xref: /openbmc/linux/fs/btrfs/inode.c (revision e00f7308658622fbd483cb0d9fe41165bf9050d0)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69 
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75 
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 				   struct page *locked_page,
91 				   u64 start, u64 end, int *page_started,
92 				   unsigned long *nr_written, int unlock);
93 
94 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
95 {
96 	int err;
97 
98 	err = btrfs_init_acl(inode, dir);
99 	if (!err)
100 		err = btrfs_xattr_security_init(inode, dir);
101 	return err;
102 }
103 
104 /*
105  * a very lame attempt at stopping writes when the FS is 85% full.  There
106  * are countless ways this is incorrect, but it is better than nothing.
107  */
108 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
109 			   int for_del)
110 {
111 	u64 total;
112 	u64 used;
113 	u64 thresh;
114 	int ret = 0;
115 
116 	spin_lock(&root->fs_info->delalloc_lock);
117 	total = btrfs_super_total_bytes(&root->fs_info->super_copy);
118 	used = btrfs_super_bytes_used(&root->fs_info->super_copy);
119 	if (for_del)
120 		thresh = total * 90;
121 	else
122 		thresh = total * 85;
123 
124 	do_div(thresh, 100);
125 
126 	if (used + root->fs_info->delalloc_bytes + num_required > thresh)
127 		ret = -ENOSPC;
128 	spin_unlock(&root->fs_info->delalloc_lock);
129 	return ret;
130 }
131 
132 /*
133  * this does all the hard work for inserting an inline extent into
134  * the btree.  The caller should have done a btrfs_drop_extents so that
135  * no overlapping inline items exist in the btree
136  */
137 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
138 				struct btrfs_root *root, struct inode *inode,
139 				u64 start, size_t size, size_t compressed_size,
140 				struct page **compressed_pages)
141 {
142 	struct btrfs_key key;
143 	struct btrfs_path *path;
144 	struct extent_buffer *leaf;
145 	struct page *page = NULL;
146 	char *kaddr;
147 	unsigned long ptr;
148 	struct btrfs_file_extent_item *ei;
149 	int err = 0;
150 	int ret;
151 	size_t cur_size = size;
152 	size_t datasize;
153 	unsigned long offset;
154 	int use_compress = 0;
155 
156 	if (compressed_size && compressed_pages) {
157 		use_compress = 1;
158 		cur_size = compressed_size;
159 	}
160 
161 	path = btrfs_alloc_path();
162 	if (!path)
163 		return -ENOMEM;
164 
165 	btrfs_set_trans_block_group(trans, inode);
166 
167 	key.objectid = inode->i_ino;
168 	key.offset = start;
169 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
170 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
171 
172 	inode_add_bytes(inode, size);
173 	ret = btrfs_insert_empty_item(trans, root, path, &key,
174 				      datasize);
175 	BUG_ON(ret);
176 	if (ret) {
177 		err = ret;
178 		goto fail;
179 	}
180 	leaf = path->nodes[0];
181 	ei = btrfs_item_ptr(leaf, path->slots[0],
182 			    struct btrfs_file_extent_item);
183 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
184 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
185 	btrfs_set_file_extent_encryption(leaf, ei, 0);
186 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
187 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
188 	ptr = btrfs_file_extent_inline_start(ei);
189 
190 	if (use_compress) {
191 		struct page *cpage;
192 		int i = 0;
193 		while (compressed_size > 0) {
194 			cpage = compressed_pages[i];
195 			cur_size = min_t(unsigned long, compressed_size,
196 				       PAGE_CACHE_SIZE);
197 
198 			kaddr = kmap(cpage);
199 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
200 			kunmap(cpage);
201 
202 			i++;
203 			ptr += cur_size;
204 			compressed_size -= cur_size;
205 		}
206 		btrfs_set_file_extent_compression(leaf, ei,
207 						  BTRFS_COMPRESS_ZLIB);
208 	} else {
209 		page = find_get_page(inode->i_mapping,
210 				     start >> PAGE_CACHE_SHIFT);
211 		btrfs_set_file_extent_compression(leaf, ei, 0);
212 		kaddr = kmap_atomic(page, KM_USER0);
213 		offset = start & (PAGE_CACHE_SIZE - 1);
214 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
215 		kunmap_atomic(kaddr, KM_USER0);
216 		page_cache_release(page);
217 	}
218 	btrfs_mark_buffer_dirty(leaf);
219 	btrfs_free_path(path);
220 
221 	BTRFS_I(inode)->disk_i_size = inode->i_size;
222 	btrfs_update_inode(trans, root, inode);
223 	return 0;
224 fail:
225 	btrfs_free_path(path);
226 	return err;
227 }
228 
229 
230 /*
231  * conditionally insert an inline extent into the file.  This
232  * does the checks required to make sure the data is small enough
233  * to fit as an inline extent.
234  */
235 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
236 				 struct btrfs_root *root,
237 				 struct inode *inode, u64 start, u64 end,
238 				 size_t compressed_size,
239 				 struct page **compressed_pages)
240 {
241 	u64 isize = i_size_read(inode);
242 	u64 actual_end = min(end + 1, isize);
243 	u64 inline_len = actual_end - start;
244 	u64 aligned_end = (end + root->sectorsize - 1) &
245 			~((u64)root->sectorsize - 1);
246 	u64 hint_byte;
247 	u64 data_len = inline_len;
248 	int ret;
249 
250 	if (compressed_size)
251 		data_len = compressed_size;
252 
253 	if (start > 0 ||
254 	    actual_end >= PAGE_CACHE_SIZE ||
255 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
256 	    (!compressed_size &&
257 	    (actual_end & (root->sectorsize - 1)) == 0) ||
258 	    end + 1 < isize ||
259 	    data_len > root->fs_info->max_inline) {
260 		return 1;
261 	}
262 
263 	ret = btrfs_drop_extents(trans, root, inode, start,
264 				 aligned_end, start, &hint_byte);
265 	BUG_ON(ret);
266 
267 	if (isize > actual_end)
268 		inline_len = min_t(u64, isize, actual_end);
269 	ret = insert_inline_extent(trans, root, inode, start,
270 				   inline_len, compressed_size,
271 				   compressed_pages);
272 	BUG_ON(ret);
273 	btrfs_drop_extent_cache(inode, start, aligned_end, 0);
274 	return 0;
275 }
276 
277 struct async_extent {
278 	u64 start;
279 	u64 ram_size;
280 	u64 compressed_size;
281 	struct page **pages;
282 	unsigned long nr_pages;
283 	struct list_head list;
284 };
285 
286 struct async_cow {
287 	struct inode *inode;
288 	struct btrfs_root *root;
289 	struct page *locked_page;
290 	u64 start;
291 	u64 end;
292 	struct list_head extents;
293 	struct btrfs_work work;
294 };
295 
296 static noinline int add_async_extent(struct async_cow *cow,
297 				     u64 start, u64 ram_size,
298 				     u64 compressed_size,
299 				     struct page **pages,
300 				     unsigned long nr_pages)
301 {
302 	struct async_extent *async_extent;
303 
304 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
305 	async_extent->start = start;
306 	async_extent->ram_size = ram_size;
307 	async_extent->compressed_size = compressed_size;
308 	async_extent->pages = pages;
309 	async_extent->nr_pages = nr_pages;
310 	list_add_tail(&async_extent->list, &cow->extents);
311 	return 0;
312 }
313 
314 /*
315  * we create compressed extents in two phases.  The first
316  * phase compresses a range of pages that have already been
317  * locked (both pages and state bits are locked).
318  *
319  * This is done inside an ordered work queue, and the compression
320  * is spread across many cpus.  The actual IO submission is step
321  * two, and the ordered work queue takes care of making sure that
322  * happens in the same order things were put onto the queue by
323  * writepages and friends.
324  *
325  * If this code finds it can't get good compression, it puts an
326  * entry onto the work queue to write the uncompressed bytes.  This
327  * makes sure that both compressed inodes and uncompressed inodes
328  * are written in the same order that pdflush sent them down.
329  */
330 static noinline int compress_file_range(struct inode *inode,
331 					struct page *locked_page,
332 					u64 start, u64 end,
333 					struct async_cow *async_cow,
334 					int *num_added)
335 {
336 	struct btrfs_root *root = BTRFS_I(inode)->root;
337 	struct btrfs_trans_handle *trans;
338 	u64 num_bytes;
339 	u64 orig_start;
340 	u64 disk_num_bytes;
341 	u64 blocksize = root->sectorsize;
342 	u64 actual_end;
343 	u64 isize = i_size_read(inode);
344 	int ret = 0;
345 	struct page **pages = NULL;
346 	unsigned long nr_pages;
347 	unsigned long nr_pages_ret = 0;
348 	unsigned long total_compressed = 0;
349 	unsigned long total_in = 0;
350 	unsigned long max_compressed = 128 * 1024;
351 	unsigned long max_uncompressed = 128 * 1024;
352 	int i;
353 	int will_compress;
354 
355 	orig_start = start;
356 
357 	actual_end = min_t(u64, isize, end + 1);
358 again:
359 	will_compress = 0;
360 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
361 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
362 
363 	/*
364 	 * we don't want to send crud past the end of i_size through
365 	 * compression, that's just a waste of CPU time.  So, if the
366 	 * end of the file is before the start of our current
367 	 * requested range of bytes, we bail out to the uncompressed
368 	 * cleanup code that can deal with all of this.
369 	 *
370 	 * It isn't really the fastest way to fix things, but this is a
371 	 * very uncommon corner.
372 	 */
373 	if (actual_end <= start)
374 		goto cleanup_and_bail_uncompressed;
375 
376 	total_compressed = actual_end - start;
377 
378 	/* we want to make sure that amount of ram required to uncompress
379 	 * an extent is reasonable, so we limit the total size in ram
380 	 * of a compressed extent to 128k.  This is a crucial number
381 	 * because it also controls how easily we can spread reads across
382 	 * cpus for decompression.
383 	 *
384 	 * We also want to make sure the amount of IO required to do
385 	 * a random read is reasonably small, so we limit the size of
386 	 * a compressed extent to 128k.
387 	 */
388 	total_compressed = min(total_compressed, max_uncompressed);
389 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
390 	num_bytes = max(blocksize,  num_bytes);
391 	disk_num_bytes = num_bytes;
392 	total_in = 0;
393 	ret = 0;
394 
395 	/*
396 	 * we do compression for mount -o compress and when the
397 	 * inode has not been flagged as nocompress.  This flag can
398 	 * change at any time if we discover bad compression ratios.
399 	 */
400 	if (!btrfs_test_flag(inode, NOCOMPRESS) &&
401 	    btrfs_test_opt(root, COMPRESS)) {
402 		WARN_ON(pages);
403 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
404 
405 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
406 						total_compressed, pages,
407 						nr_pages, &nr_pages_ret,
408 						&total_in,
409 						&total_compressed,
410 						max_compressed);
411 
412 		if (!ret) {
413 			unsigned long offset = total_compressed &
414 				(PAGE_CACHE_SIZE - 1);
415 			struct page *page = pages[nr_pages_ret - 1];
416 			char *kaddr;
417 
418 			/* zero the tail end of the last page, we might be
419 			 * sending it down to disk
420 			 */
421 			if (offset) {
422 				kaddr = kmap_atomic(page, KM_USER0);
423 				memset(kaddr + offset, 0,
424 				       PAGE_CACHE_SIZE - offset);
425 				kunmap_atomic(kaddr, KM_USER0);
426 			}
427 			will_compress = 1;
428 		}
429 	}
430 	if (start == 0) {
431 		trans = btrfs_join_transaction(root, 1);
432 		BUG_ON(!trans);
433 		btrfs_set_trans_block_group(trans, inode);
434 
435 		/* lets try to make an inline extent */
436 		if (ret || total_in < (actual_end - start)) {
437 			/* we didn't compress the entire range, try
438 			 * to make an uncompressed inline extent.
439 			 */
440 			ret = cow_file_range_inline(trans, root, inode,
441 						    start, end, 0, NULL);
442 		} else {
443 			/* try making a compressed inline extent */
444 			ret = cow_file_range_inline(trans, root, inode,
445 						    start, end,
446 						    total_compressed, pages);
447 		}
448 		btrfs_end_transaction(trans, root);
449 		if (ret == 0) {
450 			/*
451 			 * inline extent creation worked, we don't need
452 			 * to create any more async work items.  Unlock
453 			 * and free up our temp pages.
454 			 */
455 			extent_clear_unlock_delalloc(inode,
456 						     &BTRFS_I(inode)->io_tree,
457 						     start, end, NULL, 1, 0,
458 						     0, 1, 1, 1);
459 			ret = 0;
460 			goto free_pages_out;
461 		}
462 	}
463 
464 	if (will_compress) {
465 		/*
466 		 * we aren't doing an inline extent round the compressed size
467 		 * up to a block size boundary so the allocator does sane
468 		 * things
469 		 */
470 		total_compressed = (total_compressed + blocksize - 1) &
471 			~(blocksize - 1);
472 
473 		/*
474 		 * one last check to make sure the compression is really a
475 		 * win, compare the page count read with the blocks on disk
476 		 */
477 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
478 			~(PAGE_CACHE_SIZE - 1);
479 		if (total_compressed >= total_in) {
480 			will_compress = 0;
481 		} else {
482 			disk_num_bytes = total_compressed;
483 			num_bytes = total_in;
484 		}
485 	}
486 	if (!will_compress && pages) {
487 		/*
488 		 * the compression code ran but failed to make things smaller,
489 		 * free any pages it allocated and our page pointer array
490 		 */
491 		for (i = 0; i < nr_pages_ret; i++) {
492 			WARN_ON(pages[i]->mapping);
493 			page_cache_release(pages[i]);
494 		}
495 		kfree(pages);
496 		pages = NULL;
497 		total_compressed = 0;
498 		nr_pages_ret = 0;
499 
500 		/* flag the file so we don't compress in the future */
501 		btrfs_set_flag(inode, NOCOMPRESS);
502 	}
503 	if (will_compress) {
504 		*num_added += 1;
505 
506 		/* the async work queues will take care of doing actual
507 		 * allocation on disk for these compressed pages,
508 		 * and will submit them to the elevator.
509 		 */
510 		add_async_extent(async_cow, start, num_bytes,
511 				 total_compressed, pages, nr_pages_ret);
512 
513 		if (start + num_bytes < end && start + num_bytes < actual_end) {
514 			start += num_bytes;
515 			pages = NULL;
516 			cond_resched();
517 			goto again;
518 		}
519 	} else {
520 cleanup_and_bail_uncompressed:
521 		/*
522 		 * No compression, but we still need to write the pages in
523 		 * the file we've been given so far.  redirty the locked
524 		 * page if it corresponds to our extent and set things up
525 		 * for the async work queue to run cow_file_range to do
526 		 * the normal delalloc dance
527 		 */
528 		if (page_offset(locked_page) >= start &&
529 		    page_offset(locked_page) <= end) {
530 			__set_page_dirty_nobuffers(locked_page);
531 			/* unlocked later on in the async handlers */
532 		}
533 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
534 		*num_added += 1;
535 	}
536 
537 out:
538 	return 0;
539 
540 free_pages_out:
541 	for (i = 0; i < nr_pages_ret; i++) {
542 		WARN_ON(pages[i]->mapping);
543 		page_cache_release(pages[i]);
544 	}
545 	kfree(pages);
546 
547 	goto out;
548 }
549 
550 /*
551  * phase two of compressed writeback.  This is the ordered portion
552  * of the code, which only gets called in the order the work was
553  * queued.  We walk all the async extents created by compress_file_range
554  * and send them down to the disk.
555  */
556 static noinline int submit_compressed_extents(struct inode *inode,
557 					      struct async_cow *async_cow)
558 {
559 	struct async_extent *async_extent;
560 	u64 alloc_hint = 0;
561 	struct btrfs_trans_handle *trans;
562 	struct btrfs_key ins;
563 	struct extent_map *em;
564 	struct btrfs_root *root = BTRFS_I(inode)->root;
565 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566 	struct extent_io_tree *io_tree;
567 	int ret;
568 
569 	if (list_empty(&async_cow->extents))
570 		return 0;
571 
572 	trans = btrfs_join_transaction(root, 1);
573 
574 	while (!list_empty(&async_cow->extents)) {
575 		async_extent = list_entry(async_cow->extents.next,
576 					  struct async_extent, list);
577 		list_del(&async_extent->list);
578 
579 		io_tree = &BTRFS_I(inode)->io_tree;
580 
581 		/* did the compression code fall back to uncompressed IO? */
582 		if (!async_extent->pages) {
583 			int page_started = 0;
584 			unsigned long nr_written = 0;
585 
586 			lock_extent(io_tree, async_extent->start,
587 				    async_extent->start +
588 				    async_extent->ram_size - 1, GFP_NOFS);
589 
590 			/* allocate blocks */
591 			cow_file_range(inode, async_cow->locked_page,
592 				       async_extent->start,
593 				       async_extent->start +
594 				       async_extent->ram_size - 1,
595 				       &page_started, &nr_written, 0);
596 
597 			/*
598 			 * if page_started, cow_file_range inserted an
599 			 * inline extent and took care of all the unlocking
600 			 * and IO for us.  Otherwise, we need to submit
601 			 * all those pages down to the drive.
602 			 */
603 			if (!page_started)
604 				extent_write_locked_range(io_tree,
605 						  inode, async_extent->start,
606 						  async_extent->start +
607 						  async_extent->ram_size - 1,
608 						  btrfs_get_extent,
609 						  WB_SYNC_ALL);
610 			kfree(async_extent);
611 			cond_resched();
612 			continue;
613 		}
614 
615 		lock_extent(io_tree, async_extent->start,
616 			    async_extent->start + async_extent->ram_size - 1,
617 			    GFP_NOFS);
618 		/*
619 		 * here we're doing allocation and writeback of the
620 		 * compressed pages
621 		 */
622 		btrfs_drop_extent_cache(inode, async_extent->start,
623 					async_extent->start +
624 					async_extent->ram_size - 1, 0);
625 
626 		ret = btrfs_reserve_extent(trans, root,
627 					   async_extent->compressed_size,
628 					   async_extent->compressed_size,
629 					   0, alloc_hint,
630 					   (u64)-1, &ins, 1);
631 		BUG_ON(ret);
632 		em = alloc_extent_map(GFP_NOFS);
633 		em->start = async_extent->start;
634 		em->len = async_extent->ram_size;
635 		em->orig_start = em->start;
636 
637 		em->block_start = ins.objectid;
638 		em->block_len = ins.offset;
639 		em->bdev = root->fs_info->fs_devices->latest_bdev;
640 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
641 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
642 
643 		while (1) {
644 			spin_lock(&em_tree->lock);
645 			ret = add_extent_mapping(em_tree, em);
646 			spin_unlock(&em_tree->lock);
647 			if (ret != -EEXIST) {
648 				free_extent_map(em);
649 				break;
650 			}
651 			btrfs_drop_extent_cache(inode, async_extent->start,
652 						async_extent->start +
653 						async_extent->ram_size - 1, 0);
654 		}
655 
656 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
657 					       ins.objectid,
658 					       async_extent->ram_size,
659 					       ins.offset,
660 					       BTRFS_ORDERED_COMPRESSED);
661 		BUG_ON(ret);
662 
663 		btrfs_end_transaction(trans, root);
664 
665 		/*
666 		 * clear dirty, set writeback and unlock the pages.
667 		 */
668 		extent_clear_unlock_delalloc(inode,
669 					     &BTRFS_I(inode)->io_tree,
670 					     async_extent->start,
671 					     async_extent->start +
672 					     async_extent->ram_size - 1,
673 					     NULL, 1, 1, 0, 1, 1, 0);
674 
675 		ret = btrfs_submit_compressed_write(inode,
676 				    async_extent->start,
677 				    async_extent->ram_size,
678 				    ins.objectid,
679 				    ins.offset, async_extent->pages,
680 				    async_extent->nr_pages);
681 
682 		BUG_ON(ret);
683 		trans = btrfs_join_transaction(root, 1);
684 		alloc_hint = ins.objectid + ins.offset;
685 		kfree(async_extent);
686 		cond_resched();
687 	}
688 
689 	btrfs_end_transaction(trans, root);
690 	return 0;
691 }
692 
693 /*
694  * when extent_io.c finds a delayed allocation range in the file,
695  * the call backs end up in this code.  The basic idea is to
696  * allocate extents on disk for the range, and create ordered data structs
697  * in ram to track those extents.
