1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/smp_lock.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "ref-cache.h" 52 #include "compression.h" 53 #include "locking.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 static struct inode_operations btrfs_dir_inode_operations; 61 static struct inode_operations btrfs_symlink_inode_operations; 62 static struct inode_operations btrfs_dir_ro_inode_operations; 63 static struct inode_operations btrfs_special_inode_operations; 64 static struct inode_operations btrfs_file_inode_operations; 65 static struct address_space_operations btrfs_aops; 66 static struct address_space_operations btrfs_symlink_aops; 67 static struct file_operations btrfs_dir_file_operations; 68 static struct extent_io_ops btrfs_extent_io_ops; 69 70 static struct kmem_cache *btrfs_inode_cachep; 71 struct kmem_cache *btrfs_trans_handle_cachep; 72 struct kmem_cache *btrfs_transaction_cachep; 73 struct kmem_cache *btrfs_bit_radix_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 76 #define S_SHIFT 12 77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static void btrfs_truncate(struct inode *inode); 88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 89 static noinline int cow_file_range(struct inode *inode, 90 struct page *locked_page, 91 u64 start, u64 end, int *page_started, 92 unsigned long *nr_written, int unlock); 93 94 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir) 95 { 96 int err; 97 98 err = btrfs_init_acl(inode, dir); 99 if (!err) 100 err = btrfs_xattr_security_init(inode, dir); 101 return err; 102 } 103 104 /* 105 * a very lame attempt at stopping writes when the FS is 85% full. There 106 * are countless ways this is incorrect, but it is better than nothing. 107 */ 108 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required, 109 int for_del) 110 { 111 u64 total; 112 u64 used; 113 u64 thresh; 114 int ret = 0; 115 116 spin_lock(&root->fs_info->delalloc_lock); 117 total = btrfs_super_total_bytes(&root->fs_info->super_copy); 118 used = btrfs_super_bytes_used(&root->fs_info->super_copy); 119 if (for_del) 120 thresh = total * 90; 121 else 122 thresh = total * 85; 123 124 do_div(thresh, 100); 125 126 if (used + root->fs_info->delalloc_bytes + num_required > thresh) 127 ret = -ENOSPC; 128 spin_unlock(&root->fs_info->delalloc_lock); 129 return ret; 130 } 131 132 /* 133 * this does all the hard work for inserting an inline extent into 134 * the btree. The caller should have done a btrfs_drop_extents so that 135 * no overlapping inline items exist in the btree 136 */ 137 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 138 struct btrfs_root *root, struct inode *inode, 139 u64 start, size_t size, size_t compressed_size, 140 struct page **compressed_pages) 141 { 142 struct btrfs_key key; 143 struct btrfs_path *path; 144 struct extent_buffer *leaf; 145 struct page *page = NULL; 146 char *kaddr; 147 unsigned long ptr; 148 struct btrfs_file_extent_item *ei; 149 int err = 0; 150 int ret; 151 size_t cur_size = size; 152 size_t datasize; 153 unsigned long offset; 154 int use_compress = 0; 155 156 if (compressed_size && compressed_pages) { 157 use_compress = 1; 158 cur_size = compressed_size; 159 } 160 161 path = btrfs_alloc_path(); 162 if (!path) 163 return -ENOMEM; 164 165 btrfs_set_trans_block_group(trans, inode); 166 167 key.objectid = inode->i_ino; 168 key.offset = start; 169 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 170 datasize = btrfs_file_extent_calc_inline_size(cur_size); 171 172 inode_add_bytes(inode, size); 173 ret = btrfs_insert_empty_item(trans, root, path, &key, 174 datasize); 175 BUG_ON(ret); 176 if (ret) { 177 err = ret; 178 goto fail; 179 } 180 leaf = path->nodes[0]; 181 ei = btrfs_item_ptr(leaf, path->slots[0], 182 struct btrfs_file_extent_item); 183 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 184 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 185 btrfs_set_file_extent_encryption(leaf, ei, 0); 186 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 187 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 188 ptr = btrfs_file_extent_inline_start(ei); 189 190 if (use_compress) { 191 struct page *cpage; 192 int i = 0; 193 while (compressed_size > 0) { 194 cpage = compressed_pages[i]; 195 cur_size = min_t(unsigned long, compressed_size, 196 PAGE_CACHE_SIZE); 197 198 kaddr = kmap(cpage); 199 write_extent_buffer(leaf, kaddr, ptr, cur_size); 200 kunmap(cpage); 201 202 i++; 203 ptr += cur_size; 204 compressed_size -= cur_size; 205 } 206 btrfs_set_file_extent_compression(leaf, ei, 207 BTRFS_COMPRESS_ZLIB); 208 } else { 209 page = find_get_page(inode->i_mapping, 210 start >> PAGE_CACHE_SHIFT); 211 btrfs_set_file_extent_compression(leaf, ei, 0); 212 kaddr = kmap_atomic(page, KM_USER0); 213 offset = start & (PAGE_CACHE_SIZE - 1); 214 write_extent_buffer(leaf, kaddr + offset, ptr, size); 215 kunmap_atomic(kaddr, KM_USER0); 216 page_cache_release(page); 217 } 218 btrfs_mark_buffer_dirty(leaf); 219 btrfs_free_path(path); 220 221 BTRFS_I(inode)->disk_i_size = inode->i_size; 222 btrfs_update_inode(trans, root, inode); 223 return 0; 224 fail: 225 btrfs_free_path(path); 226 return err; 227 } 228 229 230 /* 231 * conditionally insert an inline extent into the file. This 232 * does the checks required to make sure the data is small enough 233 * to fit as an inline extent. 234 */ 235 static int cow_file_range_inline(struct btrfs_trans_handle *trans, 236 struct btrfs_root *root, 237 struct inode *inode, u64 start, u64 end, 238 size_t compressed_size, 239 struct page **compressed_pages) 240 { 241 u64 isize = i_size_read(inode); 242 u64 actual_end = min(end + 1, isize); 243 u64 inline_len = actual_end - start; 244 u64 aligned_end = (end + root->sectorsize - 1) & 245 ~((u64)root->sectorsize - 1); 246 u64 hint_byte; 247 u64 data_len = inline_len; 248 int ret; 249 250 if (compressed_size) 251 data_len = compressed_size; 252 253 if (start > 0 || 254 actual_end >= PAGE_CACHE_SIZE || 255 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 256 (!compressed_size && 257 (actual_end & (root->sectorsize - 1)) == 0) || 258 end + 1 < isize || 259 data_len > root->fs_info->max_inline) { 260 return 1; 261 } 262 263 ret = btrfs_drop_extents(trans, root, inode, start, 264 aligned_end, start, &hint_byte); 265 BUG_ON(ret); 266 267 if (isize > actual_end) 268 inline_len = min_t(u64, isize, actual_end); 269 ret = insert_inline_extent(trans, root, inode, start, 270 inline_len, compressed_size, 271 compressed_pages); 272 BUG_ON(ret); 273 btrfs_drop_extent_cache(inode, start, aligned_end, 0); 274 return 0; 275 } 276 277 struct async_extent { 278 u64 start; 279 u64 ram_size; 280 u64 compressed_size; 281 struct page **pages; 282 unsigned long nr_pages; 283 struct list_head list; 284 }; 285 286 struct async_cow { 287 struct inode *inode; 288 struct btrfs_root *root; 289 struct page *locked_page; 290 u64 start; 291 u64 end; 292 struct list_head extents; 293 struct btrfs_work work; 294 }; 295 296 static noinline int add_async_extent(struct async_cow *cow, 297 u64 start, u64 ram_size, 298 u64 compressed_size, 299 struct page **pages, 300 unsigned long nr_pages) 301 { 302 struct async_extent *async_extent; 303 304 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 305 async_extent->start = start; 306 async_extent->ram_size = ram_size; 307 async_extent->compressed_size = compressed_size; 308 async_extent->pages = pages; 309 async_extent->nr_pages = nr_pages; 310 list_add_tail(&async_extent->list, &cow->extents); 311 return 0; 312 } 313 314 /* 315 * we create compressed extents in two phases. The first 316 * phase compresses a range of pages that have already been 317 * locked (both pages and state bits are locked). 318 * 319 * This is done inside an ordered work queue, and the compression 320 * is spread across many cpus. The actual IO submission is step 321 * two, and the ordered work queue takes care of making sure that 322 * happens in the same order things were put onto the queue by 323 * writepages and friends. 324 * 325 * If this code finds it can't get good compression, it puts an 326 * entry onto the work queue to write the uncompressed bytes. This 327 * makes sure that both compressed inodes and uncompressed inodes 328 * are written in the same order that pdflush sent them down. 329 */ 330 static noinline int compress_file_range(struct inode *inode, 331 struct page *locked_page, 332 u64 start, u64 end, 333 struct async_cow *async_cow, 334 int *num_added) 335 { 336 struct btrfs_root *root = BTRFS_I(inode)->root; 337 struct btrfs_trans_handle *trans; 338 u64 num_bytes; 339 u64 orig_start; 340 u64 disk_num_bytes; 341 u64 blocksize = root->sectorsize; 342 u64 actual_end; 343 u64 isize = i_size_read(inode); 344 int ret = 0; 345 struct page **pages = NULL; 346 unsigned long nr_pages; 347 unsigned long nr_pages_ret = 0; 348 unsigned long total_compressed = 0; 349 unsigned long total_in = 0; 350 unsigned long max_compressed = 128 * 1024; 351 unsigned long max_uncompressed = 128 * 1024; 352 int i; 353 int will_compress; 354 355 orig_start = start; 356 357 actual_end = min_t(u64, isize, end + 1); 358 again: 359 will_compress = 0; 360 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 361 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 362 363 /* 364 * we don't want to send crud past the end of i_size through 365 * compression, that's just a waste of CPU time. So, if the 366 * end of the file is before the start of our current 367 * requested range of bytes, we bail out to the uncompressed 368 * cleanup code that can deal with all of this. 369 * 370 * It isn't really the fastest way to fix things, but this is a 371 * very uncommon corner. 372 */ 373 if (actual_end <= start) 374 goto cleanup_and_bail_uncompressed; 375 376 total_compressed = actual_end - start; 377 378 /* we want to make sure that amount of ram required to uncompress 379 * an extent is reasonable, so we limit the total size in ram 380 * of a compressed extent to 128k. This is a crucial number 381 * because it also controls how easily we can spread reads across 382 * cpus for decompression. 383 * 384 * We also want to make sure the amount of IO required to do 385 * a random read is reasonably small, so we limit the size of 386 * a compressed extent to 128k. 387 */ 388 total_compressed = min(total_compressed, max_uncompressed); 389 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 390 num_bytes = max(blocksize, num_bytes); 391 disk_num_bytes = num_bytes; 392 total_in = 0; 393 ret = 0; 394 395 /* 396 * we do compression for mount -o compress and when the 397 * inode has not been flagged as nocompress. This flag can 398 * change at any time if we discover bad compression ratios. 399 */ 400 if (!btrfs_test_flag(inode, NOCOMPRESS) && 401 btrfs_test_opt(root, COMPRESS)) { 402 WARN_ON(pages); 403 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 404 405 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 406 total_compressed, pages, 407 nr_pages, &nr_pages_ret, 408 &total_in, 409 &total_compressed, 410 max_compressed); 411 412 if (!ret) { 413 unsigned long offset = total_compressed & 414 (PAGE_CACHE_SIZE - 1); 415 struct page *page = pages[nr_pages_ret - 1]; 416 char *kaddr; 417 418 /* zero the tail end of the last page, we might be 419 * sending it down to disk 420 */ 421 if (offset) { 422 kaddr = kmap_atomic(page, KM_USER0); 423 memset(kaddr + offset, 0, 424 PAGE_CACHE_SIZE - offset); 425 kunmap_atomic(kaddr, KM_USER0); 426 } 427 will_compress = 1; 428 } 429 } 430 if (start == 0) { 431 trans = btrfs_join_transaction(root, 1); 432 BUG_ON(!trans); 433 btrfs_set_trans_block_group(trans, inode); 434 435 /* lets try to make an inline extent */ 436 if (ret || total_in < (actual_end - start)) { 437 /* we didn't compress the entire range, try 438 * to make an uncompressed inline extent. 439 */ 440 ret = cow_file_range_inline(trans, root, inode, 441 start, end, 0, NULL); 442 } else { 443 /* try making a compressed inline extent */ 444 ret = cow_file_range_inline(trans, root, inode, 445 start, end, 446 total_compressed, pages); 447 } 448 btrfs_end_transaction(trans, root); 449 if (ret == 0) { 450 /* 451 * inline extent creation worked, we don't need 452 * to create any more async work items. Unlock 453 * and free up our temp pages. 454 */ 455 extent_clear_unlock_delalloc(inode, 456 &BTRFS_I(inode)->io_tree, 457 start, end, NULL, 1, 0, 458 0, 1, 1, 1); 459 ret = 0; 460 goto free_pages_out; 461 } 462 } 463 464 if (will_compress) { 465 /* 466 * we aren't doing an inline extent round the compressed size 467 * up to a block size boundary so the allocator does sane 468 * things 469 */ 470 total_compressed = (total_compressed + blocksize - 1) & 471 ~(blocksize - 1); 472 473 /* 474 * one last check to make sure the compression is really a 475 * win, compare the page count read with the blocks on disk 476 */ 477 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 478 ~(PAGE_CACHE_SIZE - 1); 479 if (total_compressed >= total_in) { 480 will_compress = 0; 481 } else { 482 disk_num_bytes = total_compressed; 483 num_bytes = total_in; 484 } 485 } 486 if (!will_compress && pages) { 487 /* 488 * the compression code ran but failed to make things smaller, 489 * free any pages it allocated and our page pointer array 490 */ 491 for (i = 0; i < nr_pages_ret; i++) { 492 WARN_ON(pages[i]->mapping); 493 page_cache_release(pages[i]); 494 } 495 kfree(pages); 496 pages = NULL; 497 total_compressed = 0; 498 nr_pages_ret = 0; 499 500 /* flag the file so we don't compress in the future */ 501 btrfs_set_flag(inode, NOCOMPRESS); 502 } 503 if (will_compress) { 504 *num_added += 1; 505 506 /* the async work queues will take care of doing actual 507 * allocation on disk for these compressed pages, 508 * and will submit them to the elevator. 509 */ 510 add_async_extent(async_cow, start, num_bytes, 511 total_compressed, pages, nr_pages_ret); 512 513 if (start + num_bytes < end && start + num_bytes < actual_end) { 514 start += num_bytes; 515 pages = NULL; 516 cond_resched(); 517 goto again; 518 } 519 } else { 520 cleanup_and_bail_uncompressed: 521 /* 522 * No compression, but we still need to write the pages in 523 * the file we've been given so far. redirty the locked 524 * page if it corresponds to our extent and set things up 525 * for the async work queue to run cow_file_range to do 526 * the normal delalloc dance 527 */ 528 if (page_offset(locked_page) >= start && 529 page_offset(locked_page) <= end) { 530 __set_page_dirty_nobuffers(locked_page); 531 /* unlocked later on in the async handlers */ 532 } 533 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 534 *num_added += 1; 535 } 536 537 out: 538 return 0; 539 540 free_pages_out: 541 for (i = 0; i < nr_pages_ret; i++) { 542 WARN_ON(pages[i]->mapping); 543 page_cache_release(pages[i]); 544 } 545 kfree(pages); 546 547 goto out; 548 } 549 550 /* 551 * phase two of compressed writeback. This is the ordered portion 552 * of the code, which only gets called in the order the work was 553 * queued. We walk all the async extents created by compress_file_range 554 * and send them down to the disk. 555 */ 556 static noinline int submit_compressed_extents(struct inode *inode, 557 struct async_cow *async_cow) 558 { 559 struct async_extent *async_extent; 560 u64 alloc_hint = 0; 561 struct btrfs_trans_handle *trans; 562 struct btrfs_key ins; 563 struct extent_map *em; 564 struct btrfs_root *root = BTRFS_I(inode)->root; 565 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 566 struct extent_io_tree *io_tree; 567 int ret; 568 569 if (list_empty(&async_cow->extents)) 570 return 0; 571 572 trans = btrfs_join_transaction(root, 1); 573 574 while (!list_empty(&async_cow->extents)) { 575 async_extent = list_entry(async_cow->extents.next, 576 struct async_extent, list); 577 list_del(&async_extent->list); 578 579 io_tree = &BTRFS_I(inode)->io_tree; 580 581 /* did the compression code fall back to uncompressed IO? */ 582 if (!async_extent->pages) { 583 int page_started = 0; 584 unsigned long nr_written = 0; 585 586 lock_extent(io_tree, async_extent->start, 587 async_extent->start + 588 async_extent->ram_size - 1, GFP_NOFS); 589 590 /* allocate blocks */ 591 cow_file_range(inode, async_cow->locked_page, 592 async_extent->start, 593 async_extent->start + 594 async_extent->ram_size - 1, 595 &page_started, &nr_written, 0); 596 597 /* 598 * if page_started, cow_file_range inserted an 599 * inline extent and took care of all the unlocking 600 * and IO for us. Otherwise, we need to submit 601 * all those pages down to the drive. 602 */ 603 if (!page_started) 604 extent_write_locked_range(io_tree, 605 inode, async_extent->start, 606 async_extent->start + 607 async_extent->ram_size - 1, 608 btrfs_get_extent, 609 WB_SYNC_ALL); 610 kfree(async_extent); 611 cond_resched(); 612 continue; 613 } 614 615 lock_extent(io_tree, async_extent->start, 616 async_extent->start + async_extent->ram_size - 1, 617 GFP_NOFS); 618 /* 619 * here we're doing allocation and writeback of the 620 * compressed pages 621 */ 622 btrfs_drop_extent_cache(inode, async_extent->start, 623 async_extent->start + 624 async_extent->ram_size - 1, 0); 625 626 ret = btrfs_reserve_extent(trans, root, 627 async_extent->compressed_size, 628 async_extent->compressed_size, 629 0, alloc_hint, 630 (u64)-1, &ins, 1); 631 BUG_ON(ret); 632 em = alloc_extent_map(GFP_NOFS); 633 em->start = async_extent->start; 634 em->len = async_extent->ram_size; 635 em->orig_start = em->start; 636 637 em->block_start = ins.objectid; 638 em->block_len = ins.offset; 639 em->bdev = root->fs_info->fs_devices->latest_bdev; 640 set_bit(EXTENT_FLAG_PINNED, &em->flags); 641 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 642 643 while (1) { 644 spin_lock(&em_tree->lock); 645 ret = add_extent_mapping(em_tree, em); 646 spin_unlock(&em_tree->lock); 647 if (ret != -EEXIST) { 648 free_extent_map(em); 649 break; 650 } 651 btrfs_drop_extent_cache(inode, async_extent->start, 652 async_extent->start + 653 async_extent->ram_size - 1, 0); 654 } 655 656 ret = btrfs_add_ordered_extent(inode, async_extent->start, 657 ins.objectid, 658 async_extent->ram_size, 659 ins.offset, 660 BTRFS_ORDERED_COMPRESSED); 661 BUG_ON(ret); 662 663 btrfs_end_transaction(trans, root); 664 665 /* 666 * clear dirty, set writeback and unlock the pages. 