xref: /openbmc/linux/fs/btrfs/inode.c (revision b335b0034e252e79ec2e9c6697f5d663c4627bec)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69 
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75 
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 				   struct page *locked_page,
91 				   u64 start, u64 end, int *page_started,
92 				   unsigned long *nr_written, int unlock);
93 
94 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
95 {
96 	int err;
97 
98 	err = btrfs_init_acl(inode, dir);
99 	if (!err)
100 		err = btrfs_xattr_security_init(inode, dir);
101 	return err;
102 }
103 
104 /*
105  * a very lame attempt at stopping writes when the FS is 85% full.  There
106  * are countless ways this is incorrect, but it is better than nothing.
107  */
108 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
109 			   int for_del)
110 {
111 	u64 total;
112 	u64 used;
113 	u64 thresh;
114 	int ret = 0;
115 
116 	spin_lock(&root->fs_info->delalloc_lock);
117 	total = btrfs_super_total_bytes(&root->fs_info->super_copy);
118 	used = btrfs_super_bytes_used(&root->fs_info->super_copy);
119 	if (for_del)
120 		thresh = total * 90;
121 	else
122 		thresh = total * 85;
123 
124 	do_div(thresh, 100);
125 
126 	if (used + root->fs_info->delalloc_bytes + num_required > thresh)
127 		ret = -ENOSPC;
128 	spin_unlock(&root->fs_info->delalloc_lock);
129 	return ret;
130 }
131 
132 /*
133  * this does all the hard work for inserting an inline extent into
134  * the btree.  The caller should have done a btrfs_drop_extents so that
135  * no overlapping inline items exist in the btree
136  */
137 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
138 				struct btrfs_root *root, struct inode *inode,
139 				u64 start, size_t size, size_t compressed_size,
140 				struct page **compressed_pages)
141 {
142 	struct btrfs_key key;
143 	struct btrfs_path *path;
144 	struct extent_buffer *leaf;
145 	struct page *page = NULL;
146 	char *kaddr;
147 	unsigned long ptr;
148 	struct btrfs_file_extent_item *ei;
149 	int err = 0;
150 	int ret;
151 	size_t cur_size = size;
152 	size_t datasize;
153 	unsigned long offset;
154 	int use_compress = 0;
155 
156 	if (compressed_size && compressed_pages) {
157 		use_compress = 1;
158 		cur_size = compressed_size;
159 	}
160 
161 	path = btrfs_alloc_path();
162 	if (!path)
163 		return -ENOMEM;
164 
165 	btrfs_set_trans_block_group(trans, inode);
166 
167 	key.objectid = inode->i_ino;
168 	key.offset = start;
169 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
170 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
171 
172 	inode_add_bytes(inode, size);
173 	ret = btrfs_insert_empty_item(trans, root, path, &key,
174 				      datasize);
175 	BUG_ON(ret);
176 	if (ret) {
177 		err = ret;
178 		goto fail;
179 	}
180 	leaf = path->nodes[0];
181 	ei = btrfs_item_ptr(leaf, path->slots[0],
182 			    struct btrfs_file_extent_item);
183 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
184 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
185 	btrfs_set_file_extent_encryption(leaf, ei, 0);
186 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
187 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
188 	ptr = btrfs_file_extent_inline_start(ei);
189 
190 	if (use_compress) {
191 		struct page *cpage;
192 		int i = 0;
193 		while (compressed_size > 0) {
194 			cpage = compressed_pages[i];
195 			cur_size = min_t(unsigned long, compressed_size,
196 				       PAGE_CACHE_SIZE);
197 
198 			kaddr = kmap(cpage);
199 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
200 			kunmap(cpage);
201 
202 			i++;
203 			ptr += cur_size;
204 			compressed_size -= cur_size;
205 		}
206 		btrfs_set_file_extent_compression(leaf, ei,
207 						  BTRFS_COMPRESS_ZLIB);
208 	} else {
209 		page = find_get_page(inode->i_mapping,
210 				     start >> PAGE_CACHE_SHIFT);
211 		btrfs_set_file_extent_compression(leaf, ei, 0);
212 		kaddr = kmap_atomic(page, KM_USER0);
213 		offset = start & (PAGE_CACHE_SIZE - 1);
214 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
215 		kunmap_atomic(kaddr, KM_USER0);
216 		page_cache_release(page);
217 	}
218 	btrfs_mark_buffer_dirty(leaf);
219 	btrfs_free_path(path);
220 
221 	BTRFS_I(inode)->disk_i_size = inode->i_size;
222 	btrfs_update_inode(trans, root, inode);
223 	return 0;
224 fail:
225 	btrfs_free_path(path);
226 	return err;
227 }
228 
229 
230 /*
231  * conditionally insert an inline extent into the file.  This
232  * does the checks required to make sure the data is small enough
233  * to fit as an inline extent.
234  */
235 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
236 				 struct btrfs_root *root,
237 				 struct inode *inode, u64 start, u64 end,
238 				 size_t compressed_size,
239 				 struct page **compressed_pages)
240 {
241 	u64 isize = i_size_read(inode);
242 	u64 actual_end = min(end + 1, isize);
243 	u64 inline_len = actual_end - start;
244 	u64 aligned_end = (end + root->sectorsize - 1) &
245 			~((u64)root->sectorsize - 1);
246 	u64 hint_byte;
247 	u64 data_len = inline_len;
248 	int ret;
249 
250 	if (compressed_size)
251 		data_len = compressed_size;
252 
253 	if (start > 0 ||
254 	    actual_end >= PAGE_CACHE_SIZE ||
255 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
256 	    (!compressed_size &&
257 	    (actual_end & (root->sectorsize - 1)) == 0) ||
258 	    end + 1 < isize ||
259 	    data_len > root->fs_info->max_inline) {
260 		return 1;
261 	}
262 
263 	ret = btrfs_drop_extents(trans, root, inode, start,
264 				 aligned_end, start, &hint_byte);
265 	BUG_ON(ret);
266 
267 	if (isize > actual_end)
268 		inline_len = min_t(u64, isize, actual_end);
269 	ret = insert_inline_extent(trans, root, inode, start,
270 				   inline_len, compressed_size,
271 				   compressed_pages);
272 	BUG_ON(ret);
273 	btrfs_drop_extent_cache(inode, start, aligned_end, 0);
274 	return 0;
275 }
276 
277 struct async_extent {
278 	u64 start;
279 	u64 ram_size;
280 	u64 compressed_size;
281 	struct page **pages;
282 	unsigned long nr_pages;
283 	struct list_head list;
284 };
285 
286 struct async_cow {
287 	struct inode *inode;
288 	struct btrfs_root *root;
289 	struct page *locked_page;
290 	u64 start;
291 	u64 end;
292 	struct list_head extents;
293 	struct btrfs_work work;
294 };
295 
296 static noinline int add_async_extent(struct async_cow *cow,
297 				     u64 start, u64 ram_size,
298 				     u64 compressed_size,
299 				     struct page **pages,
300 				     unsigned long nr_pages)
301 {
302 	struct async_extent *async_extent;
303 
304 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
305 	async_extent->start = start;
306 	async_extent->ram_size = ram_size;
307 	async_extent->compressed_size = compressed_size;
308 	async_extent->pages = pages;
309 	async_extent->nr_pages = nr_pages;
310 	list_add_tail(&async_extent->list, &cow->extents);
311 	return 0;
312 }
313 
314 /*
315  * we create compressed extents in two phases.  The first
316  * phase compresses a range of pages that have already been
317  * locked (both pages and state bits are locked).
318  *
319  * This is done inside an ordered work queue, and the compression
320  * is spread across many cpus.  The actual IO submission is step
321  * two, and the ordered work queue takes care of making sure that
322  * happens in the same order things were put onto the queue by
323  * writepages and friends.
324  *
325  * If this code finds it can't get good compression, it puts an
326  * entry onto the work queue to write the uncompressed bytes.  This
327  * makes sure that both compressed inodes and uncompressed inodes
328  * are written in the same order that pdflush sent them down.
329  */
330 static noinline int compress_file_range(struct inode *inode,
331 					struct page *locked_page,
332 					u64 start, u64 end,
333 					struct async_cow *async_cow,
334 					int *num_added)
335 {
336 	struct btrfs_root *root = BTRFS_I(inode)->root;
337 	struct btrfs_trans_handle *trans;
338 	u64 num_bytes;
339 	u64 orig_start;
340 	u64 disk_num_bytes;
341 	u64 blocksize = root->sectorsize;
342 	u64 actual_end;
343 	u64 isize = i_size_read(inode);
344 	int ret = 0;
345 	struct page **pages = NULL;
346 	unsigned long nr_pages;
347 	unsigned long nr_pages_ret = 0;
348 	unsigned long total_compressed = 0;
349 	unsigned long total_in = 0;
350 	unsigned long max_compressed = 128 * 1024;
351 	unsigned long max_uncompressed = 128 * 1024;
352 	int i;
353 	int will_compress;
354 
355 	orig_start = start;
356 
357 	actual_end = min_t(u64, isize, end + 1);
358 again:
359 	will_compress = 0;
360 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
361 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
362 
363 	/*
364 	 * we don't want to send crud past the end of i_size through
365 	 * compression, that's just a waste of CPU time.  So, if the
366 	 * end of the file is before the start of our current
367 	 * requested range of bytes, we bail out to the uncompressed
368 	 * cleanup code that can deal with all of this.
369 	 *
370 	 * It isn't really the fastest way to fix things, but this is a
371 	 * very uncommon corner.
372 	 */
373 	if (actual_end <= start)
374 		goto cleanup_and_bail_uncompressed;
375 
376 	total_compressed = actual_end - start;
377 
378 	/* we want to make sure that amount of ram required to uncompress
379 	 * an extent is reasonable, so we limit the total size in ram
380 	 * of a compressed extent to 128k.  This is a crucial number
381 	 * because it also controls how easily we can spread reads across
382 	 * cpus for decompression.
383 	 *
384 	 * We also want to make sure the amount of IO required to do
385 	 * a random read is reasonably small, so we limit the size of
386 	 * a compressed extent to 128k.
