1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/posix_acl_xattr.h> 46 #include "compat.h" 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "ordered-data.h" 53 #include "xattr.h" 54 #include "tree-log.h" 55 #include "volumes.h" 56 #include "compression.h" 57 #include "locking.h" 58 #include "free-space-cache.h" 59 #include "inode-map.h" 60 #include "backref.h" 61 #include "hash.h" 62 63 struct btrfs_iget_args { 64 u64 ino; 65 struct btrfs_root *root; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_dir_ro_inode_operations; 71 static const struct inode_operations btrfs_special_inode_operations; 72 static const struct inode_operations btrfs_file_inode_operations; 73 static const struct address_space_operations btrfs_aops; 74 static const struct address_space_operations btrfs_symlink_aops; 75 static const struct file_operations btrfs_dir_file_operations; 76 static struct extent_io_ops btrfs_extent_io_ops; 77 78 static struct kmem_cache *btrfs_inode_cachep; 79 static struct kmem_cache *btrfs_delalloc_work_cachep; 80 struct kmem_cache *btrfs_trans_handle_cachep; 81 struct kmem_cache *btrfs_transaction_cachep; 82 struct kmem_cache *btrfs_path_cachep; 83 struct kmem_cache *btrfs_free_space_cachep; 84 85 #define S_SHIFT 12 86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 94 }; 95 96 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 97 static int btrfs_truncate(struct inode *inode); 98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 99 static noinline int cow_file_range(struct inode *inode, 100 struct page *locked_page, 101 u64 start, u64 end, int *page_started, 102 unsigned long *nr_written, int unlock); 103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 104 u64 len, u64 orig_start, 105 u64 block_start, u64 block_len, 106 u64 orig_block_len, u64 ram_bytes, 107 int type); 108 109 static int btrfs_dirty_inode(struct inode *inode); 110 111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 112 struct inode *inode, struct inode *dir, 113 const struct qstr *qstr) 114 { 115 int err; 116 117 err = btrfs_init_acl(trans, inode, dir); 118 if (!err) 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 120 return err; 121 } 122 123 /* 124 * this does all the hard work for inserting an inline extent into 125 * the btree. The caller should have done a btrfs_drop_extents so that 126 * no overlapping inline items exist in the btree 127 */ 128 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 129 struct btrfs_root *root, struct inode *inode, 130 u64 start, size_t size, size_t compressed_size, 131 int compress_type, 132 struct page **compressed_pages) 133 { 134 struct btrfs_key key; 135 struct btrfs_path *path; 136 struct extent_buffer *leaf; 137 struct page *page = NULL; 138 char *kaddr; 139 unsigned long ptr; 140 struct btrfs_file_extent_item *ei; 141 int err = 0; 142 int ret; 143 size_t cur_size = size; 144 size_t datasize; 145 unsigned long offset; 146 147 if (compressed_size && compressed_pages) 148 cur_size = compressed_size; 149 150 path = btrfs_alloc_path(); 151 if (!path) 152 return -ENOMEM; 153 154 path->leave_spinning = 1; 155 156 key.objectid = btrfs_ino(inode); 157 key.offset = start; 158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 159 datasize = btrfs_file_extent_calc_inline_size(cur_size); 160 161 inode_add_bytes(inode, size); 162 ret = btrfs_insert_empty_item(trans, root, path, &key, 163 datasize); 164 if (ret) { 165 err = ret; 166 goto fail; 167 } 168 leaf = path->nodes[0]; 169 ei = btrfs_item_ptr(leaf, path->slots[0], 170 struct btrfs_file_extent_item); 171 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 173 btrfs_set_file_extent_encryption(leaf, ei, 0); 174 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 175 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 176 ptr = btrfs_file_extent_inline_start(ei); 177 178 if (compress_type != BTRFS_COMPRESS_NONE) { 179 struct page *cpage; 180 int i = 0; 181 while (compressed_size > 0) { 182 cpage = compressed_pages[i]; 183 cur_size = min_t(unsigned long, compressed_size, 184 PAGE_CACHE_SIZE); 185 186 kaddr = kmap_atomic(cpage); 187 write_extent_buffer(leaf, kaddr, ptr, cur_size); 188 kunmap_atomic(kaddr); 189 190 i++; 191 ptr += cur_size; 192 compressed_size -= cur_size; 193 } 194 btrfs_set_file_extent_compression(leaf, ei, 195 compress_type); 196 } else { 197 page = find_get_page(inode->i_mapping, 198 start >> PAGE_CACHE_SHIFT); 199 btrfs_set_file_extent_compression(leaf, ei, 0); 200 kaddr = kmap_atomic(page); 201 offset = start & (PAGE_CACHE_SIZE - 1); 202 write_extent_buffer(leaf, kaddr + offset, ptr, size); 203 kunmap_atomic(kaddr); 204 page_cache_release(page); 205 } 206 btrfs_mark_buffer_dirty(leaf); 207 btrfs_free_path(path); 208 209 /* 210 * we're an inline extent, so nobody can 211 * extend the file past i_size without locking 212 * a page we already have locked. 213 * 214 * We must do any isize and inode updates 215 * before we unlock the pages. Otherwise we 216 * could end up racing with unlink. 217 */ 218 BTRFS_I(inode)->disk_i_size = inode->i_size; 219 ret = btrfs_update_inode(trans, root, inode); 220 221 return ret; 222 fail: 223 btrfs_free_path(path); 224 return err; 225 } 226 227 228 /* 229 * conditionally insert an inline extent into the file. This 230 * does the checks required to make sure the data is small enough 231 * to fit as an inline extent. 232 */ 233 static noinline int cow_file_range_inline(struct btrfs_root *root, 234 struct inode *inode, u64 start, 235 u64 end, size_t compressed_size, 236 int compress_type, 237 struct page **compressed_pages) 238 { 239 struct btrfs_trans_handle *trans; 240 u64 isize = i_size_read(inode); 241 u64 actual_end = min(end + 1, isize); 242 u64 inline_len = actual_end - start; 243 u64 aligned_end = ALIGN(end, root->sectorsize); 244 u64 data_len = inline_len; 245 int ret; 246 247 if (compressed_size) 248 data_len = compressed_size; 249 250 if (start > 0 || 251 actual_end >= PAGE_CACHE_SIZE || 252 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 253 (!compressed_size && 254 (actual_end & (root->sectorsize - 1)) == 0) || 255 end + 1 < isize || 256 data_len > root->fs_info->max_inline) { 257 return 1; 258 } 259 260 trans = btrfs_join_transaction(root); 261 if (IS_ERR(trans)) 262 return PTR_ERR(trans); 263 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 264 265 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 266 if (ret) { 267 btrfs_abort_transaction(trans, root, ret); 268 goto out; 269 } 270 271 if (isize > actual_end) 272 inline_len = min_t(u64, isize, actual_end); 273 ret = insert_inline_extent(trans, root, inode, start, 274 inline_len, compressed_size, 275 compress_type, compressed_pages); 276 if (ret && ret != -ENOSPC) { 277 btrfs_abort_transaction(trans, root, ret); 278 goto out; 279 } else if (ret == -ENOSPC) { 280 ret = 1; 281 goto out; 282 } 283 284 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 285 btrfs_delalloc_release_metadata(inode, end + 1 - start); 286 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 287 out: 288 btrfs_end_transaction(trans, root); 289 return ret; 290 } 291 292 struct async_extent { 293 u64 start; 294 u64 ram_size; 295 u64 compressed_size; 296 struct page **pages; 297 unsigned long nr_pages; 298 int compress_type; 299 struct list_head list; 300 }; 301 302 struct async_cow { 303 struct inode *inode; 304 struct btrfs_root *root; 305 struct page *locked_page; 306 u64 start; 307 u64 end; 308 struct list_head extents; 309 struct btrfs_work work; 310 }; 311 312 static noinline int add_async_extent(struct async_cow *cow, 313 u64 start, u64 ram_size, 314 u64 compressed_size, 315 struct page **pages, 316 unsigned long nr_pages, 317 int compress_type) 318 { 319 struct async_extent *async_extent; 320 321 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 322 BUG_ON(!async_extent); /* -ENOMEM */ 323 async_extent->start = start; 324 async_extent->ram_size = ram_size; 325 async_extent->compressed_size = compressed_size; 326 async_extent->pages = pages; 327 async_extent->nr_pages = nr_pages; 328 async_extent->compress_type = compress_type; 329 list_add_tail(&async_extent->list, &cow->extents); 330 return 0; 331 } 332 333 /* 334 * we create compressed extents in two phases. The first 335 * phase compresses a range of pages that have already been 336 * locked (both pages and state bits are locked). 337 * 338 * This is done inside an ordered work queue, and the compression 339 * is spread across many cpus. The actual IO submission is step 340 * two, and the ordered work queue takes care of making sure that 341 * happens in the same order things were put onto the queue by 342 * writepages and friends. 343 * 344 * If this code finds it can't get good compression, it puts an 345 * entry onto the work queue to write the uncompressed bytes. This 346 * makes sure that both compressed inodes and uncompressed inodes 347 * are written in the same order that the flusher thread sent them 348 * down. 349 */ 350 static noinline int compress_file_range(struct inode *inode, 351 struct page *locked_page, 352 u64 start, u64 end, 353 struct async_cow *async_cow, 354 int *num_added) 355 { 356 struct btrfs_root *root = BTRFS_I(inode)->root; 357 u64 num_bytes; 358 u64 blocksize = root->sectorsize; 359 u64 actual_end; 360 u64 isize = i_size_read(inode); 361 int ret = 0; 362 struct page **pages = NULL; 363 unsigned long nr_pages; 364 unsigned long nr_pages_ret = 0; 365 unsigned long total_compressed = 0; 366 unsigned long total_in = 0; 367 unsigned long max_compressed = 128 * 1024; 368 unsigned long max_uncompressed = 128 * 1024; 369 int i; 370 int will_compress; 371 int compress_type = root->fs_info->compress_type; 372 int redirty = 0; 373 374 /* if this is a small write inside eof, kick off a defrag */ 375 if ((end - start + 1) < 16 * 1024 && 376 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 377 btrfs_add_inode_defrag(NULL, inode); 378 379 actual_end = min_t(u64, isize, end + 1); 380 again: 381 will_compress = 0; 382 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 383 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 384 385 /* 386 * we don't want to send crud past the end of i_size through 387 * compression, that's just a waste of CPU time. So, if the 388 * end of the file is before the start of our current 389 * requested range of bytes, we bail out to the uncompressed 390 * cleanup code that can deal with all of this. 391 * 392 * It isn't really the fastest way to fix things, but this is a 393 * very uncommon corner. 394 */ 395 if (actual_end <= start) 396 goto cleanup_and_bail_uncompressed; 397 398 total_compressed = actual_end - start; 399 400 /* we want to make sure that amount of ram required to uncompress 401 * an extent is reasonable, so we limit the total size in ram 402 * of a compressed extent to 128k. This is a crucial number 403 * because it also controls how easily we can spread reads across 404 * cpus for decompression. 405 * 406 * We also want to make sure the amount of IO required to do 407 * a random read is reasonably small, so we limit the size of 408 * a compressed extent to 128k. 409 */ 410 total_compressed = min(total_compressed, max_uncompressed); 411 num_bytes = ALIGN(end - start + 1, blocksize); 412 num_bytes = max(blocksize, num_bytes); 413 total_in = 0; 414 ret = 0; 415 416 /* 417 * we do compression for mount -o compress and when the 418 * inode has not been flagged as nocompress. This flag can 419 * change at any time if we discover bad compression ratios. 420 */ 421 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 422 (btrfs_test_opt(root, COMPRESS) || 423 (BTRFS_I(inode)->force_compress) || 424 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 425 WARN_ON(pages); 426 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 427 if (!pages) { 428 /* just bail out to the uncompressed code */ 429 goto cont; 430 } 431 432 if (BTRFS_I(inode)->force_compress) 433 compress_type = BTRFS_I(inode)->force_compress; 434 435 /* 436 * we need to call clear_page_dirty_for_io on each 437 * page in the range. Otherwise applications with the file 438 * mmap'd can wander in and change the page contents while 439 * we are compressing them. 440 * 441 * If the compression fails for any reason, we set the pages 442 * dirty again later on. 443 */ 444 extent_range_clear_dirty_for_io(inode, start, end); 445 redirty = 1; 446 ret = btrfs_compress_pages(compress_type, 447 inode->i_mapping, start, 448 total_compressed, pages, 449 nr_pages, &nr_pages_ret, 450 &total_in, 451 &total_compressed, 452 max_compressed); 453 454 if (!ret) { 455 unsigned long offset = total_compressed & 456 (PAGE_CACHE_SIZE - 1); 457 struct page *page = pages[nr_pages_ret - 1]; 458 char *kaddr; 459 460 /* zero the tail end of the last page, we might be 461 * sending it down to disk 462 */ 463 if (offset) { 464 kaddr = kmap_atomic(page); 465 memset(kaddr + offset, 0, 466 PAGE_CACHE_SIZE - offset); 467 kunmap_atomic(kaddr); 468 } 469 will_compress = 1; 470 } 471 } 472 cont: 473 if (start == 0) { 474 /* lets try to make an inline extent */ 475 if (ret || total_in < (actual_end - start)) { 476 /* we didn't compress the entire range, try 477 * to make an uncompressed inline extent. 478 */ 479 ret = cow_file_range_inline(root, inode, start, end, 480 0, 0, NULL); 481 } else { 482 /* try making a compressed inline extent */ 483 ret = cow_file_range_inline(root, inode, start, end, 484 total_compressed, 485 compress_type, pages); 486 } 487 if (ret <= 0) { 488 unsigned long clear_flags = EXTENT_DELALLOC | 489 EXTENT_DEFRAG; 490 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 491 492 /* 493 * inline extent creation worked or returned error, 494 * we don't need to create any more async work items. 495 * Unlock and free up our temp pages. 496 */ 497 extent_clear_unlock_delalloc(inode, start, end, NULL, 498 clear_flags, PAGE_UNLOCK | 499 PAGE_CLEAR_DIRTY | 500 PAGE_SET_WRITEBACK | 501 PAGE_END_WRITEBACK); 502 goto free_pages_out; 503 } 504 } 505 506 if (will_compress) { 507 /* 508 * we aren't doing an inline extent round the compressed size 509 * up to a block size boundary so the allocator does sane 510 * things 511 */ 512 total_compressed = ALIGN(total_compressed, blocksize); 513 514 /* 515 * one last check to make sure the compression is really a 516 * win, compare the page count read with the blocks on disk 517 */ 518 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 519 if (total_compressed >= total_in) { 520 will_compress = 0; 521 } else { 522 num_bytes = total_in; 523 } 524 } 525 if (!will_compress && pages) { 526 /* 527 * the compression code ran but failed to make things smaller, 528 * free any pages it allocated and our page pointer array 529 */ 530 for (i = 0; i < nr_pages_ret; i++) { 531 WARN_ON(pages[i]->mapping); 532 page_cache_release(pages[i]); 533 } 534 kfree(pages); 535 pages = NULL; 536 total_compressed = 0; 537 nr_pages_ret = 0; 538 539 /* flag the file so we don't compress in the future */ 540 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 541 !(BTRFS_I(inode)->force_compress)) { 542 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 543 } 544 } 545 if (will_compress) { 546 *num_added += 1; 547 548 /* the async work queues will take care of doing actual 549 * allocation on disk for these compressed pages, 550 * and will submit them to the elevator. 551 */ 552 add_async_extent(async_cow, start, num_bytes, 553 total_compressed, pages, nr_pages_ret, 554 compress_type); 555 556 if (start + num_bytes < end) { 557 start += num_bytes; 558 pages = NULL; 559 cond_resched(); 560 goto again; 561 } 562 } else { 563 cleanup_and_bail_uncompressed: 564 /* 565 * No compression, but we still need to write the pages in 566 * the file we've been given so far. redirty the locked 567 * page if it corresponds to our extent and set things up 568 * for the async work queue to run cow_file_range to do 569 * the normal delalloc dance 570 */ 571 if (page_offset(locked_page) >= start && 572 page_offset(locked_page) <= end) { 573 __set_page_dirty_nobuffers(locked_page); 574 /* unlocked later on in the async handlers */ 575 } 576 if (redirty) 577 extent_range_redirty_for_io(inode, start, end); 578 add_async_extent(async_cow, start, end - start + 1, 579 0, NULL, 0, BTRFS_COMPRESS_NONE); 580 *num_added += 1; 581 } 582 583 out: 584 return ret; 585 586 free_pages_out: 587 for (i = 0; i < nr_pages_ret; i++) { 588 WARN_ON(pages[i]->mapping); 589 page_cache_release(pages[i]); 590 } 591 kfree(pages); 592 593 goto out; 594 } 595 596 /* 597 * phase two of compressed writeback. This is the ordered portion 598 * of the code, which only gets called in the order the work was 599 * queued. We walk all the async extents created by compress_file_range 600 * and send them down to the disk. 601 */ 602 static noinline int submit_compressed_extents(struct inode *inode, 603 struct async_cow *async_cow) 604 { 605 struct async_extent *async_extent; 606 u64 alloc_hint = 0; 607 struct btrfs_key ins; 608 struct extent_map *em; 609 struct btrfs_root *root = BTRFS_I(inode)->root; 610 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 611 struct extent_io_tree *io_tree; 612 int ret = 0; 613 614 if (list_empty(&async_cow->extents)) 615 return 0; 616 617 again: 618 while (!list_empty(&async_cow->extents)) { 619 async_extent = list_entry(async_cow->extents.next, 620 struct async_extent, list); 621 list_del(&async_extent->list); 622 623 io_tree = &BTRFS_I(inode)->io_tree; 624 625 retry: 626 /* did the compression code fall back to uncompressed IO? */ 627 if (!async_extent->pages) { 628 int page_started = 0; 629 unsigned long nr_written = 0; 630 631 lock_extent(io_tree, async_extent->start, 632 async_extent->start + 633 async_extent->ram_size - 1); 634 635 /* allocate blocks */ 636 ret = cow_file_range(inode, async_cow->locked_page, 637 async_extent->start, 638 async_extent->start + 639 async_extent->ram_size - 1, 640 &page_started, &nr_written, 0); 641 642 /* JDM XXX */ 643 644 /* 645 * if page_started, cow_file_range inserted an 646 * inline extent and took care of all the unlocking 647 * and IO for us. Otherwise, we need to submit 648 * all those pages down to the drive. 649 */ 650 if (!page_started && !ret) 651 extent_write_locked_range(io_tree, 652 inode, async_extent->start, 653 async_extent->start + 654 async_extent->ram_size - 1, 655 btrfs_get_extent, 656 WB_SYNC_ALL); 657 else if (ret) 658 unlock_page(async_cow->locked_page); 659 kfree(async_extent); 660 cond_resched(); 661 continue; 662 } 663 664 lock_extent(io_tree, async_extent->start, 665 async_extent->start + async_extent->ram_size - 1); 666 667 ret = btrfs_reserve_extent(root, 668 async_extent->compressed_size, 669 async_extent->compressed_size, 670 0, alloc_hint, &ins, 1); 671 if (ret) { 672 int i; 673 674 for (i = 0; i < async_extent->nr_pages; i++) { 675 WARN_ON(async_extent->pages[i]->mapping); 676 page_cache_release(async_extent->pages[i]); 677 } 678 kfree(async_extent->pages); 679 async_extent->nr_pages = 0; 680 async_extent->pages = NULL; 681 682 if (ret == -ENOSPC) { 683 unlock_extent(io_tree, async_extent->start, 684 async_extent->start + 685 async_extent->ram_size - 1); 686 goto retry; 687 } 688 goto out_free; 689 } 690 691 /* 692 * here we're doing allocation and writeback of the 693 * compressed pages 694 */ 695 btrfs_drop_extent_cache(inode, async_extent->start, 696 async_extent->start + 697 async_extent->ram_size - 1, 0); 698 699 em = alloc_extent_map(); 700 if (!em) { 701 ret = -ENOMEM; 702 goto out_free_reserve; 703 } 704 em->start = async_extent->start; 705 em->len = async_extent->ram_size; 706 em->orig_start = em->start; 707 em->mod_start = em->start; 708 em->mod_len = em->len; 709 710 em->block_start = ins.objectid; 711 em->block_len = ins.offset; 712 em->orig_block_len = ins.offset; 713 em->ram_bytes = async_extent->ram_size; 714 em->bdev = root->fs_info->fs_devices->latest_bdev; 715 em->compress_type = async_extent->compress_type; 716 set_bit(EXTENT_FLAG_PINNED, &em->flags); 717 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 718 em->generation = -1; 719 720 while (1) { 721 write_lock(&em_tree->lock); 722 ret = add_extent_mapping(em_tree, em, 1); 723 write_unlock(&em_tree->lock); 724 if (ret != -EEXIST) { 725 free_extent_map(em); 726 break; 727 } 728 btrfs_drop_extent_cache(inode, async_extent->start, 729 async_extent->start + 730 async_extent->ram_size - 1, 0); 731 } 732 733 if (ret) 734 goto out_free_reserve; 735 736 ret = btrfs_add_ordered_extent_compress(inode, 737 async_extent->start, 738 ins.objectid, 739 async_extent->ram_size, 740 ins.offset, 741 BTRFS_ORDERED_COMPRESSED, 742 async_extent->compress_type); 743 if (ret) 744 goto out_free_reserve; 745 746 /* 747 * clear dirty, set writeback and unlock the pages. 748 */ 749 extent_clear_unlock_delalloc(inode, async_extent->start, 750 async_extent->start + 751 async_extent->ram_size - 1, 752 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 753 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 754 PAGE_SET_WRITEBACK); 755 ret = btrfs_submit_compressed_write(inode, 756 async_extent->start, 757 async_extent->ram_size, 758 ins.objectid, 759 ins.offset, async_extent->pages, 760 async_extent->nr_pages); 761 alloc_hint = ins.objectid + ins.offset; 762 kfree(async_extent); 763 if (ret) 764 goto out; 765 cond_resched(); 766 } 767 ret = 0; 768 out: 769 return ret; 770 out_free_reserve: 771 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 772 out_free: 773 extent_clear_unlock_delalloc(inode, async_extent->start, 774 async_extent->start + 775 async_extent->ram_size - 1, 776 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 777 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 778 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 779 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 780 kfree(async_extent); 781 goto again; 782 } 783 784 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 785 u64 num_bytes) 786 { 787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 788 struct extent_map *em; 789 u64 alloc_hint = 0; 790 791 read_lock(&em_tree->lock); 792 em = search_extent_mapping(em_tree, start, num_bytes); 793 if (em) { 794 /* 795 * if block start isn't an actual block number then find the 796 * first block in this inode and use that as a hint. If that 797 * block is also bogus then just don't worry about it. 798 */ 799 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 800 free_extent_map(em); 801 em = search_extent_mapping(em_tree, 0, 0); 802 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 803 alloc_hint = em->block_start; 804 if (em) 805 free_extent_map(em); 806 } else { 807 alloc_hint = em->block_start; 808 free_extent_map(em); 809 } 810 } 811 read_unlock(&em_tree->lock); 812 813 return alloc_hint; 814 } 815 816 /* 817 * when extent_io.c finds a delayed allocation range in the file, 818 * the call backs end up in this code. The basic idea is to 819 * allocate extents on disk for the range, and create ordered data structs 820 * in ram to track those extents. 821 * 822 * locked_page is the page that writepage had locked already. We use 823 * it to make sure we don't do extra locks or unlocks. 824 * 825 * *page_started is set to one if we unlock locked_page and do everything 826 * required to start IO on it. It may be clean and already done with 827 * IO when we return. 828 */ 829 static noinline int cow_file_range(struct inode *inode, 830 struct page *locked_page, 831 u64 start, u64 end, int *page_started, 832 unsigned long *nr_written, 833 int unlock) 834 { 835 struct btrfs_root *root = BTRFS_I(inode)->root; 836 u64 alloc_hint = 0; 837 u64 num_bytes; 838 unsigned long ram_size; 839 u64 disk_num_bytes; 840 u64 cur_alloc_size; 841 u64 blocksize = root->sectorsize; 842 struct btrfs_key ins; 843 struct extent_map *em; 844 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 845 int ret = 0; 846 847 BUG_ON(btrfs_is_free_space_inode(inode)); 848 849 num_bytes = ALIGN(end - start + 1, blocksize); 850 num_bytes = max(blocksize, num_bytes); 851 disk_num_bytes = num_bytes; 852 853 /* if this is a small write inside eof, kick off defrag */ 854 if (num_bytes < 64 * 1024 && 855 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 856 btrfs_add_inode_defrag(NULL, inode); 857 858 if (start == 0) { 859 /* lets try to make an inline extent */ 860 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 861 NULL); 862 if (ret == 0) { 863 extent_clear_unlock_delalloc(inode, start, end, NULL, 864 EXTENT_LOCKED | EXTENT_DELALLOC | 865 EXTENT_DEFRAG, PAGE_UNLOCK | 866 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 867 PAGE_END_WRITEBACK); 868 869 *nr_written = *nr_written + 870 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 871 *page_started = 1; 872 goto out; 873 } else if (ret < 0) { 874 goto out_unlock; 875 } 876 } 877 878 BUG_ON(disk_num_bytes > 879 btrfs_super_total_bytes(root->fs_info->super_copy)); 880 881 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 882 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 883 884 while (disk_num_bytes > 0) { 885 unsigned long op; 886 887 cur_alloc_size = disk_num_bytes; 888 ret = btrfs_reserve_extent(root, cur_alloc_size, 889 root->sectorsize, 0, alloc_hint, 890 &ins, 1); 891 if (ret < 0) 892 goto out_unlock; 893 894 em = alloc_extent_map(); 895 if (!em) { 896 ret = -ENOMEM; 897 goto out_reserve; 898 } 899 em->start = start; 900 em->orig_start = em->start; 901 ram_size = ins.offset; 902 em->len = ins.offset; 903 em->mod_start = em->start; 904 em->mod_len = em->len; 905 906 em->block_start = ins.objectid; 907 em->block_len = ins.offset; 908 em->orig_block_len = ins.offset; 909 em->ram_bytes = ram_size; 910 em->bdev = root->fs_info->fs_devices->latest_bdev; 911 set_bit(EXTENT_FLAG_PINNED, &em->flags); 912 em->generation = -1; 913 914 while (1) { 915 write_lock(&em_tree->lock); 916 ret = add_extent_mapping(em_tree, em, 1); 917 write_unlock(&em_tree->lock); 918 if (ret != -EEXIST) { 919 free_extent_map(em); 920 break; 921 } 922 btrfs_drop_extent_cache(inode, start, 923 start + ram_size - 1, 0); 924 } 925 if (ret) 926 goto out_reserve; 927 928 cur_alloc_size = ins.offset; 929 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 930 ram_size, cur_alloc_size, 0); 931 if (ret) 932 goto out_reserve; 933 934 if (root->root_key.objectid == 935 BTRFS_DATA_RELOC_TREE_OBJECTID) { 936 ret = btrfs_reloc_clone_csums(inode, start, 937 cur_alloc_size); 938 if (ret) 939 goto out_reserve; 940 } 941 942 if (disk_num_bytes < cur_alloc_size) 943 break; 944 945 /* we're not doing compressed IO, don't unlock the first 946 * page (which the caller expects to stay locked), don't 947 * clear any dirty bits and don't set any writeback bits 948 * 949 * Do set the Private2 bit so we know this page was properly 950 * setup for writepage 951 */ 952 op = unlock ? PAGE_UNLOCK : 0; 953 op |= PAGE_SET_PRIVATE2; 954 955 extent_clear_unlock_delalloc(inode, start, 956 start + ram_size - 1, locked_page, 957 EXTENT_LOCKED | EXTENT_DELALLOC, 958 op); 959 disk_num_bytes -= cur_alloc_size; 960 num_bytes -= cur_alloc_size; 961 alloc_hint = ins.objectid + ins.offset; 962 start += cur_alloc_size; 963 } 964 out: 965 return ret; 966 967 out_reserve: 968 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 969 out_unlock: 970 extent_clear_unlock_delalloc(inode, start, end, locked_page, 971 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 972 EXTENT_DELALLOC | EXTENT_DEFRAG, 973 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 974 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 975 goto out; 976 } 977 978 /* 979 * work queue call back to started compression on a file and pages 980 */ 981 static noinline void async_cow_start(struct btrfs_work *work) 982 { 983 struct async_cow *async_cow; 984 int num_added = 0; 985 async_cow = container_of(work, struct async_cow, work); 986 987 compress_file_range(async_cow->inode, async_cow->locked_page, 988 async_cow->start, async_cow->end, async_cow, 989 &num_added); 990 if (num_added == 0) { 991 btrfs_add_delayed_iput(async_cow->inode); 992 async_cow->inode = NULL; 993 } 994 } 995 996 /* 997 * work queue call back to submit previously compressed pages 998 */ 999 static noinline void async_cow_submit(struct btrfs_work *work) 1000 { 1001 struct async_cow *async_cow; 1002 struct btrfs_root *root; 1003 unsigned long nr_pages; 1004 1005 async_cow = container_of(work, struct async_cow, work); 1006 1007 root = async_cow->root; 1008 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1009 PAGE_CACHE_SHIFT; 1010 1011 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1012 5 * 1024 * 1024 && 1013 waitqueue_active(&root->fs_info->async_submit_wait)) 1014 wake_up(&root->fs_info->async_submit_wait); 1015 1016 if (async_cow->inode) 1017 submit_compressed_extents(async_cow->inode, async_cow); 1018 } 1019 1020 static noinline void async_cow_free(struct btrfs_work *work) 1021 { 1022 struct async_cow *async_cow; 1023 async_cow = container_of(work, struct async_cow, work); 1024 if (async_cow->inode) 1025 btrfs_add_delayed_iput(async_cow->inode); 1026 kfree(async_cow); 1027 } 1028 1029 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1030 u64 start, u64 end, int *page_started, 1031 unsigned long *nr_written) 1032 { 1033 struct async_cow *async_cow; 1034 struct btrfs_root *root = BTRFS_I(inode)->root; 1035 unsigned long nr_pages; 1036 u64 cur_end; 1037 int limit = 10 * 1024 * 1024; 1038 1039 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1040 1, 0, NULL, GFP_NOFS); 1041 while (start < end) { 1042 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1043 BUG_ON(!async_cow); /* -ENOMEM */ 1044 async_cow->inode = igrab(inode); 1045 async_cow->root = root; 1046 async_cow->locked_page = locked_page; 1047 async_cow->start = start; 1048 1049 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1050 cur_end = end; 1051 else 1052 cur_end = min(end, start + 512 * 1024 - 1); 1053 1054 async_cow->end = cur_end; 1055 INIT_LIST_HEAD(&async_cow->extents); 1056 1057 async_cow->work.func = async_cow_start; 1058 async_cow->work.ordered_func = async_cow_submit; 1059 async_cow->work.ordered_free = async_cow_free; 1060 async_cow->work.flags = 0; 1061 1062 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1063 PAGE_CACHE_SHIFT; 1064 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1065 1066 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1067 &async_cow->work); 1068 1069 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1070 wait_event(root->fs_info->async_submit_wait, 1071 (atomic_read(&root->fs_info->async_delalloc_pages) < 1072 limit)); 1073 } 1074 1075 while (atomic_read(&root->fs_info->async_submit_draining) && 1076 atomic_read(&root->fs_info->async_delalloc_pages)) { 1077 wait_event(root->fs_info->async_submit_wait, 1078 (atomic_read(&root->fs_info->async_delalloc_pages) == 1079 0)); 1080 } 1081 1082 *nr_written += nr_pages; 1083 start = cur_end + 1; 1084 } 1085 *page_started = 1; 1086 return 0; 1087 } 1088 1089 static noinline int csum_exist_in_range(struct btrfs_root *root, 1090 u64 bytenr, u64 num_bytes) 1091 { 1092 int ret; 1093 struct btrfs_ordered_sum *sums; 1094 LIST_HEAD(list); 1095 1096 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1097 bytenr + num_bytes - 1, &list, 0); 1098 if (ret == 0 && list_empty(&list)) 1099 return 0; 1100 1101 while (!list_empty(&list)) { 1102 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1103 list_del(&sums->list); 1104 kfree(sums); 1105 } 1106 return 1; 1107 } 1108 1109 /* 1110 * when nowcow writeback call back. This checks for snapshots or COW copies 1111 * of the extents that exist in the file, and COWs the file as required. 