698  *
699  * locked_page is the page that writepage had locked already.  We use
700  * it to make sure we don't do extra locks or unlocks.
701  *
702  * *page_started is set to one if we unlock locked_page and do everything
703  * required to start IO on it.  It may be clean and already done with
704  * IO when we return.
705  */
706 static noinline int cow_file_range(struct inode *inode,
707 				   struct page *locked_page,
708 				   u64 start, u64 end, int *page_started,
709 				   unsigned long *nr_written,
710 				   int unlock)
711 {
712 	struct btrfs_root *root = BTRFS_I(inode)->root;
713 	struct btrfs_trans_handle *trans;
714 	u64 alloc_hint = 0;
715 	u64 num_bytes;
716 	unsigned long ram_size;
717 	u64 disk_num_bytes;
718 	u64 cur_alloc_size;
719 	u64 blocksize = root->sectorsize;
720 	u64 actual_end;
721 	u64 isize = i_size_read(inode);
722 	struct btrfs_key ins;
723 	struct extent_map *em;
724 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 	int ret = 0;
726 
727 	trans = btrfs_join_transaction(root, 1);
728 	BUG_ON(!trans);
729 	btrfs_set_trans_block_group(trans, inode);
730 
731 	actual_end = min_t(u64, isize, end + 1);
732 
733 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
734 	num_bytes = max(blocksize,  num_bytes);
735 	disk_num_bytes = num_bytes;
736 	ret = 0;
737 
738 	if (start == 0) {
739 		/* lets try to make an inline extent */
740 		ret = cow_file_range_inline(trans, root, inode,
741 					    start, end, 0, NULL);
742 		if (ret == 0) {
743 			extent_clear_unlock_delalloc(inode,
744 						     &BTRFS_I(inode)->io_tree,
745 						     start, end, NULL, 1, 1,
746 						     1, 1, 1, 1);
747 			*nr_written = *nr_written +
748 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
749 			*page_started = 1;
750 			ret = 0;
751 			goto out;
752 		}
753 	}
754 
755 	BUG_ON(disk_num_bytes >
756 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
757 
758 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
759 
760 	while (disk_num_bytes > 0) {
761 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
762 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
763 					   root->sectorsize, 0, alloc_hint,
764 					   (u64)-1, &ins, 1);
765 		BUG_ON(ret);
766 
767 		em = alloc_extent_map(GFP_NOFS);
768 		em->start = start;
769 		em->orig_start = em->start;
770 
771 		ram_size = ins.offset;
772 		em->len = ins.offset;
773 
774 		em->block_start = ins.objectid;
775 		em->block_len = ins.offset;
776 		em->bdev = root->fs_info->fs_devices->latest_bdev;
777 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
778 
779 		while (1) {
780 			spin_lock(&em_tree->lock);
781 			ret = add_extent_mapping(em_tree, em);
782 			spin_unlock(&em_tree->lock);
783 			if (ret != -EEXIST) {
784 				free_extent_map(em);
785 				break;
786 			}
787 			btrfs_drop_extent_cache(inode, start,
788 						start + ram_size - 1, 0);
789 		}
790 
791 		cur_alloc_size = ins.offset;
792 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
793 					       ram_size, cur_alloc_size, 0);
794 		BUG_ON(ret);
795 
796 		if (root->root_key.objectid ==
797 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
798 			ret = btrfs_reloc_clone_csums(inode, start,
799 						      cur_alloc_size);
800 			BUG_ON(ret);
801 		}
802 
803 		if (disk_num_bytes < cur_alloc_size)
804 			break;
805 
806 		/* we're not doing compressed IO, don't unlock the first
807 		 * page (which the caller expects to stay locked), don't
808 		 * clear any dirty bits and don't set any writeback bits
809 		 */
810 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
811 					     start, start + ram_size - 1,
812 					     locked_page, unlock, 1,
813 					     1, 0, 0, 0);
814 		disk_num_bytes -= cur_alloc_size;
815 		num_bytes -= cur_alloc_size;
816 		alloc_hint = ins.objectid + ins.offset;
817 		start += cur_alloc_size;
818 	}
819 out:
820 	ret = 0;
821 	btrfs_end_transaction(trans, root);
822 
823 	return ret;
824 }
825 
826 /*
827  * work queue call back to started compression on a file and pages
828  */
829 static noinline void async_cow_start(struct btrfs_work *work)
830 {
831 	struct async_cow *async_cow;
832 	int num_added = 0;
833 	async_cow = container_of(work, struct async_cow, work);
834 
835 	compress_file_range(async_cow->inode, async_cow->locked_page,
836 			    async_cow->start, async_cow->end, async_cow,
837 			    &num_added);
838 	if (num_added == 0)
839 		async_cow->inode = NULL;
840 }
841 
842 /*
843  * work queue call back to submit previously compressed pages
844  */
845 static noinline void async_cow_submit(struct btrfs_work *work)
846 {
847 	struct async_cow *async_cow;
848 	struct btrfs_root *root;
849 	unsigned long nr_pages;
850 
851 	async_cow = container_of(work, struct async_cow, work);
852 
853 	root = async_cow->root;
854 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
855 		PAGE_CACHE_SHIFT;
856 
857 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
858 
859 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
860 	    5 * 1042 * 1024 &&
861 	    waitqueue_active(&root->fs_info->async_submit_wait))
862 		wake_up(&root->fs_info->async_submit_wait);
863 
864 	if (async_cow->inode)
865 		submit_compressed_extents(async_cow->inode, async_cow);
866 }
867 
868 static noinline void async_cow_free(struct btrfs_work *work)
869 {
870 	struct async_cow *async_cow;
871 	async_cow = container_of(work, struct async_cow, work);
872 	kfree(async_cow);
873 }
874 
875 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
876 				u64 start, u64 end, int *page_started,
877 				unsigned long *nr_written)
878 {
879 	struct async_cow *async_cow;
880 	struct btrfs_root *root = BTRFS_I(inode)->root;
881 	unsigned long nr_pages;
882 	u64 cur_end;
883 	int limit = 10 * 1024 * 1042;
884 
885 	if (!btrfs_test_opt(root, COMPRESS)) {
886 		return cow_file_range(inode, locked_page, start, end,
887 				      page_started, nr_written, 1);
888 	}
889 
890 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
891 			 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
892 	while (start < end) {
893 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
894 		async_cow->inode = inode;
895 		async_cow->root = root;
896 		async_cow->locked_page = locked_page;
897 		async_cow->start = start;
898 
899 		if (btrfs_test_flag(inode, NOCOMPRESS))
900 			cur_end = end;
901 		else
902 			cur_end = min(end, start + 512 * 1024 - 1);
903 
904 		async_cow->end = cur_end;
905 		INIT_LIST_HEAD(&async_cow->extents);
906 
907 		async_cow->work.func = async_cow_start;
908 		async_cow->work.ordered_func = async_cow_submit;
909 		async_cow->work.ordered_free = async_cow_free;
910 		async_cow->work.flags = 0;
911 
912 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
913 			PAGE_CACHE_SHIFT;
914 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
915 
916 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
917 				   &async_cow->work);
918 
919 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
920 			wait_event(root->fs_info->async_submit_wait,
921 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
922 			    limit));
923 		}
924 
925 		while (atomic_read(&root->fs_info->async_submit_draining) &&
926 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
927 			wait_event(root->fs_info->async_submit_wait,
928 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
929 			   0));
930 		}
931 
932 		*nr_written += nr_pages;
933 		start = cur_end + 1;
934 	}
935 	*page_started = 1;
936 	return 0;
937 }
938 
939 static noinline int csum_exist_in_range(struct btrfs_root *root,
940 					u64 bytenr, u64 num_bytes)
941 {
942 	int ret;
943 	struct btrfs_ordered_sum *sums;
944 	LIST_HEAD(list);
945 
946 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
947 				       bytenr + num_bytes - 1, &list);
948 	if (ret == 0 && list_empty(&list))
949 		return 0;
950 
951 	while (!list_empty(&list)) {
952 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
953 		list_del(&sums->list);
954 		kfree(sums);
955 	}
956 	return 1;
957 }
958 
959 /*
960  * when nowcow writeback call back.  This checks for snapshots or COW copies
961  * of the extents that exist in the file, and COWs the file as required.
962  *
963  * If no cow copies or snapshots exist, we write directly to the existing
964  * blocks on disk
965  */
966 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
967 			      u64 start, u64 end, int *page_started, int force,
968 			      unsigned long *nr_written)
969 {
970 	struct btrfs_root *root = BTRFS_I(inode)->root;
971 	struct btrfs_trans_handle *trans;
972 	struct extent_buffer *leaf;
973 	struct btrfs_path *path;
974 	struct btrfs_file_extent_item *fi;
975 	struct btrfs_key found_key;
976 	u64 cow_start;
977 	u64 cur_offset;
978 	u64 extent_end;
979 	u64 disk_bytenr;
980 	u64 num_bytes;
981 	int extent_type;
982 	int ret;
983 	int type;
984 	int nocow;
985 	int check_prev = 1;
986 
987 	path = btrfs_alloc_path();
988 	BUG_ON(!path);
989 	trans = btrfs_join_transaction(root, 1);
990 	BUG_ON(!trans);
991 
992 	cow_start = (u64)-1;
993 	cur_offset = start;
994 	while (1) {
995 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
996 					       cur_offset, 0);
997 		BUG_ON(ret < 0);
998 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
999 			leaf = path->nodes[0];
1000 			btrfs_item_key_to_cpu(leaf, &found_key,
1001 					      path->slots[0] - 1);
1002 			if (found_key.objectid == inode->i_ino &&
1003 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1004 				path->slots[0]--;
1005 		}
1006 		check_prev = 0;
1007 next_slot:
1008 		leaf = path->nodes[0];
1009 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1010 			ret = btrfs_next_leaf(root, path);
1011 			if (ret < 0)
1012 				BUG_ON(1);
1013 			if (ret > 0)
1014 				break;
1015 			leaf = path->nodes[0];
1016 		}
1017 
1018 		nocow = 0;
1019 		disk_bytenr = 0;
1020 		num_bytes = 0;
1021 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1022 
1023 		if (found_key.objectid > inode->i_ino ||
1024 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1025 		    found_key.offset > end)
1026 			break;
1027 
1028 		if (found_key.offset > cur_offset) {
1029 			extent_end = found_key.offset;
1030 			goto out_check;
1031 		}
1032 
1033 		fi = btrfs_item_ptr(leaf, path->slots[0],
1034 				    struct btrfs_file_extent_item);
1035 		extent_type = btrfs_file_extent_type(leaf, fi);
1036 
1037 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1038 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1039 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1040 			extent_end = found_key.offset +
1041 				btrfs_file_extent_num_bytes(leaf, fi);
1042 			if (extent_end <= start) {
1043 				path->slots[0]++;
1044 				goto next_slot;
1045 			}
1046 			if (disk_bytenr == 0)
1047 				goto out_check;
1048 			if (btrfs_file_extent_compression(leaf, fi) ||
1049 			    btrfs_file_extent_encryption(leaf, fi) ||
1050 			    btrfs_file_extent_other_encoding(leaf, fi))
1051 				goto out_check;
1052 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1053 				goto out_check;
1054 			if (btrfs_extent_readonly(root, disk_bytenr))
1055 				goto out_check;
1056 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1057 						  disk_bytenr))
1058 				goto out_check;
1059 			disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1060 			disk_bytenr += cur_offset - found_key.offset;
1061 			num_bytes = min(end + 1, extent_end) - cur_offset;
1062 			/*
1063 			 * force cow if csum exists in the range.
1064 			 * this ensure that csum for a given extent are
1065 			 * either valid or do not exist.
1066 			 */
1067 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1068 				goto out_check;
1069 			nocow = 1;
1070 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1071 			extent_end = found_key.offset +
1072 				btrfs_file_extent_inline_len(leaf, fi);
1073 			extent_end = ALIGN(extent_end, root->sectorsize);
1074 		} else {
1075 			BUG_ON(1);
1076 		}
1077 out_check:
1078 		if (extent_end <= start) {
1079 			path->slots[0]++;
1080 			goto next_slot;
1081 		}
1082 		if (!nocow) {
1083 			if (cow_start == (u64)-1)
1084 				cow_start = cur_offset;
1085 			cur_offset = extent_end;
1086 			if (cur_offset > end)
1087 				break;
1088 			path->slots[0]++;
1089 			goto next_slot;
1090 		}
1091 
1092 		btrfs_release_path(root, path);
1093 		if (cow_start != (u64)-1) {
1094 			ret = cow_file_range(inode, locked_page, cow_start,
1095 					found_key.offset - 1, page_started,
1096 					nr_written, 1);
1097 			BUG_ON(ret);
1098 			cow_start = (u64)-1;
1099 		}
1100 
1101 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1102 			struct extent_map *em;
1103 			struct extent_map_tree *em_tree;
1104 			em_tree = &BTRFS_I(inode)->extent_tree;
1105 			em = alloc_extent_map(GFP_NOFS);
1106 			em->start = cur_offset;
1107 			em->orig_start = em->start;
1108 			em->len = num_bytes;
1109 			em->block_len = num_bytes;
1110 			em->block_start = disk_bytenr;
1111 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1112 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1113 			while (1) {
1114 				spin_lock(&em_tree->lock);
1115 				ret = add_extent_mapping(em_tree, em);
1116 				spin_unlock(&em_tree->lock);
1117 				if (ret != -EEXIST) {
1118 					free_extent_map(em);
1119 					break;
1120 				}
1121 				btrfs_drop_extent_cache(inode, em->start,
1122 						em->start + em->len - 1, 0);
1123 			}
1124 			type = BTRFS_ORDERED_PREALLOC;
1125 		} else {
1126 			type = BTRFS_ORDERED_NOCOW;
1127 		}
1128 
1129 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1130 					       num_bytes, num_bytes, type);
1131 		BUG_ON(ret);
1132 
1133 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1134 					cur_offset, cur_offset + num_bytes - 1,
1135 					locked_page, 1, 1, 1, 0, 0, 0);
1136 		cur_offset = extent_end;
1137 		if (cur_offset > end)
1138 			break;
1139 	}
1140 	btrfs_release_path(root, path);
1141 
1142 	if (cur_offset <= end && cow_start == (u64)-1)
1143 		cow_start = cur_offset;
1144 	if (cow_start != (u64)-1) {
1145 		ret = cow_file_range(inode, locked_page, cow_start, end,
1146 				     page_started, nr_written, 1);
1147 		BUG_ON(ret);
1148 	}
1149 
1150 	ret = btrfs_end_transaction(trans, root);
1151 	BUG_ON(ret);
1152 	btrfs_free_path(path);
1153 	return 0;
1154 }
1155 
1156 /*
1157  * extent_io.c call back to do delayed allocation processing
1158  */
1159 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1160 			      u64 start, u64 end, int *page_started,
1161 			      unsigned long *nr_written)
1162 {
1163 	int ret;
1164 
1165 	if (btrfs_test_flag(inode, NODATACOW))
1166 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1167 					 page_started, 1, nr_written);
1168 	else if (btrfs_test_flag(inode, PREALLOC))
1169 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1170 					 page_started, 0, nr_written);
1171 	else
1172 		ret = cow_file_range_async(inode, locked_page, start, end,
1173 					   page_started, nr_written);
1174 
1175 	return ret;
1176 }
1177 
1178 /*
1179  * extent_io.c set_bit_hook, used to track delayed allocation
1180  * bytes in this file, and to maintain the list of inodes that
1181  * have pending delalloc work to be done.
1182  */
1183 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1184 		       unsigned long old, unsigned long bits)
1185 {
1186 	/*
1187 	 * set_bit and clear bit hooks normally require _irqsave/restore
1188 	 * but in this case, we are only testeing for the DELALLOC
1189 	 * bit, which is only set or cleared with irqs on
1190 	 */
1191 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1192 		struct btrfs_root *root = BTRFS_I(inode)->root;
1193 		spin_lock(&root->fs_info->delalloc_lock);
1194 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1195 		root->fs_info->delalloc_bytes += end - start + 1;
1196 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1197 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1198 				      &root->fs_info->delalloc_inodes);
1199 		}
1200 		spin_unlock(&root->fs_info->delalloc_lock);
1201 	}
1202 	return 0;
1203 }
1204 
1205 /*
1206  * extent_io.c clear_bit_hook, see set_bit_hook for why
1207  */
1208 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1209 			 unsigned long old, unsigned long bits)
1210 {
1211 	/*
1212 	 * set_bit and clear bit hooks normally require _irqsave/restore
1213 	 * but in this case, we are only testeing for the DELALLOC
1214 	 * bit, which is only set or cleared with irqs on
1215 	 */
1216 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1217 		struct btrfs_root *root = BTRFS_I(inode)->root;
1218 
1219 		spin_lock(&root->fs_info->delalloc_lock);
1220 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
1221 			printk(KERN_INFO "btrfs warning: delalloc account "
1222 			       "%llu %llu\n",
1223 			       (unsigned long long)end - start + 1,
1224 			       (unsigned long long)
1225 			       root->fs_info->delalloc_bytes);
1226 			root->fs_info->delalloc_bytes = 0;
1227 			BTRFS_I(inode)->delalloc_bytes = 0;
1228 		} else {
1229 			root->fs_info->delalloc_bytes -= end - start + 1;
1230 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1231 		}
1232 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1233 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1234 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1235 		}
1236 		spin_unlock(&root->fs_info->delalloc_lock);
1237 	}
1238 	return 0;
1239 }
1240 
1241 /*
1242  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1243  * we don't create bios that span stripes or chunks
1244  */
1245 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1246 			 size_t size, struct bio *bio,
1247 			 unsigned long bio_flags)
1248 {
1249 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1250 	struct btrfs_mapping_tree *map_tree;
1251 	u64 logical = (u64)bio->bi_sector << 9;
1252 	u64 length = 0;
1253 	u64 map_length;
1254 	int ret;
1255 
1256 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1257 		return 0;
1258 
1259 	length = bio->bi_size;
1260 	map_tree = &root->fs_info->mapping_tree;
1261 	map_length = length;
1262 	ret = btrfs_map_block(map_tree, READ, logical,
1263 			      &map_length, NULL, 0);
1264 
1265 	if (map_length < length + size)
1266 		return 1;
1267 	return 0;
1268 }
1269 
1270 /*
1271  * in order to insert checksums into the metadata in large chunks,
1272  * we wait until bio submission time.   All the pages in the bio are
1273  * checksummed and sums are attached onto the ordered extent record.
1274  *
1275  * At IO completion time the cums attached on the ordered extent record
1276  * are inserted into the btree
1277  */
1278 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1279 				    struct bio *bio, int mirror_num,
1280 				    unsigned long bio_flags)
1281 {
1282 	struct btrfs_root *root = BTRFS_I(inode)->root;
1283 	int ret = 0;
1284 
1285 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1286 	BUG_ON(ret);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * in order to insert checksums into the metadata in large chunks,
1292  * we wait until bio submission time.   All the pages in the bio are
1293  * checksummed and sums are attached onto the ordered extent record.
1294  *
1295  * At IO completion time the cums attached on the ordered extent record
1296  * are inserted into the btree
1297  */
1298 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1299 			  int mirror_num, unsigned long bio_flags)
1300 {
1301 	struct btrfs_root *root = BTRFS_I(inode)->root;
1302 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1303 }
1304 
1305 /*
1306  * extent_io.c submission hook. This does the right thing for csum calculation
1307  * on write, or reading the csums from the tree before a read
1308  */
1309 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1310 			  int mirror_num, unsigned long bio_flags)
1311 {
1312 	struct btrfs_root *root = BTRFS_I(inode)->root;
1313 	int ret = 0;
1314 	int skip_sum;
1315 
1316 	skip_sum = btrfs_test_flag(inode, NODATASUM);
1317 
1318 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1319 	BUG_ON(ret);
1320 
1321 	if (!(rw & (1 << BIO_RW))) {
1322 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1323 			return btrfs_submit_compressed_read(inode, bio,
1324 						    mirror_num, bio_flags);
1325 		} else if (!skip_sum)
1326 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1327 		goto mapit;
1328 	} else if (!skip_sum) {
1329 		/* csum items have already been cloned */
1330 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1331 			goto mapit;
1332 		/* we're doing a write, do the async checksumming */
1333 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1334 				   inode, rw, bio, mirror_num,
1335 				   bio_flags, __btrfs_submit_bio_start,
1336 				   __btrfs_submit_bio_done);
1337 	}
1338 
1339 mapit:
1340 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1341 }
1342 
1343 /*
1344  * given a list of ordered sums record them in the inode.  This happens
1345  * at IO completion time based on sums calculated at bio submission time.