387 	 */
388 	total_compressed = min(total_compressed, max_uncompressed);
389 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
390 	num_bytes = max(blocksize,  num_bytes);
391 	disk_num_bytes = num_bytes;
392 	total_in = 0;
393 	ret = 0;
394 
395 	/*
396 	 * we do compression for mount -o compress and when the
397 	 * inode has not been flagged as nocompress.  This flag can
398 	 * change at any time if we discover bad compression ratios.
399 	 */
400 	if (!btrfs_test_flag(inode, NOCOMPRESS) &&
401 	    btrfs_test_opt(root, COMPRESS)) {
402 		WARN_ON(pages);
403 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
404 
405 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
406 						total_compressed, pages,
407 						nr_pages, &nr_pages_ret,
408 						&total_in,
409 						&total_compressed,
410 						max_compressed);
411 
412 		if (!ret) {
413 			unsigned long offset = total_compressed &
414 				(PAGE_CACHE_SIZE - 1);
415 			struct page *page = pages[nr_pages_ret - 1];
416 			char *kaddr;
417 
418 			/* zero the tail end of the last page, we might be
419 			 * sending it down to disk
420 			 */
421 			if (offset) {
422 				kaddr = kmap_atomic(page, KM_USER0);
423 				memset(kaddr + offset, 0,
424 				       PAGE_CACHE_SIZE - offset);
425 				kunmap_atomic(kaddr, KM_USER0);
426 			}
427 			will_compress = 1;
428 		}
429 	}
430 	if (start == 0) {
431 		trans = btrfs_join_transaction(root, 1);
432 		BUG_ON(!trans);
433 		btrfs_set_trans_block_group(trans, inode);
434 
435 		/* lets try to make an inline extent */
436 		if (ret || total_in < (actual_end - start)) {
437 			/* we didn't compress the entire range, try
438 			 * to make an uncompressed inline extent.
439 			 */
440 			ret = cow_file_range_inline(trans, root, inode,
441 						    start, end, 0, NULL);
442 		} else {
443 			/* try making a compressed inline extent */
444 			ret = cow_file_range_inline(trans, root, inode,
445 						    start, end,
446 						    total_compressed, pages);
447 		}
448 		btrfs_end_transaction(trans, root);
449 		if (ret == 0) {
450 			/*
451 			 * inline extent creation worked, we don't need
452 			 * to create any more async work items.  Unlock
453 			 * and free up our temp pages.
454 			 */
455 			extent_clear_unlock_delalloc(inode,
456 						     &BTRFS_I(inode)->io_tree,
457 						     start, end, NULL, 1, 0,
458 						     0, 1, 1, 1);
459 			ret = 0;
460 			goto free_pages_out;
461 		}
462 	}
463 
464 	if (will_compress) {
465 		/*
466 		 * we aren't doing an inline extent round the compressed size
467 		 * up to a block size boundary so the allocator does sane
468 		 * things
469 		 */
470 		total_compressed = (total_compressed + blocksize - 1) &
471 			~(blocksize - 1);
472 
473 		/*
474 		 * one last check to make sure the compression is really a
475 		 * win, compare the page count read with the blocks on disk
476 		 */
477 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
478 			~(PAGE_CACHE_SIZE - 1);
479 		if (total_compressed >= total_in) {
480 			will_compress = 0;
481 		} else {
482 			disk_num_bytes = total_compressed;
483 			num_bytes = total_in;
484 		}
485 	}
486 	if (!will_compress && pages) {
487 		/*
488 		 * the compression code ran but failed to make things smaller,
489 		 * free any pages it allocated and our page pointer array
490 		 */
491 		for (i = 0; i < nr_pages_ret; i++) {
492 			WARN_ON(pages[i]->mapping);
493 			page_cache_release(pages[i]);
494 		}
495 		kfree(pages);
496 		pages = NULL;
497 		total_compressed = 0;
498 		nr_pages_ret = 0;
499 
500 		/* flag the file so we don't compress in the future */
501 		btrfs_set_flag(inode, NOCOMPRESS);
502 	}
503 	if (will_compress) {
504 		*num_added += 1;
505 
506 		/* the async work queues will take care of doing actual
507 		 * allocation on disk for these compressed pages,
508 		 * and will submit them to the elevator.
509 		 */
510 		add_async_extent(async_cow, start, num_bytes,
511 				 total_compressed, pages, nr_pages_ret);
512 
513 		if (start + num_bytes < end && start + num_bytes < actual_end) {
514 			start += num_bytes;
515 			pages = NULL;
516 			cond_resched();
517 			goto again;
518 		}
519 	} else {
520 cleanup_and_bail_uncompressed:
521 		/*
522 		 * No compression, but we still need to write the pages in
523 		 * the file we've been given so far.  redirty the locked
524 		 * page if it corresponds to our extent and set things up
525 		 * for the async work queue to run cow_file_range to do
526 		 * the normal delalloc dance
527 		 */
528 		if (page_offset(locked_page) >= start &&
529 		    page_offset(locked_page) <= end) {
530 			__set_page_dirty_nobuffers(locked_page);
531 			/* unlocked later on in the async handlers */
532 		}
533 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
534 		*num_added += 1;
535 	}
536 
537 out:
538 	return 0;
539 
540 free_pages_out:
541 	for (i = 0; i < nr_pages_ret; i++) {
542 		WARN_ON(pages[i]->mapping);
543 		page_cache_release(pages[i]);
544 	}
545 	kfree(pages);
546 
547 	goto out;
548 }
549 
550 /*
551  * phase two of compressed writeback.  This is the ordered portion
552  * of the code, which only gets called in the order the work was
553  * queued.  We walk all the async extents created by compress_file_range
554  * and send them down to the disk.
555  */
556 static noinline int submit_compressed_extents(struct inode *inode,
557 					      struct async_cow *async_cow)
558 {
559 	struct async_extent *async_extent;
560 	u64 alloc_hint = 0;
561 	struct btrfs_trans_handle *trans;
562 	struct btrfs_key ins;
563 	struct extent_map *em;
564 	struct btrfs_root *root = BTRFS_I(inode)->root;
565 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566 	struct extent_io_tree *io_tree;
567 	int ret;
568 
569 	if (list_empty(&async_cow->extents))
570 		return 0;
571 
572 	trans = btrfs_join_transaction(root, 1);
573 
574 	while (!list_empty(&async_cow->extents)) {
575 		async_extent = list_entry(async_cow->extents.next,
576 					  struct async_extent, list);
577 		list_del(&async_extent->list);
578 
579 		io_tree = &BTRFS_I(inode)->io_tree;
580 
581 		/* did the compression code fall back to uncompressed IO? */
582 		if (!async_extent->pages) {
583 			int page_started = 0;
584 			unsigned long nr_written = 0;
585 
586 			lock_extent(io_tree, async_extent->start,
587 				    async_extent->start +
588 				    async_extent->ram_size - 1, GFP_NOFS);
589 
590 			/* allocate blocks */
591 			cow_file_range(inode, async_cow->locked_page,
592 				       async_extent->start,
593 				       async_extent->start +
594 				       async_extent->ram_size - 1,
595 				       &page_started, &nr_written, 0);
596 
597 			/*
598 			 * if page_started, cow_file_range inserted an
599 			 * inline extent and took care of all the unlocking
600 			 * and IO for us.  Otherwise, we need to submit
601 			 * all those pages down to the drive.
602 			 */
603 			if (!page_started)
604 				extent_write_locked_range(io_tree,
605 						  inode, async_extent->start,
606 						  async_extent->start +
607 						  async_extent->ram_size - 1,
608 						  btrfs_get_extent,
609 						  WB_SYNC_ALL);
610 			kfree(async_extent);
611 			cond_resched();
612 			continue;
613 		}
614 
615 		lock_extent(io_tree, async_extent->start,
616 			    async_extent->start + async_extent->ram_size - 1,
617 			    GFP_NOFS);
618 		/*
619 		 * here we're doing allocation and writeback of the
620 		 * compressed pages
621 		 */
622 		btrfs_drop_extent_cache(inode, async_extent->start,
623 					async_extent->start +
624 					async_extent->ram_size - 1, 0);
625 
626 		ret = btrfs_reserve_extent(trans, root,
627 					   async_extent->compressed_size,
628 					   async_extent->compressed_size,
629 					   0, alloc_hint,
630 					   (u64)-1, &ins, 1);
631 		BUG_ON(ret);
632 		em = alloc_extent_map(GFP_NOFS);
633 		em->start = async_extent->start;
634 		em->len = async_extent->ram_size;
635 		em->orig_start = em->start;
636 
637 		em->block_start = ins.objectid;
638 		em->block_len = ins.offset;
639 		em->bdev = root->fs_info->fs_devices->latest_bdev;
640 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
641 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
642 
643 		while (1) {
644 			spin_lock(&em_tree->lock);
645 			ret = add_extent_mapping(em_tree, em);
646 			spin_unlock(&em_tree->lock);
647 			if (ret != -EEXIST) {
648 				free_extent_map(em);
649 				break;
650 			}
651 			btrfs_drop_extent_cache(inode, async_extent->start,
652 						async_extent->start +
653 						async_extent->ram_size - 1, 0);
654 		}
655 
656 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
657 					       ins.objectid,
658 					       async_extent->ram_size,
659 					       ins.offset,
660 					       BTRFS_ORDERED_COMPRESSED);
661 		BUG_ON(ret);
662 
663 		btrfs_end_transaction(trans, root);
664 
665 		/*
666 		 * clear dirty, set writeback and unlock the pages.
667 		 */
668 		extent_clear_unlock_delalloc(inode,
669 					     &BTRFS_I(inode)->io_tree,
670 					     async_extent->start,
671 					     async_extent->start +
672 					     async_extent->ram_size - 1,
673 					     NULL, 1, 1, 0, 1, 1, 0);
674 
675 		ret = btrfs_submit_compressed_write(inode,
676 				    async_extent->start,
677 				    async_extent->ram_size,
678 				    ins.objectid,
679 				    ins.offset, async_extent->pages,
680 				    async_extent->nr_pages);
681 
682 		BUG_ON(ret);
683 		trans = btrfs_join_transaction(root, 1);
684 		alloc_hint = ins.objectid + ins.offset;
685 		kfree(async_extent);
686 		cond_resched();
687 	}
688 
689 	btrfs_end_transaction(trans, root);
690 	return 0;
691 }
692 
693 /*
694  * when extent_io.c finds a delayed allocation range in the file,
695  * the call backs end up in this code.  The basic idea is to
696  * allocate extents on disk for the range, and create ordered data structs
697  * in ram to track those extents.