1112 * 1113 * If no cow copies or snapshots exist, we write directly to the existing 1114 * blocks on disk 1115 */ 1116 static noinline int run_delalloc_nocow(struct inode *inode, 1117 struct page *locked_page, 1118 u64 start, u64 end, int *page_started, int force, 1119 unsigned long *nr_written) 1120 { 1121 struct btrfs_root *root = BTRFS_I(inode)->root; 1122 struct btrfs_trans_handle *trans; 1123 struct extent_buffer *leaf; 1124 struct btrfs_path *path; 1125 struct btrfs_file_extent_item *fi; 1126 struct btrfs_key found_key; 1127 u64 cow_start; 1128 u64 cur_offset; 1129 u64 extent_end; 1130 u64 extent_offset; 1131 u64 disk_bytenr; 1132 u64 num_bytes; 1133 u64 disk_num_bytes; 1134 u64 ram_bytes; 1135 int extent_type; 1136 int ret, err; 1137 int type; 1138 int nocow; 1139 int check_prev = 1; 1140 bool nolock; 1141 u64 ino = btrfs_ino(inode); 1142 1143 path = btrfs_alloc_path(); 1144 if (!path) { 1145 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1146 EXTENT_LOCKED | EXTENT_DELALLOC | 1147 EXTENT_DO_ACCOUNTING | 1148 EXTENT_DEFRAG, PAGE_UNLOCK | 1149 PAGE_CLEAR_DIRTY | 1150 PAGE_SET_WRITEBACK | 1151 PAGE_END_WRITEBACK); 1152 return -ENOMEM; 1153 } 1154 1155 nolock = btrfs_is_free_space_inode(inode); 1156 1157 if (nolock) 1158 trans = btrfs_join_transaction_nolock(root); 1159 else 1160 trans = btrfs_join_transaction(root); 1161 1162 if (IS_ERR(trans)) { 1163 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1164 EXTENT_LOCKED | EXTENT_DELALLOC | 1165 EXTENT_DO_ACCOUNTING | 1166 EXTENT_DEFRAG, PAGE_UNLOCK | 1167 PAGE_CLEAR_DIRTY | 1168 PAGE_SET_WRITEBACK | 1169 PAGE_END_WRITEBACK); 1170 btrfs_free_path(path); 1171 return PTR_ERR(trans); 1172 } 1173 1174 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1175 1176 cow_start = (u64)-1; 1177 cur_offset = start; 1178 while (1) { 1179 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1180 cur_offset, 0); 1181 if (ret < 0) { 1182 btrfs_abort_transaction(trans, root, ret); 1183 goto error; 1184 } 1185 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1186 leaf = path->nodes[0]; 1187 btrfs_item_key_to_cpu(leaf, &found_key, 1188 path->slots[0] - 1); 1189 if (found_key.objectid == ino && 1190 found_key.type == BTRFS_EXTENT_DATA_KEY) 1191 path->slots[0]--; 1192 } 1193 check_prev = 0; 1194 next_slot: 1195 leaf = path->nodes[0]; 1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1197 ret = btrfs_next_leaf(root, path); 1198 if (ret < 0) { 1199 btrfs_abort_transaction(trans, root, ret); 1200 goto error; 1201 } 1202 if (ret > 0) 1203 break; 1204 leaf = path->nodes[0]; 1205 } 1206 1207 nocow = 0; 1208 disk_bytenr = 0; 1209 num_bytes = 0; 1210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1211 1212 if (found_key.objectid > ino || 1213 found_key.type > BTRFS_EXTENT_DATA_KEY || 1214 found_key.offset > end) 1215 break; 1216 1217 if (found_key.offset > cur_offset) { 1218 extent_end = found_key.offset; 1219 extent_type = 0; 1220 goto out_check; 1221 } 1222 1223 fi = btrfs_item_ptr(leaf, path->slots[0], 1224 struct btrfs_file_extent_item); 1225 extent_type = btrfs_file_extent_type(leaf, fi); 1226 1227 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1228 if (extent_type == BTRFS_FILE_EXTENT_REG || 1229 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1230 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1231 extent_offset = btrfs_file_extent_offset(leaf, fi); 1232 extent_end = found_key.offset + 1233 btrfs_file_extent_num_bytes(leaf, fi); 1234 disk_num_bytes = 1235 btrfs_file_extent_disk_num_bytes(leaf, fi); 1236 if (extent_end <= start) { 1237 path->slots[0]++; 1238 goto next_slot; 1239 } 1240 if (disk_bytenr == 0) 1241 goto out_check; 1242 if (btrfs_file_extent_compression(leaf, fi) || 1243 btrfs_file_extent_encryption(leaf, fi) || 1244 btrfs_file_extent_other_encoding(leaf, fi)) 1245 goto out_check; 1246 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1247 goto out_check; 1248 if (btrfs_extent_readonly(root, disk_bytenr)) 1249 goto out_check; 1250 if (btrfs_cross_ref_exist(trans, root, ino, 1251 found_key.offset - 1252 extent_offset, disk_bytenr)) 1253 goto out_check; 1254 disk_bytenr += extent_offset; 1255 disk_bytenr += cur_offset - found_key.offset; 1256 num_bytes = min(end + 1, extent_end) - cur_offset; 1257 /* 1258 * force cow if csum exists in the range. 1259 * this ensure that csum for a given extent are 1260 * either valid or do not exist. 1261 */ 1262 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1263 goto out_check; 1264 nocow = 1; 1265 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1266 extent_end = found_key.offset + 1267 btrfs_file_extent_inline_len(leaf, fi); 1268 extent_end = ALIGN(extent_end, root->sectorsize); 1269 } else { 1270 BUG_ON(1); 1271 } 1272 out_check: 1273 if (extent_end <= start) { 1274 path->slots[0]++; 1275 goto next_slot; 1276 } 1277 if (!nocow) { 1278 if (cow_start == (u64)-1) 1279 cow_start = cur_offset; 1280 cur_offset = extent_end; 1281 if (cur_offset > end) 1282 break; 1283 path->slots[0]++; 1284 goto next_slot; 1285 } 1286 1287 btrfs_release_path(path); 1288 if (cow_start != (u64)-1) { 1289 ret = cow_file_range(inode, locked_page, 1290 cow_start, found_key.offset - 1, 1291 page_started, nr_written, 1); 1292 if (ret) { 1293 btrfs_abort_transaction(trans, root, ret); 1294 goto error; 1295 } 1296 cow_start = (u64)-1; 1297 } 1298 1299 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1300 struct extent_map *em; 1301 struct extent_map_tree *em_tree; 1302 em_tree = &BTRFS_I(inode)->extent_tree; 1303 em = alloc_extent_map(); 1304 BUG_ON(!em); /* -ENOMEM */ 1305 em->start = cur_offset; 1306 em->orig_start = found_key.offset - extent_offset; 1307 em->len = num_bytes; 1308 em->block_len = num_bytes; 1309 em->block_start = disk_bytenr; 1310 em->orig_block_len = disk_num_bytes; 1311 em->ram_bytes = ram_bytes; 1312 em->bdev = root->fs_info->fs_devices->latest_bdev; 1313 em->mod_start = em->start; 1314 em->mod_len = em->len; 1315 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1316 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1317 em->generation = -1; 1318 while (1) { 1319 write_lock(&em_tree->lock); 1320 ret = add_extent_mapping(em_tree, em, 1); 1321 write_unlock(&em_tree->lock); 1322 if (ret != -EEXIST) { 1323 free_extent_map(em); 1324 break; 1325 } 1326 btrfs_drop_extent_cache(inode, em->start, 1327 em->start + em->len - 1, 0); 1328 } 1329 type = BTRFS_ORDERED_PREALLOC; 1330 } else { 1331 type = BTRFS_ORDERED_NOCOW; 1332 } 1333 1334 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1335 num_bytes, num_bytes, type); 1336 BUG_ON(ret); /* -ENOMEM */ 1337 1338 if (root->root_key.objectid == 1339 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1340 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1341 num_bytes); 1342 if (ret) { 1343 btrfs_abort_transaction(trans, root, ret); 1344 goto error; 1345 } 1346 } 1347 1348 extent_clear_unlock_delalloc(inode, cur_offset, 1349 cur_offset + num_bytes - 1, 1350 locked_page, EXTENT_LOCKED | 1351 EXTENT_DELALLOC, PAGE_UNLOCK | 1352 PAGE_SET_PRIVATE2); 1353 cur_offset = extent_end; 1354 if (cur_offset > end) 1355 break; 1356 } 1357 btrfs_release_path(path); 1358 1359 if (cur_offset <= end && cow_start == (u64)-1) { 1360 cow_start = cur_offset; 1361 cur_offset = end; 1362 } 1363 1364 if (cow_start != (u64)-1) { 1365 ret = cow_file_range(inode, locked_page, cow_start, end, 1366 page_started, nr_written, 1); 1367 if (ret) { 1368 btrfs_abort_transaction(trans, root, ret); 1369 goto error; 1370 } 1371 } 1372 1373 error: 1374 err = btrfs_end_transaction(trans, root); 1375 if (!ret) 1376 ret = err; 1377 1378 if (ret && cur_offset < end) 1379 extent_clear_unlock_delalloc(inode, cur_offset, end, 1380 locked_page, EXTENT_LOCKED | 1381 EXTENT_DELALLOC | EXTENT_DEFRAG | 1382 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1383 PAGE_CLEAR_DIRTY | 1384 PAGE_SET_WRITEBACK | 1385 PAGE_END_WRITEBACK); 1386 btrfs_free_path(path); 1387 return ret; 1388 } 1389 1390 /* 1391 * extent_io.c call back to do delayed allocation processing 1392 */ 1393 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1394 u64 start, u64 end, int *page_started, 1395 unsigned long *nr_written) 1396 { 1397 int ret; 1398 struct btrfs_root *root = BTRFS_I(inode)->root; 1399 1400 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1401 ret = run_delalloc_nocow(inode, locked_page, start, end, 1402 page_started, 1, nr_written); 1403 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1404 ret = run_delalloc_nocow(inode, locked_page, start, end, 1405 page_started, 0, nr_written); 1406 } else if (!btrfs_test_opt(root, COMPRESS) && 1407 !(BTRFS_I(inode)->force_compress) && 1408 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1409 ret = cow_file_range(inode, locked_page, start, end, 1410 page_started, nr_written, 1); 1411 } else { 1412 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1413 &BTRFS_I(inode)->runtime_flags); 1414 ret = cow_file_range_async(inode, locked_page, start, end, 1415 page_started, nr_written); 1416 } 1417 return ret; 1418 } 1419 1420 static void btrfs_split_extent_hook(struct inode *inode, 1421 struct extent_state *orig, u64 split) 1422 { 1423 /* not delalloc, ignore it */ 1424 if (!(orig->state & EXTENT_DELALLOC)) 1425 return; 1426 1427 spin_lock(&BTRFS_I(inode)->lock); 1428 BTRFS_I(inode)->outstanding_extents++; 1429 spin_unlock(&BTRFS_I(inode)->lock); 1430 } 1431 1432 /* 1433 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1434 * extents so we can keep track of new extents that are just merged onto old 1435 * extents, such as when we are doing sequential writes, so we can properly 1436 * account for the metadata space we'll need. 1437 */ 1438 static void btrfs_merge_extent_hook(struct inode *inode, 1439 struct extent_state *new, 1440 struct extent_state *other) 1441 { 1442 /* not delalloc, ignore it */ 1443 if (!(other->state & EXTENT_DELALLOC)) 1444 return; 1445 1446 spin_lock(&BTRFS_I(inode)->lock); 1447 BTRFS_I(inode)->outstanding_extents--; 1448 spin_unlock(&BTRFS_I(inode)->lock); 1449 } 1450 1451 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1452 struct inode *inode) 1453 { 1454 spin_lock(&root->delalloc_lock); 1455 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1456 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1457 &root->delalloc_inodes); 1458 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1459 &BTRFS_I(inode)->runtime_flags); 1460 root->nr_delalloc_inodes++; 1461 if (root->nr_delalloc_inodes == 1) { 1462 spin_lock(&root->fs_info->delalloc_root_lock); 1463 BUG_ON(!list_empty(&root->delalloc_root)); 1464 list_add_tail(&root->delalloc_root, 1465 &root->fs_info->delalloc_roots); 1466 spin_unlock(&root->fs_info->delalloc_root_lock); 1467 } 1468 } 1469 spin_unlock(&root->delalloc_lock); 1470 } 1471 1472 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1473 struct inode *inode) 1474 { 1475 spin_lock(&root->delalloc_lock); 1476 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1477 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1478 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1479 &BTRFS_I(inode)->runtime_flags); 1480 root->nr_delalloc_inodes--; 1481 if (!root->nr_delalloc_inodes) { 1482 spin_lock(&root->fs_info->delalloc_root_lock); 1483 BUG_ON(list_empty(&root->delalloc_root)); 1484 list_del_init(&root->delalloc_root); 1485 spin_unlock(&root->fs_info->delalloc_root_lock); 1486 } 1487 } 1488 spin_unlock(&root->delalloc_lock); 1489 } 1490 1491 /* 1492 * extent_io.c set_bit_hook, used to track delayed allocation 1493 * bytes in this file, and to maintain the list of inodes that 1494 * have pending delalloc work to be done. 1495 */ 1496 static void btrfs_set_bit_hook(struct inode *inode, 1497 struct extent_state *state, unsigned long *bits) 1498 { 1499 1500 /* 1501 * set_bit and clear bit hooks normally require _irqsave/restore 1502 * but in this case, we are only testing for the DELALLOC 1503 * bit, which is only set or cleared with irqs on 1504 */ 1505 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1506 struct btrfs_root *root = BTRFS_I(inode)->root; 1507 u64 len = state->end + 1 - state->start; 1508 bool do_list = !btrfs_is_free_space_inode(inode); 1509 1510 if (*bits & EXTENT_FIRST_DELALLOC) { 1511 *bits &= ~EXTENT_FIRST_DELALLOC; 1512 } else { 1513 spin_lock(&BTRFS_I(inode)->lock); 1514 BTRFS_I(inode)->outstanding_extents++; 1515 spin_unlock(&BTRFS_I(inode)->lock); 1516 } 1517 1518 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1519 root->fs_info->delalloc_batch); 1520 spin_lock(&BTRFS_I(inode)->lock); 1521 BTRFS_I(inode)->delalloc_bytes += len; 1522 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1523 &BTRFS_I(inode)->runtime_flags)) 1524 btrfs_add_delalloc_inodes(root, inode); 1525 spin_unlock(&BTRFS_I(inode)->lock); 1526 } 1527 } 1528 1529 /* 1530 * extent_io.c clear_bit_hook, see set_bit_hook for why 1531 */ 1532 static void btrfs_clear_bit_hook(struct inode *inode, 1533 struct extent_state *state, 1534 unsigned long *bits) 1535 { 1536 /* 1537 * set_bit and clear bit hooks normally require _irqsave/restore 1538 * but in this case, we are only testing for the DELALLOC 1539 * bit, which is only set or cleared with irqs on 1540 */ 1541 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1542 struct btrfs_root *root = BTRFS_I(inode)->root; 1543 u64 len = state->end + 1 - state->start; 1544 bool do_list = !btrfs_is_free_space_inode(inode); 1545 1546 if (*bits & EXTENT_FIRST_DELALLOC) { 1547 *bits &= ~EXTENT_FIRST_DELALLOC; 1548 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1549 spin_lock(&BTRFS_I(inode)->lock); 1550 BTRFS_I(inode)->outstanding_extents--; 1551 spin_unlock(&BTRFS_I(inode)->lock); 1552 } 1553 1554 if (*bits & EXTENT_DO_ACCOUNTING) 1555 btrfs_delalloc_release_metadata(inode, len); 1556 1557 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1558 && do_list && !(state->state & EXTENT_NORESERVE)) 1559 btrfs_free_reserved_data_space(inode, len); 1560 1561 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1562 root->fs_info->delalloc_batch); 1563 spin_lock(&BTRFS_I(inode)->lock); 1564 BTRFS_I(inode)->delalloc_bytes -= len; 1565 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1566 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1567 &BTRFS_I(inode)->runtime_flags)) 1568 btrfs_del_delalloc_inode(root, inode); 1569 spin_unlock(&BTRFS_I(inode)->lock); 1570 } 1571 } 1572 1573 /* 1574 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1575 * we don't create bios that span stripes or chunks 1576 */ 1577 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1578 size_t size, struct bio *bio, 1579 unsigned long bio_flags) 1580 { 1581 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1582 u64 logical = (u64)bio->bi_sector << 9; 1583 u64 length = 0; 1584 u64 map_length; 1585 int ret; 1586 1587 if (bio_flags & EXTENT_BIO_COMPRESSED) 1588 return 0; 1589 1590 length = bio->bi_size; 1591 map_length = length; 1592 ret = btrfs_map_block(root->fs_info, rw, logical, 1593 &map_length, NULL, 0); 1594 /* Will always return 0 with map_multi == NULL */ 1595 BUG_ON(ret < 0); 1596 if (map_length < length + size) 1597 return 1; 1598 return 0; 1599 } 1600 1601 /* 1602 * in order to insert checksums into the metadata in large chunks, 1603 * we wait until bio submission time. All the pages in the bio are 1604 * checksummed and sums are attached onto the ordered extent record. 1605 * 1606 * At IO completion time the cums attached on the ordered extent record 1607 * are inserted into the btree 1608 */ 1609 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1610 struct bio *bio, int mirror_num, 1611 unsigned long bio_flags, 1612 u64 bio_offset) 1613 { 1614 struct btrfs_root *root = BTRFS_I(inode)->root; 1615 int ret = 0; 1616 1617 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1618 BUG_ON(ret); /* -ENOMEM */ 1619 return 0; 1620 } 1621 1622 /* 1623 * in order to insert checksums into the metadata in large chunks, 1624 * we wait until bio submission time. All the pages in the bio are 1625 * checksummed and sums are attached onto the ordered extent record. 1626 * 1627 * At IO completion time the cums attached on the ordered extent record 1628 * are inserted into the btree 1629 */ 1630 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1631 int mirror_num, unsigned long bio_flags, 1632 u64 bio_offset) 1633 { 1634 struct btrfs_root *root = BTRFS_I(inode)->root; 1635 int ret; 1636 1637 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1638 if (ret) 1639 bio_endio(bio, ret); 1640 return ret; 1641 } 1642 1643 /* 1644 * extent_io.c submission hook. This does the right thing for csum calculation 1645 * on write, or reading the csums from the tree before a read 1646 */ 1647 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1648 int mirror_num, unsigned long bio_flags, 1649 u64 bio_offset) 1650 { 1651 struct btrfs_root *root = BTRFS_I(inode)->root; 1652 int ret = 0; 1653 int skip_sum; 1654 int metadata = 0; 1655 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1656 1657 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1658 1659 if (btrfs_is_free_space_inode(inode)) 1660 metadata = 2; 1661 1662 if (!(rw & REQ_WRITE)) { 1663 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1664 if (ret) 1665 goto out; 1666 1667 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1668 ret = btrfs_submit_compressed_read(inode, bio, 1669 mirror_num, 1670 bio_flags); 1671 goto out; 1672 } else if (!skip_sum) { 1673 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1674 if (ret) 1675 goto out; 1676 } 1677 goto mapit; 1678 } else if (async && !skip_sum) { 1679 /* csum items have already been cloned */ 1680 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1681 goto mapit; 1682 /* we're doing a write, do the async checksumming */ 1683 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1684 inode, rw, bio, mirror_num, 1685 bio_flags, bio_offset, 1686 __btrfs_submit_bio_start, 1687 __btrfs_submit_bio_done); 1688 goto out; 1689 } else if (!skip_sum) { 1690 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1691 if (ret) 1692 goto out; 1693 } 1694 1695 mapit: 1696 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1697 1698 out: 1699 if (ret < 0) 1700 bio_endio(bio, ret); 1701 return ret; 1702 } 1703 1704 /* 1705 * given a list of ordered sums record them in the inode. This happens 1706 * at IO completion time based on sums calculated at bio submission time. 1707 */ 1708 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1709 struct inode *inode, u64 file_offset, 1710 struct list_head *list) 1711 { 1712 struct btrfs_ordered_sum *sum; 1713 1714 list_for_each_entry(sum, list, list) { 1715 trans->adding_csums = 1; 1716 btrfs_csum_file_blocks(trans, 1717 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1718 trans->adding_csums = 0; 1719 } 1720 return 0; 1721 } 1722 1723 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1724 struct extent_state **cached_state) 1725 { 1726 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1727 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1728 cached_state, GFP_NOFS); 1729 } 1730 1731 /* see btrfs_writepage_start_hook for details on why this is required */ 1732 struct btrfs_writepage_fixup { 1733 struct page *page; 1734 struct btrfs_work work; 1735 }; 1736 1737 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1738 { 1739 struct btrfs_writepage_fixup *fixup; 1740 struct btrfs_ordered_extent *ordered; 1741 struct extent_state *cached_state = NULL; 1742 struct page *page; 1743 struct inode *inode; 1744 u64 page_start; 1745 u64 page_end; 1746 int ret; 1747 1748 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1749 page = fixup->page; 1750 again: 1751 lock_page(page); 1752 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1753 ClearPageChecked(page); 1754 goto out_page; 1755 } 1756 1757 inode = page->mapping->host; 1758 page_start = page_offset(page); 1759 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1760 1761 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1762 &cached_state); 1763 1764 /* already ordered? We're done */ 1765 if (PagePrivate2(page)) 1766 goto out; 1767 1768 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1769 if (ordered) { 1770 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1771 page_end, &cached_state, GFP_NOFS); 1772 unlock_page(page); 1773 btrfs_start_ordered_extent(inode, ordered, 1); 1774 btrfs_put_ordered_extent(ordered); 1775 goto again; 1776 } 1777 1778 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1779 if (ret) { 1780 mapping_set_error(page->mapping, ret); 1781 end_extent_writepage(page, ret, page_start, page_end); 1782 ClearPageChecked(page); 1783 goto out; 1784 } 1785 1786 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1787 ClearPageChecked(page); 1788 set_page_dirty(page); 1789 out: 1790 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1791 &cached_state, GFP_NOFS); 1792 out_page: 1793 unlock_page(page); 1794 page_cache_release(page); 1795 kfree(fixup); 1796 } 1797 1798 /* 1799 * There are a few paths in the higher layers of the kernel that directly 1800 * set the page dirty bit without asking the filesystem if it is a 1801 * good idea. This causes problems because we want to make sure COW 1802 * properly happens and the data=ordered rules are followed. 1803 * 1804 * In our case any range that doesn't have the ORDERED bit set 1805 * hasn't been properly setup for IO. We kick off an async process 1806 * to fix it up. The async helper will wait for ordered extents, set 1807 * the delalloc bit and make it safe to write the page. 1808 */ 1809 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1810 { 1811 struct inode *inode = page->mapping->host; 1812 struct btrfs_writepage_fixup *fixup; 1813 struct btrfs_root *root = BTRFS_I(inode)->root; 1814 1815 /* this page is properly in the ordered list */ 1816 if (TestClearPagePrivate2(page)) 1817 return 0; 1818 1819 if (PageChecked(page)) 1820 return -EAGAIN; 1821 1822 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1823 if (!fixup) 1824 return -EAGAIN; 1825 1826 SetPageChecked(page); 1827 page_cache_get(page); 1828 fixup->work.func = btrfs_writepage_fixup_worker; 1829 fixup->page = page; 1830 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1831 return -EBUSY; 1832 } 1833 1834 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1835 struct inode *inode, u64 file_pos, 1836 u64 disk_bytenr, u64 disk_num_bytes, 1837 u64 num_bytes, u64 ram_bytes, 1838 u8 compression, u8 encryption, 1839 u16 other_encoding, int extent_type) 1840 { 1841 struct btrfs_root *root = BTRFS_I(inode)->root; 1842 struct btrfs_file_extent_item *fi; 1843 struct btrfs_path *path; 1844 struct extent_buffer *leaf; 1845 struct btrfs_key ins; 1846 int ret; 1847 1848 path = btrfs_alloc_path(); 1849 if (!path) 1850 return -ENOMEM; 1851 1852 path->leave_spinning = 1; 1853 1854 /* 1855 * we may be replacing one extent in the tree with another. 1856 * The new extent is pinned in the extent map, and we don't want 1857 * to drop it from the cache until it is completely in the btree. 1858 * 1859 * So, tell btrfs_drop_extents to leave this extent in the cache. 1860 * the caller is expected to unpin it and allow it to be merged 1861 * with the others. 1862 */ 1863 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1864 file_pos + num_bytes, 0); 1865 if (ret) 1866 goto out; 1867 1868 ins.objectid = btrfs_ino(inode); 1869 ins.offset = file_pos; 1870 ins.type = BTRFS_EXTENT_DATA_KEY; 1871 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1872 if (ret) 1873 goto out; 1874 leaf = path->nodes[0]; 1875 fi = btrfs_item_ptr(leaf, path->slots[0], 1876 struct btrfs_file_extent_item); 1877 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1878 btrfs_set_file_extent_type(leaf, fi, extent_type); 1879 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1880 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1881 btrfs_set_file_extent_offset(leaf, fi, 0); 1882 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1883 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1884 btrfs_set_file_extent_compression(leaf, fi, compression); 1885 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1886 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1887 1888 btrfs_mark_buffer_dirty(leaf); 1889 btrfs_release_path(path); 1890 1891 inode_add_bytes(inode, num_bytes); 1892 1893 ins.objectid = disk_bytenr; 1894 ins.offset = disk_num_bytes; 1895 ins.type = BTRFS_EXTENT_ITEM_KEY; 1896 ret = btrfs_alloc_reserved_file_extent(trans, root, 1897 root->root_key.objectid, 1898 btrfs_ino(inode), file_pos, &ins); 1899 out: 1900 btrfs_free_path(path); 1901 1902 return ret; 1903 } 1904 1905 /* snapshot-aware defrag */ 1906 struct sa_defrag_extent_backref { 1907 struct rb_node node; 1908 struct old_sa_defrag_extent *old; 1909 u64 root_id; 1910 u64 inum; 1911 u64 file_pos; 1912 u64 extent_offset; 1913 u64 num_bytes; 1914 u64 generation; 1915 }; 1916 1917 struct old_sa_defrag_extent { 1918 struct list_head list; 1919 struct new_sa_defrag_extent *new; 1920 1921 u64 extent_offset; 1922 u64 bytenr; 1923 u64 offset; 1924 u64 len; 1925 int count; 1926 }; 1927 1928 struct new_sa_defrag_extent { 1929 struct rb_root root; 1930 struct list_head head; 1931 struct btrfs_path *path; 1932 struct inode *inode; 1933 u64 file_pos; 1934 u64 len; 1935 u64 bytenr; 1936 u64 disk_len; 1937 u8 compress_type; 1938 }; 1939 1940 static int backref_comp(struct sa_defrag_extent_backref *b1, 1941 struct sa_defrag_extent_backref *b2) 1942 { 1943 if (b1->root_id < b2->root_id) 1944 return -1; 1945 else if (b1->root_id > b2->root_id) 1946 return 1; 1947 1948 if (b1->inum < b2->inum) 1949 return -1; 1950 else if (b1->inum > b2->inum) 1951 return 1; 1952 1953 if (b1->file_pos < b2->file_pos) 1954 return -1; 1955 else if (b1->file_pos > b2->file_pos) 1956 return 1; 1957 1958 /* 1959 * [------------------------------] ===> (a range of space) 1960 * |<--->| |<---->| =============> (fs/file tree A) 1961 * |<---------------------------->| ===> (fs/file tree B) 1962 * 1963 * A range of space can refer to two file extents in one tree while 1964 * refer to only one file extent in another tree. 1965 * 1966 * So we may process a disk offset more than one time(two extents in A) 1967 * and locate at the same extent(one extent in B), then insert two same 1968 * backrefs(both refer to the extent in B). 1969 */ 1970 return 0; 1971 } 1972 1973 static void backref_insert(struct rb_root *root, 1974 struct sa_defrag_extent_backref *backref) 1975 { 1976 struct rb_node **p = &root->rb_node; 1977 struct rb_node *parent = NULL; 1978 struct sa_defrag_extent_backref *entry; 1979 int ret; 1980 1981 while (*p) { 1982 parent = *p; 1983 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 1984 1985 ret = backref_comp(backref, entry); 1986 if (ret < 0) 1987 p = &(*p)->rb_left; 1988 else 1989 p = &(*p)->rb_right; 1990 } 1991 1992 rb_link_node(&backref->node, parent, p); 1993 rb_insert_color(&backref->node, root); 1994 } 1995 1996 /* 1997 * Note the backref might has changed, and in this case we just return 0. 1998 */ 1999 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2000 void *ctx) 2001 { 2002 struct btrfs_file_extent_item *extent; 2003 struct btrfs_fs_info *fs_info; 2004 struct old_sa_defrag_extent *old = ctx; 2005 struct new_sa_defrag_extent *new = old->new; 2006 struct btrfs_path *path = new->path; 2007 struct btrfs_key key; 2008 struct btrfs_root *root; 2009 struct sa_defrag_extent_backref *backref; 2010 struct extent_buffer *leaf; 2011 struct inode *inode = new->inode; 2012 int slot; 2013 int ret; 2014 u64 extent_offset; 2015 u64 num_bytes; 2016 2017 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2018 inum == btrfs_ino(inode)) 2019 return 0; 2020 2021 key.objectid = root_id; 2022 key.type = BTRFS_ROOT_ITEM_KEY; 2023 key.offset = (u64)-1; 2024 2025 fs_info = BTRFS_I(inode)->root->fs_info; 2026 root = btrfs_read_fs_root_no_name(fs_info, &key); 2027 if (IS_ERR(root)) { 2028 if (PTR_ERR(root) == -ENOENT) 2029 return 0; 2030 WARN_ON(1); 2031 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2032 inum, offset, root_id); 2033 return PTR_ERR(root); 2034 } 2035 2036 key.objectid = inum; 2037 key.type = BTRFS_EXTENT_DATA_KEY; 2038 if (offset > (u64)-1 << 32) 2039 key.offset = 0; 2040 else 2041 key.offset = offset; 2042 2043 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2044 if (ret < 0) { 2045 WARN_ON(1); 2046 return ret; 2047 } 2048 ret = 0; 2049 2050 while (1) { 2051 cond_resched(); 2052 2053 leaf = path->nodes[0]; 2054 slot = path->slots[0]; 2055 2056 if (slot >= btrfs_header_nritems(leaf)) { 2057 ret = btrfs_next_leaf(root, path); 2058 if (ret < 0) { 2059 goto out; 2060 } else if (ret > 0) { 2061 ret = 0; 2062 goto out; 2063 } 2064 continue; 2065 } 2066 2067 path->slots[0]++; 2068 2069 btrfs_item_key_to_cpu(leaf, &key, slot); 2070 2071 if (key.objectid > inum) 2072 goto out; 2073 2074 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2075 continue; 2076 2077 extent = btrfs_item_ptr(leaf, slot, 2078 struct btrfs_file_extent_item); 2079 2080 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2081 continue; 2082 2083 /* 2084 * 'offset' refers to the exact key.offset, 2085 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2086 * (key.offset - extent_offset). 2087 */ 2088 if (key.offset != offset) 2089 continue; 2090 2091 extent_offset = btrfs_file_extent_offset(leaf, extent); 2092 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2093 2094 if (extent_offset >= old->extent_offset + old->offset + 2095 old->len || extent_offset + num_bytes <= 2096 old->extent_offset + old->offset) 2097 continue; 2098 break; 2099 } 2100 2101 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2102 if (!backref) { 2103 ret = -ENOENT; 2104 goto out; 2105 } 2106 2107 backref->root_id = root_id; 2108 backref->inum = inum; 2109 backref->file_pos = offset; 2110 backref->num_bytes = num_bytes; 2111 backref->extent_offset = extent_offset; 2112 backref->generation = btrfs_file_extent_generation(leaf, extent); 2113 backref->old = old; 2114 backref_insert(&new->root, backref); 2115 old->count++; 2116 out: 2117 btrfs_release_path(path); 2118 WARN_ON(ret); 2119 return ret; 2120 } 2121 2122 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2123 struct new_sa_defrag_extent *new) 2124 { 2125 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2126 struct old_sa_defrag_extent *old, *tmp; 2127 int ret; 2128 2129 new->path = path; 2130 2131 list_for_each_entry_safe(old, tmp, &new->head, list) { 2132 ret = iterate_inodes_from_logical(old->bytenr + 2133 old->extent_offset, fs_info, 2134 path, record_one_backref, 2135 old); 2136 BUG_ON(ret < 0 && ret != -ENOENT); 2137 2138 /* no backref to be processed for this extent */ 2139 if (!old->count) { 2140 list_del(&old->list); 2141 kfree(old); 2142 } 2143 } 2144 2145 if (list_empty(&new->head)) 2146 return false; 2147 2148 return true; 2149 } 2150 2151 static int relink_is_mergable(struct extent_buffer *leaf, 2152 struct btrfs_file_extent_item *fi, 2153 struct new_sa_defrag_extent *new) 2154 { 2155 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2156 return 0; 2157 2158 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2159 return 0; 2160 2161 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2162 return 0; 2163 2164 if (btrfs_file_extent_encryption(leaf, fi) || 2165 btrfs_file_extent_other_encoding(leaf, fi)) 2166 return 0; 2167 2168 return 1; 2169 } 2170 2171 /* 2172 * Note the backref might has changed, and in this case we just return 0. 