1346  */
1347 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1348 			     struct inode *inode, u64 file_offset,
1349 			     struct list_head *list)
1350 {
1351 	struct btrfs_ordered_sum *sum;
1352 
1353 	btrfs_set_trans_block_group(trans, inode);
1354 
1355 	list_for_each_entry(sum, list, list) {
1356 		btrfs_csum_file_blocks(trans,
1357 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1358 	}
1359 	return 0;
1360 }
1361 
1362 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1363 {
1364 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1365 		WARN_ON(1);
1366 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1367 				   GFP_NOFS);
1368 }
1369 
1370 /* see btrfs_writepage_start_hook for details on why this is required */
1371 struct btrfs_writepage_fixup {
1372 	struct page *page;
1373 	struct btrfs_work work;
1374 };
1375 
1376 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1377 {
1378 	struct btrfs_writepage_fixup *fixup;
1379 	struct btrfs_ordered_extent *ordered;
1380 	struct page *page;
1381 	struct inode *inode;
1382 	u64 page_start;
1383 	u64 page_end;
1384 
1385 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1386 	page = fixup->page;
1387 again:
1388 	lock_page(page);
1389 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1390 		ClearPageChecked(page);
1391 		goto out_page;
1392 	}
1393 
1394 	inode = page->mapping->host;
1395 	page_start = page_offset(page);
1396 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1397 
1398 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1399 
1400 	/* already ordered? We're done */
1401 	if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1402 			     EXTENT_ORDERED, 0)) {
1403 		goto out;
1404 	}
1405 
1406 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1407 	if (ordered) {
1408 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1409 			      page_end, GFP_NOFS);
1410 		unlock_page(page);
1411 		btrfs_start_ordered_extent(inode, ordered, 1);
1412 		goto again;
1413 	}
1414 
1415 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1416 	ClearPageChecked(page);
1417 out:
1418 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1419 out_page:
1420 	unlock_page(page);
1421 	page_cache_release(page);
1422 }
1423 
1424 /*
1425  * There are a few paths in the higher layers of the kernel that directly
1426  * set the page dirty bit without asking the filesystem if it is a
1427  * good idea.  This causes problems because we want to make sure COW
1428  * properly happens and the data=ordered rules are followed.
1429  *
1430  * In our case any range that doesn't have the ORDERED bit set
1431  * hasn't been properly setup for IO.  We kick off an async process
1432  * to fix it up.  The async helper will wait for ordered extents, set
1433  * the delalloc bit and make it safe to write the page.
1434  */
1435 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1436 {
1437 	struct inode *inode = page->mapping->host;
1438 	struct btrfs_writepage_fixup *fixup;
1439 	struct btrfs_root *root = BTRFS_I(inode)->root;
1440 	int ret;
1441 
1442 	ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1443 			     EXTENT_ORDERED, 0);
1444 	if (ret)
1445 		return 0;
1446 
1447 	if (PageChecked(page))
1448 		return -EAGAIN;
1449 
1450 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1451 	if (!fixup)
1452 		return -EAGAIN;
1453 
1454 	SetPageChecked(page);
1455 	page_cache_get(page);
1456 	fixup->work.func = btrfs_writepage_fixup_worker;
1457 	fixup->page = page;
1458 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1459 	return -EAGAIN;
1460 }
1461 
1462 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1463 				       struct inode *inode, u64 file_pos,
1464 				       u64 disk_bytenr, u64 disk_num_bytes,
1465 				       u64 num_bytes, u64 ram_bytes,
1466 				       u8 compression, u8 encryption,
1467 				       u16 other_encoding, int extent_type)
1468 {
1469 	struct btrfs_root *root = BTRFS_I(inode)->root;
1470 	struct btrfs_file_extent_item *fi;
1471 	struct btrfs_path *path;
1472 	struct extent_buffer *leaf;
1473 	struct btrfs_key ins;
1474 	u64 hint;
1475 	int ret;
1476 
1477 	path = btrfs_alloc_path();
1478 	BUG_ON(!path);
1479 
1480 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1481 				 file_pos + num_bytes, file_pos, &hint);
1482 	BUG_ON(ret);
1483 
1484 	ins.objectid = inode->i_ino;
1485 	ins.offset = file_pos;
1486 	ins.type = BTRFS_EXTENT_DATA_KEY;
1487 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1488 	BUG_ON(ret);
1489 	leaf = path->nodes[0];
1490 	fi = btrfs_item_ptr(leaf, path->slots[0],
1491 			    struct btrfs_file_extent_item);
1492 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1493 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1494 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1495 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1496 	btrfs_set_file_extent_offset(leaf, fi, 0);
1497 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1498 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1499 	btrfs_set_file_extent_compression(leaf, fi, compression);
1500 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1501 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1502 	btrfs_mark_buffer_dirty(leaf);
1503 
1504 	inode_add_bytes(inode, num_bytes);
1505 	btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1506 
1507 	ins.objectid = disk_bytenr;
1508 	ins.offset = disk_num_bytes;
1509 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1510 	ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1511 					  root->root_key.objectid,
1512 					  trans->transid, inode->i_ino, &ins);
1513 	BUG_ON(ret);
1514 
1515 	btrfs_free_path(path);
1516 	return 0;
1517 }
1518 
1519 /* as ordered data IO finishes, this gets called so we can finish
1520  * an ordered extent if the range of bytes in the file it covers are
1521  * fully written.
1522  */
1523 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1524 {
1525 	struct btrfs_root *root = BTRFS_I(inode)->root;
1526 	struct btrfs_trans_handle *trans;
1527 	struct btrfs_ordered_extent *ordered_extent;
1528 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1529 	int compressed = 0;
1530 	int ret;
1531 
1532 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1533 	if (!ret)
1534 		return 0;
1535 
1536 	trans = btrfs_join_transaction(root, 1);
1537 
1538 	ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1539 	BUG_ON(!ordered_extent);
1540 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1541 		goto nocow;
1542 
1543 	lock_extent(io_tree, ordered_extent->file_offset,
1544 		    ordered_extent->file_offset + ordered_extent->len - 1,
1545 		    GFP_NOFS);
1546 
1547 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1548 		compressed = 1;
1549 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1550 		BUG_ON(compressed);
1551 		ret = btrfs_mark_extent_written(trans, root, inode,
1552 						ordered_extent->file_offset,
1553 						ordered_extent->file_offset +
1554 						ordered_extent->len);
1555 		BUG_ON(ret);
1556 	} else {
1557 		ret = insert_reserved_file_extent(trans, inode,
1558 						ordered_extent->file_offset,
1559 						ordered_extent->start,
1560 						ordered_extent->disk_len,
1561 						ordered_extent->len,
1562 						ordered_extent->len,
1563 						compressed, 0, 0,
1564 						BTRFS_FILE_EXTENT_REG);
1565 		BUG_ON(ret);
1566 	}
1567 	unlock_extent(io_tree, ordered_extent->file_offset,
1568 		    ordered_extent->file_offset + ordered_extent->len - 1,
1569 		    GFP_NOFS);
1570 nocow:
1571 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1572 			  &ordered_extent->list);
1573 
1574 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1575 	btrfs_ordered_update_i_size(inode, ordered_extent);
1576 	btrfs_update_inode(trans, root, inode);
1577 	btrfs_remove_ordered_extent(inode, ordered_extent);
1578 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1579 
1580 	/* once for us */
1581 	btrfs_put_ordered_extent(ordered_extent);
1582 	/* once for the tree */
1583 	btrfs_put_ordered_extent(ordered_extent);
1584 
1585 	btrfs_end_transaction(trans, root);
1586 	return 0;
1587 }
1588 
1589 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1590 				struct extent_state *state, int uptodate)
1591 {
1592 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1593 }
1594 
1595 /*
1596  * When IO fails, either with EIO or csum verification fails, we
1597  * try other mirrors that might have a good copy of the data.  This
1598  * io_failure_record is used to record state as we go through all the
1599  * mirrors.  If another mirror has good data, the page is set up to date
1600  * and things continue.  If a good mirror can't be found, the original
1601  * bio end_io callback is called to indicate things have failed.
1602  */
1603 struct io_failure_record {
1604 	struct page *page;
1605 	u64 start;
1606 	u64 len;
1607 	u64 logical;
1608 	unsigned long bio_flags;
1609 	int last_mirror;
1610 };
1611 
1612 static int btrfs_io_failed_hook(struct bio *failed_bio,
1613 			 struct page *page, u64 start, u64 end,
1614 			 struct extent_state *state)
1615 {
1616 	struct io_failure_record *failrec = NULL;
1617 	u64 private;
1618 	struct extent_map *em;
1619 	struct inode *inode = page->mapping->host;
1620 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1621 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1622 	struct bio *bio;
1623 	int num_copies;
1624 	int ret;
1625 	int rw;
1626 	u64 logical;
1627 
1628 	ret = get_state_private(failure_tree, start, &private);
1629 	if (ret) {
1630 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1631 		if (!failrec)
1632 			return -ENOMEM;
1633 		failrec->start = start;
1634 		failrec->len = end - start + 1;
1635 		failrec->last_mirror = 0;
1636 		failrec->bio_flags = 0;
1637 
1638 		spin_lock(&em_tree->lock);
1639 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1640 		if (em->start > start || em->start + em->len < start) {
1641 			free_extent_map(em);
1642 			em = NULL;
1643 		}
1644 		spin_unlock(&em_tree->lock);
1645 
1646 		if (!em || IS_ERR(em)) {
1647 			kfree(failrec);
1648 			return -EIO;
1649 		}
1650 		logical = start - em->start;
1651 		logical = em->block_start + logical;
1652 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1653 			logical = em->block_start;
1654 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1655 		}
1656 		failrec->logical = logical;
1657 		free_extent_map(em);
1658 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1659 				EXTENT_DIRTY, GFP_NOFS);
1660 		set_state_private(failure_tree, start,
1661 				 (u64)(unsigned long)failrec);
1662 	} else {
1663 		failrec = (struct io_failure_record *)(unsigned long)private;
1664 	}
1665 	num_copies = btrfs_num_copies(
1666 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1667 			      failrec->logical, failrec->len);
1668 	failrec->last_mirror++;
1669 	if (!state) {
1670 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1671 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1672 						    failrec->start,
1673 						    EXTENT_LOCKED);
1674 		if (state && state->start != failrec->start)
1675 			state = NULL;
1676 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1677 	}
1678 	if (!state || failrec->last_mirror > num_copies) {
1679 		set_state_private(failure_tree, failrec->start, 0);
1680 		clear_extent_bits(failure_tree, failrec->start,
1681 				  failrec->start + failrec->len - 1,
1682 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1683 		kfree(failrec);
1684 		return -EIO;
1685 	}
1686 	bio = bio_alloc(GFP_NOFS, 1);
1687 	bio->bi_private = state;
1688 	bio->bi_end_io = failed_bio->bi_end_io;
1689 	bio->bi_sector = failrec->logical >> 9;
1690 	bio->bi_bdev = failed_bio->bi_bdev;
1691 	bio->bi_size = 0;
1692 
1693 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1694 	if (failed_bio->bi_rw & (1 << BIO_RW))
1695 		rw = WRITE;
1696 	else
1697 		rw = READ;
1698 
1699 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1700 						      failrec->last_mirror,
1701 						      failrec->bio_flags);
1702 	return 0;
1703 }
1704 
1705 /*
1706  * each time an IO finishes, we do a fast check in the IO failure tree
1707  * to see if we need to process or clean up an io_failure_record
1708  */
1709 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1710 {
1711 	u64 private;
1712 	u64 private_failure;
1713 	struct io_failure_record *failure;
1714 	int ret;
1715 
1716 	private = 0;
1717 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1718 			     (u64)-1, 1, EXTENT_DIRTY)) {
1719 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1720 					start, &private_failure);
1721 		if (ret == 0) {
1722 			failure = (struct io_failure_record *)(unsigned long)
1723 				   private_failure;
1724 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1725 					  failure->start, 0);
1726 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1727 					  failure->start,
1728 					  failure->start + failure->len - 1,
1729 					  EXTENT_DIRTY | EXTENT_LOCKED,
1730 					  GFP_NOFS);
1731 			kfree(failure);
1732 		}
1733 	}
1734 	return 0;
1735 }
1736 
1737 /*
1738  * when reads are done, we need to check csums to verify the data is correct
1739  * if there's a match, we allow the bio to finish.  If not, we go through
1740  * the io_failure_record routines to find good copies
1741  */
1742 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1743 			       struct extent_state *state)
1744 {
1745 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1746 	struct inode *inode = page->mapping->host;
1747 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1748 	char *kaddr;
1749 	u64 private = ~(u32)0;
1750 	int ret;
1751 	struct btrfs_root *root = BTRFS_I(inode)->root;
1752 	u32 csum = ~(u32)0;
1753 
1754 	if (PageChecked(page)) {
1755 		ClearPageChecked(page);
1756 		goto good;
1757 	}
1758 	if (btrfs_test_flag(inode, NODATASUM))
1759 		return 0;
1760 
1761 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1762 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1763 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1764 				  GFP_NOFS);
1765 		return 0;
1766 	}
1767 
1768 	if (state && state->start == start) {
1769 		private = state->private;
1770 		ret = 0;
1771 	} else {
1772 		ret = get_state_private(io_tree, start, &private);
1773 	}
1774 	kaddr = kmap_atomic(page, KM_USER0);
1775 	if (ret)
1776 		goto zeroit;
1777 
1778 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1779 	btrfs_csum_final(csum, (char *)&csum);
1780 	if (csum != private)
1781 		goto zeroit;
1782 
1783 	kunmap_atomic(kaddr, KM_USER0);
1784 good:
1785 	/* if the io failure tree for this inode is non-empty,
1786 	 * check to see if we've recovered from a failed IO
1787 	 */
1788 	btrfs_clean_io_failures(inode, start);
1789 	return 0;
1790 
1791 zeroit:
1792 	printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1793 	       "private %llu\n", page->mapping->host->i_ino,
1794 	       (unsigned long long)start, csum,
1795 	       (unsigned long long)private);
1796 	memset(kaddr + offset, 1, end - start + 1);
1797 	flush_dcache_page(page);
1798 	kunmap_atomic(kaddr, KM_USER0);
1799 	if (private == 0)
1800 		return 0;
1801 	return -EIO;
1802 }
1803 
1804 /*
1805  * This creates an orphan entry for the given inode in case something goes
1806  * wrong in the middle of an unlink/truncate.
1807  */
1808 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1809 {
1810 	struct btrfs_root *root = BTRFS_I(inode)->root;
1811 	int ret = 0;
1812 
1813 	spin_lock(&root->list_lock);
1814 
1815 	/* already on the orphan list, we're good */
1816 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1817 		spin_unlock(&root->list_lock);
1818 		return 0;
1819 	}
1820 
1821 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1822 
1823 	spin_unlock(&root->list_lock);
1824 
1825 	/*
1826 	 * insert an orphan item to track this unlinked/truncated file
1827 	 */
1828 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1829 
1830 	return ret;
1831 }
1832 
1833 /*
1834  * We have done the truncate/delete so we can go ahead and remove the orphan
1835  * item for this particular inode.
1836  */
1837 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1838 {
1839 	struct btrfs_root *root = BTRFS_I(inode)->root;
1840 	int ret = 0;
1841 
1842 	spin_lock(&root->list_lock);
1843 
1844 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1845 		spin_unlock(&root->list_lock);
1846 		return 0;
1847 	}
1848 
1849 	list_del_init(&BTRFS_I(inode)->i_orphan);
1850 	if (!trans) {
1851 		spin_unlock(&root->list_lock);
1852 		return 0;
1853 	}
1854 
1855 	spin_unlock(&root->list_lock);
1856 
1857 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1858 
1859 	return ret;
1860 }
1861 
1862 /*
1863  * this cleans up any orphans that may be left on the list from the last use
1864  * of this root.
1865  */
1866 void btrfs_orphan_cleanup(struct btrfs_root *root)
1867 {
1868 	struct btrfs_path *path;
1869 	struct extent_buffer *leaf;
1870 	struct btrfs_item *item;
1871 	struct btrfs_key key, found_key;
1872 	struct btrfs_trans_handle *trans;
1873 	struct inode *inode;
1874 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
1875 
1876 	path = btrfs_alloc_path();
1877 	if (!path)
1878 		return;
1879 	path->reada = -1;
1880 
1881 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1882 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1883 	key.offset = (u64)-1;
1884 
1885 
1886 	while (1) {
1887 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1888 		if (ret < 0) {
1889 			printk(KERN_ERR "Error searching slot for orphan: %d"
1890 			       "\n", ret);
1891 			break;
1892 		}
1893 
1894 		/*
1895 		 * if ret == 0 means we found what we were searching for, which
1896 		 * is weird, but possible, so only screw with path if we didnt
1897 		 * find the key and see if we have stuff that matches
1898 		 */
1899 		if (ret > 0) {
1900 			if (path->slots[0] == 0)
1901 				break;
1902 			path->slots[0]--;
1903 		}
1904 
1905 		/* pull out the item */
1906 		leaf = path->nodes[0];
1907 		item = btrfs_item_nr(leaf, path->slots[0]);
1908 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1909 
1910 		/* make sure the item matches what we want */
1911 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1912 			break;
1913 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1914 			break;
1915 
1916 		/* release the path since we're done with it */
1917 		btrfs_release_path(root, path);
1918 
1919 		/*
1920 		 * this is where we are basically btrfs_lookup, without the
1921 		 * crossing root thing.  we store the inode number in the
1922 		 * offset of the orphan item.