698  *
699  * locked_page is the page that writepage had locked already.  We use
700  * it to make sure we don't do extra locks or unlocks.
701  *
702  * *page_started is set to one if we unlock locked_page and do everything
703  * required to start IO on it.  It may be clean and already done with
704  * IO when we return.
705  */
706 static noinline int cow_file_range(struct inode *inode,
707 				   struct page *locked_page,
708 				   u64 start, u64 end, int *page_started,
709 				   unsigned long *nr_written,
710 				   int unlock)
711 {
712 	struct btrfs_root *root = BTRFS_I(inode)->root;
713 	struct btrfs_trans_handle *trans;
714 	u64 alloc_hint = 0;
715 	u64 num_bytes;
716 	unsigned long ram_size;
717 	u64 disk_num_bytes;
718 	u64 cur_alloc_size;
719 	u64 blocksize = root->sectorsize;
720 	u64 actual_end;
721 	u64 isize = i_size_read(inode);
722 	struct btrfs_key ins;
723 	struct extent_map *em;
724 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 	int ret = 0;
726 
727 	trans = btrfs_join_transaction(root, 1);
728 	BUG_ON(!trans);
729 	btrfs_set_trans_block_group(trans, inode);
730 
731 	actual_end = min_t(u64, isize, end + 1);
732 
733 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
734 	num_bytes = max(blocksize,  num_bytes);
735 	disk_num_bytes = num_bytes;
736 	ret = 0;
737 
738 	if (start == 0) {
739 		/* lets try to make an inline extent */
740 		ret = cow_file_range_inline(trans, root, inode,
741 					    start, end, 0, NULL);
742 		if (ret == 0) {
743 			extent_clear_unlock_delalloc(inode,
744 						     &BTRFS_I(inode)->io_tree,
745 						     start, end, NULL, 1, 1,
746 						     1, 1, 1, 1);
747 			*nr_written = *nr_written +
748 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
749 			*page_started = 1;
750 			ret = 0;
751 			goto out;
752 		}
753 	}
754 
755 	BUG_ON(disk_num_bytes >
756 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
757 
758 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
759 
760 	while (disk_num_bytes > 0) {
761 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
762 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
763 					   root->sectorsize, 0, alloc_hint,
764 					   (u64)-1, &ins, 1);
765 		BUG_ON(ret);
766 
767 		em = alloc_extent_map(GFP_NOFS);
768 		em->start = start;
769 		em->orig_start = em->start;
770 
771 		ram_size = ins.offset;
772 		em->len = ins.offset;
773 
774 		em->block_start = ins.objectid;
775 		em->block_len = ins.offset;
776 		em->bdev = root->fs_info->fs_devices->latest_bdev;
777 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
778 
779 		while (1) {
780 			spin_lock(&em_tree->lock);
781 			ret = add_extent_mapping(em_tree, em);
782 			spin_unlock(&em_tree->lock);
783 			if (ret != -EEXIST) {
784 				free_extent_map(em);
785 				break;
786 			}
787 			btrfs_drop_extent_cache(inode, start,
788 						start + ram_size - 1, 0);
789 		}
790 
791 		cur_alloc_size = ins.offset;
792 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
793 					       ram_size, cur_alloc_size, 0);
794 		BUG_ON(ret);
795 
796 		if (root->root_key.objectid ==
797 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
798 			ret = btrfs_reloc_clone_csums(inode, start,
799 						      cur_alloc_size);
800 			BUG_ON(ret);
801 		}
802 
803 		if (disk_num_bytes < cur_alloc_size)
804 			break;
805 
806 		/* we're not doing compressed IO, don't unlock the first
807 		 * page (which the caller expects to stay locked), don't
808 		 * clear any dirty bits and don't set any writeback bits
809 		 */
810 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
811 					     start, start + ram_size - 1,
812 					     locked_page, unlock, 1,
813 					     1, 0, 0, 0);
814 		disk_num_bytes -= cur_alloc_size;
815 		num_bytes -= cur_alloc_size;
816 		alloc_hint = ins.objectid + ins.offset;
817 		start += cur_alloc_size;
818 	}
819 out:
820 	ret = 0;
821 	btrfs_end_transaction(trans, root);
822 
823 	return ret;
824 }
825 
826 /*
827  * work queue call back to started compression on a file and pages
828  */
829 static noinline void async_cow_start(struct btrfs_work *work)
830 {
831 	struct async_cow *async_cow;
832 	int num_added = 0;
833 	async_cow = container_of(work, struct async_cow, work);
834 
835 	compress_file_range(async_cow->inode, async_cow->locked_page,
836 			    async_cow->start, async_cow->end, async_cow,
837 			    &num_added);
838 	if (num_added == 0)
839 		async_cow->inode = NULL;
840 }
841 
842 /*
843  * work queue call back to submit previously compressed pages
844  */
845 static noinline void async_cow_submit(struct btrfs_work *work)
846 {
847 	struct async_cow *async_cow;
848 	struct btrfs_root *root;
849 	unsigned long nr_pages;
850 
851 	async_cow = container_of(work, struct async_cow, work);
852 
853 	root = async_cow->root;
854 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
855 		PAGE_CACHE_SHIFT;
856 
857 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
858 
859 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
860 	    5 * 1042 * 1024 &&
861 	    waitqueue_active(&root->fs_info->async_submit_wait))
862 		wake_up(&root->fs_info->async_submit_wait);
863 
864 	if (async_cow->inode)
865 		submit_compressed_extents(async_cow->inode, async_cow);
866 }
867 
868 static noinline void async_cow_free(struct btrfs_work *work)
869 {
870 	struct async_cow *async_cow;
871 	async_cow = container_of(work, struct async_cow, work);
872 	kfree(async_cow);
873 }
874 
875 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
876 				u64 start, u64 end, int *page_started,
877 				unsigned long *nr_written)
878 {
879 	struct async_cow *async_cow;
880 	struct btrfs_root *root = BTRFS_I(inode)->root;
881 	unsigned long nr_pages;
882 	u64 cur_end;
883 	int limit = 10 * 1024 * 1042;
884 
885 	if (!btrfs_test_opt(root, COMPRESS)) {
886 		return cow_file_range(inode, locked_page, start, end,
887 				      page_started, nr_written, 1);
888 	}
889 
890 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
891 			 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
892 	while (start < end) {
893 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
894 		async_cow->inode = inode;
895 		async_cow->root = root;
896 		async_cow->locked_page = locked_page;
897 		async_cow->start = start;
898 
899 		if (btrfs_test_flag(inode, NOCOMPRESS))
900 			cur_end = end;
901 		else
902 			cur_end = min(end, start + 512 * 1024 - 1);
903 
904 		async_cow->end = cur_end;
905 		INIT_LIST_HEAD(&async_cow->extents);
906 
907 		async_cow->work.func = async_cow_start;
908 		async_cow->work.ordered_func = async_cow_submit;
909 		async_cow->work.ordered_free = async_cow_free;
910 		async_cow->work.flags = 0;
911 
912 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
913 			PAGE_CACHE_SHIFT;
914 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
915 
916 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
917 				   &async_cow->work);
918 
919 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
920 			wait_event(root->fs_info->async_submit_wait,
921 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
922 			    limit));
923 		}
924 
925 		while (atomic_read(&root->fs_info->async_submit_draining) &&
926 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
927 			wait_event(root->fs_info->async_submit_wait,
928 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
929 			   0));
930 		}
931 
932 		*nr_written += nr_pages;
933 		start = cur_end + 1;
934 	}
935 	*page_started = 1;
936 	return 0;
937 }
938 
939 static noinline int csum_exist_in_range(struct btrfs_root *root,
940 					u64 bytenr, u64 num_bytes)
941 {
942 	int ret;
943 	struct btrfs_ordered_sum *sums;
944 	LIST_HEAD(list);
945 
946 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
947 				       bytenr + num_bytes - 1, &list);
948 	if (ret == 0 && list_empty(&list))
949 		return 0;
950 
951 	while (!list_empty(&list)) {
952 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
953 		list_del(&sums->list);
954 		kfree(sums);
955 	}
956 	return 1;
957 }
958 
959 /*
960  * when nowcow writeback call back.  This checks for snapshots or COW copies
961  * of the extents that exist in the file, and COWs the file as required.