2173 */ 2174 static noinline int relink_extent_backref(struct btrfs_path *path, 2175 struct sa_defrag_extent_backref *prev, 2176 struct sa_defrag_extent_backref *backref) 2177 { 2178 struct btrfs_file_extent_item *extent; 2179 struct btrfs_file_extent_item *item; 2180 struct btrfs_ordered_extent *ordered; 2181 struct btrfs_trans_handle *trans; 2182 struct btrfs_fs_info *fs_info; 2183 struct btrfs_root *root; 2184 struct btrfs_key key; 2185 struct extent_buffer *leaf; 2186 struct old_sa_defrag_extent *old = backref->old; 2187 struct new_sa_defrag_extent *new = old->new; 2188 struct inode *src_inode = new->inode; 2189 struct inode *inode; 2190 struct extent_state *cached = NULL; 2191 int ret = 0; 2192 u64 start; 2193 u64 len; 2194 u64 lock_start; 2195 u64 lock_end; 2196 bool merge = false; 2197 int index; 2198 2199 if (prev && prev->root_id == backref->root_id && 2200 prev->inum == backref->inum && 2201 prev->file_pos + prev->num_bytes == backref->file_pos) 2202 merge = true; 2203 2204 /* step 1: get root */ 2205 key.objectid = backref->root_id; 2206 key.type = BTRFS_ROOT_ITEM_KEY; 2207 key.offset = (u64)-1; 2208 2209 fs_info = BTRFS_I(src_inode)->root->fs_info; 2210 index = srcu_read_lock(&fs_info->subvol_srcu); 2211 2212 root = btrfs_read_fs_root_no_name(fs_info, &key); 2213 if (IS_ERR(root)) { 2214 srcu_read_unlock(&fs_info->subvol_srcu, index); 2215 if (PTR_ERR(root) == -ENOENT) 2216 return 0; 2217 return PTR_ERR(root); 2218 } 2219 2220 /* step 2: get inode */ 2221 key.objectid = backref->inum; 2222 key.type = BTRFS_INODE_ITEM_KEY; 2223 key.offset = 0; 2224 2225 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2226 if (IS_ERR(inode)) { 2227 srcu_read_unlock(&fs_info->subvol_srcu, index); 2228 return 0; 2229 } 2230 2231 srcu_read_unlock(&fs_info->subvol_srcu, index); 2232 2233 /* step 3: relink backref */ 2234 lock_start = backref->file_pos; 2235 lock_end = backref->file_pos + backref->num_bytes - 1; 2236 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2237 0, &cached); 2238 2239 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2240 if (ordered) { 2241 btrfs_put_ordered_extent(ordered); 2242 goto out_unlock; 2243 } 2244 2245 trans = btrfs_join_transaction(root); 2246 if (IS_ERR(trans)) { 2247 ret = PTR_ERR(trans); 2248 goto out_unlock; 2249 } 2250 2251 key.objectid = backref->inum; 2252 key.type = BTRFS_EXTENT_DATA_KEY; 2253 key.offset = backref->file_pos; 2254 2255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2256 if (ret < 0) { 2257 goto out_free_path; 2258 } else if (ret > 0) { 2259 ret = 0; 2260 goto out_free_path; 2261 } 2262 2263 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2264 struct btrfs_file_extent_item); 2265 2266 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2267 backref->generation) 2268 goto out_free_path; 2269 2270 btrfs_release_path(path); 2271 2272 start = backref->file_pos; 2273 if (backref->extent_offset < old->extent_offset + old->offset) 2274 start += old->extent_offset + old->offset - 2275 backref->extent_offset; 2276 2277 len = min(backref->extent_offset + backref->num_bytes, 2278 old->extent_offset + old->offset + old->len); 2279 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2280 2281 ret = btrfs_drop_extents(trans, root, inode, start, 2282 start + len, 1); 2283 if (ret) 2284 goto out_free_path; 2285 again: 2286 key.objectid = btrfs_ino(inode); 2287 key.type = BTRFS_EXTENT_DATA_KEY; 2288 key.offset = start; 2289 2290 path->leave_spinning = 1; 2291 if (merge) { 2292 struct btrfs_file_extent_item *fi; 2293 u64 extent_len; 2294 struct btrfs_key found_key; 2295 2296 ret = btrfs_search_slot(trans, root, &key, path, 1, 1); 2297 if (ret < 0) 2298 goto out_free_path; 2299 2300 path->slots[0]--; 2301 leaf = path->nodes[0]; 2302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2303 2304 fi = btrfs_item_ptr(leaf, path->slots[0], 2305 struct btrfs_file_extent_item); 2306 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2307 2308 if (extent_len + found_key.offset == start && 2309 relink_is_mergable(leaf, fi, new)) { 2310 btrfs_set_file_extent_num_bytes(leaf, fi, 2311 extent_len + len); 2312 btrfs_mark_buffer_dirty(leaf); 2313 inode_add_bytes(inode, len); 2314 2315 ret = 1; 2316 goto out_free_path; 2317 } else { 2318 merge = false; 2319 btrfs_release_path(path); 2320 goto again; 2321 } 2322 } 2323 2324 ret = btrfs_insert_empty_item(trans, root, path, &key, 2325 sizeof(*extent)); 2326 if (ret) { 2327 btrfs_abort_transaction(trans, root, ret); 2328 goto out_free_path; 2329 } 2330 2331 leaf = path->nodes[0]; 2332 item = btrfs_item_ptr(leaf, path->slots[0], 2333 struct btrfs_file_extent_item); 2334 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2335 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2336 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2337 btrfs_set_file_extent_num_bytes(leaf, item, len); 2338 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2339 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2340 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2341 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2342 btrfs_set_file_extent_encryption(leaf, item, 0); 2343 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2344 2345 btrfs_mark_buffer_dirty(leaf); 2346 inode_add_bytes(inode, len); 2347 btrfs_release_path(path); 2348 2349 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2350 new->disk_len, 0, 2351 backref->root_id, backref->inum, 2352 new->file_pos, 0); /* start - extent_offset */ 2353 if (ret) { 2354 btrfs_abort_transaction(trans, root, ret); 2355 goto out_free_path; 2356 } 2357 2358 ret = 1; 2359 out_free_path: 2360 btrfs_release_path(path); 2361 path->leave_spinning = 0; 2362 btrfs_end_transaction(trans, root); 2363 out_unlock: 2364 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2365 &cached, GFP_NOFS); 2366 iput(inode); 2367 return ret; 2368 } 2369 2370 static void relink_file_extents(struct new_sa_defrag_extent *new) 2371 { 2372 struct btrfs_path *path; 2373 struct old_sa_defrag_extent *old, *tmp; 2374 struct sa_defrag_extent_backref *backref; 2375 struct sa_defrag_extent_backref *prev = NULL; 2376 struct inode *inode; 2377 struct btrfs_root *root; 2378 struct rb_node *node; 2379 int ret; 2380 2381 inode = new->inode; 2382 root = BTRFS_I(inode)->root; 2383 2384 path = btrfs_alloc_path(); 2385 if (!path) 2386 return; 2387 2388 if (!record_extent_backrefs(path, new)) { 2389 btrfs_free_path(path); 2390 goto out; 2391 } 2392 btrfs_release_path(path); 2393 2394 while (1) { 2395 node = rb_first(&new->root); 2396 if (!node) 2397 break; 2398 rb_erase(node, &new->root); 2399 2400 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2401 2402 ret = relink_extent_backref(path, prev, backref); 2403 WARN_ON(ret < 0); 2404 2405 kfree(prev); 2406 2407 if (ret == 1) 2408 prev = backref; 2409 else 2410 prev = NULL; 2411 cond_resched(); 2412 } 2413 kfree(prev); 2414 2415 btrfs_free_path(path); 2416 2417 list_for_each_entry_safe(old, tmp, &new->head, list) { 2418 list_del(&old->list); 2419 kfree(old); 2420 } 2421 out: 2422 atomic_dec(&root->fs_info->defrag_running); 2423 wake_up(&root->fs_info->transaction_wait); 2424 2425 kfree(new); 2426 } 2427 2428 static struct new_sa_defrag_extent * 2429 record_old_file_extents(struct inode *inode, 2430 struct btrfs_ordered_extent *ordered) 2431 { 2432 struct btrfs_root *root = BTRFS_I(inode)->root; 2433 struct btrfs_path *path; 2434 struct btrfs_key key; 2435 struct old_sa_defrag_extent *old, *tmp; 2436 struct new_sa_defrag_extent *new; 2437 int ret; 2438 2439 new = kmalloc(sizeof(*new), GFP_NOFS); 2440 if (!new) 2441 return NULL; 2442 2443 new->inode = inode; 2444 new->file_pos = ordered->file_offset; 2445 new->len = ordered->len; 2446 new->bytenr = ordered->start; 2447 new->disk_len = ordered->disk_len; 2448 new->compress_type = ordered->compress_type; 2449 new->root = RB_ROOT; 2450 INIT_LIST_HEAD(&new->head); 2451 2452 path = btrfs_alloc_path(); 2453 if (!path) 2454 goto out_kfree; 2455 2456 key.objectid = btrfs_ino(inode); 2457 key.type = BTRFS_EXTENT_DATA_KEY; 2458 key.offset = new->file_pos; 2459 2460 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2461 if (ret < 0) 2462 goto out_free_path; 2463 if (ret > 0 && path->slots[0] > 0) 2464 path->slots[0]--; 2465 2466 /* find out all the old extents for the file range */ 2467 while (1) { 2468 struct btrfs_file_extent_item *extent; 2469 struct extent_buffer *l; 2470 int slot; 2471 u64 num_bytes; 2472 u64 offset; 2473 u64 end; 2474 u64 disk_bytenr; 2475 u64 extent_offset; 2476 2477 l = path->nodes[0]; 2478 slot = path->slots[0]; 2479 2480 if (slot >= btrfs_header_nritems(l)) { 2481 ret = btrfs_next_leaf(root, path); 2482 if (ret < 0) 2483 goto out_free_list; 2484 else if (ret > 0) 2485 break; 2486 continue; 2487 } 2488 2489 btrfs_item_key_to_cpu(l, &key, slot); 2490 2491 if (key.objectid != btrfs_ino(inode)) 2492 break; 2493 if (key.type != BTRFS_EXTENT_DATA_KEY) 2494 break; 2495 if (key.offset >= new->file_pos + new->len) 2496 break; 2497 2498 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2499 2500 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2501 if (key.offset + num_bytes < new->file_pos) 2502 goto next; 2503 2504 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2505 if (!disk_bytenr) 2506 goto next; 2507 2508 extent_offset = btrfs_file_extent_offset(l, extent); 2509 2510 old = kmalloc(sizeof(*old), GFP_NOFS); 2511 if (!old) 2512 goto out_free_list; 2513 2514 offset = max(new->file_pos, key.offset); 2515 end = min(new->file_pos + new->len, key.offset + num_bytes); 2516 2517 old->bytenr = disk_bytenr; 2518 old->extent_offset = extent_offset; 2519 old->offset = offset - key.offset; 2520 old->len = end - offset; 2521 old->new = new; 2522 old->count = 0; 2523 list_add_tail(&old->list, &new->head); 2524 next: 2525 path->slots[0]++; 2526 cond_resched(); 2527 } 2528 2529 btrfs_free_path(path); 2530 atomic_inc(&root->fs_info->defrag_running); 2531 2532 return new; 2533 2534 out_free_list: 2535 list_for_each_entry_safe(old, tmp, &new->head, list) { 2536 list_del(&old->list); 2537 kfree(old); 2538 } 2539 out_free_path: 2540 btrfs_free_path(path); 2541 out_kfree: 2542 kfree(new); 2543 return NULL; 2544 } 2545 2546 /* 2547 * helper function for btrfs_finish_ordered_io, this 2548 * just reads in some of the csum leaves to prime them into ram 2549 * before we start the transaction. It limits the amount of btree 2550 * reads required while inside the transaction. 2551 */ 2552 /* as ordered data IO finishes, this gets called so we can finish 2553 * an ordered extent if the range of bytes in the file it covers are 2554 * fully written. 2555 */ 2556 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2557 { 2558 struct inode *inode = ordered_extent->inode; 2559 struct btrfs_root *root = BTRFS_I(inode)->root; 2560 struct btrfs_trans_handle *trans = NULL; 2561 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2562 struct extent_state *cached_state = NULL; 2563 struct new_sa_defrag_extent *new = NULL; 2564 int compress_type = 0; 2565 int ret; 2566 bool nolock; 2567 2568 nolock = btrfs_is_free_space_inode(inode); 2569 2570 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2571 ret = -EIO; 2572 goto out; 2573 } 2574 2575 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2576 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2577 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2578 if (nolock) 2579 trans = btrfs_join_transaction_nolock(root); 2580 else 2581 trans = btrfs_join_transaction(root); 2582 if (IS_ERR(trans)) { 2583 ret = PTR_ERR(trans); 2584 trans = NULL; 2585 goto out; 2586 } 2587 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2588 ret = btrfs_update_inode_fallback(trans, root, inode); 2589 if (ret) /* -ENOMEM or corruption */ 2590 btrfs_abort_transaction(trans, root, ret); 2591 goto out; 2592 } 2593 2594 lock_extent_bits(io_tree, ordered_extent->file_offset, 2595 ordered_extent->file_offset + ordered_extent->len - 1, 2596 0, &cached_state); 2597 2598 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2599 ordered_extent->file_offset + ordered_extent->len - 1, 2600 EXTENT_DEFRAG, 1, cached_state); 2601 if (ret) { 2602 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2603 if (last_snapshot >= BTRFS_I(inode)->generation) 2604 /* the inode is shared */ 2605 new = record_old_file_extents(inode, ordered_extent); 2606 2607 clear_extent_bit(io_tree, ordered_extent->file_offset, 2608 ordered_extent->file_offset + ordered_extent->len - 1, 2609 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2610 } 2611 2612 if (nolock) 2613 trans = btrfs_join_transaction_nolock(root); 2614 else 2615 trans = btrfs_join_transaction(root); 2616 if (IS_ERR(trans)) { 2617 ret = PTR_ERR(trans); 2618 trans = NULL; 2619 goto out_unlock; 2620 } 2621 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2622 2623 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2624 compress_type = ordered_extent->compress_type; 2625 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2626 BUG_ON(compress_type); 2627 ret = btrfs_mark_extent_written(trans, inode, 2628 ordered_extent->file_offset, 2629 ordered_extent->file_offset + 2630 ordered_extent->len); 2631 } else { 2632 BUG_ON(root == root->fs_info->tree_root); 2633 ret = insert_reserved_file_extent(trans, inode, 2634 ordered_extent->file_offset, 2635 ordered_extent->start, 2636 ordered_extent->disk_len, 2637 ordered_extent->len, 2638 ordered_extent->len, 2639 compress_type, 0, 0, 2640 BTRFS_FILE_EXTENT_REG); 2641 } 2642 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2643 ordered_extent->file_offset, ordered_extent->len, 2644 trans->transid); 2645 if (ret < 0) { 2646 btrfs_abort_transaction(trans, root, ret); 2647 goto out_unlock; 2648 } 2649 2650 add_pending_csums(trans, inode, ordered_extent->file_offset, 2651 &ordered_extent->list); 2652 2653 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2654 ret = btrfs_update_inode_fallback(trans, root, inode); 2655 if (ret) { /* -ENOMEM or corruption */ 2656 btrfs_abort_transaction(trans, root, ret); 2657 goto out_unlock; 2658 } 2659 ret = 0; 2660 out_unlock: 2661 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2662 ordered_extent->file_offset + 2663 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2664 out: 2665 if (root != root->fs_info->tree_root) 2666 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2667 if (trans) 2668 btrfs_end_transaction(trans, root); 2669 2670 if (ret) { 2671 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 2672 ordered_extent->file_offset + 2673 ordered_extent->len - 1, NULL, GFP_NOFS); 2674 2675 /* 2676 * If the ordered extent had an IOERR or something else went 2677 * wrong we need to return the space for this ordered extent 2678 * back to the allocator. 2679 */ 2680 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2681 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2682 btrfs_free_reserved_extent(root, ordered_extent->start, 2683 ordered_extent->disk_len); 2684 } 2685 2686 2687 /* 2688 * This needs to be done to make sure anybody waiting knows we are done 2689 * updating everything for this ordered extent. 2690 */ 2691 btrfs_remove_ordered_extent(inode, ordered_extent); 2692 2693 /* for snapshot-aware defrag */ 2694 if (new) 2695 relink_file_extents(new); 2696 2697 /* once for us */ 2698 btrfs_put_ordered_extent(ordered_extent); 2699 /* once for the tree */ 2700 btrfs_put_ordered_extent(ordered_extent); 2701 2702 return ret; 2703 } 2704 2705 static void finish_ordered_fn(struct btrfs_work *work) 2706 { 2707 struct btrfs_ordered_extent *ordered_extent; 2708 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2709 btrfs_finish_ordered_io(ordered_extent); 2710 } 2711 2712 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2713 struct extent_state *state, int uptodate) 2714 { 2715 struct inode *inode = page->mapping->host; 2716 struct btrfs_root *root = BTRFS_I(inode)->root; 2717 struct btrfs_ordered_extent *ordered_extent = NULL; 2718 struct btrfs_workers *workers; 2719 2720 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2721 2722 ClearPagePrivate2(page); 2723 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2724 end - start + 1, uptodate)) 2725 return 0; 2726 2727 ordered_extent->work.func = finish_ordered_fn; 2728 ordered_extent->work.flags = 0; 2729 2730 if (btrfs_is_free_space_inode(inode)) 2731 workers = &root->fs_info->endio_freespace_worker; 2732 else 2733 workers = &root->fs_info->endio_write_workers; 2734 btrfs_queue_worker(workers, &ordered_extent->work); 2735 2736 return 0; 2737 } 2738 2739 /* 2740 * when reads are done, we need to check csums to verify the data is correct 2741 * if there's a match, we allow the bio to finish. If not, the code in 2742 * extent_io.c will try to find good copies for us. 2743 */ 2744 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2745 u64 phy_offset, struct page *page, 2746 u64 start, u64 end, int mirror) 2747 { 2748 size_t offset = start - page_offset(page); 2749 struct inode *inode = page->mapping->host; 2750 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2751 char *kaddr; 2752 struct btrfs_root *root = BTRFS_I(inode)->root; 2753 u32 csum_expected; 2754 u32 csum = ~(u32)0; 2755 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2756 DEFAULT_RATELIMIT_BURST); 2757 2758 if (PageChecked(page)) { 2759 ClearPageChecked(page); 2760 goto good; 2761 } 2762 2763 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2764 goto good; 2765 2766 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2767 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2768 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2769 GFP_NOFS); 2770 return 0; 2771 } 2772 2773 phy_offset >>= inode->i_sb->s_blocksize_bits; 2774 csum_expected = *(((u32 *)io_bio->csum) + phy_offset); 2775 2776 kaddr = kmap_atomic(page); 2777 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1); 2778 btrfs_csum_final(csum, (char *)&csum); 2779 if (csum != csum_expected) 2780 goto zeroit; 2781 2782 kunmap_atomic(kaddr); 2783 good: 2784 return 0; 2785 2786 zeroit: 2787 if (__ratelimit(&_rs)) 2788 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 2789 btrfs_ino(page->mapping->host), start, csum, csum_expected); 2790 memset(kaddr + offset, 1, end - start + 1); 2791 flush_dcache_page(page); 2792 kunmap_atomic(kaddr); 2793 if (csum_expected == 0) 2794 return 0; 2795 return -EIO; 2796 } 2797 2798 struct delayed_iput { 2799 struct list_head list; 2800 struct inode *inode; 2801 }; 2802 2803 /* JDM: If this is fs-wide, why can't we add a pointer to 2804 * btrfs_inode instead and avoid the allocation? */ 2805 void btrfs_add_delayed_iput(struct inode *inode) 2806 { 2807 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2808 struct delayed_iput *delayed; 2809 2810 if (atomic_add_unless(&inode->i_count, -1, 1)) 2811 return; 2812 2813 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2814 delayed->inode = inode; 2815 2816 spin_lock(&fs_info->delayed_iput_lock); 2817 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2818 spin_unlock(&fs_info->delayed_iput_lock); 2819 } 2820 2821 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2822 { 2823 LIST_HEAD(list); 2824 struct btrfs_fs_info *fs_info = root->fs_info; 2825 struct delayed_iput *delayed; 2826 int empty; 2827 2828 spin_lock(&fs_info->delayed_iput_lock); 2829 empty = list_empty(&fs_info->delayed_iputs); 2830 spin_unlock(&fs_info->delayed_iput_lock); 2831 if (empty) 2832 return; 2833 2834 spin_lock(&fs_info->delayed_iput_lock); 2835 list_splice_init(&fs_info->delayed_iputs, &list); 2836 spin_unlock(&fs_info->delayed_iput_lock); 2837 2838 while (!list_empty(&list)) { 2839 delayed = list_entry(list.next, struct delayed_iput, list); 2840 list_del(&delayed->list); 2841 iput(delayed->inode); 2842 kfree(delayed); 2843 } 2844 } 2845 2846 /* 2847 * This is called in transaction commit time. If there are no orphan 2848 * files in the subvolume, it removes orphan item and frees block_rsv 2849 * structure. 2850 */ 2851 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2852 struct btrfs_root *root) 2853 { 2854 struct btrfs_block_rsv *block_rsv; 2855 int ret; 2856 2857 if (atomic_read(&root->orphan_inodes) || 2858 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2859 return; 2860 2861 spin_lock(&root->orphan_lock); 2862 if (atomic_read(&root->orphan_inodes)) { 2863 spin_unlock(&root->orphan_lock); 2864 return; 2865 } 2866 2867 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2868 spin_unlock(&root->orphan_lock); 2869 return; 2870 } 2871 2872 block_rsv = root->orphan_block_rsv; 2873 root->orphan_block_rsv = NULL; 2874 spin_unlock(&root->orphan_lock); 2875 2876 if (root->orphan_item_inserted && 2877 btrfs_root_refs(&root->root_item) > 0) { 2878 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2879 root->root_key.objectid); 2880 if (ret) 2881 btrfs_abort_transaction(trans, root, ret); 2882 else 2883 root->orphan_item_inserted = 0; 2884 } 2885 2886 if (block_rsv) { 2887 WARN_ON(block_rsv->size > 0); 2888 btrfs_free_block_rsv(root, block_rsv); 2889 } 2890 } 2891 2892 /* 2893 * This creates an orphan entry for the given inode in case something goes 2894 * wrong in the middle of an unlink/truncate. 2895 * 2896 * NOTE: caller of this function should reserve 5 units of metadata for 2897 * this function. 2898 */ 2899 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2900 { 2901 struct btrfs_root *root = BTRFS_I(inode)->root; 2902 struct btrfs_block_rsv *block_rsv = NULL; 2903 int reserve = 0; 2904 int insert = 0; 2905 int ret; 2906 2907 if (!root->orphan_block_rsv) { 2908 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2909 if (!block_rsv) 2910 return -ENOMEM; 2911 } 2912 2913 spin_lock(&root->orphan_lock); 2914 if (!root->orphan_block_rsv) { 2915 root->orphan_block_rsv = block_rsv; 2916 } else if (block_rsv) { 2917 btrfs_free_block_rsv(root, block_rsv); 2918 block_rsv = NULL; 2919 } 2920 2921 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2922 &BTRFS_I(inode)->runtime_flags)) { 2923 #if 0 2924 /* 2925 * For proper ENOSPC handling, we should do orphan 2926 * cleanup when mounting. But this introduces backward 2927 * compatibility issue. 2928 */ 2929 if (!xchg(&root->orphan_item_inserted, 1)) 2930 insert = 2; 2931 else 2932 insert = 1; 2933 #endif 2934 insert = 1; 2935 atomic_inc(&root->orphan_inodes); 2936 } 2937 2938 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2939 &BTRFS_I(inode)->runtime_flags)) 2940 reserve = 1; 2941 spin_unlock(&root->orphan_lock); 2942 2943 /* grab metadata reservation from transaction handle */ 2944 if (reserve) { 2945 ret = btrfs_orphan_reserve_metadata(trans, inode); 2946 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 2947 } 2948 2949 /* insert an orphan item to track this unlinked/truncated file */ 2950 if (insert >= 1) { 2951 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2952 if (ret) { 2953 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2954 &BTRFS_I(inode)->runtime_flags); 2955 if (reserve) { 2956 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2957 &BTRFS_I(inode)->runtime_flags); 2958 btrfs_orphan_release_metadata(inode); 2959 } 2960 if (ret != -EEXIST) { 2961 btrfs_abort_transaction(trans, root, ret); 2962 return ret; 2963 } 2964 } 2965 ret = 0; 2966 } 2967 2968 /* insert an orphan item to track subvolume contains orphan files */ 2969 if (insert >= 2) { 2970 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2971 root->root_key.objectid); 2972 if (ret && ret != -EEXIST) { 2973 btrfs_abort_transaction(trans, root, ret); 2974 return ret; 2975 } 2976 } 2977 return 0; 2978 } 2979 2980 /* 2981 * We have done the truncate/delete so we can go ahead and remove the orphan 2982 * item for this particular inode. 2983 */ 2984 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2985 struct inode *inode) 2986 { 2987 struct btrfs_root *root = BTRFS_I(inode)->root; 2988 int delete_item = 0; 2989 int release_rsv = 0; 2990 int ret = 0; 2991 2992 spin_lock(&root->orphan_lock); 2993 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2994 &BTRFS_I(inode)->runtime_flags)) 2995 delete_item = 1; 2996 2997 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2998 &BTRFS_I(inode)->runtime_flags)) 2999 release_rsv = 1; 3000 spin_unlock(&root->orphan_lock); 3001 3002 if (trans && delete_item) 3003 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3004 3005 if (release_rsv) { 3006 btrfs_orphan_release_metadata(inode); 3007 atomic_dec(&root->orphan_inodes); 3008 } 3009 3010 return ret; 3011 } 3012 3013 /* 3014 * this cleans up any orphans that may be left on the list from the last use 3015 * of this root. 3016 */ 3017 int btrfs_orphan_cleanup(struct btrfs_root *root) 3018 { 3019 struct btrfs_path *path; 3020 struct extent_buffer *leaf; 3021 struct btrfs_key key, found_key; 3022 struct btrfs_trans_handle *trans; 3023 struct inode *inode; 3024 u64 last_objectid = 0; 3025 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3026 3027 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3028 return 0; 3029 3030 path = btrfs_alloc_path(); 3031 if (!path) { 3032 ret = -ENOMEM; 3033 goto out; 3034 } 3035 path->reada = -1; 3036 3037 key.objectid = BTRFS_ORPHAN_OBJECTID; 3038 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3039 key.offset = (u64)-1; 3040 3041 while (1) { 3042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3043 if (ret < 0) 3044 goto out; 3045 3046 /* 3047 * if ret == 0 means we found what we were searching for, which 3048 * is weird, but possible, so only screw with path if we didn't 3049 * find the key and see if we have stuff that matches 3050 */ 3051 if (ret > 0) { 3052 ret = 0; 3053 if (path->slots[0] == 0) 3054 break; 3055 path->slots[0]--; 3056 } 3057 3058 /* pull out the item */ 3059 leaf = path->nodes[0]; 3060 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3061 3062 /* make sure the item matches what we want */ 3063 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3064 break; 3065 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3066 break; 3067 3068 /* release the path since we're done with it */ 3069 btrfs_release_path(path); 3070 3071 /* 3072 * this is where we are basically btrfs_lookup, without the 3073 * crossing root thing. we store the inode number in the 3074 * offset of the orphan item. 3075 */ 3076 3077 if (found_key.offset == last_objectid) { 3078 btrfs_err(root->fs_info, 3079 "Error removing orphan entry, stopping orphan cleanup"); 3080 ret = -EINVAL; 3081 goto out; 3082 } 3083 3084 last_objectid = found_key.offset; 3085 3086 found_key.objectid = found_key.offset; 3087 found_key.type = BTRFS_INODE_ITEM_KEY; 3088 found_key.offset = 0; 3089 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3090 ret = PTR_RET(inode); 3091 if (ret && ret != -ESTALE) 3092 goto out; 3093 3094 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3095 struct btrfs_root *dead_root; 3096 struct btrfs_fs_info *fs_info = root->fs_info; 3097 int is_dead_root = 0; 3098 3099 /* 3100 * this is an orphan in the tree root. Currently these 3101 * could come from 2 sources: 3102 * a) a snapshot deletion in progress 3103 * b) a free space cache inode 3104 * We need to distinguish those two, as the snapshot 3105 * orphan must not get deleted. 3106 * find_dead_roots already ran before us, so if this 3107 * is a snapshot deletion, we should find the root 3108 * in the dead_roots list 3109 */ 3110 spin_lock(&fs_info->trans_lock); 3111 list_for_each_entry(dead_root, &fs_info->dead_roots, 3112 root_list) { 3113 if (dead_root->root_key.objectid == 3114 found_key.objectid) { 3115 is_dead_root = 1; 3116 break; 3117 } 3118 } 3119 spin_unlock(&fs_info->trans_lock); 3120 if (is_dead_root) { 3121 /* prevent this orphan from being found again */ 3122 key.offset = found_key.objectid - 1; 3123 continue; 3124 } 3125 } 3126 /* 3127 * Inode is already gone but the orphan item is still there, 3128 * kill the orphan item. 3129 */ 3130 if (ret == -ESTALE) { 3131 trans = btrfs_start_transaction(root, 1); 3132 if (IS_ERR(trans)) { 3133 ret = PTR_ERR(trans); 3134 goto out; 3135 } 3136 btrfs_debug(root->fs_info, "auto deleting %Lu", 3137 found_key.objectid); 3138 ret = btrfs_del_orphan_item(trans, root, 3139 found_key.objectid); 3140 btrfs_end_transaction(trans, root); 3141 if (ret) 3142 goto out; 3143 continue; 3144 } 3145 3146 /* 3147 * add this inode to the orphan list so btrfs_orphan_del does 3148 * the proper thing when we hit it 3149 */ 3150 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3151 &BTRFS_I(inode)->runtime_flags); 3152 atomic_inc(&root->orphan_inodes); 3153 3154 /* if we have links, this was a truncate, lets do that */ 3155 if (inode->i_nlink) { 3156 if (!S_ISREG(inode->i_mode)) { 3157 WARN_ON(1); 3158 iput(inode); 3159 continue; 3160 } 3161 nr_truncate++; 3162 3163 /* 1 for the orphan item deletion. */ 3164 trans = btrfs_start_transaction(root, 1); 3165 if (IS_ERR(trans)) { 3166 iput(inode); 3167 ret = PTR_ERR(trans); 3168 goto out; 3169 } 3170 ret = btrfs_orphan_add(trans, inode); 3171 btrfs_end_transaction(trans, root); 3172 if (ret) { 3173 iput(inode); 3174 goto out; 3175 } 3176 3177 ret = btrfs_truncate(inode); 3178 if (ret) 3179 btrfs_orphan_del(NULL, inode); 3180 } else { 3181 nr_unlink++; 3182 } 3183 3184 /* this will do delete_inode and everything for us */ 3185 iput(inode); 3186 if (ret) 3187 goto out; 3188 } 3189 /* release the path since we're done with it */ 3190 btrfs_release_path(path); 3191 3192 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3193 3194 if (root->orphan_block_rsv) 3195 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3196 (u64)-1); 3197 3198 if (root->orphan_block_rsv || root->orphan_item_inserted) { 3199 trans = btrfs_join_transaction(root); 3200 if (!IS_ERR(trans)) 3201 btrfs_end_transaction(trans, root); 3202 } 3203 3204 if (nr_unlink) 3205 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3206 if (nr_truncate) 3207 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3208 3209 out: 3210 if (ret) 3211 btrfs_crit(root->fs_info, 3212 "could not do orphan cleanup %d", ret); 3213 btrfs_free_path(path); 3214 return ret; 3215 } 3216 3217 /* 3218 * very simple check to peek ahead in the leaf looking for xattrs. If we 3219 * don't find any xattrs, we know there can't be any acls. 3220 * 3221 * slot is the slot the inode is in, objectid is the objectid of the inode 3222 */ 3223 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3224 int slot, u64 objectid) 3225 { 3226 u32 nritems = btrfs_header_nritems(leaf); 3227 struct btrfs_key found_key; 3228 static u64 xattr_access = 0; 3229 static u64 xattr_default = 0; 3230 int scanned = 0; 3231 3232 if (!xattr_access) { 3233 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3234 strlen(POSIX_ACL_XATTR_ACCESS)); 3235 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3236 strlen(POSIX_ACL_XATTR_DEFAULT)); 3237 } 3238 3239 slot++; 3240 while (slot < nritems) { 3241 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3242 3243 /* we found a different objectid, there must not be acls */ 3244 if (found_key.objectid != objectid) 3245 return 0; 3246 3247 /* we found an xattr, assume we've got an acl */ 3248 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3249 if (found_key.offset == xattr_access || 3250 found_key.offset == xattr_default) 3251 return 1; 3252 } 3253 3254 /* 3255 * we found a key greater than an xattr key, there can't 3256 * be any acls later on 3257 */ 3258 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3259 return 0; 3260 3261 slot++; 3262 scanned++; 3263 3264 /* 3265 * it goes inode, inode backrefs, xattrs, extents, 3266 * so if there are a ton of hard links to an inode there can 3267 * be a lot of backrefs. Don't waste time searching too hard, 3268 * this is just an optimization 3269 */ 3270 if (scanned >= 8) 3271 break; 3272 } 3273 /* we hit the end of the leaf before we found an xattr or 3274 * something larger than an xattr. We have to assume the inode 3275 * has acls 3276 */ 3277 return 1; 3278 } 3279 3280 /* 3281 * read an inode from the btree into the in-memory inode 3282 */ 3283 static void btrfs_read_locked_inode(struct inode *inode) 3284 { 3285 struct btrfs_path *path; 3286 struct extent_buffer *leaf; 3287 struct btrfs_inode_item *inode_item; 3288 struct btrfs_timespec *tspec; 3289 struct btrfs_root *root = BTRFS_I(inode)->root; 3290 struct btrfs_key location; 3291 int maybe_acls; 3292 u32 rdev; 3293 int ret; 3294 bool filled = false; 3295 3296 ret = btrfs_fill_inode(inode, &rdev); 3297 if (!ret) 3298 filled = true; 3299 3300 path = btrfs_alloc_path(); 3301 if (!path) 3302 goto make_bad; 3303 3304 path->leave_spinning = 1; 3305 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3306 3307 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3308 if (ret) 3309 goto make_bad; 3310 3311 leaf = path->nodes[0]; 3312 3313 if (filled) 3314 goto cache_acl; 3315 3316 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3317 struct btrfs_inode_item); 3318 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3319 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3320 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3321 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3322 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3323 3324 tspec = btrfs_inode_atime(inode_item); 3325 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3326 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3327 3328 tspec = btrfs_inode_mtime(inode_item); 3329 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3330 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3331 3332 tspec = btrfs_inode_ctime(inode_item); 3333 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3334 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3335 3336 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3337 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3338 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3339 3340 /* 3341 * If we were modified in the current generation and evicted from memory 3342 * and then re-read we need to do a full sync since we don't have any 3343 * idea about which extents were modified before we were evicted from 3344 * cache. 