377 { 1378 struct btrfs_writepage_fixup *fixup; 1379 struct btrfs_ordered_extent *ordered; 1380 struct page *page; 1381 struct inode *inode; 1382 u64 page_start; 1383 u64 page_end; 1384 1385 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1386 page = fixup->page; 1387 again: 1388 lock_page(page); 1389 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1390 ClearPageChecked(page); 1391 goto out_page; 1392 } 1393 1394 inode = page->mapping->host; 1395 page_start = page_offset(page); 1396 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1397 1398 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1399 1400 /* already ordered? We're done */ 1401 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 1402 EXTENT_ORDERED, 0)) { 1403 goto out; 1404 } 1405 1406 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1407 if (ordered) { 1408 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1409 page_end, GFP_NOFS); 1410 unlock_page(page); 1411 btrfs_start_ordered_extent(inode, ordered, 1); 1412 goto again; 1413 } 1414 1415 btrfs_set_extent_delalloc(inode, page_start, page_end); 1416 ClearPageChecked(page); 1417 out: 1418 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1419 out_page: 1420 unlock_page(page); 1421 page_cache_release(page); 1422 } 1423 1424 /* 1425 * There are a few paths in the higher layers of the kernel that directly 1426 * set the page dirty bit without asking the filesystem if it is a 1427 * good idea. This causes problems because we want to make sure COW 1428 * properly happens and the data=ordered rules are followed. 1429 * 1430 * In our case any range that doesn't have the ORDERED bit set 1431 * hasn't been properly setup for IO. We kick off an async process 1432 * to fix it up. The async helper will wait for ordered extents, set 1433 * the delalloc bit and make it safe to write the page. 1434 */ 1435 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1436 { 1437 struct inode *inode = page->mapping->host; 1438 struct btrfs_writepage_fixup *fixup; 1439 struct btrfs_root *root = BTRFS_I(inode)->root; 1440 int ret; 1441 1442 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1443 EXTENT_ORDERED, 0); 1444 if (ret) 1445 return 0; 1446 1447 if (PageChecked(page)) 1448 return -EAGAIN; 1449 1450 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1451 if (!fixup) 1452 return -EAGAIN; 1453 1454 SetPageChecked(page); 1455 page_cache_get(page); 1456 fixup->work.func = btrfs_writepage_fixup_worker; 1457 fixup->page = page; 1458 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1459 return -EAGAIN; 1460 } 1461 1462 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1463 struct inode *inode, u64 file_pos, 1464 u64 disk_bytenr, u64 disk_num_bytes, 1465 u64 num_bytes, u64 ram_bytes, 1466 u8 compression, u8 encryption, 1467 u16 other_encoding, int extent_type) 1468 { 1469 struct btrfs_root *root = BTRFS_I(inode)->root; 1470 struct btrfs_file_extent_item *fi; 1471 struct btrfs_path *path; 1472 struct extent_buffer *leaf; 1473 struct btrfs_key ins; 1474 u64 hint; 1475 int ret; 1476 1477 path = btrfs_alloc_path(); 1478 BUG_ON(!path); 1479 1480 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1481 file_pos + num_bytes, file_pos, &hint); 1482 BUG_ON(ret); 1483 1484 ins.objectid = inode->i_ino; 1485 ins.offset = file_pos; 1486 ins.type = BTRFS_EXTENT_DATA_KEY; 1487 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1488 BUG_ON(ret); 1489 leaf = path->nodes[0]; 1490 fi = btrfs_item_ptr(leaf, path->slots[0], 1491 struct btrfs_file_extent_item); 1492 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1493 btrfs_set_file_extent_type(leaf, fi, extent_type); 1494 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1495 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1496 btrfs_set_file_extent_offset(leaf, fi, 0); 1497 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1498 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1499 btrfs_set_file_extent_compression(leaf, fi, compression); 1500 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1501 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1502 btrfs_mark_buffer_dirty(leaf); 1503 1504 inode_add_bytes(inode, num_bytes); 1505 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); 1506 1507 ins.objectid = disk_bytenr; 1508 ins.offset = disk_num_bytes; 1509 ins.type = BTRFS_EXTENT_ITEM_KEY; 1510 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start, 1511 root->root_key.objectid, 1512 trans->transid, inode->i_ino, &ins); 1513 BUG_ON(ret); 1514 1515 btrfs_free_path(path); 1516 return 0; 1517 } 1518 1519 /* as ordered data IO finishes, this gets called so we can finish 1520 * an ordered extent if the range of bytes in the file it covers are 1521 * fully written. 1522 */ 1523 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1524 { 1525 struct btrfs_root *root = BTRFS_I(inode)->root; 1526 struct btrfs_trans_handle *trans; 1527 struct btrfs_ordered_extent *ordered_extent; 1528 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1529 int compressed = 0; 1530 int ret; 1531 1532 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1533 if (!ret) 1534 return 0; 1535 1536 trans = btrfs_join_transaction(root, 1); 1537 1538 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1539 BUG_ON(!ordered_extent); 1540 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) 1541 goto nocow; 1542 1543 lock_extent(io_tree, ordered_extent->file_offset, 1544 ordered_extent->file_offset + ordered_extent->len - 1, 1545 GFP_NOFS); 1546 1547 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1548 compressed = 1; 1549 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1550 BUG_ON(compressed); 1551 ret = btrfs_mark_extent_written(trans, root, inode, 1552 ordered_extent->file_offset, 1553 ordered_extent->file_offset + 1554 ordered_extent->len); 1555 BUG_ON(ret); 1556 } else { 1557 ret = insert_reserved_file_extent(trans, inode, 1558 ordered_extent->file_offset, 1559 ordered_extent->start, 1560 ordered_extent->disk_len, 1561 ordered_extent->len, 1562 ordered_extent->len, 1563 compressed, 0, 0, 1564 BTRFS_FILE_EXTENT_REG); 1565 BUG_ON(ret); 1566 } 1567 unlock_extent(io_tree, ordered_extent->file_offset, 1568 ordered_extent->file_offset + ordered_extent->len - 1, 1569 GFP_NOFS); 1570 nocow: 1571 add_pending_csums(trans, inode, ordered_extent->file_offset, 1572 &ordered_extent->list); 1573 1574 mutex_lock(&BTRFS_I(inode)->extent_mutex); 1575 btrfs_ordered_update_i_size(inode, ordered_extent); 1576 btrfs_update_inode(trans, root, inode); 1577 btrfs_remove_ordered_extent(inode, ordered_extent); 1578 mutex_unlock(&BTRFS_I(inode)->extent_mutex); 1579 1580 /* once for us */ 1581 btrfs_put_ordered_extent(ordered_extent); 1582 /* once for the tree */ 1583 btrfs_put_ordered_extent(ordered_extent); 1584 1585 btrfs_end_transaction(trans, root); 1586 return 0; 1587 } 1588 1589 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1590 struct extent_state *state, int uptodate) 1591 { 1592 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1593 } 1594 1595 /* 1596 * When IO fails, either with EIO or csum verification fails, we 1597 * try other mirrors that might have a good copy of the data. This 1598 * io_failure_record is used to record state as we go through all the 1599 * mirrors. If another mirror has good data, the page is set up to date 1600 * and things continue. If a good mirror can't be found, the original 1601 * bio end_io callback is called to indicate things have failed. 1602 */ 1603 struct io_failure_record { 1604 struct page *page; 1605 u64 start; 1606 u64 len; 1607 u64 logical; 1608 unsigned long bio_flags; 1609 int last_mirror; 1610 }; 1611 1612 static int btrfs_io_failed_hook(struct bio *failed_bio, 1613 struct page *page, u64 start, u64 end, 1614 struct extent_state *state) 1615 { 1616 struct io_failure_record *failrec = NULL; 1617 u64 private; 1618 struct extent_map *em; 1619 struct inode *inode = page->mapping->host; 1620 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1621 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1622 struct bio *bio; 1623 int num_copies; 1624 int ret; 1625 int rw; 1626 u64 logical; 1627 1628 ret = get_state_private(failure_tree, start, &private); 1629 if (ret) { 1630 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1631 if (!failrec) 1632 return -ENOMEM; 1633 failrec->start = start; 1634 failrec->len = end - start + 1; 1635 failrec->last_mirror = 0; 1636 failrec->bio_flags = 0; 1637 1638 spin_lock(&em_tree->lock); 1639 em = lookup_extent_mapping(em_tree, start, failrec->len); 1640 if (em->start > start || em->start + em->len < start) { 1641 free_extent_map(em); 1642 em = NULL; 1643 } 1644 spin_unlock(&em_tree->lock); 1645 1646 if (!em || IS_ERR(em)) { 1647 kfree(failrec); 1648 return -EIO; 1649 } 1650 logical = start - em->start; 1651 logical = em->block_start + logical; 1652 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1653 logical = em->block_start; 1654 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1655 } 1656 failrec->logical = logical; 1657 free_extent_map(em); 1658 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1659 EXTENT_DIRTY, GFP_NOFS); 1660 set_state_private(failure_tree, start, 1661 (u64)(unsigned long)failrec); 1662 } else { 1663 failrec = (struct io_failure_record *)(unsigned long)private; 1664 } 1665 num_copies = btrfs_num_copies( 1666 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1667 failrec->logical, failrec->len); 1668 failrec->last_mirror++; 1669 if (!state) { 1670 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1671 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1672 failrec->start, 1673 EXTENT_LOCKED); 1674 if (state && state->start != failrec->start) 1675 state = NULL; 1676 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1677 } 1678 if (!state || failrec->last_mirror > num_copies) { 1679 set_state_private(failure_tree, failrec->start, 0); 1680 clear_extent_bits(failure_tree, failrec->start, 1681 failrec->start + failrec->len - 1, 1682 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1683 kfree(failrec); 1684 return -EIO; 1685 } 1686 bio = bio_alloc(GFP_NOFS, 1); 1687 bio->bi_private = state; 1688 bio->bi_end_io = failed_bio->bi_end_io; 1689 bio->bi_sector = failrec->logical >> 9; 1690 bio->bi_bdev = failed_bio->bi_bdev; 1691 bio->bi_size = 0; 1692 1693 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1694 if (failed_bio->bi_rw & (1 << BIO_RW)) 1695 rw = WRITE; 1696 else 1697 rw = READ; 1698 1699 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1700 failrec->last_mirror, 1701 failrec->bio_flags); 1702 return 0; 1703 } 1704 1705 /* 1706 * each time an IO finishes, we do a fast check in the IO failure tree 1707 * to see if we need to process or clean up an io_failure_record 1708 */ 1709 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1710 { 1711 u64 private; 1712 u64 private_failure; 1713 struct io_failure_record *failure; 1714 int ret; 1715 1716 private = 0; 1717 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1718 (u64)-1, 1, EXTENT_DIRTY)) { 1719 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1720 start, &private_failure); 1721 if (ret == 0) { 1722 failure = (struct io_failure_record *)(unsigned long) 1723 private_failure; 1724 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1725 failure->start, 0); 1726 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1727 failure->start, 1728 failure->start + failure->len - 1, 1729 EXTENT_DIRTY | EXTENT_LOCKED, 1730 GFP_NOFS); 1731 kfree(failure); 1732 } 1733 } 1734 return 0; 1735 } 1736 1737 /* 1738 * when reads are done, we need to check csums to verify the data is correct 1739 * if there's a match, we allow the bio to finish. If not, we go through 1740 * the io_failure_record routines to find good copies 1741 */ 1742 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1743 struct extent_state *state) 1744 { 1745 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1746 struct inode *inode = page->mapping->host; 1747 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1748 char *kaddr; 1749 u64 private = ~(u32)0; 1750 int ret; 1751 struct btrfs_root *root = BTRFS_I(inode)->root; 1752 u32 csum = ~(u32)0; 1753 1754 if (PageChecked(page)) { 1755 ClearPageChecked(page); 1756 goto good; 1757 } 1758 if (btrfs_test_flag(inode, NODATASUM)) 1759 return 0; 1760 1761 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1762 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { 1763 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1764 GFP_NOFS); 1765 return 0; 1766 } 1767 1768 if (state && state->start == start) { 1769 private = state->private; 1770 ret = 0; 1771 } else { 1772 ret = get_state_private(io_tree, start, &private); 1773 } 1774 kaddr = kmap_atomic(page, KM_USER0); 1775 if (ret) 1776 goto zeroit; 1777 1778 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1779 btrfs_csum_final(csum, (char *)&csum); 1780 if (csum != private) 1781 goto zeroit; 1782 1783 kunmap_atomic(kaddr, KM_USER0); 1784 good: 1785 /* if the io failure tree for this inode is non-empty, 1786 * check to see if we've recovered from a failed IO 1787 */ 1788 btrfs_clean_io_failures(inode, start); 1789 return 0; 1790 1791 zeroit: 1792 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1793 "private %llu\n", page->mapping->host->i_ino, 1794 (unsigned long long)start, csum, 1795 (unsigned long long)private); 1796 memset(kaddr + offset, 1, end - start + 1); 1797 flush_dcache_page(page); 1798 kunmap_atomic(kaddr, KM_USER0); 1799 if (private == 0) 1800 return 0; 1801 return -EIO; 1802 } 1803 1804 /* 1805 * This creates an orphan entry for the given inode in case something goes 1806 * wrong in the middle of an unlink/truncate. 