962  *
963  * If no cow copies or snapshots exist, we write directly to the existing
964  * blocks on disk
965  */
966 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
967 			      u64 start, u64 end, int *page_started, int force,
968 			      unsigned long *nr_written)
969 {
970 	struct btrfs_root *root = BTRFS_I(inode)->root;
971 	struct btrfs_trans_handle *trans;
972 	struct extent_buffer *leaf;
973 	struct btrfs_path *path;
974 	struct btrfs_file_extent_item *fi;
975 	struct btrfs_key found_key;
976 	u64 cow_start;
977 	u64 cur_offset;
978 	u64 extent_end;
979 	u64 disk_bytenr;
980 	u64 num_bytes;
981 	int extent_type;
982 	int ret;
983 	int type;
984 	int nocow;
985 	int check_prev = 1;
986 
987 	path = btrfs_alloc_path();
988 	BUG_ON(!path);
989 	trans = btrfs_join_transaction(root, 1);
990 	BUG_ON(!trans);
991 
992 	cow_start = (u64)-1;
993 	cur_offset = start;
994 	while (1) {
995 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
996 					       cur_offset, 0);
997 		BUG_ON(ret < 0);
998 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
999 			leaf = path->nodes[0];
1000 			btrfs_item_key_to_cpu(leaf, &found_key,
1001 					      path->slots[0] - 1);
1002 			if (found_key.objectid == inode->i_ino &&
1003 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1004 				path->slots[0]--;
1005 		}
1006 		check_prev = 0;
1007 next_slot:
1008 		leaf = path->nodes[0];
1009 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1010 			ret = btrfs_next_leaf(root, path);
1011 			if (ret < 0)
1012 				BUG_ON(1);
1013 			if (ret > 0)
1014 				break;
1015 			leaf = path->nodes[0];
1016 		}
1017 
1018 		nocow = 0;
1019 		disk_bytenr = 0;
1020 		num_bytes = 0;
1021 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1022 
1023 		if (found_key.objectid > inode->i_ino ||
1024 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1025 		    found_key.offset > end)
1026 			break;
1027 
1028 		if (found_key.offset > cur_offset) {
1029 			extent_end = found_key.offset;
1030 			goto out_check;
1031 		}
1032 
1033 		fi = btrfs_item_ptr(leaf, path->slots[0],
1034 				    struct btrfs_file_extent_item);
1035 		extent_type = btrfs_file_extent_type(leaf, fi);
1036 
1037 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1038 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1039 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1040 			extent_end = found_key.offset +
1041 				btrfs_file_extent_num_bytes(leaf, fi);
1042 			if (extent_end <= start) {
1043 				path->slots[0]++;
1044 				goto next_slot;
1045 			}
1046 			if (disk_bytenr == 0)
1047 				goto out_check;
1048 			if (btrfs_file_extent_compression(leaf, fi) ||
1049 			    btrfs_file_extent_encryption(leaf, fi) ||
1050 			    btrfs_file_extent_other_encoding(leaf, fi))
1051 				goto out_check;
1052 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1053 				goto out_check;
1054 			if (btrfs_extent_readonly(root, disk_bytenr))
1055 				goto out_check;
1056 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1057 						  disk_bytenr))
1058 				goto out_check;
1059 			disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1060 			disk_bytenr += cur_offset - found_key.offset;
1061 			num_bytes = min(end + 1, extent_end) - cur_offset;
1062 			/*
1063 			 * force cow if csum exists in the range.
1064 			 * this ensure that csum for a given extent are
1065 			 * either valid or do not exist.
1066 			 */
1067 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1068 				goto out_check;
1069 			nocow = 1;
1070 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1071 			extent_end = found_key.offset +
1072 				btrfs_file_extent_inline_len(leaf, fi);
1073 			extent_end = ALIGN(extent_end, root->sectorsize);
1074 		} else {
1075 			BUG_ON(1);
1076 		}
1077 out_check:
1078 		if (extent_end <= start) {
1079 			path->slots[0]++;
1080 			goto next_slot;
1081 		}
1082 		if (!nocow) {
1083 			if (cow_start == (u64)-1)
1084 				cow_start = cur_offset;
1085 			cur_offset = extent_end;
1086 			if (cur_offset > end)
1087 				break;
1088 			path->slots[0]++;
1089 			goto next_slot;
1090 		}
1091 
1092 		btrfs_release_path(root, path);
1093 		if (cow_start != (u64)-1) {
1094 			ret = cow_file_range(inode, locked_page, cow_start,
1095 					found_key.offset - 1, page_started,
1096 					nr_written, 1);
1097 			BUG_ON(ret);
1098 			cow_start = (u64)-1;
1099 		}
1100 
1101 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1102 			struct extent_map *em;
1103 			struct extent_map_tree *em_tree;
1104 			em_tree = &BTRFS_I(inode)->extent_tree;
1105 			em = alloc_extent_map(GFP_NOFS);
1106 			em->start = cur_offset;
1107 			em->orig_start = em->start;
1108 			em->len = num_bytes;
1109 			em->block_len = num_bytes;
1110 			em->block_start = disk_bytenr;
1111 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1112 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1113 			while (1) {
1114 				spin_lock(&em_tree->lock);
1115 				ret = add_extent_mapping(em_tree, em);
1116 				spin_unlock(&em_tree->lock);
1117 				if (ret != -EEXIST) {
1118 					free_extent_map(em);
1119 					break;
1120 				}
1121 				btrfs_drop_extent_cache(inode, em->start,
1122 						em->start + em->len - 1, 0);
1123 			}
1124 			type = BTRFS_ORDERED_PREALLOC;
1125 		} else {
1126 			type = BTRFS_ORDERED_NOCOW;
1127 		}
1128 
1129 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1130 					       num_bytes, num_bytes, type);
1131 		BUG_ON(ret);
1132 
1133 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1134 					cur_offset, cur_offset + num_bytes - 1,
1135 					locked_page, 1, 1, 1, 0, 0, 0);
1136 		cur_offset = extent_end;
1137 		if (cur_offset > end)
1138 			break;
1139 	}
1140 	btrfs_release_path(root, path);
1141 
1142 	if (cur_offset <= end && cow_start == (u64)-1)
1143 		cow_start = cur_offset;
1144 	if (cow_start != (u64)-1) {
1145 		ret = cow_file_range(inode, locked_page, cow_start, end,
1146 				     page_started, nr_written, 1);
1147 		BUG_ON(ret);
1148 	}
1149 
1150 	ret = btrfs_end_transaction(trans, root);
1151 	BUG_ON(ret);
1152 	btrfs_free_path(path);
1153 	return 0;
1154 }
1155 
1156 /*
1157  * extent_io.c call back to do delayed allocation processing
1158  */
1159 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1160 			      u64 start, u64 end, int *page_started,
1161 			      unsigned long *nr_written)
1162 {
1163 	int ret;
1164 
1165 	if (btrfs_test_flag(inode, NODATACOW))
1166 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1167 					 page_started, 1, nr_written);
1168 	else if (btrfs_test_flag(inode, PREALLOC))
1169 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1170 					 page_started, 0, nr_written);
1171 	else
1172 		ret = cow_file_range_async(inode, locked_page, start, end,
1173 					   page_started, nr_written);
1174 
1175 	return ret;
1176 }
1177 
1178 /*
1179  * extent_io.c set_bit_hook, used to track delayed allocation
1180  * bytes in this file, and to maintain the list of inodes that
1181  * have pending delalloc work to be done.
1182  */
1183 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1184 		       unsigned long old, unsigned long bits)
1185 {
1186 	/*
1187 	 * set_bit and clear bit hooks normally require _irqsave/restore
1188 	 * but in this case, we are only testeing for the DELALLOC
1189 	 * bit, which is only set or cleared with irqs on
1190 	 */
1191 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1192 		struct btrfs_root *root = BTRFS_I(inode)->root;
1193 		spin_lock(&root->fs_info->delalloc_lock);
1194 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1195 		root->fs_info->delalloc_bytes += end - start + 1;
1196 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1197 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1198 				      &root->fs_info->delalloc_inodes);
1199 		}
1200 		spin_unlock(&root->fs_info->delalloc_lock);
1201 	}
1202 	return 0;
1203 }
1204 
1205 /*
1206  * extent_io.c clear_bit_hook, see set_bit_hook for why
1207  */
1208 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1209 			 unsigned long old, unsigned long bits)
1210 {
1211 	/*
1212 	 * set_bit and clear bit hooks normally require _irqsave/restore
1213 	 * but in this case, we are only testeing for the DELALLOC
1214 	 * bit, which is only set or cleared with irqs on
1215 	 */
1216 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1217 		struct btrfs_root *root = BTRFS_I(inode)->root;
1218 
1219 		spin_lock(&root->fs_info->delalloc_lock);
1220 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
1221 			printk(KERN_INFO "btrfs warning: delalloc account "
1222 			       "%llu %llu\n",
1223 			       (unsigned long long)end - start + 1,
1224 			       (unsigned long long)
1225 			       root->fs_info->delalloc_bytes);
1226 			root->fs_info->delalloc_bytes = 0;
1227 			BTRFS_I(inode)->delalloc_bytes = 0;
1228 		} else {
1229 			root->fs_info->delalloc_bytes -= end - start + 1;
1230 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1231 		}
1232 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1233 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1234 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1235 		}
1236 		spin_unlock(&root->fs_info->delalloc_lock);
1237 	}
1238 	return 0;
1239 }
1240 
1241 /*
1242  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1243  * we don't create bios that span stripes or chunks
1244  */
1245 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1246 			 size_t size, struct bio *bio,
1247 			 unsigned long bio_flags)
1248 {
1249 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1250 	struct btrfs_mapping_tree *map_tree;
1251 	u64 logical = (u64)bio->bi_sector << 9;
1252 	u64 length = 0;
1253 	u64 map_length;
1254 	int ret;
1255 
1256 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1257 		return 0;
1258 
1259 	length = bio->bi_size;
1260 	map_tree = &root->fs_info->mapping_tree;
1261 	map_length = length;
1262 	ret = btrfs_map_block(map_tree, READ, logical,
1263 			      &map_length, NULL, 0);
1264 
1265 	if (map_length < length + size)
1266 		return 1;
1267 	return 0;
1268 }
1269 
1270 /*
1271  * in order to insert checksums into the metadata in large chunks,
1272  * we wait until bio submission time.   All the pages in the bio are
1273  * checksummed and sums are attached onto the ordered extent record.
1274  *
1275  * At IO completion time the cums attached on the ordered extent record
1276  * are inserted into the btree
1277  */
1278 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1279 				    struct bio *bio, int mirror_num,
1280 				    unsigned long bio_flags)
1281 {
1282 	struct btrfs_root *root = BTRFS_I(inode)->root;
1283 	int ret = 0;
1284 
1285 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1286 	BUG_ON(ret);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * in order to insert checksums into the metadata in large chunks,
1292  * we wait until bio submission time.   All the pages in the bio are
1293  * checksummed and sums are attached onto the ordered extent record.