3345 */ 3346 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3347 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3348 &BTRFS_I(inode)->runtime_flags); 3349 3350 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3351 inode->i_generation = BTRFS_I(inode)->generation; 3352 inode->i_rdev = 0; 3353 rdev = btrfs_inode_rdev(leaf, inode_item); 3354 3355 BTRFS_I(inode)->index_cnt = (u64)-1; 3356 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3357 cache_acl: 3358 /* 3359 * try to precache a NULL acl entry for files that don't have 3360 * any xattrs or acls 3361 */ 3362 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3363 btrfs_ino(inode)); 3364 if (!maybe_acls) 3365 cache_no_acl(inode); 3366 3367 btrfs_free_path(path); 3368 3369 switch (inode->i_mode & S_IFMT) { 3370 case S_IFREG: 3371 inode->i_mapping->a_ops = &btrfs_aops; 3372 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3373 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3374 inode->i_fop = &btrfs_file_operations; 3375 inode->i_op = &btrfs_file_inode_operations; 3376 break; 3377 case S_IFDIR: 3378 inode->i_fop = &btrfs_dir_file_operations; 3379 if (root == root->fs_info->tree_root) 3380 inode->i_op = &btrfs_dir_ro_inode_operations; 3381 else 3382 inode->i_op = &btrfs_dir_inode_operations; 3383 break; 3384 case S_IFLNK: 3385 inode->i_op = &btrfs_symlink_inode_operations; 3386 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3387 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3388 break; 3389 default: 3390 inode->i_op = &btrfs_special_inode_operations; 3391 init_special_inode(inode, inode->i_mode, rdev); 3392 break; 3393 } 3394 3395 btrfs_update_iflags(inode); 3396 return; 3397 3398 make_bad: 3399 btrfs_free_path(path); 3400 make_bad_inode(inode); 3401 } 3402 3403 /* 3404 * given a leaf and an inode, copy the inode fields into the leaf 3405 */ 3406 static void fill_inode_item(struct btrfs_trans_handle *trans, 3407 struct extent_buffer *leaf, 3408 struct btrfs_inode_item *item, 3409 struct inode *inode) 3410 { 3411 struct btrfs_map_token token; 3412 3413 btrfs_init_map_token(&token); 3414 3415 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3416 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3417 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3418 &token); 3419 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3420 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3421 3422 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3423 inode->i_atime.tv_sec, &token); 3424 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3425 inode->i_atime.tv_nsec, &token); 3426 3427 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3428 inode->i_mtime.tv_sec, &token); 3429 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3430 inode->i_mtime.tv_nsec, &token); 3431 3432 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3433 inode->i_ctime.tv_sec, &token); 3434 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3435 inode->i_ctime.tv_nsec, &token); 3436 3437 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3438 &token); 3439 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3440 &token); 3441 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3442 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3443 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3444 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3445 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3446 } 3447 3448 /* 3449 * copy everything in the in-memory inode into the btree. 3450 */ 3451 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3452 struct btrfs_root *root, struct inode *inode) 3453 { 3454 struct btrfs_inode_item *inode_item; 3455 struct btrfs_path *path; 3456 struct extent_buffer *leaf; 3457 int ret; 3458 3459 path = btrfs_alloc_path(); 3460 if (!path) 3461 return -ENOMEM; 3462 3463 path->leave_spinning = 1; 3464 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3465 1); 3466 if (ret) { 3467 if (ret > 0) 3468 ret = -ENOENT; 3469 goto failed; 3470 } 3471 3472 btrfs_unlock_up_safe(path, 1); 3473 leaf = path->nodes[0]; 3474 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3475 struct btrfs_inode_item); 3476 3477 fill_inode_item(trans, leaf, inode_item, inode); 3478 btrfs_mark_buffer_dirty(leaf); 3479 btrfs_set_inode_last_trans(trans, inode); 3480 ret = 0; 3481 failed: 3482 btrfs_free_path(path); 3483 return ret; 3484 } 3485 3486 /* 3487 * copy everything in the in-memory inode into the btree. 3488 */ 3489 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3490 struct btrfs_root *root, struct inode *inode) 3491 { 3492 int ret; 3493 3494 /* 3495 * If the inode is a free space inode, we can deadlock during commit 3496 * if we put it into the delayed code. 3497 * 3498 * The data relocation inode should also be directly updated 3499 * without delay 3500 */ 3501 if (!btrfs_is_free_space_inode(inode) 3502 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3503 btrfs_update_root_times(trans, root); 3504 3505 ret = btrfs_delayed_update_inode(trans, root, inode); 3506 if (!ret) 3507 btrfs_set_inode_last_trans(trans, inode); 3508 return ret; 3509 } 3510 3511 return btrfs_update_inode_item(trans, root, inode); 3512 } 3513 3514 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3515 struct btrfs_root *root, 3516 struct inode *inode) 3517 { 3518 int ret; 3519 3520 ret = btrfs_update_inode(trans, root, inode); 3521 if (ret == -ENOSPC) 3522 return btrfs_update_inode_item(trans, root, inode); 3523 return ret; 3524 } 3525 3526 /* 3527 * unlink helper that gets used here in inode.c and in the tree logging 3528 * recovery code. It remove a link in a directory with a given name, and 3529 * also drops the back refs in the inode to the directory 3530 */ 3531 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3532 struct btrfs_root *root, 3533 struct inode *dir, struct inode *inode, 3534 const char *name, int name_len) 3535 { 3536 struct btrfs_path *path; 3537 int ret = 0; 3538 struct extent_buffer *leaf; 3539 struct btrfs_dir_item *di; 3540 struct btrfs_key key; 3541 u64 index; 3542 u64 ino = btrfs_ino(inode); 3543 u64 dir_ino = btrfs_ino(dir); 3544 3545 path = btrfs_alloc_path(); 3546 if (!path) { 3547 ret = -ENOMEM; 3548 goto out; 3549 } 3550 3551 path->leave_spinning = 1; 3552 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3553 name, name_len, -1); 3554 if (IS_ERR(di)) { 3555 ret = PTR_ERR(di); 3556 goto err; 3557 } 3558 if (!di) { 3559 ret = -ENOENT; 3560 goto err; 3561 } 3562 leaf = path->nodes[0]; 3563 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3564 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3565 if (ret) 3566 goto err; 3567 btrfs_release_path(path); 3568 3569 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3570 dir_ino, &index); 3571 if (ret) { 3572 btrfs_info(root->fs_info, 3573 "failed to delete reference to %.*s, inode %llu parent %llu", 3574 name_len, name, ino, dir_ino); 3575 btrfs_abort_transaction(trans, root, ret); 3576 goto err; 3577 } 3578 3579 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3580 if (ret) { 3581 btrfs_abort_transaction(trans, root, ret); 3582 goto err; 3583 } 3584 3585 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3586 inode, dir_ino); 3587 if (ret != 0 && ret != -ENOENT) { 3588 btrfs_abort_transaction(trans, root, ret); 3589 goto err; 3590 } 3591 3592 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3593 dir, index); 3594 if (ret == -ENOENT) 3595 ret = 0; 3596 else if (ret) 3597 btrfs_abort_transaction(trans, root, ret); 3598 err: 3599 btrfs_free_path(path); 3600 if (ret) 3601 goto out; 3602 3603 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3604 inode_inc_iversion(inode); 3605 inode_inc_iversion(dir); 3606 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3607 ret = btrfs_update_inode(trans, root, dir); 3608 out: 3609 return ret; 3610 } 3611 3612 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3613 struct btrfs_root *root, 3614 struct inode *dir, struct inode *inode, 3615 const char *name, int name_len) 3616 { 3617 int ret; 3618 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3619 if (!ret) { 3620 btrfs_drop_nlink(inode); 3621 ret = btrfs_update_inode(trans, root, inode); 3622 } 3623 return ret; 3624 } 3625 3626 /* 3627 * helper to start transaction for unlink and rmdir. 3628 * 3629 * unlink and rmdir are special in btrfs, they do not always free space, so 3630 * if we cannot make our reservations the normal way try and see if there is 3631 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3632 * allow the unlink to occur. 3633 */ 3634 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3635 { 3636 struct btrfs_trans_handle *trans; 3637 struct btrfs_root *root = BTRFS_I(dir)->root; 3638 int ret; 3639 3640 /* 3641 * 1 for the possible orphan item 3642 * 1 for the dir item 3643 * 1 for the dir index 3644 * 1 for the inode ref 3645 * 1 for the inode 3646 */ 3647 trans = btrfs_start_transaction(root, 5); 3648 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3649 return trans; 3650 3651 if (PTR_ERR(trans) == -ENOSPC) { 3652 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3653 3654 trans = btrfs_start_transaction(root, 0); 3655 if (IS_ERR(trans)) 3656 return trans; 3657 ret = btrfs_cond_migrate_bytes(root->fs_info, 3658 &root->fs_info->trans_block_rsv, 3659 num_bytes, 5); 3660 if (ret) { 3661 btrfs_end_transaction(trans, root); 3662 return ERR_PTR(ret); 3663 } 3664 trans->block_rsv = &root->fs_info->trans_block_rsv; 3665 trans->bytes_reserved = num_bytes; 3666 } 3667 return trans; 3668 } 3669 3670 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3671 { 3672 struct btrfs_root *root = BTRFS_I(dir)->root; 3673 struct btrfs_trans_handle *trans; 3674 struct inode *inode = dentry->d_inode; 3675 int ret; 3676 3677 trans = __unlink_start_trans(dir); 3678 if (IS_ERR(trans)) 3679 return PTR_ERR(trans); 3680 3681 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3682 3683 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3684 dentry->d_name.name, dentry->d_name.len); 3685 if (ret) 3686 goto out; 3687 3688 if (inode->i_nlink == 0) { 3689 ret = btrfs_orphan_add(trans, inode); 3690 if (ret) 3691 goto out; 3692 } 3693 3694 out: 3695 btrfs_end_transaction(trans, root); 3696 btrfs_btree_balance_dirty(root); 3697 return ret; 3698 } 3699 3700 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3701 struct btrfs_root *root, 3702 struct inode *dir, u64 objectid, 3703 const char *name, int name_len) 3704 { 3705 struct btrfs_path *path; 3706 struct extent_buffer *leaf; 3707 struct btrfs_dir_item *di; 3708 struct btrfs_key key; 3709 u64 index; 3710 int ret; 3711 u64 dir_ino = btrfs_ino(dir); 3712 3713 path = btrfs_alloc_path(); 3714 if (!path) 3715 return -ENOMEM; 3716 3717 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3718 name, name_len, -1); 3719 if (IS_ERR_OR_NULL(di)) { 3720 if (!di) 3721 ret = -ENOENT; 3722 else 3723 ret = PTR_ERR(di); 3724 goto out; 3725 } 3726 3727 leaf = path->nodes[0]; 3728 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3729 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3730 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3731 if (ret) { 3732 btrfs_abort_transaction(trans, root, ret); 3733 goto out; 3734 } 3735 btrfs_release_path(path); 3736 3737 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3738 objectid, root->root_key.objectid, 3739 dir_ino, &index, name, name_len); 3740 if (ret < 0) { 3741 if (ret != -ENOENT) { 3742 btrfs_abort_transaction(trans, root, ret); 3743 goto out; 3744 } 3745 di = btrfs_search_dir_index_item(root, path, dir_ino, 3746 name, name_len); 3747 if (IS_ERR_OR_NULL(di)) { 3748 if (!di) 3749 ret = -ENOENT; 3750 else 3751 ret = PTR_ERR(di); 3752 btrfs_abort_transaction(trans, root, ret); 3753 goto out; 3754 } 3755 3756 leaf = path->nodes[0]; 3757 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3758 btrfs_release_path(path); 3759 index = key.offset; 3760 } 3761 btrfs_release_path(path); 3762 3763 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3764 if (ret) { 3765 btrfs_abort_transaction(trans, root, ret); 3766 goto out; 3767 } 3768 3769 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3770 inode_inc_iversion(dir); 3771 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3772 ret = btrfs_update_inode_fallback(trans, root, dir); 3773 if (ret) 3774 btrfs_abort_transaction(trans, root, ret); 3775 out: 3776 btrfs_free_path(path); 3777 return ret; 3778 } 3779 3780 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3781 { 3782 struct inode *inode = dentry->d_inode; 3783 int err = 0; 3784 struct btrfs_root *root = BTRFS_I(dir)->root; 3785 struct btrfs_trans_handle *trans; 3786 3787 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3788 return -ENOTEMPTY; 3789 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3790 return -EPERM; 3791 3792 trans = __unlink_start_trans(dir); 3793 if (IS_ERR(trans)) 3794 return PTR_ERR(trans); 3795 3796 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3797 err = btrfs_unlink_subvol(trans, root, dir, 3798 BTRFS_I(inode)->location.objectid, 3799 dentry->d_name.name, 3800 dentry->d_name.len); 3801 goto out; 3802 } 3803 3804 err = btrfs_orphan_add(trans, inode); 3805 if (err) 3806 goto out; 3807 3808 /* now the directory is empty */ 3809 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3810 dentry->d_name.name, dentry->d_name.len); 3811 if (!err) 3812 btrfs_i_size_write(inode, 0); 3813 out: 3814 btrfs_end_transaction(trans, root); 3815 btrfs_btree_balance_dirty(root); 3816 3817 return err; 3818 } 3819 3820 /* 3821 * this can truncate away extent items, csum items and directory items. 3822 * It starts at a high offset and removes keys until it can't find 3823 * any higher than new_size 3824 * 3825 * csum items that cross the new i_size are truncated to the new size 3826 * as well. 3827 * 3828 * min_type is the minimum key type to truncate down to. If set to 0, this 3829 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3830 */ 3831 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3832 struct btrfs_root *root, 3833 struct inode *inode, 3834 u64 new_size, u32 min_type) 3835 { 3836 struct btrfs_path *path; 3837 struct extent_buffer *leaf; 3838 struct btrfs_file_extent_item *fi; 3839 struct btrfs_key key; 3840 struct btrfs_key found_key; 3841 u64 extent_start = 0; 3842 u64 extent_num_bytes = 0; 3843 u64 extent_offset = 0; 3844 u64 item_end = 0; 3845 u32 found_type = (u8)-1; 3846 int found_extent; 3847 int del_item; 3848 int pending_del_nr = 0; 3849 int pending_del_slot = 0; 3850 int extent_type = -1; 3851 int ret; 3852 int err = 0; 3853 u64 ino = btrfs_ino(inode); 3854 3855 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3856 3857 path = btrfs_alloc_path(); 3858 if (!path) 3859 return -ENOMEM; 3860 path->reada = -1; 3861 3862 /* 3863 * We want to drop from the next block forward in case this new size is 3864 * not block aligned since we will be keeping the last block of the 3865 * extent just the way it is. 3866 */ 3867 if (root->ref_cows || root == root->fs_info->tree_root) 3868 btrfs_drop_extent_cache(inode, ALIGN(new_size, 3869 root->sectorsize), (u64)-1, 0); 3870 3871 /* 3872 * This function is also used to drop the items in the log tree before 3873 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3874 * it is used to drop the loged items. So we shouldn't kill the delayed 3875 * items. 3876 */ 3877 if (min_type == 0 && root == BTRFS_I(inode)->root) 3878 btrfs_kill_delayed_inode_items(inode); 3879 3880 key.objectid = ino; 3881 key.offset = (u64)-1; 3882 key.type = (u8)-1; 3883 3884 search_again: 3885 path->leave_spinning = 1; 3886 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3887 if (ret < 0) { 3888 err = ret; 3889 goto out; 3890 } 3891 3892 if (ret > 0) { 3893 /* there are no items in the tree for us to truncate, we're 3894 * done 3895 */ 3896 if (path->slots[0] == 0) 3897 goto out; 3898 path->slots[0]--; 3899 } 3900 3901 while (1) { 3902 fi = NULL; 3903 leaf = path->nodes[0]; 3904 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3905 found_type = btrfs_key_type(&found_key); 3906 3907 if (found_key.objectid != ino) 3908 break; 3909 3910 if (found_type < min_type) 3911 break; 3912 3913 item_end = found_key.offset; 3914 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3915 fi = btrfs_item_ptr(leaf, path->slots[0], 3916 struct btrfs_file_extent_item); 3917 extent_type = btrfs_file_extent_type(leaf, fi); 3918 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3919 item_end += 3920 btrfs_file_extent_num_bytes(leaf, fi); 3921 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3922 item_end += btrfs_file_extent_inline_len(leaf, 3923 fi); 3924 } 3925 item_end--; 3926 } 3927 if (found_type > min_type) { 3928 del_item = 1; 3929 } else { 3930 if (item_end < new_size) 3931 break; 3932 if (found_key.offset >= new_size) 3933 del_item = 1; 3934 else 3935 del_item = 0; 3936 } 3937 found_extent = 0; 3938 /* FIXME, shrink the extent if the ref count is only 1 */ 3939 if (found_type != BTRFS_EXTENT_DATA_KEY) 3940 goto delete; 3941 3942 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3943 u64 num_dec; 3944 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3945 if (!del_item) { 3946 u64 orig_num_bytes = 3947 btrfs_file_extent_num_bytes(leaf, fi); 3948 extent_num_bytes = ALIGN(new_size - 3949 found_key.offset, 3950 root->sectorsize); 3951 btrfs_set_file_extent_num_bytes(leaf, fi, 3952 extent_num_bytes); 3953 num_dec = (orig_num_bytes - 3954 extent_num_bytes); 3955 if (root->ref_cows && extent_start != 0) 3956 inode_sub_bytes(inode, num_dec); 3957 btrfs_mark_buffer_dirty(leaf); 3958 } else { 3959 extent_num_bytes = 3960 btrfs_file_extent_disk_num_bytes(leaf, 3961 fi); 3962 extent_offset = found_key.offset - 3963 btrfs_file_extent_offset(leaf, fi); 3964 3965 /* FIXME blocksize != 4096 */ 3966 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3967 if (extent_start != 0) { 3968 found_extent = 1; 3969 if (root->ref_cows) 3970 inode_sub_bytes(inode, num_dec); 3971 } 3972 } 3973 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3974 /* 3975 * we can't truncate inline items that have had 3976 * special encodings 3977 */ 3978 if (!del_item && 3979 btrfs_file_extent_compression(leaf, fi) == 0 && 3980 btrfs_file_extent_encryption(leaf, fi) == 0 && 3981 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3982 u32 size = new_size - found_key.offset; 3983 3984 if (root->ref_cows) { 3985 inode_sub_bytes(inode, item_end + 1 - 3986 new_size); 3987 } 3988 size = 3989 btrfs_file_extent_calc_inline_size(size); 3990 btrfs_truncate_item(root, path, size, 1); 3991 } else if (root->ref_cows) { 3992 inode_sub_bytes(inode, item_end + 1 - 3993 found_key.offset); 3994 } 3995 } 3996 delete: 3997 if (del_item) { 3998 if (!pending_del_nr) { 3999 /* no pending yet, add ourselves */ 4000 pending_del_slot = path->slots[0]; 4001 pending_del_nr = 1; 4002 } else if (pending_del_nr && 4003 path->slots[0] + 1 == pending_del_slot) { 4004 /* hop on the pending chunk */ 4005 pending_del_nr++; 4006 pending_del_slot = path->slots[0]; 4007 } else { 4008 BUG(); 4009 } 4010 } else { 4011 break; 4012 } 4013 if (found_extent && (root->ref_cows || 4014 root == root->fs_info->tree_root)) { 4015 btrfs_set_path_blocking(path); 4016 ret = btrfs_free_extent(trans, root, extent_start, 4017 extent_num_bytes, 0, 4018 btrfs_header_owner(leaf), 4019 ino, extent_offset, 0); 4020 BUG_ON(ret); 4021 } 4022 4023 if (found_type == BTRFS_INODE_ITEM_KEY) 4024 break; 4025 4026 if (path->slots[0] == 0 || 4027 path->slots[0] != pending_del_slot) { 4028 if (pending_del_nr) { 4029 ret = btrfs_del_items(trans, root, path, 4030 pending_del_slot, 4031 pending_del_nr); 4032 if (ret) { 4033 btrfs_abort_transaction(trans, 4034 root, ret); 4035 goto error; 4036 } 4037 pending_del_nr = 0; 4038 } 4039 btrfs_release_path(path); 4040 goto search_again; 4041 } else { 4042 path->slots[0]--; 4043 } 4044 } 4045 out: 4046 if (pending_del_nr) { 4047 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4048 pending_del_nr); 4049 if (ret) 4050 btrfs_abort_transaction(trans, root, ret); 4051 } 4052 error: 4053 btrfs_free_path(path); 4054 return err; 4055 } 4056 4057 /* 4058 * btrfs_truncate_page - read, zero a chunk and write a page 4059 * @inode - inode that we're zeroing 4060 * @from - the offset to start zeroing 4061 * @len - the length to zero, 0 to zero the entire range respective to the 4062 * offset 4063 * @front - zero up to the offset instead of from the offset on 4064 * 4065 * This will find the page for the "from" offset and cow the page and zero the 4066 * part we want to zero. This is used with truncate and hole punching. 4067 */ 4068 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4069 int front) 4070 { 4071 struct address_space *mapping = inode->i_mapping; 4072 struct btrfs_root *root = BTRFS_I(inode)->root; 4073 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4074 struct btrfs_ordered_extent *ordered; 4075 struct extent_state *cached_state = NULL; 4076 char *kaddr; 4077 u32 blocksize = root->sectorsize; 4078 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4079 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4080 struct page *page; 4081 gfp_t mask = btrfs_alloc_write_mask(mapping); 4082 int ret = 0; 4083 u64 page_start; 4084 u64 page_end; 4085 4086 if ((offset & (blocksize - 1)) == 0 && 4087 (!len || ((len & (blocksize - 1)) == 0))) 4088 goto out; 4089 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4090 if (ret) 4091 goto out; 4092 4093 again: 4094 page = find_or_create_page(mapping, index, mask); 4095 if (!page) { 4096 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4097 ret = -ENOMEM; 4098 goto out; 4099 } 4100 4101 page_start = page_offset(page); 4102 page_end = page_start + PAGE_CACHE_SIZE - 1; 4103 4104 if (!PageUptodate(page)) { 4105 ret = btrfs_readpage(NULL, page); 4106 lock_page(page); 4107 if (page->mapping != mapping) { 4108 unlock_page(page); 4109 page_cache_release(page); 4110 goto again; 4111 } 4112 if (!PageUptodate(page)) { 4113 ret = -EIO; 4114 goto out_unlock; 4115 } 4116 } 4117 wait_on_page_writeback(page); 4118 4119 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4120 set_page_extent_mapped(page); 4121 4122 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4123 if (ordered) { 4124 unlock_extent_cached(io_tree, page_start, page_end, 4125 &cached_state, GFP_NOFS); 4126 unlock_page(page); 4127 page_cache_release(page); 4128 btrfs_start_ordered_extent(inode, ordered, 1); 4129 btrfs_put_ordered_extent(ordered); 4130 goto again; 4131 } 4132 4133 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4134 EXTENT_DIRTY | EXTENT_DELALLOC | 4135 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4136 0, 0, &cached_state, GFP_NOFS); 4137 4138 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4139 &cached_state); 4140 if (ret) { 4141 unlock_extent_cached(io_tree, page_start, page_end, 4142 &cached_state, GFP_NOFS); 4143 goto out_unlock; 4144 } 4145 4146 if (offset != PAGE_CACHE_SIZE) { 4147 if (!len) 4148 len = PAGE_CACHE_SIZE - offset; 4149 kaddr = kmap(page); 4150 if (front) 4151 memset(kaddr, 0, offset); 4152 else 4153 memset(kaddr + offset, 0, len); 4154 flush_dcache_page(page); 4155 kunmap(page); 4156 } 4157 ClearPageChecked(page); 4158 set_page_dirty(page); 4159 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4160 GFP_NOFS); 4161 4162 out_unlock: 4163 if (ret) 4164 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4165 unlock_page(page); 4166 page_cache_release(page); 4167 out: 4168 return ret; 4169 } 4170 4171 /* 4172 * This function puts in dummy file extents for the area we're creating a hole 4173 * for. So if we are truncating this file to a larger size we need to insert 4174 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4175 * the range between oldsize and size 4176 */ 4177 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4178 { 4179 struct btrfs_trans_handle *trans; 4180 struct btrfs_root *root = BTRFS_I(inode)->root; 4181 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4182 struct extent_map *em = NULL; 4183 struct extent_state *cached_state = NULL; 4184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4185 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4186 u64 block_end = ALIGN(size, root->sectorsize); 4187 u64 last_byte; 4188 u64 cur_offset; 4189 u64 hole_size; 4190 int err = 0; 4191 4192 /* 4193 * If our size started in the middle of a page we need to zero out the 4194 * rest of the page before we expand the i_size, otherwise we could 4195 * expose stale data. 4196 */ 4197 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4198 if (err) 4199 return err; 4200 4201 if (size <= hole_start) 4202 return 0; 4203 4204 while (1) { 4205 struct btrfs_ordered_extent *ordered; 4206 btrfs_wait_ordered_range(inode, hole_start, 4207 block_end - hole_start); 4208 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4209 &cached_state); 4210 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 4211 if (!ordered) 4212 break; 4213 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4214 &cached_state, GFP_NOFS); 4215 btrfs_put_ordered_extent(ordered); 4216 } 4217 4218 cur_offset = hole_start; 4219 while (1) { 4220 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4221 block_end - cur_offset, 0); 4222 if (IS_ERR(em)) { 4223 err = PTR_ERR(em); 4224 em = NULL; 4225 break; 4226 } 4227 last_byte = min(extent_map_end(em), block_end); 4228 last_byte = ALIGN(last_byte , root->sectorsize); 4229 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4230 struct extent_map *hole_em; 4231 hole_size = last_byte - cur_offset; 4232 4233 trans = btrfs_start_transaction(root, 3); 4234 if (IS_ERR(trans)) { 4235 err = PTR_ERR(trans); 4236 break; 4237 } 4238 4239 err = btrfs_drop_extents(trans, root, inode, 4240 cur_offset, 4241 cur_offset + hole_size, 1); 4242 if (err) { 4243 btrfs_abort_transaction(trans, root, err); 4244 btrfs_end_transaction(trans, root); 4245 break; 4246 } 4247 4248 err = btrfs_insert_file_extent(trans, root, 4249 btrfs_ino(inode), cur_offset, 0, 4250 0, hole_size, 0, hole_size, 4251 0, 0, 0); 4252 if (err) { 4253 btrfs_abort_transaction(trans, root, err); 4254 btrfs_end_transaction(trans, root); 4255 break; 4256 } 4257 4258 btrfs_drop_extent_cache(inode, cur_offset, 4259 cur_offset + hole_size - 1, 0); 4260 hole_em = alloc_extent_map(); 4261 if (!hole_em) { 4262 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4263 &BTRFS_I(inode)->runtime_flags); 4264 goto next; 4265 } 4266 hole_em->start = cur_offset; 4267 hole_em->len = hole_size; 4268 hole_em->orig_start = cur_offset; 4269 4270 hole_em->block_start = EXTENT_MAP_HOLE; 4271 hole_em->block_len = 0; 4272 hole_em->orig_block_len = 0; 4273 hole_em->ram_bytes = hole_size; 4274 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4275 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4276 hole_em->generation = trans->transid; 4277 4278 while (1) { 4279 write_lock(&em_tree->lock); 4280 err = add_extent_mapping(em_tree, hole_em, 1); 4281 write_unlock(&em_tree->lock); 4282 if (err != -EEXIST) 4283 break; 4284 btrfs_drop_extent_cache(inode, cur_offset, 4285 cur_offset + 4286 hole_size - 1, 0); 4287 } 4288 free_extent_map(hole_em); 4289 next: 4290 btrfs_update_inode(trans, root, inode); 4291 btrfs_end_transaction(trans, root); 4292 } 4293 free_extent_map(em); 4294 em = NULL; 4295 cur_offset = last_byte; 4296 if (cur_offset >= block_end) 4297 break; 4298 } 4299 4300 free_extent_map(em); 4301 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4302 GFP_NOFS); 4303 return err; 4304 } 4305 4306 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4307 { 4308 struct btrfs_root *root = BTRFS_I(inode)->root; 4309 struct btrfs_trans_handle *trans; 4310 loff_t oldsize = i_size_read(inode); 4311 loff_t newsize = attr->ia_size; 4312 int mask = attr->ia_valid; 4313 int ret; 4314 4315 /* 4316 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4317 * special case where we need to update the times despite not having 4318 * these flags set. For all other operations the VFS set these flags 4319 * explicitly if it wants a timestamp update. 4320 */ 4321 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME)))) 4322 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb); 4323 4324 if (newsize > oldsize) { 4325 truncate_pagecache(inode, oldsize, newsize); 4326 ret = btrfs_cont_expand(inode, oldsize, newsize); 4327 if (ret) 4328 return ret; 4329 4330 trans = btrfs_start_transaction(root, 1); 4331 if (IS_ERR(trans)) 4332 return PTR_ERR(trans); 4333 4334 i_size_write(inode, newsize); 4335 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4336 ret = btrfs_update_inode(trans, root, inode); 4337 btrfs_end_transaction(trans, root); 4338 } else { 4339 4340 /* 4341 * We're truncating a file that used to have good data down to 4342 * zero. Make sure it gets into the ordered flush list so that 4343 * any new writes get down to disk quickly. 