1807 */ 1808 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1809 { 1810 struct btrfs_root *root = BTRFS_I(inode)->root; 1811 int ret = 0; 1812 1813 spin_lock(&root->list_lock); 1814 1815 /* already on the orphan list, we're good */ 1816 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 1817 spin_unlock(&root->list_lock); 1818 return 0; 1819 } 1820 1821 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1822 1823 spin_unlock(&root->list_lock); 1824 1825 /* 1826 * insert an orphan item to track this unlinked/truncated file 1827 */ 1828 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 1829 1830 return ret; 1831 } 1832 1833 /* 1834 * We have done the truncate/delete so we can go ahead and remove the orphan 1835 * item for this particular inode. 1836 */ 1837 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 1838 { 1839 struct btrfs_root *root = BTRFS_I(inode)->root; 1840 int ret = 0; 1841 1842 spin_lock(&root->list_lock); 1843 1844 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 1845 spin_unlock(&root->list_lock); 1846 return 0; 1847 } 1848 1849 list_del_init(&BTRFS_I(inode)->i_orphan); 1850 if (!trans) { 1851 spin_unlock(&root->list_lock); 1852 return 0; 1853 } 1854 1855 spin_unlock(&root->list_lock); 1856 1857 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 1858 1859 return ret; 1860 } 1861 1862 /* 1863 * this cleans up any orphans that may be left on the list from the last use 1864 * of this root. 1865 */ 1866 void btrfs_orphan_cleanup(struct btrfs_root *root) 1867 { 1868 struct btrfs_path *path; 1869 struct extent_buffer *leaf; 1870 struct btrfs_item *item; 1871 struct btrfs_key key, found_key; 1872 struct btrfs_trans_handle *trans; 1873 struct inode *inode; 1874 int ret = 0, nr_unlink = 0, nr_truncate = 0; 1875 1876 path = btrfs_alloc_path(); 1877 if (!path) 1878 return; 1879 path->reada = -1; 1880 1881 key.objectid = BTRFS_ORPHAN_OBJECTID; 1882 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1883 key.offset = (u64)-1; 1884 1885 1886 while (1) { 1887 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1888 if (ret < 0) { 1889 printk(KERN_ERR "Error searching slot for orphan: %d" 1890 "\n", ret); 1891 break; 1892 } 1893 1894 /* 1895 * if ret == 0 means we found what we were searching for, which 1896 * is weird, but possible, so only screw with path if we didnt 1897 * find the key and see if we have stuff that matches 1898 */ 1899 if (ret > 0) { 1900 if (path->slots[0] == 0) 1901 break; 1902 path->slots[0]--; 1903 } 1904 1905 /* pull out the item */ 1906 leaf = path->nodes[0]; 1907 item = btrfs_item_nr(leaf, path->slots[0]); 1908 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1909 1910 /* make sure the item matches what we want */ 1911 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 1912 break; 1913 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 1914 break; 1915 1916 /* release the path since we're done with it */ 1917 btrfs_release_path(root, path); 1918 1919 /* 1920 * this is where we are basically btrfs_lookup, without the 1921 * crossing root thing. we store the inode number in the 1922 * offset of the orphan item. 1923 */ 1924 inode = btrfs_iget_locked(root->fs_info->sb, 1925 found_key.offset, root); 1926 if (!inode) 1927 break; 1928 1929 if (inode->i_state & I_NEW) { 1930 BTRFS_I(inode)->root = root; 1931 1932 /* have to set the location manually */ 1933 BTRFS_I(inode)->location.objectid = inode->i_ino; 1934 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 1935 BTRFS_I(inode)->location.offset = 0; 1936 1937 btrfs_read_locked_inode(inode); 1938 unlock_new_inode(inode); 1939 } 1940 1941 /* 1942 * add this inode to the orphan list so btrfs_orphan_del does 1943 * the proper thing when we hit it 1944 */ 1945 spin_lock(&root->list_lock); 1946 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1947 spin_unlock(&root->list_lock); 1948 1949 /* 1950 * if this is a bad inode, means we actually succeeded in 1951 * removing the inode, but not the orphan record, which means 1952 * we need to manually delete the orphan since iput will just 1953 * do a destroy_inode 1954 */ 1955 if (is_bad_inode(inode)) { 1956 trans = btrfs_start_transaction(root, 1); 1957 btrfs_orphan_del(trans, inode); 1958 btrfs_end_transaction(trans, root); 1959 iput(inode); 1960 continue; 1961 } 1962 1963 /* if we have links, this was a truncate, lets do that */ 1964 if (inode->i_nlink) { 1965 nr_truncate++; 1966 btrfs_truncate(inode); 1967 } else { 1968 nr_unlink++; 1969 } 1970 1971 /* this will do delete_inode and everything for us */ 1972 iput(inode); 1973 } 1974 1975 if (nr_unlink) 1976 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 1977 if (nr_truncate) 1978 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 1979 1980 btrfs_free_path(path); 1981 } 1982 1983 /* 1984 * read an inode from the btree into the in-memory inode 1985 */ 1986 void btrfs_read_locked_inode(struct inode *inode) 1987 { 1988 struct btrfs_path *path; 1989 struct extent_buffer *leaf; 1990 struct btrfs_inode_item *inode_item; 1991 struct btrfs_timespec *tspec; 1992 struct btrfs_root *root = BTRFS_I(inode)->root; 1993 struct btrfs_key location; 1994 u64 alloc_group_block; 1995 u32 rdev; 1996 int ret; 1997 1998 path = btrfs_alloc_path(); 1999 BUG_ON(!path); 2000 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2001 2002 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2003 if (ret) 2004 goto make_bad; 2005 2006 leaf = path->nodes[0]; 2007 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2008 struct btrfs_inode_item); 2009 2010 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2011 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2012 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2013 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2014 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2015 2016 tspec = btrfs_inode_atime(inode_item); 2017 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2018 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2019 2020 tspec = btrfs_inode_mtime(inode_item); 2021 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2022 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2023 2024 tspec = btrfs_inode_ctime(inode_item); 2025 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2026 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2027 2028 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2029 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2030 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2031 inode->i_generation = BTRFS_I(inode)->generation; 2032 inode->i_rdev = 0; 2033 rdev = btrfs_inode_rdev(leaf, inode_item); 2034 2035 BTRFS_I(inode)->index_cnt = (u64)-1; 2036 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2037 2038 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2039 2040 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2041 alloc_group_block, 0); 2042 btrfs_free_path(path); 2043 inode_item = NULL; 2044 2045 switch (inode->i_mode & S_IFMT) { 2046 case S_IFREG: 2047 inode->i_mapping->a_ops = &btrfs_aops; 2048 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2049 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2050 inode->i_fop = &btrfs_file_operations; 2051 inode->i_op = &btrfs_file_inode_operations; 2052 break; 2053 case S_IFDIR: 2054 inode->i_fop = &btrfs_dir_file_operations; 2055 if (root == root->fs_info->tree_root) 2056 inode->i_op = &btrfs_dir_ro_inode_operations; 2057 else 2058 inode->i_op = &btrfs_dir_inode_operations; 2059 break; 2060 case S_IFLNK: 2061 inode->i_op = &btrfs_symlink_inode_operations; 2062 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2063 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2064 break; 2065 default: 2066 inode->i_op = &btrfs_special_inode_operations; 2067 init_special_inode(inode, inode->i_mode, rdev); 2068 break; 2069 } 2070 return; 2071 2072 make_bad: 2073 btrfs_free_path(path); 2074 make_bad_inode(inode); 2075 } 2076 2077 /* 2078 * given a leaf and an inode, copy the inode fields into the leaf 2079 */ 2080 static void fill_inode_item(struct btrfs_trans_handle *trans, 2081 struct extent_buffer *leaf, 2082 struct btrfs_inode_item *item, 2083 struct inode *inode) 2084 { 2085 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2086 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2087 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2088 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2089 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2090 2091 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2092 inode->i_atime.tv_sec); 2093 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2094 inode->i_atime.tv_nsec); 2095 2096 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2097 inode->i_mtime.tv_sec); 2098 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2099 inode->i_mtime.tv_nsec); 2100 2101 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2102 inode->i_ctime.tv_sec); 2103 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2104 inode->i_ctime.tv_nsec); 2105 2106 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2107 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2108 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2109 btrfs_set_inode_transid(leaf, item, trans->transid); 2110 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2111 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2112 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2113 } 2114 2115 /* 2116 * copy everything in the in-memory inode into the btree. 2117 */ 2118 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2119 struct btrfs_root *root, struct inode *inode) 2120 { 2121 struct btrfs_inode_item *inode_item; 2122 struct btrfs_path *path; 2123 struct extent_buffer *leaf; 2124 int ret; 2125 2126 path = btrfs_alloc_path(); 2127 BUG_ON(!path); 2128 ret = btrfs_lookup_inode(trans, root, path, 2129 &BTRFS_I(inode)->location, 1); 2130 if (ret) { 2131 if (ret > 0) 2132 ret = -ENOENT; 2133 goto failed; 2134 } 2135 2136 btrfs_unlock_up_safe(path, 1); 2137 leaf = path->nodes[0]; 2138 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2139 struct btrfs_inode_item); 2140 2141 fill_inode_item(trans, leaf, inode_item, inode); 2142 btrfs_mark_buffer_dirty(leaf); 2143 btrfs_set_inode_last_trans(trans, inode); 2144 ret = 0; 2145 failed: 2146 btrfs_free_path(path); 2147 return ret; 2148 } 2149 2150 2151 /* 2152 * unlink helper that gets used here in inode.c and in the tree logging 2153 * recovery code. It remove a link in a directory with a given name, and 2154 * also drops the back refs in the inode to the directory 2155 */ 2156 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2157 struct btrfs_root *root, 2158 struct inode *dir, struct inode *inode, 2159 const char *name, int name_len) 2160 { 2161 struct btrfs_path *path; 2162 int ret = 0; 2163 struct extent_buffer *leaf; 2164 struct btrfs_dir_item *di; 2165 struct btrfs_key key; 2166 u64 index; 2167 2168 path = btrfs_alloc_path(); 2169 if (!path) { 2170 ret = -ENOMEM; 2171 goto err; 2172 } 2173 2174 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2175 name, name_len, -1); 2176 if (IS_ERR(di)) { 2177 ret = PTR_ERR(di); 2178 goto err; 2179 } 2180 if (!di) { 2181 ret = -ENOENT; 2182 goto err; 2183 } 2184 leaf = path->nodes[0]; 2185 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2186 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2187 if (ret) 2188 goto err; 2189 btrfs_release_path(root, path); 2190 2191 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2192 inode->i_ino, 2193 dir->i_ino, &index); 2194 if (ret) { 2195 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2196 "inode %lu parent %lu\n", name_len, name, 2197 inode->i_ino, dir->i_ino); 2198 goto err; 2199 } 2200 2201 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2202 index, name, name_len, -1); 2203 if (IS_ERR(di)) { 2204 ret = PTR_ERR(di); 2205 goto err; 2206 } 2207 if (!di) { 2208 ret = -ENOENT; 2209 goto err; 2210 } 2211 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2212 btrfs_release_path(root, path); 2213 2214 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2215 inode, dir->i_ino); 2216 BUG_ON(ret != 0 && ret != -ENOENT); 2217 if (ret != -ENOENT) 2218 BTRFS_I(dir)->log_dirty_trans = trans->transid; 2219 2220 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2221 dir, index); 2222 BUG_ON(ret); 2223 err: 2224 btrfs_free_path(path); 2225 if (ret) 2226 goto out; 2227 2228 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2229 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2230 btrfs_update_inode(trans, root, dir); 2231 btrfs_drop_nlink(inode); 2232 ret = btrfs_update_inode(trans, root, inode); 2233 dir->i_sb->s_dirt = 1; 2234 out: 2235 return ret; 2236 } 2237 2238 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2239 { 2240 struct btrfs_root *root; 2241 struct btrfs_trans_handle *trans; 2242 struct inode *inode = dentry->d_inode; 2243 int ret; 2244 unsigned long nr = 0; 2245 2246 root = BTRFS_I(dir)->root; 2247 2248 ret = btrfs_check_free_space(root, 1, 1); 2249 if (ret) 2250 goto fail; 2251 2252 trans = btrfs_start_transaction(root, 1); 2253 2254 btrfs_set_trans_block_group(trans, dir); 2255 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2256 dentry->d_name.name, dentry->d_name.len); 2257 2258 if (inode->i_nlink == 0) 2259 ret = btrfs_orphan_add(trans, inode); 2260 2261 nr = trans->blocks_used; 2262 2263 btrfs_end_transaction_throttle(trans, root); 2264 fail: 2265 btrfs_btree_balance_dirty(root, nr); 2266 return ret; 2267 } 2268 2269 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2270 { 2271 struct inode *inode = dentry->d_inode; 2272 int err = 0; 2273 int ret; 2274 struct btrfs_root *root = BTRFS_I(dir)->root; 2275 struct btrfs_trans_handle *trans; 2276 unsigned long nr = 0; 2277 2278 /* 2279 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir 2280 * the root of a subvolume or snapshot 2281 */ 2282 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2283 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { 2284 return -ENOTEMPTY; 2285 } 2286 2287 ret = btrfs_check_free_space(root, 1, 1); 2288 if (ret) 2289 goto fail; 2290 2291 trans = btrfs_start_transaction(root, 1); 2292 btrfs_set_trans_block_group(trans, dir); 2293 2294 err = btrfs_orphan_add(trans, inode); 2295 if (err) 2296 goto fail_trans; 2297 2298 /* now the directory is empty */ 2299 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2300 dentry->d_name.name, dentry->d_name.len); 2301 if (!err) 2302 btrfs_i_size_write(inode, 0); 2303 2304 fail_trans: 2305 nr = trans->blocks_used; 2306 ret = btrfs_end_transaction_throttle(trans, root); 2307 fail: 2308 btrfs_btree_balance_dirty(root, nr); 2309 2310 if (ret && !err) 2311 err = ret; 2312 return err; 2313 } 2314 2315 #if 0 2316 /* 2317 * when truncating bytes in a file, it is possible to avoid reading 2318 * the leaves that contain only checksum items. This can be the 2319 * majority of the IO required to delete a large file, but it must 2320 * be done carefully. 