1294  *
1295  * At IO completion time the cums attached on the ordered extent record
1296  * are inserted into the btree
1297  */
1298 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1299 			  int mirror_num, unsigned long bio_flags)
1300 {
1301 	struct btrfs_root *root = BTRFS_I(inode)->root;
1302 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1303 }
1304 
1305 /*
1306  * extent_io.c submission hook. This does the right thing for csum calculation
1307  * on write, or reading the csums from the tree before a read
1308  */
1309 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1310 			  int mirror_num, unsigned long bio_flags)
1311 {
1312 	struct btrfs_root *root = BTRFS_I(inode)->root;
1313 	int ret = 0;
1314 	int skip_sum;
1315 
1316 	skip_sum = btrfs_test_flag(inode, NODATASUM);
1317 
1318 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1319 	BUG_ON(ret);
1320 
1321 	if (!(rw & (1 << BIO_RW))) {
1322 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1323 			return btrfs_submit_compressed_read(inode, bio,
1324 						    mirror_num, bio_flags);
1325 		} else if (!skip_sum)
1326 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1327 		goto mapit;
1328 	} else if (!skip_sum) {
1329 		/* csum items have already been cloned */
1330 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1331 			goto mapit;
1332 		/* we're doing a write, do the async checksumming */
1333 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1334 				   inode, rw, bio, mirror_num,
1335 				   bio_flags, __btrfs_submit_bio_start,
1336 				   __btrfs_submit_bio_done);
1337 	}
1338 
1339 mapit:
1340 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1341 }
1342 
1343 /*
1344  * given a list of ordered sums record them in the inode.  This happens
1345  * at IO completion time based on sums calculated at bio submission time.
1346  */
1347 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1348 			     struct inode *inode, u64 file_offset,
1349 			     struct list_head *list)
1350 {
1351 	struct btrfs_ordered_sum *sum;
1352 
1353 	btrfs_set_trans_block_group(trans, inode);
1354 
1355 	list_for_each_entry(sum, list, list) {
1356 		btrfs_csum_file_blocks(trans,
1357 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1358 	}
1359 	return 0;
1360 }
1361 
1362 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1363 {
1364 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1365 		WARN_ON(1);
1366 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1367 				   GFP_NOFS);
1368 }
1369 
1370 /* see btrfs_writepage_start_hook for details on why this is required */
1371 struct btrfs_writepage_fixup {
1372 	struct page *page;
1373 	struct btrfs_work work;
1374 };
1375 
1376 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1377 {
1378 	struct btrfs_writepage_fixup *fixup;
1379 	struct btrfs_ordered_extent *ordered;
1380 	struct page *page;
1381 	struct inode *inode;
1382 	u64 page_start;
1383 	u64 page_end;
1384 
1385 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1386 	page = fixup->page;
1387 again:
1388 	lock_page(page);
1389 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1390 		ClearPageChecked(page);
1391 		goto out_page;
1392 	}
1393 
1394 	inode = page->mapping->host;
1395 	page_start = page_offset(page);
1396 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1397 
1398 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1399 
1400 	/* already ordered? We're done */
1401 	if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1402 			     EXTENT_ORDERED, 0)) {
1403 		goto out;
1404 	}
1405 
1406 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1407 	if (ordered) {
1408 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1409 			      page_end, GFP_NOFS);
1410 		unlock_page(page);
1411 		btrfs_start_ordered_extent(inode, ordered, 1);
1412 		goto again;
1413 	}
1414 
1415 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1416 	ClearPageChecked(page);
1417 out:
1418 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1419 out_page:
1420 	unlock_page(page);
1421 	page_cache_release(page);
1422 }
1423 
1424 /*
1425  * There are a few paths in the higher layers of the kernel that directly
1426  * set the page dirty bit without asking the filesystem if it is a
1427  * good idea.  This causes problems because we want to make sure COW
1428  * properly happens and the data=ordered rules are followed.
1429  *
1430  * In our case any range that doesn't have the ORDERED bit set
1431  * hasn't been properly setup for IO.  We kick off an async process
1432  * to fix it up.  The async helper will wait for ordered extents, set
1433  * the delalloc bit and make it safe to write the page.
1434  */
1435 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1436 {
1437 	struct inode *inode = page->mapping->host;
1438 	struct btrfs_writepage_fixup *fixup;
1439 	struct btrfs_root *root = BTRFS_I(inode)->root;
1440 	int ret;
1441 
1442 	ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1443 			     EXTENT_ORDERED, 0);
1444 	if (ret)
1445 		return 0;
1446 
1447 	if (PageChecked(page))
1448 		return -EAGAIN;
1449 
1450 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1451 	if (!fixup)
1452 		return -EAGAIN;
1453 
1454 	SetPageChecked(page);
1455 	page_cache_get(page);
1456 	fixup->work.func = btrfs_writepage_fixup_worker;
1457 	fixup->page = page;
1458 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1459 	return -EAGAIN;
1460 }
1461 
1462 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1463 				       struct inode *inode, u64 file_pos,
1464 				       u64 disk_bytenr, u64 disk_num_bytes,
1465 				       u64 num_bytes, u64 ram_bytes,
1466 				       u8 compression, u8 encryption,
1467 				       u16 other_encoding, int extent_type)
1468 {
1469 	struct btrfs_root *root = BTRFS_I(inode)->root;
1470 	struct btrfs_file_extent_item *fi;
1471 	struct btrfs_path *path;
1472 	struct extent_buffer *leaf;
1473 	struct btrfs_key ins;
1474 	u64 hint;
1475 	int ret;
1476 
1477 	path = btrfs_alloc_path();
1478 	BUG_ON(!path);
1479 
1480 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1481 				 file_pos + num_bytes, file_pos, &hint);
1482 	BUG_ON(ret);
1483 
1484 	ins.objectid = inode->i_ino;
1485 	ins.offset = file_pos;
1486 	ins.type = BTRFS_EXTENT_DATA_KEY;
1487 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1488 	BUG_ON(ret);
1489 	leaf = path->nodes[0];
1490 	fi = btrfs_item_ptr(leaf, path->slots[0],
1491 			    struct btrfs_file_extent_item);
1492 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1493 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1494 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1495 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1496 	btrfs_set_file_extent_offset(leaf, fi, 0);
1497 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1498 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1499 	btrfs_set_file_extent_compression(leaf, fi, compression);
1500 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1501 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1502 	btrfs_mark_buffer_dirty(leaf);
1503 
1504 	inode_add_bytes(inode, num_bytes);
1505 	btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1506 
1507 	ins.objectid = disk_bytenr;
1508 	ins.offset = disk_num_bytes;
1509 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1510 	ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1511 					  root->root_key.objectid,
1512 					  trans->transid, inode->i_ino, &ins);
1513 	BUG_ON(ret);
1514 
1515 	btrfs_free_path(path);
1516 	return 0;
1517 }
1518 
1519 /* as ordered data IO finishes, this gets called so we can finish
1520  * an ordered extent if the range of bytes in the file it covers are
1521  * fully written.
1522  */
1523 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1524 {
1525 	struct btrfs_root *root = BTRFS_I(inode)->root;
1526 	struct btrfs_trans_handle *trans;
1527 	struct btrfs_ordered_extent *ordered_extent;
1528 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1529 	int compressed = 0;
1530 	int ret;
1531 
1532 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1533 	if (!ret)
1534 		return 0;
1535 
1536 	trans = btrfs_join_transaction(root, 1);
1537 
1538 	ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1539 	BUG_ON(!ordered_extent);
1540 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1541 		goto nocow;
1542 
1543 	lock_extent(io_tree, ordered_extent->file_offset,
1544 		    ordered_extent->file_offset + ordered_extent->len - 1,
1545 		    GFP_NOFS);
1546 
1547 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1548 		compressed = 1;
1549 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1550 		BUG_ON(compressed);
1551 		ret = btrfs_mark_extent_written(trans, root, inode,
1552 						ordered_extent->file_offset,
1553 						ordered_extent->file_offset +
1554 						ordered_extent->len);
1555 		BUG_ON(ret);
1556 	} else {
1557 		ret = insert_reserved_file_extent(trans, inode,
1558 						ordered_extent->file_offset,
1559 						ordered_extent->start,
1560 						ordered_extent->disk_len,
1561 						ordered_extent->len,
1562 						ordered_extent->len,
1563 						compressed, 0, 0,
1564 						BTRFS_FILE_EXTENT_REG);
1565 		BUG_ON(ret);
1566 	}
1567 	unlock_extent(io_tree, ordered_extent->file_offset,
1568 		    ordered_extent->file_offset + ordered_extent->len - 1,
1569 		    GFP_NOFS);
1570 nocow:
1571 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1572 			  &ordered_extent->list);
1573 
1574 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1575 	btrfs_ordered_update_i_size(inode, ordered_extent);
1576 	btrfs_update_inode(trans, root, inode);
1577 	btrfs_remove_ordered_extent(inode, ordered_extent);
1578 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1579 
1580 	/* once for us */
1581 	btrfs_put_ordered_extent(ordered_extent);
1582 	/* once for the tree */
1583 	btrfs_put_ordered_extent(ordered_extent);
1584 
1585 	btrfs_end_transaction(trans, root);
1586 	return 0;
1587 }
1588 
1589 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1590 				struct extent_state *state, int uptodate)
1591 {
1592 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1593 }
1594 
1595 /*
1596  * When IO fails, either with EIO or csum verification fails, we
1597  * try other mirrors that might have a good copy of the data.  This
1598  * io_failure_record is used to record state as we go through all the
1599  * mirrors.  If another mirror has good data, the page is set up to date
1600  * and things continue.  If a good mirror can't be found, the original
1601  * bio end_io callback is called to indicate things have failed.