667 */ 668 extent_clear_unlock_delalloc(inode, 669 &BTRFS_I(inode)->io_tree, 670 async_extent->start, 671 async_extent->start + 672 async_extent->ram_size - 1, 673 NULL, 1, 1, 0, 1, 1, 0); 674 675 ret = btrfs_submit_compressed_write(inode, 676 async_extent->start, 677 async_extent->ram_size, 678 ins.objectid, 679 ins.offset, async_extent->pages, 680 async_extent->nr_pages); 681 682 BUG_ON(ret); 683 trans = btrfs_join_transaction(root, 1); 684 alloc_hint = ins.objectid + ins.offset; 685 kfree(async_extent); 686 cond_resched(); 687 } 688 689 btrfs_end_transaction(trans, root); 690 return 0; 691 } 692 693 /* 694 * when extent_io.c finds a delayed allocation range in the file, 695 * the call backs end up in this code. The basic idea is to 696 * allocate extents on disk for the range, and create ordered data structs 697 * in ram to track those extents. 698 * 699 * locked_page is the page that writepage had locked already. We use 700 * it to make sure we don't do extra locks or unlocks. 701 * 702 * *page_started is set to one if we unlock locked_page and do everything 703 * required to start IO on it. It may be clean and already done with 704 * IO when we return. 705 */ 706 static noinline int cow_file_range(struct inode *inode, 707 struct page *locked_page, 708 u64 start, u64 end, int *page_started, 709 unsigned long *nr_written, 710 int unlock) 711 { 712 struct btrfs_root *root = BTRFS_I(inode)->root; 713 struct btrfs_trans_handle *trans; 714 u64 alloc_hint = 0; 715 u64 num_bytes; 716 unsigned long ram_size; 717 u64 disk_num_bytes; 718 u64 cur_alloc_size; 719 u64 blocksize = root->sectorsize; 720 u64 actual_end; 721 u64 isize = i_size_read(inode); 722 struct btrfs_key ins; 723 struct extent_map *em; 724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 725 int ret = 0; 726 727 trans = btrfs_join_transaction(root, 1); 728 BUG_ON(!trans); 729 btrfs_set_trans_block_group(trans, inode); 730 731 actual_end = min_t(u64, isize, end + 1); 732 733 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 734 num_bytes = max(blocksize, num_bytes); 735 disk_num_bytes = num_bytes; 736 ret = 0; 737 738 if (start == 0) { 739 /* lets try to make an inline extent */ 740 ret = cow_file_range_inline(trans, root, inode, 741 start, end, 0, NULL); 742 if (ret == 0) { 743 extent_clear_unlock_delalloc(inode, 744 &BTRFS_I(inode)->io_tree, 745 start, end, NULL, 1, 1, 746 1, 1, 1, 1); 747 *nr_written = *nr_written + 748 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 749 *page_started = 1; 750 ret = 0; 751 goto out; 752 } 753 } 754 755 BUG_ON(disk_num_bytes > 756 btrfs_super_total_bytes(&root->fs_info->super_copy)); 757 758 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 759 760 while (disk_num_bytes > 0) { 761 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 762 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 763 root->sectorsize, 0, alloc_hint, 764 (u64)-1, &ins, 1); 765 BUG_ON(ret); 766 767 em = alloc_extent_map(GFP_NOFS); 768 em->start = start; 769 em->orig_start = em->start; 770 771 ram_size = ins.offset; 772 em->len = ins.offset; 773 774 em->block_start = ins.objectid; 775 em->block_len = ins.offset; 776 em->bdev = root->fs_info->fs_devices->latest_bdev; 777 set_bit(EXTENT_FLAG_PINNED, &em->flags); 778 779 while (1) { 780 spin_lock(&em_tree->lock); 781 ret = add_extent_mapping(em_tree, em); 782 spin_unlock(&em_tree->lock); 783 if (ret != -EEXIST) { 784 free_extent_map(em); 785 break; 786 } 787 btrfs_drop_extent_cache(inode, start, 788 start + ram_size - 1, 0); 789 } 790 791 cur_alloc_size = ins.offset; 792 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 793 ram_size, cur_alloc_size, 0); 794 BUG_ON(ret); 795 796 if (root->root_key.objectid == 797 BTRFS_DATA_RELOC_TREE_OBJECTID) { 798 ret = btrfs_reloc_clone_csums(inode, start, 799 cur_alloc_size); 800 BUG_ON(ret); 801 } 802 803 if (disk_num_bytes < cur_alloc_size) 804 break; 805 806 /* we're not doing compressed IO, don't unlock the first 807 * page (which the caller expects to stay locked), don't 808 * clear any dirty bits and don't set any writeback bits 809 */ 810 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 811 start, start + ram_size - 1, 812 locked_page, unlock, 1, 813 1, 0, 0, 0); 814 disk_num_bytes -= cur_alloc_size; 815 num_bytes -= cur_alloc_size; 816 alloc_hint = ins.objectid + ins.offset; 817 start += cur_alloc_size; 818 } 819 out: 820 ret = 0; 821 btrfs_end_transaction(trans, root); 822 823 return ret; 824 } 825 826 /* 827 * work queue call back to started compression on a file and pages 828 */ 829 static noinline void async_cow_start(struct btrfs_work *work) 830 { 831 struct async_cow *async_cow; 832 int num_added = 0; 833 async_cow = container_of(work, struct async_cow, work); 834 835 compress_file_range(async_cow->inode, async_cow->locked_page, 836 async_cow->start, async_cow->end, async_cow, 837 &num_added); 838 if (num_added == 0) 839 async_cow->inode = NULL; 840 } 841 842 /* 843 * work queue call back to submit previously compressed pages 844 */ 845 static noinline void async_cow_submit(struct btrfs_work *work) 846 { 847 struct async_cow *async_cow; 848 struct btrfs_root *root; 849 unsigned long nr_pages; 850 851 async_cow = container_of(work, struct async_cow, work); 852 853 root = async_cow->root; 854 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 855 PAGE_CACHE_SHIFT; 856 857 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 858 859 if (atomic_read(&root->fs_info->async_delalloc_pages) < 860 5 * 1042 * 1024 && 861 waitqueue_active(&root->fs_info->async_submit_wait)) 862 wake_up(&root->fs_info->async_submit_wait); 863 864 if (async_cow->inode) 865 submit_compressed_extents(async_cow->inode, async_cow); 866 } 867 868 static noinline void async_cow_free(struct btrfs_work *work) 869 { 870 struct async_cow *async_cow; 871 async_cow = container_of(work, struct async_cow, work); 872 kfree(async_cow); 873 } 874 875 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 876 u64 start, u64 end, int *page_started, 877 unsigned long *nr_written) 878 { 879 struct async_cow *async_cow; 880 struct btrfs_root *root = BTRFS_I(inode)->root; 881 unsigned long nr_pages; 882 u64 cur_end; 883 int limit = 10 * 1024 * 1042; 884 885 if (!btrfs_test_opt(root, COMPRESS)) { 886 return cow_file_range(inode, locked_page, start, end, 887 page_started, nr_written, 1); 888 } 889 890 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | 891 EXTENT_DELALLOC, 1, 0, GFP_NOFS); 892 while (start < end) { 893 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 894 async_cow->inode = inode; 895 async_cow->root = root; 896 async_cow->locked_page = locked_page; 897 async_cow->start = start; 898 899 if (btrfs_test_flag(inode, NOCOMPRESS)) 900 cur_end = end; 901 else 902 cur_end = min(end, start + 512 * 1024 - 1); 903 904 async_cow->end = cur_end; 905 INIT_LIST_HEAD(&async_cow->extents); 906 907 async_cow->work.func = async_cow_start; 908 async_cow->work.ordered_func = async_cow_submit; 909 async_cow->work.ordered_free = async_cow_free; 910 async_cow->work.flags = 0; 911 912 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 913 PAGE_CACHE_SHIFT; 914 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 915 916 btrfs_queue_worker(&root->fs_info->delalloc_workers, 917 &async_cow->work); 918 919 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 920 wait_event(root->fs_info->async_submit_wait, 921 (atomic_read(&root->fs_info->async_delalloc_pages) < 922 limit)); 923 } 924 925 while (atomic_read(&root->fs_info->async_submit_draining) && 926 atomic_read(&root->fs_info->async_delalloc_pages)) { 927 wait_event(root->fs_info->async_submit_wait, 928 (atomic_read(&root->fs_info->async_delalloc_pages) == 929 0)); 930 } 931 932 *nr_written += nr_pages; 933 start = cur_end + 1; 934 } 935 *page_started = 1; 936 return 0; 937 } 938 939 static noinline int csum_exist_in_range(struct btrfs_root *root, 940 u64 bytenr, u64 num_bytes) 941 { 942 int ret; 943 struct btrfs_ordered_sum *sums; 944 LIST_HEAD(list); 945 946 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 947 bytenr + num_bytes - 1, &list); 948 if (ret == 0 && list_empty(&list)) 949 return 0; 950 951 while (!list_empty(&list)) { 952 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 953 list_del(&sums->list); 954 kfree(sums); 955 } 956 return 1; 957 } 958 959 /* 960 * when nowcow writeback call back. This checks for snapshots or COW copies 961 * of the extents that exist in the file, and COWs the file as required. 962 * 963 * If no cow copies or snapshots exist, we write directly to the existing 964 * blocks on disk 965 */ 966 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page, 967 u64 start, u64 end, int *page_started, int force, 968 unsigned long *nr_written) 969 { 970 struct btrfs_root *root = BTRFS_I(inode)->root; 971 struct btrfs_trans_handle *trans; 972 struct extent_buffer *leaf; 973 struct btrfs_path *path; 974 struct btrfs_file_extent_item *fi; 975 struct btrfs_key found_key; 976 u64 cow_start; 977 u64 cur_offset; 978 u64 extent_end; 979 u64 disk_bytenr; 980 u64 num_bytes; 981 int extent_type; 982 int ret; 983 int type; 984 int nocow; 985 int check_prev = 1; 986 987 path = btrfs_alloc_path(); 988 BUG_ON(!path); 989 trans = btrfs_join_transaction(root, 1); 990 BUG_ON(!trans); 991 992 cow_start = (u64)-1; 993 cur_offset = start; 994 while (1) { 995 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 996 cur_offset, 0); 997 BUG_ON(ret < 0); 998 if (ret > 0 && path->slots[0] > 0 && check_prev) { 999 leaf = path->nodes[0]; 1000 btrfs_item_key_to_cpu(leaf, &found_key, 1001 path->slots[0] - 1); 1002 if (found_key.objectid == inode->i_ino && 1003 found_key.type == BTRFS_EXTENT_DATA_KEY) 1004 path->slots[0]--; 1005 } 1006 check_prev = 0; 1007 next_slot: 1008 leaf = path->nodes[0]; 1009 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1010 ret = btrfs_next_leaf(root, path); 1011 if (ret < 0) 1012 BUG_ON(1); 1013 if (ret > 0) 1014 break; 1015 leaf = path->nodes[0]; 1016 } 1017 1018 nocow = 0; 1019 disk_bytenr = 0; 1020 num_bytes = 0; 1021 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1022 1023 if (found_key.objectid > inode->i_ino || 1024 found_key.type > BTRFS_EXTENT_DATA_KEY || 1025 found_key.offset > end) 1026 break; 1027 1028 if (found_key.offset > cur_offset) { 1029 extent_end = found_key.offset; 1030 goto out_check; 1031 } 1032 1033 fi = btrfs_item_ptr(leaf, path->slots[0], 1034 struct btrfs_file_extent_item); 1035 extent_type = btrfs_file_extent_type(leaf, fi); 1036 1037 if (extent_type == BTRFS_FILE_EXTENT_REG || 1038 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1039 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1040 extent_end = found_key.offset + 1041 btrfs_file_extent_num_bytes(leaf, fi); 1042 if (extent_end <= start) { 1043 path->slots[0]++; 1044 goto next_slot; 1045 } 1046 if (disk_bytenr == 0) 1047 goto out_check; 1048 if (btrfs_file_extent_compression(leaf, fi) || 1049 btrfs_file_extent_encryption(leaf, fi) || 1050 btrfs_file_extent_other_encoding(leaf, fi)) 1051 goto out_check; 1052 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1053 goto out_check; 1054 if (btrfs_extent_readonly(root, disk_bytenr)) 1055 goto out_check; 1056 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1057 disk_bytenr)) 1058 goto out_check; 1059 disk_bytenr += btrfs_file_extent_offset(leaf, fi); 1060 disk_bytenr += cur_offset - found_key.offset; 1061 num_bytes = min(end + 1, extent_end) - cur_offset; 1062 /* 1063 * force cow if csum exists in the range. 1064 * this ensure that csum for a given extent are 1065 * either valid or do not exist. 1066 */ 1067 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1068 goto out_check; 1069 nocow = 1; 1070 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1071 extent_end = found_key.offset + 1072 btrfs_file_extent_inline_len(leaf, fi); 1073 extent_end = ALIGN(extent_end, root->sectorsize); 1074 } else { 1075 BUG_ON(1); 1076 } 1077 out_check: 1078 if (extent_end <= start) { 1079 path->slots[0]++; 1080 goto next_slot; 1081 } 1082 if (!nocow) { 1083 if (cow_start == (u64)-1) 1084 cow_start = cur_offset; 1085 cur_offset = extent_end; 1086 if (cur_offset > end) 1087 break; 1088 path->slots[0]++; 1089 goto next_slot; 1090 } 1091 1092 btrfs_release_path(root, path); 1093 if (cow_start != (u64)-1) { 1094 ret = cow_file_range(inode, locked_page, cow_start, 1095 found_key.offset - 1, page_started, 1096 nr_written, 1); 1097 BUG_ON(ret); 1098 cow_start = (u64)-1; 1099 } 1100 1101 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1102 struct extent_map *em; 1103 struct extent_map_tree *em_tree; 1104 em_tree = &BTRFS_I(inode)->extent_tree; 1105 em = alloc_extent_map(GFP_NOFS); 1106 em->start = cur_offset; 1107 em->orig_start = em->start; 1108 em->len = num_bytes; 1109 em->block_len = num_bytes; 1110 em->block_start = disk_bytenr; 1111 em->bdev = root->fs_info->fs_devices->latest_bdev; 1112 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1113 while (1) { 1114 spin_lock(&em_tree->lock); 1115 ret = add_extent_mapping(em_tree, em); 1116 spin_unlock(&em_tree->lock); 1117 if (ret != -EEXIST) { 1118 free_extent_map(em); 1119 break; 1120 } 1121 btrfs_drop_extent_cache(inode, em->start, 1122 em->start + em->len - 1, 0); 1123 } 1124 type = BTRFS_ORDERED_PREALLOC; 1125 } else { 1126 type = BTRFS_ORDERED_NOCOW; 1127 } 1128 1129 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1130 num_bytes, num_bytes, type); 1131 BUG_ON(ret); 1132 1133 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1134 cur_offset, cur_offset + num_bytes - 1, 1135 locked_page, 1, 1, 1, 0, 0, 0); 1136 cur_offset = extent_end; 1137 if (cur_offset > end) 1138 break; 1139 } 1140 btrfs_release_path(root, path); 1141 1142 if (cur_offset <= end && cow_start == (u64)-1) 1143 cow_start = cur_offset; 1144 if (cow_start != (u64)-1) { 1145 ret = cow_file_range(inode, locked_page, cow_start, end, 1146 page_started, nr_written, 1); 1147 BUG_ON(ret); 1148 } 1149 1150 ret = btrfs_end_transaction(trans, root); 1151 BUG_ON(ret); 1152 btrfs_free_path(path); 1153 return 0; 1154 } 1155 1156 /* 1157 * extent_io.c call back to do delayed allocation processing 1158 */ 1159 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1160 u64 start, u64 end, int *page_started, 1161 unsigned long *nr_written) 1162 { 1163 int ret; 1164 1165 if (btrfs_test_flag(inode, NODATACOW)) 1166 ret = run_delalloc_nocow(inode, locked_page, start, end, 1167 page_started, 1, nr_written); 1168 else if (btrfs_test_flag(inode, PREALLOC)) 1169 ret = run_delalloc_nocow(inode, locked_page, start, end, 1170 page_started, 0, nr_written); 1171 else 1172 ret = cow_file_range_async(inode, locked_page, start, end, 1173 page_started, nr_written); 1174 1175 return ret; 1176 } 1177 1178 /* 1179 * extent_io.c set_bit_hook, used to track delayed allocation 1180 * bytes in this file, and to maintain the list of inodes that 1181 * have pending delalloc work to be done. 1182 */ 1183 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1184 unsigned long old, unsigned long bits) 1185 { 1186 /* 1187 * set_bit and clear bit hooks normally require _irqsave/restore 1188 * but in this case, we are only testeing for the DELALLOC 1189 * bit, which is only set or cleared with irqs on 1190 */ 1191 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1192 struct btrfs_root *root = BTRFS_I(inode)->root; 1193 spin_lock(&root->fs_info->delalloc_lock); 1194 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1195 root->fs_info->delalloc_bytes += end - start + 1; 1196 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1197 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1198 &root->fs_info->delalloc_inodes); 1199 } 1200 spin_unlock(&root->fs_info->delalloc_lock); 1201 } 1202 return 0; 1203 } 1204 1205 /* 1206 * extent_io.c clear_bit_hook, see set_bit_hook for why 1207 */ 1208 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, 1209 unsigned long old, unsigned long bits) 1210 { 1211 /* 1212 * set_bit and clear bit hooks normally require _irqsave/restore 1213 * but in this case, we are only testeing for the DELALLOC 1214 * bit, which is only set or cleared with irqs on 1215 */ 1216 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1217 struct btrfs_root *root = BTRFS_I(inode)->root; 1218 1219 spin_lock(&root->fs_info->delalloc_lock); 1220 if (end - start + 1 > root->fs_info->delalloc_bytes) { 1221 printk(KERN_INFO "btrfs warning: delalloc account " 1222 "%llu %llu\n", 1223 (unsigned long long)end - start + 1, 1224 (unsigned long long) 1225 root->fs_info->delalloc_bytes); 1226 root->fs_info->delalloc_bytes = 0; 1227 BTRFS_I(inode)->delalloc_bytes = 0; 1228 } else { 1229 root->fs_info->delalloc_bytes -= end - start + 1; 1230 BTRFS_I(inode)->delalloc_bytes -= end - start + 1; 1231 } 1232 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1233 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1234 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1235 } 1236 spin_unlock(&root->fs_info->delalloc_lock); 1237 } 1238 return 0; 1239 } 1240 1241 /* 1242 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1243 * we don't create bios that span stripes or chunks 1244 */ 1245 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1246 size_t size, struct bio *bio, 1247 unsigned long bio_flags) 1248 { 1249 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1250 struct btrfs_mapping_tree *map_tree; 1251 u64 logical = (u64)bio->bi_sector << 9; 1252 u64 length = 0; 1253 u64 map_length; 1254 int ret; 1255 1256 if (bio_flags & EXTENT_BIO_COMPRESSED) 1257 return 0; 1258 1259 length = bio->bi_size; 1260 map_tree = &root->fs_info->mapping_tree; 1261 map_length = length; 1262 ret = btrfs_map_block(map_tree, READ, logical, 1263 &map_length, NULL, 0); 1264 1265 if (map_length < length + size) 1266 return 1; 1267 return 0; 1268 } 1269 1270 /* 1271 * in order to insert checksums into the metadata in large chunks, 1272 * we wait until bio submission time. All the pages in the bio are 1273 * checksummed and sums are attached onto the ordered extent record. 1274 * 1275 * At IO completion time the cums attached on the ordered extent record 1276 * are inserted into the btree 1277 */ 1278 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1279 struct bio *bio, int mirror_num, 1280 unsigned long bio_flags) 1281 { 1282 struct btrfs_root *root = BTRFS_I(inode)->root; 1283 int ret = 0; 1284 1285 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1286 BUG_ON(ret); 1287 return 0; 1288 } 1289 1290 /* 1291 * in order to insert checksums into the metadata in large chunks, 1292 * we wait until bio submission time. All the pages in the bio are 1293 * checksummed and sums are attached onto the ordered extent record. 