1923 		 */
1924 		inode = btrfs_iget_locked(root->fs_info->sb,
1925 					  found_key.offset, root);
1926 		if (!inode)
1927 			break;
1928 
1929 		if (inode->i_state & I_NEW) {
1930 			BTRFS_I(inode)->root = root;
1931 
1932 			/* have to set the location manually */
1933 			BTRFS_I(inode)->location.objectid = inode->i_ino;
1934 			BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1935 			BTRFS_I(inode)->location.offset = 0;
1936 
1937 			btrfs_read_locked_inode(inode);
1938 			unlock_new_inode(inode);
1939 		}
1940 
1941 		/*
1942 		 * add this inode to the orphan list so btrfs_orphan_del does
1943 		 * the proper thing when we hit it
1944 		 */
1945 		spin_lock(&root->list_lock);
1946 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1947 		spin_unlock(&root->list_lock);
1948 
1949 		/*
1950 		 * if this is a bad inode, means we actually succeeded in
1951 		 * removing the inode, but not the orphan record, which means
1952 		 * we need to manually delete the orphan since iput will just
1953 		 * do a destroy_inode
1954 		 */
1955 		if (is_bad_inode(inode)) {
1956 			trans = btrfs_start_transaction(root, 1);
1957 			btrfs_orphan_del(trans, inode);
1958 			btrfs_end_transaction(trans, root);
1959 			iput(inode);
1960 			continue;
1961 		}
1962 
1963 		/* if we have links, this was a truncate, lets do that */
1964 		if (inode->i_nlink) {
1965 			nr_truncate++;
1966 			btrfs_truncate(inode);
1967 		} else {
1968 			nr_unlink++;
1969 		}
1970 
1971 		/* this will do delete_inode and everything for us */
1972 		iput(inode);
1973 	}
1974 
1975 	if (nr_unlink)
1976 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1977 	if (nr_truncate)
1978 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1979 
1980 	btrfs_free_path(path);
1981 }
1982 
1983 /*
1984  * read an inode from the btree into the in-memory inode
1985  */
1986 void btrfs_read_locked_inode(struct inode *inode)
1987 {
1988 	struct btrfs_path *path;
1989 	struct extent_buffer *leaf;
1990 	struct btrfs_inode_item *inode_item;
1991 	struct btrfs_timespec *tspec;
1992 	struct btrfs_root *root = BTRFS_I(inode)->root;
1993 	struct btrfs_key location;
1994 	u64 alloc_group_block;
1995 	u32 rdev;
1996 	int ret;
1997 
1998 	path = btrfs_alloc_path();
1999 	BUG_ON(!path);
2000 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2001 
2002 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2003 	if (ret)
2004 		goto make_bad;
2005 
2006 	leaf = path->nodes[0];
2007 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2008 				    struct btrfs_inode_item);
2009 
2010 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2011 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2012 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2013 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2014 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2015 
2016 	tspec = btrfs_inode_atime(inode_item);
2017 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2018 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2019 
2020 	tspec = btrfs_inode_mtime(inode_item);
2021 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2022 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2023 
2024 	tspec = btrfs_inode_ctime(inode_item);
2025 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2026 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2027 
2028 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2029 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2030 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2031 	inode->i_generation = BTRFS_I(inode)->generation;
2032 	inode->i_rdev = 0;
2033 	rdev = btrfs_inode_rdev(leaf, inode_item);
2034 
2035 	BTRFS_I(inode)->index_cnt = (u64)-1;
2036 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2037 
2038 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2039 
2040 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2041 						alloc_group_block, 0);
2042 	btrfs_free_path(path);
2043 	inode_item = NULL;
2044 
2045 	switch (inode->i_mode & S_IFMT) {
2046 	case S_IFREG:
2047 		inode->i_mapping->a_ops = &btrfs_aops;
2048 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2049 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2050 		inode->i_fop = &btrfs_file_operations;
2051 		inode->i_op = &btrfs_file_inode_operations;
2052 		break;
2053 	case S_IFDIR:
2054 		inode->i_fop = &btrfs_dir_file_operations;
2055 		if (root == root->fs_info->tree_root)
2056 			inode->i_op = &btrfs_dir_ro_inode_operations;
2057 		else
2058 			inode->i_op = &btrfs_dir_inode_operations;
2059 		break;
2060 	case S_IFLNK:
2061 		inode->i_op = &btrfs_symlink_inode_operations;
2062 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2063 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2064 		break;
2065 	default:
2066 		inode->i_op = &btrfs_special_inode_operations;
2067 		init_special_inode(inode, inode->i_mode, rdev);
2068 		break;
2069 	}
2070 	return;
2071 
2072 make_bad:
2073 	btrfs_free_path(path);
2074 	make_bad_inode(inode);
2075 }
2076 
2077 /*
2078  * given a leaf and an inode, copy the inode fields into the leaf
2079  */
2080 static void fill_inode_item(struct btrfs_trans_handle *trans,
2081 			    struct extent_buffer *leaf,
2082 			    struct btrfs_inode_item *item,
2083 			    struct inode *inode)
2084 {
2085 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2086 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2087 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2088 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2089 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2090 
2091 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2092 			       inode->i_atime.tv_sec);
2093 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2094 				inode->i_atime.tv_nsec);
2095 
2096 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2097 			       inode->i_mtime.tv_sec);
2098 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2099 				inode->i_mtime.tv_nsec);
2100 
2101 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2102 			       inode->i_ctime.tv_sec);
2103 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2104 				inode->i_ctime.tv_nsec);
2105 
2106 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2107 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2108 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2109 	btrfs_set_inode_transid(leaf, item, trans->transid);
2110 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2111 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2112 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2113 }
2114 
2115 /*
2116  * copy everything in the in-memory inode into the btree.
2117  */
2118 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2119 				struct btrfs_root *root, struct inode *inode)
2120 {
2121 	struct btrfs_inode_item *inode_item;
2122 	struct btrfs_path *path;
2123 	struct extent_buffer *leaf;
2124 	int ret;
2125 
2126 	path = btrfs_alloc_path();
2127 	BUG_ON(!path);
2128 	ret = btrfs_lookup_inode(trans, root, path,
2129 				 &BTRFS_I(inode)->location, 1);
2130 	if (ret) {
2131 		if (ret > 0)
2132 			ret = -ENOENT;
2133 		goto failed;
2134 	}
2135 
2136 	btrfs_unlock_up_safe(path, 1);
2137 	leaf = path->nodes[0];
2138 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2139 				  struct btrfs_inode_item);
2140 
2141 	fill_inode_item(trans, leaf, inode_item, inode);
2142 	btrfs_mark_buffer_dirty(leaf);
2143 	btrfs_set_inode_last_trans(trans, inode);
2144 	ret = 0;
2145 failed:
2146 	btrfs_free_path(path);
2147 	return ret;
2148 }
2149 
2150 
2151 /*
2152  * unlink helper that gets used here in inode.c and in the tree logging
2153  * recovery code.  It remove a link in a directory with a given name, and
2154  * also drops the back refs in the inode to the directory
2155  */
2156 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2157 		       struct btrfs_root *root,
2158 		       struct inode *dir, struct inode *inode,
2159 		       const char *name, int name_len)
2160 {
2161 	struct btrfs_path *path;
2162 	int ret = 0;
2163 	struct extent_buffer *leaf;
2164 	struct btrfs_dir_item *di;
2165 	struct btrfs_key key;
2166 	u64 index;
2167 
2168 	path = btrfs_alloc_path();
2169 	if (!path) {
2170 		ret = -ENOMEM;
2171 		goto err;
2172 	}
2173 
2174 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2175 				    name, name_len, -1);
2176 	if (IS_ERR(di)) {
2177 		ret = PTR_ERR(di);
2178 		goto err;
2179 	}
2180 	if (!di) {
2181 		ret = -ENOENT;
2182 		goto err;
2183 	}
2184 	leaf = path->nodes[0];
2185 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2186 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2187 	if (ret)
2188 		goto err;
2189 	btrfs_release_path(root, path);
2190 
2191 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2192 				  inode->i_ino,
2193 				  dir->i_ino, &index);
2194 	if (ret) {
2195 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2196 		       "inode %lu parent %lu\n", name_len, name,
2197 		       inode->i_ino, dir->i_ino);
2198 		goto err;
2199 	}
2200 
2201 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2202 					 index, name, name_len, -1);
2203 	if (IS_ERR(di)) {
2204 		ret = PTR_ERR(di);
2205 		goto err;
2206 	}
2207 	if (!di) {
2208 		ret = -ENOENT;
2209 		goto err;
2210 	}
2211 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2212 	btrfs_release_path(root, path);
2213 
2214 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2215 					 inode, dir->i_ino);
2216 	BUG_ON(ret != 0 && ret != -ENOENT);
2217 	if (ret != -ENOENT)
2218 		BTRFS_I(dir)->log_dirty_trans = trans->transid;
2219 
2220 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2221 					   dir, index);
2222 	BUG_ON(ret);
2223 err:
2224 	btrfs_free_path(path);
2225 	if (ret)
2226 		goto out;
2227 
2228 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2229 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2230 	btrfs_update_inode(trans, root, dir);
2231 	btrfs_drop_nlink(inode);
2232 	ret = btrfs_update_inode(trans, root, inode);
2233 	dir->i_sb->s_dirt = 1;
2234 out:
2235 	return ret;
2236 }
2237 
2238 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2239 {
2240 	struct btrfs_root *root;
2241 	struct btrfs_trans_handle *trans;
2242 	struct inode *inode = dentry->d_inode;
2243 	int ret;
2244 	unsigned long nr = 0;
2245 
2246 	root = BTRFS_I(dir)->root;
2247 
2248 	ret = btrfs_check_free_space(root, 1, 1);
2249 	if (ret)
2250 		goto fail;
2251 
2252 	trans = btrfs_start_transaction(root, 1);
2253 
2254 	btrfs_set_trans_block_group(trans, dir);
2255 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2256 				 dentry->d_name.name, dentry->d_name.len);
2257 
2258 	if (inode->i_nlink == 0)
2259 		ret = btrfs_orphan_add(trans, inode);
2260 
2261 	nr = trans->blocks_used;
2262 
2263 	btrfs_end_transaction_throttle(trans, root);
2264 fail:
2265 	btrfs_btree_balance_dirty(root, nr);
2266 	return ret;
2267 }
2268 
2269 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2270 {
2271 	struct inode *inode = dentry->d_inode;
2272 	int err = 0;
2273 	int ret;
2274 	struct btrfs_root *root = BTRFS_I(dir)->root;
2275 	struct btrfs_trans_handle *trans;
2276 	unsigned long nr = 0;
2277 
2278 	/*
2279 	 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2280 	 * the root of a subvolume or snapshot
2281 	 */
2282 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2283 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2284 		return -ENOTEMPTY;
2285 	}
2286 
2287 	ret = btrfs_check_free_space(root, 1, 1);
2288 	if (ret)
2289 		goto fail;
2290 
2291 	trans = btrfs_start_transaction(root, 1);
2292 	btrfs_set_trans_block_group(trans, dir);
2293 
2294 	err = btrfs_orphan_add(trans, inode);
2295 	if (err)
2296 		goto fail_trans;
2297 
2298 	/* now the directory is empty */
2299 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2300 				 dentry->d_name.name, dentry->d_name.len);
2301 	if (!err)
2302 		btrfs_i_size_write(inode, 0);
2303 
2304 fail_trans:
2305 	nr = trans->blocks_used;
2306 	ret = btrfs_end_transaction_throttle(trans, root);
2307 fail:
2308 	btrfs_btree_balance_dirty(root, nr);
2309 
2310 	if (ret && !err)
2311 		err = ret;
2312 	return err;
2313 }
2314 
2315 #if 0
2316 /*
2317  * when truncating bytes in a file, it is possible to avoid reading
2318  * the leaves that contain only checksum items.  This can be the
2319  * majority of the IO required to delete a large file, but it must
2320  * be done carefully.
2321  *
2322  * The keys in the level just above the leaves are checked to make sure
2323  * the lowest key in a given leaf is a csum key, and starts at an offset
2324  * after the new  size.
2325  *
2326  * Then the key for the next leaf is checked to make sure it also has
2327  * a checksum item for the same file.  If it does, we know our target leaf
2328  * contains only checksum items, and it can be safely freed without reading
2329  * it.
2330  *
2331  * This is just an optimization targeted at large files.  It may do
2332  * nothing.  It will return 0 unless things went badly.
2333  */
2334 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2335 				     struct btrfs_root *root,
2336 				     struct btrfs_path *path,
2337 				     struct inode *inode, u64 new_size)
2338 {
2339 	struct btrfs_key key;
2340 	int ret;
2341 	int nritems;
2342 	struct btrfs_key found_key;
2343 	struct btrfs_key other_key;
2344 	struct btrfs_leaf_ref *ref;
2345 	u64 leaf_gen;
2346 	u64 leaf_start;
2347 
2348 	path->lowest_level = 1;
2349 	key.objectid = inode->i_ino;
2350 	key.type = BTRFS_CSUM_ITEM_KEY;
2351 	key.offset = new_size;
2352 again:
2353 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2354 	if (ret < 0)
2355 		goto out;
2356 
2357 	if (path->nodes[1] == NULL) {
2358 		ret = 0;
2359 		goto out;
2360 	}
2361 	ret = 0;
2362 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2363 	nritems = btrfs_header_nritems(path->nodes[1]);
2364 
2365 	if (!nritems)
2366 		goto out;
2367 
2368 	if (path->slots[1] >= nritems)
2369 		goto next_node;
2370 
2371 	/* did we find a key greater than anything we want to delete? */
2372 	if (found_key.objectid > inode->i_ino ||
2373 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2374 		goto out;
2375 
2376 	/* we check the next key in the node to make sure the leave contains
2377 	 * only checksum items.  This comparison doesn't work if our
2378 	 * leaf is the last one in the node
2379 	 */
2380 	if (path->slots[1] + 1 >= nritems) {
2381 next_node:
2382 		/* search forward from the last key in the node, this
2383 		 * will bring us into the next node in the tree
2384 		 */
2385 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2386 
2387 		/* unlikely, but we inc below, so check to be safe */
2388 		if (found_key.offset == (u64)-1)
2389 			goto out;
2390 
2391 		/* search_forward needs a path with locks held, do the
2392 		 * search again for the original key.  It is possible
2393 		 * this will race with a balance and return a path that
2394 		 * we could modify, but this drop is just an optimization
2395 		 * and is allowed to miss some leaves.
2396 		 */
2397 		btrfs_release_path(root, path);
2398 		found_key.offset++;
2399 
2400 		/* setup a max key for search_forward */
2401 		other_key.offset = (u64)-1;
2402 		other_key.type = key.type;
2403 		other_key.objectid = key.objectid;
2404 
2405 		path->keep_locks = 1;
2406 		ret = btrfs_search_forward(root, &found_key, &other_key,
2407 					   path, 0, 0);
2408 		path->keep_locks = 0;
2409 		if (ret || found_key.objectid != key.objectid ||
2410 		    found_key.type != key.type) {
2411 			ret = 0;
2412 			goto out;
2413 		}
2414 
2415 		key.offset = found_key.offset;
2416 		btrfs_release_path(root, path);
2417 		cond_resched();
2418 		goto again;
2419 	}
2420 
2421 	/* we know there's one more slot after us in the tree,
2422 	 * read that key so we can verify it is also a checksum item
2423 	 */
2424 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2425 
2426 	if (found_key.objectid < inode->i_ino)
2427 		goto next_key;
2428 
2429 	if (found_key.type != key.type || found_key.offset < new_size)
2430 		goto next_key;
2431 
2432 	/*
2433 	 * if the key for the next leaf isn't a csum key from this objectid,
2434 	 * we can't be sure there aren't good items inside this leaf.
2435 	 * Bail out
2436 	 */
2437 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2438 		goto out;
2439 
2440 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2441 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2442 	/*
2443 	 * it is safe to delete this leaf, it contains only
2444 	 * csum items from this inode at an offset >= new_size
2445 	 */
2446 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2447 	BUG_ON(ret);
2448 
2449 	if (root->ref_cows && leaf_gen < trans->transid) {
2450 		ref = btrfs_alloc_leaf_ref(root, 0);
2451 		if (ref) {
2452 			ref->root_gen = root->root_key.offset;
2453 			ref->bytenr = leaf_start;
2454 			ref->owner = 0;
2455 			ref->generation = leaf_gen;
2456 			ref->nritems = 0;
2457 
2458 			btrfs_sort_leaf_ref(ref);
2459 
2460 			ret = btrfs_add_leaf_ref(root, ref, 0);
2461 			WARN_ON(ret);
2462 			btrfs_free_leaf_ref(root, ref);
2463 		} else {
2464 			WARN_ON(1);
2465 		}
2466 	}
2467 next_key:
2468 	btrfs_release_path(root, path);
2469 
2470 	if (other_key.objectid == inode->i_ino &&
2471 	    other_key.type == key.type && other_key.offset > key.offset) {
2472 		key.offset = other_key.offset;
2473 		cond_resched();
2474 		goto again;
2475 	}
2476 	ret = 0;
2477 out:
2478 	/* fixup any changes we've made to the path */
2479 	path->lowest_level = 0;
2480 	path->keep_locks = 0;
2481 	btrfs_release_path(root, path);
2482 	return ret;
2483 }
2484 
2485 #endif
2486 
2487 /*
2488  * this can truncate away extent items, csum items and directory items.
2489  * It starts at a high offset and removes keys until it can't find
2490  * any higher than new_size
2491  *
2492  * csum items that cross the new i_size are truncated to the new size
2493  * as well.
2494  *
2495  * min_type is the minimum key type to truncate down to.  If set to 0, this
2496  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2497  */
2498 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2499 					struct btrfs_root *root,
2500 					struct inode *inode,
2501 					u64 new_size, u32 min_type)
2502 {
2503 	int ret;
2504 	struct btrfs_path *path;
2505 	struct btrfs_key key;
2506 	struct btrfs_key found_key;
2507 	u32 found_type = (u8)-1;
2508 	struct extent_buffer *leaf;
2509 	struct btrfs_file_extent_item *fi;
2510 	u64 extent_start = 0;
2511 	u64 extent_num_bytes = 0;
2512 	u64 item_end = 0;
2513 	u64 root_gen = 0;
2514 	u64 root_owner = 0;
2515 	int found_extent;
2516 	int del_item;
2517 	int pending_del_nr = 0;
2518 	int pending_del_slot = 0;
2519 	int extent_type = -1;
2520 	int encoding;
2521 	u64 mask = root->sectorsize - 1;
2522 
2523 	if (root->ref_cows)
2524 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2525 	path = btrfs_alloc_path();
2526 	path->reada = -1;
2527 	BUG_ON(!path);
2528 
2529 	/* FIXME, add redo link to tree so we don't leak on crash */
2530 	key.objectid = inode->i_ino;
2531 	key.offset = (u64)-1;
2532 	key.type = (u8)-1;
2533 
2534 search_again:
2535 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2536 	if (ret < 0)
2537 		goto error;
2538 
2539 	if (ret > 0) {
2540 		/* there are no items in the tree for us to truncate, we're
2541 		 * done
2542 		 */
2543 		if (path->slots[0] == 0) {
2544 			ret = 0;
2545 			goto error;
2546 		}
2547 		path->slots[0]--;
2548 	}
2549 
2550 	while (1) {
2551 		fi = NULL;
2552 		leaf = path->nodes[0];
2553 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2554 		found_type = btrfs_key_type(&found_key);
2555 		encoding = 0;
2556 
2557 		if (found_key.objectid != inode->i_ino)
2558 			break;
2559 
2560 		if (found_type < min_type)
2561 			break;
2562 
2563 		item_end = found_key.offset;
2564 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2565 			fi = btrfs_item_ptr(leaf, path->slots[0],
2566 					    struct btrfs_file_extent_item);
2567 			extent_type = btrfs_file_extent_type(leaf, fi);
2568 			encoding = btrfs_file_extent_compression(leaf, fi);
2569 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2570 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2571 
2572 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2573 				item_end +=
2574 				    btrfs_file_extent_num_bytes(leaf, fi);
2575 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2576 				item_end += btrfs_file_extent_inline_len(leaf,
2577 									 fi);
2578 			}
2579 			item_end--;
2580 		}
2581 		if (item_end < new_size) {
2582 			if (found_type == BTRFS_DIR_ITEM_KEY)
2583 				found_type = BTRFS_INODE_ITEM_KEY;
2584 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2585 				found_type = BTRFS_EXTENT_DATA_KEY;
2586 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2587 				found_type = BTRFS_XATTR_ITEM_KEY;
2588 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2589 				found_type = BTRFS_INODE_REF_KEY;
2590 			else if (found_type)
2591 				found_type--;
2592 			else
2593 				break;
2594 			btrfs_set_key_type(&key, found_type);
2595 			goto next;
2596 		}
2597 		if (found_key.offset >= new_size)
2598 			del_item = 1;
2599 		else
2600 			del_item = 0;
2601 		found_extent = 0;
2602 
2603 		/* FIXME, shrink the extent if the ref count is only 1 */
2604 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2605 			goto delete;
2606 
2607 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2608 			u64 num_dec;
2609 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2610 			if (!del_item && !encoding) {
2611 				u64 orig_num_bytes =
2612 					btrfs_file_extent_num_bytes(leaf, fi);
2613 				extent_num_bytes = new_size -
2614 					found_key.offset + root->sectorsize - 1;
2615 				extent_num_bytes = extent_num_bytes &
2616 					~((u64)root->sectorsize - 1);
2617 				btrfs_set_file_extent_num_bytes(leaf, fi,
2618 							 extent_num_bytes);
2619 				num_dec = (orig_num_bytes -
2620 					   extent_num_bytes);
2621 				if (root->ref_cows && extent_start != 0)
2622 					inode_sub_bytes(inode, num_dec);
2623 				btrfs_mark_buffer_dirty(leaf);
2624 			} else {
2625 				extent_num_bytes =
2626 					btrfs_file_extent_disk_num_bytes(leaf,
2627 									 fi);
2628 				/* FIXME blocksize != 4096 */
2629 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2630 				if (extent_start != 0) {
2631 					found_extent = 1;
2632 					if (root->ref_cows)
2633 						inode_sub_bytes(inode, num_dec);
2634 				}
2635 				root_gen = btrfs_header_generation(leaf);
2636 				root_owner = btrfs_header_owner(leaf);
2637 			}
2638 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2639 			/*
2640 			 * we can't truncate inline items that have had
2641 			 * special encodings
2642 			 */
2643 			if (!del_item &&
2644 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2645 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2646 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2647 				u32 size = new_size - found_key.offset;
2648 
2649 				if (root->ref_cows) {
2650 					inode_sub_bytes(inode, item_end + 1 -
2651 							new_size);
2652 				}
2653 				size =
2654 				    btrfs_file_extent_calc_inline_size(size);
2655 				ret = btrfs_truncate_item(trans, root, path,
2656 							  size, 1);
2657 				BUG_ON(ret);
2658 			} else if (root->ref_cows) {
2659 				inode_sub_bytes(inode, item_end + 1 -
2660 						found_key.offset);
2661 			}
2662 		}
2663 delete:
2664 		if (del_item) {
2665 			if (!pending_del_nr) {
2666 				/* no pending yet, add ourselves */
2667 				pending_del_slot = path->slots[0];
2668 				pending_del_nr = 1;
2669 			} else if (pending_del_nr &&
2670 				   path->slots[0] + 1 == pending_del_slot) {
2671 				/* hop on the pending chunk */
2672 				pending_del_nr++;
2673 				pending_del_slot = path->slots[0];
2674 			} else {
2675 				BUG();
2676 			}
2677 		} else {
2678 			break;
2679 		}
2680 		if (found_extent) {
2681 			ret = btrfs_free_extent(trans, root, extent_start,
2682 						extent_num_bytes,
2683 						leaf->start, root_owner,
2684 						root_gen, inode->i_ino, 0);
2685 			BUG_ON(ret);
2686 		}
2687 next:
2688 		if (path->slots[0] == 0) {
2689 			if (pending_del_nr)
2690 				goto del_pending;
2691 			btrfs_release_path(root, path);
2692 			if (found_type == BTRFS_INODE_ITEM_KEY)
2693 				break;
2694 			goto search_again;
2695 		}
2696 
2697 		path->slots[0]--;
2698 		if (pending_del_nr &&
2699 		    path->slots[0] + 1 != pending_del_slot) {
2700 			struct btrfs_key debug;
2701 del_pending:
2702 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
2703 					      pending_del_slot);
2704 			ret = btrfs_del_items(trans, root, path,
2705 					      pending_del_slot,
2706 					      pending_del_nr);
2707 			BUG_ON(ret);
2708 			pending_del_nr = 0;
2709 			btrfs_release_path(root, path);
2710 			if (found_type == BTRFS_INODE_ITEM_KEY)
2711 				break;
2712 			goto search_again;
2713 		}
2714 	}
2715 	ret = 0;
2716 error:
2717 	if (pending_del_nr) {
2718 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
2719 				      pending_del_nr);
2720 	}
2721 	btrfs_free_path(path);
2722 	inode->i_sb->s_dirt = 1;
2723 	return ret;
2724 }
2725 
2726 /*
2727  * taken from block_truncate_page, but does cow as it zeros out
2728  * any bytes left in the last page in the file.