4344 */ 4345 if (newsize == 0) 4346 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4347 &BTRFS_I(inode)->runtime_flags); 4348 4349 /* 4350 * 1 for the orphan item we're going to add 4351 * 1 for the orphan item deletion. 4352 */ 4353 trans = btrfs_start_transaction(root, 2); 4354 if (IS_ERR(trans)) 4355 return PTR_ERR(trans); 4356 4357 /* 4358 * We need to do this in case we fail at _any_ point during the 4359 * actual truncate. Once we do the truncate_setsize we could 4360 * invalidate pages which forces any outstanding ordered io to 4361 * be instantly completed which will give us extents that need 4362 * to be truncated. If we fail to get an orphan inode down we 4363 * could have left over extents that were never meant to live, 4364 * so we need to garuntee from this point on that everything 4365 * will be consistent. 4366 */ 4367 ret = btrfs_orphan_add(trans, inode); 4368 btrfs_end_transaction(trans, root); 4369 if (ret) 4370 return ret; 4371 4372 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4373 truncate_setsize(inode, newsize); 4374 4375 /* Disable nonlocked read DIO to avoid the end less truncate */ 4376 btrfs_inode_block_unlocked_dio(inode); 4377 inode_dio_wait(inode); 4378 btrfs_inode_resume_unlocked_dio(inode); 4379 4380 ret = btrfs_truncate(inode); 4381 if (ret && inode->i_nlink) 4382 btrfs_orphan_del(NULL, inode); 4383 } 4384 4385 return ret; 4386 } 4387 4388 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4389 { 4390 struct inode *inode = dentry->d_inode; 4391 struct btrfs_root *root = BTRFS_I(inode)->root; 4392 int err; 4393 4394 if (btrfs_root_readonly(root)) 4395 return -EROFS; 4396 4397 err = inode_change_ok(inode, attr); 4398 if (err) 4399 return err; 4400 4401 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4402 err = btrfs_setsize(inode, attr); 4403 if (err) 4404 return err; 4405 } 4406 4407 if (attr->ia_valid) { 4408 setattr_copy(inode, attr); 4409 inode_inc_iversion(inode); 4410 err = btrfs_dirty_inode(inode); 4411 4412 if (!err && attr->ia_valid & ATTR_MODE) 4413 err = btrfs_acl_chmod(inode); 4414 } 4415 4416 return err; 4417 } 4418 4419 void btrfs_evict_inode(struct inode *inode) 4420 { 4421 struct btrfs_trans_handle *trans; 4422 struct btrfs_root *root = BTRFS_I(inode)->root; 4423 struct btrfs_block_rsv *rsv, *global_rsv; 4424 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4425 int ret; 4426 4427 trace_btrfs_inode_evict(inode); 4428 4429 truncate_inode_pages(&inode->i_data, 0); 4430 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 4431 btrfs_is_free_space_inode(inode))) 4432 goto no_delete; 4433 4434 if (is_bad_inode(inode)) { 4435 btrfs_orphan_del(NULL, inode); 4436 goto no_delete; 4437 } 4438 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4439 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4440 4441 if (root->fs_info->log_root_recovering) { 4442 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4443 &BTRFS_I(inode)->runtime_flags)); 4444 goto no_delete; 4445 } 4446 4447 if (inode->i_nlink > 0) { 4448 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 4449 goto no_delete; 4450 } 4451 4452 ret = btrfs_commit_inode_delayed_inode(inode); 4453 if (ret) { 4454 btrfs_orphan_del(NULL, inode); 4455 goto no_delete; 4456 } 4457 4458 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4459 if (!rsv) { 4460 btrfs_orphan_del(NULL, inode); 4461 goto no_delete; 4462 } 4463 rsv->size = min_size; 4464 rsv->failfast = 1; 4465 global_rsv = &root->fs_info->global_block_rsv; 4466 4467 btrfs_i_size_write(inode, 0); 4468 4469 /* 4470 * This is a bit simpler than btrfs_truncate since we've already 4471 * reserved our space for our orphan item in the unlink, so we just 4472 * need to reserve some slack space in case we add bytes and update 4473 * inode item when doing the truncate. 4474 */ 4475 while (1) { 4476 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4477 BTRFS_RESERVE_FLUSH_LIMIT); 4478 4479 /* 4480 * Try and steal from the global reserve since we will 4481 * likely not use this space anyway, we want to try as 4482 * hard as possible to get this to work. 4483 */ 4484 if (ret) 4485 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4486 4487 if (ret) { 4488 btrfs_warn(root->fs_info, 4489 "Could not get space for a delete, will truncate on mount %d", 4490 ret); 4491 btrfs_orphan_del(NULL, inode); 4492 btrfs_free_block_rsv(root, rsv); 4493 goto no_delete; 4494 } 4495 4496 trans = btrfs_join_transaction(root); 4497 if (IS_ERR(trans)) { 4498 btrfs_orphan_del(NULL, inode); 4499 btrfs_free_block_rsv(root, rsv); 4500 goto no_delete; 4501 } 4502 4503 trans->block_rsv = rsv; 4504 4505 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4506 if (ret != -ENOSPC) 4507 break; 4508 4509 trans->block_rsv = &root->fs_info->trans_block_rsv; 4510 btrfs_end_transaction(trans, root); 4511 trans = NULL; 4512 btrfs_btree_balance_dirty(root); 4513 } 4514 4515 btrfs_free_block_rsv(root, rsv); 4516 4517 /* 4518 * Errors here aren't a big deal, it just means we leave orphan items 4519 * in the tree. They will be cleaned up on the next mount. 4520 */ 4521 if (ret == 0) { 4522 trans->block_rsv = root->orphan_block_rsv; 4523 btrfs_orphan_del(trans, inode); 4524 } else { 4525 btrfs_orphan_del(NULL, inode); 4526 } 4527 4528 trans->block_rsv = &root->fs_info->trans_block_rsv; 4529 if (!(root == root->fs_info->tree_root || 4530 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4531 btrfs_return_ino(root, btrfs_ino(inode)); 4532 4533 btrfs_end_transaction(trans, root); 4534 btrfs_btree_balance_dirty(root); 4535 no_delete: 4536 btrfs_remove_delayed_node(inode); 4537 clear_inode(inode); 4538 return; 4539 } 4540 4541 /* 4542 * this returns the key found in the dir entry in the location pointer. 4543 * If no dir entries were found, location->objectid is 0. 4544 */ 4545 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4546 struct btrfs_key *location) 4547 { 4548 const char *name = dentry->d_name.name; 4549 int namelen = dentry->d_name.len; 4550 struct btrfs_dir_item *di; 4551 struct btrfs_path *path; 4552 struct btrfs_root *root = BTRFS_I(dir)->root; 4553 int ret = 0; 4554 4555 path = btrfs_alloc_path(); 4556 if (!path) 4557 return -ENOMEM; 4558 4559 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4560 namelen, 0); 4561 if (IS_ERR(di)) 4562 ret = PTR_ERR(di); 4563 4564 if (IS_ERR_OR_NULL(di)) 4565 goto out_err; 4566 4567 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4568 out: 4569 btrfs_free_path(path); 4570 return ret; 4571 out_err: 4572 location->objectid = 0; 4573 goto out; 4574 } 4575 4576 /* 4577 * when we hit a tree root in a directory, the btrfs part of the inode 4578 * needs to be changed to reflect the root directory of the tree root. This 4579 * is kind of like crossing a mount point. 4580 */ 4581 static int fixup_tree_root_location(struct btrfs_root *root, 4582 struct inode *dir, 4583 struct dentry *dentry, 4584 struct btrfs_key *location, 4585 struct btrfs_root **sub_root) 4586 { 4587 struct btrfs_path *path; 4588 struct btrfs_root *new_root; 4589 struct btrfs_root_ref *ref; 4590 struct extent_buffer *leaf; 4591 int ret; 4592 int err = 0; 4593 4594 path = btrfs_alloc_path(); 4595 if (!path) { 4596 err = -ENOMEM; 4597 goto out; 4598 } 4599 4600 err = -ENOENT; 4601 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 4602 BTRFS_I(dir)->root->root_key.objectid, 4603 location->objectid); 4604 if (ret) { 4605 if (ret < 0) 4606 err = ret; 4607 goto out; 4608 } 4609 4610 leaf = path->nodes[0]; 4611 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4612 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4613 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4614 goto out; 4615 4616 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4617 (unsigned long)(ref + 1), 4618 dentry->d_name.len); 4619 if (ret) 4620 goto out; 4621 4622 btrfs_release_path(path); 4623 4624 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4625 if (IS_ERR(new_root)) { 4626 err = PTR_ERR(new_root); 4627 goto out; 4628 } 4629 4630 *sub_root = new_root; 4631 location->objectid = btrfs_root_dirid(&new_root->root_item); 4632 location->type = BTRFS_INODE_ITEM_KEY; 4633 location->offset = 0; 4634 err = 0; 4635 out: 4636 btrfs_free_path(path); 4637 return err; 4638 } 4639 4640 static void inode_tree_add(struct inode *inode) 4641 { 4642 struct btrfs_root *root = BTRFS_I(inode)->root; 4643 struct btrfs_inode *entry; 4644 struct rb_node **p; 4645 struct rb_node *parent; 4646 u64 ino = btrfs_ino(inode); 4647 4648 if (inode_unhashed(inode)) 4649 return; 4650 again: 4651 parent = NULL; 4652 spin_lock(&root->inode_lock); 4653 p = &root->inode_tree.rb_node; 4654 while (*p) { 4655 parent = *p; 4656 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4657 4658 if (ino < btrfs_ino(&entry->vfs_inode)) 4659 p = &parent->rb_left; 4660 else if (ino > btrfs_ino(&entry->vfs_inode)) 4661 p = &parent->rb_right; 4662 else { 4663 WARN_ON(!(entry->vfs_inode.i_state & 4664 (I_WILL_FREE | I_FREEING))); 4665 rb_erase(parent, &root->inode_tree); 4666 RB_CLEAR_NODE(parent); 4667 spin_unlock(&root->inode_lock); 4668 goto again; 4669 } 4670 } 4671 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4672 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4673 spin_unlock(&root->inode_lock); 4674 } 4675 4676 static void inode_tree_del(struct inode *inode) 4677 { 4678 struct btrfs_root *root = BTRFS_I(inode)->root; 4679 int empty = 0; 4680 4681 spin_lock(&root->inode_lock); 4682 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4683 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4684 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4685 empty = RB_EMPTY_ROOT(&root->inode_tree); 4686 } 4687 spin_unlock(&root->inode_lock); 4688 4689 /* 4690 * Free space cache has inodes in the tree root, but the tree root has a 4691 * root_refs of 0, so this could end up dropping the tree root as a 4692 * snapshot, so we need the extra !root->fs_info->tree_root check to 4693 * make sure we don't drop it. 4694 */ 4695 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4696 root != root->fs_info->tree_root) { 4697 synchronize_srcu(&root->fs_info->subvol_srcu); 4698 spin_lock(&root->inode_lock); 4699 empty = RB_EMPTY_ROOT(&root->inode_tree); 4700 spin_unlock(&root->inode_lock); 4701 if (empty) 4702 btrfs_add_dead_root(root); 4703 } 4704 } 4705 4706 void btrfs_invalidate_inodes(struct btrfs_root *root) 4707 { 4708 struct rb_node *node; 4709 struct rb_node *prev; 4710 struct btrfs_inode *entry; 4711 struct inode *inode; 4712 u64 objectid = 0; 4713 4714 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4715 4716 spin_lock(&root->inode_lock); 4717 again: 4718 node = root->inode_tree.rb_node; 4719 prev = NULL; 4720 while (node) { 4721 prev = node; 4722 entry = rb_entry(node, struct btrfs_inode, rb_node); 4723 4724 if (objectid < btrfs_ino(&entry->vfs_inode)) 4725 node = node->rb_left; 4726 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4727 node = node->rb_right; 4728 else 4729 break; 4730 } 4731 if (!node) { 4732 while (prev) { 4733 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4734 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4735 node = prev; 4736 break; 4737 } 4738 prev = rb_next(prev); 4739 } 4740 } 4741 while (node) { 4742 entry = rb_entry(node, struct btrfs_inode, rb_node); 4743 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4744 inode = igrab(&entry->vfs_inode); 4745 if (inode) { 4746 spin_unlock(&root->inode_lock); 4747 if (atomic_read(&inode->i_count) > 1) 4748 d_prune_aliases(inode); 4749 /* 4750 * btrfs_drop_inode will have it removed from 4751 * the inode cache when its usage count 4752 * hits zero. 4753 */ 4754 iput(inode); 4755 cond_resched(); 4756 spin_lock(&root->inode_lock); 4757 goto again; 4758 } 4759 4760 if (cond_resched_lock(&root->inode_lock)) 4761 goto again; 4762 4763 node = rb_next(node); 4764 } 4765 spin_unlock(&root->inode_lock); 4766 } 4767 4768 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4769 { 4770 struct btrfs_iget_args *args = p; 4771 inode->i_ino = args->ino; 4772 BTRFS_I(inode)->root = args->root; 4773 return 0; 4774 } 4775 4776 static int btrfs_find_actor(struct inode *inode, void *opaque) 4777 { 4778 struct btrfs_iget_args *args = opaque; 4779 return args->ino == btrfs_ino(inode) && 4780 args->root == BTRFS_I(inode)->root; 4781 } 4782 4783 static struct inode *btrfs_iget_locked(struct super_block *s, 4784 u64 objectid, 4785 struct btrfs_root *root) 4786 { 4787 struct inode *inode; 4788 struct btrfs_iget_args args; 4789 args.ino = objectid; 4790 args.root = root; 4791 4792 inode = iget5_locked(s, objectid, btrfs_find_actor, 4793 btrfs_init_locked_inode, 4794 (void *)&args); 4795 return inode; 4796 } 4797 4798 /* Get an inode object given its location and corresponding root. 4799 * Returns in *is_new if the inode was read from disk 4800 */ 4801 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4802 struct btrfs_root *root, int *new) 4803 { 4804 struct inode *inode; 4805 4806 inode = btrfs_iget_locked(s, location->objectid, root); 4807 if (!inode) 4808 return ERR_PTR(-ENOMEM); 4809 4810 if (inode->i_state & I_NEW) { 4811 BTRFS_I(inode)->root = root; 4812 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4813 btrfs_read_locked_inode(inode); 4814 if (!is_bad_inode(inode)) { 4815 inode_tree_add(inode); 4816 unlock_new_inode(inode); 4817 if (new) 4818 *new = 1; 4819 } else { 4820 unlock_new_inode(inode); 4821 iput(inode); 4822 inode = ERR_PTR(-ESTALE); 4823 } 4824 } 4825 4826 return inode; 4827 } 4828 4829 static struct inode *new_simple_dir(struct super_block *s, 4830 struct btrfs_key *key, 4831 struct btrfs_root *root) 4832 { 4833 struct inode *inode = new_inode(s); 4834 4835 if (!inode) 4836 return ERR_PTR(-ENOMEM); 4837 4838 BTRFS_I(inode)->root = root; 4839 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4840 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 4841 4842 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4843 inode->i_op = &btrfs_dir_ro_inode_operations; 4844 inode->i_fop = &simple_dir_operations; 4845 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4846 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4847 4848 return inode; 4849 } 4850 4851 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4852 { 4853 struct inode *inode; 4854 struct btrfs_root *root = BTRFS_I(dir)->root; 4855 struct btrfs_root *sub_root = root; 4856 struct btrfs_key location; 4857 int index; 4858 int ret = 0; 4859 4860 if (dentry->d_name.len > BTRFS_NAME_LEN) 4861 return ERR_PTR(-ENAMETOOLONG); 4862 4863 ret = btrfs_inode_by_name(dir, dentry, &location); 4864 if (ret < 0) 4865 return ERR_PTR(ret); 4866 4867 if (location.objectid == 0) 4868 return NULL; 4869 4870 if (location.type == BTRFS_INODE_ITEM_KEY) { 4871 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4872 return inode; 4873 } 4874 4875 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4876 4877 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4878 ret = fixup_tree_root_location(root, dir, dentry, 4879 &location, &sub_root); 4880 if (ret < 0) { 4881 if (ret != -ENOENT) 4882 inode = ERR_PTR(ret); 4883 else 4884 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4885 } else { 4886 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4887 } 4888 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4889 4890 if (!IS_ERR(inode) && root != sub_root) { 4891 down_read(&root->fs_info->cleanup_work_sem); 4892 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4893 ret = btrfs_orphan_cleanup(sub_root); 4894 up_read(&root->fs_info->cleanup_work_sem); 4895 if (ret) { 4896 iput(inode); 4897 inode = ERR_PTR(ret); 4898 } 4899 } 4900 4901 return inode; 4902 } 4903 4904 static int btrfs_dentry_delete(const struct dentry *dentry) 4905 { 4906 struct btrfs_root *root; 4907 struct inode *inode = dentry->d_inode; 4908 4909 if (!inode && !IS_ROOT(dentry)) 4910 inode = dentry->d_parent->d_inode; 4911 4912 if (inode) { 4913 root = BTRFS_I(inode)->root; 4914 if (btrfs_root_refs(&root->root_item) == 0) 4915 return 1; 4916 4917 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 4918 return 1; 4919 } 4920 return 0; 4921 } 4922 4923 static void btrfs_dentry_release(struct dentry *dentry) 4924 { 4925 if (dentry->d_fsdata) 4926 kfree(dentry->d_fsdata); 4927 } 4928 4929 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4930 unsigned int flags) 4931 { 4932 struct dentry *ret; 4933 4934 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4935 return ret; 4936 } 4937 4938 unsigned char btrfs_filetype_table[] = { 4939 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4940 }; 4941 4942 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 4943 { 4944 struct inode *inode = file_inode(file); 4945 struct btrfs_root *root = BTRFS_I(inode)->root; 4946 struct btrfs_item *item; 4947 struct btrfs_dir_item *di; 4948 struct btrfs_key key; 4949 struct btrfs_key found_key; 4950 struct btrfs_path *path; 4951 struct list_head ins_list; 4952 struct list_head del_list; 4953 int ret; 4954 struct extent_buffer *leaf; 4955 int slot; 4956 unsigned char d_type; 4957 int over = 0; 4958 u32 di_cur; 4959 u32 di_total; 4960 u32 di_len; 4961 int key_type = BTRFS_DIR_INDEX_KEY; 4962 char tmp_name[32]; 4963 char *name_ptr; 4964 int name_len; 4965 int is_curr = 0; /* ctx->pos points to the current index? */ 4966 4967 /* FIXME, use a real flag for deciding about the key type */ 4968 if (root->fs_info->tree_root == root) 4969 key_type = BTRFS_DIR_ITEM_KEY; 4970 4971 if (!dir_emit_dots(file, ctx)) 4972 return 0; 4973 4974 path = btrfs_alloc_path(); 4975 if (!path) 4976 return -ENOMEM; 4977 4978 path->reada = 1; 4979 4980 if (key_type == BTRFS_DIR_INDEX_KEY) { 4981 INIT_LIST_HEAD(&ins_list); 4982 INIT_LIST_HEAD(&del_list); 4983 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4984 } 4985 4986 btrfs_set_key_type(&key, key_type); 4987 key.offset = ctx->pos; 4988 key.objectid = btrfs_ino(inode); 4989 4990 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4991 if (ret < 0) 4992 goto err; 4993 4994 while (1) { 4995 leaf = path->nodes[0]; 4996 slot = path->slots[0]; 4997 if (slot >= btrfs_header_nritems(leaf)) { 4998 ret = btrfs_next_leaf(root, path); 4999 if (ret < 0) 5000 goto err; 5001 else if (ret > 0) 5002 break; 5003 continue; 5004 } 5005 5006 item = btrfs_item_nr(leaf, slot); 5007 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5008 5009 if (found_key.objectid != key.objectid) 5010 break; 5011 if (btrfs_key_type(&found_key) != key_type) 5012 break; 5013 if (found_key.offset < ctx->pos) 5014 goto next; 5015 if (key_type == BTRFS_DIR_INDEX_KEY && 5016 btrfs_should_delete_dir_index(&del_list, 5017 found_key.offset)) 5018 goto next; 5019 5020 ctx->pos = found_key.offset; 5021 is_curr = 1; 5022 5023 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5024 di_cur = 0; 5025 di_total = btrfs_item_size(leaf, item); 5026 5027 while (di_cur < di_total) { 5028 struct btrfs_key location; 5029 5030 if (verify_dir_item(root, leaf, di)) 5031 break; 5032 5033 name_len = btrfs_dir_name_len(leaf, di); 5034 if (name_len <= sizeof(tmp_name)) { 5035 name_ptr = tmp_name; 5036 } else { 5037 name_ptr = kmalloc(name_len, GFP_NOFS); 5038 if (!name_ptr) { 5039 ret = -ENOMEM; 5040 goto err; 5041 } 5042 } 5043 read_extent_buffer(leaf, name_ptr, 5044 (unsigned long)(di + 1), name_len); 5045 5046 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5047 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5048 5049 5050 /* is this a reference to our own snapshot? If so 5051 * skip it. 5052 * 5053 * In contrast to old kernels, we insert the snapshot's 5054 * dir item and dir index after it has been created, so 5055 * we won't find a reference to our own snapshot. We 5056 * still keep the following code for backward 5057 * compatibility. 5058 */ 5059 if (location.type == BTRFS_ROOT_ITEM_KEY && 5060 location.objectid == root->root_key.objectid) { 5061 over = 0; 5062 goto skip; 5063 } 5064 over = !dir_emit(ctx, name_ptr, name_len, 5065 location.objectid, d_type); 5066 5067 skip: 5068 if (name_ptr != tmp_name) 5069 kfree(name_ptr); 5070 5071 if (over) 5072 goto nopos; 5073 di_len = btrfs_dir_name_len(leaf, di) + 5074 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5075 di_cur += di_len; 5076 di = (struct btrfs_dir_item *)((char *)di + di_len); 5077 } 5078 next: 5079 path->slots[0]++; 5080 } 5081 5082 if (key_type == BTRFS_DIR_INDEX_KEY) { 5083 if (is_curr) 5084 ctx->pos++; 5085 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5086 if (ret) 5087 goto nopos; 5088 } 5089 5090 /* Reached end of directory/root. Bump pos past the last item. */ 5091 ctx->pos++; 5092 5093 /* 5094 * Stop new entries from being returned after we return the last 5095 * entry. 5096 * 5097 * New directory entries are assigned a strictly increasing 5098 * offset. This means that new entries created during readdir 5099 * are *guaranteed* to be seen in the future by that readdir. 5100 * This has broken buggy programs which operate on names as 5101 * they're returned by readdir. Until we re-use freed offsets 5102 * we have this hack to stop new entries from being returned 5103 * under the assumption that they'll never reach this huge 5104 * offset. 5105 * 5106 * This is being careful not to overflow 32bit loff_t unless the 5107 * last entry requires it because doing so has broken 32bit apps 5108 * in the past. 5109 */ 5110 if (key_type == BTRFS_DIR_INDEX_KEY) { 5111 if (ctx->pos >= INT_MAX) 5112 ctx->pos = LLONG_MAX; 5113 else 5114 ctx->pos = INT_MAX; 5115 } 5116 nopos: 5117 ret = 0; 5118 err: 5119 if (key_type == BTRFS_DIR_INDEX_KEY) 5120 btrfs_put_delayed_items(&ins_list, &del_list); 5121 btrfs_free_path(path); 5122 return ret; 5123 } 5124 5125 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5126 { 5127 struct btrfs_root *root = BTRFS_I(inode)->root; 5128 struct btrfs_trans_handle *trans; 5129 int ret = 0; 5130 bool nolock = false; 5131 5132 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5133 return 0; 5134 5135 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5136 nolock = true; 5137 5138 if (wbc->sync_mode == WB_SYNC_ALL) { 5139 if (nolock) 5140 trans = btrfs_join_transaction_nolock(root); 5141 else 5142 trans = btrfs_join_transaction(root); 5143 if (IS_ERR(trans)) 5144 return PTR_ERR(trans); 5145 ret = btrfs_commit_transaction(trans, root); 5146 } 5147 return ret; 5148 } 5149 5150 /* 5151 * This is somewhat expensive, updating the tree every time the 5152 * inode changes. But, it is most likely to find the inode in cache. 5153 * FIXME, needs more benchmarking...there are no reasons other than performance 5154 * to keep or drop this code. 5155 */ 5156 static int btrfs_dirty_inode(struct inode *inode) 5157 { 5158 struct btrfs_root *root = BTRFS_I(inode)->root; 5159 struct btrfs_trans_handle *trans; 5160 int ret; 5161 5162 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5163 return 0; 5164 5165 trans = btrfs_join_transaction(root); 5166 if (IS_ERR(trans)) 5167 return PTR_ERR(trans); 5168 5169 ret = btrfs_update_inode(trans, root, inode); 5170 if (ret && ret == -ENOSPC) { 5171 /* whoops, lets try again with the full transaction */ 5172 btrfs_end_transaction(trans, root); 5173 trans = btrfs_start_transaction(root, 1); 5174 if (IS_ERR(trans)) 5175 return PTR_ERR(trans); 5176 5177 ret = btrfs_update_inode(trans, root, inode); 5178 } 5179 btrfs_end_transaction(trans, root); 5180 if (BTRFS_I(inode)->delayed_node) 5181 btrfs_balance_delayed_items(root); 5182 5183 return ret; 5184 } 5185 5186 /* 5187 * This is a copy of file_update_time. We need this so we can return error on 5188 * ENOSPC for updating the inode in the case of file write and mmap writes. 5189 */ 5190 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5191 int flags) 5192 { 5193 struct btrfs_root *root = BTRFS_I(inode)->root; 5194 5195 if (btrfs_root_readonly(root)) 5196 return -EROFS; 5197 5198 if (flags & S_VERSION) 5199 inode_inc_iversion(inode); 5200 if (flags & S_CTIME) 5201 inode->i_ctime = *now; 5202 if (flags & S_MTIME) 5203 inode->i_mtime = *now; 5204 if (flags & S_ATIME) 5205 inode->i_atime = *now; 5206 return btrfs_dirty_inode(inode); 5207 } 5208 5209 /* 5210 * find the highest existing sequence number in a directory 5211 * and then set the in-memory index_cnt variable to reflect 5212 * free sequence numbers 5213 */ 5214 static int btrfs_set_inode_index_count(struct inode *inode) 5215 { 5216 struct btrfs_root *root = BTRFS_I(inode)->root; 5217 struct btrfs_key key, found_key; 5218 struct btrfs_path *path; 5219 struct extent_buffer *leaf; 5220 int ret; 5221 5222 key.objectid = btrfs_ino(inode); 5223 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5224 key.offset = (u64)-1; 5225 5226 path = btrfs_alloc_path(); 5227 if (!path) 5228 return -ENOMEM; 5229 5230 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5231 if (ret < 0) 5232 goto out; 5233 /* FIXME: we should be able to handle this */ 5234 if (ret == 0) 5235 goto out; 5236 ret = 0; 5237 5238 /* 5239 * MAGIC NUMBER EXPLANATION: 5240 * since we search a directory based on f_pos we have to start at 2 5241 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5242 * else has to start at 2 5243 */ 5244 if (path->slots[0] == 0) { 5245 BTRFS_I(inode)->index_cnt = 2; 5246 goto out; 5247 } 5248 5249 path->slots[0]--; 5250 5251 leaf = path->nodes[0]; 5252 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5253 5254 if (found_key.objectid != btrfs_ino(inode) || 5255 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5256 BTRFS_I(inode)->index_cnt = 2; 5257 goto out; 5258 } 5259 5260 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5261 out: 5262 btrfs_free_path(path); 5263 return ret; 5264 } 5265 5266 /* 5267 * helper to find a free sequence number in a given directory. This current 5268 * code is very simple, later versions will do smarter things in the btree 5269 */ 5270 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5271 { 5272 int ret = 0; 5273 5274 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5275 ret = btrfs_inode_delayed_dir_index_count(dir); 5276 if (ret) { 5277 ret = btrfs_set_inode_index_count(dir); 5278 if (ret) 5279 return ret; 5280 } 5281 } 5282 5283 *index = BTRFS_I(dir)->index_cnt; 5284 BTRFS_I(dir)->index_cnt++; 5285 5286 return ret; 5287 } 5288 5289 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5290 struct btrfs_root *root, 5291 struct inode *dir, 5292 const char *name, int name_len, 5293 u64 ref_objectid, u64 objectid, 5294 umode_t mode, u64 *index) 5295 { 5296 struct inode *inode; 5297 struct btrfs_inode_item *inode_item; 5298 struct btrfs_key *location; 5299 struct btrfs_path *path; 5300 struct btrfs_inode_ref *ref; 5301 struct btrfs_key key[2]; 5302 u32 sizes[2]; 5303 unsigned long ptr; 5304 int ret; 5305 int owner; 5306 5307 path = btrfs_alloc_path(); 5308 if (!path) 5309 return ERR_PTR(-ENOMEM); 5310 5311 inode = new_inode(root->fs_info->sb); 5312 if (!inode) { 5313 btrfs_free_path(path); 5314 return ERR_PTR(-ENOMEM); 5315 } 5316 5317 /* 5318 * we have to initialize this early, so we can reclaim the inode 5319 * number if we fail afterwards in this function. 5320 */ 5321 inode->i_ino = objectid; 5322 5323 if (dir) { 5324 trace_btrfs_inode_request(dir); 5325 5326 ret = btrfs_set_inode_index(dir, index); 5327 if (ret) { 5328 btrfs_free_path(path); 5329 iput(inode); 5330 return ERR_PTR(ret); 5331 } 5332 } 5333 /* 5334 * index_cnt is ignored for everything but a dir, 5335 * btrfs_get_inode_index_count has an explanation for the magic 5336 * number 5337 */ 5338 BTRFS_I(inode)->index_cnt = 2; 5339 BTRFS_I(inode)->root = root; 5340 BTRFS_I(inode)->generation = trans->transid; 5341 inode->i_generation = BTRFS_I(inode)->generation; 5342 5343 /* 5344 * We could have gotten an inode number from somebody who was fsynced 5345 * and then removed in this same transaction, so let's just set full 5346 * sync since it will be a full sync anyway and this will blow away the 5347 * old info in the log. 5348 */ 5349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5350 5351 if (S_ISDIR(mode)) 5352 owner = 0; 5353 else 5354 owner = 1; 5355 5356 key[0].objectid = objectid; 5357 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5358 key[0].offset = 0; 5359 5360 /* 5361 * Start new inodes with an inode_ref. This is slightly more 5362 * efficient for small numbers of hard links since they will 5363 * be packed into one item. Extended refs will kick in if we 5364 * add more hard links than can fit in the ref item. 5365 */ 5366 key[1].objectid = objectid; 5367 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5368 key[1].offset = ref_objectid; 5369 5370 sizes[0] = sizeof(struct btrfs_inode_item); 5371 sizes[1] = name_len + sizeof(*ref); 5372 5373 path->leave_spinning = 1; 5374 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 5375 if (ret != 0) 5376 goto fail; 5377 5378 inode_init_owner(inode, dir, mode); 5379 inode_set_bytes(inode, 0); 5380 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5381 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5382 struct btrfs_inode_item); 5383 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5384 sizeof(*inode_item)); 5385 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5386 5387 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5388 struct btrfs_inode_ref); 5389 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5390 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5391 ptr = (unsigned long)(ref + 1); 5392 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5393 5394 btrfs_mark_buffer_dirty(path->nodes[0]); 5395 btrfs_free_path(path); 5396 5397 location = &BTRFS_I(inode)->location; 5398 location->objectid = objectid; 5399 location->offset = 0; 5400 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5401 5402 btrfs_inherit_iflags(inode, dir); 5403 5404 if (S_ISREG(mode)) { 5405 if (btrfs_test_opt(root, NODATASUM)) 5406 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5407 if (btrfs_test_opt(root, NODATACOW)) 5408 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5409 BTRFS_INODE_NODATASUM; 5410 } 5411 5412 insert_inode_hash(inode); 5413 inode_tree_add(inode); 5414 5415 trace_btrfs_inode_new(inode); 5416 btrfs_set_inode_last_trans(trans, inode); 5417 5418 btrfs_update_root_times(trans, root); 5419 5420 return inode; 5421 fail: 5422 if (dir) 5423 BTRFS_I(dir)->index_cnt--; 5424 btrfs_free_path(path); 5425 iput(inode); 5426 return ERR_PTR(ret); 5427 } 5428 5429 static inline u8 btrfs_inode_type(struct inode *inode) 5430 { 5431 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5432 } 5433 5434 /* 5435 * utility function to add 'inode' into 'parent_inode' with 5436 * a give name and a given sequence number. 5437 * if 'add_backref' is true, also insert a backref from the 5438 * inode to the parent directory. 