1294 * 1295 * At IO completion time the cums attached on the ordered extent record 1296 * are inserted into the btree 1297 */ 1298 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1299 int mirror_num, unsigned long bio_flags) 1300 { 1301 struct btrfs_root *root = BTRFS_I(inode)->root; 1302 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1303 } 1304 1305 /* 1306 * extent_io.c submission hook. This does the right thing for csum calculation 1307 * on write, or reading the csums from the tree before a read 1308 */ 1309 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1310 int mirror_num, unsigned long bio_flags) 1311 { 1312 struct btrfs_root *root = BTRFS_I(inode)->root; 1313 int ret = 0; 1314 int skip_sum; 1315 1316 skip_sum = btrfs_test_flag(inode, NODATASUM); 1317 1318 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1319 BUG_ON(ret); 1320 1321 if (!(rw & (1 << BIO_RW))) { 1322 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1323 return btrfs_submit_compressed_read(inode, bio, 1324 mirror_num, bio_flags); 1325 } else if (!skip_sum) 1326 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1327 goto mapit; 1328 } else if (!skip_sum) { 1329 /* csum items have already been cloned */ 1330 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1331 goto mapit; 1332 /* we're doing a write, do the async checksumming */ 1333 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1334 inode, rw, bio, mirror_num, 1335 bio_flags, __btrfs_submit_bio_start, 1336 __btrfs_submit_bio_done); 1337 } 1338 1339 mapit: 1340 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1341 } 1342 1343 /* 1344 * given a list of ordered sums record them in the inode. This happens 1345 * at IO completion time based on sums calculated at bio submission time. 1346 */ 1347 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1348 struct inode *inode, u64 file_offset, 1349 struct list_head *list) 1350 { 1351 struct btrfs_ordered_sum *sum; 1352 1353 btrfs_set_trans_block_group(trans, inode); 1354 1355 list_for_each_entry(sum, list, list) { 1356 btrfs_csum_file_blocks(trans, 1357 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1358 } 1359 return 0; 1360 } 1361 1362 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1363 { 1364 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1365 WARN_ON(1); 1366 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1367 GFP_NOFS); 1368 } 1369 1370 /* see btrfs_writepage_start_hook for details on why this is required */ 1371 struct btrfs_writepage_fixup { 1372 struct page *page; 1373 struct btrfs_work work; 1374 }; 1375 1376 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1377 { 1378 struct btrfs_writepage_fixup *fixup; 1379 struct btrfs_ordered_extent *ordered; 1380 struct page *page; 1381 struct inode *inode; 1382 u64 page_start; 1383 u64 page_end; 1384 1385 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1386 page = fixup->page; 1387 again: 1388 lock_page(page); 1389 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1390 ClearPageChecked(page); 1391 goto out_page; 1392 } 1393 1394 inode = page->mapping->host; 1395 page_start = page_offset(page); 1396 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1397 1398 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1399 1400 /* already ordered? We're done */ 1401 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 1402 EXTENT_ORDERED, 0)) { 1403 goto out; 1404 } 1405 1406 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1407 if (ordered) { 1408 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1409 page_end, GFP_NOFS); 1410 unlock_page(page); 1411 btrfs_start_ordered_extent(inode, ordered, 1); 1412 goto again; 1413 } 1414 1415 btrfs_set_extent_delalloc(inode, page_start, page_end); 1416 ClearPageChecked(page); 1417 out: 1418 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1419 out_page: 1420 unlock_page(page); 1421 page_cache_release(page); 1422 } 1423 1424 /* 1425 * There are a few paths in the higher layers of the kernel that directly 1426 * set the page dirty bit without asking the filesystem if it is a 1427 * good idea. This causes problems because we want to make sure COW 1428 * properly happens and the data=ordered rules are followed. 1429 * 1430 * In our case any range that doesn't have the ORDERED bit set 1431 * hasn't been properly setup for IO. We kick off an async process 1432 * to fix it up. The async helper will wait for ordered extents, set 1433 * the delalloc bit and make it safe to write the page. 1434 */ 1435 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1436 { 1437 struct inode *inode = page->mapping->host; 1438 struct btrfs_writepage_fixup *fixup; 1439 struct btrfs_root *root = BTRFS_I(inode)->root; 1440 int ret; 1441 1442 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1443 EXTENT_ORDERED, 0); 1444 if (ret) 1445 return 0; 1446 1447 if (PageChecked(page)) 1448 return -EAGAIN; 1449 1450 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1451 if (!fixup) 1452 return -EAGAIN; 1453 1454 SetPageChecked(page); 1455 page_cache_get(page); 1456 fixup->work.func = btrfs_writepage_fixup_worker; 1457 fixup->page = page; 1458 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1459 return -EAGAIN; 1460 } 1461 1462 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1463 struct inode *inode, u64 file_pos, 1464 u64 disk_bytenr, u64 disk_num_bytes, 1465 u64 num_bytes, u64 ram_bytes, 1466 u8 compression, u8 encryption, 1467 u16 other_encoding, int extent_type) 1468 { 1469 struct btrfs_root *root = BTRFS_I(inode)->root; 1470 struct btrfs_file_extent_item *fi; 1471 struct btrfs_path *path; 1472 struct extent_buffer *leaf; 1473 struct btrfs_key ins; 1474 u64 hint; 1475 int ret; 1476 1477 path = btrfs_alloc_path(); 1478 BUG_ON(!path); 1479 1480 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1481 file_pos + num_bytes, file_pos, &hint); 1482 BUG_ON(ret); 1483 1484 ins.objectid = inode->i_ino; 1485 ins.offset = file_pos; 1486 ins.type = BTRFS_EXTENT_DATA_KEY; 1487 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1488 BUG_ON(ret); 1489 leaf = path->nodes[0]; 1490 fi = btrfs_item_ptr(leaf, path->slots[0], 1491 struct btrfs_file_extent_item); 1492 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1493 btrfs_set_file_extent_type(leaf, fi, extent_type); 1494 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1495 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1496 btrfs_set_file_extent_offset(leaf, fi, 0); 1497 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1498 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1499 btrfs_set_file_extent_compression(leaf, fi, compression); 1500 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1501 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1502 btrfs_mark_buffer_dirty(leaf); 1503 1504 inode_add_bytes(inode, num_bytes); 1505 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); 1506 1507 ins.objectid = disk_bytenr; 1508 ins.offset = disk_num_bytes; 1509 ins.type = BTRFS_EXTENT_ITEM_KEY; 1510 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start, 1511 root->root_key.objectid, 1512 trans->transid, inode->i_ino, &ins); 1513 BUG_ON(ret); 1514 1515 btrfs_free_path(path); 1516 return 0; 1517 } 1518 1519 /* as ordered data IO finishes, this gets called so we can finish 1520 * an ordered extent if the range of bytes in the file it covers are 1521 * fully written. 1522 */ 1523 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1524 { 1525 struct btrfs_root *root = BTRFS_I(inode)->root; 1526 struct btrfs_trans_handle *trans; 1527 struct btrfs_ordered_extent *ordered_extent; 1528 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1529 int compressed = 0; 1530 int ret; 1531 1532 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1533 if (!ret) 1534 return 0; 1535 1536 trans = btrfs_join_transaction(root, 1); 1537 1538 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1539 BUG_ON(!ordered_extent); 1540 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) 1541 goto nocow; 1542 1543 lock_extent(io_tree, ordered_extent->file_offset, 1544 ordered_extent->file_offset + ordered_extent->len - 1, 1545 GFP_NOFS); 1546 1547 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1548 compressed = 1; 1549 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1550 BUG_ON(compressed); 1551 ret = btrfs_mark_extent_written(trans, root, inode, 1552 ordered_extent->file_offset, 1553 ordered_extent->file_offset + 1554 ordered_extent->len); 1555 BUG_ON(ret); 1556 } else { 1557 ret = insert_reserved_file_extent(trans, inode, 1558 ordered_extent->file_offset, 1559 ordered_extent->start, 1560 ordered_extent->disk_len, 1561 ordered_extent->len, 1562 ordered_extent->len, 1563 compressed, 0, 0, 1564 BTRFS_FILE_EXTENT_REG); 1565 BUG_ON(ret); 1566 } 1567 unlock_extent(io_tree, ordered_extent->file_offset, 1568 ordered_extent->file_offset + ordered_extent->len - 1, 1569 GFP_NOFS); 1570 nocow: 1571 add_pending_csums(trans, inode, ordered_extent->file_offset, 1572 &ordered_extent->list); 1573 1574 mutex_lock(&BTRFS_I(inode)->extent_mutex); 1575 btrfs_ordered_update_i_size(inode, ordered_extent); 1576 btrfs_update_inode(trans, root, inode); 1577 btrfs_remove_ordered_extent(inode, ordered_extent); 1578 mutex_unlock(&BTRFS_I(inode)->extent_mutex); 1579 1580 /* once for us */ 1581 btrfs_put_ordered_extent(ordered_extent); 1582 /* once for the tree */ 1583 btrfs_put_ordered_extent(ordered_extent); 1584 1585 btrfs_end_transaction(trans, root); 1586 return 0; 1587 } 1588 1589 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1590 struct extent_state *state, int uptodate) 1591 { 1592 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1593 } 1594 1595 /* 1596 * When IO fails, either with EIO or csum verification fails, we 1597 * try other mirrors that might have a good copy of the data. This 1598 * io_failure_record is used to record state as we go through all the 1599 * mirrors. If another mirror has good data, the page is set up to date 1600 * and things continue. If a good mirror can't be found, the original 1601 * bio end_io callback is called to indicate things have failed. 1602 */ 1603 struct io_failure_record { 1604 struct page *page; 1605 u64 start; 1606 u64 len; 1607 u64 logical; 1608 unsigned long bio_flags; 1609 int last_mirror; 1610 }; 1611 1612 static int btrfs_io_failed_hook(struct bio *failed_bio, 1613 struct page *page, u64 start, u64 end, 1614 struct extent_state *state) 1615 { 1616 struct io_failure_record *failrec = NULL; 1617 u64 private; 1618 struct extent_map *em; 1619 struct inode *inode = page->mapping->host; 1620 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1621 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1622 struct bio *bio; 1623 int num_copies; 1624 int ret; 1625 int rw; 1626 u64 logical; 1627 1628 ret = get_state_private(failure_tree, start, &private); 1629 if (ret) { 1630 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1631 if (!failrec) 1632 return -ENOMEM; 1633 failrec->start = start; 1634 failrec->len = end - start + 1; 1635 failrec->last_mirror = 0; 1636 failrec->bio_flags = 0; 1637 1638 spin_lock(&em_tree->lock); 1639 em = lookup_extent_mapping(em_tree, start, failrec->len); 1640 if (em->start > start || em->start + em->len < start) { 1641 free_extent_map(em); 1642 em = NULL; 1643 } 1644 spin_unlock(&em_tree->lock); 1645 1646 if (!em || IS_ERR(em)) { 1647 kfree(failrec); 1648 return -EIO; 1649 } 1650 logical = start - em->start; 1651 logical = em->block_start + logical; 1652 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1653 logical = em->block_start; 1654 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1655 } 1656 failrec->logical = logical; 1657 free_extent_map(em); 1658 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1659 EXTENT_DIRTY, GFP_NOFS); 1660 set_state_private(failure_tree, start, 1661 (u64)(unsigned long)failrec); 1662 } else { 1663 failrec = (struct io_failure_record *)(unsigned long)private; 1664 } 1665 num_copies = btrfs_num_copies( 1666 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1667 failrec->logical, failrec->len); 1668 failrec->last_mirror++; 1669 if (!state) { 1670 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1671 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1672 failrec->start, 1673 EXTENT_LOCKED); 1674 if (state && state->start != failrec->start) 1675 state = NULL; 1676 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1677 } 1678 if (!state || failrec->last_mirror > num_copies) { 1679 set_state_private(failure_tree, failrec->start, 0); 1680 clear_extent_bits(failure_tree, failrec->start, 1681 failrec->start + failrec->len - 1, 1682 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1683 kfree(failrec); 1684 return -EIO; 1685 } 1686 bio = bio_alloc(GFP_NOFS, 1); 1687 bio->bi_private = state; 1688 bio->bi_end_io = failed_bio->bi_end_io; 1689 bio->bi_sector = failrec->logical >> 9; 1690 bio->bi_bdev = failed_bio->bi_bdev; 1691 bio->bi_size = 0; 1692 1693 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1694 if (failed_bio->bi_rw & (1 << BIO_RW)) 1695 rw = WRITE; 1696 else 1697 rw = READ; 1698 1699 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1700 failrec->last_mirror, 1701 failrec->bio_flags); 1702 return 0; 1703 } 1704 1705 /* 1706 * each time an IO finishes, we do a fast check in the IO failure tree 1707 * to see if we need to process or clean up an io_failure_record 1708 */ 1709 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1710 { 1711 u64 private; 1712 u64 private_failure; 1713 struct io_failure_record *failure; 1714 int ret; 1715 1716 private = 0; 1717 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1718 (u64)-1, 1, EXTENT_DIRTY)) { 1719 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1720 start, &private_failure); 1721 if (ret == 0) { 1722 failure = (struct io_failure_record *)(unsigned long) 1723 private_failure; 1724 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1725 failure->start, 0); 1726 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1727 failure->start, 1728 failure->start + failure->len - 1, 1729 EXTENT_DIRTY | EXTENT_LOCKED, 1730 GFP_NOFS); 1731 kfree(failure); 1732 } 1733 } 1734 return 0; 1735 } 1736 1737 /* 1738 * when reads are done, we need to check csums to verify the data is correct 1739 * if there's a match, we allow the bio to finish. If not, we go through 1740 * the io_failure_record routines to find good copies 1741 */ 1742 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1743 struct extent_state *state) 1744 { 1745 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1746 struct inode *inode = page->mapping->host; 1747 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1748 char *kaddr; 1749 u64 private = ~(u32)0; 1750 int ret; 1751 struct btrfs_root *root = BTRFS_I(inode)->root; 1752 u32 csum = ~(u32)0; 1753 1754 if (PageChecked(page)) { 1755 ClearPageChecked(page); 1756 goto good; 1757 } 1758 if (btrfs_test_flag(inode, NODATASUM)) 1759 return 0; 1760 1761 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1762 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { 1763 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1764 GFP_NOFS); 1765 return 0; 1766 } 1767 1768 if (state && state->start == start) { 1769 private = state->private; 1770 ret = 0; 1771 } else { 1772 ret = get_state_private(io_tree, start, &private); 1773 } 1774 kaddr = kmap_atomic(page, KM_USER0); 1775 if (ret) 1776 goto zeroit; 1777 1778 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1779 btrfs_csum_final(csum, (char *)&csum); 1780 if (csum != private) 1781 goto zeroit; 1782 1783 kunmap_atomic(kaddr, KM_USER0); 1784 good: 1785 /* if the io failure tree for this inode is non-empty, 1786 * check to see if we've recovered from a failed IO 1787 */ 1788 btrfs_clean_io_failures(inode, start); 1789 return 0; 1790 1791 zeroit: 1792 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1793 "private %llu\n", page->mapping->host->i_ino, 1794 (unsigned long long)start, csum, 1795 (unsigned long long)private); 1796 memset(kaddr + offset, 1, end - start + 1); 1797 flush_dcache_page(page); 1798 kunmap_atomic(kaddr, KM_USER0); 1799 if (private == 0) 1800 return 0; 1801 return -EIO; 1802 } 1803 1804 /* 1805 * This creates an orphan entry for the given inode in case something goes 1806 * wrong in the middle of an unlink/truncate. 1807 */ 1808 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1809 { 1810 struct btrfs_root *root = BTRFS_I(inode)->root; 1811 int ret = 0; 1812 1813 spin_lock(&root->list_lock); 1814 1815 /* already on the orphan list, we're good */ 1816 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 1817 spin_unlock(&root->list_lock); 1818 return 0; 1819 } 1820 1821 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1822 1823 spin_unlock(&root->list_lock); 1824 1825 /* 1826 * insert an orphan item to track this unlinked/truncated file 1827 */ 1828 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 1829 1830 return ret; 1831 } 1832 1833 /* 1834 * We have done the truncate/delete so we can go ahead and remove the orphan 1835 * item for this particular inode. 