2729  */
2730 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2731 {
2732 	struct inode *inode = mapping->host;
2733 	struct btrfs_root *root = BTRFS_I(inode)->root;
2734 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2735 	struct btrfs_ordered_extent *ordered;
2736 	char *kaddr;
2737 	u32 blocksize = root->sectorsize;
2738 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2739 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2740 	struct page *page;
2741 	int ret = 0;
2742 	u64 page_start;
2743 	u64 page_end;
2744 
2745 	if ((offset & (blocksize - 1)) == 0)
2746 		goto out;
2747 
2748 	ret = -ENOMEM;
2749 again:
2750 	page = grab_cache_page(mapping, index);
2751 	if (!page)
2752 		goto out;
2753 
2754 	page_start = page_offset(page);
2755 	page_end = page_start + PAGE_CACHE_SIZE - 1;
2756 
2757 	if (!PageUptodate(page)) {
2758 		ret = btrfs_readpage(NULL, page);
2759 		lock_page(page);
2760 		if (page->mapping != mapping) {
2761 			unlock_page(page);
2762 			page_cache_release(page);
2763 			goto again;
2764 		}
2765 		if (!PageUptodate(page)) {
2766 			ret = -EIO;
2767 			goto out_unlock;
2768 		}
2769 	}
2770 	wait_on_page_writeback(page);
2771 
2772 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2773 	set_page_extent_mapped(page);
2774 
2775 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2776 	if (ordered) {
2777 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2778 		unlock_page(page);
2779 		page_cache_release(page);
2780 		btrfs_start_ordered_extent(inode, ordered, 1);
2781 		btrfs_put_ordered_extent(ordered);
2782 		goto again;
2783 	}
2784 
2785 	btrfs_set_extent_delalloc(inode, page_start, page_end);
2786 	ret = 0;
2787 	if (offset != PAGE_CACHE_SIZE) {
2788 		kaddr = kmap(page);
2789 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2790 		flush_dcache_page(page);
2791 		kunmap(page);
2792 	}
2793 	ClearPageChecked(page);
2794 	set_page_dirty(page);
2795 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2796 
2797 out_unlock:
2798 	unlock_page(page);
2799 	page_cache_release(page);
2800 out:
2801 	return ret;
2802 }
2803 
2804 int btrfs_cont_expand(struct inode *inode, loff_t size)
2805 {
2806 	struct btrfs_trans_handle *trans;
2807 	struct btrfs_root *root = BTRFS_I(inode)->root;
2808 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2809 	struct extent_map *em;
2810 	u64 mask = root->sectorsize - 1;
2811 	u64 hole_start = (inode->i_size + mask) & ~mask;
2812 	u64 block_end = (size + mask) & ~mask;
2813 	u64 last_byte;
2814 	u64 cur_offset;
2815 	u64 hole_size;
2816 	int err;
2817 
2818 	if (size <= hole_start)
2819 		return 0;
2820 
2821 	err = btrfs_check_free_space(root, 1, 0);
2822 	if (err)
2823 		return err;
2824 
2825 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
2826 
2827 	while (1) {
2828 		struct btrfs_ordered_extent *ordered;
2829 		btrfs_wait_ordered_range(inode, hole_start,
2830 					 block_end - hole_start);
2831 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2832 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2833 		if (!ordered)
2834 			break;
2835 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2836 		btrfs_put_ordered_extent(ordered);
2837 	}
2838 
2839 	trans = btrfs_start_transaction(root, 1);
2840 	btrfs_set_trans_block_group(trans, inode);
2841 
2842 	cur_offset = hole_start;
2843 	while (1) {
2844 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2845 				block_end - cur_offset, 0);
2846 		BUG_ON(IS_ERR(em) || !em);
2847 		last_byte = min(extent_map_end(em), block_end);
2848 		last_byte = (last_byte + mask) & ~mask;
2849 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2850 			u64 hint_byte = 0;
2851 			hole_size = last_byte - cur_offset;
2852 			err = btrfs_drop_extents(trans, root, inode,
2853 						 cur_offset,
2854 						 cur_offset + hole_size,
2855 						 cur_offset, &hint_byte);
2856 			if (err)
2857 				break;
2858 			err = btrfs_insert_file_extent(trans, root,
2859 					inode->i_ino, cur_offset, 0,
2860 					0, hole_size, 0, hole_size,
2861 					0, 0, 0);
2862 			btrfs_drop_extent_cache(inode, hole_start,
2863 					last_byte - 1, 0);
2864 		}
2865 		free_extent_map(em);
2866 		cur_offset = last_byte;
2867 		if (err || cur_offset >= block_end)
2868 			break;
2869 	}
2870 
2871 	btrfs_end_transaction(trans, root);
2872 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2873 	return err;
2874 }
2875 
2876 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2877 {
2878 	struct inode *inode = dentry->d_inode;
2879 	int err;
2880 
2881 	err = inode_change_ok(inode, attr);
2882 	if (err)
2883 		return err;
2884 
2885 	if (S_ISREG(inode->i_mode) &&
2886 	    attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2887 		err = btrfs_cont_expand(inode, attr->ia_size);
2888 		if (err)
2889 			return err;
2890 	}
2891 
2892 	err = inode_setattr(inode, attr);
2893 
2894 	if (!err && ((attr->ia_valid & ATTR_MODE)))
2895 		err = btrfs_acl_chmod(inode);
2896 	return err;
2897 }
2898 
2899 void btrfs_delete_inode(struct inode *inode)
2900 {
2901 	struct btrfs_trans_handle *trans;
2902 	struct btrfs_root *root = BTRFS_I(inode)->root;
2903 	unsigned long nr;
2904 	int ret;
2905 
2906 	truncate_inode_pages(&inode->i_data, 0);
2907 	if (is_bad_inode(inode)) {
2908 		btrfs_orphan_del(NULL, inode);
2909 		goto no_delete;
2910 	}
2911 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
2912 
2913 	btrfs_i_size_write(inode, 0);
2914 	trans = btrfs_join_transaction(root, 1);
2915 
2916 	btrfs_set_trans_block_group(trans, inode);
2917 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2918 	if (ret) {
2919 		btrfs_orphan_del(NULL, inode);
2920 		goto no_delete_lock;
2921 	}
2922 
2923 	btrfs_orphan_del(trans, inode);
2924 
2925 	nr = trans->blocks_used;
2926 	clear_inode(inode);
2927 
2928 	btrfs_end_transaction(trans, root);
2929 	btrfs_btree_balance_dirty(root, nr);
2930 	return;
2931 
2932 no_delete_lock:
2933 	nr = trans->blocks_used;
2934 	btrfs_end_transaction(trans, root);
2935 	btrfs_btree_balance_dirty(root, nr);
2936 no_delete:
2937 	clear_inode(inode);
2938 }
2939 
2940 /*
2941  * this returns the key found in the dir entry in the location pointer.
2942  * If no dir entries were found, location->objectid is 0.
2943  */
2944 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2945 			       struct btrfs_key *location)
2946 {
2947 	const char *name = dentry->d_name.name;
2948 	int namelen = dentry->d_name.len;
2949 	struct btrfs_dir_item *di;
2950 	struct btrfs_path *path;
2951 	struct btrfs_root *root = BTRFS_I(dir)->root;
2952 	int ret = 0;
2953 
2954 	path = btrfs_alloc_path();
2955 	BUG_ON(!path);
2956 
2957 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2958 				    namelen, 0);
2959 	if (IS_ERR(di))
2960 		ret = PTR_ERR(di);
2961 
2962 	if (!di || IS_ERR(di))
2963 		goto out_err;
2964 
2965 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2966 out:
2967 	btrfs_free_path(path);
2968 	return ret;
2969 out_err:
2970 	location->objectid = 0;
2971 	goto out;
2972 }
2973 
2974 /*
2975  * when we hit a tree root in a directory, the btrfs part of the inode
2976  * needs to be changed to reflect the root directory of the tree root.  This
2977  * is kind of like crossing a mount point.
2978  */
2979 static int fixup_tree_root_location(struct btrfs_root *root,
2980 			     struct btrfs_key *location,
2981 			     struct btrfs_root **sub_root,
2982 			     struct dentry *dentry)
2983 {
2984 	struct btrfs_root_item *ri;
2985 
2986 	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2987 		return 0;
2988 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2989 		return 0;
2990 
2991 	*sub_root = btrfs_read_fs_root(root->fs_info, location,
2992 					dentry->d_name.name,
2993 					dentry->d_name.len);
2994 	if (IS_ERR(*sub_root))
2995 		return PTR_ERR(*sub_root);
2996 
2997 	ri = &(*sub_root)->root_item;
2998 	location->objectid = btrfs_root_dirid(ri);
2999 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3000 	location->offset = 0;
3001 
3002 	return 0;
3003 }
3004 
3005 static noinline void init_btrfs_i(struct inode *inode)
3006 {
3007 	struct btrfs_inode *bi = BTRFS_I(inode);
3008 
3009 	bi->i_acl = NULL;
3010 	bi->i_default_acl = NULL;
3011 
3012 	bi->generation = 0;
3013 	bi->sequence = 0;
3014 	bi->last_trans = 0;
3015 	bi->logged_trans = 0;
3016 	bi->delalloc_bytes = 0;
3017 	bi->disk_i_size = 0;
3018 	bi->flags = 0;
3019 	bi->index_cnt = (u64)-1;
3020 	bi->log_dirty_trans = 0;
3021 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3022 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3023 			     inode->i_mapping, GFP_NOFS);
3024 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3025 			     inode->i_mapping, GFP_NOFS);
3026 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3027 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3028 	mutex_init(&BTRFS_I(inode)->extent_mutex);
3029 	mutex_init(&BTRFS_I(inode)->log_mutex);
3030 }
3031 
3032 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3033 {
3034 	struct btrfs_iget_args *args = p;
3035 	inode->i_ino = args->ino;
3036 	init_btrfs_i(inode);
3037 	BTRFS_I(inode)->root = args->root;
3038 	return 0;
3039 }
3040 
3041 static int btrfs_find_actor(struct inode *inode, void *opaque)
3042 {
3043 	struct btrfs_iget_args *args = opaque;
3044 	return args->ino == inode->i_ino &&
3045 		args->root == BTRFS_I(inode)->root;
3046 }
3047 
3048 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3049 			    struct btrfs_root *root, int wait)
3050 {
3051 	struct inode *inode;
3052 	struct btrfs_iget_args args;
3053 	args.ino = objectid;
3054 	args.root = root;
3055 
3056 	if (wait) {
3057 		inode = ilookup5(s, objectid, btrfs_find_actor,
3058 				 (void *)&args);
3059 	} else {
3060 		inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3061 					(void *)&args);
3062 	}
3063 	return inode;
3064 }
3065 
3066 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3067 				struct btrfs_root *root)
3068 {
3069 	struct inode *inode;
3070 	struct btrfs_iget_args args;
3071 	args.ino = objectid;
3072 	args.root = root;
3073 
3074 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3075 			     btrfs_init_locked_inode,
3076 			     (void *)&args);
3077 	return inode;
3078 }
3079 
3080 /* Get an inode object given its location and corresponding root.
3081  * Returns in *is_new if the inode was read from disk
3082  */
3083 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3084 			 struct btrfs_root *root, int *is_new)
3085 {
3086 	struct inode *inode;
3087 
3088 	inode = btrfs_iget_locked(s, location->objectid, root);
3089 	if (!inode)
3090 		return ERR_PTR(-EACCES);
3091 
3092 	if (inode->i_state & I_NEW) {
3093 		BTRFS_I(inode)->root = root;
3094 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3095 		btrfs_read_locked_inode(inode);
3096 		unlock_new_inode(inode);
3097 		if (is_new)
3098 			*is_new = 1;
3099 	} else {
3100 		if (is_new)
3101 			*is_new = 0;
3102 	}
3103 
3104 	return inode;
3105 }
3106 
3107 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3108 {
3109 	struct inode *inode;
3110 	struct btrfs_inode *bi = BTRFS_I(dir);
3111 	struct btrfs_root *root = bi->root;
3112 	struct btrfs_root *sub_root = root;
3113 	struct btrfs_key location;
3114 	int ret, new;
3115 
3116 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3117 		return ERR_PTR(-ENAMETOOLONG);
3118 
3119 	ret = btrfs_inode_by_name(dir, dentry, &location);
3120 
3121 	if (ret < 0)
3122 		return ERR_PTR(ret);
3123 
3124 	inode = NULL;
3125 	if (location.objectid) {
3126 		ret = fixup_tree_root_location(root, &location, &sub_root,
3127 						dentry);
3128 		if (ret < 0)
3129 			return ERR_PTR(ret);
3130 		if (ret > 0)
3131 			return ERR_PTR(-ENOENT);
3132 		inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3133 		if (IS_ERR(inode))
3134 			return ERR_CAST(inode);
3135 	}
3136 	return inode;
3137 }
3138 
3139 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3140 				   struct nameidata *nd)
3141 {
3142 	struct inode *inode;
3143 
3144 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3145 		return ERR_PTR(-ENAMETOOLONG);
3146 
3147 	inode = btrfs_lookup_dentry(dir, dentry);
3148 	if (IS_ERR(inode))
3149 		return ERR_CAST(inode);
3150 
3151 	return d_splice_alias(inode, dentry);
3152 }
3153 
3154 static unsigned char btrfs_filetype_table[] = {
3155 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3156 };
3157 
3158 static int btrfs_real_readdir(struct file *filp, void *dirent,
3159 			      filldir_t filldir)
3160 {
3161 	struct inode *inode = filp->f_dentry->d_inode;
3162 	struct btrfs_root *root = BTRFS_I(inode)->root;
3163 	struct btrfs_item *item;
3164 	struct btrfs_dir_item *di;
3165 	struct btrfs_key key;
3166 	struct btrfs_key found_key;
3167 	struct btrfs_path *path;
3168 	int ret;
3169 	u32 nritems;
3170 	struct extent_buffer *leaf;
3171 	int slot;
3172 	int advance;
3173 	unsigned char d_type;
3174 	int over = 0;
3175 	u32 di_cur;
3176 	u32 di_total;
3177 	u32 di_len;
3178 	int key_type = BTRFS_DIR_INDEX_KEY;
3179 	char tmp_name[32];
3180 	char *name_ptr;
3181 	int name_len;
3182 
3183 	/* FIXME, use a real flag for deciding about the key type */
3184 	if (root->fs_info->tree_root == root)
3185 		key_type = BTRFS_DIR_ITEM_KEY;
3186 
3187 	/* special case for "." */
3188 	if (filp->f_pos == 0) {
3189 		over = filldir(dirent, ".", 1,
3190 			       1, inode->i_ino,
3191 			       DT_DIR);
3192 		if (over)
3193 			return 0;
3194 		filp->f_pos = 1;
3195 	}
3196 	/* special case for .., just use the back ref */
3197 	if (filp->f_pos == 1) {
3198 		u64 pino = parent_ino(filp->f_path.dentry);
3199 		over = filldir(dirent, "..", 2,
3200 			       2, pino, DT_DIR);
3201 		if (over)
3202 			return 0;
3203 		filp->f_pos = 2;
3204 	}
3205 	path = btrfs_alloc_path();
3206 	path->reada = 2;
3207 
3208 	btrfs_set_key_type(&key, key_type);
3209 	key.offset = filp->f_pos;
3210 	key.objectid = inode->i_ino;
3211 
3212 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3213 	if (ret < 0)
3214 		goto err;
3215 	advance = 0;
3216 
3217 	while (1) {
3218 		leaf = path->nodes[0];
3219 		nritems = btrfs_header_nritems(leaf);
3220 		slot = path->slots[0];
3221 		if (advance || slot >= nritems) {
3222 			if (slot >= nritems - 1) {
3223 				ret = btrfs_next_leaf(root, path);
3224 				if (ret)
3225 					break;
3226 				leaf = path->nodes[0];
3227 				nritems = btrfs_header_nritems(leaf);
3228 				slot = path->slots[0];
3229 			} else {
3230 				slot++;
3231 				path->slots[0]++;
3232 			}
3233 		}
3234 
3235 		advance = 1;
3236 		item = btrfs_item_nr(leaf, slot);
3237 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3238 
3239 		if (found_key.objectid != key.objectid)
3240 			break;
3241 		if (btrfs_key_type(&found_key) != key_type)
3242 			break;
3243 		if (found_key.offset < filp->f_pos)
3244 			continue;
3245 
3246 		filp->f_pos = found_key.offset;
3247 
3248 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3249 		di_cur = 0;
3250 		di_total = btrfs_item_size(leaf, item);
3251 
3252 		while (di_cur < di_total) {
3253 			struct btrfs_key location;
3254 
3255 			name_len = btrfs_dir_name_len(leaf, di);
3256 			if (name_len <= sizeof(tmp_name)) {
3257 				name_ptr = tmp_name;
3258 			} else {
3259 				name_ptr = kmalloc(name_len, GFP_NOFS);
3260 				if (!name_ptr) {
3261 					ret = -ENOMEM;
3262 					goto err;
3263 				}
3264 			}
3265 			read_extent_buffer(leaf, name_ptr,
3266 					   (unsigned long)(di + 1), name_len);
3267 
3268 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3269 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3270 
3271 			/* is this a reference to our own snapshot? If so
3272 			 * skip it
3273 			 */
3274 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3275 			    location.objectid == root->root_key.objectid) {
3276 				over = 0;
3277 				goto skip;
3278 			}
3279 			over = filldir(dirent, name_ptr, name_len,
3280 				       found_key.offset, location.objectid,
3281 				       d_type);
3282 
3283 skip:
3284 			if (name_ptr != tmp_name)
3285 				kfree(name_ptr);
3286 
3287 			if (over)
3288 				goto nopos;
3289 			di_len = btrfs_dir_name_len(leaf, di) +
3290 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3291 			di_cur += di_len;
3292 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3293 		}
3294 	}
3295 
3296 	/* Reached end of directory/root. Bump pos past the last item. */
3297 	if (key_type == BTRFS_DIR_INDEX_KEY)
3298 		filp->f_pos = INT_LIMIT(off_t);
3299 	else
3300 		filp->f_pos++;
3301 nopos:
3302 	ret = 0;
3303 err:
3304 	btrfs_free_path(path);
3305 	return ret;
3306 }
3307 
3308 int btrfs_write_inode(struct inode *inode, int wait)
3309 {
3310 	struct btrfs_root *root = BTRFS_I(inode)->root;
3311 	struct btrfs_trans_handle *trans;
3312 	int ret = 0;
3313 
3314 	if (root->fs_info->btree_inode == inode)
3315 		return 0;
3316 
3317 	if (wait) {
3318 		trans = btrfs_join_transaction(root, 1);
3319 		btrfs_set_trans_block_group(trans, inode);
3320 		ret = btrfs_commit_transaction(trans, root);
3321 	}
3322 	return ret;
3323 }
3324 
3325 /*
3326  * This is somewhat expensive, updating the tree every time the
3327  * inode changes.  But, it is most likely to find the inode in cache.