1602  */
1603 struct io_failure_record {
1604 	struct page *page;
1605 	u64 start;
1606 	u64 len;
1607 	u64 logical;
1608 	unsigned long bio_flags;
1609 	int last_mirror;
1610 };
1611 
1612 static int btrfs_io_failed_hook(struct bio *failed_bio,
1613 			 struct page *page, u64 start, u64 end,
1614 			 struct extent_state *state)
1615 {
1616 	struct io_failure_record *failrec = NULL;
1617 	u64 private;
1618 	struct extent_map *em;
1619 	struct inode *inode = page->mapping->host;
1620 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1621 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1622 	struct bio *bio;
1623 	int num_copies;
1624 	int ret;
1625 	int rw;
1626 	u64 logical;
1627 
1628 	ret = get_state_private(failure_tree, start, &private);
1629 	if (ret) {
1630 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1631 		if (!failrec)
1632 			return -ENOMEM;
1633 		failrec->start = start;
1634 		failrec->len = end - start + 1;
1635 		failrec->last_mirror = 0;
1636 		failrec->bio_flags = 0;
1637 
1638 		spin_lock(&em_tree->lock);
1639 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1640 		if (em->start > start || em->start + em->len < start) {
1641 			free_extent_map(em);
1642 			em = NULL;
1643 		}
1644 		spin_unlock(&em_tree->lock);
1645 
1646 		if (!em || IS_ERR(em)) {
1647 			kfree(failrec);
1648 			return -EIO;
1649 		}
1650 		logical = start - em->start;
1651 		logical = em->block_start + logical;
1652 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1653 			logical = em->block_start;
1654 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1655 		}
1656 		failrec->logical = logical;
1657 		free_extent_map(em);
1658 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1659 				EXTENT_DIRTY, GFP_NOFS);
1660 		set_state_private(failure_tree, start,
1661 				 (u64)(unsigned long)failrec);
1662 	} else {
1663 		failrec = (struct io_failure_record *)(unsigned long)private;
1664 	}
1665 	num_copies = btrfs_num_copies(
1666 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1667 			      failrec->logical, failrec->len);
1668 	failrec->last_mirror++;
1669 	if (!state) {
1670 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1671 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1672 						    failrec->start,
1673 						    EXTENT_LOCKED);
1674 		if (state && state->start != failrec->start)
1675 			state = NULL;
1676 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1677 	}
1678 	if (!state || failrec->last_mirror > num_copies) {
1679 		set_state_private(failure_tree, failrec->start, 0);
1680 		clear_extent_bits(failure_tree, failrec->start,
1681 				  failrec->start + failrec->len - 1,
1682 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1683 		kfree(failrec);
1684 		return -EIO;
1685 	}
1686 	bio = bio_alloc(GFP_NOFS, 1);
1687 	bio->bi_private = state;
1688 	bio->bi_end_io = failed_bio->bi_end_io;
1689 	bio->bi_sector = failrec->logical >> 9;
1690 	bio->bi_bdev = failed_bio->bi_bdev;
1691 	bio->bi_size = 0;
1692 
1693 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1694 	if (failed_bio->bi_rw & (1 << BIO_RW))
1695 		rw = WRITE;
1696 	else
1697 		rw = READ;
1698 
1699 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1700 						      failrec->last_mirror,
1701 						      failrec->bio_flags);
1702 	return 0;
1703 }
1704 
1705 /*
1706  * each time an IO finishes, we do a fast check in the IO failure tree
1707  * to see if we need to process or clean up an io_failure_record
1708  */
1709 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1710 {
1711 	u64 private;
1712 	u64 private_failure;
1713 	struct io_failure_record *failure;
1714 	int ret;
1715 
1716 	private = 0;
1717 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1718 			     (u64)-1, 1, EXTENT_DIRTY)) {
1719 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1720 					start, &private_failure);
1721 		if (ret == 0) {
1722 			failure = (struct io_failure_record *)(unsigned long)
1723 				   private_failure;
1724 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1725 					  failure->start, 0);
1726 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1727 					  failure->start,
1728 					  failure->start + failure->len - 1,
1729 					  EXTENT_DIRTY | EXTENT_LOCKED,
1730 					  GFP_NOFS);
1731 			kfree(failure);
1732 		}
1733 	}
1734 	return 0;
1735 }
1736 
1737 /*
1738  * when reads are done, we need to check csums to verify the data is correct
1739  * if there's a match, we allow the bio to finish.  If not, we go through
1740  * the io_failure_record routines to find good copies
1741  */
1742 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1743 			       struct extent_state *state)
1744 {
1745 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1746 	struct inode *inode = page->mapping->host;
1747 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1748 	char *kaddr;
1749 	u64 private = ~(u32)0;
1750 	int ret;
1751 	struct btrfs_root *root = BTRFS_I(inode)->root;
1752 	u32 csum = ~(u32)0;
1753 
1754 	if (PageChecked(page)) {
1755 		ClearPageChecked(page);
1756 		goto good;
1757 	}
1758 	if (btrfs_test_flag(inode, NODATASUM))
1759 		return 0;
1760 
1761 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1762 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1763 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1764 				  GFP_NOFS);
1765 		return 0;
1766 	}
1767 
1768 	if (state && state->start == start) {
1769 		private = state->private;
1770 		ret = 0;
1771 	} else {
1772 		ret = get_state_private(io_tree, start, &private);
1773 	}
1774 	kaddr = kmap_atomic(page, KM_USER0);
1775 	if (ret)
1776 		goto zeroit;
1777 
1778 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1779 	btrfs_csum_final(csum, (char *)&csum);
1780 	if (csum != private)
1781 		goto zeroit;
1782 
1783 	kunmap_atomic(kaddr, KM_USER0);
1784 good:
1785 	/* if the io failure tree for this inode is non-empty,
1786 	 * check to see if we've recovered from a failed IO
1787 	 */
1788 	btrfs_clean_io_failures(inode, start);
1789 	return 0;
1790 
1791 zeroit:
1792 	printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1793 	       "private %llu\n", page->mapping->host->i_ino,
1794 	       (unsigned long long)start, csum,
1795 	       (unsigned long long)private);
1796 	memset(kaddr + offset, 1, end - start + 1);
1797 	flush_dcache_page(page);
1798 	kunmap_atomic(kaddr, KM_USER0);
1799 	if (private == 0)
1800 		return 0;
1801 	return -EIO;
1802 }
1803 
1804 /*
1805  * This creates an orphan entry for the given inode in case something goes
1806  * wrong in the middle of an unlink/truncate.
1807  */
1808 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1809 {
1810 	struct btrfs_root *root = BTRFS_I(inode)->root;
1811 	int ret = 0;
1812 
1813 	spin_lock(&root->list_lock);
1814 
1815 	/* already on the orphan list, we're good */
1816 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1817 		spin_unlock(&root->list_lock);
1818 		return 0;
1819 	}
1820 
1821 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1822 
1823 	spin_unlock(&root->list_lock);
1824 
1825 	/*
1826 	 * insert an orphan item to track this unlinked/truncated file
1827 	 */
1828 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1829 
1830 	return ret;
1831 }
1832 
1833 /*
1834  * We have done the truncate/delete so we can go ahead and remove the orphan
1835  * item for this particular inode.
1836  */
1837 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1838 {
1839 	struct btrfs_root *root = BTRFS_I(inode)->root;
1840 	int ret = 0;
1841 
1842 	spin_lock(&root->list_lock);
1843 
1844 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1845 		spin_unlock(&root->list_lock);
1846 		return 0;
1847 	}
1848 
1849 	list_del_init(&BTRFS_I(inode)->i_orphan);
1850 	if (!trans) {
1851 		spin_unlock(&root->list_lock);
1852 		return 0;
1853 	}
1854 
1855 	spin_unlock(&root->list_lock);
1856 
1857 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1858 
1859 	return ret;
1860 }
1861 
1862 /*
1863  * this cleans up any orphans that may be left on the list from the last use
1864  * of this root.
1865  */
1866 void btrfs_orphan_cleanup(struct btrfs_root *root)
1867 {
1868 	struct btrfs_path *path;
1869 	struct extent_buffer *leaf;
1870 	struct btrfs_item *item;
1871 	struct btrfs_key key, found_key;
1872 	struct btrfs_trans_handle *trans;
1873 	struct inode *inode;
1874 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
1875 
1876 	path = btrfs_alloc_path();
1877 	if (!path)
1878 		return;
1879 	path->reada = -1;
1880 
1881 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1882 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1883 	key.offset = (u64)-1;
1884 
1885 
1886 	while (1) {
1887 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1888 		if (ret < 0) {
1889 			printk(KERN_ERR "Error searching slot for orphan: %d"
1890 			       "\n", ret);
1891 			break;
1892 		}
1893 
1894 		/*
1895 		 * if ret == 0 means we found what we were searching for, which
1896 		 * is weird, but possible, so only screw with path if we didnt
1897 		 * find the key and see if we have stuff that matches
1898 		 */
1899 		if (ret > 0) {
1900 			if (path->slots[0] == 0)
1901 				break;
1902 			path->slots[0]--;
1903 		}
1904 
1905 		/* pull out the item */
1906 		leaf = path->nodes[0];
1907 		item = btrfs_item_nr(leaf, path->slots[0]);
1908 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1909 
1910 		/* make sure the item matches what we want */
1911 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1912 			break;
1913 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1914 			break;
1915 
1916 		/* release the path since we're done with it */
1917 		btrfs_release_path(root, path);
1918 
1919 		/*
1920 		 * this is where we are basically btrfs_lookup, without the
1921 		 * crossing root thing.  we store the inode number in the
1922 		 * offset of the orphan item.