5439 */ 5440 int btrfs_add_link(struct btrfs_trans_handle *trans, 5441 struct inode *parent_inode, struct inode *inode, 5442 const char *name, int name_len, int add_backref, u64 index) 5443 { 5444 int ret = 0; 5445 struct btrfs_key key; 5446 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5447 u64 ino = btrfs_ino(inode); 5448 u64 parent_ino = btrfs_ino(parent_inode); 5449 5450 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5451 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5452 } else { 5453 key.objectid = ino; 5454 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5455 key.offset = 0; 5456 } 5457 5458 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5459 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5460 key.objectid, root->root_key.objectid, 5461 parent_ino, index, name, name_len); 5462 } else if (add_backref) { 5463 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5464 parent_ino, index); 5465 } 5466 5467 /* Nothing to clean up yet */ 5468 if (ret) 5469 return ret; 5470 5471 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5472 parent_inode, &key, 5473 btrfs_inode_type(inode), index); 5474 if (ret == -EEXIST || ret == -EOVERFLOW) 5475 goto fail_dir_item; 5476 else if (ret) { 5477 btrfs_abort_transaction(trans, root, ret); 5478 return ret; 5479 } 5480 5481 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5482 name_len * 2); 5483 inode_inc_iversion(parent_inode); 5484 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5485 ret = btrfs_update_inode(trans, root, parent_inode); 5486 if (ret) 5487 btrfs_abort_transaction(trans, root, ret); 5488 return ret; 5489 5490 fail_dir_item: 5491 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5492 u64 local_index; 5493 int err; 5494 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5495 key.objectid, root->root_key.objectid, 5496 parent_ino, &local_index, name, name_len); 5497 5498 } else if (add_backref) { 5499 u64 local_index; 5500 int err; 5501 5502 err = btrfs_del_inode_ref(trans, root, name, name_len, 5503 ino, parent_ino, &local_index); 5504 } 5505 return ret; 5506 } 5507 5508 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5509 struct inode *dir, struct dentry *dentry, 5510 struct inode *inode, int backref, u64 index) 5511 { 5512 int err = btrfs_add_link(trans, dir, inode, 5513 dentry->d_name.name, dentry->d_name.len, 5514 backref, index); 5515 if (err > 0) 5516 err = -EEXIST; 5517 return err; 5518 } 5519 5520 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5521 umode_t mode, dev_t rdev) 5522 { 5523 struct btrfs_trans_handle *trans; 5524 struct btrfs_root *root = BTRFS_I(dir)->root; 5525 struct inode *inode = NULL; 5526 int err; 5527 int drop_inode = 0; 5528 u64 objectid; 5529 u64 index = 0; 5530 5531 if (!new_valid_dev(rdev)) 5532 return -EINVAL; 5533 5534 /* 5535 * 2 for inode item and ref 5536 * 2 for dir items 5537 * 1 for xattr if selinux is on 5538 */ 5539 trans = btrfs_start_transaction(root, 5); 5540 if (IS_ERR(trans)) 5541 return PTR_ERR(trans); 5542 5543 err = btrfs_find_free_ino(root, &objectid); 5544 if (err) 5545 goto out_unlock; 5546 5547 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5548 dentry->d_name.len, btrfs_ino(dir), objectid, 5549 mode, &index); 5550 if (IS_ERR(inode)) { 5551 err = PTR_ERR(inode); 5552 goto out_unlock; 5553 } 5554 5555 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5556 if (err) { 5557 drop_inode = 1; 5558 goto out_unlock; 5559 } 5560 5561 /* 5562 * If the active LSM wants to access the inode during 5563 * d_instantiate it needs these. Smack checks to see 5564 * if the filesystem supports xattrs by looking at the 5565 * ops vector. 5566 */ 5567 5568 inode->i_op = &btrfs_special_inode_operations; 5569 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5570 if (err) 5571 drop_inode = 1; 5572 else { 5573 init_special_inode(inode, inode->i_mode, rdev); 5574 btrfs_update_inode(trans, root, inode); 5575 d_instantiate(dentry, inode); 5576 } 5577 out_unlock: 5578 btrfs_end_transaction(trans, root); 5579 btrfs_btree_balance_dirty(root); 5580 if (drop_inode) { 5581 inode_dec_link_count(inode); 5582 iput(inode); 5583 } 5584 return err; 5585 } 5586 5587 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5588 umode_t mode, bool excl) 5589 { 5590 struct btrfs_trans_handle *trans; 5591 struct btrfs_root *root = BTRFS_I(dir)->root; 5592 struct inode *inode = NULL; 5593 int drop_inode_on_err = 0; 5594 int err; 5595 u64 objectid; 5596 u64 index = 0; 5597 5598 /* 5599 * 2 for inode item and ref 5600 * 2 for dir items 5601 * 1 for xattr if selinux is on 5602 */ 5603 trans = btrfs_start_transaction(root, 5); 5604 if (IS_ERR(trans)) 5605 return PTR_ERR(trans); 5606 5607 err = btrfs_find_free_ino(root, &objectid); 5608 if (err) 5609 goto out_unlock; 5610 5611 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5612 dentry->d_name.len, btrfs_ino(dir), objectid, 5613 mode, &index); 5614 if (IS_ERR(inode)) { 5615 err = PTR_ERR(inode); 5616 goto out_unlock; 5617 } 5618 drop_inode_on_err = 1; 5619 5620 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5621 if (err) 5622 goto out_unlock; 5623 5624 err = btrfs_update_inode(trans, root, inode); 5625 if (err) 5626 goto out_unlock; 5627 5628 /* 5629 * If the active LSM wants to access the inode during 5630 * d_instantiate it needs these. Smack checks to see 5631 * if the filesystem supports xattrs by looking at the 5632 * ops vector. 5633 */ 5634 inode->i_fop = &btrfs_file_operations; 5635 inode->i_op = &btrfs_file_inode_operations; 5636 5637 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5638 if (err) 5639 goto out_unlock; 5640 5641 inode->i_mapping->a_ops = &btrfs_aops; 5642 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5643 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5644 d_instantiate(dentry, inode); 5645 5646 out_unlock: 5647 btrfs_end_transaction(trans, root); 5648 if (err && drop_inode_on_err) { 5649 inode_dec_link_count(inode); 5650 iput(inode); 5651 } 5652 btrfs_btree_balance_dirty(root); 5653 return err; 5654 } 5655 5656 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5657 struct dentry *dentry) 5658 { 5659 struct btrfs_trans_handle *trans; 5660 struct btrfs_root *root = BTRFS_I(dir)->root; 5661 struct inode *inode = old_dentry->d_inode; 5662 u64 index; 5663 int err; 5664 int drop_inode = 0; 5665 5666 /* do not allow sys_link's with other subvols of the same device */ 5667 if (root->objectid != BTRFS_I(inode)->root->objectid) 5668 return -EXDEV; 5669 5670 if (inode->i_nlink >= BTRFS_LINK_MAX) 5671 return -EMLINK; 5672 5673 err = btrfs_set_inode_index(dir, &index); 5674 if (err) 5675 goto fail; 5676 5677 /* 5678 * 2 items for inode and inode ref 5679 * 2 items for dir items 5680 * 1 item for parent inode 5681 */ 5682 trans = btrfs_start_transaction(root, 5); 5683 if (IS_ERR(trans)) { 5684 err = PTR_ERR(trans); 5685 goto fail; 5686 } 5687 5688 btrfs_inc_nlink(inode); 5689 inode_inc_iversion(inode); 5690 inode->i_ctime = CURRENT_TIME; 5691 ihold(inode); 5692 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5693 5694 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5695 5696 if (err) { 5697 drop_inode = 1; 5698 } else { 5699 struct dentry *parent = dentry->d_parent; 5700 err = btrfs_update_inode(trans, root, inode); 5701 if (err) 5702 goto fail; 5703 d_instantiate(dentry, inode); 5704 btrfs_log_new_name(trans, inode, NULL, parent); 5705 } 5706 5707 btrfs_end_transaction(trans, root); 5708 fail: 5709 if (drop_inode) { 5710 inode_dec_link_count(inode); 5711 iput(inode); 5712 } 5713 btrfs_btree_balance_dirty(root); 5714 return err; 5715 } 5716 5717 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5718 { 5719 struct inode *inode = NULL; 5720 struct btrfs_trans_handle *trans; 5721 struct btrfs_root *root = BTRFS_I(dir)->root; 5722 int err = 0; 5723 int drop_on_err = 0; 5724 u64 objectid = 0; 5725 u64 index = 0; 5726 5727 /* 5728 * 2 items for inode and ref 5729 * 2 items for dir items 5730 * 1 for xattr if selinux is on 5731 */ 5732 trans = btrfs_start_transaction(root, 5); 5733 if (IS_ERR(trans)) 5734 return PTR_ERR(trans); 5735 5736 err = btrfs_find_free_ino(root, &objectid); 5737 if (err) 5738 goto out_fail; 5739 5740 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5741 dentry->d_name.len, btrfs_ino(dir), objectid, 5742 S_IFDIR | mode, &index); 5743 if (IS_ERR(inode)) { 5744 err = PTR_ERR(inode); 5745 goto out_fail; 5746 } 5747 5748 drop_on_err = 1; 5749 5750 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5751 if (err) 5752 goto out_fail; 5753 5754 inode->i_op = &btrfs_dir_inode_operations; 5755 inode->i_fop = &btrfs_dir_file_operations; 5756 5757 btrfs_i_size_write(inode, 0); 5758 err = btrfs_update_inode(trans, root, inode); 5759 if (err) 5760 goto out_fail; 5761 5762 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5763 dentry->d_name.len, 0, index); 5764 if (err) 5765 goto out_fail; 5766 5767 d_instantiate(dentry, inode); 5768 drop_on_err = 0; 5769 5770 out_fail: 5771 btrfs_end_transaction(trans, root); 5772 if (drop_on_err) 5773 iput(inode); 5774 btrfs_btree_balance_dirty(root); 5775 return err; 5776 } 5777 5778 /* helper for btfs_get_extent. Given an existing extent in the tree, 5779 * and an extent that you want to insert, deal with overlap and insert 5780 * the new extent into the tree. 5781 */ 5782 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5783 struct extent_map *existing, 5784 struct extent_map *em, 5785 u64 map_start, u64 map_len) 5786 { 5787 u64 start_diff; 5788 5789 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5790 start_diff = map_start - em->start; 5791 em->start = map_start; 5792 em->len = map_len; 5793 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5794 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5795 em->block_start += start_diff; 5796 em->block_len -= start_diff; 5797 } 5798 return add_extent_mapping(em_tree, em, 0); 5799 } 5800 5801 static noinline int uncompress_inline(struct btrfs_path *path, 5802 struct inode *inode, struct page *page, 5803 size_t pg_offset, u64 extent_offset, 5804 struct btrfs_file_extent_item *item) 5805 { 5806 int ret; 5807 struct extent_buffer *leaf = path->nodes[0]; 5808 char *tmp; 5809 size_t max_size; 5810 unsigned long inline_size; 5811 unsigned long ptr; 5812 int compress_type; 5813 5814 WARN_ON(pg_offset != 0); 5815 compress_type = btrfs_file_extent_compression(leaf, item); 5816 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5817 inline_size = btrfs_file_extent_inline_item_len(leaf, 5818 btrfs_item_nr(leaf, path->slots[0])); 5819 tmp = kmalloc(inline_size, GFP_NOFS); 5820 if (!tmp) 5821 return -ENOMEM; 5822 ptr = btrfs_file_extent_inline_start(item); 5823 5824 read_extent_buffer(leaf, tmp, ptr, inline_size); 5825 5826 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 5827 ret = btrfs_decompress(compress_type, tmp, page, 5828 extent_offset, inline_size, max_size); 5829 if (ret) { 5830 char *kaddr = kmap_atomic(page); 5831 unsigned long copy_size = min_t(u64, 5832 PAGE_CACHE_SIZE - pg_offset, 5833 max_size - extent_offset); 5834 memset(kaddr + pg_offset, 0, copy_size); 5835 kunmap_atomic(kaddr); 5836 } 5837 kfree(tmp); 5838 return 0; 5839 } 5840 5841 /* 5842 * a bit scary, this does extent mapping from logical file offset to the disk. 5843 * the ugly parts come from merging extents from the disk with the in-ram 5844 * representation. This gets more complex because of the data=ordered code, 5845 * where the in-ram extents might be locked pending data=ordered completion. 5846 * 5847 * This also copies inline extents directly into the page. 5848 */ 5849 5850 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 5851 size_t pg_offset, u64 start, u64 len, 5852 int create) 5853 { 5854 int ret; 5855 int err = 0; 5856 u64 bytenr; 5857 u64 extent_start = 0; 5858 u64 extent_end = 0; 5859 u64 objectid = btrfs_ino(inode); 5860 u32 found_type; 5861 struct btrfs_path *path = NULL; 5862 struct btrfs_root *root = BTRFS_I(inode)->root; 5863 struct btrfs_file_extent_item *item; 5864 struct extent_buffer *leaf; 5865 struct btrfs_key found_key; 5866 struct extent_map *em = NULL; 5867 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5868 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5869 struct btrfs_trans_handle *trans = NULL; 5870 int compress_type; 5871 5872 again: 5873 read_lock(&em_tree->lock); 5874 em = lookup_extent_mapping(em_tree, start, len); 5875 if (em) 5876 em->bdev = root->fs_info->fs_devices->latest_bdev; 5877 read_unlock(&em_tree->lock); 5878 5879 if (em) { 5880 if (em->start > start || em->start + em->len <= start) 5881 free_extent_map(em); 5882 else if (em->block_start == EXTENT_MAP_INLINE && page) 5883 free_extent_map(em); 5884 else 5885 goto out; 5886 } 5887 em = alloc_extent_map(); 5888 if (!em) { 5889 err = -ENOMEM; 5890 goto out; 5891 } 5892 em->bdev = root->fs_info->fs_devices->latest_bdev; 5893 em->start = EXTENT_MAP_HOLE; 5894 em->orig_start = EXTENT_MAP_HOLE; 5895 em->len = (u64)-1; 5896 em->block_len = (u64)-1; 5897 5898 if (!path) { 5899 path = btrfs_alloc_path(); 5900 if (!path) { 5901 err = -ENOMEM; 5902 goto out; 5903 } 5904 /* 5905 * Chances are we'll be called again, so go ahead and do 5906 * readahead 5907 */ 5908 path->reada = 1; 5909 } 5910 5911 ret = btrfs_lookup_file_extent(trans, root, path, 5912 objectid, start, trans != NULL); 5913 if (ret < 0) { 5914 err = ret; 5915 goto out; 5916 } 5917 5918 if (ret != 0) { 5919 if (path->slots[0] == 0) 5920 goto not_found; 5921 path->slots[0]--; 5922 } 5923 5924 leaf = path->nodes[0]; 5925 item = btrfs_item_ptr(leaf, path->slots[0], 5926 struct btrfs_file_extent_item); 5927 /* are we inside the extent that was found? */ 5928 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5929 found_type = btrfs_key_type(&found_key); 5930 if (found_key.objectid != objectid || 5931 found_type != BTRFS_EXTENT_DATA_KEY) { 5932 goto not_found; 5933 } 5934 5935 found_type = btrfs_file_extent_type(leaf, item); 5936 extent_start = found_key.offset; 5937 compress_type = btrfs_file_extent_compression(leaf, item); 5938 if (found_type == BTRFS_FILE_EXTENT_REG || 5939 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5940 extent_end = extent_start + 5941 btrfs_file_extent_num_bytes(leaf, item); 5942 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5943 size_t size; 5944 size = btrfs_file_extent_inline_len(leaf, item); 5945 extent_end = ALIGN(extent_start + size, root->sectorsize); 5946 } 5947 5948 if (start >= extent_end) { 5949 path->slots[0]++; 5950 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5951 ret = btrfs_next_leaf(root, path); 5952 if (ret < 0) { 5953 err = ret; 5954 goto out; 5955 } 5956 if (ret > 0) 5957 goto not_found; 5958 leaf = path->nodes[0]; 5959 } 5960 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5961 if (found_key.objectid != objectid || 5962 found_key.type != BTRFS_EXTENT_DATA_KEY) 5963 goto not_found; 5964 if (start + len <= found_key.offset) 5965 goto not_found; 5966 em->start = start; 5967 em->orig_start = start; 5968 em->len = found_key.offset - start; 5969 goto not_found_em; 5970 } 5971 5972 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 5973 if (found_type == BTRFS_FILE_EXTENT_REG || 5974 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5975 em->start = extent_start; 5976 em->len = extent_end - extent_start; 5977 em->orig_start = extent_start - 5978 btrfs_file_extent_offset(leaf, item); 5979 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 5980 item); 5981 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5982 if (bytenr == 0) { 5983 em->block_start = EXTENT_MAP_HOLE; 5984 goto insert; 5985 } 5986 if (compress_type != BTRFS_COMPRESS_NONE) { 5987 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5988 em->compress_type = compress_type; 5989 em->block_start = bytenr; 5990 em->block_len = em->orig_block_len; 5991 } else { 5992 bytenr += btrfs_file_extent_offset(leaf, item); 5993 em->block_start = bytenr; 5994 em->block_len = em->len; 5995 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5996 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5997 } 5998 goto insert; 5999 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6000 unsigned long ptr; 6001 char *map; 6002 size_t size; 6003 size_t extent_offset; 6004 size_t copy_size; 6005 6006 em->block_start = EXTENT_MAP_INLINE; 6007 if (!page || create) { 6008 em->start = extent_start; 6009 em->len = extent_end - extent_start; 6010 goto out; 6011 } 6012 6013 size = btrfs_file_extent_inline_len(leaf, item); 6014 extent_offset = page_offset(page) + pg_offset - extent_start; 6015 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6016 size - extent_offset); 6017 em->start = extent_start + extent_offset; 6018 em->len = ALIGN(copy_size, root->sectorsize); 6019 em->orig_block_len = em->len; 6020 em->orig_start = em->start; 6021 if (compress_type) { 6022 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6023 em->compress_type = compress_type; 6024 } 6025 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6026 if (create == 0 && !PageUptodate(page)) { 6027 if (btrfs_file_extent_compression(leaf, item) != 6028 BTRFS_COMPRESS_NONE) { 6029 ret = uncompress_inline(path, inode, page, 6030 pg_offset, 6031 extent_offset, item); 6032 BUG_ON(ret); /* -ENOMEM */ 6033 } else { 6034 map = kmap(page); 6035 read_extent_buffer(leaf, map + pg_offset, ptr, 6036 copy_size); 6037 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6038 memset(map + pg_offset + copy_size, 0, 6039 PAGE_CACHE_SIZE - pg_offset - 6040 copy_size); 6041 } 6042 kunmap(page); 6043 } 6044 flush_dcache_page(page); 6045 } else if (create && PageUptodate(page)) { 6046 BUG(); 6047 if (!trans) { 6048 kunmap(page); 6049 free_extent_map(em); 6050 em = NULL; 6051 6052 btrfs_release_path(path); 6053 trans = btrfs_join_transaction(root); 6054 6055 if (IS_ERR(trans)) 6056 return ERR_CAST(trans); 6057 goto again; 6058 } 6059 map = kmap(page); 6060 write_extent_buffer(leaf, map + pg_offset, ptr, 6061 copy_size); 6062 kunmap(page); 6063 btrfs_mark_buffer_dirty(leaf); 6064 } 6065 set_extent_uptodate(io_tree, em->start, 6066 extent_map_end(em) - 1, NULL, GFP_NOFS); 6067 goto insert; 6068 } else { 6069 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 6070 } 6071 not_found: 6072 em->start = start; 6073 em->orig_start = start; 6074 em->len = len; 6075 not_found_em: 6076 em->block_start = EXTENT_MAP_HOLE; 6077 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6078 insert: 6079 btrfs_release_path(path); 6080 if (em->start > start || extent_map_end(em) <= start) { 6081 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6082 em->start, em->len, start, len); 6083 err = -EIO; 6084 goto out; 6085 } 6086 6087 err = 0; 6088 write_lock(&em_tree->lock); 6089 ret = add_extent_mapping(em_tree, em, 0); 6090 /* it is possible that someone inserted the extent into the tree 6091 * while we had the lock dropped. It is also possible that 6092 * an overlapping map exists in the tree 6093 */ 6094 if (ret == -EEXIST) { 6095 struct extent_map *existing; 6096 6097 ret = 0; 6098 6099 existing = lookup_extent_mapping(em_tree, start, len); 6100 if (existing && (existing->start > start || 6101 existing->start + existing->len <= start)) { 6102 free_extent_map(existing); 6103 existing = NULL; 6104 } 6105 if (!existing) { 6106 existing = lookup_extent_mapping(em_tree, em->start, 6107 em->len); 6108 if (existing) { 6109 err = merge_extent_mapping(em_tree, existing, 6110 em, start, 6111 root->sectorsize); 6112 free_extent_map(existing); 6113 if (err) { 6114 free_extent_map(em); 6115 em = NULL; 6116 } 6117 } else { 6118 err = -EIO; 6119 free_extent_map(em); 6120 em = NULL; 6121 } 6122 } else { 6123 free_extent_map(em); 6124 em = existing; 6125 err = 0; 6126 } 6127 } 6128 write_unlock(&em_tree->lock); 6129 out: 6130 6131 if (em) 6132 trace_btrfs_get_extent(root, em); 6133 6134 if (path) 6135 btrfs_free_path(path); 6136 if (trans) { 6137 ret = btrfs_end_transaction(trans, root); 6138 if (!err) 6139 err = ret; 6140 } 6141 if (err) { 6142 free_extent_map(em); 6143 return ERR_PTR(err); 6144 } 6145 BUG_ON(!em); /* Error is always set */ 6146 return em; 6147 } 6148 6149 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6150 size_t pg_offset, u64 start, u64 len, 6151 int create) 6152 { 6153 struct extent_map *em; 6154 struct extent_map *hole_em = NULL; 6155 u64 range_start = start; 6156 u64 end; 6157 u64 found; 6158 u64 found_end; 6159 int err = 0; 6160 6161 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6162 if (IS_ERR(em)) 6163 return em; 6164 if (em) { 6165 /* 6166 * if our em maps to 6167 * - a hole or 6168 * - a pre-alloc extent, 6169 * there might actually be delalloc bytes behind it. 6170 */ 6171 if (em->block_start != EXTENT_MAP_HOLE && 6172 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6173 return em; 6174 else 6175 hole_em = em; 6176 } 6177 6178 /* check to see if we've wrapped (len == -1 or similar) */ 6179 end = start + len; 6180 if (end < start) 6181 end = (u64)-1; 6182 else 6183 end -= 1; 6184 6185 em = NULL; 6186 6187 /* ok, we didn't find anything, lets look for delalloc */ 6188 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6189 end, len, EXTENT_DELALLOC, 1); 6190 found_end = range_start + found; 6191 if (found_end < range_start) 6192 found_end = (u64)-1; 6193 6194 /* 6195 * we didn't find anything useful, return 6196 * the original results from get_extent() 6197 */ 6198 if (range_start > end || found_end <= start) { 6199 em = hole_em; 6200 hole_em = NULL; 6201 goto out; 6202 } 6203 6204 /* adjust the range_start to make sure it doesn't 6205 * go backwards from the start they passed in 6206 */ 6207 range_start = max(start,range_start); 6208 found = found_end - range_start; 6209 6210 if (found > 0) { 6211 u64 hole_start = start; 6212 u64 hole_len = len; 6213 6214 em = alloc_extent_map(); 6215 if (!em) { 6216 err = -ENOMEM; 6217 goto out; 6218 } 6219 /* 6220 * when btrfs_get_extent can't find anything it 6221 * returns one huge hole 6222 * 6223 * make sure what it found really fits our range, and 6224 * adjust to make sure it is based on the start from 6225 * the caller 6226 */ 6227 if (hole_em) { 6228 u64 calc_end = extent_map_end(hole_em); 6229 6230 if (calc_end <= start || (hole_em->start > end)) { 6231 free_extent_map(hole_em); 6232 hole_em = NULL; 6233 } else { 6234 hole_start = max(hole_em->start, start); 6235 hole_len = calc_end - hole_start; 6236 } 6237 } 6238 em->bdev = NULL; 6239 if (hole_em && range_start > hole_start) { 6240 /* our hole starts before our delalloc, so we 6241 * have to return just the parts of the hole 6242 * that go until the delalloc starts 6243 */ 6244 em->len = min(hole_len, 6245 range_start - hole_start); 6246 em->start = hole_start; 6247 em->orig_start = hole_start; 6248 /* 6249 * don't adjust block start at all, 6250 * it is fixed at EXTENT_MAP_HOLE 6251 */ 6252 em->block_start = hole_em->block_start; 6253 em->block_len = hole_len; 6254 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6255 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6256 } else { 6257 em->start = range_start; 6258 em->len = found; 6259 em->orig_start = range_start; 6260 em->block_start = EXTENT_MAP_DELALLOC; 6261 em->block_len = found; 6262 } 6263 } else if (hole_em) { 6264 return hole_em; 6265 } 6266 out: 6267 6268 free_extent_map(hole_em); 6269 if (err) { 6270 free_extent_map(em); 6271 return ERR_PTR(err); 6272 } 6273 return em; 6274 } 6275 6276 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6277 u64 start, u64 len) 6278 { 6279 struct btrfs_root *root = BTRFS_I(inode)->root; 6280 struct extent_map *em; 6281 struct btrfs_key ins; 6282 u64 alloc_hint; 6283 int ret; 6284 6285 alloc_hint = get_extent_allocation_hint(inode, start, len); 6286 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 6287 alloc_hint, &ins, 1); 6288 if (ret) 6289 return ERR_PTR(ret); 6290 6291 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6292 ins.offset, ins.offset, ins.offset, 0); 6293 if (IS_ERR(em)) { 6294 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6295 return em; 6296 } 6297 6298 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6299 ins.offset, ins.offset, 0); 6300 if (ret) { 6301 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6302 free_extent_map(em); 6303 return ERR_PTR(ret); 6304 } 6305 6306 return em; 6307 } 6308 6309 /* 6310 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6311 * block must be cow'd 6312 */ 6313 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6314 u64 *orig_start, u64 *orig_block_len, 6315 u64 *ram_bytes) 6316 { 6317 struct btrfs_trans_handle *trans; 6318 struct btrfs_path *path; 6319 int ret; 6320 struct extent_buffer *leaf; 6321 struct btrfs_root *root = BTRFS_I(inode)->root; 6322 struct btrfs_file_extent_item *fi; 6323 struct btrfs_key key; 6324 u64 disk_bytenr; 6325 u64 backref_offset; 6326 u64 extent_end; 6327 u64 num_bytes; 6328 int slot; 6329 int found_type; 6330 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6331 path = btrfs_alloc_path(); 6332 if (!path) 6333 return -ENOMEM; 6334 6335 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 6336 offset, 0); 6337 if (ret < 0) 6338 goto out; 6339 6340 slot = path->slots[0]; 6341 if (ret == 1) { 6342 if (slot == 0) { 6343 /* can't find the item, must cow */ 6344 ret = 0; 6345 goto out; 6346 } 6347 slot--; 6348 } 6349 ret = 0; 6350 leaf = path->nodes[0]; 6351 btrfs_item_key_to_cpu(leaf, &key, slot); 6352 if (key.objectid != btrfs_ino(inode) || 6353 key.type != BTRFS_EXTENT_DATA_KEY) { 6354 /* not our file or wrong item type, must cow */ 6355 goto out; 6356 } 6357 6358 if (key.offset > offset) { 6359 /* Wrong offset, must cow */ 6360 goto out; 6361 } 6362 6363 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6364 found_type = btrfs_file_extent_type(leaf, fi); 6365 if (found_type != BTRFS_FILE_EXTENT_REG && 6366 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6367 /* not a regular extent, must cow */ 6368 goto out; 6369 } 6370 6371 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6372 goto out; 6373 6374 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6375 if (disk_bytenr == 0) 6376 goto out; 6377 6378 if (btrfs_file_extent_compression(leaf, fi) || 6379 btrfs_file_extent_encryption(leaf, fi) || 6380 btrfs_file_extent_other_encoding(leaf, fi)) 6381 goto out; 6382 6383 backref_offset = btrfs_file_extent_offset(leaf, fi); 6384 6385 if (orig_start) { 6386 *orig_start = key.offset - backref_offset; 6387 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6388 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6389 } 6390 6391 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6392 6393 if (btrfs_extent_readonly(root, disk_bytenr)) 6394 goto out; 6395 6396 /* 6397 * look for other files referencing this extent, if we 6398 * find any we must cow 6399 */ 6400 trans = btrfs_join_transaction(root); 6401 if (IS_ERR(trans)) { 6402 ret = 0; 6403 goto out; 6404 } 6405 6406 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6407 key.offset - backref_offset, disk_bytenr); 6408 btrfs_end_transaction(trans, root); 6409 if (ret) { 6410 ret = 0; 6411 goto out; 6412 } 6413 6414 /* 6415 * adjust disk_bytenr and num_bytes to cover just the bytes 6416 * in this extent we are about to write. If there 6417 * are any csums in that range we have to cow in order 6418 * to keep the csums correct 6419 */ 6420 disk_bytenr += backref_offset; 6421 disk_bytenr += offset - key.offset; 6422 num_bytes = min(offset + *len, extent_end) - offset; 6423 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6424 goto out; 6425 /* 6426 * all of the above have passed, it is safe to overwrite this extent 6427 * without cow 6428 */ 6429 *len = num_bytes; 6430 ret = 1; 6431 out: 6432 btrfs_free_path(path); 6433 return ret; 6434 } 6435 6436 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6437 struct extent_state **cached_state, int writing) 6438 { 6439 struct btrfs_ordered_extent *ordered; 6440 int ret = 0; 6441 6442 while (1) { 6443 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6444 0, cached_state); 6445 /* 6446 * We're concerned with the entire range that we're going to be 6447 * doing DIO to, so we need to make sure theres no ordered 6448 * extents in this range. 6449 */ 6450 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6451 lockend - lockstart + 1); 6452 6453 /* 6454 * We need to make sure there are no buffered pages in this 6455 * range either, we could have raced between the invalidate in 6456 * generic_file_direct_write and locking the extent. The 6457 * invalidate needs to happen so that reads after a write do not 6458 * get stale data. 6459 */ 6460 if (!ordered && (!writing || 6461 !test_range_bit(&BTRFS_I(inode)->io_tree, 6462 lockstart, lockend, EXTENT_UPTODATE, 0, 6463 *cached_state))) 6464 break; 6465 6466 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6467 cached_state, GFP_NOFS); 6468 6469 if (ordered) { 6470 btrfs_start_ordered_extent(inode, ordered, 1); 6471 btrfs_put_ordered_extent(ordered); 6472 } else { 6473 /* Screw you mmap */ 6474 ret = filemap_write_and_wait_range(inode->i_mapping, 6475 lockstart, 6476 lockend); 6477 if (ret) 6478 break; 6479 6480 /* 6481 * If we found a page that couldn't be invalidated just 6482 * fall back to buffered. 6483 */ 6484 ret = invalidate_inode_pages2_range(inode->i_mapping, 6485 lockstart >> PAGE_CACHE_SHIFT, 6486 lockend >> PAGE_CACHE_SHIFT); 6487 if (ret) 6488 break; 6489 } 6490 6491 cond_resched(); 6492 } 6493 6494 return ret; 6495 } 6496 6497 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6498 u64 len, u64 orig_start, 6499 u64 block_start, u64 block_len, 6500 u64 orig_block_len, u64 ram_bytes, 6501 int type) 6502 { 6503 struct extent_map_tree *em_tree; 6504 struct extent_map *em; 6505 struct btrfs_root *root = BTRFS_I(inode)->root; 6506 int ret; 6507 6508 em_tree = &BTRFS_I(inode)->extent_tree; 6509 em = alloc_extent_map(); 6510 if (!em) 6511 return ERR_PTR(-ENOMEM); 6512 6513 em->start = start; 6514 em->orig_start = orig_start; 6515 em->mod_start = start; 6516 em->mod_len = len; 6517 em->len = len; 6518 em->block_len = block_len; 6519 em->block_start = block_start; 6520 em->bdev = root->fs_info->fs_devices->latest_bdev; 6521 em->orig_block_len = orig_block_len; 6522 em->ram_bytes = ram_bytes; 6523 em->generation = -1; 6524 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6525 if (type == BTRFS_ORDERED_PREALLOC) 6526 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6527 6528 do { 6529 btrfs_drop_extent_cache(inode, em->start, 6530 em->start + em->len - 1, 0); 6531 write_lock(&em_tree->lock); 6532 ret = add_extent_mapping(em_tree, em, 1); 6533 write_unlock(&em_tree->lock); 6534 } while (ret == -EEXIST); 6535 6536 if (ret) { 6537 free_extent_map(em); 6538 return ERR_PTR(ret); 6539 } 6540 6541 return em; 6542 } 6543 6544 6545 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6546 struct buffer_head *bh_result, int create) 6547 { 6548 struct extent_map *em; 6549 struct btrfs_root *root = BTRFS_I(inode)->root; 6550 struct extent_state *cached_state = NULL; 6551 u64 start = iblock << inode->i_blkbits; 6552 u64 lockstart, lockend; 6553 u64 len = bh_result->b_size; 6554 int unlock_bits = EXTENT_LOCKED; 6555 int ret = 0; 6556 6557 if (create) 6558 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6559 else 6560 len = min_t(u64, len, root->sectorsize); 6561 6562 lockstart = start; 6563 lockend = start + len - 1; 6564 6565 /* 6566 * If this errors out it's because we couldn't invalidate pagecache for 6567 * this range and we need to fallback to buffered. 6568 */ 6569 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6570 return -ENOTBLK; 6571 6572 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6573 if (IS_ERR(em)) { 6574 ret = PTR_ERR(em); 6575 goto unlock_err; 6576 } 6577 6578 /* 6579 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6580 * io. INLINE is special, and we could probably kludge it in here, but 6581 * it's still buffered so for safety lets just fall back to the generic 6582 * buffered path. 6583 * 6584 * For COMPRESSED we _have_ to read the entire extent in so we can 6585 * decompress it, so there will be buffering required no matter what we 6586 * do, so go ahead and fallback to buffered. 