1836 */ 1837 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 1838 { 1839 struct btrfs_root *root = BTRFS_I(inode)->root; 1840 int ret = 0; 1841 1842 spin_lock(&root->list_lock); 1843 1844 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 1845 spin_unlock(&root->list_lock); 1846 return 0; 1847 } 1848 1849 list_del_init(&BTRFS_I(inode)->i_orphan); 1850 if (!trans) { 1851 spin_unlock(&root->list_lock); 1852 return 0; 1853 } 1854 1855 spin_unlock(&root->list_lock); 1856 1857 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 1858 1859 return ret; 1860 } 1861 1862 /* 1863 * this cleans up any orphans that may be left on the list from the last use 1864 * of this root. 1865 */ 1866 void btrfs_orphan_cleanup(struct btrfs_root *root) 1867 { 1868 struct btrfs_path *path; 1869 struct extent_buffer *leaf; 1870 struct btrfs_item *item; 1871 struct btrfs_key key, found_key; 1872 struct btrfs_trans_handle *trans; 1873 struct inode *inode; 1874 int ret = 0, nr_unlink = 0, nr_truncate = 0; 1875 1876 path = btrfs_alloc_path(); 1877 if (!path) 1878 return; 1879 path->reada = -1; 1880 1881 key.objectid = BTRFS_ORPHAN_OBJECTID; 1882 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1883 key.offset = (u64)-1; 1884 1885 1886 while (1) { 1887 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1888 if (ret < 0) { 1889 printk(KERN_ERR "Error searching slot for orphan: %d" 1890 "\n", ret); 1891 break; 1892 } 1893 1894 /* 1895 * if ret == 0 means we found what we were searching for, which 1896 * is weird, but possible, so only screw with path if we didnt 1897 * find the key and see if we have stuff that matches 1898 */ 1899 if (ret > 0) { 1900 if (path->slots[0] == 0) 1901 break; 1902 path->slots[0]--; 1903 } 1904 1905 /* pull out the item */ 1906 leaf = path->nodes[0]; 1907 item = btrfs_item_nr(leaf, path->slots[0]); 1908 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1909 1910 /* make sure the item matches what we want */ 1911 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 1912 break; 1913 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 1914 break; 1915 1916 /* release the path since we're done with it */ 1917 btrfs_release_path(root, path); 1918 1919 /* 1920 * this is where we are basically btrfs_lookup, without the 1921 * crossing root thing. we store the inode number in the 1922 * offset of the orphan item. 1923 */ 1924 inode = btrfs_iget_locked(root->fs_info->sb, 1925 found_key.offset, root); 1926 if (!inode) 1927 break; 1928 1929 if (inode->i_state & I_NEW) { 1930 BTRFS_I(inode)->root = root; 1931 1932 /* have to set the location manually */ 1933 BTRFS_I(inode)->location.objectid = inode->i_ino; 1934 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 1935 BTRFS_I(inode)->location.offset = 0; 1936 1937 btrfs_read_locked_inode(inode); 1938 unlock_new_inode(inode); 1939 } 1940 1941 /* 1942 * add this inode to the orphan list so btrfs_orphan_del does 1943 * the proper thing when we hit it 1944 */ 1945 spin_lock(&root->list_lock); 1946 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1947 spin_unlock(&root->list_lock); 1948 1949 /* 1950 * if this is a bad inode, means we actually succeeded in 1951 * removing the inode, but not the orphan record, which means 1952 * we need to manually delete the orphan since iput will just 1953 * do a destroy_inode 1954 */ 1955 if (is_bad_inode(inode)) { 1956 trans = btrfs_start_transaction(root, 1); 1957 btrfs_orphan_del(trans, inode); 1958 btrfs_end_transaction(trans, root); 1959 iput(inode); 1960 continue; 1961 } 1962 1963 /* if we have links, this was a truncate, lets do that */ 1964 if (inode->i_nlink) { 1965 nr_truncate++; 1966 btrfs_truncate(inode); 1967 } else { 1968 nr_unlink++; 1969 } 1970 1971 /* this will do delete_inode and everything for us */ 1972 iput(inode); 1973 } 1974 1975 if (nr_unlink) 1976 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 1977 if (nr_truncate) 1978 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 1979 1980 btrfs_free_path(path); 1981 } 1982 1983 /* 1984 * read an inode from the btree into the in-memory inode 1985 */ 1986 void btrfs_read_locked_inode(struct inode *inode) 1987 { 1988 struct btrfs_path *path; 1989 struct extent_buffer *leaf; 1990 struct btrfs_inode_item *inode_item; 1991 struct btrfs_timespec *tspec; 1992 struct btrfs_root *root = BTRFS_I(inode)->root; 1993 struct btrfs_key location; 1994 u64 alloc_group_block; 1995 u32 rdev; 1996 int ret; 1997 1998 path = btrfs_alloc_path(); 1999 BUG_ON(!path); 2000 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2001 2002 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2003 if (ret) 2004 goto make_bad; 2005 2006 leaf = path->nodes[0]; 2007 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2008 struct btrfs_inode_item); 2009 2010 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2011 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2012 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2013 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2014 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2015 2016 tspec = btrfs_inode_atime(inode_item); 2017 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2018 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2019 2020 tspec = btrfs_inode_mtime(inode_item); 2021 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2022 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2023 2024 tspec = btrfs_inode_ctime(inode_item); 2025 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2026 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2027 2028 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2029 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2030 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2031 inode->i_generation = BTRFS_I(inode)->generation; 2032 inode->i_rdev = 0; 2033 rdev = btrfs_inode_rdev(leaf, inode_item); 2034 2035 BTRFS_I(inode)->index_cnt = (u64)-1; 2036 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2037 2038 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2039 2040 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2041 alloc_group_block, 0); 2042 btrfs_free_path(path); 2043 inode_item = NULL; 2044 2045 switch (inode->i_mode & S_IFMT) { 2046 case S_IFREG: 2047 inode->i_mapping->a_ops = &btrfs_aops; 2048 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2049 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2050 inode->i_fop = &btrfs_file_operations; 2051 inode->i_op = &btrfs_file_inode_operations; 2052 break; 2053 case S_IFDIR: 2054 inode->i_fop = &btrfs_dir_file_operations; 2055 if (root == root->fs_info->tree_root) 2056 inode->i_op = &btrfs_dir_ro_inode_operations; 2057 else 2058 inode->i_op = &btrfs_dir_inode_operations; 2059 break; 2060 case S_IFLNK: 2061 inode->i_op = &btrfs_symlink_inode_operations; 2062 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2063 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2064 break; 2065 default: 2066 inode->i_op = &btrfs_special_inode_operations; 2067 init_special_inode(inode, inode->i_mode, rdev); 2068 break; 2069 } 2070 return; 2071 2072 make_bad: 2073 btrfs_free_path(path); 2074 make_bad_inode(inode); 2075 } 2076 2077 /* 2078 * given a leaf and an inode, copy the inode fields into the leaf 2079 */ 2080 static void fill_inode_item(struct btrfs_trans_handle *trans, 2081 struct extent_buffer *leaf, 2082 struct btrfs_inode_item *item, 2083 struct inode *inode) 2084 { 2085 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2086 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2087 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2088 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2089 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2090 2091 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2092 inode->i_atime.tv_sec); 2093 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2094 inode->i_atime.tv_nsec); 2095 2096 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2097 inode->i_mtime.tv_sec); 2098 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2099 inode->i_mtime.tv_nsec); 2100 2101 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2102 inode->i_ctime.tv_sec); 2103 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2104 inode->i_ctime.tv_nsec); 2105 2106 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2107 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2108 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2109 btrfs_set_inode_transid(leaf, item, trans->transid); 2110 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2111 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2112 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2113 } 2114 2115 /* 2116 * copy everything in the in-memory inode into the btree. 2117 */ 2118 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2119 struct btrfs_root *root, struct inode *inode) 2120 { 2121 struct btrfs_inode_item *inode_item; 2122 struct btrfs_path *path; 2123 struct extent_buffer *leaf; 2124 int ret; 2125 2126 path = btrfs_alloc_path(); 2127 BUG_ON(!path); 2128 ret = btrfs_lookup_inode(trans, root, path, 2129 &BTRFS_I(inode)->location, 1); 2130 if (ret) { 2131 if (ret > 0) 2132 ret = -ENOENT; 2133 goto failed; 2134 } 2135 2136 btrfs_unlock_up_safe(path, 1); 2137 leaf = path->nodes[0]; 2138 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2139 struct btrfs_inode_item); 2140 2141 fill_inode_item(trans, leaf, inode_item, inode); 2142 btrfs_mark_buffer_dirty(leaf); 2143 btrfs_set_inode_last_trans(trans, inode); 2144 ret = 0; 2145 failed: 2146 btrfs_free_path(path); 2147 return ret; 2148 } 2149 2150 2151 /* 2152 * unlink helper that gets used here in inode.c and in the tree logging 2153 * recovery code. It remove a link in a directory with a given name, and 2154 * also drops the back refs in the inode to the directory 2155 */ 2156 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2157 struct btrfs_root *root, 2158 struct inode *dir, struct inode *inode, 2159 const char *name, int name_len) 2160 { 2161 struct btrfs_path *path; 2162 int ret = 0; 2163 struct extent_buffer *leaf; 2164 struct btrfs_dir_item *di; 2165 struct btrfs_key key; 2166 u64 index; 2167 2168 path = btrfs_alloc_path(); 2169 if (!path) { 2170 ret = -ENOMEM; 2171 goto err; 2172 } 2173 2174 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2175 name, name_len, -1); 2176 if (IS_ERR(di)) { 2177 ret = PTR_ERR(di); 2178 goto err; 2179 } 2180 if (!di) { 2181 ret = -ENOENT; 2182 goto err; 2183 } 2184 leaf = path->nodes[0]; 2185 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2186 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2187 if (ret) 2188 goto err; 2189 btrfs_release_path(root, path); 2190 2191 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2192 inode->i_ino, 2193 dir->i_ino, &index); 2194 if (ret) { 2195 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2196 "inode %lu parent %lu\n", name_len, name, 2197 inode->i_ino, dir->i_ino); 2198 goto err; 2199 } 2200 2201 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2202 index, name, name_len, -1); 2203 if (IS_ERR(di)) { 2204 ret = PTR_ERR(di); 2205 goto err; 2206 } 2207 if (!di) { 2208 ret = -ENOENT; 2209 goto err; 2210 } 2211 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2212 btrfs_release_path(root, path); 2213 2214 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2215 inode, dir->i_ino); 2216 BUG_ON(ret != 0 && ret != -ENOENT); 2217 if (ret != -ENOENT) 2218 BTRFS_I(dir)->log_dirty_trans = trans->transid; 2219 2220 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2221 dir, index); 2222 BUG_ON(ret); 2223 err: 2224 btrfs_free_path(path); 2225 if (ret) 2226 goto out; 2227 2228 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2229 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2230 btrfs_update_inode(trans, root, dir); 2231 btrfs_drop_nlink(inode); 2232 ret = btrfs_update_inode(trans, root, inode); 2233 dir->i_sb->s_dirt = 1; 2234 out: 2235 return ret; 2236 } 2237 2238 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2239 { 2240 struct btrfs_root *root; 2241 struct btrfs_trans_handle *trans; 2242 struct inode *inode = dentry->d_inode; 2243 int ret; 2244 unsigned long nr = 0; 2245 2246 root = BTRFS_I(dir)->root; 2247 2248 ret = btrfs_check_free_space(root, 1, 1); 2249 if (ret) 2250 goto fail; 2251 2252 trans = btrfs_start_transaction(root, 1); 2253 2254 btrfs_set_trans_block_group(trans, dir); 2255 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2256 dentry->d_name.name, dentry->d_name.len); 2257 2258 if (inode->i_nlink == 0) 2259 ret = btrfs_orphan_add(trans, inode); 2260 2261 nr = trans->blocks_used; 2262 2263 btrfs_end_transaction_throttle(trans, root); 2264 fail: 2265 btrfs_btree_balance_dirty(root, nr); 2266 return ret; 2267 } 2268 2269 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2270 { 2271 struct inode *inode = dentry->d_inode; 2272 int err = 0; 2273 int ret; 2274 struct btrfs_root *root = BTRFS_I(dir)->root; 2275 struct btrfs_trans_handle *trans; 2276 unsigned long nr = 0; 2277 2278 /* 2279 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir 2280 * the root of a subvolume or snapshot 2281 */ 2282 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2283 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { 2284 return -ENOTEMPTY; 2285 } 2286 2287 ret = btrfs_check_free_space(root, 1, 1); 2288 if (ret) 2289 goto fail; 2290 2291 trans = btrfs_start_transaction(root, 1); 2292 btrfs_set_trans_block_group(trans, dir); 2293 2294 err = btrfs_orphan_add(trans, inode); 2295 if (err) 2296 goto fail_trans; 2297 2298 /* now the directory is empty */ 2299 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2300 dentry->d_name.name, dentry->d_name.len); 2301 if (!err) 2302 btrfs_i_size_write(inode, 0); 2303 2304 fail_trans: 2305 nr = trans->blocks_used; 2306 ret = btrfs_end_transaction_throttle(trans, root); 2307 fail: 2308 btrfs_btree_balance_dirty(root, nr); 2309 2310 if (ret && !err) 2311 err = ret; 2312 return err; 2313 } 2314 2315 #if 0 2316 /* 2317 * when truncating bytes in a file, it is possible to avoid reading 2318 * the leaves that contain only checksum items. This can be the 2319 * majority of the IO required to delete a large file, but it must 2320 * be done carefully. 2321 * 2322 * The keys in the level just above the leaves are checked to make sure 2323 * the lowest key in a given leaf is a csum key, and starts at an offset 2324 * after the new size. 2325 * 2326 * Then the key for the next leaf is checked to make sure it also has 2327 * a checksum item for the same file. If it does, we know our target leaf 2328 * contains only checksum items, and it can be safely freed without reading 2329 * it. 2330 * 2331 * This is just an optimization targeted at large files. It may do 2332 * nothing. It will return 0 unless things went badly. 2333 */ 2334 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2335 struct btrfs_root *root, 2336 struct btrfs_path *path, 2337 struct inode *inode, u64 new_size) 2338 { 2339 struct btrfs_key key; 2340 int ret; 2341 int nritems; 2342 struct btrfs_key found_key; 2343 struct btrfs_key other_key; 2344 struct btrfs_leaf_ref *ref; 2345 u64 leaf_gen; 2346 u64 leaf_start; 2347 2348 path->lowest_level = 1; 2349 key.objectid = inode->i_ino; 2350 key.type = BTRFS_CSUM_ITEM_KEY; 2351 key.offset = new_size; 2352 again: 2353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2354 if (ret < 0) 2355 goto out; 2356 2357 if (path->nodes[1] == NULL) { 2358 ret = 0; 2359 goto out; 2360 } 2361 ret = 0; 2362 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2363 nritems = btrfs_header_nritems(path->nodes[1]); 2364 2365 if (!nritems) 2366 goto out; 2367 2368 if (path->slots[1] >= nritems) 2369 goto next_node; 2370 2371 /* did we find a key greater than anything we want to delete? */ 2372 if (found_key.objectid > inode->i_ino || 2373 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2374 goto out; 2375 2376 /* we check the next key in the node to make sure the leave contains 2377 * only checksum items. This comparison doesn't work if our 2378 * leaf is the last one in the node 2379 */ 2380 if (path->slots[1] + 1 >= nritems) { 2381 next_node: 2382 /* search forward from the last key in the node, this 2383 * will bring us into the next node in the tree 2384 */ 2385 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2386 2387 /* unlikely, but we inc below, so check to be safe */ 2388 if (found_key.offset == (u64)-1) 2389 goto out; 2390 2391 /* search_forward needs a path with locks held, do the 2392 * search again for the original key. It is possible 2393 * this will race with a balance and return a path that 2394 * we could modify, but this drop is just an optimization 2395 * and is allowed to miss some leaves. 2396 */ 2397 btrfs_release_path(root, path); 2398 found_key.offset++; 2399 2400 /* setup a max key for search_forward */ 2401 other_key.offset = (u64)-1; 2402 other_key.type = key.type; 2403 other_key.objectid = key.objectid; 2404 2405 path->keep_locks = 1; 2406 ret = btrfs_search_forward(root, &found_key, &other_key, 2407 path, 0, 0); 2408 path->keep_locks = 0; 2409 if (ret || found_key.objectid != key.objectid || 2410 found_key.type != key.type) { 2411 ret = 0; 2412 goto out; 2413 } 2414 2415 key.offset = found_key.offset; 2416 btrfs_release_path(root, path); 2417 cond_resched(); 2418 goto again; 2419 } 2420 2421 /* we know there's one more slot after us in the tree, 2422 * read that key so we can verify it is also a checksum item 2423 */ 2424 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2425 2426 if (found_key.objectid < inode->i_ino) 2427 goto next_key; 2428 2429 if (found_key.type != key.type || found_key.offset < new_size) 2430 goto next_key; 2431 2432 /* 2433 * if the key for the next leaf isn't a csum key from this objectid, 2434 * we can't be sure there aren't good items inside this leaf. 2435 * Bail out 2436 */ 2437 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2438 goto out; 2439 2440 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2441 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2442 /* 2443 * it is safe to delete this leaf, it contains only 2444 * csum items from this inode at an offset >= new_size 2445 */ 2446 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2447 BUG_ON(ret); 2448 2449 if (root->ref_cows && leaf_gen < trans->transid) { 2450 ref = btrfs_alloc_leaf_ref(root, 0); 2451 if (ref) { 2452 ref->root_gen = root->root_key.offset; 2453 ref->bytenr = leaf_start; 2454 ref->owner = 0; 2455 ref->generation = leaf_gen; 2456 ref->nritems = 0; 2457 2458 btrfs_sort_leaf_ref(ref); 2459 2460 ret = btrfs_add_leaf_ref(root, ref, 0); 2461 WARN_ON(ret); 2462 btrfs_free_leaf_ref(root, ref); 2463 } else { 2464 WARN_ON(1); 2465 } 2466 } 2467 next_key: 2468 btrfs_release_path(root, path); 2469 2470 if (other_key.objectid == inode->i_ino && 2471 other_key.type == key.type && other_key.offset > key.offset) { 2472 key.offset = other_key.offset; 2473 cond_resched(); 2474 goto again; 2475 } 2476 ret = 0; 2477 out: 2478 /* fixup any changes we've made to the path */ 2479 path->lowest_level = 0; 2480 path->keep_locks = 0; 2481 btrfs_release_path(root, path); 2482 return ret; 2483 } 2484 2485 #endif 2486 2487 /* 2488 * this can truncate away extent items, csum items and directory items. 