2321 * 2322 * The keys in the level just above the leaves are checked to make sure 2323 * the lowest key in a given leaf is a csum key, and starts at an offset 2324 * after the new size. 2325 * 2326 * Then the key for the next leaf is checked to make sure it also has 2327 * a checksum item for the same file. If it does, we know our target leaf 2328 * contains only checksum items, and it can be safely freed without reading 2329 * it. 2330 * 2331 * This is just an optimization targeted at large files. It may do 2332 * nothing. It will return 0 unless things went badly. 2333 */ 2334 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2335 struct btrfs_root *root, 2336 struct btrfs_path *path, 2337 struct inode *inode, u64 new_size) 2338 { 2339 struct btrfs_key key; 2340 int ret; 2341 int nritems; 2342 struct btrfs_key found_key; 2343 struct btrfs_key other_key; 2344 struct btrfs_leaf_ref *ref; 2345 u64 leaf_gen; 2346 u64 leaf_start; 2347 2348 path->lowest_level = 1; 2349 key.objectid = inode->i_ino; 2350 key.type = BTRFS_CSUM_ITEM_KEY; 2351 key.offset = new_size; 2352 again: 2353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2354 if (ret < 0) 2355 goto out; 2356 2357 if (path->nodes[1] == NULL) { 2358 ret = 0; 2359 goto out; 2360 } 2361 ret = 0; 2362 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2363 nritems = btrfs_header_nritems(path->nodes[1]); 2364 2365 if (!nritems) 2366 goto out; 2367 2368 if (path->slots[1] >= nritems) 2369 goto next_node; 2370 2371 /* did we find a key greater than anything we want to delete? */ 2372 if (found_key.objectid > inode->i_ino || 2373 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2374 goto out; 2375 2376 /* we check the next key in the node to make sure the leave contains 2377 * only checksum items. This comparison doesn't work if our 2378 * leaf is the last one in the node 2379 */ 2380 if (path->slots[1] + 1 >= nritems) { 2381 next_node: 2382 /* search forward from the last key in the node, this 2383 * will bring us into the next node in the tree 2384 */ 2385 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2386 2387 /* unlikely, but we inc below, so check to be safe */ 2388 if (found_key.offset == (u64)-1) 2389 goto out; 2390 2391 /* search_forward needs a path with locks held, do the 2392 * search again for the original key. It is possible 2393 * this will race with a balance and return a path that 2394 * we could modify, but this drop is just an optimization 2395 * and is allowed to miss some leaves. 2396 */ 2397 btrfs_release_path(root, path); 2398 found_key.offset++; 2399 2400 /* setup a max key for search_forward */ 2401 other_key.offset = (u64)-1; 2402 other_key.type = key.type; 2403 other_key.objectid = key.objectid; 2404 2405 path->keep_locks = 1; 2406 ret = btrfs_search_forward(root, &found_key, &other_key, 2407 path, 0, 0); 2408 path->keep_locks = 0; 2409 if (ret || found_key.objectid != key.objectid || 2410 found_key.type != key.type) { 2411 ret = 0; 2412 goto out; 2413 } 2414 2415 key.offset = found_key.offset; 2416 btrfs_release_path(root, path); 2417 cond_resched(); 2418 goto again; 2419 } 2420 2421 /* we know there's one more slot after us in the tree, 2422 * read that key so we can verify it is also a checksum item 2423 */ 2424 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2425 2426 if (found_key.objectid < inode->i_ino) 2427 goto next_key; 2428 2429 if (found_key.type != key.type || found_key.offset < new_size) 2430 goto next_key; 2431 2432 /* 2433 * if the key for the next leaf isn't a csum key from this objectid, 2434 * we can't be sure there aren't good items inside this leaf. 2435 * Bail out 2436 */ 2437 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2438 goto out; 2439 2440 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2441 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2442 /* 2443 * it is safe to delete this leaf, it contains only 2444 * csum items from this inode at an offset >= new_size 2445 */ 2446 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2447 BUG_ON(ret); 2448 2449 if (root->ref_cows && leaf_gen < trans->transid) { 2450 ref = btrfs_alloc_leaf_ref(root, 0); 2451 if (ref) { 2452 ref->root_gen = root->root_key.offset; 2453 ref->bytenr = leaf_start; 2454 ref->owner = 0; 2455 ref->generation = leaf_gen; 2456 ref->nritems = 0; 2457 2458 btrfs_sort_leaf_ref(ref); 2459 2460 ret = btrfs_add_leaf_ref(root, ref, 0); 2461 WARN_ON(ret); 2462 btrfs_free_leaf_ref(root, ref); 2463 } else { 2464 WARN_ON(1); 2465 } 2466 } 2467 next_key: 2468 btrfs_release_path(root, path); 2469 2470 if (other_key.objectid == inode->i_ino && 2471 other_key.type == key.type && other_key.offset > key.offset) { 2472 key.offset = other_key.offset; 2473 cond_resched(); 2474 goto again; 2475 } 2476 ret = 0; 2477 out: 2478 /* fixup any changes we've made to the path */ 2479 path->lowest_level = 0; 2480 path->keep_locks = 0; 2481 btrfs_release_path(root, path); 2482 return ret; 2483 } 2484 2485 #endif 2486 2487 /* 2488 * this can truncate away extent items, csum items and directory items. 2489 * It starts at a high offset and removes keys until it can't find 2490 * any higher than new_size 2491 * 2492 * csum items that cross the new i_size are truncated to the new size 2493 * as well. 2494 * 2495 * min_type is the minimum key type to truncate down to. If set to 0, this 2496 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2497 */ 2498 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2499 struct btrfs_root *root, 2500 struct inode *inode, 2501 u64 new_size, u32 min_type) 2502 { 2503 int ret; 2504 struct btrfs_path *path; 2505 struct btrfs_key key; 2506 struct btrfs_key found_key; 2507 u32 found_type = (u8)-1; 2508 struct extent_buffer *leaf; 2509 struct btrfs_file_extent_item *fi; 2510 u64 extent_start = 0; 2511 u64 extent_num_bytes = 0; 2512 u64 item_end = 0; 2513 u64 root_gen = 0; 2514 u64 root_owner = 0; 2515 int found_extent; 2516 int del_item; 2517 int pending_del_nr = 0; 2518 int pending_del_slot = 0; 2519 int extent_type = -1; 2520 int encoding; 2521 u64 mask = root->sectorsize - 1; 2522 2523 if (root->ref_cows) 2524 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2525 path = btrfs_alloc_path(); 2526 path->reada = -1; 2527 BUG_ON(!path); 2528 2529 /* FIXME, add redo link to tree so we don't leak on crash */ 2530 key.objectid = inode->i_ino; 2531 key.offset = (u64)-1; 2532 key.type = (u8)-1; 2533 2534 search_again: 2535 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2536 if (ret < 0) 2537 goto error; 2538 2539 if (ret > 0) { 2540 /* there are no items in the tree for us to truncate, we're 2541 * done 2542 */ 2543 if (path->slots[0] == 0) { 2544 ret = 0; 2545 goto error; 2546 } 2547 path->slots[0]--; 2548 } 2549 2550 while (1) { 2551 fi = NULL; 2552 leaf = path->nodes[0]; 2553 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2554 found_type = btrfs_key_type(&found_key); 2555 encoding = 0; 2556 2557 if (found_key.objectid != inode->i_ino) 2558 break; 2559 2560 if (found_type < min_type) 2561 break; 2562 2563 item_end = found_key.offset; 2564 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2565 fi = btrfs_item_ptr(leaf, path->slots[0], 2566 struct btrfs_file_extent_item); 2567 extent_type = btrfs_file_extent_type(leaf, fi); 2568 encoding = btrfs_file_extent_compression(leaf, fi); 2569 encoding |= btrfs_file_extent_encryption(leaf, fi); 2570 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2571 2572 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2573 item_end += 2574 btrfs_file_extent_num_bytes(leaf, fi); 2575 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2576 item_end += btrfs_file_extent_inline_len(leaf, 2577 fi); 2578 } 2579 item_end--; 2580 } 2581 if (item_end < new_size) { 2582 if (found_type == BTRFS_DIR_ITEM_KEY) 2583 found_type = BTRFS_INODE_ITEM_KEY; 2584 else if (found_type == BTRFS_EXTENT_ITEM_KEY) 2585 found_type = BTRFS_EXTENT_DATA_KEY; 2586 else if (found_type == BTRFS_EXTENT_DATA_KEY) 2587 found_type = BTRFS_XATTR_ITEM_KEY; 2588 else if (found_type == BTRFS_XATTR_ITEM_KEY) 2589 found_type = BTRFS_INODE_REF_KEY; 2590 else if (found_type) 2591 found_type--; 2592 else 2593 break; 2594 btrfs_set_key_type(&key, found_type); 2595 goto next; 2596 } 2597 if (found_key.offset >= new_size) 2598 del_item = 1; 2599 else 2600 del_item = 0; 2601 found_extent = 0; 2602 2603 /* FIXME, shrink the extent if the ref count is only 1 */ 2604 if (found_type != BTRFS_EXTENT_DATA_KEY) 2605 goto delete; 2606 2607 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2608 u64 num_dec; 2609 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 2610 if (!del_item && !encoding) { 2611 u64 orig_num_bytes = 2612 btrfs_file_extent_num_bytes(leaf, fi); 2613 extent_num_bytes = new_size - 2614 found_key.offset + root->sectorsize - 1; 2615 extent_num_bytes = extent_num_bytes & 2616 ~((u64)root->sectorsize - 1); 2617 btrfs_set_file_extent_num_bytes(leaf, fi, 2618 extent_num_bytes); 2619 num_dec = (orig_num_bytes - 2620 extent_num_bytes); 2621 if (root->ref_cows && extent_start != 0) 2622 inode_sub_bytes(inode, num_dec); 2623 btrfs_mark_buffer_dirty(leaf); 2624 } else { 2625 extent_num_bytes = 2626 btrfs_file_extent_disk_num_bytes(leaf, 2627 fi); 2628 /* FIXME blocksize != 4096 */ 2629 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 2630 if (extent_start != 0) { 2631 found_extent = 1; 2632 if (root->ref_cows) 2633 inode_sub_bytes(inode, num_dec); 2634 } 2635 root_gen = btrfs_header_generation(leaf); 2636 root_owner = btrfs_header_owner(leaf); 2637 } 2638 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2639 /* 2640 * we can't truncate inline items that have had 2641 * special encodings 2642 */ 2643 if (!del_item && 2644 btrfs_file_extent_compression(leaf, fi) == 0 && 2645 btrfs_file_extent_encryption(leaf, fi) == 0 && 2646 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 2647 u32 size = new_size - found_key.offset; 2648 2649 if (root->ref_cows) { 2650 inode_sub_bytes(inode, item_end + 1 - 2651 new_size); 2652 } 2653 size = 2654 btrfs_file_extent_calc_inline_size(size); 2655 ret = btrfs_truncate_item(trans, root, path, 2656 size, 1); 2657 BUG_ON(ret); 2658 } else if (root->ref_cows) { 2659 inode_sub_bytes(inode, item_end + 1 - 2660 found_key.offset); 2661 } 2662 } 2663 delete: 2664 if (del_item) { 2665 if (!pending_del_nr) { 2666 /* no pending yet, add ourselves */ 2667 pending_del_slot = path->slots[0]; 2668 pending_del_nr = 1; 2669 } else if (pending_del_nr && 2670 path->slots[0] + 1 == pending_del_slot) { 2671 /* hop on the pending chunk */ 2672 pending_del_nr++; 2673 pending_del_slot = path->slots[0]; 2674 } else { 2675 BUG(); 2676 } 2677 } else { 2678 break; 2679 } 2680 if (found_extent) { 2681 ret = btrfs_free_extent(trans, root, extent_start, 2682 extent_num_bytes, 2683 leaf->start, root_owner, 2684 root_gen, inode->i_ino, 0); 2685 BUG_ON(ret); 2686 } 2687 next: 2688 if (path->slots[0] == 0) { 2689 if (pending_del_nr) 2690 goto del_pending; 2691 btrfs_release_path(root, path); 2692 if (found_type == BTRFS_INODE_ITEM_KEY) 2693 break; 2694 goto search_again; 2695 } 2696 2697 path->slots[0]--; 2698 if (pending_del_nr && 2699 path->slots[0] + 1 != pending_del_slot) { 2700 struct btrfs_key debug; 2701 del_pending: 2702 btrfs_item_key_to_cpu(path->nodes[0], &debug, 2703 pending_del_slot); 2704 ret = btrfs_del_items(trans, root, path, 2705 pending_del_slot, 2706 pending_del_nr); 2707 BUG_ON(ret); 2708 pending_del_nr = 0; 2709 btrfs_release_path(root, path); 2710 if (found_type == BTRFS_INODE_ITEM_KEY) 2711 break; 2712 goto search_again; 2713 } 2714 } 2715 ret = 0; 2716 error: 2717 if (pending_del_nr) { 2718 ret = btrfs_del_items(trans, root, path, pending_del_slot, 2719 pending_del_nr); 2720 } 2721 btrfs_free_path(path); 2722 inode->i_sb->s_dirt = 1; 2723 return ret; 2724 } 2725 2726 /* 2727 * taken from block_truncate_page, but does cow as it zeros out 2728 * any bytes left in the last page in the file. 2729 */ 2730 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 2731 { 2732 struct inode *inode = mapping->host; 2733 struct btrfs_root *root = BTRFS_I(inode)->root; 2734 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2735 struct btrfs_ordered_extent *ordered; 2736 char *kaddr; 2737 u32 blocksize = root->sectorsize; 2738 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2739 