3328  * FIXME, needs more benchmarking...there are no reasons other than performance
3329  * to keep or drop this code.
3330  */
3331 void btrfs_dirty_inode(struct inode *inode)
3332 {
3333 	struct btrfs_root *root = BTRFS_I(inode)->root;
3334 	struct btrfs_trans_handle *trans;
3335 
3336 	trans = btrfs_join_transaction(root, 1);
3337 	btrfs_set_trans_block_group(trans, inode);
3338 	btrfs_update_inode(trans, root, inode);
3339 	btrfs_end_transaction(trans, root);
3340 }
3341 
3342 /*
3343  * find the highest existing sequence number in a directory
3344  * and then set the in-memory index_cnt variable to reflect
3345  * free sequence numbers
3346  */
3347 static int btrfs_set_inode_index_count(struct inode *inode)
3348 {
3349 	struct btrfs_root *root = BTRFS_I(inode)->root;
3350 	struct btrfs_key key, found_key;
3351 	struct btrfs_path *path;
3352 	struct extent_buffer *leaf;
3353 	int ret;
3354 
3355 	key.objectid = inode->i_ino;
3356 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3357 	key.offset = (u64)-1;
3358 
3359 	path = btrfs_alloc_path();
3360 	if (!path)
3361 		return -ENOMEM;
3362 
3363 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3364 	if (ret < 0)
3365 		goto out;
3366 	/* FIXME: we should be able to handle this */
3367 	if (ret == 0)
3368 		goto out;
3369 	ret = 0;
3370 
3371 	/*
3372 	 * MAGIC NUMBER EXPLANATION:
3373 	 * since we search a directory based on f_pos we have to start at 2
3374 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3375 	 * else has to start at 2
3376 	 */
3377 	if (path->slots[0] == 0) {
3378 		BTRFS_I(inode)->index_cnt = 2;
3379 		goto out;
3380 	}
3381 
3382 	path->slots[0]--;
3383 
3384 	leaf = path->nodes[0];
3385 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3386 
3387 	if (found_key.objectid != inode->i_ino ||
3388 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3389 		BTRFS_I(inode)->index_cnt = 2;
3390 		goto out;
3391 	}
3392 
3393 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3394 out:
3395 	btrfs_free_path(path);
3396 	return ret;
3397 }
3398 
3399 /*
3400  * helper to find a free sequence number in a given directory.  This current
3401  * code is very simple, later versions will do smarter things in the btree
3402  */
3403 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3404 {
3405 	int ret = 0;
3406 
3407 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3408 		ret = btrfs_set_inode_index_count(dir);
3409 		if (ret)
3410 			return ret;
3411 	}
3412 
3413 	*index = BTRFS_I(dir)->index_cnt;
3414 	BTRFS_I(dir)->index_cnt++;
3415 
3416 	return ret;
3417 }
3418 
3419 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3420 				     struct btrfs_root *root,
3421 				     struct inode *dir,
3422 				     const char *name, int name_len,
3423 				     u64 ref_objectid, u64 objectid,
3424 				     u64 alloc_hint, int mode, u64 *index)
3425 {
3426 	struct inode *inode;
3427 	struct btrfs_inode_item *inode_item;
3428 	struct btrfs_key *location;
3429 	struct btrfs_path *path;
3430 	struct btrfs_inode_ref *ref;
3431 	struct btrfs_key key[2];
3432 	u32 sizes[2];
3433 	unsigned long ptr;
3434 	int ret;
3435 	int owner;
3436 
3437 	path = btrfs_alloc_path();
3438 	BUG_ON(!path);
3439 
3440 	inode = new_inode(root->fs_info->sb);
3441 	if (!inode)
3442 		return ERR_PTR(-ENOMEM);
3443 
3444 	if (dir) {
3445 		ret = btrfs_set_inode_index(dir, index);
3446 		if (ret)
3447 			return ERR_PTR(ret);
3448 	}
3449 	/*
3450 	 * index_cnt is ignored for everything but a dir,
3451 	 * btrfs_get_inode_index_count has an explanation for the magic
3452 	 * number
3453 	 */
3454 	init_btrfs_i(inode);
3455 	BTRFS_I(inode)->index_cnt = 2;
3456 	BTRFS_I(inode)->root = root;
3457 	BTRFS_I(inode)->generation = trans->transid;
3458 
3459 	if (mode & S_IFDIR)
3460 		owner = 0;
3461 	else
3462 		owner = 1;
3463 	BTRFS_I(inode)->block_group =
3464 			btrfs_find_block_group(root, 0, alloc_hint, owner);
3465 	if ((mode & S_IFREG)) {
3466 		if (btrfs_test_opt(root, NODATASUM))
3467 			btrfs_set_flag(inode, NODATASUM);
3468 		if (btrfs_test_opt(root, NODATACOW))
3469 			btrfs_set_flag(inode, NODATACOW);
3470 	}
3471 
3472 	key[0].objectid = objectid;
3473 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3474 	key[0].offset = 0;
3475 
3476 	key[1].objectid = objectid;
3477 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3478 	key[1].offset = ref_objectid;
3479 
3480 	sizes[0] = sizeof(struct btrfs_inode_item);
3481 	sizes[1] = name_len + sizeof(*ref);
3482 
3483 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3484 	if (ret != 0)
3485 		goto fail;
3486 
3487 	if (objectid > root->highest_inode)
3488 		root->highest_inode = objectid;
3489 
3490 	inode->i_uid = current_fsuid();
3491 
3492 	if (dir && (dir->i_mode & S_ISGID)) {
3493 		inode->i_gid = dir->i_gid;
3494 		if (S_ISDIR(mode))
3495 			mode |= S_ISGID;
3496 	} else
3497 		inode->i_gid = current_fsgid();
3498 
3499 	inode->i_mode = mode;
3500 	inode->i_ino = objectid;
3501 	inode_set_bytes(inode, 0);
3502 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3503 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3504 				  struct btrfs_inode_item);
3505 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
3506 
3507 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3508 			     struct btrfs_inode_ref);
3509 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3510 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3511 	ptr = (unsigned long)(ref + 1);
3512 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
3513 
3514 	btrfs_mark_buffer_dirty(path->nodes[0]);
3515 	btrfs_free_path(path);
3516 
3517 	location = &BTRFS_I(inode)->location;
3518 	location->objectid = objectid;
3519 	location->offset = 0;
3520 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3521 
3522 	insert_inode_hash(inode);
3523 	return inode;
3524 fail:
3525 	if (dir)
3526 		BTRFS_I(dir)->index_cnt--;
3527 	btrfs_free_path(path);
3528 	return ERR_PTR(ret);
3529 }
3530 
3531 static inline u8 btrfs_inode_type(struct inode *inode)
3532 {
3533 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3534 }
3535 
3536 /*
3537  * utility function to add 'inode' into 'parent_inode' with
3538  * a give name and a given sequence number.
3539  * if 'add_backref' is true, also insert a backref from the
3540  * inode to the parent directory.
3541  */
3542 int btrfs_add_link(struct btrfs_trans_handle *trans,
3543 		   struct inode *parent_inode, struct inode *inode,
3544 		   const char *name, int name_len, int add_backref, u64 index)
3545 {
3546 	int ret;
3547 	struct btrfs_key key;
3548 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3549 
3550 	key.objectid = inode->i_ino;
3551 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3552 	key.offset = 0;
3553 
3554 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
3555 				    parent_inode->i_ino,
3556 				    &key, btrfs_inode_type(inode),
3557 				    index);
3558 	if (ret == 0) {
3559 		if (add_backref) {
3560 			ret = btrfs_insert_inode_ref(trans, root,
3561 						     name, name_len,
3562 						     inode->i_ino,
3563 						     parent_inode->i_ino,
3564 						     index);
3565 		}
3566 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
3567 				   name_len * 2);
3568 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3569 		ret = btrfs_update_inode(trans, root, parent_inode);
3570 	}
3571 	return ret;
3572 }
3573 
3574 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3575 			    struct dentry *dentry, struct inode *inode,
3576 			    int backref, u64 index)
3577 {
3578 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3579 				 inode, dentry->d_name.name,
3580 				 dentry->d_name.len, backref, index);
3581 	if (!err) {
3582 		d_instantiate(dentry, inode);
3583 		return 0;
3584 	}
3585 	if (err > 0)
3586 		err = -EEXIST;
3587 	return err;
3588 }
3589 
3590 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3591 			int mode, dev_t rdev)
3592 {
3593 	struct btrfs_trans_handle *trans;
3594 	struct btrfs_root *root = BTRFS_I(dir)->root;
3595 	struct inode *inode = NULL;
3596 	int err;
3597 	int drop_inode = 0;
3598 	u64 objectid;
3599 	unsigned long nr = 0;
3600 	u64 index = 0;
3601 
3602 	if (!new_valid_dev(rdev))
3603 		return -EINVAL;
3604 
3605 	err = btrfs_check_free_space(root, 1, 0);
3606 	if (err)
3607 		goto fail;
3608 
3609 	trans = btrfs_start_transaction(root, 1);
3610 	btrfs_set_trans_block_group(trans, dir);
3611 
3612 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3613 	if (err) {
3614 		err = -ENOSPC;
3615 		goto out_unlock;
3616 	}
3617 
3618 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3619 				dentry->d_name.len,
3620 				dentry->d_parent->d_inode->i_ino, objectid,
3621 				BTRFS_I(dir)->block_group, mode, &index);
3622 	err = PTR_ERR(inode);
3623 	if (IS_ERR(inode))
3624 		goto out_unlock;
3625 
3626 	err = btrfs_init_inode_security(inode, dir);
3627 	if (err) {
3628 		drop_inode = 1;
3629 		goto out_unlock;
3630 	}
3631 
3632 	btrfs_set_trans_block_group(trans, inode);
3633 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3634 	if (err)
3635 		drop_inode = 1;
3636 	else {
3637 		inode->i_op = &btrfs_special_inode_operations;
3638 		init_special_inode(inode, inode->i_mode, rdev);
3639 		btrfs_update_inode(trans, root, inode);
3640 	}
3641 	dir->i_sb->s_dirt = 1;
3642 	btrfs_update_inode_block_group(trans, inode);
3643 	btrfs_update_inode_block_group(trans, dir);
3644 out_unlock:
3645 	nr = trans->blocks_used;
3646 	btrfs_end_transaction_throttle(trans, root);
3647 fail:
3648 	if (drop_inode) {
3649 		inode_dec_link_count(inode);
3650 		iput(inode);
3651 	}
3652 	btrfs_btree_balance_dirty(root, nr);
3653 	return err;
3654 }
3655 
3656 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3657 			int mode, struct nameidata *nd)
3658 {
3659 	struct btrfs_trans_handle *trans;
3660 	struct btrfs_root *root = BTRFS_I(dir)->root;
3661 	struct inode *inode = NULL;
3662 	int err;
3663 	int drop_inode = 0;
3664 	unsigned long nr = 0;
3665 	u64 objectid;
3666 	u64 index = 0;
3667 
3668 	err = btrfs_check_free_space(root, 1, 0);
3669 	if (err)
3670 		goto fail;
3671 	trans = btrfs_start_transaction(root, 1);
3672 	btrfs_set_trans_block_group(trans, dir);
3673 
3674 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3675 	if (err) {
3676 		err = -ENOSPC;
3677 		goto out_unlock;
3678 	}
3679 
3680 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3681 				dentry->d_name.len,
3682 				dentry->d_parent->d_inode->i_ino,
3683 				objectid, BTRFS_I(dir)->block_group, mode,
3684 				&index);
3685 	err = PTR_ERR(inode);
3686 	if (IS_ERR(inode))
3687 		goto out_unlock;
3688 
3689 	err = btrfs_init_inode_security(inode, dir);
3690 	if (err) {
3691 		drop_inode = 1;
3692 		goto out_unlock;
3693 	}
3694 
3695 	btrfs_set_trans_block_group(trans, inode);
3696 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3697 	if (err)
3698 		drop_inode = 1;
3699 	else {
3700 		inode->i_mapping->a_ops = &btrfs_aops;
3701 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3702 		inode->i_fop = &btrfs_file_operations;
3703 		inode->i_op = &btrfs_file_inode_operations;
3704 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3705 	}
3706 	dir->i_sb->s_dirt = 1;
3707 	btrfs_update_inode_block_group(trans, inode);
3708 	btrfs_update_inode_block_group(trans, dir);
3709 out_unlock:
3710 	nr = trans->blocks_used;
3711 	btrfs_end_transaction_throttle(trans, root);
3712 fail:
3713 	if (drop_inode) {
3714 		inode_dec_link_count(inode);
3715 		iput(inode);
3716 	}
3717 	btrfs_btree_balance_dirty(root, nr);
3718 	return err;
3719 }
3720 
3721 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3722 		      struct dentry *dentry)
3723 {
3724 	struct btrfs_trans_handle *trans;
3725 	struct btrfs_root *root = BTRFS_I(dir)->root;
3726 	struct inode *inode = old_dentry->d_inode;
3727 	u64 index;
3728 	unsigned long nr = 0;
3729 	int err;
3730 	int drop_inode = 0;
3731 
3732 	if (inode->i_nlink == 0)
3733 		return -ENOENT;
3734 
3735 	btrfs_inc_nlink(inode);
3736 	err = btrfs_check_free_space(root, 1, 0);
3737 	if (err)
3738 		goto fail;
3739 	err = btrfs_set_inode_index(dir, &index);
3740 	if (err)
3741 		goto fail;
3742 
3743 	trans = btrfs_start_transaction(root, 1);
3744 
3745 	btrfs_set_trans_block_group(trans, dir);
3746 	atomic_inc(&inode->i_count);
3747 
3748 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3749 
3750 	if (err)
3751 		drop_inode = 1;
3752 
3753 	dir->i_sb->s_dirt = 1;
3754 	btrfs_update_inode_block_group(trans, dir);
3755 	err = btrfs_update_inode(trans, root, inode);
3756 
3757 	if (err)
3758 		drop_inode = 1;
3759 
3760 	nr = trans->blocks_used;
3761 	btrfs_end_transaction_throttle(trans, root);
3762 fail:
3763 	if (drop_inode) {
3764 		inode_dec_link_count(inode);
3765 		iput(inode);
3766 	}
3767 	btrfs_btree_balance_dirty(root, nr);
3768 	return err;
3769 }
3770 
3771 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3772 {
3773 	struct inode *inode = NULL;
3774 	struct btrfs_trans_handle *trans;
3775 	struct btrfs_root *root = BTRFS_I(dir)->root;
3776 	int err = 0;
3777 	int drop_on_err = 0;
3778 	u64 objectid = 0;
3779 	u64 index = 0;
3780 	unsigned long nr = 1;
3781 
3782 	err = btrfs_check_free_space(root, 1, 0);
3783 	if (err)
3784 		goto out_unlock;
3785 
3786 	trans = btrfs_start_transaction(root, 1);
3787 	btrfs_set_trans_block_group(trans, dir);
3788 
3789 	if (IS_ERR(trans)) {
3790 		err = PTR_ERR(trans);
3791 		goto out_unlock;
3792 	}
3793 
3794 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3795 	if (err) {
3796 		err = -ENOSPC;
3797 		goto out_unlock;
3798 	}
3799 
3800 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3801 				dentry->d_name.len,
3802 				dentry->d_parent->d_inode->i_ino, objectid,
3803 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
3804 				&index);
3805 	if (IS_ERR(inode)) {
3806 		err = PTR_ERR(inode);
3807 		goto out_fail;
3808 	}
3809 
3810 	drop_on_err = 1;
3811 
3812 	err = btrfs_init_inode_security(inode, dir);
3813 	if (err)
3814 		goto out_fail;
3815 
3816 	inode->i_op = &btrfs_dir_inode_operations;
3817 	inode->i_fop = &btrfs_dir_file_operations;
3818 	btrfs_set_trans_block_group(trans, inode);
3819 
3820 	btrfs_i_size_write(inode, 0);
3821 	err = btrfs_update_inode(trans, root, inode);
3822 	if (err)
3823 		goto out_fail;
3824 
3825 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3826 				 inode, dentry->d_name.name,
3827 				 dentry->d_name.len, 0, index);
3828 	if (err)
3829 		goto out_fail;
3830 
3831 	d_instantiate(dentry, inode);
3832 	drop_on_err = 0;
3833 	dir->i_sb->s_dirt = 1;
3834 	btrfs_update_inode_block_group(trans, inode);
3835 	btrfs_update_inode_block_group(trans, dir);
3836 
3837 out_fail:
3838 	nr = trans->blocks_used;
3839 	btrfs_end_transaction_throttle(trans, root);
3840 
3841 out_unlock:
3842 	if (drop_on_err)
3843 		iput(inode);
3844 	btrfs_btree_balance_dirty(root, nr);
3845 	return err;
3846 }
3847 
3848 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3849  * and an extent that you want to insert, deal with overlap and insert
3850  * the new extent into the tree.
3851  */
3852 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3853 				struct extent_map *existing,
3854 				struct extent_map *em,
3855 				u64 map_start, u64 map_len)
3856 {
3857 	u64 start_diff;
3858 
3859 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3860 	start_diff = map_start - em->start;
3861 	em->start = map_start;
3862 	em->len = map_len;
3863 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3864 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3865 		em->block_start += start_diff;
3866 		em->block_len -= start_diff;
3867 	}
3868 	return add_extent_mapping(em_tree, em);
3869 }
3870 
3871 static noinline int uncompress_inline(struct btrfs_path *path,
3872 				      struct inode *inode, struct page *page,
3873 				      size_t pg_offset, u64 extent_offset,
3874 				      struct btrfs_file_extent_item *item)
3875 {
3876 	int ret;
3877 	struct extent_buffer *leaf = path->nodes[0];
3878 	char *tmp;
3879 	size_t max_size;
3880 	unsigned long inline_size;
3881 	unsigned long ptr;
3882 
3883 	WARN_ON(pg_offset != 0);
3884 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
3885 	inline_size = btrfs_file_extent_inline_item_len(leaf,
3886 					btrfs_item_nr(leaf, path->slots[0]));
3887 	tmp = kmalloc(inline_size, GFP_NOFS);
3888 	ptr = btrfs_file_extent_inline_start(item);
3889 
3890 	read_extent_buffer(leaf, tmp, ptr, inline_size);
3891 
3892 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3893 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3894 				    inline_size, max_size);
3895 	if (ret) {
3896 		char *kaddr = kmap_atomic(page, KM_USER0);
3897 		unsigned long copy_size = min_t(u64,
3898 				  PAGE_CACHE_SIZE - pg_offset,
3899 				  max_size - extent_offset);
3900 		memset(kaddr + pg_offset, 0, copy_size);
3901 		kunmap_atomic(kaddr, KM_USER0);
3902 	}
3903 	kfree(tmp);
3904 	return 0;
3905 }
3906 
3907 /*
3908  * a bit scary, this does extent mapping from logical file offset to the disk.
3909  * the ugly parts come from merging extents from the disk with the in-ram
3910  * representation.  This gets more complex because of the data=ordered code,
3911  * where the in-ram extents might be locked pending data=ordered completion.
3912  *
3913  * This also copies inline extents directly into the page.