2489 * It starts at a high offset and removes keys until it can't find 2490 * any higher than new_size 2491 * 2492 * csum items that cross the new i_size are truncated to the new size 2493 * as well. 2494 * 2495 * min_type is the minimum key type to truncate down to. If set to 0, this 2496 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2497 */ 2498 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2499 struct btrfs_root *root, 2500 struct inode *inode, 2501 u64 new_size, u32 min_type) 2502 { 2503 int ret; 2504 struct btrfs_path *path; 2505 struct btrfs_key key; 2506 struct btrfs_key found_key; 2507 u32 found_type = (u8)-1; 2508 struct extent_buffer *leaf; 2509 struct btrfs_file_extent_item *fi; 2510 u64 extent_start = 0; 2511 u64 extent_num_bytes = 0; 2512 u64 item_end = 0; 2513 u64 root_gen = 0; 2514 u64 root_owner = 0; 2515 int found_extent; 2516 int del_item; 2517 int pending_del_nr = 0; 2518 int pending_del_slot = 0; 2519 int extent_type = -1; 2520 int encoding; 2521 u64 mask = root->sectorsize - 1; 2522 2523 if (root->ref_cows) 2524 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2525 path = btrfs_alloc_path(); 2526 path->reada = -1; 2527 BUG_ON(!path); 2528 2529 /* FIXME, add redo link to tree so we don't leak on crash */ 2530 key.objectid = inode->i_ino; 2531 key.offset = (u64)-1; 2532 key.type = (u8)-1; 2533 2534 btrfs_init_path(path); 2535 2536 search_again: 2537 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2538 if (ret < 0) 2539 goto error; 2540 2541 if (ret > 0) { 2542 /* there are no items in the tree for us to truncate, we're 2543 * done 2544 */ 2545 if (path->slots[0] == 0) { 2546 ret = 0; 2547 goto error; 2548 } 2549 path->slots[0]--; 2550 } 2551 2552 while (1) { 2553 fi = NULL; 2554 leaf = path->nodes[0]; 2555 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2556 found_type = btrfs_key_type(&found_key); 2557 encoding = 0; 2558 2559 if (found_key.objectid != inode->i_ino) 2560 break; 2561 2562 if (found_type < min_type) 2563 break; 2564 2565 item_end = found_key.offset; 2566 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2567 fi = btrfs_item_ptr(leaf, path->slots[0], 2568 struct btrfs_file_extent_item); 2569 extent_type = btrfs_file_extent_type(leaf, fi); 2570 encoding = btrfs_file_extent_compression(leaf, fi); 2571 encoding |= btrfs_file_extent_encryption(leaf, fi); 2572 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2573 2574 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2575 item_end += 2576 btrfs_file_extent_num_bytes(leaf, fi); 2577 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2578 item_end += btrfs_file_extent_inline_len(leaf, 2579 fi); 2580 } 2581 item_end--; 2582 } 2583 if (item_end < new_size) { 2584 if (found_type == BTRFS_DIR_ITEM_KEY) 2585 found_type = BTRFS_INODE_ITEM_KEY; 2586 else if (found_type == BTRFS_EXTENT_ITEM_KEY) 2587 found_type = BTRFS_EXTENT_DATA_KEY; 2588 else if (found_type == BTRFS_EXTENT_DATA_KEY) 2589 found_type = BTRFS_XATTR_ITEM_KEY; 2590 else if (found_type == BTRFS_XATTR_ITEM_KEY) 2591 found_type = BTRFS_INODE_REF_KEY; 2592 else if (found_type) 2593 found_type--; 2594 else 2595 break; 2596 btrfs_set_key_type(&key, found_type); 2597 goto next; 2598 } 2599 if (found_key.offset >= new_size) 2600 del_item = 1; 2601 else 2602 del_item = 0; 2603 found_extent = 0; 2604 2605 /* FIXME, shrink the extent if the ref count is only 1 */ 2606 if (found_type != BTRFS_EXTENT_DATA_KEY) 2607 goto delete; 2608 2609 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2610 u64 num_dec; 2611 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 2612 if (!del_item && !encoding) { 2613 u64 orig_num_bytes = 2614 btrfs_file_extent_num_bytes(leaf, fi); 2615 extent_num_bytes = new_size - 2616 found_key.offset + root->sectorsize - 1; 2617 extent_num_bytes = extent_num_bytes & 2618 ~((u64)root->sectorsize - 1); 2619 btrfs_set_file_extent_num_bytes(leaf, fi, 2620 extent_num_bytes); 2621 num_dec = (orig_num_bytes - 2622 extent_num_bytes); 2623 if (root->ref_cows && extent_start != 0) 2624 inode_sub_bytes(inode, num_dec); 2625 btrfs_mark_buffer_dirty(leaf); 2626 } else { 2627 extent_num_bytes = 2628 btrfs_file_extent_disk_num_bytes(leaf, 2629 fi); 2630 /* FIXME blocksize != 4096 */ 2631 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 2632 if (extent_start != 0) { 2633 found_extent = 1; 2634 if (root->ref_cows) 2635 inode_sub_bytes(inode, num_dec); 2636 } 2637 root_gen = btrfs_header_generation(leaf); 2638 root_owner = btrfs_header_owner(leaf); 2639 } 2640 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2641 /* 2642 * we can't truncate inline items that have had 2643 * special encodings 2644 */ 2645 if (!del_item && 2646 btrfs_file_extent_compression(leaf, fi) == 0 && 2647 btrfs_file_extent_encryption(leaf, fi) == 0 && 2648 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 2649 u32 size = new_size - found_key.offset; 2650 2651 if (root->ref_cows) { 2652 inode_sub_bytes(inode, item_end + 1 - 2653 new_size); 2654 } 2655 size = 2656 btrfs_file_extent_calc_inline_size(size); 2657 ret = btrfs_truncate_item(trans, root, path, 2658 size, 1); 2659 BUG_ON(ret); 2660 } else if (root->ref_cows) { 2661 inode_sub_bytes(inode, item_end + 1 - 2662 found_key.offset); 2663 } 2664 } 2665 delete: 2666 if (del_item) { 2667 if (!pending_del_nr) { 2668 /* no pending yet, add ourselves */ 2669 pending_del_slot = path->slots[0]; 2670 pending_del_nr = 1; 2671 } else if (pending_del_nr && 2672 path->slots[0] + 1 == pending_del_slot) { 2673 /* hop on the pending chunk */ 2674 pending_del_nr++; 2675 pending_del_slot = path->slots[0]; 2676 } else { 2677 BUG(); 2678 } 2679 } else { 2680 break; 2681 } 2682 if (found_extent) { 2683 ret = btrfs_free_extent(trans, root, extent_start, 2684 extent_num_bytes, 2685 leaf->start, root_owner, 2686 root_gen, inode->i_ino, 0); 2687 BUG_ON(ret); 2688 } 2689 next: 2690 if (path->slots[0] == 0) { 2691 if (pending_del_nr) 2692 goto del_pending; 2693 btrfs_release_path(root, path); 2694 if (found_type == BTRFS_INODE_ITEM_KEY) 2695 break; 2696 goto search_again; 2697 } 2698 2699 path->slots[0]--; 2700 if (pending_del_nr && 2701 path->slots[0] + 1 != pending_del_slot) { 2702 struct btrfs_key debug; 2703 del_pending: 2704 btrfs_item_key_to_cpu(path->nodes[0], &debug, 2705 pending_del_slot); 2706 ret = btrfs_del_items(trans, root, path, 2707 pending_del_slot, 2708 pending_del_nr); 2709 BUG_ON(ret); 2710 pending_del_nr = 0; 2711 btrfs_release_path(root, path); 2712 if (found_type == BTRFS_INODE_ITEM_KEY) 2713 break; 2714 goto search_again; 2715 } 2716 } 2717 ret = 0; 2718 error: 2719 if (pending_del_nr) { 2720 ret = btrfs_del_items(trans, root, path, pending_del_slot, 2721 pending_del_nr); 2722 } 2723 btrfs_free_path(path); 2724 inode->i_sb->s_dirt = 1; 2725 return ret; 2726 } 2727 2728 /* 2729 * taken from block_truncate_page, but does cow as it zeros out 2730 * any bytes left in the last page in the file. 2731 */ 2732 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 2733 { 2734 struct inode *inode = mapping->host; 2735 struct btrfs_root *root = BTRFS_I(inode)->root; 2736 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2737 struct btrfs_ordered_extent *ordered; 2738 char *kaddr; 2739 u32 blocksize = root->sectorsize; 2740 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2741 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2742 struct page *page; 2743 int ret = 0; 2744 u64 page_start; 2745 u64 page_end; 2746 2747 if ((offset & (blocksize - 1)) == 0) 2748 goto out; 2749 2750 ret = -ENOMEM; 2751 again: 2752 page = grab_cache_page(mapping, index); 2753 if (!page) 2754 goto out; 2755 2756 page_start = page_offset(page); 2757 page_end = page_start + PAGE_CACHE_SIZE - 1; 2758 2759 if (!PageUptodate(page)) { 2760 ret = btrfs_readpage(NULL, page); 2761 lock_page(page); 2762 if (page->mapping != mapping) { 2763 unlock_page(page); 2764 page_cache_release(page); 2765 goto again; 2766 } 2767 if (!PageUptodate(page)) { 2768 ret = -EIO; 2769 goto out_unlock; 2770 } 2771 } 2772 wait_on_page_writeback(page); 2773 2774 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 2775 set_page_extent_mapped(page); 2776 2777 ordered = btrfs_lookup_ordered_extent(inode, page_start); 2778 if (ordered) { 2779 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2780 unlock_page(page); 2781 page_cache_release(page); 2782 btrfs_start_ordered_extent(inode, ordered, 1); 2783 btrfs_put_ordered_extent(ordered); 2784 goto again; 2785 } 2786 2787 btrfs_set_extent_delalloc(inode, page_start, page_end); 2788 ret = 0; 2789 if (offset != PAGE_CACHE_SIZE) { 2790 kaddr = kmap(page); 2791 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2792 flush_dcache_page(page); 2793 kunmap(page); 2794 } 2795 ClearPageChecked(page); 2796 set_page_dirty(page); 2797 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2798 2799 out_unlock: 2800 unlock_page(page); 2801 page_cache_release(page); 2802 out: 2803 return ret; 2804 } 2805 2806 int btrfs_cont_expand(struct inode *inode, loff_t size) 2807 { 2808 struct btrfs_trans_handle *trans; 2809 struct btrfs_root *root = BTRFS_I(inode)->root; 2810 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2811 struct extent_map *em; 2812 u64 mask = root->sectorsize - 1; 2813 u64 hole_start = (inode->i_size + mask) & ~mask; 2814 u64 block_end = (size + mask) & ~mask; 2815 u64 last_byte; 2816 u64 cur_offset; 2817 u64 hole_size; 2818 int err; 2819 2820 if (size <= hole_start) 2821 return 0; 2822 2823 err = btrfs_check_free_space(root, 1, 0); 2824 if (err) 2825 return err; 2826 2827 btrfs_truncate_page(inode->i_mapping, inode->i_size); 2828 2829 while (1) { 2830 struct btrfs_ordered_extent *ordered; 2831 btrfs_wait_ordered_range(inode, hole_start, 2832 block_end - hole_start); 2833 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2834 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 2835 if (!ordered) 2836 break; 2837 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2838 btrfs_put_ordered_extent(ordered); 2839 } 2840 2841 trans = btrfs_start_transaction(root, 1); 2842 btrfs_set_trans_block_group(trans, inode); 2843 2844 cur_offset = hole_start; 2845 while (1) { 2846 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2847 block_end - cur_offset, 0); 2848 BUG_ON(IS_ERR(em) || !em); 2849 last_byte = min(extent_map_end(em), block_end); 2850 last_byte = (last_byte + mask) & ~mask; 2851 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2852 u64 hint_byte = 0; 2853 hole_size = last_byte - cur_offset; 2854 err = btrfs_drop_extents(trans, root, inode, 2855 cur_offset, 2856 cur_offset + hole_size, 2857 cur_offset, &hint_byte); 2858 if (err) 2859 break; 2860 err = btrfs_insert_file_extent(trans, root, 2861 inode->i_ino, cur_offset, 0, 2862 0, hole_size, 0, hole_size, 2863 0, 0, 0); 2864 btrfs_drop_extent_cache(inode, hole_start, 2865 last_byte - 1, 0); 2866 } 2867 free_extent_map(em); 2868 cur_offset = last_byte; 2869 if (err || cur_offset >= block_end) 2870 break; 2871 } 2872 2873 btrfs_end_transaction(trans, root); 2874 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2875 return err; 2876 } 2877 2878 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 2879 { 2880 struct inode *inode = dentry->d_inode; 2881 int err; 2882 2883 err = inode_change_ok(inode, attr); 2884 if (err) 2885 return err; 2886 2887 if (S_ISREG(inode->i_mode) && 2888 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) { 2889 err = btrfs_cont_expand(inode, attr->ia_size); 2890 if (err) 2891 return err; 2892 } 2893 2894 err = inode_setattr(inode, attr); 2895 2896 if (!err && ((attr->ia_valid & ATTR_MODE))) 2897 err = btrfs_acl_chmod(inode); 2898 return err; 2899 } 2900 2901 void btrfs_delete_inode(struct inode *inode) 2902 { 2903 struct btrfs_trans_handle *trans; 2904 struct btrfs_root *root = BTRFS_I(inode)->root; 2905 unsigned long nr; 2906 int ret; 2907 2908 truncate_inode_pages(&inode->i_data, 0); 2909 if (is_bad_inode(inode)) { 2910 btrfs_orphan_del(NULL, inode); 2911 goto no_delete; 2912 } 2913 btrfs_wait_ordered_range(inode, 0, (u64)-1); 2914 2915 btrfs_i_size_write(inode, 0); 2916 trans = btrfs_join_transaction(root, 1); 2917 2918 btrfs_set_trans_block_group(trans, inode); 2919 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); 2920 if (ret) { 2921 btrfs_orphan_del(NULL, inode); 2922 goto no_delete_lock; 2923 } 2924 2925 btrfs_orphan_del(trans, inode); 2926 2927 nr = trans->blocks_used; 2928 clear_inode(inode); 2929 2930 btrfs_end_transaction(trans, root); 2931 btrfs_btree_balance_dirty(root, nr); 2932 return; 2933 2934 no_delete_lock: 2935 nr = trans->blocks_used; 2936 btrfs_end_transaction(trans, root); 2937 btrfs_btree_balance_dirty(root, nr); 2938 no_delete: 2939 clear_inode(inode); 2940 } 2941 2942 /* 2943 * this returns the key found in the dir entry in the location pointer. 2944 * If no dir entries were found, location->objectid is 0. 2945 */ 2946 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 2947 struct btrfs_key *location) 2948 { 2949 const char *name = dentry->d_name.name; 2950 int namelen = dentry->d_name.len; 2951 struct btrfs_dir_item *di; 2952 struct btrfs_path *path; 2953 struct btrfs_root *root = BTRFS_I(dir)->root; 2954 int ret = 0; 2955 2956 path = btrfs_alloc_path(); 2957 BUG_ON(!path); 2958 2959 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 2960 namelen, 0); 2961 if (IS_ERR(di)) 2962 ret = PTR_ERR(di); 2963 2964 if (!di || IS_ERR(di)) 2965 goto out_err; 2966 2967 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 2968 out: 2969 btrfs_free_path(path); 2970 return ret; 2971 out_err: 2972 location->objectid = 0; 2973 goto out; 2974 } 2975 2976 /* 2977 * when we hit a tree root in a directory, the btrfs part of the inode 2978 * needs to be changed to reflect the root directory of the tree root. This 2979 * is kind of like crossing a mount point. 2980 */ 2981 static int fixup_tree_root_location(struct btrfs_root *root, 2982 struct btrfs_key *location, 2983 struct btrfs_root **sub_root, 2984 struct dentry *dentry) 2985 { 2986 struct btrfs_root_item *ri; 2987 2988 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) 2989 return 0; 2990 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 2991 return 0; 2992 2993 *sub_root = btrfs_read_fs_root(root->fs_info, location, 2994 dentry->d_name.name, 2995 dentry->d_name.len); 2996 if (IS_ERR(*sub_root)) 2997 return PTR_ERR(*sub_root); 2998 2999 ri = &(*sub_root)->root_item; 3000 location->objectid = btrfs_root_dirid(ri); 3001 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3002 location->offset = 0; 3003 3004 return 0; 3005 } 3006 3007 static noinline void init_btrfs_i(struct inode *inode) 3008 { 3009 struct btrfs_inode *bi = BTRFS_I(inode); 3010 3011 bi->i_acl = NULL; 3012 bi->i_default_acl = NULL; 3013 3014 bi->generation = 0; 3015 bi->sequence = 0; 3016 bi->last_trans = 0; 3017 bi->logged_trans = 0; 3018 bi->delalloc_bytes = 0; 3019 bi->disk_i_size = 0; 3020 bi->flags = 0; 3021 bi->index_cnt = (u64)-1; 3022 bi->log_dirty_trans = 0; 3023 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 3024 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 3025 inode->i_mapping, GFP_NOFS); 3026 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 3027 inode->i_mapping, GFP_NOFS); 3028 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3029 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3030 mutex_init(&BTRFS_I(inode)->extent_mutex); 3031 mutex_init(&BTRFS_I(inode)->log_mutex); 3032 } 3033 3034 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3035 { 3036 struct btrfs_iget_args *args = p; 3037 inode->i_ino = args->ino; 3038 init_btrfs_i(inode); 3039 BTRFS_I(inode)->root = args->root; 3040 return 0; 3041 } 3042 3043 static int btrfs_find_actor(struct inode *inode, void *opaque) 3044 { 3045 struct btrfs_iget_args *args = opaque; 3046 return args->ino == inode->i_ino && 3047 args->root == BTRFS_I(inode)->root; 3048 } 3049 3050 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, 3051 struct btrfs_root *root, int wait) 3052 { 3053 struct inode *inode; 3054 struct btrfs_iget_args args; 3055 args.ino = objectid; 3056 args.root = root; 3057 3058 if (wait) { 3059 inode = ilookup5(s, objectid, btrfs_find_actor, 3060 (void *)&args); 3061 } else { 3062 inode = ilookup5_nowait(s, objectid, btrfs_find_actor, 3063 (void *)&args); 3064 } 3065 return inode; 3066 } 3067 3068 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, 3069 struct btrfs_root *root) 3070 { 3071 struct inode *inode; 3072 struct btrfs_iget_args args; 3073 args.ino = objectid; 3074 args.root = root; 3075 3076 inode = iget5_locked(s, objectid, btrfs_find_actor, 3077 btrfs_init_locked_inode, 3078 (void *)&args); 3079 return inode; 3080 } 3081 3082 /* Get an inode object given its location and corresponding root. 3083 * Returns in *is_new if the inode was read from disk 3084 */ 3085 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3086 struct btrfs_root *root, int *is_new) 3087 { 3088 struct inode *inode; 3089 3090 inode = btrfs_iget_locked(s, location->objectid, root); 3091 if (!inode) 3092 return ERR_PTR(-EACCES); 3093 3094 if (inode->i_state & I_NEW) { 3095 BTRFS_I(inode)->root = root; 3096 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3097 btrfs_read_locked_inode(inode); 3098 unlock_new_inode(inode); 3099 if (is_new) 3100 *is_new = 1; 3101 } else { 3102 if (is_new) 3103 *is_new = 0; 3104 } 3105 3106 return inode; 3107 } 3108 3109 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3110 { 3111 struct inode *inode; 3112 struct btrfs_inode *bi = BTRFS_I(dir); 3113 struct btrfs_root *root = bi->root; 3114 struct btrfs_root *sub_root = root; 3115 struct btrfs_key location; 3116 int ret, new; 3117 3118 if (dentry->d_name.len > BTRFS_NAME_LEN) 3119 return ERR_PTR(-ENAMETOOLONG); 3120 3121 ret = btrfs_inode_by_name(dir, dentry, &location); 3122 3123 if (ret < 0) 3124 return ERR_PTR(ret); 3125 3126 inode = NULL; 3127 if (location.objectid) { 3128 ret = fixup_tree_root_location(root, &location, &sub_root, 3129 dentry); 3130 if (ret < 0) 3131 return ERR_PTR(ret); 3132 if (ret > 0) 3133 return ERR_PTR(-ENOENT); 3134 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new); 3135 if (IS_ERR(inode)) 3136 return ERR_CAST(inode); 3137 } 3138 return inode; 3139 } 3140 3141 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3142 struct nameidata *nd) 3143 { 3144 struct inode *inode; 3145 3146 if (dentry->d_name.len > BTRFS_NAME_LEN) 3147 return ERR_PTR(-ENAMETOOLONG); 3148 3149 inode = btrfs_lookup_dentry(dir, dentry); 3150 if (IS_ERR(inode)) 3151 return ERR_CAST(inode); 3152 3153 return d_splice_alias(inode, dentry); 3154 } 3155 3156 static unsigned char btrfs_filetype_table[] = { 3157 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3158 }; 3159 3160 static int btrfs_real_readdir(struct file *filp, void *dirent, 3161 filldir_t filldir) 3162 { 3163 struct inode *inode = filp->f_dentry->d_inode; 3164 struct btrfs_root *root = BTRFS_I(inode)->root; 3165 struct btrfs_item *item; 3166 struct btrfs_dir_item *di; 3167 struct btrfs_key key; 3168 struct btrfs_key found_key; 3169 struct btrfs_path *path; 3170 int ret; 3171 u32 nritems; 3172 struct extent_buffer *leaf; 3173 int slot; 3174 int advance; 3175 unsigned char d_type; 3176 int over = 0; 3177 u32 di_cur; 3178 u32 di_total; 3179 u32 di_len; 3180 int key_type = BTRFS_DIR_INDEX_KEY; 3181 char tmp_name[32]; 3182 char *name_ptr; 3183 int name_len; 3184 3185 /* FIXME, use a real flag for deciding about the key type */ 3186 if (root->fs_info->tree_root == root) 3187 key_type = BTRFS_DIR_ITEM_KEY; 3188 3189 /* special case for "." */ 3190 if (filp->f_pos == 0) { 3191 over = filldir(dirent, ".", 1, 3192 1, inode->i_ino, 3193 DT_DIR); 3194 if (over) 3195 return 0; 3196 filp->f_pos = 1; 3197 } 3198 /* special case for .., just use the back ref */ 3199 if (filp->f_pos == 1) { 3200 u64 pino = parent_ino(filp->f_path.dentry); 3201 over = filldir(dirent, "..", 2, 3202 2, pino, DT_DIR); 3203 if (over) 3204 return 0; 3205 filp->f_pos = 2; 3206 } 3207 path = btrfs_alloc_path(); 3208 path->reada = 2; 3209 3210 btrfs_set_key_type(&key, key_type); 3211 key.offset = filp->f_pos; 3212 key.objectid = inode->i_ino; 3213 3214 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3215 if (ret < 0) 3216 goto err; 3217 advance = 0; 3218 3219 while (1) { 3220 leaf = path->nodes[0]; 3221 nritems = btrfs_header_nritems(leaf); 3222 slot = path->slots[0]; 3223 if (advance || slot >= nritems) { 3224 if (slot >= nritems - 1) { 3225 ret = btrfs_next_leaf(root, path); 3226 if (ret) 3227 break; 3228 leaf = path->nodes[0]; 3229 nritems = btrfs_header_nritems(leaf); 3230 slot = path->slots[0]; 3231 } else { 3232 slot++; 3233 path->slots[0]++; 3234 } 3235 } 3236 3237 advance = 1; 3238 item = btrfs_item_nr(leaf, slot); 3239 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3240 3241 if (found_key.objectid != key.objectid) 3242 break; 3243 if (btrfs_key_type(&found_key) != key_type) 3244 break; 3245 if (found_key.offset < filp->f_pos) 3246 continue; 3247 3248 filp->f_pos = found_key.offset; 3249 3250 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3251 di_cur = 0; 3252 di_total = btrfs_item_size(leaf, item); 3253 3254 while (di_cur < di_total) { 3255 struct btrfs_key location; 3256 3257 name_len = btrfs_dir_name_len(leaf, di); 3258 if (name_len <= sizeof(tmp_name)) { 3259 name_ptr = tmp_name; 3260 } else { 3261 name_ptr = kmalloc(name_len, GFP_NOFS); 3262 if (!name_ptr) { 3263 ret = -ENOMEM; 3264 goto err; 3265 } 3266 } 3267 read_extent_buffer(leaf, name_ptr, 3268 (unsigned long)(di + 1), name_len); 3269 3270 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3271 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3272 3273 /* is this a reference to our own snapshot? If so 3274 * skip it 3275 */ 3276 if (location.type == BTRFS_ROOT_ITEM_KEY && 3277 location.objectid == root->root_key.objectid) { 3278 over = 0; 3279 goto skip; 3280 } 3281 over = filldir(dirent, name_ptr, name_len, 3282 found_key.offset, location.objectid, 3283 d_type); 3284 3285 skip: 3286 if (name_ptr != tmp_name) 3287 kfree(name_ptr); 3288 3289 if (over) 3290 goto nopos; 3291 di_len = btrfs_dir_name_len(leaf, di) + 3292 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3293 di_cur += di_len; 3294 di = (struct btrfs_dir_item *)((char *)di + di_len); 3295 } 3296 } 3297 3298 /* Reached end of directory/root. Bump pos past the last item. */ 3299 if (key_type == BTRFS_DIR_INDEX_KEY) 3300 filp->f_pos = INT_LIMIT(off_t); 3301 else 3302 filp->f_pos++; 3303 nopos: 3304 ret = 0; 3305 err: 3306 btrfs_free_path(path); 3307 return ret; 3308 } 3309 3310 int btrfs_write_inode(struct inode *inode, int wait) 3311 { 3312 struct btrfs_root *root = BTRFS_I(inode)->root; 3313 struct btrfs_trans_handle *trans; 3314 int ret = 0; 3315 3316 if (root->fs_info->btree_inode == inode) 3317 return 0; 3318 3319 if (wait) { 3320 trans = btrfs_join_transaction(root, 1); 3321 btrfs_set_trans_block_group(trans, inode); 3322 ret = btrfs_commit_transaction(trans, root); 3323 } 3324 return ret; 3325 } 3326 3327 /* 3328 * This is somewhat expensive, updating the tree every time the 3329 * inode changes. But, it is most likely to find the inode in cache. 3330 * FIXME, needs more benchmarking...there are no reasons other than performance 3331 * to keep or drop this code. 3332 */ 3333 void btrfs_dirty_inode(struct inode *inode) 3334 { 3335 struct btrfs_root *root = BTRFS_I(inode)->root; 3336 struct btrfs_trans_handle *trans; 3337 3338 trans = btrfs_join_transaction(root, 1); 3339 btrfs_set_trans_block_group(trans, inode); 3340 btrfs_update_inode(trans, root, inode); 3341 btrfs_end_transaction(trans, root); 3342 } 3343 3344 /* 3345 * find the highest existing sequence number in a directory 3346 * and then set the in-memory index_cnt variable to reflect 3347 * free sequence numbers 3348 */ 3349 static int btrfs_set_inode_index_count(struct inode *inode) 3350 { 3351 struct btrfs_root *root = BTRFS_I(inode)->root; 3352 struct btrfs_key key, found_key; 3353 struct btrfs_path *path; 3354 struct extent_buffer *leaf; 3355 int ret; 3356 3357 key.objectid = inode->i_ino; 3358 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 3359 key.offset = (u64)-1; 3360 3361 path = btrfs_alloc_path(); 3362 if (!path) 3363 return -ENOMEM; 3364 3365 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3366 if (ret < 0) 3367 goto out; 3368 /* FIXME: we should be able to handle this */ 3369 if (ret == 0) 3370 goto out; 3371 ret = 0; 3372 3373 /* 3374 * MAGIC NUMBER EXPLANATION: 3375 * since we search a directory based on f_pos we have to start at 2 3376 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 3377 * else has to start at 2 3378 */ 3379 if (path->slots[0] == 0) { 3380 BTRFS_I(inode)->index_cnt = 2; 3381 goto out; 3382 } 3383 3384 path->slots[0]--; 3385 3386 leaf = path->nodes[0]; 3387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3388 3389 if (found_key.objectid != inode->i_ino || 3390 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 3391 BTRFS_I(inode)->index_cnt = 2; 3392 goto out; 3393 } 3394 3395 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 3396 out: 3397 btrfs_free_path(path); 3398 return ret; 3399 } 3400 3401 /* 3402 * helper to find a free sequence number in a given directory. This current 3403 * code is very simple, later versions will do smarter things in the btree 3404 */ 3405 int btrfs_set_inode_index(struct inode *dir, u64 *index) 3406 { 3407 int ret = 0; 3408 3409 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 3410 ret = btrfs_set_inode_index_count(dir); 3411 if (ret) 3412 return ret; 3413 } 3414 3415 *index = BTRFS_I(dir)->index_cnt; 3416 BTRFS_I(dir)->index_cnt++; 3417 3418 return ret; 3419 } 3420 3421 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 3422 struct btrfs_root *root, 3423 struct inode *dir, 3424 const char *name, int name_len, 3425 u64 ref_objectid, u64 objectid, 3426 u64 alloc_hint, int mode, u64 *index) 3427 { 3428 struct inode *inode; 3429 struct btrfs_inode_item *inode_item; 3430 struct btrfs_key *location; 3431 struct btrfs_path *path; 3432 struct btrfs_inode_ref *ref; 3433 struct btrfs_key key[2]; 3434 u32 sizes[2]; 3435 unsigned long ptr; 3436 int ret; 3437 int owner; 3438 3439 path = btrfs_alloc_path(); 3440 BUG_ON(!path); 3441 3442 inode = new_inode(root->fs_info->sb); 3443 if (!inode) 3444 return ERR_PTR(-ENOMEM); 3445 3446 if (dir) { 3447 ret = btrfs_set_inode_index(dir, index); 3448 if (ret) 3449 return ERR_PTR(ret); 3450 } 3451 /* 3452 * index_cnt is ignored for everything but a dir, 3453 * btrfs_get_inode_index_count has an explanation for the magic 3454 * number 3455 */ 3456 init_btrfs_i(inode); 3457 BTRFS_I(inode)->index_cnt = 2; 3458 BTRFS_I(inode)->root = root; 3459 BTRFS_I(inode)->generation = trans->transid; 3460 3461 if (mode & S_IFDIR) 3462 owner = 0; 3463 else 3464 owner = 1; 3465 BTRFS_I(inode)->block_group = 3466 btrfs_find_block_group(root, 0, alloc_hint, owner); 3467 if ((mode & S_IFREG)) { 3468 if (btrfs_test_opt(root, NODATASUM)) 3469 btrfs_set_flag(inode, NODATASUM); 3470 if (btrfs_test_opt(root, NODATACOW)) 3471 btrfs_set_flag(inode, NODATACOW); 3472 } 3473 3474 key[0].objectid = objectid; 3475 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 3476 key[0].offset = 0; 3477 3478 key[1].objectid = objectid; 3479 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 3480 key[1].offset = ref_objectid; 3481 3482 sizes[0] = sizeof(struct btrfs_inode_item); 3483 sizes[1] = name_len + sizeof(*ref); 3484 3485 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 3486 if (ret != 0) 3487 goto fail; 3488 3489 if (objectid > root->highest_inode) 3490 root->highest_inode = objectid; 3491 3492 inode->i_uid = current_fsuid(); 3493 3494 if (dir && (dir->i_mode & S_ISGID)) { 3495 inode->i_gid = dir->i_gid; 3496 if (S_ISDIR(mode)) 3497 mode |= S_ISGID; 3498 } else 3499 inode->i_gid = current_fsgid(); 3500 3501 inode->i_mode = mode; 3502 inode->i_ino = objectid; 3503 inode_set_bytes(inode, 0); 3504 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3505 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3506 struct btrfs_inode_item); 3507 fill_inode_item(trans, path->nodes[0], inode_item, inode); 3508 3509 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3510 struct btrfs_inode_ref); 3511 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 3512 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 3513 ptr = (unsigned long)(ref + 1); 3514 write_extent_buffer(path->nodes[0], name, ptr, name_len); 3515 3516 btrfs_mark_buffer_dirty(path->nodes[0]); 3517 btrfs_free_path(path); 3518 3519 location = &BTRFS_I(inode)->location; 3520 location->objectid = objectid; 3521 location->offset = 0; 3522 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3523 3524 insert_inode_hash(inode); 3525 return inode; 3526 fail: 3527 if (dir) 3528 BTRFS_I(dir)->index_cnt--; 3529 btrfs_free_path(path); 3530 return ERR_PTR(ret); 3531 } 3532 3533 static inline u8 btrfs_inode_type(struct inode *inode) 3534 { 3535 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 3536 } 3537 3538 /* 3539 * utility function to add 'inode' into 'parent_inode' with 3540 * a give name and a given sequence number. 3541 * if 'add_backref' is true, also insert a backref from the 3542 * inode to the parent directory. 3543 */ 3544 int btrfs_add_link(struct btrfs_trans_handle *trans, 3545 struct inode *parent_inode, struct inode *inode, 3546 const char *name, int name_len, int add_backref, u64 index) 3547 { 3548 int ret; 3549 struct btrfs_key key; 3550 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 3551 3552 key.objectid = inode->i_ino; 3553 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 3554 key.offset = 0; 3555 3556 ret = btrfs_insert_dir_item(trans, root, name, name_len, 3557 parent_inode->i_ino, 3558 &key, btrfs_inode_type(inode), 3559 index); 3560 if (ret == 0) { 3561 if (add_backref) { 3562 ret = btrfs_insert_inode_ref(trans, root, 3563 name, name_len, 3564 inode->i_ino, 3565 parent_inode->i_ino, 3566 index); 3567 } 3568 btrfs_i_size_write(parent_inode, parent_inode->i_size + 3569 name_len * 2); 3570 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 3571 ret = btrfs_update_inode(trans, root, parent_inode); 3572 } 3573 return ret; 3574 } 3575 3576 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 3577 struct dentry *dentry, struct inode *inode, 3578 int backref, u64 index) 3579 { 3580 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3581 inode, dentry->d_name.name, 3582 dentry->d_name.len, backref, index); 3583 if (!err) { 3584 d_instantiate(dentry, inode); 3585 return 0; 3586 } 3587 if (err > 0) 3588 err = -EEXIST; 3589 return err; 3590 } 3591 3592 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 3593 int mode, dev_t rdev) 3594 { 3595 struct btrfs_trans_handle *trans; 3596 struct btrfs_root *root = BTRFS_I(dir)->root; 3597 struct inode *inode = NULL; 3598 int err; 3599 int drop_inode = 0; 3600 u64 objectid; 3601 unsigned long nr = 0; 3602 u64 index = 0; 3603 3604 if (!new_valid_dev(rdev)) 3605 return -EINVAL; 3606 3607 err = btrfs_check_free_space(root, 1, 0); 3608 if (err) 3609 goto fail; 3610 3611 trans = btrfs_start_transaction(root, 1); 3612 btrfs_set_trans_block_group(trans, dir); 3613 3614 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3615 if (err) { 3616 err = -ENOSPC; 3617 goto out_unlock; 3618 } 3619 3620 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3621 dentry->d_name.len, 3622 dentry->d_parent->d_inode->i_ino, objectid, 3623 BTRFS_I(dir)->block_group, mode, &index); 3624 err = PTR_ERR(inode); 3625 if (IS_ERR(inode)) 3626 goto out_unlock; 3627 3628 err = btrfs_init_inode_security(inode, dir); 3629 if (err) { 3630 drop_inode = 1; 3631 goto out_unlock; 3632 } 3633 3634 btrfs_set_trans_block_group(trans, inode); 3635 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3636 if (err) 3637 drop_inode = 1; 3638 else { 3639 inode->i_op = &btrfs_special_inode_operations; 3640 init_special_inode(inode, inode->i_mode, rdev); 3641 btrfs_update_inode(trans, root, inode); 3642 } 3643 dir->i_sb->s_dirt = 1; 3644 btrfs_update_inode_block_group(trans, inode); 3645 btrfs_update_inode_block_group(trans, dir); 3646 out_unlock: 3647 nr = trans->blocks_used; 3648 btrfs_end_transaction_throttle(trans, root); 3649 fail: 3650 if (drop_inode) { 3651 inode_dec_link_count(inode); 3652 iput(inode); 3653 } 3654 btrfs_btree_balance_dirty(root, nr); 3655 return err; 3656 } 3657 3658 static int btrfs_create(struct inode *dir, struct dentry *dentry, 3659 int mode, struct nameidata *nd) 3660 { 3661 struct btrfs_trans_handle *trans; 3662 struct btrfs_root *root = BTRFS_I(dir)->root; 3663 struct inode *inode = NULL; 3664 int err; 3665 int drop_inode = 0; 3666 unsigned long nr = 0; 3667 u64 objectid; 3668 u64 index = 0; 3669 3670 err = btrfs_check_free_space(root, 1, 0); 3671 if (err) 3672 goto fail; 3673 trans = btrfs_start_transaction(root, 1); 3674 btrfs_set_trans_block_group(trans, dir); 3675 3676 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3677 if (err) { 3678 err = -ENOSPC; 3679 goto out_unlock; 3680 } 3681 3682 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3683 dentry->d_name.len, 3684 dentry->d_parent->d_inode->i_ino, 3685 objectid, BTRFS_I(dir)->block_group, mode, 3686 &index); 3687 err = PTR_ERR(inode); 3688 if (IS_ERR(inode)) 3689 goto out_unlock; 3690 3691 err = btrfs_init_inode_security(inode, dir); 3692 if (err) { 3693 drop_inode = 1; 3694 goto out_unlock; 3695 } 3696 3697 btrfs_set_trans_block_group(trans, inode); 3698 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3699 if (err) 3700 drop_inode = 1; 3701 else { 3702 inode->i_mapping->a_ops = &btrfs_aops; 3703 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3704 inode->i_fop = &btrfs_file_operations; 3705 inode->i_op = &btrfs_file_inode_operations; 3706 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3707 } 3708 dir->i_sb->s_dirt = 1; 3709 btrfs_update_inode_block_group(trans, inode); 3710 btrfs_update_inode_block_group(trans, dir); 3711 out_unlock: 3712 nr = trans->blocks_used; 3713 btrfs_end_transaction_throttle(trans, root); 3714 fail: 3715 if (drop_inode) { 3716 inode_dec_link_count(inode); 3717 iput(inode); 3718 } 3719 btrfs_btree_balance_dirty(root, nr); 3720 return err; 3721 } 3722 3723 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 3724 struct dentry *dentry) 3725 { 3726 struct btrfs_trans_handle *trans; 3727 struct btrfs_root *root = BTRFS_I(dir)->root; 3728 struct inode *inode = old_dentry->d_inode; 3729 u64 index; 3730 unsigned long nr = 0; 3731 int err; 3732 int drop_inode = 0; 3733 3734 if (inode->i_nlink == 0) 3735 return -ENOENT; 3736 3737 btrfs_inc_nlink(inode); 3738 err = btrfs_check_free_space(root, 1, 0); 3739 if (err) 3740 goto fail; 3741 err = btrfs_set_inode_index(dir, &index); 3742 if (err) 3743 goto fail; 3744 3745 trans = btrfs_start_transaction(root, 1); 3746 3747 btrfs_set_trans_block_group(trans, dir); 3748 atomic_inc(&inode->i_count); 3749 3750 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 3751 3752 if (err) 3753 drop_inode = 1; 3754 3755 dir->i_sb->s_dirt = 1; 3756 btrfs_update_inode_block_group(trans, dir); 3757 err = btrfs_update_inode(trans, root, inode); 3758 3759 if (err) 3760 drop_inode = 1; 3761 3762 nr = trans->blocks_used; 3763 btrfs_end_transaction_throttle(trans, root); 3764 fail: 3765 if (drop_inode) { 3766 inode_dec_link_count(inode); 3767 iput(inode); 3768 } 3769 btrfs_btree_balance_dirty(root, nr); 3770 return err; 3771 } 3772 3773 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 3774 { 3775 struct inode *inode = NULL; 3776 struct btrfs_trans_handle *trans; 3777 struct btrfs_root *root = BTRFS_I(dir)->root; 3778 int err = 0; 3779 int drop_on_err = 0; 3780 u64 objectid = 0; 3781 u64 index = 0; 3782 unsigned long nr = 1; 3783 3784 err = btrfs_check_free_space(root, 1, 0); 3785 if (err) 3786 goto out_unlock; 3787 3788 trans = btrfs_start_transaction(root, 1); 3789 btrfs_set_trans_block_group(trans, dir); 3790 3791 if (IS_ERR(trans)) { 3792 err = PTR_ERR(trans); 3793 goto out_unlock; 3794 } 3795 3796 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3797 if (err) { 3798 err = -ENOSPC; 3799 goto out_unlock; 3800 } 3801 3802 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3803 dentry->d_name.len, 3804 dentry->d_parent->d_inode->i_ino, objectid, 3805 BTRFS_I(dir)->block_group, S_IFDIR | mode, 3806 &index); 3807 if (IS_ERR(inode)) { 3808 err = PTR_ERR(inode); 3809 goto out_fail; 3810 } 3811 3812 drop_on_err = 1; 3813 3814 err = btrfs_init_inode_security(inode, dir); 3815 if (err) 3816 goto out_fail; 3817 3818 inode->i_op = &btrfs_dir_inode_operations; 3819 inode->i_fop = &btrfs_dir_file_operations; 3820 btrfs_set_trans_block_group(trans, inode); 3821 3822 btrfs_i_size_write(inode, 0); 3823 err = btrfs_update_inode(trans, root, inode); 3824 if (err) 3825 goto out_fail; 3826 3827 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3828 inode, dentry->d_name.name, 3829 dentry->d_name.len, 0, index); 3830 if (err) 3831 goto out_fail; 3832 3833 d_instantiate(dentry, inode); 3834 drop_on_err = 0; 3835 dir->i_sb->s_dirt = 1; 3836 btrfs_update_inode_block_group(trans, inode); 3837 btrfs_update_inode_block_group(trans, dir); 3838 3839 out_fail: 3840 nr = trans->blocks_used; 3841 btrfs_end_transaction_throttle(trans, root); 3842 3843 out_unlock: 3844 if (drop_on_err) 3845 iput(inode); 3846 btrfs_btree_balance_dirty(root, nr); 3847 return err; 3848 } 3849 3850 /* helper for btfs_get_extent. Given an existing extent in the tree, 3851 * and an extent that you want to insert, deal with overlap and insert 3852 * the new extent into the tree. 3853 */ 3854 static int merge_extent_mapping(struct extent_map_tree *em_tree, 3855 struct extent_map *existing, 3856 struct extent_map *em, 3857 u64 map_start, u64 map_len) 3858 { 3859 u64 start_diff; 3860 3861 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 3862 start_diff = map_start - em->start; 3863 em->start = map_start; 3864 em->len = map_len; 3865 if (em->block_start < EXTENT_MAP_LAST_BYTE && 3866 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3867 em->block_start += start_diff; 3868 em->block_len -= start_diff; 3869 } 3870 return add_extent_mapping(em_tree, em); 3871 } 3872 3873 static noinline int uncompress_inline(struct btrfs_path *path, 3874 struct inode *inode, struct page *page, 3875 size_t pg_offset, u64 extent_offset, 3876 struct btrfs_file_extent_item *item) 3877 { 3878 int ret; 3879 struct extent_buffer *leaf = path->nodes[0]; 3880 char *tmp; 3881 size_t max_size; 3882 unsigned long inline_size; 3883 unsigned long ptr; 3884 3885 WARN_ON(pg_offset != 0); 3886 max_size = btrfs_file_extent_ram_bytes(leaf, item); 3887 inline_size = btrfs_file_extent_inline_item_len(leaf, 3888 btrfs_item_nr(leaf, path->slots[0])); 3889 tmp = kmalloc(inline_size, GFP_NOFS); 3890 ptr = btrfs_file_extent_inline_start(item); 3891 3892 read_extent_buffer(leaf, tmp, ptr, inline_size); 3893 3894 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 3895 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 3896 inline_size, max_size); 3897 if (ret) { 3898 char *kaddr = kmap_atomic(page, KM_USER0); 3899 unsigned long copy_size = min_t(u64, 3900 PAGE_CACHE_SIZE - pg_offset, 3901 max_size - extent_offset); 3902 memset(kaddr + pg_offset, 0, copy_size); 3903 kunmap_atomic(kaddr, KM_USER0); 3904 } 3905 kfree(tmp); 3906 return 0; 3907 } 3908 3909 /* 3910 * a bit scary, this does extent mapping from logical file offset to the disk. 3911 * the ugly parts come from merging extents from the disk with the in-ram 3912 * representation. This gets more complex because of the data=ordered code, 3913 * where the in-ram extents might be locked pending data=ordered completion. 