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2740 struct page *page; 2741 int ret = 0; 2742 u64 page_start; 2743 u64 page_end; 2744 2745 if ((offset & (blocksize - 1)) == 0) 2746 goto out; 2747 2748 ret = -ENOMEM; 2749 again: 2750 page = grab_cache_page(mapping, index); 2751 if (!page) 2752 goto out; 2753 2754 page_start = page_offset(page); 2755 page_end = page_start + PAGE_CACHE_SIZE - 1; 2756 2757 if (!PageUptodate(page)) { 2758 ret = btrfs_readpage(NULL, page); 2759 lock_page(page); 2760 if (page->mapping != mapping) { 2761 unlock_page(page); 2762 page_cache_release(page); 2763 goto again; 2764 } 2765 if (!PageUptodate(page)) { 2766 ret = -EIO; 2767 goto out_unlock; 2768 } 2769 } 2770 wait_on_page_writeback(page); 2771 2772 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 2773 set_page_extent_mapped(page); 2774 2775 ordered = btrfs_lookup_ordered_extent(inode, page_start); 2776 if (ordered) { 2777 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2778 unlock_page(page); 2779 page_cache_release(page); 2780 btrfs_start_ordered_extent(inode, ordered, 1); 2781 btrfs_put_ordered_extent(ordered); 2782 goto again; 2783 } 2784 2785 btrfs_set_extent_delalloc(inode, page_start, page_end); 2786 ret = 0; 2787 if (offset != PAGE_CACHE_SIZE) { 2788 kaddr = kmap(page); 2789 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2790 flush_dcache_page(page); 2791 kunmap(page); 2792 } 2793 ClearPageChecked(page); 2794 set_page_dirty(page); 2795 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2796 2797 out_unlock: 2798 unlock_page(page); 2799 page_cache_release(page); 2800 out: 2801 return ret; 2802 } 2803 2804 int btrfs_cont_expand(struct inode *inode, loff_t size) 2805 { 2806 struct btrfs_trans_handle *trans; 2807 struct btrfs_root *root = BTRFS_I(inode)->root; 2808 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2809 struct extent_map *em; 2810 u64 mask = root->sectorsize - 1; 2811 u64 hole_start = (inode->i_size + mask) & ~mask; 2812 u64 block_end = (size + mask) & ~mask; 2813 u64 last_byte; 2814 u64 cur_offset; 2815 u64 hole_size; 2816 int err; 2817 2818 if (size <= hole_start) 2819 return 0; 2820 2821 err = btrfs_check_free_space(root, 1, 0); 2822 if (err) 2823 return err; 2824 2825 btrfs_truncate_page(inode->i_mapping, inode->i_size); 2826 2827 while (1) { 2828 struct btrfs_ordered_extent *ordered; 2829 btrfs_wait_ordered_range(inode, hole_start, 2830 block_end - hole_start); 2831 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2832 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 2833 if (!ordered) 2834 break; 2835 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2836 btrfs_put_ordered_extent(ordered); 2837 } 2838 2839 trans = btrfs_start_transaction(root, 1); 2840 btrfs_set_trans_block_group(trans, inode); 2841 2842 cur_offset = hole_start; 2843 while (1) { 2844 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2845 block_end - cur_offset, 0); 2846 BUG_ON(IS_ERR(em) || !em); 2847 last_byte = min(extent_map_end(em), block_end); 2848 last_byte = (last_byte + mask) & ~mask; 2849 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2850 u64 hint_byte = 0; 2851 hole_size = last_byte - cur_offset; 2852 err = btrfs_drop_extents(trans, root, inode, 2853 cur_offset, 2854 cur_offset + hole_size, 2855 cur_offset, &hint_byte); 2856 if (err) 2857 break; 2858 err = btrfs_insert_file_extent(trans, root, 2859 inode->i_ino, cur_offset, 0, 2860 0, hole_size, 0, hole_size, 2861 0, 0, 0); 2862 btrfs_drop_extent_cache(inode, hole_start, 2863 last_byte - 1, 0); 2864 } 2865 free_extent_map(em); 2866 cur_offset = last_byte; 2867 if (err || cur_offset >= block_end) 2868 break; 2869 } 2870 2871 btrfs_end_transaction(trans, root); 2872 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2873 return err; 2874 } 2875 2876 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 2877 { 2878 struct inode *inode = dentry->d_inode; 2879 int err; 2880 2881 err = inode_change_ok(inode, attr); 2882 if (err) 2883 return err; 2884 2885 if (S_ISREG(inode->i_mode) && 2886 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) { 2887 err = btrfs_cont_expand(inode, attr->ia_size); 2888 if (err) 2889 return err; 2890 } 2891 2892 err = inode_setattr(inode, attr); 2893 2894 if (!err && ((attr->ia_valid & ATTR_MODE))) 2895 err = btrfs_acl_chmod(inode); 2896 return err; 2897 } 2898 2899 void btrfs_delete_inode(struct inode *inode) 2900 { 2901 struct btrfs_trans_handle *trans; 2902 struct btrfs_root *root = BTRFS_I(inode)->root; 2903 unsigned long nr; 2904 int ret; 2905 2906 truncate_inode_pages(&inode->i_data, 0); 2907 if (is_bad_inode(inode)) { 2908 btrfs_orphan_del(NULL, inode); 2909 goto no_delete; 2910 } 2911 btrfs_wait_ordered_range(inode, 0, (u64)-1); 2912 2913 btrfs_i_size_write(inode, 0); 2914 trans = btrfs_join_transaction(root, 1); 2915 2916 btrfs_set_trans_block_group(trans, inode); 2917 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); 2918 if (ret) { 2919 btrfs_orphan_del(NULL, inode); 2920 goto no_delete_lock; 2921 } 2922 2923 btrfs_orphan_del(trans, inode); 2924 2925 nr = trans->blocks_used; 2926 clear_inode(inode); 2927 2928 btrfs_end_transaction(trans, root); 2929 btrfs_btree_balance_dirty(root, nr); 2930 return; 2931 2932 no_delete_lock: 2933 nr = trans->blocks_used; 2934 btrfs_end_transaction(trans, root); 2935 btrfs_btree_balance_dirty(root, nr); 2936 no_delete: 2937 clear_inode(inode); 2938 } 2939 2940 /* 2941 * this returns the key found in the dir entry in the location pointer. 2942 * If no dir entries were found, location->objectid is 0. 2943 */ 2944 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 2945 struct btrfs_key *location) 2946 { 2947 const char *name = dentry->d_name.name; 2948 int namelen = dentry->d_name.len; 2949 struct btrfs_dir_item *di; 2950 struct btrfs_path *path; 2951 struct btrfs_root *root = BTRFS_I(dir)->root; 2952 int ret = 0; 2953 2954 path = btrfs_alloc_path(); 2955 BUG_ON(!path); 2956 2957 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 2958 namelen, 0); 2959 if (IS_ERR(di)) 2960 ret = PTR_ERR(di); 2961 2962 if (!di || IS_ERR(di)) 2963 goto out_err; 2964 2965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 2966 out: 2967 btrfs_free_path(path); 2968 return ret; 2969 out_err: 2970 location->objectid = 0; 2971 goto out; 2972 } 2973 2974 /* 2975 * when we hit a tree root in a directory, the btrfs part of the inode 2976 * needs to be changed to reflect the root directory of the tree root. This 2977 * is kind of like crossing a mount point. 2978 */ 2979 static int fixup_tree_root_location(struct btrfs_root *root, 2980 struct btrfs_key *location, 2981 struct btrfs_root **sub_root, 2982 struct dentry *dentry) 2983 { 2984 struct btrfs_root_item *ri; 2985 2986 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) 2987 return 0; 2988 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 2989 return 0; 2990 2991 *sub_root = btrfs_read_fs_root(root->fs_info, location, 2992 dentry->d_name.name, 2993 dentry->d_name.len); 2994 if (IS_ERR(*sub_root)) 2995 return PTR_ERR(*sub_root); 2996 2997 ri = &(*sub_root)->root_item; 2998 location->objectid = btrfs_root_dirid(ri); 2999 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3000 location->offset = 0; 3001 3002 return 0; 3003 } 3004 3005 static noinline void init_btrfs_i(struct inode *inode) 3006 { 3007 struct btrfs_inode *bi = BTRFS_I(inode); 3008 3009 bi->i_acl = NULL; 3010 bi->i_default_acl = NULL; 3011 3012 bi->generation = 0; 3013 bi->sequence = 0; 3014 bi->last_trans = 0; 3015 bi->logged_trans = 0; 3016 bi->delalloc_bytes = 0; 3017 bi->disk_i_size = 0; 3018 bi->flags = 0; 3019 bi->index_cnt = (u64)-1; 3020 bi->log_dirty_trans = 0; 3021 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 3022 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 3023 inode->i_mapping, GFP_NOFS); 3024 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 3025 inode->i_mapping, GFP_NOFS); 3026 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3027 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3028 mutex_init(&BTRFS_I(inode)->extent_mutex); 3029 mutex_init(&BTRFS_I(inode)->log_mutex); 3030 } 3031 3032 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3033 { 3034 struct btrfs_iget_args *args = p; 3035 inode->i_ino = args->ino; 3036 init_btrfs_i(inode); 3037 BTRFS_I(inode)->root = args->root; 3038 return 0; 3039 } 3040 3041 static int btrfs_find_actor(struct inode *inode, void *opaque) 3042 { 3043 struct btrfs_iget_args *args = opaque; 3044 return args->ino == inode->i_ino && 3045 args->root == BTRFS_I(inode)->root; 3046 } 3047 3048 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, 3049 struct btrfs_root *root, int wait) 3050 { 3051 struct inode *inode; 3052 struct btrfs_iget_args args; 3053 args.ino = objectid; 3054 args.root = root; 3055 3056 if (wait) { 3057 inode = ilookup5(s, objectid, btrfs_find_actor, 3058 (void *)&args); 3059 } else { 3060 inode = ilookup5_nowait(s, objectid, btrfs_find_actor, 3061 (void *)&args); 3062 } 3063 return inode; 3064 } 3065 3066 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, 3067 struct btrfs_root *root) 3068 { 3069 struct inode *inode; 3070 struct btrfs_iget_args args; 3071 args.ino = objectid; 3072 args.root = root; 3073 3074 inode = iget5_locked(s, objectid, btrfs_find_actor, 3075 btrfs_init_locked_inode, 3076 (void *)&args); 3077 return inode; 3078 } 3079 3080 /* Get an inode object given its location and corresponding root. 3081 * Returns in *is_new if the inode was read from disk 3082 */ 3083 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3084 struct btrfs_root *root, int *is_new) 3085 { 3086 struct inode *inode; 3087 3088 inode = btrfs_iget_locked(s, location->objectid, root); 3089 if (!inode) 3090 return ERR_PTR(-EACCES); 3091 3092 if (inode->i_state & I_NEW) { 3093 BTRFS_I(inode)->root = root; 3094 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3095 btrfs_read_locked_inode(inode); 3096 unlock_new_inode(inode); 3097 if (is_new) 3098 *is_new = 1; 3099 } else { 3100 if (is_new) 3101 *is_new = 0; 3102 } 3103 3104 return inode; 3105 } 3106 3107 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3108 { 3109 struct inode *inode; 3110 struct btrfs_inode *bi = BTRFS_I(dir); 3111 struct btrfs_root *root = bi->root; 3112 struct btrfs_root *sub_root = root; 3113 struct btrfs_key location; 3114 int ret, new; 3115 3116 if (dentry->d_name.len > BTRFS_NAME_LEN) 3117 return ERR_PTR(-ENAMETOOLONG); 3118 3119 ret = btrfs_inode_by_name(dir, dentry, &location); 3120 3121 if (ret < 0) 3122 return ERR_PTR(ret); 3123 3124 inode = NULL; 3125 if (location.objectid) { 3126 ret = fixup_tree_root_location(root, &location, &sub_root, 3127 dentry); 3128 if (ret < 0) 3129 return ERR_PTR(ret); 3130 if (ret > 0) 3131 return ERR_PTR(-ENOENT); 3132 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new); 3133 if (IS_ERR(inode)) 3134 return ERR_CAST(inode); 3135 } 3136 return inode; 3137 } 3138 3139 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3140 struct nameidata *nd) 3141 { 3142 struct inode *inode; 3143 3144 if (dentry->d_name.len > BTRFS_NAME_LEN) 3145 return ERR_PTR(-ENAMETOOLONG); 3146 3147 inode = btrfs_lookup_dentry(dir, dentry); 3148 if (IS_ERR(inode)) 3149 return ERR_CAST(inode); 3150 3151 return d_splice_alias(inode, dentry); 3152 } 3153 3154 static unsigned char btrfs_filetype_table[] = { 3155 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3156 }; 3157 3158 static int btrfs_real_readdir(struct file *filp, void *dirent, 3159 filldir_t filldir) 3160 { 3161 struct inode *inode = filp->f_dentry->d_inode; 3162 struct btrfs_root *root = BTRFS_I(inode)->root; 3163 struct btrfs_item *item; 3164 struct btrfs_dir_item *di; 3165 struct btrfs_key key; 3166 struct btrfs_key found_key; 3167 struct btrfs_path *path; 3168 int ret; 3169 u32 nritems; 3170 struct extent_buffer *leaf; 3171 int slot; 3172 int advance; 3173 unsigned char d_type; 3174 int over = 0; 3175 u32 di_cur; 3176 u32 di_total; 3177 u32 di_len; 3178 int key_type = BTRFS_DIR_INDEX_KEY; 3179 char tmp_name[32]; 3180 char *name_ptr; 3181 int name_len; 3182 3183 /* FIXME, use a real flag for deciding about the key type */ 3184 if (root->fs_info->tree_root == root) 3185 key_type = BTRFS_DIR_ITEM_KEY; 3186 3187 /* special case for "." */ 3188 if (filp->f_pos == 0) { 3189 over = filldir(dirent, ".", 1, 3190 1, inode->i_ino, 3191 DT_DIR); 3192 if (over) 3193 return 0; 3194 filp->f_pos = 1; 3195 } 3196 /* special case for .., just use the back ref */ 3197 if (filp->f_pos == 1) { 3198 u64 pino = parent_ino(filp->f_path.dentry); 3199 over = filldir(dirent, "..", 2, 3200 2, pino, DT_DIR); 3201 if (over) 3202 return 0; 3203 filp->f_pos = 2; 3204 } 3205 path = btrfs_alloc_path(); 3206 path->reada = 2; 3207 3208 btrfs_set_key_type(&key, key_type); 3209 key.offset = filp->f_pos; 3210 key.objectid = inode->i_ino; 3211 3212 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3213 if (ret < 0) 3214 goto err; 3215 advance = 0; 3216 3217 while (1) { 3218 leaf = path->nodes[0]; 3219 nritems = btrfs_header_nritems(leaf); 3220 slot = path->slots[0]; 3221 if (advance || slot >= nritems) { 3222 if (slot >= nritems - 1) { 3223 ret = btrfs_next_leaf(root, path); 3224 if (ret) 3225 break; 3226 leaf = path->nodes[0]; 3227 nritems = btrfs_header_nritems(leaf); 3228 slot = path->slots[0]; 3229 } else { 3230 slot++; 3231 path->slots[0]++; 3232 } 3233 } 3234 3235 advance = 1; 3236 item = btrfs_item_nr(leaf, slot); 3237 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3238 3239 if (found_key.objectid != key.objectid) 3240 break; 3241 if (btrfs_key_type(&found_key) != key_type) 3242 break; 3243 if (found_key.offset < filp->f_pos) 3244 continue; 3245 3246 filp->f_pos = found_key.offset; 3247 3248 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3249 di_cur = 0; 3250 di_total = btrfs_item_size(leaf, item); 3251 3252 while (di_cur < di_total) { 3253 struct btrfs_key location; 3254 3255 name_len = btrfs_dir_name_len(leaf, di); 3256 if (name_len <= sizeof(tmp_name)) { 3257 name_ptr = tmp_name; 3258 } else { 3259 name_ptr = kmalloc(name_len, GFP_NOFS); 3260 if (!name_ptr) { 3261 ret = -ENOMEM; 3262 goto err; 3263 } 3264 } 3265 read_extent_buffer(leaf, name_ptr, 3266 (unsigned long)(di + 1), name_len); 3267 3268 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3269 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3270 3271 /* is this a reference to our own snapshot? If so 3272 * skip it 3273 */ 3274 if (location.type == BTRFS_ROOT_ITEM_KEY && 3275 location.objectid == root->root_key.objectid) { 3276 over = 0; 3277 goto skip; 3278 } 3279 over = filldir(dirent, name_ptr, name_len, 3280 found_key.offset, location.objectid, 3281 d_type); 3282 3283 skip: 3284 if (name_ptr != tmp_name) 3285 kfree(name_ptr); 3286 3287 if (over) 3288 goto nopos; 3289 di_len = btrfs_dir_name_len(leaf, di) + 3290 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3291 di_cur += di_len; 3292 di = (struct btrfs_dir_item *)((char *)di + di_len); 3293 } 3294 } 3295 3296 /* Reached end of directory/root. Bump pos past the last item. */ 3297 if (key_type == BTRFS_DIR_INDEX_KEY) 3298 filp->f_pos = INT_LIMIT(off_t); 3299 else 3300 filp->f_pos++; 3301 nopos: 3302 ret = 0; 3303 err: 3304 btrfs_free_path(path); 3305 return ret; 3306 } 3307 3308 int btrfs_write_inode(struct inode *inode, int wait) 3309 { 3310 struct btrfs_root *root = BTRFS_I(inode)->root; 3311 struct btrfs_trans_handle *trans; 3312 int ret = 0; 3313 3314 if (root->fs_info->btree_inode == inode) 3315 return 0; 3316 3317 if (wait) { 3318 trans = btrfs_join_transaction(root, 1); 3319 btrfs_set_trans_block_group(trans, inode); 3320 ret = btrfs_commit_transaction(trans, root); 3321 } 3322 return ret; 3323 } 3324 3325 /* 3326 * This is somewhat expensive, updating the tree every time the 3327 * inode changes. But, it is most likely to find the inode in cache. 3328 * FIXME, needs more benchmarking...there are no reasons other than performance 3329 * to keep or drop this code. 3330 */ 3331 void btrfs_dirty_inode(struct inode *inode) 3332 { 3333 struct btrfs_root *root = BTRFS_I(inode)->root; 3334 struct btrfs_trans_handle *trans; 3335 3336 trans = btrfs_join_transaction(root, 1); 3337 btrfs_set_trans_block_group(trans, inode); 3338 btrfs_update_inode(trans, root, inode); 3339 btrfs_end_transaction(trans, root); 3340 } 3341 3342 /* 3343 * find the highest existing sequence number in a directory 3344 * and then set the in-memory index_cnt variable to reflect 3345 * free sequence numbers 3346 */ 3347 static int btrfs_set_inode_index_count(struct inode *inode) 3348 { 3349 struct btrfs_root *root = BTRFS_I(inode)->root; 3350 struct btrfs_key key, found_key; 3351 struct btrfs_path *path; 3352 struct extent_buffer *leaf; 3353 int ret; 3354 3355 key.objectid = inode->i_ino; 3356 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 3357 key.offset = (u64)-1; 3358 3359 path = btrfs_alloc_path(); 3360 if (!path) 3361 return -ENOMEM; 3362 3363 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3364 if (ret < 0) 3365 goto out; 3366 /* FIXME: we should be able to handle this */ 3367 if (ret == 0) 3368 goto out; 3369 ret = 0; 3370 3371 /* 3372 * MAGIC NUMBER EXPLANATION: 3373 * since we search a directory based on f_pos we have to start at 2 3374 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 3375 * else has to start at 2 3376 */ 3377 if (path->slots[0] == 0) { 3378 BTRFS_I(inode)->index_cnt = 2; 3379 goto out; 3380 } 3381 3382 path->slots[0]--; 3383 3384 leaf = path->nodes[0]; 3385 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3386 3387 if (found_key.objectid != inode->i_ino || 3388 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 3389 BTRFS_I(inode)->index_cnt = 2; 3390 goto out; 3391 } 3392 3393 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 3394 out: 3395 btrfs_free_path(path); 3396 return ret; 3397 } 3398 3399 /* 3400 * helper to find a free sequence number in a given directory. This current 3401 * code is very simple, later versions will do smarter things in the btree 3402 */ 3403 int btrfs_set_inode_index(struct inode *dir, u64 *index) 3404 { 3405 int ret = 0; 3406 3407 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 3408 ret = btrfs_set_inode_index_count(dir); 3409 if (ret) 3410 return ret; 3411 } 3412 3413 *index = BTRFS_I(dir)->index_cnt; 3414 BTRFS_I(dir)->index_cnt++; 3415 3416 return ret; 3417 } 3418 3419 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 3420 struct btrfs_root *root, 3421 struct inode *dir, 3422 const char *name, int name_len, 3423 u64 ref_objectid, u64 objectid, 3424 u64 alloc_hint, int mode, u64 *index) 3425 { 3426 struct inode *inode; 3427 struct btrfs_inode_item *inode_item; 3428 struct btrfs_key *location; 3429 struct btrfs_path *path; 3430 struct btrfs_inode_ref *ref; 3431 struct btrfs_key key[2]; 3432 u32 sizes[2]; 3433 unsigned long ptr; 3434 int ret; 3435 int owner; 3436 3437 path = btrfs_alloc_path(); 3438 BUG_ON(!path); 3439 3440 inode = new_inode(root->fs_info->sb); 3441 if (!inode) 3442 return ERR_PTR(-ENOMEM); 3443 3444 if (dir) { 3445 ret = btrfs_set_inode_index(dir, index); 3446 if (ret) 3447 return ERR_PTR(ret); 3448 } 3449 /* 3450 * index_cnt is ignored for everything but a dir, 3451 * btrfs_get_inode_index_count has an explanation for the magic 3452 * number 3453 */ 3454 init_btrfs_i(inode); 3455 BTRFS_I(inode)->index_cnt = 2; 3456 BTRFS_I(inode)->root = root; 3457 BTRFS_I(inode)->generation = trans->transid; 3458 3459 if (mode & S_IFDIR) 3460 owner = 0; 3461 else 3462 owner = 1; 3463 BTRFS_I(inode)->block_group = 3464 btrfs_find_block_group(root, 0, alloc_hint, owner); 3465 if ((mode & S_IFREG)) { 3466 if (btrfs_test_opt(root, NODATASUM)) 3467 btrfs_set_flag(inode, NODATASUM); 3468 if (btrfs_test_opt(root, NODATACOW)) 3469 btrfs_set_flag(inode, NODATACOW); 3470 } 3471 3472 key[0].objectid = objectid; 3473 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 3474 key[0].offset = 0; 3475 3476 key[1].objectid = objectid; 3477 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 3478 key[1].offset = ref_objectid; 3479 3480 sizes[0] = sizeof(struct btrfs_inode_item); 3481 sizes[1] = name_len + sizeof(*ref); 3482 3483 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 3484 if (ret != 0) 3485 goto fail; 3486 3487 if (objectid > root->highest_inode) 3488 root->highest_inode = objectid; 3489 3490 inode->i_uid = current_fsuid(); 3491 3492 if (dir && (dir->i_mode & S_ISGID)) { 3493 inode->i_gid = dir->i_gid; 3494 if (S_ISDIR(mode)) 3495 mode |= S_ISGID; 3496 } else 3497 inode->i_gid = current_fsgid(); 3498 3499 inode->i_mode = mode; 3500 inode->i_ino = objectid; 3501 inode_set_bytes(inode, 0); 3502 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3503 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3504 struct btrfs_inode_item); 3505 fill_inode_item(trans, path->nodes[0], inode_item, inode); 3506 3507 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3508 struct btrfs_inode_ref); 3509 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 3510 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 3511 ptr = (unsigned long)(ref + 1); 3512 write_extent_buffer(path->nodes[0], name, ptr, name_len); 3513 3514 btrfs_mark_buffer_dirty(path->nodes[0]); 3515 btrfs_free_path(path); 3516 3517 location = &BTRFS_I(inode)->location; 3518 location->objectid = objectid; 3519 location->offset = 0; 3520 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3521 3522 insert_inode_hash(inode); 3523 return inode; 3524 fail: 3525 if (dir) 3526 BTRFS_I(dir)->index_cnt--; 3527 btrfs_free_path(path); 3528 return ERR_PTR(ret); 3529 } 3530 3531 static inline u8 btrfs_inode_type(struct inode *inode) 3532 { 3533 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 3534 } 3535 3536 /* 3537 * utility function to add 'inode' into 'parent_inode' with 3538 * a give name and a given sequence number. 3539 * if 'add_backref' is true, also insert a backref from the 3540 * inode to the parent directory. 3541 */ 3542 int btrfs_add_link(struct btrfs_trans_handle *trans, 3543 struct inode *parent_inode, struct inode *inode, 3544 const char *name, int name_len, int add_backref, u64 index) 3545 { 3546 int ret; 3547 struct btrfs_key key; 3548 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 3549 3550 key.objectid = inode->i_ino; 3551 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 3552 key.offset = 0; 3553 3554 ret = btrfs_insert_dir_item(trans, root, name, name_len, 3555 parent_inode->i_ino, 3556 &key, btrfs_inode_type(inode), 3557 index); 3558 if (ret == 0) { 3559 if (add_backref) { 3560 ret = btrfs_insert_inode_ref(trans, root, 3561 name, name_len, 3562 inode->i_ino, 3563 parent_inode->i_ino, 3564 index); 3565 } 3566 btrfs_i_size_write(parent_inode, parent_inode->i_size + 3567 name_len * 2); 3568 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 3569 ret = btrfs_update_inode(trans, root, parent_inode); 3570 } 3571 return ret; 3572 } 3573 3574 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 3575 struct dentry *dentry, struct inode *inode, 3576 int backref, u64 index) 3577 { 3578 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3579 inode, dentry->d_name.name, 3580 dentry->d_name.len, backref, index); 3581 if (!err) { 3582 d_instantiate(dentry, inode); 3583 return 0; 3584 } 3585 if (err > 0) 3586 err = -EEXIST; 3587 return err; 3588 } 3589 3590 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 3591 int mode, dev_t rdev) 3592 { 3593 struct btrfs_trans_handle *trans; 3594 struct btrfs_root *root = BTRFS_I(dir)->root; 3595 struct inode *inode = NULL; 3596 int err; 3597 int drop_inode = 0; 3598 u64 objectid; 3599 unsigned long nr = 0; 3600 u64 index = 0; 3601 3602 if (!new_valid_dev(rdev)) 3603 return -EINVAL; 3604 3605 err = btrfs_check_free_space(root, 1, 0); 3606 if (err) 3607 goto fail; 3608 3609 trans = btrfs_start_transaction(root, 1); 3610 btrfs_set_trans_block_group(trans, dir); 3611 3612 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3613 if (err) { 3614 err = -ENOSPC; 3615 goto out_unlock; 3616 } 3617 3618 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3619 dentry->d_name.len, 3620 dentry->d_parent->d_inode->i_ino, objectid, 3621 BTRFS_I(dir)->block_group, mode, &index); 3622 err = PTR_ERR(inode); 3623 if (IS_ERR(inode)) 3624 goto out_unlock; 3625 3626 err = btrfs_init_inode_security(inode, dir); 3627 if (err) { 3628 drop_inode = 1; 3629 goto out_unlock; 3630 } 3631 3632 btrfs_set_trans_block_group(trans, inode); 3633 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3634 if (err) 3635 drop_inode = 1; 3636 else { 3637 inode->i_op = &btrfs_special_inode_operations; 3638 init_special_inode(inode, inode->i_mode, rdev); 3639 btrfs_update_inode(trans, root, inode); 3640 } 3641 dir->i_sb->s_dirt = 1; 3642 btrfs_update_inode_block_group(trans, inode); 3643 btrfs_update_inode_block_group(trans, dir); 3644 out_unlock: 3645 nr = trans->blocks_used; 3646 btrfs_end_transaction_throttle(trans, root); 3647 fail: 3648 if (drop_inode) { 3649 inode_dec_link_count(inode); 3650 iput(inode); 3651 } 3652 btrfs_btree_balance_dirty(root, nr); 3653 return err; 3654 } 3655 3656 static int btrfs_create(struct inode *dir, struct dentry *dentry, 3657 int mode, struct nameidata *nd) 3658 { 3659 struct btrfs_trans_handle *trans; 3660 struct btrfs_root *root = BTRFS_I(dir)->root; 3661 struct inode *inode = NULL; 3662 int err; 3663 int drop_inode = 0; 3664 unsigned long nr = 0; 3665 u64 objectid; 3666 u64 index = 0; 3667 3668 err = btrfs_check_free_space(root, 1, 0); 3669 if (err) 3670 goto fail; 3671 trans = btrfs_start_transaction(root, 1); 3672 btrfs_set_trans_block_group(trans, dir); 3673 3674 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3675 if (err) { 3676 err = -ENOSPC; 3677 goto out_unlock; 3678 } 3679 3680 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3681 dentry->d_name.len, 3682 dentry->d_parent->d_inode->i_ino, 3683 objectid, BTRFS_I(dir)->block_group, mode, 3684 &index); 3685 err = PTR_ERR(inode); 3686 if (IS_ERR(inode)) 3687 goto out_unlock; 3688 3689 err = btrfs_init_inode_security(inode, dir); 3690 if (err) { 3691 drop_inode = 1; 3692 goto out_unlock; 3693 } 3694 3695 btrfs_set_trans_block_group(trans, inode); 3696 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3697 if (err) 3698 drop_inode = 1; 3699 else { 3700 inode->i_mapping->a_ops = &btrfs_aops; 3701 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3702 inode->i_fop = &btrfs_file_operations; 3703 inode->i_op = &btrfs_file_inode_operations; 3704 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3705 } 3706 dir->i_sb->s_dirt = 1; 3707 btrfs_update_inode_block_group(trans, inode); 3708 btrfs_update_inode_block_group(trans, dir); 3709 out_unlock: 3710 nr = trans->blocks_used; 3711 btrfs_end_transaction_throttle(trans, root); 3712 fail: 3713 if (drop_inode) { 3714 inode_dec_link_count(inode); 3715 iput(inode); 3716 } 3717 btrfs_btree_balance_dirty(root, nr); 3718 return err; 3719 } 3720 3721 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 3722 struct dentry *dentry) 3723 { 3724 struct btrfs_trans_handle *trans; 3725 struct btrfs_root *root = BTRFS_I(dir)->root; 3726 struct inode *inode = old_dentry->d_inode; 3727 u64 index; 3728 unsigned long nr = 0; 3729 int err; 3730 int drop_inode = 0; 3731 3732 if (inode->i_nlink == 0) 3733 return -ENOENT; 3734 3735 btrfs_inc_nlink(inode); 3736 err = btrfs_check_free_space(root, 