6587 * 6588 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6589 * to buffered IO. Don't blame me, this is the price we pay for using 6590 * the generic code. 6591 */ 6592 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6593 em->block_start == EXTENT_MAP_INLINE) { 6594 free_extent_map(em); 6595 ret = -ENOTBLK; 6596 goto unlock_err; 6597 } 6598 6599 /* Just a good old fashioned hole, return */ 6600 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6601 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6602 free_extent_map(em); 6603 goto unlock_err; 6604 } 6605 6606 /* 6607 * We don't allocate a new extent in the following cases 6608 * 6609 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6610 * existing extent. 6611 * 2) The extent is marked as PREALLOC. We're good to go here and can 6612 * just use the extent. 6613 * 6614 */ 6615 if (!create) { 6616 len = min(len, em->len - (start - em->start)); 6617 lockstart = start + len; 6618 goto unlock; 6619 } 6620 6621 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6622 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6623 em->block_start != EXTENT_MAP_HOLE)) { 6624 int type; 6625 int ret; 6626 u64 block_start, orig_start, orig_block_len, ram_bytes; 6627 6628 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6629 type = BTRFS_ORDERED_PREALLOC; 6630 else 6631 type = BTRFS_ORDERED_NOCOW; 6632 len = min(len, em->len - (start - em->start)); 6633 block_start = em->block_start + (start - em->start); 6634 6635 if (can_nocow_extent(inode, start, &len, &orig_start, 6636 &orig_block_len, &ram_bytes) == 1) { 6637 if (type == BTRFS_ORDERED_PREALLOC) { 6638 free_extent_map(em); 6639 em = create_pinned_em(inode, start, len, 6640 orig_start, 6641 block_start, len, 6642 orig_block_len, 6643 ram_bytes, type); 6644 if (IS_ERR(em)) 6645 goto unlock_err; 6646 } 6647 6648 ret = btrfs_add_ordered_extent_dio(inode, start, 6649 block_start, len, len, type); 6650 if (ret) { 6651 free_extent_map(em); 6652 goto unlock_err; 6653 } 6654 goto unlock; 6655 } 6656 } 6657 6658 /* 6659 * this will cow the extent, reset the len in case we changed 6660 * it above 6661 */ 6662 len = bh_result->b_size; 6663 free_extent_map(em); 6664 em = btrfs_new_extent_direct(inode, start, len); 6665 if (IS_ERR(em)) { 6666 ret = PTR_ERR(em); 6667 goto unlock_err; 6668 } 6669 len = min(len, em->len - (start - em->start)); 6670 unlock: 6671 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6672 inode->i_blkbits; 6673 bh_result->b_size = len; 6674 bh_result->b_bdev = em->bdev; 6675 set_buffer_mapped(bh_result); 6676 if (create) { 6677 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6678 set_buffer_new(bh_result); 6679 6680 /* 6681 * Need to update the i_size under the extent lock so buffered 6682 * readers will get the updated i_size when we unlock. 6683 */ 6684 if (start + len > i_size_read(inode)) 6685 i_size_write(inode, start + len); 6686 6687 spin_lock(&BTRFS_I(inode)->lock); 6688 BTRFS_I(inode)->outstanding_extents++; 6689 spin_unlock(&BTRFS_I(inode)->lock); 6690 6691 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6692 lockstart + len - 1, EXTENT_DELALLOC, NULL, 6693 &cached_state, GFP_NOFS); 6694 BUG_ON(ret); 6695 } 6696 6697 /* 6698 * In the case of write we need to clear and unlock the entire range, 6699 * in the case of read we need to unlock only the end area that we 6700 * aren't using if there is any left over space. 6701 */ 6702 if (lockstart < lockend) { 6703 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6704 lockend, unlock_bits, 1, 0, 6705 &cached_state, GFP_NOFS); 6706 } else { 6707 free_extent_state(cached_state); 6708 } 6709 6710 free_extent_map(em); 6711 6712 return 0; 6713 6714 unlock_err: 6715 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6716 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6717 return ret; 6718 } 6719 6720 static void btrfs_endio_direct_read(struct bio *bio, int err) 6721 { 6722 struct btrfs_dio_private *dip = bio->bi_private; 6723 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6724 struct bio_vec *bvec = bio->bi_io_vec; 6725 struct inode *inode = dip->inode; 6726 struct btrfs_root *root = BTRFS_I(inode)->root; 6727 struct bio *dio_bio; 6728 u32 *csums = (u32 *)dip->csum; 6729 int index = 0; 6730 u64 start; 6731 6732 start = dip->logical_offset; 6733 do { 6734 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6735 struct page *page = bvec->bv_page; 6736 char *kaddr; 6737 u32 csum = ~(u32)0; 6738 unsigned long flags; 6739 6740 local_irq_save(flags); 6741 kaddr = kmap_atomic(page); 6742 csum = btrfs_csum_data(kaddr + bvec->bv_offset, 6743 csum, bvec->bv_len); 6744 btrfs_csum_final(csum, (char *)&csum); 6745 kunmap_atomic(kaddr); 6746 local_irq_restore(flags); 6747 6748 flush_dcache_page(bvec->bv_page); 6749 if (csum != csums[index]) { 6750 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 6751 btrfs_ino(inode), start, csum, 6752 csums[index]); 6753 err = -EIO; 6754 } 6755 } 6756 6757 start += bvec->bv_len; 6758 bvec++; 6759 index++; 6760 } while (bvec <= bvec_end); 6761 6762 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6763 dip->logical_offset + dip->bytes - 1); 6764 dio_bio = dip->dio_bio; 6765 6766 kfree(dip); 6767 6768 /* If we had a csum failure make sure to clear the uptodate flag */ 6769 if (err) 6770 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6771 dio_end_io(dio_bio, err); 6772 bio_put(bio); 6773 } 6774 6775 static void btrfs_endio_direct_write(struct bio *bio, int err) 6776 { 6777 struct btrfs_dio_private *dip = bio->bi_private; 6778 struct inode *inode = dip->inode; 6779 struct btrfs_root *root = BTRFS_I(inode)->root; 6780 struct btrfs_ordered_extent *ordered = NULL; 6781 u64 ordered_offset = dip->logical_offset; 6782 u64 ordered_bytes = dip->bytes; 6783 struct bio *dio_bio; 6784 int ret; 6785 6786 if (err) 6787 goto out_done; 6788 again: 6789 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6790 &ordered_offset, 6791 ordered_bytes, !err); 6792 if (!ret) 6793 goto out_test; 6794 6795 ordered->work.func = finish_ordered_fn; 6796 ordered->work.flags = 0; 6797 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6798 &ordered->work); 6799 out_test: 6800 /* 6801 * our bio might span multiple ordered extents. If we haven't 6802 * completed the accounting for the whole dio, go back and try again 6803 */ 6804 if (ordered_offset < dip->logical_offset + dip->bytes) { 6805 ordered_bytes = dip->logical_offset + dip->bytes - 6806 ordered_offset; 6807 ordered = NULL; 6808 goto again; 6809 } 6810 out_done: 6811 dio_bio = dip->dio_bio; 6812 6813 kfree(dip); 6814 6815 /* If we had an error make sure to clear the uptodate flag */ 6816 if (err) 6817 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6818 dio_end_io(dio_bio, err); 6819 bio_put(bio); 6820 } 6821 6822 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 6823 struct bio *bio, int mirror_num, 6824 unsigned long bio_flags, u64 offset) 6825 { 6826 int ret; 6827 struct btrfs_root *root = BTRFS_I(inode)->root; 6828 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 6829 BUG_ON(ret); /* -ENOMEM */ 6830 return 0; 6831 } 6832 6833 static void btrfs_end_dio_bio(struct bio *bio, int err) 6834 { 6835 struct btrfs_dio_private *dip = bio->bi_private; 6836 6837 if (err) { 6838 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 6839 "sector %#Lx len %u err no %d\n", 6840 btrfs_ino(dip->inode), bio->bi_rw, 6841 (unsigned long long)bio->bi_sector, bio->bi_size, err); 6842 dip->errors = 1; 6843 6844 /* 6845 * before atomic variable goto zero, we must make sure 6846 * dip->errors is perceived to be set. 6847 */ 6848 smp_mb__before_atomic_dec(); 6849 } 6850 6851 /* if there are more bios still pending for this dio, just exit */ 6852 if (!atomic_dec_and_test(&dip->pending_bios)) 6853 goto out; 6854 6855 if (dip->errors) { 6856 bio_io_error(dip->orig_bio); 6857 } else { 6858 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 6859 bio_endio(dip->orig_bio, 0); 6860 } 6861 out: 6862 bio_put(bio); 6863 } 6864 6865 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 6866 u64 first_sector, gfp_t gfp_flags) 6867 { 6868 int nr_vecs = bio_get_nr_vecs(bdev); 6869 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 6870 } 6871 6872 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 6873 int rw, u64 file_offset, int skip_sum, 6874 int async_submit) 6875 { 6876 struct btrfs_dio_private *dip = bio->bi_private; 6877 int write = rw & REQ_WRITE; 6878 struct btrfs_root *root = BTRFS_I(inode)->root; 6879 int ret; 6880 6881 if (async_submit) 6882 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 6883 6884 bio_get(bio); 6885 6886 if (!write) { 6887 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 6888 if (ret) 6889 goto err; 6890 } 6891 6892 if (skip_sum) 6893 goto map; 6894 6895 if (write && async_submit) { 6896 ret = btrfs_wq_submit_bio(root->fs_info, 6897 inode, rw, bio, 0, 0, 6898 file_offset, 6899 __btrfs_submit_bio_start_direct_io, 6900 __btrfs_submit_bio_done); 6901 goto err; 6902 } else if (write) { 6903 /* 6904 * If we aren't doing async submit, calculate the csum of the 6905 * bio now. 6906 */ 6907 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 6908 if (ret) 6909 goto err; 6910 } else if (!skip_sum) { 6911 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio, 6912 file_offset); 6913 if (ret) 6914 goto err; 6915 } 6916 6917 map: 6918 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 6919 err: 6920 bio_put(bio); 6921 return ret; 6922 } 6923 6924 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 6925 int skip_sum) 6926 { 6927 struct inode *inode = dip->inode; 6928 struct btrfs_root *root = BTRFS_I(inode)->root; 6929 struct bio *bio; 6930 struct bio *orig_bio = dip->orig_bio; 6931 struct bio_vec *bvec = orig_bio->bi_io_vec; 6932 u64 start_sector = orig_bio->bi_sector; 6933 u64 file_offset = dip->logical_offset; 6934 u64 submit_len = 0; 6935 u64 map_length; 6936 int nr_pages = 0; 6937 int ret = 0; 6938 int async_submit = 0; 6939 6940 map_length = orig_bio->bi_size; 6941 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 6942 &map_length, NULL, 0); 6943 if (ret) { 6944 bio_put(orig_bio); 6945 return -EIO; 6946 } 6947 6948 if (map_length >= orig_bio->bi_size) { 6949 bio = orig_bio; 6950 goto submit; 6951 } 6952 6953 /* async crcs make it difficult to collect full stripe writes. */ 6954 if (btrfs_get_alloc_profile(root, 1) & 6955 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 6956 async_submit = 0; 6957 else 6958 async_submit = 1; 6959 6960 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 6961 if (!bio) 6962 return -ENOMEM; 6963 bio->bi_private = dip; 6964 bio->bi_end_io = btrfs_end_dio_bio; 6965 atomic_inc(&dip->pending_bios); 6966 6967 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 6968 if (unlikely(map_length < submit_len + bvec->bv_len || 6969 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 6970 bvec->bv_offset) < bvec->bv_len)) { 6971 /* 6972 * inc the count before we submit the bio so 6973 * we know the end IO handler won't happen before 6974 * we inc the count. Otherwise, the dip might get freed 6975 * before we're done setting it up 6976 */ 6977 atomic_inc(&dip->pending_bios); 6978 ret = __btrfs_submit_dio_bio(bio, inode, rw, 6979 file_offset, skip_sum, 6980 async_submit); 6981 if (ret) { 6982 bio_put(bio); 6983 atomic_dec(&dip->pending_bios); 6984 goto out_err; 6985 } 6986 6987 start_sector += submit_len >> 9; 6988 file_offset += submit_len; 6989 6990 submit_len = 0; 6991 nr_pages = 0; 6992 6993 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6994 start_sector, GFP_NOFS); 6995 if (!bio) 6996 goto out_err; 6997 bio->bi_private = dip; 6998 bio->bi_end_io = btrfs_end_dio_bio; 6999 7000 map_length = orig_bio->bi_size; 7001 ret = btrfs_map_block(root->fs_info, rw, 7002 start_sector << 9, 7003 &map_length, NULL, 0); 7004 if (ret) { 7005 bio_put(bio); 7006 goto out_err; 7007 } 7008 } else { 7009 submit_len += bvec->bv_len; 7010 nr_pages ++; 7011 bvec++; 7012 } 7013 } 7014 7015 submit: 7016 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7017 async_submit); 7018 if (!ret) 7019 return 0; 7020 7021 bio_put(bio); 7022 out_err: 7023 dip->errors = 1; 7024 /* 7025 * before atomic variable goto zero, we must 7026 * make sure dip->errors is perceived to be set. 7027 */ 7028 smp_mb__before_atomic_dec(); 7029 if (atomic_dec_and_test(&dip->pending_bios)) 7030 bio_io_error(dip->orig_bio); 7031 7032 /* bio_end_io() will handle error, so we needn't return it */ 7033 return 0; 7034 } 7035 7036 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7037 struct inode *inode, loff_t file_offset) 7038 { 7039 struct btrfs_root *root = BTRFS_I(inode)->root; 7040 struct btrfs_dio_private *dip; 7041 struct bio *io_bio; 7042 int skip_sum; 7043 int sum_len; 7044 int write = rw & REQ_WRITE; 7045 int ret = 0; 7046 u16 csum_size; 7047 7048 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7049 7050 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7051 if (!io_bio) { 7052 ret = -ENOMEM; 7053 goto free_ordered; 7054 } 7055 7056 if (!skip_sum && !write) { 7057 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 7058 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits; 7059 sum_len *= csum_size; 7060 } else { 7061 sum_len = 0; 7062 } 7063 7064 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS); 7065 if (!dip) { 7066 ret = -ENOMEM; 7067 goto free_io_bio; 7068 } 7069 7070 dip->private = dio_bio->bi_private; 7071 dip->inode = inode; 7072 dip->logical_offset = file_offset; 7073 dip->bytes = dio_bio->bi_size; 7074 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9; 7075 io_bio->bi_private = dip; 7076 dip->errors = 0; 7077 dip->orig_bio = io_bio; 7078 dip->dio_bio = dio_bio; 7079 atomic_set(&dip->pending_bios, 0); 7080 7081 if (write) 7082 io_bio->bi_end_io = btrfs_endio_direct_write; 7083 else 7084 io_bio->bi_end_io = btrfs_endio_direct_read; 7085 7086 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7087 if (!ret) 7088 return; 7089 7090 free_io_bio: 7091 bio_put(io_bio); 7092 7093 free_ordered: 7094 /* 7095 * If this is a write, we need to clean up the reserved space and kill 7096 * the ordered extent. 7097 */ 7098 if (write) { 7099 struct btrfs_ordered_extent *ordered; 7100 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7101 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7102 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7103 btrfs_free_reserved_extent(root, ordered->start, 7104 ordered->disk_len); 7105 btrfs_put_ordered_extent(ordered); 7106 btrfs_put_ordered_extent(ordered); 7107 } 7108 bio_endio(dio_bio, ret); 7109 } 7110 7111 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7112 const struct iovec *iov, loff_t offset, 7113 unsigned long nr_segs) 7114 { 7115 int seg; 7116 int i; 7117 size_t size; 7118 unsigned long addr; 7119 unsigned blocksize_mask = root->sectorsize - 1; 7120 ssize_t retval = -EINVAL; 7121 loff_t end = offset; 7122 7123 if (offset & blocksize_mask) 7124 goto out; 7125 7126 /* Check the memory alignment. Blocks cannot straddle pages */ 7127 for (seg = 0; seg < nr_segs; seg++) { 7128 addr = (unsigned long)iov[seg].iov_base; 7129 size = iov[seg].iov_len; 7130 end += size; 7131 if ((addr & blocksize_mask) || (size & blocksize_mask)) 7132 goto out; 7133 7134 /* If this is a write we don't need to check anymore */ 7135 if (rw & WRITE) 7136 continue; 7137 7138 /* 7139 * Check to make sure we don't have duplicate iov_base's in this 7140 * iovec, if so return EINVAL, otherwise we'll get csum errors 7141 * when reading back. 7142 */ 7143 for (i = seg + 1; i < nr_segs; i++) { 7144 if (iov[seg].iov_base == iov[i].iov_base) 7145 goto out; 7146 } 7147 } 7148 retval = 0; 7149 out: 7150 return retval; 7151 } 7152 7153 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7154 const struct iovec *iov, loff_t offset, 7155 unsigned long nr_segs) 7156 { 7157 struct file *file = iocb->ki_filp; 7158 struct inode *inode = file->f_mapping->host; 7159 size_t count = 0; 7160 int flags = 0; 7161 bool wakeup = true; 7162 bool relock = false; 7163 ssize_t ret; 7164 7165 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 7166 offset, nr_segs)) 7167 return 0; 7168 7169 atomic_inc(&inode->i_dio_count); 7170 smp_mb__after_atomic_inc(); 7171 7172 /* 7173 * The generic stuff only does filemap_write_and_wait_range, which isn't 7174 * enough if we've written compressed pages to this area, so we need to 7175 * call btrfs_wait_ordered_range to make absolutely sure that any 7176 * outstanding dirty pages are on disk. 7177 */ 7178 count = iov_length(iov, nr_segs); 7179 btrfs_wait_ordered_range(inode, offset, count); 7180 7181 if (rw & WRITE) { 7182 /* 7183 * If the write DIO is beyond the EOF, we need update 7184 * the isize, but it is protected by i_mutex. So we can 7185 * not unlock the i_mutex at this case. 7186 */ 7187 if (offset + count <= inode->i_size) { 7188 mutex_unlock(&inode->i_mutex); 7189 relock = true; 7190 } 7191 ret = btrfs_delalloc_reserve_space(inode, count); 7192 if (ret) 7193 goto out; 7194 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7195 &BTRFS_I(inode)->runtime_flags))) { 7196 inode_dio_done(inode); 7197 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7198 wakeup = false; 7199 } 7200 7201 ret = __blockdev_direct_IO(rw, iocb, inode, 7202 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7203 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 7204 btrfs_submit_direct, flags); 7205 if (rw & WRITE) { 7206 if (ret < 0 && ret != -EIOCBQUEUED) 7207 btrfs_delalloc_release_space(inode, count); 7208 else if (ret >= 0 && (size_t)ret < count) 7209 btrfs_delalloc_release_space(inode, 7210 count - (size_t)ret); 7211 else 7212 btrfs_delalloc_release_metadata(inode, 0); 7213 } 7214 out: 7215 if (wakeup) 7216 inode_dio_done(inode); 7217 if (relock) 7218 mutex_lock(&inode->i_mutex); 7219 7220 return ret; 7221 } 7222 7223 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7224 7225 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7226 __u64 start, __u64 len) 7227 { 7228 int ret; 7229 7230 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7231 if (ret) 7232 return ret; 7233 7234 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7235 } 7236 7237 int btrfs_readpage(struct file *file, struct page *page) 7238 { 7239 struct extent_io_tree *tree; 7240 tree = &BTRFS_I(page->mapping->host)->io_tree; 7241 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7242 } 7243 7244 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7245 { 7246 struct extent_io_tree *tree; 7247 7248 7249 if (current->flags & PF_MEMALLOC) { 7250 redirty_page_for_writepage(wbc, page); 7251 unlock_page(page); 7252 return 0; 7253 } 7254 tree = &BTRFS_I(page->mapping->host)->io_tree; 7255 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7256 } 7257 7258 static int btrfs_writepages(struct address_space *mapping, 7259 struct writeback_control *wbc) 7260 { 7261 struct extent_io_tree *tree; 7262 7263 tree = &BTRFS_I(mapping->host)->io_tree; 7264 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7265 } 7266 7267 static int 7268 btrfs_readpages(struct file *file, struct address_space *mapping, 7269 struct list_head *pages, unsigned nr_pages) 7270 { 7271 struct extent_io_tree *tree; 7272 tree = &BTRFS_I(mapping->host)->io_tree; 7273 return extent_readpages(tree, mapping, pages, nr_pages, 7274 btrfs_get_extent); 7275 } 7276 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7277 { 7278 struct extent_io_tree *tree; 7279 struct extent_map_tree *map; 7280 int ret; 7281 7282 tree = &BTRFS_I(page->mapping->host)->io_tree; 7283 map = &BTRFS_I(page->mapping->host)->extent_tree; 7284 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7285 if (ret == 1) { 7286 ClearPagePrivate(page); 7287 set_page_private(page, 0); 7288 page_cache_release(page); 7289 } 7290 return ret; 7291 } 7292 7293 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7294 { 7295 if (PageWriteback(page) || PageDirty(page)) 7296 return 0; 7297 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7298 } 7299 7300 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 7301 unsigned int length) 7302 { 7303 struct inode *inode = page->mapping->host; 7304 struct extent_io_tree *tree; 7305 struct btrfs_ordered_extent *ordered; 7306 struct extent_state *cached_state = NULL; 7307 u64 page_start = page_offset(page); 7308 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7309 7310 /* 7311 * we have the page locked, so new writeback can't start, 7312 * and the dirty bit won't be cleared while we are here. 7313 * 7314 * Wait for IO on this page so that we can safely clear 7315 * the PagePrivate2 bit and do ordered accounting 7316 */ 7317 wait_on_page_writeback(page); 7318 7319 tree = &BTRFS_I(inode)->io_tree; 7320 if (offset) { 7321 btrfs_releasepage(page, GFP_NOFS); 7322 return; 7323 } 7324 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7325 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 7326 if (ordered) { 7327 /* 7328 * IO on this page will never be started, so we need 7329 * to account for any ordered extents now 7330 */ 7331 clear_extent_bit(tree, page_start, page_end, 7332 EXTENT_DIRTY | EXTENT_DELALLOC | 7333 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7334 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 7335 /* 7336 * whoever cleared the private bit is responsible 7337 * for the finish_ordered_io 7338 */ 7339 if (TestClearPagePrivate2(page) && 7340 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 7341 PAGE_CACHE_SIZE, 1)) { 7342 btrfs_finish_ordered_io(ordered); 7343 } 7344 btrfs_put_ordered_extent(ordered); 7345 cached_state = NULL; 7346 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7347 } 7348 clear_extent_bit(tree, page_start, page_end, 7349 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 7350 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 7351 &cached_state, GFP_NOFS); 7352 __btrfs_releasepage(page, GFP_NOFS); 7353 7354 ClearPageChecked(page); 7355 if (PagePrivate(page)) { 7356 ClearPagePrivate(page); 7357 set_page_private(page, 0); 7358 page_cache_release(page); 7359 } 7360 } 7361 7362 /* 7363 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7364 * called from a page fault handler when a page is first dirtied. Hence we must 7365 * be careful to check for EOF conditions here. We set the page up correctly 7366 * for a written page which means we get ENOSPC checking when writing into 7367 * holes and correct delalloc and unwritten extent mapping on filesystems that 7368 * support these features. 7369 * 7370 * We are not allowed to take the i_mutex here so we have to play games to 7371 * protect against truncate races as the page could now be beyond EOF. Because 7372 * vmtruncate() writes the inode size before removing pages, once we have the 7373 * page lock we can determine safely if the page is beyond EOF. If it is not 7374 * beyond EOF, then the page is guaranteed safe against truncation until we 7375 * unlock the page. 7376 */ 7377 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7378 { 7379 struct page *page = vmf->page; 7380 struct inode *inode = file_inode(vma->vm_file); 7381 struct btrfs_root *root = BTRFS_I(inode)->root; 7382 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7383 struct btrfs_ordered_extent *ordered; 7384 struct extent_state *cached_state = NULL; 7385 char *kaddr; 7386 unsigned long zero_start; 7387 loff_t size; 7388 int ret; 7389 int reserved = 0; 7390 u64 page_start; 7391 u64 page_end; 7392 7393 sb_start_pagefault(inode->i_sb); 7394 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7395 if (!ret) { 7396 ret = file_update_time(vma->vm_file); 7397 reserved = 1; 7398 } 7399 if (ret) { 7400 if (ret == -ENOMEM) 7401 ret = VM_FAULT_OOM; 7402 else /* -ENOSPC, -EIO, etc */ 7403 ret = VM_FAULT_SIGBUS; 7404 if (reserved) 7405 goto out; 7406 goto out_noreserve; 7407 } 7408 7409 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7410 again: 7411 lock_page(page); 7412 size = i_size_read(inode); 7413 page_start = page_offset(page); 7414 page_end = page_start + PAGE_CACHE_SIZE - 1; 7415 7416 if ((page->mapping != inode->i_mapping) || 7417 (page_start >= size)) { 7418 /* page got truncated out from underneath us */ 7419 goto out_unlock; 7420 } 7421 wait_on_page_writeback(page); 7422 7423 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7424 set_page_extent_mapped(page); 7425 7426 /* 7427 * we can't set the delalloc bits if there are pending ordered 7428 * extents. Drop our locks and wait for them to finish 7429 */ 7430 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7431 if (ordered) { 7432 unlock_extent_cached(io_tree, page_start, page_end, 7433 &cached_state, GFP_NOFS); 7434 unlock_page(page); 7435 btrfs_start_ordered_extent(inode, ordered, 1); 7436 btrfs_put_ordered_extent(ordered); 7437 goto again; 7438 } 7439 7440 /* 7441 * XXX - page_mkwrite gets called every time the page is dirtied, even 7442 * if it was already dirty, so for space accounting reasons we need to 7443 * clear any delalloc bits for the range we are fixing to save. There 7444 * is probably a better way to do this, but for now keep consistent with 7445 * prepare_pages in the normal write path. 7446 */ 7447 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7448 EXTENT_DIRTY | EXTENT_DELALLOC | 7449 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7450 0, 0, &cached_state, GFP_NOFS); 7451 7452 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7453 &cached_state); 7454 if (ret) { 7455 unlock_extent_cached(io_tree, page_start, page_end, 7456 &cached_state, GFP_NOFS); 7457 ret = VM_FAULT_SIGBUS; 7458 goto out_unlock; 7459 } 7460 ret = 0; 7461 7462 /* page is wholly or partially inside EOF */ 7463 if (page_start + PAGE_CACHE_SIZE > size) 7464 zero_start = size & ~PAGE_CACHE_MASK; 7465 else 7466 zero_start = PAGE_CACHE_SIZE; 7467 7468 if (zero_start != PAGE_CACHE_SIZE) { 7469 kaddr = kmap(page); 7470 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7471 flush_dcache_page(page); 7472 kunmap(page); 7473 } 7474 ClearPageChecked(page); 7475 set_page_dirty(page); 7476 SetPageUptodate(page); 7477 7478 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7479 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7480 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7481 7482 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7483 7484 out_unlock: 7485 if (!ret) { 7486 sb_end_pagefault(inode->i_sb); 7487 return VM_FAULT_LOCKED; 7488 } 7489 unlock_page(page); 7490 out: 7491 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7492 out_noreserve: 7493 sb_end_pagefault(inode->i_sb); 7494 return ret; 7495 } 7496 7497 static int btrfs_truncate(struct inode *inode) 7498 { 7499 struct btrfs_root *root = BTRFS_I(inode)->root; 7500 struct btrfs_block_rsv *rsv; 7501 int ret = 0; 7502 int err = 0; 7503 struct btrfs_trans_handle *trans; 7504 u64 mask = root->sectorsize - 1; 7505 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7506 7507 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 7508 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 7509 7510 /* 7511 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7512 * 3 things going on here 7513 * 7514 * 1) We need to reserve space for our orphan item and the space to 7515 * delete our orphan item. Lord knows we don't want to have a dangling 7516 * orphan item because we didn't reserve space to remove it. 7517 * 7518 * 2) We need to reserve space to update our inode. 7519 * 7520 * 3) We need to have something to cache all the space that is going to 7521 * be free'd up by the truncate operation, but also have some slack 7522 * space reserved in case it uses space during the truncate (thank you 7523 * very much snapshotting). 7524 * 7525 * And we need these to all be seperate. The fact is we can use alot of 7526 * space doing the truncate, and we have no earthly idea how much space 7527 * we will use, so we need the truncate reservation to be seperate so it 7528 * doesn't end up using space reserved for updating the inode or 7529 * removing the orphan item. We also need to be able to stop the 7530 * transaction and start a new one, which means we need to be able to 7531 * update the inode several times, and we have no idea of knowing how 7532 * many times that will be, so we can't just reserve 1 item for the 7533 * entirety of the opration, so that has to be done seperately as well. 7534 * Then there is the orphan item, which does indeed need to be held on 7535 * to for the whole operation, and we need nobody to touch this reserved 7536 * space except the orphan code. 7537 * 7538 * So that leaves us with 7539 * 7540 * 1) root->orphan_block_rsv - for the orphan deletion. 7541 * 2) rsv - for the truncate reservation, which we will steal from the 7542 * transaction reservation. 7543 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7544 * updating the inode. 7545 */ 7546 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7547 if (!rsv) 7548 return -ENOMEM; 7549 rsv->size = min_size; 7550 rsv->failfast = 1; 7551 7552 /* 7553 * 1 for the truncate slack space 7554 * 1 for updating the inode. 7555 */ 7556 trans = btrfs_start_transaction(root, 2); 7557 if (IS_ERR(trans)) { 7558 err = PTR_ERR(trans); 7559 goto out; 7560 } 7561 7562 /* Migrate the slack space for the truncate to our reserve */ 7563 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7564 min_size); 7565 BUG_ON(ret); 7566 7567 /* 7568 * setattr is responsible for setting the ordered_data_close flag, 7569 * but that is only tested during the last file release. That 7570 * could happen well after the next commit, leaving a great big 7571 * window where new writes may get lost if someone chooses to write 7572 * to this file after truncating to zero 7573 * 7574 * The inode doesn't have any dirty data here, and so if we commit 7575 * this is a noop. If someone immediately starts writing to the inode 7576 * it is very likely we'll catch some of their writes in this 7577 * transaction, and the commit will find this file on the ordered 7578 * data list with good things to send down. 7579 * 7580 * This is a best effort solution, there is still a window where 7581 * using truncate to replace the contents of the file will 7582 * end up with a zero length file after a crash. 7583 */ 7584 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7585 &BTRFS_I(inode)->runtime_flags)) 7586 btrfs_add_ordered_operation(trans, root, inode); 7587 7588 /* 7589 * So if we truncate and then write and fsync we normally would just 7590 * write the extents that changed, which is a problem if we need to 7591 * first truncate that entire inode. So set this flag so we write out 7592 * all of the extents in the inode to the sync log so we're completely 7593 * safe. 7594 */ 7595 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7596 trans->block_rsv = rsv; 7597 7598 while (1) { 7599 ret = btrfs_truncate_inode_items(trans, root, inode, 7600 inode->i_size, 7601 BTRFS_EXTENT_DATA_KEY); 7602 if (ret != -ENOSPC) { 7603 err = ret; 7604 break; 7605 } 7606 7607 trans->block_rsv = &root->fs_info->trans_block_rsv; 7608 ret = btrfs_update_inode(trans, root, inode); 7609 if (ret) { 7610 err = ret; 7611 break; 7612 } 7613 7614 btrfs_end_transaction(trans, root); 7615 btrfs_btree_balance_dirty(root); 7616 7617 trans = btrfs_start_transaction(root, 2); 7618 if (IS_ERR(trans)) { 7619 ret = err = PTR_ERR(trans); 7620 trans = NULL; 7621 break; 7622 } 7623 7624 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7625 rsv, min_size); 7626 BUG_ON(ret); /* shouldn't happen */ 7627 trans->block_rsv = rsv; 7628 } 7629 7630 if (ret == 0 && inode->i_nlink > 0) { 7631 trans->block_rsv = root->orphan_block_rsv; 7632 ret = btrfs_orphan_del(trans, inode); 7633 if (ret) 7634 err = ret; 7635 } 7636 7637 if (trans) { 7638 trans->block_rsv = &root->fs_info->trans_block_rsv; 7639 ret = btrfs_update_inode(trans, root, inode); 7640 if (ret && !err) 7641 err = ret; 7642 7643 ret = btrfs_end_transaction(trans, root); 7644 btrfs_btree_balance_dirty(root); 7645 } 7646 7647 out: 7648 btrfs_free_block_rsv(root, rsv); 7649 7650 if (ret && !err) 7651 err = ret; 7652 7653 return err; 7654 } 7655 7656 /* 7657 * create a new subvolume directory/inode (helper for the ioctl). 