1923 		 */
1924 		inode = btrfs_iget_locked(root->fs_info->sb,
1925 					  found_key.offset, root);
1926 		if (!inode)
1927 			break;
1928 
1929 		if (inode->i_state & I_NEW) {
1930 			BTRFS_I(inode)->root = root;
1931 
1932 			/* have to set the location manually */
1933 			BTRFS_I(inode)->location.objectid = inode->i_ino;
1934 			BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1935 			BTRFS_I(inode)->location.offset = 0;
1936 
1937 			btrfs_read_locked_inode(inode);
1938 			unlock_new_inode(inode);
1939 		}
1940 
1941 		/*
1942 		 * add this inode to the orphan list so btrfs_orphan_del does
1943 		 * the proper thing when we hit it
1944 		 */
1945 		spin_lock(&root->list_lock);
1946 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1947 		spin_unlock(&root->list_lock);
1948 
1949 		/*
1950 		 * if this is a bad inode, means we actually succeeded in
1951 		 * removing the inode, but not the orphan record, which means
1952 		 * we need to manually delete the orphan since iput will just
1953 		 * do a destroy_inode
1954 		 */
1955 		if (is_bad_inode(inode)) {
1956 			trans = btrfs_start_transaction(root, 1);
1957 			btrfs_orphan_del(trans, inode);
1958 			btrfs_end_transaction(trans, root);
1959 			iput(inode);
1960 			continue;
1961 		}
1962 
1963 		/* if we have links, this was a truncate, lets do that */
1964 		if (inode->i_nlink) {
1965 			nr_truncate++;
1966 			btrfs_truncate(inode);
1967 		} else {
1968 			nr_unlink++;
1969 		}
1970 
1971 		/* this will do delete_inode and everything for us */
1972 		iput(inode);
1973 	}
1974 
1975 	if (nr_unlink)
1976 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1977 	if (nr_truncate)
1978 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1979 
1980 	btrfs_free_path(path);
1981 }
1982 
1983 /*
1984  * read an inode from the btree into the in-memory inode
1985  */
1986 void btrfs_read_locked_inode(struct inode *inode)
1987 {
1988 	struct btrfs_path *path;
1989 	struct extent_buffer *leaf;
1990 	struct btrfs_inode_item *inode_item;
1991 	struct btrfs_timespec *tspec;
1992 	struct btrfs_root *root = BTRFS_I(inode)->root;
1993 	struct btrfs_key location;
1994 	u64 alloc_group_block;
1995 	u32 rdev;
1996 	int ret;
1997 
1998 	path = btrfs_alloc_path();
1999 	BUG_ON(!path);
2000 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2001 
2002 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2003 	if (ret)
2004 		goto make_bad;
2005 
2006 	leaf = path->nodes[0];
2007 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2008 				    struct btrfs_inode_item);
2009 
2010 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2011 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2012 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2013 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2014 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2015 
2016 	tspec = btrfs_inode_atime(inode_item);
2017 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2018 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2019 
2020 	tspec = btrfs_inode_mtime(inode_item);
2021 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2022 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2023 
2024 	tspec = btrfs_inode_ctime(inode_item);
2025 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2026 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2027 
2028 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2029 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2030 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2031 	inode->i_generation = BTRFS_I(inode)->generation;
2032 	inode->i_rdev = 0;
2033 	rdev = btrfs_inode_rdev(leaf, inode_item);
2034 
2035 	BTRFS_I(inode)->index_cnt = (u64)-1;
2036 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2037 
2038 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2039 
2040 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2041 						alloc_group_block, 0);
2042 	btrfs_free_path(path);
2043 	inode_item = NULL;
2044 
2045 	switch (inode->i_mode & S_IFMT) {
2046 	case S_IFREG:
2047 		inode->i_mapping->a_ops = &btrfs_aops;
2048 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2049 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2050 		inode->i_fop = &btrfs_file_operations;
2051 		inode->i_op = &btrfs_file_inode_operations;
2052 		break;
2053 	case S_IFDIR:
2054 		inode->i_fop = &btrfs_dir_file_operations;
2055 		if (root == root->fs_info->tree_root)
2056 			inode->i_op = &btrfs_dir_ro_inode_operations;
2057 		else
2058 			inode->i_op = &btrfs_dir_inode_operations;
2059 		break;
2060 	case S_IFLNK:
2061 		inode->i_op = &btrfs_symlink_inode_operations;
2062 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2063 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2064 		break;
2065 	default:
2066 		inode->i_op = &btrfs_special_inode_operations;
2067 		init_special_inode(inode, inode->i_mode, rdev);
2068 		break;
2069 	}
2070 	return;
2071 
2072 make_bad:
2073 	btrfs_free_path(path);
2074 	make_bad_inode(inode);
2075 }
2076 
2077 /*
2078  * given a leaf and an inode, copy the inode fields into the leaf
2079  */
2080 static void fill_inode_item(struct btrfs_trans_handle *trans,
2081 			    struct extent_buffer *leaf,
2082 			    struct btrfs_inode_item *item,
2083 			    struct inode *inode)
2084 {
2085 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2086 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2087 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2088 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2089 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2090 
2091 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2092 			       inode->i_atime.tv_sec);
2093 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2094 				inode->i_atime.tv_nsec);
2095 
2096 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2097 			       inode->i_mtime.tv_sec);
2098 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2099 				inode->i_mtime.tv_nsec);
2100 
2101 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2102 			       inode->i_ctime.tv_sec);
2103 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2104 				inode->i_ctime.tv_nsec);
2105 
2106 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2107 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2108 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2109 	btrfs_set_inode_transid(leaf, item, trans->transid);
2110 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2111 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2112 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2113 }
2114 
2115 /*
2116  * copy everything in the in-memory inode into the btree.
2117  */
2118 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2119 				struct btrfs_root *root, struct inode *inode)
2120 {
2121 	struct btrfs_inode_item *inode_item;
2122 	struct btrfs_path *path;
2123 	struct extent_buffer *leaf;
2124 	int ret;
2125 
2126 	path = btrfs_alloc_path();
2127 	BUG_ON(!path);
2128 	ret = btrfs_lookup_inode(trans, root, path,
2129 				 &BTRFS_I(inode)->location, 1);
2130 	if (ret) {
2131 		if (ret > 0)
2132 			ret = -ENOENT;
2133 		goto failed;
2134 	}
2135 
2136 	btrfs_unlock_up_safe(path, 1);
2137 	leaf = path->nodes[0];
2138 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2139 				  struct btrfs_inode_item);
2140 
2141 	fill_inode_item(trans, leaf, inode_item, inode);
2142 	btrfs_mark_buffer_dirty(leaf);
2143 	btrfs_set_inode_last_trans(trans, inode);
2144 	ret = 0;
2145 failed:
2146 	btrfs_free_path(path);
2147 	return ret;
2148 }
2149 
2150 
2151 /*
2152  * unlink helper that gets used here in inode.c and in the tree logging
2153  * recovery code.  It remove a link in a directory with a given name, and
2154  * also drops the back refs in the inode to the directory
2155  */
2156 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2157 		       struct btrfs_root *root,
2158 		       struct inode *dir, struct inode *inode,
2159 		       const char *name, int name_len)
2160 {
2161 	struct btrfs_path *path;
2162 	int ret = 0;
2163 	struct extent_buffer *leaf;
2164 	struct btrfs_dir_item *di;
2165 	struct btrfs_key key;
2166 	u64 index;
2167 
2168 	path = btrfs_alloc_path();
2169 	if (!path) {
2170 		ret = -ENOMEM;
2171 		goto err;
2172 	}
2173 
2174 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2175 				    name, name_len, -1);
2176 	if (IS_ERR(di)) {
2177 		ret = PTR_ERR(di);
2178 		goto err;
2179 	}
2180 	if (!di) {
2181 		ret = -ENOENT;
2182 		goto err;
2183 	}
2184 	leaf = path->nodes[0];
2185 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2186 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2187 	if (ret)
2188 		goto err;
2189 	btrfs_release_path(root, path);
2190 
2191 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2192 				  inode->i_ino,
2193 				  dir->i_ino, &index);
2194 	if (ret) {
2195 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2196 		       "inode %lu parent %lu\n", name_len, name,
2197 		       inode->i_ino, dir->i_ino);
2198 		goto err;
2199 	}
2200 
2201 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2202 					 index, name, name_len, -1);
2203 	if (IS_ERR(di)) {
2204 		ret = PTR_ERR(di);
2205 		goto err;
2206 	}
2207 	if (!di) {
2208 		ret = -ENOENT;
2209 		goto err;
2210 	}
2211 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2212 	btrfs_release_path(root, path);
2213 
2214 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2215 					 inode, dir->i_ino);
2216 	BUG_ON(ret != 0 && ret != -ENOENT);
2217 	if (ret != -ENOENT)
2218 		BTRFS_I(dir)->log_dirty_trans = trans->transid;
2219 
2220 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2221 					   dir, index);
2222 	BUG_ON(ret);
2223 err:
2224 	btrfs_free_path(path);
2225 	if (ret)
2226 		goto out;
2227 
2228 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2229 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2230 	btrfs_update_inode(trans, root, dir);
2231 	btrfs_drop_nlink(inode);
2232 	ret = btrfs_update_inode(trans, root, inode);
2233 	dir->i_sb->s_dirt = 1;
2234 out:
2235 	return ret;
2236 }
2237 
2238 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2239 {
2240 	struct btrfs_root *root;
2241 	struct btrfs_trans_handle *trans;
2242 	struct inode *inode = dentry->d_inode;
2243 	int ret;
2244 	unsigned long nr = 0;
2245 
2246 	root = BTRFS_I(dir)->root;
2247 
2248 	ret = btrfs_check_free_space(root, 1, 1);
2249 	if (ret)
2250 		goto fail;
2251 
2252 	trans = btrfs_start_transaction(root, 1);
2253 
2254 	btrfs_set_trans_block_group(trans, dir);
2255 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2256 				 dentry->d_name.name, dentry->d_name.len);
2257 
2258 	if (inode->i_nlink == 0)
2259 		ret = btrfs_orphan_add(trans, inode);
2260 
2261 	nr = trans->blocks_used;
2262 
2263 	btrfs_end_transaction_throttle(trans, root);
2264 fail:
2265 	btrfs_btree_balance_dirty(root, nr);
2266 	return ret;
2267 }
2268 
2269 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2270 {
2271 	struct inode *inode = dentry->d_inode;
2272 	int err = 0;
2273 	int ret;
2274 	struct btrfs_root *root = BTRFS_I(dir)->root;
2275 	struct btrfs_trans_handle *trans;
2276 	unsigned long nr = 0;
2277 
2278 	/*
2279 	 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2280 	 * the root of a subvolume or snapshot
2281 	 */
2282 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2283 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2284 		return -ENOTEMPTY;
2285 	}
2286 
2287 	ret = btrfs_check_free_space(root, 1, 1);
2288 	if (ret)
2289 		goto fail;
2290 
2291 	trans = btrfs_start_transaction(root, 1);
2292 	btrfs_set_trans_block_group(trans, dir);
2293 
2294 	err = btrfs_orphan_add(trans, inode);
2295 	if (err)
2296 		goto fail_trans;
2297 
2298 	/* now the directory is empty */
2299 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2300 				 dentry->d_name.name, dentry->d_name.len);
2301 	if (!err)
2302 		btrfs_i_size_write(inode, 0);
2303 
2304 fail_trans:
2305 	nr = trans->blocks_used;
2306 	ret = btrfs_end_transaction_throttle(trans, root);
2307 fail:
2308 	btrfs_btree_balance_dirty(root, nr);
2309 
2310 	if (ret && !err)
2311 		err = ret;
2312 	return err;
2313 }
2314 
2315 #if 0
2316 /*
2317  * when truncating bytes in a file, it is possible to avoid reading
2318  * the leaves that contain only checksum items.  This can be the
2319  * majority of the IO required to delete a large file, but it must
2320  * be done carefully.