3914 * 3915 * This also copies inline extents directly into the page. 3916 */ 3917 3918 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 3919 size_t pg_offset, u64 start, u64 len, 3920 int create) 3921 { 3922 int ret; 3923 int err = 0; 3924 u64 bytenr; 3925 u64 extent_start = 0; 3926 u64 extent_end = 0; 3927 u64 objectid = inode->i_ino; 3928 u32 found_type; 3929 struct btrfs_path *path = NULL; 3930 struct btrfs_root *root = BTRFS_I(inode)->root; 3931 struct btrfs_file_extent_item *item; 3932 struct extent_buffer *leaf; 3933 struct btrfs_key found_key; 3934 struct extent_map *em = NULL; 3935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3936 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3937 struct btrfs_trans_handle *trans = NULL; 3938 int compressed; 3939 3940 again: 3941 spin_lock(&em_tree->lock); 3942 em = lookup_extent_mapping(em_tree, start, len); 3943 if (em) 3944 em->bdev = root->fs_info->fs_devices->latest_bdev; 3945 spin_unlock(&em_tree->lock); 3946 3947 if (em) { 3948 if (em->start > start || em->start + em->len <= start) 3949 free_extent_map(em); 3950 else if (em->block_start == EXTENT_MAP_INLINE && page) 3951 free_extent_map(em); 3952 else 3953 goto out; 3954 } 3955 em = alloc_extent_map(GFP_NOFS); 3956 if (!em) { 3957 err = -ENOMEM; 3958 goto out; 3959 } 3960 em->bdev = root->fs_info->fs_devices->latest_bdev; 3961 em->start = EXTENT_MAP_HOLE; 3962 em->orig_start = EXTENT_MAP_HOLE; 3963 em->len = (u64)-1; 3964 em->block_len = (u64)-1; 3965 3966 if (!path) { 3967 path = btrfs_alloc_path(); 3968 BUG_ON(!path); 3969 } 3970 3971 ret = btrfs_lookup_file_extent(trans, root, path, 3972 objectid, start, trans != NULL); 3973 if (ret < 0) { 3974 err = ret; 3975 goto out; 3976 } 3977 3978 if (ret != 0) { 3979 if (path->slots[0] == 0) 3980 goto not_found; 3981 path->slots[0]--; 3982 } 3983 3984 leaf = path->nodes[0]; 3985 item = btrfs_item_ptr(leaf, path->slots[0], 3986 struct btrfs_file_extent_item); 3987 /* are we inside the extent that was found? */ 3988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3989 found_type = btrfs_key_type(&found_key); 3990 if (found_key.objectid != objectid || 3991 found_type != BTRFS_EXTENT_DATA_KEY) { 3992 goto not_found; 3993 } 3994 3995 found_type = btrfs_file_extent_type(leaf, item); 3996 extent_start = found_key.offset; 3997 compressed = btrfs_file_extent_compression(leaf, item); 3998 if (found_type == BTRFS_FILE_EXTENT_REG || 3999 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4000 extent_end = extent_start + 4001 btrfs_file_extent_num_bytes(leaf, item); 4002 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4003 size_t size; 4004 size = btrfs_file_extent_inline_len(leaf, item); 4005 extent_end = (extent_start + size + root->sectorsize - 1) & 4006 ~((u64)root->sectorsize - 1); 4007 } 4008 4009 if (start >= extent_end) { 4010 path->slots[0]++; 4011 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 4012 ret = btrfs_next_leaf(root, path); 4013 if (ret < 0) { 4014 err = ret; 4015 goto out; 4016 } 4017 if (ret > 0) 4018 goto not_found; 4019 leaf = path->nodes[0]; 4020 } 4021 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4022 if (found_key.objectid != objectid || 4023 found_key.type != BTRFS_EXTENT_DATA_KEY) 4024 goto not_found; 4025 if (start + len <= found_key.offset) 4026 goto not_found; 4027 em->start = start; 4028 em->len = found_key.offset - start; 4029 goto not_found_em; 4030 } 4031 4032 if (found_type == BTRFS_FILE_EXTENT_REG || 4033 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4034 em->start = extent_start; 4035 em->len = extent_end - extent_start; 4036 em->orig_start = extent_start - 4037 btrfs_file_extent_offset(leaf, item); 4038 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4039 if (bytenr == 0) { 4040 em->block_start = EXTENT_MAP_HOLE; 4041 goto insert; 4042 } 4043 if (compressed) { 4044 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4045 em->block_start = bytenr; 4046 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4047 item); 4048 } else { 4049 bytenr += btrfs_file_extent_offset(leaf, item); 4050 em->block_start = bytenr; 4051 em->block_len = em->len; 4052 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4053 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4054 } 4055 goto insert; 4056 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4057 unsigned long ptr; 4058 char *map; 4059 size_t size; 4060 size_t extent_offset; 4061 size_t copy_size; 4062 4063 em->block_start = EXTENT_MAP_INLINE; 4064 if (!page || create) { 4065 em->start = extent_start; 4066 em->len = extent_end - extent_start; 4067 goto out; 4068 } 4069 4070 size = btrfs_file_extent_inline_len(leaf, item); 4071 extent_offset = page_offset(page) + pg_offset - extent_start; 4072 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4073 size - extent_offset); 4074 em->start = extent_start + extent_offset; 4075 em->len = (copy_size + root->sectorsize - 1) & 4076 ~((u64)root->sectorsize - 1); 4077 em->orig_start = EXTENT_MAP_INLINE; 4078 if (compressed) 4079 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4080 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4081 if (create == 0 && !PageUptodate(page)) { 4082 if (btrfs_file_extent_compression(leaf, item) == 4083 BTRFS_COMPRESS_ZLIB) { 4084 ret = uncompress_inline(path, inode, page, 4085 pg_offset, 4086 extent_offset, item); 4087 BUG_ON(ret); 4088 } else { 4089 map = kmap(page); 4090 read_extent_buffer(leaf, map + pg_offset, ptr, 4091 copy_size); 4092 kunmap(page); 4093 } 4094 flush_dcache_page(page); 4095 } else if (create && PageUptodate(page)) { 4096 if (!trans) { 4097 kunmap(page); 4098 free_extent_map(em); 4099 em = NULL; 4100 btrfs_release_path(root, path); 4101 trans = btrfs_join_transaction(root, 1); 4102 goto again; 4103 } 4104 map = kmap(page); 4105 write_extent_buffer(leaf, map + pg_offset, ptr, 4106 copy_size); 4107 kunmap(page); 4108 btrfs_mark_buffer_dirty(leaf); 4109 } 4110 set_extent_uptodate(io_tree, em->start, 4111 extent_map_end(em) - 1, GFP_NOFS); 4112 goto insert; 4113 } else { 4114 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4115 WARN_ON(1); 4116 } 4117 not_found: 4118 em->start = start; 4119 em->len = len; 4120 not_found_em: 4121 em->block_start = EXTENT_MAP_HOLE; 4122 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4123 insert: 4124 btrfs_release_path(root, path); 4125 if (em->start > start || extent_map_end(em) <= start) { 4126 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4127 "[%llu %llu]\n", (unsigned long long)em->start, 4128 (unsigned long long)em->len, 4129 (unsigned long long)start, 4130 (unsigned long long)len); 4131 err = -EIO; 4132 goto out; 4133 } 4134 4135 err = 0; 4136 spin_lock(&em_tree->lock); 4137 ret = add_extent_mapping(em_tree, em); 4138 /* it is possible that someone inserted the extent into the tree 4139 * while we had the lock dropped. It is also possible that 4140 * an overlapping map exists in the tree 4141 */ 4142 if (ret == -EEXIST) { 4143 struct extent_map *existing; 4144 4145 ret = 0; 4146 4147 existing = lookup_extent_mapping(em_tree, start, len); 4148 if (existing && (existing->start > start || 4149 existing->start + existing->len <= start)) { 4150 free_extent_map(existing); 4151 existing = NULL; 4152 } 4153 if (!existing) { 4154 existing = lookup_extent_mapping(em_tree, em->start, 4155 em->len); 4156 if (existing) { 4157 err = merge_extent_mapping(em_tree, existing, 4158 em, start, 4159 root->sectorsize); 4160 free_extent_map(existing); 4161 if (err) { 4162 free_extent_map(em); 4163 em = NULL; 4164 } 4165 } else { 4166 err = -EIO; 4167 free_extent_map(em); 4168 em = NULL; 4169 } 4170 } else { 4171 free_extent_map(em); 4172 em = existing; 4173 err = 0; 4174 } 4175 } 4176 spin_unlock(&em_tree->lock); 4177 out: 4178 if (path) 4179 btrfs_free_path(path); 4180 if (trans) { 4181 ret = btrfs_end_transaction(trans, root); 4182 if (!err) 4183 err = ret; 4184 } 4185 if (err) { 4186 free_extent_map(em); 4187 WARN_ON(1); 4188 return ERR_PTR(err); 4189 } 4190 return em; 4191 } 4192 4193 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4194 const struct iovec *iov, loff_t offset, 4195 unsigned long nr_segs) 4196 { 4197 return -EINVAL; 4198 } 4199 4200 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4201 __u64 start, __u64 len) 4202 { 4203 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 4204 } 4205 4206 int btrfs_readpage(struct file *file, struct page *page) 4207 { 4208 struct extent_io_tree *tree; 4209 tree = &BTRFS_I(page->mapping->host)->io_tree; 4210 return extent_read_full_page(tree, page, btrfs_get_extent); 4211 } 4212 4213 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4214 { 4215 struct extent_io_tree *tree; 4216 4217 4218 if (current->flags & PF_MEMALLOC) { 4219 redirty_page_for_writepage(wbc, page); 4220 unlock_page(page); 4221 return 0; 4222 } 4223 tree = &BTRFS_I(page->mapping->host)->io_tree; 4224 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4225 } 4226 4227 int btrfs_writepages(struct address_space *mapping, 4228 struct writeback_control *wbc) 4229 { 4230 struct extent_io_tree *tree; 4231 4232 tree = &BTRFS_I(mapping->host)->io_tree; 4233 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4234 } 4235 4236 static int 4237 btrfs_readpages(struct file *file, struct address_space *mapping, 4238 struct list_head *pages, unsigned nr_pages) 4239 { 4240 struct extent_io_tree *tree; 4241 tree = &BTRFS_I(mapping->host)->io_tree; 4242 return extent_readpages(tree, mapping, pages, nr_pages, 4243 btrfs_get_extent); 4244 } 4245 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4246 { 4247 struct extent_io_tree *tree; 4248 struct extent_map_tree *map; 4249 int ret; 4250 4251 tree = &BTRFS_I(page->mapping->host)->io_tree; 4252 map = &BTRFS_I(page->mapping->host)->extent_tree; 4253 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 4254 if (ret == 1) { 4255 ClearPagePrivate(page); 4256 set_page_private(page, 0); 4257 page_cache_release(page); 4258 } 4259 return ret; 4260 } 4261 4262 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4263 { 4264 if (PageWriteback(page) || PageDirty(page)) 4265 return 0; 4266 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 4267 } 4268 4269 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 4270 { 4271 struct extent_io_tree *tree; 4272 struct btrfs_ordered_extent *ordered; 4273 u64 page_start = page_offset(page); 4274 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 4275 4276 wait_on_page_writeback(page); 4277 tree = &BTRFS_I(page->mapping->host)->io_tree; 4278 if (offset) { 4279 btrfs_releasepage(page, GFP_NOFS); 4280 return; 4281 } 4282 4283 lock_extent(tree, page_start, page_end, GFP_NOFS); 4284 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 4285 page_offset(page)); 4286 if (ordered) { 4287 /* 4288 * IO on this page will never be started, so we need 4289 * to account for any ordered extents now 4290 */ 4291 clear_extent_bit(tree, page_start, page_end, 4292 EXTENT_DIRTY | EXTENT_DELALLOC | 4293 EXTENT_LOCKED, 1, 0, GFP_NOFS); 4294 btrfs_finish_ordered_io(page->mapping->host, 4295 page_start, page_end); 4296 btrfs_put_ordered_extent(ordered); 4297 lock_extent(tree, page_start, page_end, GFP_NOFS); 4298 } 4299 clear_extent_bit(tree, page_start, page_end, 4300 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4301 EXTENT_ORDERED, 4302 1, 1, GFP_NOFS); 4303 __btrfs_releasepage(page, GFP_NOFS); 4304 4305 ClearPageChecked(page); 4306 if (PagePrivate(page)) { 4307 ClearPagePrivate(page); 4308 set_page_private(page, 0); 4309 page_cache_release(page); 4310 } 4311 } 4312 4313 /* 4314 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 4315 * called from a page fault handler when a page is first dirtied. Hence we must 4316 * be careful to check for EOF conditions here. We set the page up correctly 4317 * for a written page which means we get ENOSPC checking when writing into 4318 * holes and correct delalloc and unwritten extent mapping on filesystems that 4319 * support these features. 4320 * 4321 * We are not allowed to take the i_mutex here so we have to play games to 4322 * protect against truncate races as the page could now be beyond EOF. Because 4323 * vmtruncate() writes the inode size before removing pages, once we have the 4324 * page lock we can determine safely if the page is beyond EOF. If it is not 4325 * beyond EOF, then the page is guaranteed safe against truncation until we 4326 * unlock the page. 4327 */ 4328 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4329 { 4330 struct inode *inode = fdentry(vma->vm_file)->d_inode; 4331 struct btrfs_root *root = BTRFS_I(inode)->root; 4332 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4333 struct btrfs_ordered_extent *ordered; 4334 char *kaddr; 4335 unsigned long zero_start; 4336 loff_t size; 4337 int ret; 4338 u64 page_start; 4339 u64 page_end; 4340 4341 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0); 4342 if (ret) 4343 goto out; 4344 4345 ret = -EINVAL; 4346 again: 4347 lock_page(page); 4348 size = i_size_read(inode); 4349 page_start = page_offset(page); 4350 page_end = page_start + PAGE_CACHE_SIZE - 1; 4351 4352 if ((page->mapping != inode->i_mapping) || 4353 (page_start >= size)) { 4354 /* page got truncated out from underneath us */ 4355 goto out_unlock; 4356 } 4357 wait_on_page_writeback(page); 4358 4359 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4360 set_page_extent_mapped(page); 4361 4362 /* 4363 * we can't set the delalloc bits if there are pending ordered 4364 * extents. Drop our locks and wait for them to finish 4365 */ 4366 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4367 if (ordered) { 4368 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4369 unlock_page(page); 4370 btrfs_start_ordered_extent(inode, ordered, 1); 4371 btrfs_put_ordered_extent(ordered); 4372 goto again; 4373 } 4374 4375 btrfs_set_extent_delalloc(inode, page_start, page_end); 4376 ret = 0; 4377 4378 /* page is wholly or partially inside EOF */ 4379 if (page_start + PAGE_CACHE_SIZE > size) 4380 zero_start = size & ~PAGE_CACHE_MASK; 4381 else 4382 zero_start = PAGE_CACHE_SIZE; 4383 4384 if (zero_start != PAGE_CACHE_SIZE) { 4385 kaddr = kmap(page); 4386 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 4387 flush_dcache_page(page); 4388 kunmap(page); 4389 } 4390 ClearPageChecked(page); 4391 set_page_dirty(page); 4392 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4393 4394 out_unlock: 4395 unlock_page(page); 4396 out: 4397 return ret; 4398 } 4399 4400 static void btrfs_truncate(struct inode *inode) 4401 { 4402 struct btrfs_root *root = BTRFS_I(inode)->root; 4403 int ret; 4404 struct btrfs_trans_handle *trans; 4405 unsigned long nr; 4406 u64 mask = root->sectorsize - 1; 4407 4408 if (!S_ISREG(inode->i_mode)) 4409 return; 4410 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4411 return; 4412 4413 btrfs_truncate_page(inode->i_mapping, inode->i_size); 4414 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 4415 4416 trans = btrfs_start_transaction(root, 1); 4417 btrfs_set_trans_block_group(trans, inode); 4418 btrfs_i_size_write(inode, inode->i_size); 4419 4420 ret = btrfs_orphan_add(trans, inode); 4421 if (ret) 4422 goto out; 4423 /* FIXME, add redo link to tree so we don't leak on crash */ 4424 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 4425 BTRFS_EXTENT_DATA_KEY); 4426 btrfs_update_inode(trans, root, inode); 4427 4428 ret = btrfs_orphan_del(trans, inode); 4429 BUG_ON(ret); 4430 4431 out: 4432 nr = trans->blocks_used; 4433 ret = btrfs_end_transaction_throttle(trans, root); 4434 BUG_ON(ret); 4435 btrfs_btree_balance_dirty(root, nr); 4436 } 4437 4438 /* 4439 * create a new subvolume directory/inode (helper for the ioctl). 