1, 0); 3737 if (err) 3738 goto fail; 3739 err = btrfs_set_inode_index(dir, &index); 3740 if (err) 3741 goto fail; 3742 3743 trans = btrfs_start_transaction(root, 1); 3744 3745 btrfs_set_trans_block_group(trans, dir); 3746 atomic_inc(&inode->i_count); 3747 3748 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 3749 3750 if (err) 3751 drop_inode = 1; 3752 3753 dir->i_sb->s_dirt = 1; 3754 btrfs_update_inode_block_group(trans, dir); 3755 err = btrfs_update_inode(trans, root, inode); 3756 3757 if (err) 3758 drop_inode = 1; 3759 3760 nr = trans->blocks_used; 3761 btrfs_end_transaction_throttle(trans, root); 3762 fail: 3763 if (drop_inode) { 3764 inode_dec_link_count(inode); 3765 iput(inode); 3766 } 3767 btrfs_btree_balance_dirty(root, nr); 3768 return err; 3769 } 3770 3771 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 3772 { 3773 struct inode *inode = NULL; 3774 struct btrfs_trans_handle *trans; 3775 struct btrfs_root *root = BTRFS_I(dir)->root; 3776 int err = 0; 3777 int drop_on_err = 0; 3778 u64 objectid = 0; 3779 u64 index = 0; 3780 unsigned long nr = 1; 3781 3782 err = btrfs_check_free_space(root, 1, 0); 3783 if (err) 3784 goto out_unlock; 3785 3786 trans = btrfs_start_transaction(root, 1); 3787 btrfs_set_trans_block_group(trans, dir); 3788 3789 if (IS_ERR(trans)) { 3790 err = PTR_ERR(trans); 3791 goto out_unlock; 3792 } 3793 3794 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3795 if (err) { 3796 err = -ENOSPC; 3797 goto out_unlock; 3798 } 3799 3800 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3801 dentry->d_name.len, 3802 dentry->d_parent->d_inode->i_ino, objectid, 3803 BTRFS_I(dir)->block_group, S_IFDIR | mode, 3804 &index); 3805 if (IS_ERR(inode)) { 3806 err = PTR_ERR(inode); 3807 goto out_fail; 3808 } 3809 3810 drop_on_err = 1; 3811 3812 err = btrfs_init_inode_security(inode, dir); 3813 if (err) 3814 goto out_fail; 3815 3816 inode->i_op = &btrfs_dir_inode_operations; 3817 inode->i_fop = &btrfs_dir_file_operations; 3818 btrfs_set_trans_block_group(trans, inode); 3819 3820 btrfs_i_size_write(inode, 0); 3821 err = btrfs_update_inode(trans, root, inode); 3822 if (err) 3823 goto out_fail; 3824 3825 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3826 inode, dentry->d_name.name, 3827 dentry->d_name.len, 0, index); 3828 if (err) 3829 goto out_fail; 3830 3831 d_instantiate(dentry, inode); 3832 drop_on_err = 0; 3833 dir->i_sb->s_dirt = 1; 3834 btrfs_update_inode_block_group(trans, inode); 3835 btrfs_update_inode_block_group(trans, dir); 3836 3837 out_fail: 3838 nr = trans->blocks_used; 3839 btrfs_end_transaction_throttle(trans, root); 3840 3841 out_unlock: 3842 if (drop_on_err) 3843 iput(inode); 3844 btrfs_btree_balance_dirty(root, nr); 3845 return err; 3846 } 3847 3848 /* helper for btfs_get_extent. Given an existing extent in the tree, 3849 * and an extent that you want to insert, deal with overlap and insert 3850 * the new extent into the tree. 3851 */ 3852 static int merge_extent_mapping(struct extent_map_tree *em_tree, 3853 struct extent_map *existing, 3854 struct extent_map *em, 3855 u64 map_start, u64 map_len) 3856 { 3857 u64 start_diff; 3858 3859 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 3860 start_diff = map_start - em->start; 3861 em->start = map_start; 3862 em->len = map_len; 3863 if (em->block_start < EXTENT_MAP_LAST_BYTE && 3864 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3865 em->block_start += start_diff; 3866 em->block_len -= start_diff; 3867 } 3868 return add_extent_mapping(em_tree, em); 3869 } 3870 3871 static noinline int uncompress_inline(struct btrfs_path *path, 3872 struct inode *inode, struct page *page, 3873 size_t pg_offset, u64 extent_offset, 3874 struct btrfs_file_extent_item *item) 3875 { 3876 int ret; 3877 struct extent_buffer *leaf = path->nodes[0]; 3878 char *tmp; 3879 size_t max_size; 3880 unsigned long inline_size; 3881 unsigned long ptr; 3882 3883 WARN_ON(pg_offset != 0); 3884 max_size = btrfs_file_extent_ram_bytes(leaf, item); 3885 inline_size = btrfs_file_extent_inline_item_len(leaf, 3886 btrfs_item_nr(leaf, path->slots[0])); 3887 tmp = kmalloc(inline_size, GFP_NOFS); 3888 ptr = btrfs_file_extent_inline_start(item); 3889 3890 read_extent_buffer(leaf, tmp, ptr, inline_size); 3891 3892 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 3893 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 3894 inline_size, max_size); 3895 if (ret) { 3896 char *kaddr = kmap_atomic(page, KM_USER0); 3897 unsigned long copy_size = min_t(u64, 3898 PAGE_CACHE_SIZE - pg_offset, 3899 max_size - extent_offset); 3900 memset(kaddr + pg_offset, 0, copy_size); 3901 kunmap_atomic(kaddr, KM_USER0); 3902 } 3903 kfree(tmp); 3904 return 0; 3905 } 3906 3907 /* 3908 * a bit scary, this does extent mapping from logical file offset to the disk. 3909 * the ugly parts come from merging extents from the disk with the in-ram 3910 * representation. This gets more complex because of the data=ordered code, 3911 * where the in-ram extents might be locked pending data=ordered completion. 3912 * 3913 * This also copies inline extents directly into the page. 3914 */ 3915 3916 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 3917 size_t pg_offset, u64 start, u64 len, 3918 int create) 3919 { 3920 int ret; 3921 int err = 0; 3922 u64 bytenr; 3923 u64 extent_start = 0; 3924 u64 extent_end = 0; 3925 u64 objectid = inode->i_ino; 3926 u32 found_type; 3927 struct btrfs_path *path = NULL; 3928 struct btrfs_root *root = BTRFS_I(inode)->root; 3929 struct btrfs_file_extent_item *item; 3930 struct extent_buffer *leaf; 3931 struct btrfs_key found_key; 3932 struct extent_map *em = NULL; 3933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3934 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3935 struct btrfs_trans_handle *trans = NULL; 3936 int compressed; 3937 3938 again: 3939 spin_lock(&em_tree->lock); 3940 em = lookup_extent_mapping(em_tree, start, len); 3941 if (em) 3942 em->bdev = root->fs_info->fs_devices->latest_bdev; 3943 spin_unlock(&em_tree->lock); 3944 3945 if (em) { 3946 if (em->start > start || em->start + em->len <= start) 3947 free_extent_map(em); 3948 else if (em->block_start == EXTENT_MAP_INLINE && page) 3949 free_extent_map(em); 3950 else 3951 goto out; 3952 } 3953 em = alloc_extent_map(GFP_NOFS); 3954 if (!em) { 3955 err = -ENOMEM; 3956 goto out; 3957 } 3958 em->bdev = root->fs_info->fs_devices->latest_bdev; 3959 em->start = EXTENT_MAP_HOLE; 3960 em->orig_start = EXTENT_MAP_HOLE; 3961 em->len = (u64)-1; 3962 em->block_len = (u64)-1; 3963 3964 if (!path) { 3965 path = btrfs_alloc_path(); 3966 BUG_ON(!path); 3967 } 3968 3969 ret = btrfs_lookup_file_extent(trans, root, path, 3970 objectid, start, trans != NULL); 3971 if (ret < 0) { 3972 err = ret; 3973 goto out; 3974 } 3975 3976 if (ret != 0) { 3977 if (path->slots[0] == 0) 3978 goto not_found; 3979 path->slots[0]--; 3980 } 3981 3982 leaf = path->nodes[0]; 3983 item = btrfs_item_ptr(leaf, path->slots[0], 3984 struct btrfs_file_extent_item); 3985 /* are we inside the extent that was found? */ 3986 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3987 found_type = btrfs_key_type(&found_key); 3988 if (found_key.objectid != objectid || 3989 found_type != BTRFS_EXTENT_DATA_KEY) { 3990 goto not_found; 3991 } 3992 3993 found_type = btrfs_file_extent_type(leaf, item); 3994 extent_start = found_key.offset; 3995 compressed = btrfs_file_extent_compression(leaf, item); 3996 if (found_type == BTRFS_FILE_EXTENT_REG || 3997 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 3998 extent_end = extent_start + 3999 btrfs_file_extent_num_bytes(leaf, item); 4000 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4001 size_t size; 4002 size = btrfs_file_extent_inline_len(leaf, item); 4003 extent_end = (extent_start + size + root->sectorsize - 1) & 4004 ~((u64)root->sectorsize - 1); 4005 } 4006 4007 if (start >= extent_end) { 4008 path->slots[0]++; 4009 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 4010 ret = btrfs_next_leaf(root, path); 4011 if (ret < 0) { 4012 err = ret; 4013 goto out; 4014 } 4015 if (ret > 0) 4016 goto not_found; 4017 leaf = path->nodes[0]; 4018 } 4019 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4020 if (found_key.objectid != objectid || 4021 found_key.type != BTRFS_EXTENT_DATA_KEY) 4022 goto not_found; 4023 if (start + len <= found_key.offset) 4024 goto not_found; 4025 em->start = start; 4026 em->len = found_key.offset - start; 4027 goto not_found_em; 4028 } 4029 4030 if (found_type == BTRFS_FILE_EXTENT_REG || 4031 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4032 em->start = extent_start; 4033 em->len = extent_end - extent_start; 4034 em->orig_start = extent_start - 4035 btrfs_file_extent_offset(leaf, item); 4036 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4037 if (bytenr == 0) { 4038 em->block_start = EXTENT_MAP_HOLE; 4039 goto insert; 4040 } 4041 if (compressed) { 4042 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4043 em->block_start = bytenr; 4044 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4045 item); 4046 } else { 4047 bytenr += btrfs_file_extent_offset(leaf, item); 4048 em->block_start = bytenr; 4049 em->block_len = em->len; 4050 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4051 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4052 } 4053 goto insert; 4054 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4055 unsigned long ptr; 4056 char *map; 4057 size_t size; 4058 size_t extent_offset; 4059 size_t copy_size; 4060 4061 em->block_start = EXTENT_MAP_INLINE; 4062 if (!page || create) { 4063 em->start = extent_start; 4064 em->len = extent_end - extent_start; 4065 goto out; 4066 } 4067 4068 size = btrfs_file_extent_inline_len(leaf, item); 4069 extent_offset = page_offset(page) + pg_offset - extent_start; 4070 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4071 size - extent_offset); 4072 em->start = extent_start + extent_offset; 4073 em->len = (copy_size + root->sectorsize - 1) & 4074 ~((u64)root->sectorsize - 1); 4075 em->orig_start = EXTENT_MAP_INLINE; 4076 if (compressed) 4077 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4078 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4079 if (create == 0 && !PageUptodate(page)) { 4080 if (btrfs_file_extent_compression(leaf, item) == 4081 BTRFS_COMPRESS_ZLIB) { 4082 ret = uncompress_inline(path, inode, page, 4083 pg_offset, 4084 extent_offset, item); 4085 BUG_ON(ret); 4086 } else { 4087 map = kmap(page); 4088 read_extent_buffer(leaf, map + pg_offset, ptr, 4089 copy_size); 4090 kunmap(page); 4091 } 4092 flush_dcache_page(page); 4093 } else if (create && PageUptodate(page)) { 4094 if (!trans) { 4095 kunmap(page); 4096 free_extent_map(em); 4097 em = NULL; 4098 btrfs_release_path(root, path); 4099 trans = btrfs_join_transaction(root, 1); 4100 goto again; 4101 } 4102 map = kmap(page); 4103 write_extent_buffer(leaf, map + pg_offset, ptr, 4104 copy_size); 4105 kunmap(page); 4106 btrfs_mark_buffer_dirty(leaf); 4107 } 4108 set_extent_uptodate(io_tree, em->start, 4109 extent_map_end(em) - 1, GFP_NOFS); 4110 goto insert; 4111 } else { 4112 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4113 WARN_ON(1); 4114 } 4115 not_found: 4116 em->start = start; 4117 em->len = len; 4118 not_found_em: 4119 em->block_start = EXTENT_MAP_HOLE; 4120 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4121 insert: 4122 btrfs_release_path(root, path); 4123 if (em->start > start || extent_map_end(em) <= start) { 4124 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4125 "[%llu %llu]\n", (unsigned long long)em->start, 4126 (unsigned long long)em->len, 4127 (unsigned long long)start, 4128 (unsigned long long)len); 4129 err = -EIO; 4130 goto out; 4131 } 4132 4133 err = 0; 4134 spin_lock(&em_tree->lock); 4135 ret = add_extent_mapping(em_tree, em); 4136 /* it is possible that someone inserted the extent into the tree 4137 * while we had the lock dropped. It is also possible that 4138 * an overlapping map exists in the tree 4139 */ 4140 if (ret == -EEXIST) { 4141 struct extent_map *existing; 4142 4143 ret = 0; 4144 4145 existing = lookup_extent_mapping(em_tree, start, len); 4146 if (existing && (existing->start > start || 4147 existing->start + existing->len <= start)) { 4148 free_extent_map(existing); 4149 existing = NULL; 4150 } 4151 if (!existing) { 4152 existing = lookup_extent_mapping(em_tree, em->start, 4153 em->len); 4154 if (existing) { 4155 err = merge_extent_mapping(em_tree, existing, 4156 em, start, 4157 root->sectorsize); 4158 free_extent_map(existing); 4159 if (err) { 4160 free_extent_map(em); 4161 em = NULL; 4162 } 4163 } else { 4164 err = -EIO; 4165 free_extent_map(em); 4166 em = NULL; 4167 } 4168 } else { 4169 free_extent_map(em); 4170 em = existing; 4171 err = 0; 4172 } 4173 } 4174 spin_unlock(&em_tree->lock); 4175 out: 4176 if (path) 4177 btrfs_free_path(path); 4178 if (trans) { 4179 ret = btrfs_end_transaction(trans, root); 4180 if (!err) 4181 err = ret; 4182 } 4183 if (err) { 4184 free_extent_map(em); 4185 WARN_ON(1); 4186 return ERR_PTR(err); 4187 } 4188 return em; 4189 } 4190 4191 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4192 const struct iovec *iov, loff_t offset, 4193 unsigned long nr_segs) 4194 { 4195 return -EINVAL; 4196 } 4197 4198 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4199 __u64 start, __u64 len) 4200 { 4201 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 4202 } 4203 4204 int btrfs_readpage(struct file *file, struct page *page) 4205 { 4206 struct extent_io_tree *tree; 4207 tree = &BTRFS_I(page->mapping->host)->io_tree; 4208 return extent_read_full_page(tree, page, btrfs_get_extent); 4209 } 4210 4211 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4212 { 4213 struct extent_io_tree *tree; 4214 4215 4216 if (current->flags & PF_MEMALLOC) { 4217 redirty_page_for_writepage(wbc, page); 4218 unlock_page(page); 4219 return 0; 4220 } 4221 tree = &BTRFS_I(page->mapping->host)->io_tree; 4222 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4223 } 4224 4225 int btrfs_writepages(struct address_space *mapping, 4226 struct writeback_control *wbc) 4227 { 4228 struct extent_io_tree *tree; 4229 4230 tree = &BTRFS_I(mapping->host)->io_tree; 4231 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4232 } 4233 4234 static int 4235 btrfs_readpages(struct file *file, struct address_space *mapping, 4236 struct list_head *pages, unsigned nr_pages) 4237 { 4238 struct extent_io_tree *tree; 4239 tree = &BTRFS_I(mapping->host)->io_tree; 4240 return extent_readpages(tree, mapping, pages, nr_pages, 4241 btrfs_get_extent); 4242 } 4243 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4244 { 4245 struct extent_io_tree *tree; 4246 struct extent_map_tree *map; 4247 int ret; 4248 4249 tree = &BTRFS_I(page->mapping->host)->io_tree; 4250 map = &BTRFS_I(page->mapping->host)->extent_tree; 4251 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 4252 if (ret == 1) { 4253 ClearPagePrivate(page); 4254 set_page_private(page, 0); 4255 page_cache_release(page); 4256 } 4257 return ret; 4258 } 4259 4260 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4261 { 4262 if (PageWriteback(page) || PageDirty(page)) 4263 return 0; 4264 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 4265 } 4266 4267 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 4268 { 4269 struct extent_io_tree *tree; 4270 struct btrfs_ordered_extent *ordered; 4271 u64 page_start = page_offset(page); 4272 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 4273 4274 wait_on_page_writeback(page); 4275 tree = &BTRFS_I(page->mapping->host)->io_tree; 4276 if (offset) { 4277 btrfs_releasepage(page, GFP_NOFS); 4278 return; 4279 } 4280 4281 lock_extent(tree, page_start, page_end, GFP_NOFS); 4282 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 4283 page_offset(page)); 4284 if (ordered) { 4285 /* 4286 * IO on this page will never be started, so we need 4287 * to account for any ordered extents now 4288 */ 4289 clear_extent_bit(tree, page_start, page_end, 4290 EXTENT_DIRTY | EXTENT_DELALLOC | 4291 EXTENT_LOCKED, 1, 0, GFP_NOFS); 4292 btrfs_finish_ordered_io(page->mapping->host, 4293 page_start, page_end); 4294 btrfs_put_ordered_extent(ordered); 4295 lock_extent(tree, page_start, page_end, GFP_NOFS); 4296 } 4297 clear_extent_bit(tree, page_start, page_end, 4298 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4299 EXTENT_ORDERED, 4300 1, 1, GFP_NOFS); 4301 __btrfs_releasepage(page, GFP_NOFS); 4302 4303 ClearPageChecked(page); 4304 if (PagePrivate(page)) { 4305 ClearPagePrivate(page); 4306 set_page_private(page, 0); 4307 page_cache_release(page); 4308 } 4309 } 4310 4311 /* 4312 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 4313 * called from a page fault handler when a page is first dirtied. Hence we must 4314 * be careful to check for EOF conditions here. We set the page up correctly 4315 * for a written page which means we get ENOSPC checking when writing into 4316 * holes and correct delalloc and unwritten extent mapping on filesystems that 4317 * support these features. 4318 * 4319 * We are not allowed to take the i_mutex here so we have to play games to 4320 * protect against truncate races as the page could now be beyond EOF. Because 4321 * vmtruncate() writes the inode size before removing pages, once we have the 4322 * page lock we can determine safely if the page is beyond EOF. If it is not 4323 * beyond EOF, then the page is guaranteed safe against truncation until we 4324 * unlock the page. 4325 */ 4326 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4327 { 4328 struct inode *inode = fdentry(vma->vm_file)->d_inode; 4329 struct btrfs_root *root = BTRFS_I(inode)->root; 4330 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4331 struct btrfs_ordered_extent *ordered; 4332 char *kaddr; 4333 unsigned long zero_start; 4334 loff_t size; 4335 int ret; 4336 u64 page_start; 4337 u64 page_end; 4338 4339 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0); 4340 if (ret) 4341 goto out; 4342 4343 ret = -EINVAL; 4344 again: 4345 lock_page(page); 4346 size = i_size_read(inode); 4347 page_start = page_offset(page); 4348 page_end = page_start + PAGE_CACHE_SIZE - 1; 4349 4350 if ((page->mapping != inode->i_mapping) || 4351 (page_start >= size)) { 4352 /* page got truncated out from underneath us */ 4353 goto out_unlock; 4354 } 4355 wait_on_page_writeback(page); 4356 4357 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4358 set_page_extent_mapped(page); 4359 4360 /* 4361 * we can't set the delalloc bits if there are pending ordered 4362 * extents. Drop our locks and wait for them to finish 4363 */ 4364 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4365 if (ordered) { 4366 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4367 unlock_page(page); 4368 btrfs_start_ordered_extent(inode, ordered, 1); 4369 btrfs_put_ordered_extent(ordered); 4370 goto again; 4371 } 4372 4373 btrfs_set_extent_delalloc(inode, page_start, page_end); 4374 ret = 0; 4375 4376 /* page is wholly or partially inside EOF */ 4377 if (page_start + PAGE_CACHE_SIZE > size) 4378 zero_start = size & ~PAGE_CACHE_MASK; 4379 else 4380 zero_start = PAGE_CACHE_SIZE; 4381 4382 if (zero_start != PAGE_CACHE_SIZE) { 4383 kaddr = kmap(page); 4384 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 4385 flush_dcache_page(page); 4386 kunmap(page); 4387 } 4388 ClearPageChecked(page); 4389 set_page_dirty(page); 4390 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4391 4392 out_unlock: 4393 unlock_page(page); 4394 out: 4395 return ret; 4396 } 4397 4398 static void btrfs_truncate(struct inode *inode) 4399 { 4400 struct btrfs_root *root = BTRFS_I(inode)->root; 4401 int ret; 4402 struct btrfs_trans_handle *trans; 4403 unsigned long nr; 4404 u64 mask = root->sectorsize - 1; 4405 4406 if (!S_ISREG(inode->i_mode)) 4407 return; 4408 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4409 return; 4410 4411 btrfs_truncate_page(inode->i_mapping, inode->i_size); 4412 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 4413 4414 trans = btrfs_start_transaction(root, 1); 4415 btrfs_set_trans_block_group(trans, inode); 4416 btrfs_i_size_write(inode, inode->i_size); 4417 4418 ret = btrfs_orphan_add(trans, inode); 4419 if (ret) 4420 goto out; 4421 /* FIXME, add redo link to tree so we don't leak on crash */ 4422 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 4423 BTRFS_EXTENT_DATA_KEY); 4424 btrfs_update_inode(trans, root, inode); 4425 4426 ret = btrfs_orphan_del(trans, inode); 4427 BUG_ON(ret); 4428 4429 out: 4430 nr = trans->blocks_used; 4431 ret = btrfs_end_transaction_throttle(trans, root); 4432 BUG_ON(ret); 4433 btrfs_btree_balance_dirty(root, nr); 4434 } 4435 4436 /* 4437 * create a new subvolume directory/inode (helper for the ioctl). 4438 */ 4439 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 4440 struct btrfs_root *new_root, struct dentry *dentry, 4441 u64 new_dirid, u64 alloc_hint) 4442 { 4443 struct inode *inode; 4444 int error; 4445 u64 index = 0; 4446 4447 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 4448 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 4449 if (IS_ERR(inode)) 4450 return PTR_ERR(inode); 4451 inode->i_op = &btrfs_dir_inode_operations; 4452 inode->i_fop = &btrfs_dir_file_operations; 4453 4454 inode->i_nlink = 1; 4455 btrfs_i_size_write(inode, 0); 4456 4457 error = btrfs_update_inode(trans, new_root, inode); 4458 if (error) 4459 return error; 4460 4461 d_instantiate(dentry, inode); 4462 return 0; 4463 } 4464 4465 /* helper function for file defrag and space balancing. This 4466 * forces readahead on a given range of bytes in an inode 4467 */ 4468 unsigned long btrfs_force_ra(struct address_space *mapping, 4469 struct file_ra_state *ra, struct file *file, 4470 pgoff_t offset, pgoff_t last_index) 4471 { 4472 pgoff_t req_size = last_index - offset + 1; 4473 4474 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 4475 return offset + req_size; 4476 } 4477 4478 struct inode *btrfs_alloc_inode(struct super_block *sb) 4479 { 4480 struct btrfs_inode *ei; 4481 4482 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 4483 if (!ei) 4484 return NULL; 4485 ei->last_trans = 0; 4486 ei->logged_trans = 0; 4487 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 4488 ei->i_acl = BTRFS_ACL_NOT_CACHED; 4489 ei->i_default_acl = BTRFS_ACL_NOT_CACHED; 4490 INIT_LIST_HEAD(&ei->i_orphan); 4491 return &ei->vfs_inode; 4492 } 4493 4494 void btrfs_destroy_inode(struct inode *inode) 4495 { 4496 struct btrfs_ordered_extent *ordered; 4497 WARN_ON(!list_empty(&inode->i_dentry)); 4498 WARN_ON(inode->i_data.nrpages); 4499 4500 if (BTRFS_I(inode)->i_acl && 4501 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) 4502 posix_acl_release(BTRFS_I(inode)->i_acl); 4503 if (BTRFS_I(inode)->i_default_acl && 4504 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) 4505 posix_acl_release(BTRFS_I(inode)->i_default_acl); 4506 4507 spin_lock(&BTRFS_I(inode)->root->list_lock); 4508 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 4509 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" 4510 " list\n", inode->i_ino); 4511 dump_stack(); 4512 } 4513 spin_unlock(&BTRFS_I(inode)->root->list_lock); 4514 4515 while (1) { 4516 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 4517 if (!ordered) 4518 break; 4519 else { 4520 printk(KERN_ERR "btrfs found ordered " 4521 "extent %llu %llu on inode cleanup\n", 4522 (unsigned long long)ordered->file_offset, 4523 (unsigned long long)ordered->len); 4524 btrfs_remove_ordered_extent(inode, ordered); 4525 btrfs_put_ordered_extent(ordered); 4526 btrfs_put_ordered_extent(ordered); 4527 } 4528 } 4529 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 4530 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 4531 } 4532 4533 static void init_once(void *foo) 4534 { 4535 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 4536 4537 inode_init_once(&ei->vfs_inode); 4538 } 4539 4540 void btrfs_destroy_cachep(void) 4541 { 4542 if (btrfs_inode_cachep) 4543 kmem_cache_destroy(btrfs_inode_cachep); 4544 if (btrfs_trans_handle_cachep) 4545 kmem_cache_destroy(btrfs_trans_handle_cachep); 4546 if (btrfs_transaction_cachep) 4547 kmem_cache_destroy(btrfs_transaction_cachep); 4548 if (btrfs_bit_radix_cachep) 4549 kmem_cache_destroy(btrfs_bit_radix_cachep); 4550 if (btrfs_path_cachep) 4551 kmem_cache_destroy(btrfs_path_cachep); 4552 } 4553 4554 struct kmem_cache *btrfs_cache_create(const char *name, size_t size, 4555 unsigned long extra_flags, 4556 void (*ctor)(void *)) 4557 { 4558 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT | 4559 SLAB_MEM_SPREAD | extra_flags), ctor); 4560 } 4561 4562 int btrfs_init_cachep(void) 4563 { 4564 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache", 4565 sizeof(struct btrfs_inode), 4566 0, init_once); 4567 if (!btrfs_inode_cachep) 4568 goto fail; 4569 btrfs_trans_handle_cachep = 4570 btrfs_cache_create("btrfs_trans_handle_cache", 4571 sizeof(struct btrfs_trans_handle), 4572 0, NULL); 4573 if (!btrfs_trans_handle_cachep) 4574 goto fail; 4575 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache", 4576 sizeof(struct btrfs_transaction), 4577 0, NULL); 4578 if (!btrfs_transaction_cachep) 4579 goto fail; 4580 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache", 4581 sizeof(struct btrfs_path), 4582 0, NULL); 4583 if (!btrfs_path_cachep) 4584 goto fail; 4585 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256, 4586 SLAB_DESTROY_BY_RCU, NULL); 4587 if (!btrfs_bit_radix_cachep) 4588 goto fail; 4589 return 0; 4590 fail: 4591 btrfs_destroy_cachep(); 4592 return -ENOMEM; 4593 } 4594 4595 static int btrfs_getattr(struct vfsmount *mnt, 4596 struct dentry *dentry, struct kstat *stat) 4597 { 4598 struct inode *inode = dentry->d_inode; 4599 generic_fillattr(inode, stat); 4600 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 4601 stat->blksize = PAGE_CACHE_SIZE; 4602 stat->blocks = (inode_get_bytes(inode) + 4603 BTRFS_I(inode)->delalloc_bytes) >> 9; 4604 return 0; 4605 } 4606 4607 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4608 struct inode *new_dir, struct dentry *new_dentry) 4609 { 4610 struct btrfs_trans_handle *trans; 4611 struct btrfs_root *root = BTRFS_I(old_dir)->root; 4612 struct inode *new_inode = new_dentry->d_inode; 4613 struct inode *old_inode = old_dentry->d_inode; 4614 struct timespec ctime = CURRENT_TIME; 4615 u64 index = 0; 4616 int ret; 4617 4618 /* we're not allowed to rename between subvolumes */ 4619 if (BTRFS_I(old_inode)->root->root_key.objectid != 4620 BTRFS_I(new_dir)->root->root_key.objectid) 4621 return -EXDEV; 4622 4623 if (S_ISDIR(old_inode->i_mode) && new_inode && 4624 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { 4625 return -ENOTEMPTY; 4626 } 4627 4628 /* to rename a snapshot or subvolume, we need to juggle the 4629 * backrefs. This isn't coded yet 4630 */ 4631 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 4632 return -EXDEV; 4633 4634 ret = btrfs_check_free_space(root, 1, 0); 4635 if (ret) 4636 goto out_unlock; 4637 4638 trans = btrfs_start_transaction(root, 1); 4639 4640 btrfs_set_trans_block_group(trans, new_dir); 4641 4642 btrfs_inc_nlink(old_dentry->d_inode); 4643 old_dir->i_ctime = old_dir->i_mtime = ctime; 4644 new_dir->i_ctime = new_dir->i_mtime = ctime; 4645 old_inode->i_ctime = ctime; 4646 4647 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, 4648 old_dentry->d_name.name, 4649 old_dentry->d_name.len); 