3914  */
3915 
3916 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3917 				    size_t pg_offset, u64 start, u64 len,
3918 				    int create)
3919 {
3920 	int ret;
3921 	int err = 0;
3922 	u64 bytenr;
3923 	u64 extent_start = 0;
3924 	u64 extent_end = 0;
3925 	u64 objectid = inode->i_ino;
3926 	u32 found_type;
3927 	struct btrfs_path *path = NULL;
3928 	struct btrfs_root *root = BTRFS_I(inode)->root;
3929 	struct btrfs_file_extent_item *item;
3930 	struct extent_buffer *leaf;
3931 	struct btrfs_key found_key;
3932 	struct extent_map *em = NULL;
3933 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3934 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3935 	struct btrfs_trans_handle *trans = NULL;
3936 	int compressed;
3937 
3938 again:
3939 	spin_lock(&em_tree->lock);
3940 	em = lookup_extent_mapping(em_tree, start, len);
3941 	if (em)
3942 		em->bdev = root->fs_info->fs_devices->latest_bdev;
3943 	spin_unlock(&em_tree->lock);
3944 
3945 	if (em) {
3946 		if (em->start > start || em->start + em->len <= start)
3947 			free_extent_map(em);
3948 		else if (em->block_start == EXTENT_MAP_INLINE && page)
3949 			free_extent_map(em);
3950 		else
3951 			goto out;
3952 	}
3953 	em = alloc_extent_map(GFP_NOFS);
3954 	if (!em) {
3955 		err = -ENOMEM;
3956 		goto out;
3957 	}
3958 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3959 	em->start = EXTENT_MAP_HOLE;
3960 	em->orig_start = EXTENT_MAP_HOLE;
3961 	em->len = (u64)-1;
3962 	em->block_len = (u64)-1;
3963 
3964 	if (!path) {
3965 		path = btrfs_alloc_path();
3966 		BUG_ON(!path);
3967 	}
3968 
3969 	ret = btrfs_lookup_file_extent(trans, root, path,
3970 				       objectid, start, trans != NULL);
3971 	if (ret < 0) {
3972 		err = ret;
3973 		goto out;
3974 	}
3975 
3976 	if (ret != 0) {
3977 		if (path->slots[0] == 0)
3978 			goto not_found;
3979 		path->slots[0]--;
3980 	}
3981 
3982 	leaf = path->nodes[0];
3983 	item = btrfs_item_ptr(leaf, path->slots[0],
3984 			      struct btrfs_file_extent_item);
3985 	/* are we inside the extent that was found? */
3986 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3987 	found_type = btrfs_key_type(&found_key);
3988 	if (found_key.objectid != objectid ||
3989 	    found_type != BTRFS_EXTENT_DATA_KEY) {
3990 		goto not_found;
3991 	}
3992 
3993 	found_type = btrfs_file_extent_type(leaf, item);
3994 	extent_start = found_key.offset;
3995 	compressed = btrfs_file_extent_compression(leaf, item);
3996 	if (found_type == BTRFS_FILE_EXTENT_REG ||
3997 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3998 		extent_end = extent_start +
3999 		       btrfs_file_extent_num_bytes(leaf, item);
4000 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4001 		size_t size;
4002 		size = btrfs_file_extent_inline_len(leaf, item);
4003 		extent_end = (extent_start + size + root->sectorsize - 1) &
4004 			~((u64)root->sectorsize - 1);
4005 	}
4006 
4007 	if (start >= extent_end) {
4008 		path->slots[0]++;
4009 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4010 			ret = btrfs_next_leaf(root, path);
4011 			if (ret < 0) {
4012 				err = ret;
4013 				goto out;
4014 			}
4015 			if (ret > 0)
4016 				goto not_found;
4017 			leaf = path->nodes[0];
4018 		}
4019 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4020 		if (found_key.objectid != objectid ||
4021 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4022 			goto not_found;
4023 		if (start + len <= found_key.offset)
4024 			goto not_found;
4025 		em->start = start;
4026 		em->len = found_key.offset - start;
4027 		goto not_found_em;
4028 	}
4029 
4030 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4031 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4032 		em->start = extent_start;
4033 		em->len = extent_end - extent_start;
4034 		em->orig_start = extent_start -
4035 				 btrfs_file_extent_offset(leaf, item);
4036 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4037 		if (bytenr == 0) {
4038 			em->block_start = EXTENT_MAP_HOLE;
4039 			goto insert;
4040 		}
4041 		if (compressed) {
4042 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4043 			em->block_start = bytenr;
4044 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4045 									 item);
4046 		} else {
4047 			bytenr += btrfs_file_extent_offset(leaf, item);
4048 			em->block_start = bytenr;
4049 			em->block_len = em->len;
4050 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4051 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4052 		}
4053 		goto insert;
4054 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4055 		unsigned long ptr;
4056 		char *map;
4057 		size_t size;
4058 		size_t extent_offset;
4059 		size_t copy_size;
4060 
4061 		em->block_start = EXTENT_MAP_INLINE;
4062 		if (!page || create) {
4063 			em->start = extent_start;
4064 			em->len = extent_end - extent_start;
4065 			goto out;
4066 		}
4067 
4068 		size = btrfs_file_extent_inline_len(leaf, item);
4069 		extent_offset = page_offset(page) + pg_offset - extent_start;
4070 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4071 				size - extent_offset);
4072 		em->start = extent_start + extent_offset;
4073 		em->len = (copy_size + root->sectorsize - 1) &
4074 			~((u64)root->sectorsize - 1);
4075 		em->orig_start = EXTENT_MAP_INLINE;
4076 		if (compressed)
4077 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4078 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4079 		if (create == 0 && !PageUptodate(page)) {
4080 			if (btrfs_file_extent_compression(leaf, item) ==
4081 			    BTRFS_COMPRESS_ZLIB) {
4082 				ret = uncompress_inline(path, inode, page,
4083 							pg_offset,
4084 							extent_offset, item);
4085 				BUG_ON(ret);
4086 			} else {
4087 				map = kmap(page);
4088 				read_extent_buffer(leaf, map + pg_offset, ptr,
4089 						   copy_size);
4090 				kunmap(page);
4091 			}
4092 			flush_dcache_page(page);
4093 		} else if (create && PageUptodate(page)) {
4094 			if (!trans) {
4095 				kunmap(page);
4096 				free_extent_map(em);
4097 				em = NULL;
4098 				btrfs_release_path(root, path);
4099 				trans = btrfs_join_transaction(root, 1);
4100 				goto again;
4101 			}
4102 			map = kmap(page);
4103 			write_extent_buffer(leaf, map + pg_offset, ptr,
4104 					    copy_size);
4105 			kunmap(page);
4106 			btrfs_mark_buffer_dirty(leaf);
4107 		}
4108 		set_extent_uptodate(io_tree, em->start,
4109 				    extent_map_end(em) - 1, GFP_NOFS);
4110 		goto insert;
4111 	} else {
4112 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4113 		WARN_ON(1);
4114 	}
4115 not_found:
4116 	em->start = start;
4117 	em->len = len;
4118 not_found_em:
4119 	em->block_start = EXTENT_MAP_HOLE;
4120 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4121 insert:
4122 	btrfs_release_path(root, path);
4123 	if (em->start > start || extent_map_end(em) <= start) {
4124 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4125 		       "[%llu %llu]\n", (unsigned long long)em->start,
4126 		       (unsigned long long)em->len,
4127 		       (unsigned long long)start,
4128 		       (unsigned long long)len);
4129 		err = -EIO;
4130 		goto out;
4131 	}
4132 
4133 	err = 0;
4134 	spin_lock(&em_tree->lock);
4135 	ret = add_extent_mapping(em_tree, em);
4136 	/* it is possible that someone inserted the extent into the tree
4137 	 * while we had the lock dropped.  It is also possible that
4138 	 * an overlapping map exists in the tree
4139 	 */
4140 	if (ret == -EEXIST) {
4141 		struct extent_map *existing;
4142 
4143 		ret = 0;
4144 
4145 		existing = lookup_extent_mapping(em_tree, start, len);
4146 		if (existing && (existing->start > start ||
4147 		    existing->start + existing->len <= start)) {
4148 			free_extent_map(existing);
4149 			existing = NULL;
4150 		}
4151 		if (!existing) {
4152 			existing = lookup_extent_mapping(em_tree, em->start,
4153 							 em->len);
4154 			if (existing) {
4155 				err = merge_extent_mapping(em_tree, existing,
4156 							   em, start,
4157 							   root->sectorsize);
4158 				free_extent_map(existing);
4159 				if (err) {
4160 					free_extent_map(em);
4161 					em = NULL;
4162 				}
4163 			} else {
4164 				err = -EIO;
4165 				free_extent_map(em);
4166 				em = NULL;
4167 			}
4168 		} else {
4169 			free_extent_map(em);
4170 			em = existing;
4171 			err = 0;
4172 		}
4173 	}
4174 	spin_unlock(&em_tree->lock);
4175 out:
4176 	if (path)
4177 		btrfs_free_path(path);
4178 	if (trans) {
4179 		ret = btrfs_end_transaction(trans, root);
4180 		if (!err)
4181 			err = ret;
4182 	}
4183 	if (err) {
4184 		free_extent_map(em);
4185 		WARN_ON(1);
4186 		return ERR_PTR(err);
4187 	}
4188 	return em;
4189 }
4190 
4191 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4192 			const struct iovec *iov, loff_t offset,
4193 			unsigned long nr_segs)
4194 {
4195 	return -EINVAL;
4196 }
4197 
4198 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4199 		__u64 start, __u64 len)
4200 {
4201 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4202 }
4203 
4204 int btrfs_readpage(struct file *file, struct page *page)
4205 {
4206 	struct extent_io_tree *tree;
4207 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4208 	return extent_read_full_page(tree, page, btrfs_get_extent);
4209 }
4210 
4211 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4212 {
4213 	struct extent_io_tree *tree;
4214 
4215 
4216 	if (current->flags & PF_MEMALLOC) {
4217 		redirty_page_for_writepage(wbc, page);
4218 		unlock_page(page);
4219 		return 0;
4220 	}
4221 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4222 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4223 }
4224 
4225 int btrfs_writepages(struct address_space *mapping,
4226 		     struct writeback_control *wbc)
4227 {
4228 	struct extent_io_tree *tree;
4229 
4230 	tree = &BTRFS_I(mapping->host)->io_tree;
4231 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4232 }
4233 
4234 static int
4235 btrfs_readpages(struct file *file, struct address_space *mapping,
4236 		struct list_head *pages, unsigned nr_pages)
4237 {
4238 	struct extent_io_tree *tree;
4239 	tree = &BTRFS_I(mapping->host)->io_tree;
4240 	return extent_readpages(tree, mapping, pages, nr_pages,
4241 				btrfs_get_extent);
4242 }
4243 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4244 {
4245 	struct extent_io_tree *tree;
4246 	struct extent_map_tree *map;
4247 	int ret;
4248 
4249 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4250 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4251 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4252 	if (ret == 1) {
4253 		ClearPagePrivate(page);
4254 		set_page_private(page, 0);
4255 		page_cache_release(page);
4256 	}
4257 	return ret;
4258 }
4259 
4260 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4261 {
4262 	if (PageWriteback(page) || PageDirty(page))
4263 		return 0;
4264 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4265 }
4266 
4267 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4268 {
4269 	struct extent_io_tree *tree;
4270 	struct btrfs_ordered_extent *ordered;
4271 	u64 page_start = page_offset(page);
4272 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4273 
4274 	wait_on_page_writeback(page);
4275 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4276 	if (offset) {
4277 		btrfs_releasepage(page, GFP_NOFS);
4278 		return;
4279 	}
4280 
4281 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4282 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4283 					   page_offset(page));
4284 	if (ordered) {
4285 		/*
4286 		 * IO on this page will never be started, so we need
4287 		 * to account for any ordered extents now
4288 		 */
4289 		clear_extent_bit(tree, page_start, page_end,
4290 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4291 				 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4292 		btrfs_finish_ordered_io(page->mapping->host,
4293 					page_start, page_end);
4294 		btrfs_put_ordered_extent(ordered);
4295 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4296 	}
4297 	clear_extent_bit(tree, page_start, page_end,
4298 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4299 		 EXTENT_ORDERED,
4300 		 1, 1, GFP_NOFS);
4301 	__btrfs_releasepage(page, GFP_NOFS);
4302 
4303 	ClearPageChecked(page);
4304 	if (PagePrivate(page)) {
4305 		ClearPagePrivate(page);
4306 		set_page_private(page, 0);
4307 		page_cache_release(page);
4308 	}
4309 }
4310 
4311 /*
4312  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4313  * called from a page fault handler when a page is first dirtied. Hence we must
4314  * be careful to check for EOF conditions here. We set the page up correctly
4315  * for a written page which means we get ENOSPC checking when writing into
4316  * holes and correct delalloc and unwritten extent mapping on filesystems that
4317  * support these features.
4318  *
4319  * We are not allowed to take the i_mutex here so we have to play games to
4320  * protect against truncate races as the page could now be beyond EOF.  Because
4321  * vmtruncate() writes the inode size before removing pages, once we have the
4322  * page lock we can determine safely if the page is beyond EOF. If it is not
4323  * beyond EOF, then the page is guaranteed safe against truncation until we
4324  * unlock the page.
4325  */
4326 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4327 {
4328 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4329 	struct btrfs_root *root = BTRFS_I(inode)->root;
4330 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4331 	struct btrfs_ordered_extent *ordered;
4332 	char *kaddr;
4333 	unsigned long zero_start;
4334 	loff_t size;
4335 	int ret;
4336 	u64 page_start;
4337 	u64 page_end;
4338 
4339 	ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4340 	if (ret)
4341 		goto out;
4342 
4343 	ret = -EINVAL;
4344 again:
4345 	lock_page(page);
4346 	size = i_size_read(inode);
4347 	page_start = page_offset(page);
4348 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4349 
4350 	if ((page->mapping != inode->i_mapping) ||
4351 	    (page_start >= size)) {
4352 		/* page got truncated out from underneath us */
4353 		goto out_unlock;
4354 	}
4355 	wait_on_page_writeback(page);
4356 
4357 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4358 	set_page_extent_mapped(page);
4359 
4360 	/*
4361 	 * we can't set the delalloc bits if there are pending ordered
4362 	 * extents.  Drop our locks and wait for them to finish
4363 	 */
4364 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4365 	if (ordered) {
4366 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4367 		unlock_page(page);
4368 		btrfs_start_ordered_extent(inode, ordered, 1);
4369 		btrfs_put_ordered_extent(ordered);
4370 		goto again;
4371 	}
4372 
4373 	btrfs_set_extent_delalloc(inode, page_start, page_end);
4374 	ret = 0;
4375 
4376 	/* page is wholly or partially inside EOF */
4377 	if (page_start + PAGE_CACHE_SIZE > size)
4378 		zero_start = size & ~PAGE_CACHE_MASK;
4379 	else
4380 		zero_start = PAGE_CACHE_SIZE;
4381 
4382 	if (zero_start != PAGE_CACHE_SIZE) {
4383 		kaddr = kmap(page);
4384 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4385 		flush_dcache_page(page);
4386 		kunmap(page);
4387 	}
4388 	ClearPageChecked(page);
4389 	set_page_dirty(page);
4390 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4391 
4392 out_unlock:
4393 	unlock_page(page);
4394 out:
4395 	return ret;
4396 }
4397 
4398 static void btrfs_truncate(struct inode *inode)
4399 {
4400 	struct btrfs_root *root = BTRFS_I(inode)->root;
4401 	int ret;
4402 	struct btrfs_trans_handle *trans;
4403 	unsigned long nr;
4404 	u64 mask = root->sectorsize - 1;
4405 
4406 	if (!S_ISREG(inode->i_mode))
4407 		return;
4408 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4409 		return;
4410 
4411 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
4412 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4413 
4414 	trans = btrfs_start_transaction(root, 1);
4415 	btrfs_set_trans_block_group(trans, inode);
4416 	btrfs_i_size_write(inode, inode->i_size);
4417 
4418 	ret = btrfs_orphan_add(trans, inode);
4419 	if (ret)
4420 		goto out;
4421 	/* FIXME, add redo link to tree so we don't leak on crash */
4422 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4423 				      BTRFS_EXTENT_DATA_KEY);
4424 	btrfs_update_inode(trans, root, inode);
4425 
4426 	ret = btrfs_orphan_del(trans, inode);
4427 	BUG_ON(ret);
4428 
4429 out:
4430 	nr = trans->blocks_used;
4431 	ret = btrfs_end_transaction_throttle(trans, root);
4432 	BUG_ON(ret);
4433 	btrfs_btree_balance_dirty(root, nr);
4434 }
4435 
4436 /*
4437  * create a new subvolume directory/inode (helper for the ioctl).