4440 */ 4441 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 4442 struct btrfs_root *new_root, struct dentry *dentry, 4443 u64 new_dirid, u64 alloc_hint) 4444 { 4445 struct inode *inode; 4446 int error; 4447 u64 index = 0; 4448 4449 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 4450 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 4451 if (IS_ERR(inode)) 4452 return PTR_ERR(inode); 4453 inode->i_op = &btrfs_dir_inode_operations; 4454 inode->i_fop = &btrfs_dir_file_operations; 4455 4456 inode->i_nlink = 1; 4457 btrfs_i_size_write(inode, 0); 4458 4459 error = btrfs_update_inode(trans, new_root, inode); 4460 if (error) 4461 return error; 4462 4463 d_instantiate(dentry, inode); 4464 return 0; 4465 } 4466 4467 /* helper function for file defrag and space balancing. This 4468 * forces readahead on a given range of bytes in an inode 4469 */ 4470 unsigned long btrfs_force_ra(struct address_space *mapping, 4471 struct file_ra_state *ra, struct file *file, 4472 pgoff_t offset, pgoff_t last_index) 4473 { 4474 pgoff_t req_size = last_index - offset + 1; 4475 4476 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 4477 return offset + req_size; 4478 } 4479 4480 struct inode *btrfs_alloc_inode(struct super_block *sb) 4481 { 4482 struct btrfs_inode *ei; 4483 4484 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 4485 if (!ei) 4486 return NULL; 4487 ei->last_trans = 0; 4488 ei->logged_trans = 0; 4489 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 4490 ei->i_acl = BTRFS_ACL_NOT_CACHED; 4491 ei->i_default_acl = BTRFS_ACL_NOT_CACHED; 4492 INIT_LIST_HEAD(&ei->i_orphan); 4493 return &ei->vfs_inode; 4494 } 4495 4496 void btrfs_destroy_inode(struct inode *inode) 4497 { 4498 struct btrfs_ordered_extent *ordered; 4499 WARN_ON(!list_empty(&inode->i_dentry)); 4500 WARN_ON(inode->i_data.nrpages); 4501 4502 if (BTRFS_I(inode)->i_acl && 4503 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) 4504 posix_acl_release(BTRFS_I(inode)->i_acl); 4505 if (BTRFS_I(inode)->i_default_acl && 4506 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) 4507 posix_acl_release(BTRFS_I(inode)->i_default_acl); 4508 4509 spin_lock(&BTRFS_I(inode)->root->list_lock); 4510 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 4511 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" 4512 " list\n", inode->i_ino); 4513 dump_stack(); 4514 } 4515 spin_unlock(&BTRFS_I(inode)->root->list_lock); 4516 4517 while (1) { 4518 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 4519 if (!ordered) 4520 break; 4521 else { 4522 printk(KERN_ERR "btrfs found ordered " 4523 "extent %llu %llu on inode cleanup\n", 4524 (unsigned long long)ordered->file_offset, 4525 (unsigned long long)ordered->len); 4526 btrfs_remove_ordered_extent(inode, ordered); 4527 btrfs_put_ordered_extent(ordered); 4528 btrfs_put_ordered_extent(ordered); 4529 } 4530 } 4531 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 4532 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 4533 } 4534 4535 static void init_once(void *foo) 4536 { 4537 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 4538 4539 inode_init_once(&ei->vfs_inode); 4540 } 4541 4542 void btrfs_destroy_cachep(void) 4543 { 4544 if (btrfs_inode_cachep) 4545 kmem_cache_destroy(btrfs_inode_cachep); 4546 if (btrfs_trans_handle_cachep) 4547 kmem_cache_destroy(btrfs_trans_handle_cachep); 4548 if (btrfs_transaction_cachep) 4549 kmem_cache_destroy(btrfs_transaction_cachep); 4550 if (btrfs_bit_radix_cachep) 4551 kmem_cache_destroy(btrfs_bit_radix_cachep); 4552 if (btrfs_path_cachep) 4553 kmem_cache_destroy(btrfs_path_cachep); 4554 } 4555 4556 struct kmem_cache *btrfs_cache_create(const char *name, size_t size, 4557 unsigned long extra_flags, 4558 void (*ctor)(void *)) 4559 { 4560 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT | 4561 SLAB_MEM_SPREAD | extra_flags), ctor); 4562 } 4563 4564 int btrfs_init_cachep(void) 4565 { 4566 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache", 4567 sizeof(struct btrfs_inode), 4568 0, init_once); 4569 if (!btrfs_inode_cachep) 4570 goto fail; 4571 btrfs_trans_handle_cachep = 4572 btrfs_cache_create("btrfs_trans_handle_cache", 4573 sizeof(struct btrfs_trans_handle), 4574 0, NULL); 4575 if (!btrfs_trans_handle_cachep) 4576 goto fail; 4577 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache", 4578 sizeof(struct btrfs_transaction), 4579 0, NULL); 4580 if (!btrfs_transaction_cachep) 4581 goto fail; 4582 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache", 4583 sizeof(struct btrfs_path), 4584 0, NULL); 4585 if (!btrfs_path_cachep) 4586 goto fail; 4587 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256, 4588 SLAB_DESTROY_BY_RCU, NULL); 4589 if (!btrfs_bit_radix_cachep) 4590 goto fail; 4591 return 0; 4592 fail: 4593 btrfs_destroy_cachep(); 4594 return -ENOMEM; 4595 } 4596 4597 static int btrfs_getattr(struct vfsmount *mnt, 4598 struct dentry *dentry, struct kstat *stat) 4599 { 4600 struct inode *inode = dentry->d_inode; 4601 generic_fillattr(inode, stat); 4602 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 4603 stat->blksize = PAGE_CACHE_SIZE; 4604 stat->blocks = (inode_get_bytes(inode) + 4605 BTRFS_I(inode)->delalloc_bytes) >> 9; 4606 return 0; 4607 } 4608 4609 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4610 struct inode *new_dir, struct dentry *new_dentry) 4611 { 4612 struct btrfs_trans_handle *trans; 4613 struct btrfs_root *root = BTRFS_I(old_dir)->root; 4614 struct inode *new_inode = new_dentry->d_inode; 4615 struct inode *old_inode = old_dentry->d_inode; 4616 struct timespec ctime = CURRENT_TIME; 4617 u64 index = 0; 4618 int ret; 4619 4620 /* we're not allowed to rename between subvolumes */ 4621 if (BTRFS_I(old_inode)->root->root_key.objectid != 4622 BTRFS_I(new_dir)->root->root_key.objectid) 4623 return -EXDEV; 4624 4625 if (S_ISDIR(old_inode->i_mode) && new_inode && 4626 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { 4627 return -ENOTEMPTY; 4628 } 4629 4630 /* to rename a snapshot or subvolume, we need to juggle the 4631 * backrefs. This isn't coded yet 4632 */ 4633 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 4634 return -EXDEV; 4635 4636 ret = btrfs_check_free_space(root, 1, 0); 4637 if (ret) 4638 goto out_unlock; 4639 4640 trans = btrfs_start_transaction(root, 1); 4641 4642 btrfs_set_trans_block_group(trans, new_dir); 4643 4644 btrfs_inc_nlink(old_dentry->d_inode); 4645 old_dir->i_ctime = old_dir->i_mtime = ctime; 4646 new_dir->i_ctime = new_dir->i_mtime = ctime; 4647 old_inode->i_ctime = ctime; 4648 4649 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, 4650 old_dentry->d_name.name, 4651 old_dentry->d_name.len); 4652 if (ret) 4653 goto out_fail; 4654 4655 if (new_inode) { 4656 new_inode->i_ctime = CURRENT_TIME; 4657 ret = btrfs_unlink_inode(trans, root, new_dir, 4658 new_dentry->d_inode, 4659 new_dentry->d_name.name, 4660 new_dentry->d_name.len); 4661 if (ret) 4662 goto out_fail; 4663 if (new_inode->i_nlink == 0) { 4664 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 4665 if (ret) 4666 goto out_fail; 4667 } 4668 4669 } 4670 ret = btrfs_set_inode_index(new_dir, &index); 4671 if (ret) 4672 goto out_fail; 4673 4674 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, 4675 old_inode, new_dentry->d_name.name, 4676 new_dentry->d_name.len, 1, index); 4677 if (ret) 4678 goto out_fail; 4679 4680 out_fail: 4681 btrfs_end_transaction_throttle(trans, root); 4682 out_unlock: 4683 return ret; 4684 } 4685 4686 /* 4687 * some fairly slow code that needs optimization. This walks the list 4688 * of all the inodes with pending delalloc and forces them to disk. 4689 */ 4690 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 4691 { 4692 struct list_head *head = &root->fs_info->delalloc_inodes; 4693 struct btrfs_inode *binode; 4694 struct inode *inode; 4695 4696 if (root->fs_info->sb->s_flags & MS_RDONLY) 4697 return -EROFS; 4698 4699 spin_lock(&root->fs_info->delalloc_lock); 4700 while (!list_empty(head)) { 4701 binode = list_entry(head->next, struct btrfs_inode, 4702 delalloc_inodes); 4703 inode = igrab(&binode->vfs_inode); 4704 if (!inode) 4705 list_del_init(&binode->delalloc_inodes); 4706 spin_unlock(&root->fs_info->delalloc_lock); 4707 if (inode) { 4708 filemap_flush(inode->i_mapping); 4709 iput(inode); 4710 } 4711 cond_resched(); 4712 spin_lock(&root->fs_info->delalloc_lock); 4713 } 4714 spin_unlock(&root->fs_info->delalloc_lock); 4715 4716 /* the filemap_flush will queue IO into the worker threads, but 4717 * we have to make sure the IO is actually started and that 4718 * ordered extents get created before we return 4719 */ 4720 atomic_inc(&root->fs_info->async_submit_draining); 4721 while (atomic_read(&root->fs_info->nr_async_submits) || 4722 atomic_read(&root->fs_info->async_delalloc_pages)) { 4723 wait_event(root->fs_info->async_submit_wait, 4724 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 4725 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 4726 } 4727 atomic_dec(&root->fs_info->async_submit_draining); 4728 return 0; 4729 } 4730 4731 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 4732 const char *symname) 4733 { 4734 struct btrfs_trans_handle *trans; 4735 struct btrfs_root *root = BTRFS_I(dir)->root; 4736 struct btrfs_path *path; 4737 struct btrfs_key key; 4738 struct inode *inode = NULL; 4739 int err; 4740 int drop_inode = 0; 4741 u64 objectid; 4742 u64 index = 0 ; 4743 int name_len; 4744 int datasize; 4745 unsigned long ptr; 4746 struct btrfs_file_extent_item *ei; 4747 struct extent_buffer *leaf; 4748 unsigned long nr = 0; 4749 4750 name_len = strlen(symname) + 1; 4751 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 4752 return -ENAMETOOLONG; 4753 4754 err = btrfs_check_free_space(root, 1, 0); 4755 if (err) 4756 goto out_fail; 4757 4758 trans = btrfs_start_transaction(root, 1); 4759 btrfs_set_trans_block_group(trans, dir); 4760 4761 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4762 if (err) { 4763 err = -ENOSPC; 4764 goto out_unlock; 4765 } 4766 4767 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4768 dentry->d_name.len, 4769 dentry->d_parent->d_inode->i_ino, objectid, 4770 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 4771 &index); 4772 err = PTR_ERR(inode); 4773 if (IS_ERR(inode)) 4774 goto out_unlock; 4775 4776 err = btrfs_init_inode_security(inode, dir); 4777 if (err) { 4778 drop_inode = 1; 4779 goto out_unlock; 4780 } 4781 4782 btrfs_set_trans_block_group(trans, inode); 4783 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4784 if (err) 4785 drop_inode = 1; 4786 else { 4787 inode->i_mapping->a_ops = &btrfs_aops; 4788 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4789 inode->i_fop = &btrfs_file_operations; 4790 inode->i_op = &btrfs_file_inode_operations; 4791 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4792 } 4793 dir->i_sb->s_dirt = 1; 4794 btrfs_update_inode_block_group(trans, inode); 4795 btrfs_update_inode_block_group(trans, dir); 4796 if (drop_inode) 4797 goto out_unlock; 4798 4799 path = btrfs_alloc_path(); 4800 BUG_ON(!path); 4801 key.objectid = inode->i_ino; 4802 key.offset = 0; 4803 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 4804 datasize = btrfs_file_extent_calc_inline_size(name_len); 4805 err = btrfs_insert_empty_item(trans, root, path, &key, 4806 datasize); 4807 if (err) { 4808 drop_inode = 1; 4809 goto out_unlock; 4810 } 4811 leaf = path->nodes[0]; 4812 ei = btrfs_item_ptr(leaf, path->slots[0], 4813 struct btrfs_file_extent_item); 4814 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 4815 btrfs_set_file_extent_type(leaf, ei, 4816 BTRFS_FILE_EXTENT_INLINE); 4817 btrfs_set_file_extent_encryption(leaf, ei, 0); 4818 btrfs_set_file_extent_compression(leaf, ei, 0); 4819 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 4820 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 4821 4822 ptr = btrfs_file_extent_inline_start(ei); 4823 write_extent_buffer(leaf, symname, ptr, name_len); 4824 btrfs_mark_buffer_dirty(leaf); 4825 btrfs_free_path(path); 4826 4827 inode->i_op = &btrfs_symlink_inode_operations; 4828 inode->i_mapping->a_ops = &btrfs_symlink_aops; 4829 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4830 inode_set_bytes(inode, name_len); 4831 btrfs_i_size_write(inode, name_len - 1); 4832 err = btrfs_update_inode(trans, root, inode); 4833 if (err) 4834 drop_inode = 1; 4835 4836 out_unlock: 4837 nr = trans->blocks_used; 4838 btrfs_end_transaction_throttle(trans, root); 4839 out_fail: 4840 if (drop_inode) { 4841 inode_dec_link_count(inode); 4842 iput(inode); 4843 } 4844 btrfs_btree_balance_dirty(root, nr); 4845 return err; 4846 } 4847 4848 static int prealloc_file_range(struct inode *inode, u64 start, u64 end, 4849 u64 alloc_hint, int mode) 4850 { 4851 struct btrfs_trans_handle *trans; 4852 struct btrfs_root *root = BTRFS_I(inode)->root; 4853 struct btrfs_key ins; 4854 u64 alloc_size; 4855 u64 cur_offset = start; 4856 u64 num_bytes = end - start; 4857 int ret = 0; 4858 4859 trans = btrfs_join_transaction(root, 1); 4860 BUG_ON(!trans); 4861 btrfs_set_trans_block_group(trans, inode); 4862 4863 while (num_bytes > 0) { 4864 alloc_size = min(num_bytes, root->fs_info->max_extent); 4865 ret = btrfs_reserve_extent(trans, root, alloc_size, 4866 root->sectorsize, 0, alloc_hint, 4867 (u64)-1, &ins, 1); 4868 if (ret) { 4869 WARN_ON(1); 4870 goto out; 4871 } 4872 ret = insert_reserved_file_extent(trans, inode, 4873 cur_offset, ins.objectid, 4874 ins.offset, ins.offset, 4875 ins.offset, 0, 0, 0, 4876 BTRFS_FILE_EXTENT_PREALLOC); 4877 BUG_ON(ret); 4878 num_bytes -= ins.offset; 4879 cur_offset += ins.offset; 4880 alloc_hint = ins.objectid + ins.offset; 4881 } 4882 out: 4883 if (cur_offset > start) { 4884 inode->i_ctime = CURRENT_TIME; 4885 btrfs_set_flag(inode, PREALLOC); 4886 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4887 cur_offset > i_size_read(inode)) 4888 btrfs_i_size_write(inode, cur_offset); 4889 ret = btrfs_update_inode(trans, root, inode); 4890 BUG_ON(ret); 4891 } 4892 4893 btrfs_end_transaction(trans, root); 4894 return ret; 4895 } 4896 4897 static long btrfs_fallocate(struct inode *inode, int mode, 4898 loff_t offset, loff_t len) 4899 { 4900 u64 cur_offset; 4901 u64 last_byte; 4902 u64 alloc_start; 4903 u64 alloc_end; 4904 u64 alloc_hint = 0; 4905 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 4906 struct extent_map *em; 4907 int ret; 4908 4909 alloc_start = offset & ~mask; 4910 alloc_end = (offset + len + mask) & ~mask; 4911 4912 mutex_lock(&inode->i_mutex); 4913 if (alloc_start > inode->i_size) { 4914 ret = btrfs_cont_expand(inode, alloc_start); 4915 if (ret) 4916 goto out; 4917 } 4918 4919 while (1) { 4920 struct btrfs_ordered_extent *ordered; 4921 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, 4922 alloc_end - 1, GFP_NOFS); 4923 ordered = btrfs_lookup_first_ordered_extent(inode, 4924 alloc_end - 1); 4925 if (ordered && 4926 ordered->file_offset + ordered->len > alloc_start && 4927 ordered->file_offset < alloc_end) { 4928 btrfs_put_ordered_extent(ordered); 4929 unlock_extent(&BTRFS_I(inode)->io_tree, 4930 alloc_start, alloc_end - 1, GFP_NOFS); 4931 btrfs_wait_ordered_range(inode, alloc_start, 4932 alloc_end - alloc_start); 4933 } else { 4934 if (ordered) 4935 btrfs_put_ordered_extent(ordered); 4936 break; 4937 } 4938 } 4939 4940 cur_offset = alloc_start; 4941 while (1) { 4942 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4943 alloc_end - cur_offset, 0); 4944 BUG_ON(IS_ERR(em) || !em); 4945 last_byte = min(extent_map_end(em), alloc_end); 4946 last_byte = (last_byte + mask) & ~mask; 4947 if (em->block_start == EXTENT_MAP_HOLE) { 4948 ret = prealloc_file_range(inode, cur_offset, 4949 last_byte, alloc_hint, mode); 4950 if (ret < 0) { 4951 free_extent_map(em); 4952 break; 4953 } 4954 } 4955 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 4956 alloc_hint = em->block_start; 4957 free_extent_map(em); 4958 4959 cur_offset = last_byte; 4960 if (cur_offset >= alloc_end) { 4961 ret = 0; 4962 break; 4963 } 4964 } 4965 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1, 4966 GFP_NOFS); 4967 out: 4968 mutex_unlock(&inode->i_mutex); 4969 return ret; 4970 } 4971 4972 static int btrfs_set_page_dirty(struct page *page) 4973 { 4974 return __set_page_dirty_nobuffers(page); 4975 } 4976 4977 static int btrfs_permission(struct inode *inode, int mask) 4978 { 4979 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE)) 4980 return -EACCES; 4981 return generic_permission(inode, mask, btrfs_check_acl); 4982 } 4983 4984 static struct inode_operations btrfs_dir_inode_operations = { 4985 .getattr = btrfs_getattr, 4986 .lookup = btrfs_lookup, 4987 .create = btrfs_create, 4988 .unlink = btrfs_unlink, 4989 .link = btrfs_link, 4990 .mkdir = btrfs_mkdir, 4991 .rmdir = btrfs_rmdir, 4992 .rename = btrfs_rename, 4993 .symlink = btrfs_symlink, 4994 .setattr = btrfs_setattr, 4995 .mknod = btrfs_mknod, 4996 .setxattr = btrfs_setxattr, 4997 .getxattr = btrfs_getxattr, 4998 .listxattr = btrfs_listxattr, 4999 .removexattr = btrfs_removexattr, 5000 .permission = btrfs_permission, 5001 }; 5002 static struct inode_operations btrfs_dir_ro_inode_operations = { 5003 .lookup = btrfs_lookup, 5004 .permission = btrfs_permission, 5005 }; 5006 static struct file_operations btrfs_dir_file_operations = { 5007 .llseek = generic_file_llseek, 5008 .read = generic_read_dir, 5009 .readdir = btrfs_real_readdir, 5010 .unlocked_ioctl = btrfs_ioctl, 5011 #ifdef CONFIG_COMPAT 5012 .compat_ioctl = btrfs_ioctl, 5013 #endif 5014 .release = btrfs_release_file, 5015 .fsync = btrfs_sync_file, 5016 }; 5017 5018 static struct extent_io_ops btrfs_extent_io_ops = { 5019 .fill_delalloc = run_delalloc_range, 5020 .submit_bio_hook = btrfs_submit_bio_hook, 5021 .merge_bio_hook = btrfs_merge_bio_hook, 5022 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 5023 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 5024 .writepage_start_hook = btrfs_writepage_start_hook, 5025 .readpage_io_failed_hook = btrfs_io_failed_hook, 5026 .set_bit_hook = btrfs_set_bit_hook, 5027 .clear_bit_hook = btrfs_clear_bit_hook, 5028 }; 5029 5030 /* 5031 * btrfs doesn't support the bmap operation because swapfiles 5032 * use bmap to make a mapping of extents in the file. They assume 5033 * these extents won't change over the life of the file and they 5034 * use the bmap result to do IO directly to the drive. 5035 * 5036 * the btrfs bmap call would return logical addresses that aren't 5037 * suitable for IO and they also will change frequently as COW 5038 * operations happen. So, swapfile + btrfs == corruption. 5039 * 5040 * For now we're avoiding this by dropping bmap. 5041 */ 5042 static struct address_space_operations btrfs_aops = { 5043 .readpage = btrfs_readpage, 5044 .writepage = btrfs_writepage, 5045 .writepages = btrfs_writepages, 5046 .readpages = btrfs_readpages, 5047 .sync_page = block_sync_page, 5048 .direct_IO = btrfs_direct_IO, 5049 .invalidatepage = btrfs_invalidatepage, 5050 .releasepage = btrfs_releasepage, 5051 .set_page_dirty = btrfs_set_page_dirty, 5052 }; 5053 5054 static struct address_space_operations btrfs_symlink_aops = { 5055 .readpage = btrfs_readpage, 5056 .writepage = btrfs_writepage, 5057 .invalidatepage = btrfs_invalidatepage, 5058 .releasepage = btrfs_releasepage, 5059 }; 5060 5061 static struct inode_operations btrfs_file_inode_operations = { 5062 .truncate = btrfs_truncate, 5063 .getattr = btrfs_getattr, 5064 .setattr = btrfs_setattr, 5065 .setxattr = btrfs_setxattr, 5066 .getxattr = btrfs_getxattr, 5067 .listxattr = btrfs_listxattr, 5068 .removexattr = btrfs_removexattr, 5069 .permission = btrfs_permission, 5070 .fallocate = btrfs_fallocate, 5071 .fiemap = btrfs_fiemap, 5072 }; 5073 static struct inode_operations btrfs_special_inode_operations = { 5074 .getattr = btrfs_getattr, 5075 .setattr = btrfs_setattr, 5076 .permission = btrfs_permission, 5077 .setxattr = btrfs_setxattr, 5078 .getxattr = btrfs_getxattr, 5079 .listxattr = btrfs_listxattr, 5080 .removexattr = btrfs_removexattr, 5081 }; 5082 static struct inode_operations btrfs_symlink_inode_operations = { 5083 .readlink = generic_readlink, 5084 .follow_link = page_follow_link_light, 5085 .put_link = page_put_link, 5086 .permission = btrfs_permission, 5087 .setxattr = btrfs_setxattr, 5088 .getxattr = btrfs_getxattr, 5089 .listxattr = btrfs_listxattr, 5090 .removexattr = btrfs_removexattr, 5091 }; 5092