4650 if (ret) 4651 goto out_fail; 4652 4653 if (new_inode) { 4654 new_inode->i_ctime = CURRENT_TIME; 4655 ret = btrfs_unlink_inode(trans, root, new_dir, 4656 new_dentry->d_inode, 4657 new_dentry->d_name.name, 4658 new_dentry->d_name.len); 4659 if (ret) 4660 goto out_fail; 4661 if (new_inode->i_nlink == 0) { 4662 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 4663 if (ret) 4664 goto out_fail; 4665 } 4666 4667 } 4668 ret = btrfs_set_inode_index(new_dir, &index); 4669 if (ret) 4670 goto out_fail; 4671 4672 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, 4673 old_inode, new_dentry->d_name.name, 4674 new_dentry->d_name.len, 1, index); 4675 if (ret) 4676 goto out_fail; 4677 4678 out_fail: 4679 btrfs_end_transaction_throttle(trans, root); 4680 out_unlock: 4681 return ret; 4682 } 4683 4684 /* 4685 * some fairly slow code that needs optimization. This walks the list 4686 * of all the inodes with pending delalloc and forces them to disk. 4687 */ 4688 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 4689 { 4690 struct list_head *head = &root->fs_info->delalloc_inodes; 4691 struct btrfs_inode *binode; 4692 struct inode *inode; 4693 4694 if (root->fs_info->sb->s_flags & MS_RDONLY) 4695 return -EROFS; 4696 4697 spin_lock(&root->fs_info->delalloc_lock); 4698 while (!list_empty(head)) { 4699 binode = list_entry(head->next, struct btrfs_inode, 4700 delalloc_inodes); 4701 inode = igrab(&binode->vfs_inode); 4702 if (!inode) 4703 list_del_init(&binode->delalloc_inodes); 4704 spin_unlock(&root->fs_info->delalloc_lock); 4705 if (inode) { 4706 filemap_flush(inode->i_mapping); 4707 iput(inode); 4708 } 4709 cond_resched(); 4710 spin_lock(&root->fs_info->delalloc_lock); 4711 } 4712 spin_unlock(&root->fs_info->delalloc_lock); 4713 4714 /* the filemap_flush will queue IO into the worker threads, but 4715 * we have to make sure the IO is actually started and that 4716 * ordered extents get created before we return 4717 */ 4718 atomic_inc(&root->fs_info->async_submit_draining); 4719 while (atomic_read(&root->fs_info->nr_async_submits) || 4720 atomic_read(&root->fs_info->async_delalloc_pages)) { 4721 wait_event(root->fs_info->async_submit_wait, 4722 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 4723 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 4724 } 4725 atomic_dec(&root->fs_info->async_submit_draining); 4726 return 0; 4727 } 4728 4729 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 4730 const char *symname) 4731 { 4732 struct btrfs_trans_handle *trans; 4733 struct btrfs_root *root = BTRFS_I(dir)->root; 4734 struct btrfs_path *path; 4735 struct btrfs_key key; 4736 struct inode *inode = NULL; 4737 int err; 4738 int drop_inode = 0; 4739 u64 objectid; 4740 u64 index = 0 ; 4741 int name_len; 4742 int datasize; 4743 unsigned long ptr; 4744 struct btrfs_file_extent_item *ei; 4745 struct extent_buffer *leaf; 4746 unsigned long nr = 0; 4747 4748 name_len = strlen(symname) + 1; 4749 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 4750 return -ENAMETOOLONG; 4751 4752 err = btrfs_check_free_space(root, 1, 0); 4753 if (err) 4754 goto out_fail; 4755 4756 trans = btrfs_start_transaction(root, 1); 4757 btrfs_set_trans_block_group(trans, dir); 4758 4759 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4760 if (err) { 4761 err = -ENOSPC; 4762 goto out_unlock; 4763 } 4764 4765 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4766 dentry->d_name.len, 4767 dentry->d_parent->d_inode->i_ino, objectid, 4768 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 4769 &index); 4770 err = PTR_ERR(inode); 4771 if (IS_ERR(inode)) 4772 goto out_unlock; 4773 4774 err = btrfs_init_inode_security(inode, dir); 4775 if (err) { 4776 drop_inode = 1; 4777 goto out_unlock; 4778 } 4779 4780 btrfs_set_trans_block_group(trans, inode); 4781 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4782 if (err) 4783 drop_inode = 1; 4784 else { 4785 inode->i_mapping->a_ops = &btrfs_aops; 4786 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4787 inode->i_fop = &btrfs_file_operations; 4788 inode->i_op = &btrfs_file_inode_operations; 4789 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4790 } 4791 dir->i_sb->s_dirt = 1; 4792 btrfs_update_inode_block_group(trans, inode); 4793 btrfs_update_inode_block_group(trans, dir); 4794 if (drop_inode) 4795 goto out_unlock; 4796 4797 path = btrfs_alloc_path(); 4798 BUG_ON(!path); 4799 key.objectid = inode->i_ino; 4800 key.offset = 0; 4801 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 4802 datasize = btrfs_file_extent_calc_inline_size(name_len); 4803 err = btrfs_insert_empty_item(trans, root, path, &key, 4804 datasize); 4805 if (err) { 4806 drop_inode = 1; 4807 goto out_unlock; 4808 } 4809 leaf = path->nodes[0]; 4810 ei = btrfs_item_ptr(leaf, path->slots[0], 4811 struct btrfs_file_extent_item); 4812 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 4813 btrfs_set_file_extent_type(leaf, ei, 4814 BTRFS_FILE_EXTENT_INLINE); 4815 btrfs_set_file_extent_encryption(leaf, ei, 0); 4816 btrfs_set_file_extent_compression(leaf, ei, 0); 4817 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 4818 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 4819 4820 ptr = btrfs_file_extent_inline_start(ei); 4821 write_extent_buffer(leaf, symname, ptr, name_len); 4822 btrfs_mark_buffer_dirty(leaf); 4823 btrfs_free_path(path); 4824 4825 inode->i_op = &btrfs_symlink_inode_operations; 4826 inode->i_mapping->a_ops = &btrfs_symlink_aops; 4827 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4828 inode_set_bytes(inode, name_len); 4829 btrfs_i_size_write(inode, name_len - 1); 4830 err = btrfs_update_inode(trans, root, inode); 4831 if (err) 4832 drop_inode = 1; 4833 4834 out_unlock: 4835 nr = trans->blocks_used; 4836 btrfs_end_transaction_throttle(trans, root); 4837 out_fail: 4838 if (drop_inode) { 4839 inode_dec_link_count(inode); 4840 iput(inode); 4841 } 4842 btrfs_btree_balance_dirty(root, nr); 4843 return err; 4844 } 4845 4846 static int prealloc_file_range(struct inode *inode, u64 start, u64 end, 4847 u64 alloc_hint, int mode) 4848 { 4849 struct btrfs_trans_handle *trans; 4850 struct btrfs_root *root = BTRFS_I(inode)->root; 4851 struct btrfs_key ins; 4852 u64 alloc_size; 4853 u64 cur_offset = start; 4854 u64 num_bytes = end - start; 4855 int ret = 0; 4856 4857 trans = btrfs_join_transaction(root, 1); 4858 BUG_ON(!trans); 4859 btrfs_set_trans_block_group(trans, inode); 4860 4861 while (num_bytes > 0) { 4862 alloc_size = min(num_bytes, root->fs_info->max_extent); 4863 ret = btrfs_reserve_extent(trans, root, alloc_size, 4864 root->sectorsize, 0, alloc_hint, 4865 (u64)-1, &ins, 1); 4866 if (ret) { 4867 WARN_ON(1); 4868 goto out; 4869 } 4870 ret = insert_reserved_file_extent(trans, inode, 4871 cur_offset, ins.objectid, 4872 ins.offset, ins.offset, 4873 ins.offset, 0, 0, 0, 4874 BTRFS_FILE_EXTENT_PREALLOC); 4875 BUG_ON(ret); 4876 num_bytes -= ins.offset; 4877 cur_offset += ins.offset; 4878 alloc_hint = ins.objectid + ins.offset; 4879 } 4880 out: 4881 if (cur_offset > start) { 4882 inode->i_ctime = CURRENT_TIME; 4883 btrfs_set_flag(inode, PREALLOC); 4884 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4885 cur_offset > i_size_read(inode)) 4886 btrfs_i_size_write(inode, cur_offset); 4887 ret = btrfs_update_inode(trans, root, inode); 4888 BUG_ON(ret); 4889 } 4890 4891 btrfs_end_transaction(trans, root); 4892 return ret; 4893 } 4894 4895 static long btrfs_fallocate(struct inode *inode, int mode, 4896 loff_t offset, loff_t len) 4897 { 4898 u64 cur_offset; 4899 u64 last_byte; 4900 u64 alloc_start; 4901 u64 alloc_end; 4902 u64 alloc_hint = 0; 4903 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 4904 struct extent_map *em; 4905 int ret; 4906 4907 alloc_start = offset & ~mask; 4908 alloc_end = (offset + len + mask) & ~mask; 4909 4910 mutex_lock(&inode->i_mutex); 4911 if (alloc_start > inode->i_size) { 4912 ret = btrfs_cont_expand(inode, alloc_start); 4913 if (ret) 4914 goto out; 4915 } 4916 4917 while (1) { 4918 struct btrfs_ordered_extent *ordered; 4919 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, 4920 alloc_end - 1, GFP_NOFS); 4921 ordered = btrfs_lookup_first_ordered_extent(inode, 4922 alloc_end - 1); 4923 if (ordered && 4924 ordered->file_offset + ordered->len > alloc_start && 4925 ordered->file_offset < alloc_end) { 4926 btrfs_put_ordered_extent(ordered); 4927 unlock_extent(&BTRFS_I(inode)->io_tree, 4928 alloc_start, alloc_end - 1, GFP_NOFS); 4929 btrfs_wait_ordered_range(inode, alloc_start, 4930 alloc_end - alloc_start); 4931 } else { 4932 if (ordered) 4933 btrfs_put_ordered_extent(ordered); 4934 break; 4935 } 4936 } 4937 4938 cur_offset = alloc_start; 4939 while (1) { 4940 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4941 alloc_end - cur_offset, 0); 4942 BUG_ON(IS_ERR(em) || !em); 4943 last_byte = min(extent_map_end(em), alloc_end); 4944 last_byte = (last_byte + mask) & ~mask; 4945 if (em->block_start == EXTENT_MAP_HOLE) { 4946 ret = prealloc_file_range(inode, cur_offset, 4947 last_byte, alloc_hint, mode); 4948 if (ret < 0) { 4949 free_extent_map(em); 4950 break; 4951 } 4952 } 4953 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 4954 alloc_hint = em->block_start; 4955 free_extent_map(em); 4956 4957 cur_offset = last_byte; 4958 if (cur_offset >= alloc_end) { 4959 ret = 0; 4960 break; 4961 } 4962 } 4963 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1, 4964 GFP_NOFS); 4965 out: 4966 mutex_unlock(&inode->i_mutex); 4967 return ret; 4968 } 4969 4970 static int btrfs_set_page_dirty(struct page *page) 4971 { 4972 return __set_page_dirty_nobuffers(page); 4973 } 4974 4975 static int btrfs_permission(struct inode *inode, int mask) 4976 { 4977 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE)) 4978 return -EACCES; 4979 return generic_permission(inode, mask, btrfs_check_acl); 4980 } 4981 4982 static struct inode_operations btrfs_dir_inode_operations = { 4983 .getattr = btrfs_getattr, 4984 .lookup = btrfs_lookup, 4985 .create = btrfs_create, 4986 .unlink = btrfs_unlink, 4987 .link = btrfs_link, 4988 .mkdir = btrfs_mkdir, 4989 .rmdir = btrfs_rmdir, 4990 .rename = btrfs_rename, 4991 .symlink = btrfs_symlink, 4992 .setattr = btrfs_setattr, 4993 .mknod = btrfs_mknod, 4994 .setxattr = btrfs_setxattr, 4995 .getxattr = btrfs_getxattr, 4996 .listxattr = btrfs_listxattr, 4997 .removexattr = btrfs_removexattr, 4998 .permission = btrfs_permission, 4999 }; 5000 static struct inode_operations btrfs_dir_ro_inode_operations = { 5001 .lookup = btrfs_lookup, 5002 .permission = btrfs_permission, 5003 }; 5004 static struct file_operations btrfs_dir_file_operations = { 5005 .llseek = generic_file_llseek, 5006 .read = generic_read_dir, 5007 .readdir = btrfs_real_readdir, 5008 .unlocked_ioctl = btrfs_ioctl, 5009 #ifdef CONFIG_COMPAT 5010 .compat_ioctl = btrfs_ioctl, 5011 #endif 5012 .release = btrfs_release_file, 5013 .fsync = btrfs_sync_file, 5014 }; 5015 5016 static struct extent_io_ops btrfs_extent_io_ops = { 5017 .fill_delalloc = run_delalloc_range, 5018 .submit_bio_hook = btrfs_submit_bio_hook, 5019 .merge_bio_hook = btrfs_merge_bio_hook, 5020 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 5021 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 5022 .writepage_start_hook = btrfs_writepage_start_hook, 5023 .readpage_io_failed_hook = btrfs_io_failed_hook, 5024 .set_bit_hook = btrfs_set_bit_hook, 5025 .clear_bit_hook = btrfs_clear_bit_hook, 5026 }; 5027 5028 /* 5029 * btrfs doesn't support the bmap operation because swapfiles 5030 * use bmap to make a mapping of extents in the file. They assume 5031 * these extents won't change over the life of the file and they 5032 * use the bmap result to do IO directly to the drive. 5033 * 5034 * the btrfs bmap call would return logical addresses that aren't 5035 * suitable for IO and they also will change frequently as COW 5036 * operations happen. So, swapfile + btrfs == corruption. 5037 * 5038 * For now we're avoiding this by dropping bmap. 5039 */ 5040 static struct address_space_operations btrfs_aops = { 5041 .readpage = btrfs_readpage, 5042 .writepage = btrfs_writepage, 5043 .writepages = btrfs_writepages, 5044 .readpages = btrfs_readpages, 5045 .sync_page = block_sync_page, 5046 .direct_IO = btrfs_direct_IO, 5047 .invalidatepage = btrfs_invalidatepage, 5048 .releasepage = btrfs_releasepage, 5049 .set_page_dirty = btrfs_set_page_dirty, 5050 }; 5051 5052 static struct address_space_operations btrfs_symlink_aops = { 5053 .readpage = btrfs_readpage, 5054 .writepage = btrfs_writepage, 5055 .invalidatepage = btrfs_invalidatepage, 5056 .releasepage = btrfs_releasepage, 5057 }; 5058 5059 static struct inode_operations btrfs_file_inode_operations = { 5060 .truncate = btrfs_truncate, 5061 .getattr = btrfs_getattr, 5062 .setattr = btrfs_setattr, 5063 .setxattr = btrfs_setxattr, 5064 .getxattr = btrfs_getxattr, 5065 .listxattr = btrfs_listxattr, 5066 .removexattr = btrfs_removexattr, 5067 .permission = btrfs_permission, 5068 .fallocate = btrfs_fallocate, 5069 .fiemap = btrfs_fiemap, 5070 }; 5071 static struct inode_operations btrfs_special_inode_operations = { 5072 .getattr = btrfs_getattr, 5073 .setattr = btrfs_setattr, 5074 .permission = btrfs_permission, 5075 .setxattr = btrfs_setxattr, 5076 .getxattr = btrfs_getxattr, 5077 .listxattr = btrfs_listxattr, 5078 .removexattr = btrfs_removexattr, 5079 }; 5080 static struct inode_operations btrfs_symlink_inode_operations = { 5081 .readlink = generic_readlink, 5082 .follow_link = page_follow_link_light, 5083 .put_link = page_put_link, 5084 .permission = btrfs_permission, 5085 .setxattr = btrfs_setxattr, 5086 .getxattr = btrfs_getxattr, 5087 .listxattr = btrfs_listxattr, 5088 .removexattr = btrfs_removexattr, 5089 }; 5090