4438  */
4439 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4440 			     struct btrfs_root *new_root, struct dentry *dentry,
4441 			     u64 new_dirid, u64 alloc_hint)
4442 {
4443 	struct inode *inode;
4444 	int error;
4445 	u64 index = 0;
4446 
4447 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4448 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4449 	if (IS_ERR(inode))
4450 		return PTR_ERR(inode);
4451 	inode->i_op = &btrfs_dir_inode_operations;
4452 	inode->i_fop = &btrfs_dir_file_operations;
4453 
4454 	inode->i_nlink = 1;
4455 	btrfs_i_size_write(inode, 0);
4456 
4457 	error = btrfs_update_inode(trans, new_root, inode);
4458 	if (error)
4459 		return error;
4460 
4461 	d_instantiate(dentry, inode);
4462 	return 0;
4463 }
4464 
4465 /* helper function for file defrag and space balancing.  This
4466  * forces readahead on a given range of bytes in an inode
4467  */
4468 unsigned long btrfs_force_ra(struct address_space *mapping,
4469 			      struct file_ra_state *ra, struct file *file,
4470 			      pgoff_t offset, pgoff_t last_index)
4471 {
4472 	pgoff_t req_size = last_index - offset + 1;
4473 
4474 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4475 	return offset + req_size;
4476 }
4477 
4478 struct inode *btrfs_alloc_inode(struct super_block *sb)
4479 {
4480 	struct btrfs_inode *ei;
4481 
4482 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4483 	if (!ei)
4484 		return NULL;
4485 	ei->last_trans = 0;
4486 	ei->logged_trans = 0;
4487 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4488 	ei->i_acl = BTRFS_ACL_NOT_CACHED;
4489 	ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4490 	INIT_LIST_HEAD(&ei->i_orphan);
4491 	return &ei->vfs_inode;
4492 }
4493 
4494 void btrfs_destroy_inode(struct inode *inode)
4495 {
4496 	struct btrfs_ordered_extent *ordered;
4497 	WARN_ON(!list_empty(&inode->i_dentry));
4498 	WARN_ON(inode->i_data.nrpages);
4499 
4500 	if (BTRFS_I(inode)->i_acl &&
4501 	    BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4502 		posix_acl_release(BTRFS_I(inode)->i_acl);
4503 	if (BTRFS_I(inode)->i_default_acl &&
4504 	    BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4505 		posix_acl_release(BTRFS_I(inode)->i_default_acl);
4506 
4507 	spin_lock(&BTRFS_I(inode)->root->list_lock);
4508 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4509 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4510 		       " list\n", inode->i_ino);
4511 		dump_stack();
4512 	}
4513 	spin_unlock(&BTRFS_I(inode)->root->list_lock);
4514 
4515 	while (1) {
4516 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4517 		if (!ordered)
4518 			break;
4519 		else {
4520 			printk(KERN_ERR "btrfs found ordered "
4521 			       "extent %llu %llu on inode cleanup\n",
4522 			       (unsigned long long)ordered->file_offset,
4523 			       (unsigned long long)ordered->len);
4524 			btrfs_remove_ordered_extent(inode, ordered);
4525 			btrfs_put_ordered_extent(ordered);
4526 			btrfs_put_ordered_extent(ordered);
4527 		}
4528 	}
4529 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4530 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4531 }
4532 
4533 static void init_once(void *foo)
4534 {
4535 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4536 
4537 	inode_init_once(&ei->vfs_inode);
4538 }
4539 
4540 void btrfs_destroy_cachep(void)
4541 {
4542 	if (btrfs_inode_cachep)
4543 		kmem_cache_destroy(btrfs_inode_cachep);
4544 	if (btrfs_trans_handle_cachep)
4545 		kmem_cache_destroy(btrfs_trans_handle_cachep);
4546 	if (btrfs_transaction_cachep)
4547 		kmem_cache_destroy(btrfs_transaction_cachep);
4548 	if (btrfs_bit_radix_cachep)
4549 		kmem_cache_destroy(btrfs_bit_radix_cachep);
4550 	if (btrfs_path_cachep)
4551 		kmem_cache_destroy(btrfs_path_cachep);
4552 }
4553 
4554 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4555 				       unsigned long extra_flags,
4556 				       void (*ctor)(void *))
4557 {
4558 	return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4559 				 SLAB_MEM_SPREAD | extra_flags), ctor);
4560 }
4561 
4562 int btrfs_init_cachep(void)
4563 {
4564 	btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4565 					  sizeof(struct btrfs_inode),
4566 					  0, init_once);
4567 	if (!btrfs_inode_cachep)
4568 		goto fail;
4569 	btrfs_trans_handle_cachep =
4570 			btrfs_cache_create("btrfs_trans_handle_cache",
4571 					   sizeof(struct btrfs_trans_handle),
4572 					   0, NULL);
4573 	if (!btrfs_trans_handle_cachep)
4574 		goto fail;
4575 	btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4576 					     sizeof(struct btrfs_transaction),
4577 					     0, NULL);
4578 	if (!btrfs_transaction_cachep)
4579 		goto fail;
4580 	btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4581 					 sizeof(struct btrfs_path),
4582 					 0, NULL);
4583 	if (!btrfs_path_cachep)
4584 		goto fail;
4585 	btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4586 					      SLAB_DESTROY_BY_RCU, NULL);
4587 	if (!btrfs_bit_radix_cachep)
4588 		goto fail;
4589 	return 0;
4590 fail:
4591 	btrfs_destroy_cachep();
4592 	return -ENOMEM;
4593 }
4594 
4595 static int btrfs_getattr(struct vfsmount *mnt,
4596 			 struct dentry *dentry, struct kstat *stat)
4597 {
4598 	struct inode *inode = dentry->d_inode;
4599 	generic_fillattr(inode, stat);
4600 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4601 	stat->blksize = PAGE_CACHE_SIZE;
4602 	stat->blocks = (inode_get_bytes(inode) +
4603 			BTRFS_I(inode)->delalloc_bytes) >> 9;
4604 	return 0;
4605 }
4606 
4607 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4608 			   struct inode *new_dir, struct dentry *new_dentry)
4609 {
4610 	struct btrfs_trans_handle *trans;
4611 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
4612 	struct inode *new_inode = new_dentry->d_inode;
4613 	struct inode *old_inode = old_dentry->d_inode;
4614 	struct timespec ctime = CURRENT_TIME;
4615 	u64 index = 0;
4616 	int ret;
4617 
4618 	/* we're not allowed to rename between subvolumes */
4619 	if (BTRFS_I(old_inode)->root->root_key.objectid !=
4620 	    BTRFS_I(new_dir)->root->root_key.objectid)
4621 		return -EXDEV;
4622 
4623 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
4624 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4625 		return -ENOTEMPTY;
4626 	}
4627 
4628 	/* to rename a snapshot or subvolume, we need to juggle the
4629 	 * backrefs.  This isn't coded yet
4630 	 */
4631 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4632 		return -EXDEV;
4633 
4634 	ret = btrfs_check_free_space(root, 1, 0);
4635 	if (ret)
4636 		goto out_unlock;
4637 
4638 	trans = btrfs_start_transaction(root, 1);
4639 
4640 	btrfs_set_trans_block_group(trans, new_dir);
4641 
4642 	btrfs_inc_nlink(old_dentry->d_inode);
4643 	old_dir->i_ctime = old_dir->i_mtime = ctime;
4644 	new_dir->i_ctime = new_dir->i_mtime = ctime;
4645 	old_inode->i_ctime = ctime;
4646 
4647 	ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4648 				 old_dentry->d_name.name,
4649 				 old_dentry->d_name.len);
4650 	if (ret)
4651 		goto out_fail;
4652 
4653 	if (new_inode) {
4654 		new_inode->i_ctime = CURRENT_TIME;
4655 		ret = btrfs_unlink_inode(trans, root, new_dir,
4656 					 new_dentry->d_inode,
4657 					 new_dentry->d_name.name,
4658 					 new_dentry->d_name.len);
4659 		if (ret)
4660 			goto out_fail;
4661 		if (new_inode->i_nlink == 0) {
4662 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4663 			if (ret)
4664 				goto out_fail;
4665 		}
4666 
4667 	}
4668 	ret = btrfs_set_inode_index(new_dir, &index);
4669 	if (ret)
4670 		goto out_fail;
4671 
4672 	ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4673 			     old_inode, new_dentry->d_name.name,
4674 			     new_dentry->d_name.len, 1, index);
4675 	if (ret)
4676 		goto out_fail;
4677 
4678 out_fail:
4679 	btrfs_end_transaction_throttle(trans, root);
4680 out_unlock:
4681 	return ret;
4682 }
4683 
4684 /*
4685  * some fairly slow code that needs optimization. This walks the list
4686  * of all the inodes with pending delalloc and forces them to disk.
4687  */
4688 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4689 {
4690 	struct list_head *head = &root->fs_info->delalloc_inodes;
4691 	struct btrfs_inode *binode;
4692 	struct inode *inode;
4693 
4694 	if (root->fs_info->sb->s_flags & MS_RDONLY)
4695 		return -EROFS;
4696 
4697 	spin_lock(&root->fs_info->delalloc_lock);
4698 	while (!list_empty(head)) {
4699 		binode = list_entry(head->next, struct btrfs_inode,
4700 				    delalloc_inodes);
4701 		inode = igrab(&binode->vfs_inode);
4702 		if (!inode)
4703 			list_del_init(&binode->delalloc_inodes);
4704 		spin_unlock(&root->fs_info->delalloc_lock);
4705 		if (inode) {
4706 			filemap_flush(inode->i_mapping);
4707 			iput(inode);
4708 		}
4709 		cond_resched();
4710 		spin_lock(&root->fs_info->delalloc_lock);
4711 	}
4712 	spin_unlock(&root->fs_info->delalloc_lock);
4713 
4714 	/* the filemap_flush will queue IO into the worker threads, but
4715 	 * we have to make sure the IO is actually started and that
4716 	 * ordered extents get created before we return
4717 	 */
4718 	atomic_inc(&root->fs_info->async_submit_draining);
4719 	while (atomic_read(&root->fs_info->nr_async_submits) ||
4720 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
4721 		wait_event(root->fs_info->async_submit_wait,
4722 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4723 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4724 	}
4725 	atomic_dec(&root->fs_info->async_submit_draining);
4726 	return 0;
4727 }
4728 
4729 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4730 			 const char *symname)
4731 {
4732 	struct btrfs_trans_handle *trans;
4733 	struct btrfs_root *root = BTRFS_I(dir)->root;
4734 	struct btrfs_path *path;
4735 	struct btrfs_key key;
4736 	struct inode *inode = NULL;
4737 	int err;
4738 	int drop_inode = 0;
4739 	u64 objectid;
4740 	u64 index = 0 ;
4741 	int name_len;
4742 	int datasize;
4743 	unsigned long ptr;
4744 	struct btrfs_file_extent_item *ei;
4745 	struct extent_buffer *leaf;
4746 	unsigned long nr = 0;
4747 
4748 	name_len = strlen(symname) + 1;
4749 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4750 		return -ENAMETOOLONG;
4751 
4752 	err = btrfs_check_free_space(root, 1, 0);
4753 	if (err)
4754 		goto out_fail;
4755 
4756 	trans = btrfs_start_transaction(root, 1);
4757 	btrfs_set_trans_block_group(trans, dir);
4758 
4759 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4760 	if (err) {
4761 		err = -ENOSPC;
4762 		goto out_unlock;
4763 	}
4764 
4765 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4766 				dentry->d_name.len,
4767 				dentry->d_parent->d_inode->i_ino, objectid,
4768 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4769 				&index);
4770 	err = PTR_ERR(inode);
4771 	if (IS_ERR(inode))
4772 		goto out_unlock;
4773 
4774 	err = btrfs_init_inode_security(inode, dir);
4775 	if (err) {
4776 		drop_inode = 1;
4777 		goto out_unlock;
4778 	}
4779 
4780 	btrfs_set_trans_block_group(trans, inode);
4781 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4782 	if (err)
4783 		drop_inode = 1;
4784 	else {
4785 		inode->i_mapping->a_ops = &btrfs_aops;
4786 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4787 		inode->i_fop = &btrfs_file_operations;
4788 		inode->i_op = &btrfs_file_inode_operations;
4789 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4790 	}
4791 	dir->i_sb->s_dirt = 1;
4792 	btrfs_update_inode_block_group(trans, inode);
4793 	btrfs_update_inode_block_group(trans, dir);
4794 	if (drop_inode)
4795 		goto out_unlock;
4796 
4797 	path = btrfs_alloc_path();
4798 	BUG_ON(!path);
4799 	key.objectid = inode->i_ino;
4800 	key.offset = 0;
4801 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4802 	datasize = btrfs_file_extent_calc_inline_size(name_len);
4803 	err = btrfs_insert_empty_item(trans, root, path, &key,
4804 				      datasize);
4805 	if (err) {
4806 		drop_inode = 1;
4807 		goto out_unlock;
4808 	}
4809 	leaf = path->nodes[0];
4810 	ei = btrfs_item_ptr(leaf, path->slots[0],
4811 			    struct btrfs_file_extent_item);
4812 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4813 	btrfs_set_file_extent_type(leaf, ei,
4814 				   BTRFS_FILE_EXTENT_INLINE);
4815 	btrfs_set_file_extent_encryption(leaf, ei, 0);
4816 	btrfs_set_file_extent_compression(leaf, ei, 0);
4817 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4818 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4819 
4820 	ptr = btrfs_file_extent_inline_start(ei);
4821 	write_extent_buffer(leaf, symname, ptr, name_len);
4822 	btrfs_mark_buffer_dirty(leaf);
4823 	btrfs_free_path(path);
4824 
4825 	inode->i_op = &btrfs_symlink_inode_operations;
4826 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
4827 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4828 	inode_set_bytes(inode, name_len);
4829 	btrfs_i_size_write(inode, name_len - 1);
4830 	err = btrfs_update_inode(trans, root, inode);
4831 	if (err)
4832 		drop_inode = 1;
4833 
4834 out_unlock:
4835 	nr = trans->blocks_used;
4836 	btrfs_end_transaction_throttle(trans, root);
4837 out_fail:
4838 	if (drop_inode) {
4839 		inode_dec_link_count(inode);
4840 		iput(inode);
4841 	}
4842 	btrfs_btree_balance_dirty(root, nr);
4843 	return err;
4844 }
4845 
4846 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4847 			       u64 alloc_hint, int mode)
4848 {
4849 	struct btrfs_trans_handle *trans;
4850 	struct btrfs_root *root = BTRFS_I(inode)->root;
4851 	struct btrfs_key ins;
4852 	u64 alloc_size;
4853 	u64 cur_offset = start;
4854 	u64 num_bytes = end - start;
4855 	int ret = 0;
4856 
4857 	trans = btrfs_join_transaction(root, 1);
4858 	BUG_ON(!trans);
4859 	btrfs_set_trans_block_group(trans, inode);
4860 
4861 	while (num_bytes > 0) {
4862 		alloc_size = min(num_bytes, root->fs_info->max_extent);
4863 		ret = btrfs_reserve_extent(trans, root, alloc_size,
4864 					   root->sectorsize, 0, alloc_hint,
4865 					   (u64)-1, &ins, 1);
4866 		if (ret) {
4867 			WARN_ON(1);
4868 			goto out;
4869 		}
4870 		ret = insert_reserved_file_extent(trans, inode,
4871 						  cur_offset, ins.objectid,
4872 						  ins.offset, ins.offset,
4873 						  ins.offset, 0, 0, 0,
4874 						  BTRFS_FILE_EXTENT_PREALLOC);
4875 		BUG_ON(ret);
4876 		num_bytes -= ins.offset;
4877 		cur_offset += ins.offset;
4878 		alloc_hint = ins.objectid + ins.offset;
4879 	}
4880 out:
4881 	if (cur_offset > start) {
4882 		inode->i_ctime = CURRENT_TIME;
4883 		btrfs_set_flag(inode, PREALLOC);
4884 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4885 		    cur_offset > i_size_read(inode))
4886 			btrfs_i_size_write(inode, cur_offset);
4887 		ret = btrfs_update_inode(trans, root, inode);
4888 		BUG_ON(ret);
4889 	}
4890 
4891 	btrfs_end_transaction(trans, root);
4892 	return ret;
4893 }
4894 
4895 static long btrfs_fallocate(struct inode *inode, int mode,
4896 			    loff_t offset, loff_t len)
4897 {
4898 	u64 cur_offset;
4899 	u64 last_byte;
4900 	u64 alloc_start;
4901 	u64 alloc_end;
4902 	u64 alloc_hint = 0;
4903 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4904 	struct extent_map *em;
4905 	int ret;
4906 
4907 	alloc_start = offset & ~mask;
4908 	alloc_end =  (offset + len + mask) & ~mask;
4909 
4910 	mutex_lock(&inode->i_mutex);
4911 	if (alloc_start > inode->i_size) {
4912 		ret = btrfs_cont_expand(inode, alloc_start);
4913 		if (ret)
4914 			goto out;
4915 	}
4916 
4917 	while (1) {
4918 		struct btrfs_ordered_extent *ordered;
4919 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4920 			    alloc_end - 1, GFP_NOFS);
4921 		ordered = btrfs_lookup_first_ordered_extent(inode,
4922 							    alloc_end - 1);
4923 		if (ordered &&
4924 		    ordered->file_offset + ordered->len > alloc_start &&
4925 		    ordered->file_offset < alloc_end) {
4926 			btrfs_put_ordered_extent(ordered);
4927 			unlock_extent(&BTRFS_I(inode)->io_tree,
4928 				      alloc_start, alloc_end - 1, GFP_NOFS);
4929 			btrfs_wait_ordered_range(inode, alloc_start,
4930 						 alloc_end - alloc_start);
4931 		} else {
4932 			if (ordered)
4933 				btrfs_put_ordered_extent(ordered);
4934 			break;
4935 		}
4936 	}
4937 
4938 	cur_offset = alloc_start;
4939 	while (1) {
4940 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4941 				      alloc_end - cur_offset, 0);
4942 		BUG_ON(IS_ERR(em) || !em);
4943 		last_byte = min(extent_map_end(em), alloc_end);
4944 		last_byte = (last_byte + mask) & ~mask;
4945 		if (em->block_start == EXTENT_MAP_HOLE) {
4946 			ret = prealloc_file_range(inode, cur_offset,
4947 					last_byte, alloc_hint, mode);
4948 			if (ret < 0) {
4949 				free_extent_map(em);
4950 				break;
4951 			}
4952 		}
4953 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4954 			alloc_hint = em->block_start;
4955 		free_extent_map(em);
4956 
4957 		cur_offset = last_byte;
4958 		if (cur_offset >= alloc_end) {
4959 			ret = 0;
4960 			break;
4961 		}
4962 	}
4963 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4964 		      GFP_NOFS);
4965 out:
4966 	mutex_unlock(&inode->i_mutex);
4967 	return ret;
4968 }
4969 
4970 static int btrfs_set_page_dirty(struct page *page)
4971 {
4972 	return __set_page_dirty_nobuffers(page);
4973 }
4974 
4975 static int btrfs_permission(struct inode *inode, int mask)
4976 {
4977 	if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4978 		return -EACCES;
4979 	return generic_permission(inode, mask, btrfs_check_acl);
4980 }
4981 
4982 static struct inode_operations btrfs_dir_inode_operations = {
4983 	.getattr	= btrfs_getattr,
4984 	.lookup		= btrfs_lookup,
4985 	.create		= btrfs_create,
4986 	.unlink		= btrfs_unlink,
4987 	.link		= btrfs_link,
4988 	.mkdir		= btrfs_mkdir,
4989 	.rmdir		= btrfs_rmdir,
4990 	.rename		= btrfs_rename,
4991 	.symlink	= btrfs_symlink,
4992 	.setattr	= btrfs_setattr,
4993 	.mknod		= btrfs_mknod,
4994 	.setxattr	= btrfs_setxattr,
4995 	.getxattr	= btrfs_getxattr,
4996 	.listxattr	= btrfs_listxattr,
4997 	.removexattr	= btrfs_removexattr,
4998 	.permission	= btrfs_permission,
4999 };
5000 static struct inode_operations btrfs_dir_ro_inode_operations = {
5001 	.lookup		= btrfs_lookup,
5002 	.permission	= btrfs_permission,
5003 };
5004 static struct file_operations btrfs_dir_file_operations = {
5005 	.llseek		= generic_file_llseek,
5006 	.read		= generic_read_dir,
5007 	.readdir	= btrfs_real_readdir,
5008 	.unlocked_ioctl	= btrfs_ioctl,
5009 #ifdef CONFIG_COMPAT
5010 	.compat_ioctl	= btrfs_ioctl,
5011 #endif
5012 	.release        = btrfs_release_file,
5013 	.fsync		= btrfs_sync_file,
5014 };
5015 
5016 static struct extent_io_ops btrfs_extent_io_ops = {
5017 	.fill_delalloc = run_delalloc_range,
5018 	.submit_bio_hook = btrfs_submit_bio_hook,
5019 	.merge_bio_hook = btrfs_merge_bio_hook,
5020 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
5021 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
5022 	.writepage_start_hook = btrfs_writepage_start_hook,
5023 	.readpage_io_failed_hook = btrfs_io_failed_hook,
5024 	.set_bit_hook = btrfs_set_bit_hook,
5025 	.clear_bit_hook = btrfs_clear_bit_hook,
5026 };
5027 
5028 /*
5029  * btrfs doesn't support the bmap operation because swapfiles
5030  * use bmap to make a mapping of extents in the file.  They assume
5031  * these extents won't change over the life of the file and they
5032  * use the bmap result to do IO directly to the drive.
5033  *
5034  * the btrfs bmap call would return logical addresses that aren't
5035  * suitable for IO and they also will change frequently as COW
5036  * operations happen.  So, swapfile + btrfs == corruption.
5037  *
5038  * For now we're avoiding this by dropping bmap.
5039  */
5040 static struct address_space_operations btrfs_aops = {
5041 	.readpage	= btrfs_readpage,
5042 	.writepage	= btrfs_writepage,
5043 	.writepages	= btrfs_writepages,
5044 	.readpages	= btrfs_readpages,
5045 	.sync_page	= block_sync_page,
5046 	.direct_IO	= btrfs_direct_IO,
5047 	.invalidatepage = btrfs_invalidatepage,
5048 	.releasepage	= btrfs_releasepage,
5049 	.set_page_dirty	= btrfs_set_page_dirty,
5050 };
5051 
5052 static struct address_space_operations btrfs_symlink_aops = {
5053 	.readpage	= btrfs_readpage,
5054 	.writepage	= btrfs_writepage,
5055 	.invalidatepage = btrfs_invalidatepage,
5056 	.releasepage	= btrfs_releasepage,
5057 };
5058 
5059 static struct inode_operations btrfs_file_inode_operations = {
5060 	.truncate	= btrfs_truncate,
5061 	.getattr	= btrfs_getattr,
5062 	.setattr	= btrfs_setattr,
5063 	.setxattr	= btrfs_setxattr,
5064 	.getxattr	= btrfs_getxattr,
5065 	.listxattr      = btrfs_listxattr,
5066 	.removexattr	= btrfs_removexattr,
5067 	.permission	= btrfs_permission,
5068 	.fallocate	= btrfs_fallocate,
5069 	.fiemap		= btrfs_fiemap,
5070 };
5071 static struct inode_operations btrfs_special_inode_operations = {
5072 	.getattr	= btrfs_getattr,
5073 	.setattr	= btrfs_setattr,
5074 	.permission	= btrfs_permission,
5075 	.setxattr	= btrfs_setxattr,
5076 	.getxattr	= btrfs_getxattr,
5077 	.listxattr	= btrfs_listxattr,
5078 	.removexattr	= btrfs_removexattr,
5079 };
5080 static struct inode_operations btrfs_symlink_inode_operations = {
5081 	.readlink	= generic_readlink,
5082 	.follow_link	= page_follow_link_light,
5083 	.put_link	= page_put_link,
5084 	.permission	= btrfs_permission,
5085 	.setxattr	= btrfs_setxattr,
5086 	.getxattr	= btrfs_getxattr,
5087 	.listxattr	= btrfs_listxattr,
5088 	.removexattr	= btrfs_removexattr,
5089 };
5090