7658 */ 7659 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7660 struct btrfs_root *new_root, u64 new_dirid) 7661 { 7662 struct inode *inode; 7663 int err; 7664 u64 index = 0; 7665 7666 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7667 new_dirid, new_dirid, 7668 S_IFDIR | (~current_umask() & S_IRWXUGO), 7669 &index); 7670 if (IS_ERR(inode)) 7671 return PTR_ERR(inode); 7672 inode->i_op = &btrfs_dir_inode_operations; 7673 inode->i_fop = &btrfs_dir_file_operations; 7674 7675 set_nlink(inode, 1); 7676 btrfs_i_size_write(inode, 0); 7677 7678 err = btrfs_update_inode(trans, new_root, inode); 7679 7680 iput(inode); 7681 return err; 7682 } 7683 7684 struct inode *btrfs_alloc_inode(struct super_block *sb) 7685 { 7686 struct btrfs_inode *ei; 7687 struct inode *inode; 7688 7689 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7690 if (!ei) 7691 return NULL; 7692 7693 ei->root = NULL; 7694 ei->generation = 0; 7695 ei->last_trans = 0; 7696 ei->last_sub_trans = 0; 7697 ei->logged_trans = 0; 7698 ei->delalloc_bytes = 0; 7699 ei->disk_i_size = 0; 7700 ei->flags = 0; 7701 ei->csum_bytes = 0; 7702 ei->index_cnt = (u64)-1; 7703 ei->last_unlink_trans = 0; 7704 ei->last_log_commit = 0; 7705 7706 spin_lock_init(&ei->lock); 7707 ei->outstanding_extents = 0; 7708 ei->reserved_extents = 0; 7709 7710 ei->runtime_flags = 0; 7711 ei->force_compress = BTRFS_COMPRESS_NONE; 7712 7713 ei->delayed_node = NULL; 7714 7715 inode = &ei->vfs_inode; 7716 extent_map_tree_init(&ei->extent_tree); 7717 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7718 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7719 ei->io_tree.track_uptodate = 1; 7720 ei->io_failure_tree.track_uptodate = 1; 7721 atomic_set(&ei->sync_writers, 0); 7722 mutex_init(&ei->log_mutex); 7723 mutex_init(&ei->delalloc_mutex); 7724 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7725 INIT_LIST_HEAD(&ei->delalloc_inodes); 7726 INIT_LIST_HEAD(&ei->ordered_operations); 7727 RB_CLEAR_NODE(&ei->rb_node); 7728 7729 return inode; 7730 } 7731 7732 static void btrfs_i_callback(struct rcu_head *head) 7733 { 7734 struct inode *inode = container_of(head, struct inode, i_rcu); 7735 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7736 } 7737 7738 void btrfs_destroy_inode(struct inode *inode) 7739 { 7740 struct btrfs_ordered_extent *ordered; 7741 struct btrfs_root *root = BTRFS_I(inode)->root; 7742 7743 WARN_ON(!hlist_empty(&inode->i_dentry)); 7744 WARN_ON(inode->i_data.nrpages); 7745 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7746 WARN_ON(BTRFS_I(inode)->reserved_extents); 7747 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7748 WARN_ON(BTRFS_I(inode)->csum_bytes); 7749 7750 /* 7751 * This can happen where we create an inode, but somebody else also 7752 * created the same inode and we need to destroy the one we already 7753 * created. 7754 */ 7755 if (!root) 7756 goto free; 7757 7758 /* 7759 * Make sure we're properly removed from the ordered operation 7760 * lists. 7761 */ 7762 smp_mb(); 7763 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7764 spin_lock(&root->fs_info->ordered_root_lock); 7765 list_del_init(&BTRFS_I(inode)->ordered_operations); 7766 spin_unlock(&root->fs_info->ordered_root_lock); 7767 } 7768 7769 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7770 &BTRFS_I(inode)->runtime_flags)) { 7771 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 7772 btrfs_ino(inode)); 7773 atomic_dec(&root->orphan_inodes); 7774 } 7775 7776 while (1) { 7777 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7778 if (!ordered) 7779 break; 7780 else { 7781 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 7782 ordered->file_offset, ordered->len); 7783 btrfs_remove_ordered_extent(inode, ordered); 7784 btrfs_put_ordered_extent(ordered); 7785 btrfs_put_ordered_extent(ordered); 7786 } 7787 } 7788 inode_tree_del(inode); 7789 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7790 free: 7791 call_rcu(&inode->i_rcu, btrfs_i_callback); 7792 } 7793 7794 int btrfs_drop_inode(struct inode *inode) 7795 { 7796 struct btrfs_root *root = BTRFS_I(inode)->root; 7797 7798 if (root == NULL) 7799 return 1; 7800 7801 /* the snap/subvol tree is on deleting */ 7802 if (btrfs_root_refs(&root->root_item) == 0 && 7803 root != root->fs_info->tree_root) 7804 return 1; 7805 else 7806 return generic_drop_inode(inode); 7807 } 7808 7809 static void init_once(void *foo) 7810 { 7811 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7812 7813 inode_init_once(&ei->vfs_inode); 7814 } 7815 7816 void btrfs_destroy_cachep(void) 7817 { 7818 /* 7819 * Make sure all delayed rcu free inodes are flushed before we 7820 * destroy cache. 7821 */ 7822 rcu_barrier(); 7823 if (btrfs_inode_cachep) 7824 kmem_cache_destroy(btrfs_inode_cachep); 7825 if (btrfs_trans_handle_cachep) 7826 kmem_cache_destroy(btrfs_trans_handle_cachep); 7827 if (btrfs_transaction_cachep) 7828 kmem_cache_destroy(btrfs_transaction_cachep); 7829 if (btrfs_path_cachep) 7830 kmem_cache_destroy(btrfs_path_cachep); 7831 if (btrfs_free_space_cachep) 7832 kmem_cache_destroy(btrfs_free_space_cachep); 7833 if (btrfs_delalloc_work_cachep) 7834 kmem_cache_destroy(btrfs_delalloc_work_cachep); 7835 } 7836 7837 int btrfs_init_cachep(void) 7838 { 7839 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7840 sizeof(struct btrfs_inode), 0, 7841 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 7842 if (!btrfs_inode_cachep) 7843 goto fail; 7844 7845 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 7846 sizeof(struct btrfs_trans_handle), 0, 7847 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7848 if (!btrfs_trans_handle_cachep) 7849 goto fail; 7850 7851 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 7852 sizeof(struct btrfs_transaction), 0, 7853 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7854 if (!btrfs_transaction_cachep) 7855 goto fail; 7856 7857 btrfs_path_cachep = kmem_cache_create("btrfs_path", 7858 sizeof(struct btrfs_path), 0, 7859 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7860 if (!btrfs_path_cachep) 7861 goto fail; 7862 7863 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 7864 sizeof(struct btrfs_free_space), 0, 7865 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7866 if (!btrfs_free_space_cachep) 7867 goto fail; 7868 7869 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 7870 sizeof(struct btrfs_delalloc_work), 0, 7871 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 7872 NULL); 7873 if (!btrfs_delalloc_work_cachep) 7874 goto fail; 7875 7876 return 0; 7877 fail: 7878 btrfs_destroy_cachep(); 7879 return -ENOMEM; 7880 } 7881 7882 static int btrfs_getattr(struct vfsmount *mnt, 7883 struct dentry *dentry, struct kstat *stat) 7884 { 7885 u64 delalloc_bytes; 7886 struct inode *inode = dentry->d_inode; 7887 u32 blocksize = inode->i_sb->s_blocksize; 7888 7889 generic_fillattr(inode, stat); 7890 stat->dev = BTRFS_I(inode)->root->anon_dev; 7891 stat->blksize = PAGE_CACHE_SIZE; 7892 7893 spin_lock(&BTRFS_I(inode)->lock); 7894 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 7895 spin_unlock(&BTRFS_I(inode)->lock); 7896 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 7897 ALIGN(delalloc_bytes, blocksize)) >> 9; 7898 return 0; 7899 } 7900 7901 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 7902 struct inode *new_dir, struct dentry *new_dentry) 7903 { 7904 struct btrfs_trans_handle *trans; 7905 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7906 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7907 struct inode *new_inode = new_dentry->d_inode; 7908 struct inode *old_inode = old_dentry->d_inode; 7909 struct timespec ctime = CURRENT_TIME; 7910 u64 index = 0; 7911 u64 root_objectid; 7912 int ret; 7913 u64 old_ino = btrfs_ino(old_inode); 7914 7915 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 7916 return -EPERM; 7917 7918 /* we only allow rename subvolume link between subvolumes */ 7919 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 7920 return -EXDEV; 7921 7922 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 7923 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 7924 return -ENOTEMPTY; 7925 7926 if (S_ISDIR(old_inode->i_mode) && new_inode && 7927 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 7928 return -ENOTEMPTY; 7929 7930 7931 /* check for collisions, even if the name isn't there */ 7932 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino, 7933 new_dentry->d_name.name, 7934 new_dentry->d_name.len); 7935 7936 if (ret) { 7937 if (ret == -EEXIST) { 7938 /* we shouldn't get 7939 * eexist without a new_inode */ 7940 if (!new_inode) { 7941 WARN_ON(1); 7942 return ret; 7943 } 7944 } else { 7945 /* maybe -EOVERFLOW */ 7946 return ret; 7947 } 7948 } 7949 ret = 0; 7950 7951 /* 7952 * we're using rename to replace one file with another. 7953 * and the replacement file is large. Start IO on it now so 7954 * we don't add too much work to the end of the transaction 7955 */ 7956 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 7957 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 7958 filemap_flush(old_inode->i_mapping); 7959 7960 /* close the racy window with snapshot create/destroy ioctl */ 7961 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7962 down_read(&root->fs_info->subvol_sem); 7963 /* 7964 * We want to reserve the absolute worst case amount of items. So if 7965 * both inodes are subvols and we need to unlink them then that would 7966 * require 4 item modifications, but if they are both normal inodes it 7967 * would require 5 item modifications, so we'll assume their normal 7968 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 7969 * should cover the worst case number of items we'll modify. 7970 */ 7971 trans = btrfs_start_transaction(root, 11); 7972 if (IS_ERR(trans)) { 7973 ret = PTR_ERR(trans); 7974 goto out_notrans; 7975 } 7976 7977 if (dest != root) 7978 btrfs_record_root_in_trans(trans, dest); 7979 7980 ret = btrfs_set_inode_index(new_dir, &index); 7981 if (ret) 7982 goto out_fail; 7983 7984 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7985 /* force full log commit if subvolume involved. */ 7986 root->fs_info->last_trans_log_full_commit = trans->transid; 7987 } else { 7988 ret = btrfs_insert_inode_ref(trans, dest, 7989 new_dentry->d_name.name, 7990 new_dentry->d_name.len, 7991 old_ino, 7992 btrfs_ino(new_dir), index); 7993 if (ret) 7994 goto out_fail; 7995 /* 7996 * this is an ugly little race, but the rename is required 7997 * to make sure that if we crash, the inode is either at the 7998 * old name or the new one. pinning the log transaction lets 7999 * us make sure we don't allow a log commit to come in after 8000 * we unlink the name but before we add the new name back in. 8001 */ 8002 btrfs_pin_log_trans(root); 8003 } 8004 /* 8005 * make sure the inode gets flushed if it is replacing 8006 * something. 8007 */ 8008 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8009 btrfs_add_ordered_operation(trans, root, old_inode); 8010 8011 inode_inc_iversion(old_dir); 8012 inode_inc_iversion(new_dir); 8013 inode_inc_iversion(old_inode); 8014 old_dir->i_ctime = old_dir->i_mtime = ctime; 8015 new_dir->i_ctime = new_dir->i_mtime = ctime; 8016 old_inode->i_ctime = ctime; 8017 8018 if (old_dentry->d_parent != new_dentry->d_parent) 8019 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8020 8021 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8022 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8023 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8024 old_dentry->d_name.name, 8025 old_dentry->d_name.len); 8026 } else { 8027 ret = __btrfs_unlink_inode(trans, root, old_dir, 8028 old_dentry->d_inode, 8029 old_dentry->d_name.name, 8030 old_dentry->d_name.len); 8031 if (!ret) 8032 ret = btrfs_update_inode(trans, root, old_inode); 8033 } 8034 if (ret) { 8035 btrfs_abort_transaction(trans, root, ret); 8036 goto out_fail; 8037 } 8038 8039 if (new_inode) { 8040 inode_inc_iversion(new_inode); 8041 new_inode->i_ctime = CURRENT_TIME; 8042 if (unlikely(btrfs_ino(new_inode) == 8043 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8044 root_objectid = BTRFS_I(new_inode)->location.objectid; 8045 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8046 root_objectid, 8047 new_dentry->d_name.name, 8048 new_dentry->d_name.len); 8049 BUG_ON(new_inode->i_nlink == 0); 8050 } else { 8051 ret = btrfs_unlink_inode(trans, dest, new_dir, 8052 new_dentry->d_inode, 8053 new_dentry->d_name.name, 8054 new_dentry->d_name.len); 8055 } 8056 if (!ret && new_inode->i_nlink == 0) 8057 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8058 if (ret) { 8059 btrfs_abort_transaction(trans, root, ret); 8060 goto out_fail; 8061 } 8062 } 8063 8064 ret = btrfs_add_link(trans, new_dir, old_inode, 8065 new_dentry->d_name.name, 8066 new_dentry->d_name.len, 0, index); 8067 if (ret) { 8068 btrfs_abort_transaction(trans, root, ret); 8069 goto out_fail; 8070 } 8071 8072 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8073 struct dentry *parent = new_dentry->d_parent; 8074 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8075 btrfs_end_log_trans(root); 8076 } 8077 out_fail: 8078 btrfs_end_transaction(trans, root); 8079 out_notrans: 8080 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8081 up_read(&root->fs_info->subvol_sem); 8082 8083 return ret; 8084 } 8085 8086 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8087 { 8088 struct btrfs_delalloc_work *delalloc_work; 8089 8090 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8091 work); 8092 if (delalloc_work->wait) 8093 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1); 8094 else 8095 filemap_flush(delalloc_work->inode->i_mapping); 8096 8097 if (delalloc_work->delay_iput) 8098 btrfs_add_delayed_iput(delalloc_work->inode); 8099 else 8100 iput(delalloc_work->inode); 8101 complete(&delalloc_work->completion); 8102 } 8103 8104 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8105 int wait, int delay_iput) 8106 { 8107 struct btrfs_delalloc_work *work; 8108 8109 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8110 if (!work) 8111 return NULL; 8112 8113 init_completion(&work->completion); 8114 INIT_LIST_HEAD(&work->list); 8115 work->inode = inode; 8116 work->wait = wait; 8117 work->delay_iput = delay_iput; 8118 work->work.func = btrfs_run_delalloc_work; 8119 8120 return work; 8121 } 8122 8123 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8124 { 8125 wait_for_completion(&work->completion); 8126 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8127 } 8128 8129 /* 8130 * some fairly slow code that needs optimization. This walks the list 8131 * of all the inodes with pending delalloc and forces them to disk. 8132 */ 8133 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8134 { 8135 struct btrfs_inode *binode; 8136 struct inode *inode; 8137 struct btrfs_delalloc_work *work, *next; 8138 struct list_head works; 8139 struct list_head splice; 8140 int ret = 0; 8141 8142 INIT_LIST_HEAD(&works); 8143 INIT_LIST_HEAD(&splice); 8144 8145 spin_lock(&root->delalloc_lock); 8146 list_splice_init(&root->delalloc_inodes, &splice); 8147 while (!list_empty(&splice)) { 8148 binode = list_entry(splice.next, struct btrfs_inode, 8149 delalloc_inodes); 8150 8151 list_move_tail(&binode->delalloc_inodes, 8152 &root->delalloc_inodes); 8153 inode = igrab(&binode->vfs_inode); 8154 if (!inode) { 8155 cond_resched_lock(&root->delalloc_lock); 8156 continue; 8157 } 8158 spin_unlock(&root->delalloc_lock); 8159 8160 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8161 if (unlikely(!work)) { 8162 ret = -ENOMEM; 8163 goto out; 8164 } 8165 list_add_tail(&work->list, &works); 8166 btrfs_queue_worker(&root->fs_info->flush_workers, 8167 &work->work); 8168 8169 cond_resched(); 8170 spin_lock(&root->delalloc_lock); 8171 } 8172 spin_unlock(&root->delalloc_lock); 8173 8174 list_for_each_entry_safe(work, next, &works, list) { 8175 list_del_init(&work->list); 8176 btrfs_wait_and_free_delalloc_work(work); 8177 } 8178 return 0; 8179 out: 8180 list_for_each_entry_safe(work, next, &works, list) { 8181 list_del_init(&work->list); 8182 btrfs_wait_and_free_delalloc_work(work); 8183 } 8184 8185 if (!list_empty_careful(&splice)) { 8186 spin_lock(&root->delalloc_lock); 8187 list_splice_tail(&splice, &root->delalloc_inodes); 8188 spin_unlock(&root->delalloc_lock); 8189 } 8190 return ret; 8191 } 8192 8193 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8194 { 8195 int ret; 8196 8197 if (root->fs_info->sb->s_flags & MS_RDONLY) 8198 return -EROFS; 8199 8200 ret = __start_delalloc_inodes(root, delay_iput); 8201 /* 8202 * the filemap_flush will queue IO into the worker threads, but 8203 * we have to make sure the IO is actually started and that 8204 * ordered extents get created before we return 8205 */ 8206 atomic_inc(&root->fs_info->async_submit_draining); 8207 while (atomic_read(&root->fs_info->nr_async_submits) || 8208 atomic_read(&root->fs_info->async_delalloc_pages)) { 8209 wait_event(root->fs_info->async_submit_wait, 8210 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8211 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8212 } 8213 atomic_dec(&root->fs_info->async_submit_draining); 8214 return ret; 8215 } 8216 8217 int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info, 8218 int delay_iput) 8219 { 8220 struct btrfs_root *root; 8221 struct list_head splice; 8222 int ret; 8223 8224 if (fs_info->sb->s_flags & MS_RDONLY) 8225 return -EROFS; 8226 8227 INIT_LIST_HEAD(&splice); 8228 8229 spin_lock(&fs_info->delalloc_root_lock); 8230 list_splice_init(&fs_info->delalloc_roots, &splice); 8231 while (!list_empty(&splice)) { 8232 root = list_first_entry(&splice, struct btrfs_root, 8233 delalloc_root); 8234 root = btrfs_grab_fs_root(root); 8235 BUG_ON(!root); 8236 list_move_tail(&root->delalloc_root, 8237 &fs_info->delalloc_roots); 8238 spin_unlock(&fs_info->delalloc_root_lock); 8239 8240 ret = __start_delalloc_inodes(root, delay_iput); 8241 btrfs_put_fs_root(root); 8242 if (ret) 8243 goto out; 8244 8245 spin_lock(&fs_info->delalloc_root_lock); 8246 } 8247 spin_unlock(&fs_info->delalloc_root_lock); 8248 8249 atomic_inc(&fs_info->async_submit_draining); 8250 while (atomic_read(&fs_info->nr_async_submits) || 8251 atomic_read(&fs_info->async_delalloc_pages)) { 8252 wait_event(fs_info->async_submit_wait, 8253 (atomic_read(&fs_info->nr_async_submits) == 0 && 8254 atomic_read(&fs_info->async_delalloc_pages) == 0)); 8255 } 8256 atomic_dec(&fs_info->async_submit_draining); 8257 return 0; 8258 out: 8259 if (!list_empty_careful(&splice)) { 8260 spin_lock(&fs_info->delalloc_root_lock); 8261 list_splice_tail(&splice, &fs_info->delalloc_roots); 8262 spin_unlock(&fs_info->delalloc_root_lock); 8263 } 8264 return ret; 8265 } 8266 8267 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8268 const char *symname) 8269 { 8270 struct btrfs_trans_handle *trans; 8271 struct btrfs_root *root = BTRFS_I(dir)->root; 8272 struct btrfs_path *path; 8273 struct btrfs_key key; 8274 struct inode *inode = NULL; 8275 int err; 8276 int drop_inode = 0; 8277 u64 objectid; 8278 u64 index = 0 ; 8279 int name_len; 8280 int datasize; 8281 unsigned long ptr; 8282 struct btrfs_file_extent_item *ei; 8283 struct extent_buffer *leaf; 8284 8285 name_len = strlen(symname) + 1; 8286 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8287 return -ENAMETOOLONG; 8288 8289 /* 8290 * 2 items for inode item and ref 8291 * 2 items for dir items 8292 * 1 item for xattr if selinux is on 8293 */ 8294 trans = btrfs_start_transaction(root, 5); 8295 if (IS_ERR(trans)) 8296 return PTR_ERR(trans); 8297 8298 err = btrfs_find_free_ino(root, &objectid); 8299 if (err) 8300 goto out_unlock; 8301 8302 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8303 dentry->d_name.len, btrfs_ino(dir), objectid, 8304 S_IFLNK|S_IRWXUGO, &index); 8305 if (IS_ERR(inode)) { 8306 err = PTR_ERR(inode); 8307 goto out_unlock; 8308 } 8309 8310 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8311 if (err) { 8312 drop_inode = 1; 8313 goto out_unlock; 8314 } 8315 8316 /* 8317 * If the active LSM wants to access the inode during 8318 * d_instantiate it needs these. Smack checks to see 8319 * if the filesystem supports xattrs by looking at the 8320 * ops vector. 8321 */ 8322 inode->i_fop = &btrfs_file_operations; 8323 inode->i_op = &btrfs_file_inode_operations; 8324 8325 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8326 if (err) 8327 drop_inode = 1; 8328 else { 8329 inode->i_mapping->a_ops = &btrfs_aops; 8330 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8331 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8332 } 8333 if (drop_inode) 8334 goto out_unlock; 8335 8336 path = btrfs_alloc_path(); 8337 if (!path) { 8338 err = -ENOMEM; 8339 drop_inode = 1; 8340 goto out_unlock; 8341 } 8342 key.objectid = btrfs_ino(inode); 8343 key.offset = 0; 8344 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8345 datasize = btrfs_file_extent_calc_inline_size(name_len); 8346 err = btrfs_insert_empty_item(trans, root, path, &key, 8347 datasize); 8348 if (err) { 8349 drop_inode = 1; 8350 btrfs_free_path(path); 8351 goto out_unlock; 8352 } 8353 leaf = path->nodes[0]; 8354 ei = btrfs_item_ptr(leaf, path->slots[0], 8355 struct btrfs_file_extent_item); 8356 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8357 btrfs_set_file_extent_type(leaf, ei, 8358 BTRFS_FILE_EXTENT_INLINE); 8359 btrfs_set_file_extent_encryption(leaf, ei, 0); 8360 btrfs_set_file_extent_compression(leaf, ei, 0); 8361 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8362 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8363 8364 ptr = btrfs_file_extent_inline_start(ei); 8365 write_extent_buffer(leaf, symname, ptr, name_len); 8366 btrfs_mark_buffer_dirty(leaf); 8367 btrfs_free_path(path); 8368 8369 inode->i_op = &btrfs_symlink_inode_operations; 8370 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8371 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8372 inode_set_bytes(inode, name_len); 8373 btrfs_i_size_write(inode, name_len - 1); 8374 err = btrfs_update_inode(trans, root, inode); 8375 if (err) 8376 drop_inode = 1; 8377 8378 out_unlock: 8379 if (!err) 8380 d_instantiate(dentry, inode); 8381 btrfs_end_transaction(trans, root); 8382 if (drop_inode) { 8383 inode_dec_link_count(inode); 8384 iput(inode); 8385 } 8386 btrfs_btree_balance_dirty(root); 8387 return err; 8388 } 8389 8390 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8391 u64 start, u64 num_bytes, u64 min_size, 8392 loff_t actual_len, u64 *alloc_hint, 8393 struct btrfs_trans_handle *trans) 8394 { 8395 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8396 struct extent_map *em; 8397 struct btrfs_root *root = BTRFS_I(inode)->root; 8398 struct btrfs_key ins; 8399 u64 cur_offset = start; 8400 u64 i_size; 8401 u64 cur_bytes; 8402 int ret = 0; 8403 bool own_trans = true; 8404 8405 if (trans) 8406 own_trans = false; 8407 while (num_bytes > 0) { 8408 if (own_trans) { 8409 trans = btrfs_start_transaction(root, 3); 8410 if (IS_ERR(trans)) { 8411 ret = PTR_ERR(trans); 8412 break; 8413 } 8414 } 8415 8416 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8417 cur_bytes = max(cur_bytes, min_size); 8418 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 8419 *alloc_hint, &ins, 1); 8420 if (ret) { 8421 if (own_trans) 8422 btrfs_end_transaction(trans, root); 8423 break; 8424 } 8425 8426 ret = insert_reserved_file_extent(trans, inode, 8427 cur_offset, ins.objectid, 8428 ins.offset, ins.offset, 8429 ins.offset, 0, 0, 0, 8430 BTRFS_FILE_EXTENT_PREALLOC); 8431 if (ret) { 8432 btrfs_abort_transaction(trans, root, ret); 8433 if (own_trans) 8434 btrfs_end_transaction(trans, root); 8435 break; 8436 } 8437 btrfs_drop_extent_cache(inode, cur_offset, 8438 cur_offset + ins.offset -1, 0); 8439 8440 em = alloc_extent_map(); 8441 if (!em) { 8442 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8443 &BTRFS_I(inode)->runtime_flags); 8444 goto next; 8445 } 8446 8447 em->start = cur_offset; 8448 em->orig_start = cur_offset; 8449 em->len = ins.offset; 8450 em->block_start = ins.objectid; 8451 em->block_len = ins.offset; 8452 em->orig_block_len = ins.offset; 8453 em->ram_bytes = ins.offset; 8454 em->bdev = root->fs_info->fs_devices->latest_bdev; 8455 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8456 em->generation = trans->transid; 8457 8458 while (1) { 8459 write_lock(&em_tree->lock); 8460 ret = add_extent_mapping(em_tree, em, 1); 8461 write_unlock(&em_tree->lock); 8462 if (ret != -EEXIST) 8463 break; 8464 btrfs_drop_extent_cache(inode, cur_offset, 8465 cur_offset + ins.offset - 1, 8466 0); 8467 } 8468 free_extent_map(em); 8469 next: 8470 num_bytes -= ins.offset; 8471 cur_offset += ins.offset; 8472 *alloc_hint = ins.objectid + ins.offset; 8473 8474 inode_inc_iversion(inode); 8475 inode->i_ctime = CURRENT_TIME; 8476 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8477 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8478 (actual_len > inode->i_size) && 8479 (cur_offset > inode->i_size)) { 8480 if (cur_offset > actual_len) 8481 i_size = actual_len; 8482 else 8483 i_size = cur_offset; 8484 i_size_write(inode, i_size); 8485 btrfs_ordered_update_i_size(inode, i_size, NULL); 8486 } 8487 8488 ret = btrfs_update_inode(trans, root, inode); 8489 8490 if (ret) { 8491 btrfs_abort_transaction(trans, root, ret); 8492 if (own_trans) 8493 btrfs_end_transaction(trans, root); 8494 break; 8495 } 8496 8497 if (own_trans) 8498 btrfs_end_transaction(trans, root); 8499 } 8500 return ret; 8501 } 8502 8503 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8504 u64 start, u64 num_bytes, u64 min_size, 8505 loff_t actual_len, u64 *alloc_hint) 8506 { 8507 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8508 min_size, actual_len, alloc_hint, 8509 NULL); 8510 } 8511 8512 int btrfs_prealloc_file_range_trans(struct inode *inode, 8513 struct btrfs_trans_handle *trans, int mode, 8514 u64 start, u64 num_bytes, u64 min_size, 8515 loff_t actual_len, u64 *alloc_hint) 8516 { 8517 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8518 min_size, actual_len, alloc_hint, trans); 8519 } 8520 8521 static int btrfs_set_page_dirty(struct page *page) 8522 { 8523 return __set_page_dirty_nobuffers(page); 8524 } 8525 8526 static int btrfs_permission(struct inode *inode, int mask) 8527 { 8528 struct btrfs_root *root = BTRFS_I(inode)->root; 8529 umode_t mode = inode->i_mode; 8530 8531 if (mask & MAY_WRITE && 8532 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8533 if (btrfs_root_readonly(root)) 8534 return -EROFS; 8535 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8536 return -EACCES; 8537 } 8538 return generic_permission(inode, mask); 8539 } 8540 8541 static const struct inode_operations btrfs_dir_inode_operations = { 8542 .getattr = btrfs_getattr, 8543 .lookup = btrfs_lookup, 8544 .create = btrfs_create, 8545 .unlink = btrfs_unlink, 8546 .link = btrfs_link, 8547 .mkdir = btrfs_mkdir, 8548 .rmdir = btrfs_rmdir, 8549 .rename = btrfs_rename, 8550 .symlink = btrfs_symlink, 8551 .setattr = btrfs_setattr, 8552 .mknod = btrfs_mknod, 8553 .setxattr = btrfs_setxattr, 8554 .getxattr = btrfs_getxattr, 8555 .listxattr = btrfs_listxattr, 8556 .removexattr = btrfs_removexattr, 8557 .permission = btrfs_permission, 8558 .get_acl = btrfs_get_acl, 8559 }; 8560 static const struct inode_operations btrfs_dir_ro_inode_operations = { 8561 .lookup = btrfs_lookup, 8562 .permission = btrfs_permission, 8563 .get_acl = btrfs_get_acl, 8564 }; 8565 8566 static const struct file_operations btrfs_dir_file_operations = { 8567 .llseek = generic_file_llseek, 8568 .read = generic_read_dir, 8569 .iterate = btrfs_real_readdir, 8570 .unlocked_ioctl = btrfs_ioctl, 8571 #ifdef CONFIG_COMPAT 8572 .compat_ioctl = btrfs_ioctl, 8573 #endif 8574 .release = btrfs_release_file, 8575 .fsync = btrfs_sync_file, 8576 }; 8577 8578 static struct extent_io_ops btrfs_extent_io_ops = { 8579 .fill_delalloc = run_delalloc_range, 8580 .submit_bio_hook = btrfs_submit_bio_hook, 8581 .merge_bio_hook = btrfs_merge_bio_hook, 8582 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 8583 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 8584 .writepage_start_hook = btrfs_writepage_start_hook, 8585 .set_bit_hook = btrfs_set_bit_hook, 8586 .clear_bit_hook = btrfs_clear_bit_hook, 8587 .merge_extent_hook = btrfs_merge_extent_hook, 8588 .split_extent_hook = btrfs_split_extent_hook, 8589 }; 8590 8591 /* 8592 * btrfs doesn't support the bmap operation because swapfiles 8593 * use bmap to make a mapping of extents in the file. They assume 8594 * these extents won't change over the life of the file and they 8595 * use the bmap result to do IO directly to the drive. 8596 * 8597 * the btrfs bmap call would return logical addresses that aren't 8598 * suitable for IO and they also will change frequently as COW 8599 * operations happen. So, swapfile + btrfs == corruption. 8600 * 8601 * For now we're avoiding this by dropping bmap. 8602 */ 8603 static const struct address_space_operations btrfs_aops = { 8604 .readpage = btrfs_readpage, 8605 .writepage = btrfs_writepage, 8606 .writepages = btrfs_writepages, 8607 .readpages = btrfs_readpages, 8608 .direct_IO = btrfs_direct_IO, 8609 .invalidatepage = btrfs_invalidatepage, 8610 .releasepage = btrfs_releasepage, 8611 .set_page_dirty = btrfs_set_page_dirty, 8612 .error_remove_page = generic_error_remove_page, 8613 }; 8614 8615 static const struct address_space_operations btrfs_symlink_aops = { 8616 .readpage = btrfs_readpage, 8617 .writepage = btrfs_writepage, 8618 .invalidatepage = btrfs_invalidatepage, 8619 .releasepage = btrfs_releasepage, 8620 }; 8621 8622 static const struct inode_operations btrfs_file_inode_operations = { 8623 .getattr = btrfs_getattr, 8624 .setattr = btrfs_setattr, 8625 .setxattr = btrfs_setxattr, 8626 .getxattr = btrfs_getxattr, 8627 .listxattr = btrfs_listxattr, 8628 .removexattr = btrfs_removexattr, 8629 .permission = btrfs_permission, 8630 .fiemap = btrfs_fiemap, 8631 .get_acl = btrfs_get_acl, 8632 .update_time = btrfs_update_time, 8633 }; 8634 static const struct inode_operations btrfs_special_inode_operations = { 8635 .getattr = btrfs_getattr, 8636 .setattr = btrfs_setattr, 8637 .permission = btrfs_permission, 8638 .setxattr = btrfs_setxattr, 8639 .getxattr = btrfs_getxattr, 8640 .listxattr = btrfs_listxattr, 8641 .removexattr = btrfs_removexattr, 8642 .get_acl = btrfs_get_acl, 8643 .update_time = btrfs_update_time, 8644 }; 8645 static const struct inode_operations btrfs_symlink_inode_operations = { 8646 .readlink = generic_readlink, 8647 .follow_link = page_follow_link_light, 8648 .put_link = page_put_link, 8649 .getattr = btrfs_getattr, 8650 .setattr = btrfs_setattr, 8651 .permission = btrfs_permission, 8652 .setxattr = btrfs_setxattr, 8653 .getxattr = btrfs_getxattr, 8654 .listxattr = btrfs_listxattr, 8655 .removexattr = btrfs_removexattr, 8656 .get_acl = btrfs_get_acl, 8657 .update_time = btrfs_update_time, 8658 }; 8659 8660 const struct dentry_operations btrfs_dentry_operations = { 8661 .d_delete = btrfs_dentry_delete, 8662 .d_release = btrfs_dentry_release, 8663 }; 8664