2321  *
2322  * The keys in the level just above the leaves are checked to make sure
2323  * the lowest key in a given leaf is a csum key, and starts at an offset
2324  * after the new  size.
2325  *
2326  * Then the key for the next leaf is checked to make sure it also has
2327  * a checksum item for the same file.  If it does, we know our target leaf
2328  * contains only checksum items, and it can be safely freed without reading
2329  * it.
2330  *
2331  * This is just an optimization targeted at large files.  It may do
2332  * nothing.  It will return 0 unless things went badly.
2333  */
2334 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2335 				     struct btrfs_root *root,
2336 				     struct btrfs_path *path,
2337 				     struct inode *inode, u64 new_size)
2338 {
2339 	struct btrfs_key key;
2340 	int ret;
2341 	int nritems;
2342 	struct btrfs_key found_key;
2343 	struct btrfs_key other_key;
2344 	struct btrfs_leaf_ref *ref;
2345 	u64 leaf_gen;
2346 	u64 leaf_start;
2347 
2348 	path->lowest_level = 1;
2349 	key.objectid = inode->i_ino;
2350 	key.type = BTRFS_CSUM_ITEM_KEY;
2351 	key.offset = new_size;
2352 again:
2353 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2354 	if (ret < 0)
2355 		goto out;
2356 
2357 	if (path->nodes[1] == NULL) {
2358 		ret = 0;
2359 		goto out;
2360 	}
2361 	ret = 0;
2362 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2363 	nritems = btrfs_header_nritems(path->nodes[1]);
2364 
2365 	if (!nritems)
2366 		goto out;
2367 
2368 	if (path->slots[1] >= nritems)
2369 		goto next_node;
2370 
2371 	/* did we find a key greater than anything we want to delete? */
2372 	if (found_key.objectid > inode->i_ino ||
2373 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2374 		goto out;
2375 
2376 	/* we check the next key in the node to make sure the leave contains
2377 	 * only checksum items.  This comparison doesn't work if our
2378 	 * leaf is the last one in the node
2379 	 */
2380 	if (path->slots[1] + 1 >= nritems) {
2381 next_node:
2382 		/* search forward from the last key in the node, this
2383 		 * will bring us into the next node in the tree
2384 		 */
2385 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2386 
2387 		/* unlikely, but we inc below, so check to be safe */
2388 		if (found_key.offset == (u64)-1)
2389 			goto out;
2390 
2391 		/* search_forward needs a path with locks held, do the
2392 		 * search again for the original key.  It is possible
2393 		 * this will race with a balance and return a path that
2394 		 * we could modify, but this drop is just an optimization
2395 		 * and is allowed to miss some leaves.
2396 		 */
2397 		btrfs_release_path(root, path);
2398 		found_key.offset++;
2399 
2400 		/* setup a max key for search_forward */
2401 		other_key.offset = (u64)-1;
2402 		other_key.type = key.type;
2403 		other_key.objectid = key.objectid;
2404 
2405 		path->keep_locks = 1;
2406 		ret = btrfs_search_forward(root, &found_key, &other_key,
2407 					   path, 0, 0);
2408 		path->keep_locks = 0;
2409 		if (ret || found_key.objectid != key.objectid ||
2410 		    found_key.type != key.type) {
2411 			ret = 0;
2412 			goto out;
2413 		}
2414 
2415 		key.offset = found_key.offset;
2416 		btrfs_release_path(root, path);
2417 		cond_resched();
2418 		goto again;
2419 	}
2420 
2421 	/* we know there's one more slot after us in the tree,
2422 	 * read that key so we can verify it is also a checksum item
2423 	 */
2424 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2425 
2426 	if (found_key.objectid < inode->i_ino)
2427 		goto next_key;
2428 
2429 	if (found_key.type != key.type || found_key.offset < new_size)
2430 		goto next_key;
2431 
2432 	/*
2433 	 * if the key for the next leaf isn't a csum key from this objectid,
2434 	 * we can't be sure there aren't good items inside this leaf.
2435 	 * Bail out
2436 	 */
2437 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2438 		goto out;
2439 
2440 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2441 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2442 	/*
2443 	 * it is safe to delete this leaf, it contains only
2444 	 * csum items from this inode at an offset >= new_size
2445 	 */
2446 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2447 	BUG_ON(ret);
2448 
2449 	if (root->ref_cows && leaf_gen < trans->transid) {
2450 		ref = btrfs_alloc_leaf_ref(root, 0);
2451 		if (ref) {
2452 			ref->root_gen = root->root_key.offset;
2453 			ref->bytenr = leaf_start;
2454 			ref->owner = 0;
2455 			ref->generation = leaf_gen;
2456 			ref->nritems = 0;
2457 
2458 			btrfs_sort_leaf_ref(ref);
2459 
2460 			ret = btrfs_add_leaf_ref(root, ref, 0);
2461 			WARN_ON(ret);
2462 			btrfs_free_leaf_ref(root, ref);
2463 		} else {
2464 			WARN_ON(1);
2465 		}
2466 	}
2467 next_key:
2468 	btrfs_release_path(root, path);
2469 
2470 	if (other_key.objectid == inode->i_ino &&
2471 	    other_key.type == key.type && other_key.offset > key.offset) {
2472 		key.offset = other_key.offset;
2473 		cond_resched();
2474 		goto again;
2475 	}
2476 	ret = 0;
2477 out:
2478 	/* fixup any changes we've made to the path */
2479 	path->lowest_level = 0;
2480 	path->keep_locks = 0;
2481 	btrfs_release_path(root, path);
2482 	return ret;
2483 }
2484 
2485 #endif
2486 
2487 /*
2488  * this can truncate away extent items, csum items and directory items.
2489  * It starts at a high offset and removes keys until it can't find
2490  * any higher than new_size
2491  *
2492  * csum items that cross the new i_size are truncated to the new size
2493  * as well.
2494  *
2495  * min_type is the minimum key type to truncate down to.  If set to 0, this
2496  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2497  */
2498 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2499 					struct btrfs_root *root,
2500 					struct inode *inode,
2501 					u64 new_size, u32 min_type)
2502 {
2503 	int ret;
2504 	struct btrfs_path *path;
2505 	struct btrfs_key key;
2506 	struct btrfs_key found_key;
2507 	u32 found_type = (u8)-1;
2508 	struct extent_buffer *leaf;
2509 	struct btrfs_file_extent_item *fi;
2510 	u64 extent_start = 0;
2511 	u64 extent_num_bytes = 0;
2512 	u64 item_end = 0;
2513 	u64 root_gen = 0;
2514 	u64 root_owner = 0;
2515 	int found_extent;
2516 	int del_item;
2517 	int pending_del_nr = 0;
2518 	int pending_del_slot = 0;
2519 	int extent_type = -1;
2520 	int encoding;
2521 	u64 mask = root->sectorsize - 1;
2522 
2523 	if (root->ref_cows)
2524 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2525 	path = btrfs_alloc_path();
2526 	path->reada = -1;
2527 	BUG_ON(!path);
2528 
2529 	/* FIXME, add redo link to tree so we don't leak on crash */
2530 	key.objectid = inode->i_ino;
2531 	key.offset = (u64)-1;
2532 	key.type = (u8)-1;
2533 
2534 	btrfs_init_path(path);
2535 
2536 search_again:
2537 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2538 	if (ret < 0)
2539 		goto error;
2540 
2541 	if (ret > 0) {
2542 		/* there are no items in the tree for us to truncate, we're
2543 		 * done
2544 		 */
2545 		if (path->slots[0] == 0) {
2546 			ret = 0;
2547 			goto error;
2548 		}
2549 		path->slots[0]--;
2550 	}
2551 
2552 	while (1) {
2553 		fi = NULL;
2554 		leaf = path->nodes[0];
2555 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2556 		found_type = btrfs_key_type(&found_key);
2557 		encoding = 0;
2558 
2559 		if (found_key.objectid != inode->i_ino)
2560 			break;
2561 
2562 		if (found_type < min_type)
2563 			break;
2564 
2565 		item_end = found_key.offset;
2566 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2567 			fi = btrfs_item_ptr(leaf, path->slots[0],
2568 					    struct btrfs_file_extent_item);
2569 			extent_type = btrfs_file_extent_type(leaf, fi);
2570 			encoding = btrfs_file_extent_compression(leaf, fi);
2571 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2572 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2573 
2574 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2575 				item_end +=
2576 				    btrfs_file_extent_num_bytes(leaf, fi);
2577 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2578 				item_end += btrfs_file_extent_inline_len(leaf,
2579 									 fi);
2580 			}
2581 			item_end--;
2582 		}
2583 		if (item_end < new_size) {
2584 			if (found_type == BTRFS_DIR_ITEM_KEY)
2585 				found_type = BTRFS_INODE_ITEM_KEY;
2586 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2587 				found_type = BTRFS_EXTENT_DATA_KEY;
2588 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2589 				found_type = BTRFS_XATTR_ITEM_KEY;
2590 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2591 				found_type = BTRFS_INODE_REF_KEY;
2592 			else if (found_type)
2593 				found_type--;
2594 			else
2595 				break;
2596 			btrfs_set_key_type(&key, found_type);
2597 			goto next;
2598 		}
2599 		if (found_key.offset >= new_size)
2600 			del_item = 1;
2601 		else
2602 			del_item = 0;
2603 		found_extent = 0;
2604 
2605 		/* FIXME, shrink the extent if the ref count is only 1 */
2606 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2607 			goto delete;
2608 
2609 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2610 			u64 num_dec;
2611 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2612 			if (!del_item && !encoding) {
2613 				u64 orig_num_bytes =
2614 					btrfs_file_extent_num_bytes(leaf, fi);
2615 				extent_num_bytes = new_size -
2616 					found_key.offset + root->sectorsize - 1;
2617 				extent_num_bytes = extent_num_bytes &
2618 					~((u64)root->sectorsize - 1);
2619 				btrfs_set_file_extent_num_bytes(leaf, fi,
2620 							 extent_num_bytes);
2621 				num_dec = (orig_num_bytes -
2622 					   extent_num_bytes);
2623 				if (root->ref_cows && extent_start != 0)
2624 					inode_sub_bytes(inode, num_dec);
2625 				btrfs_mark_buffer_dirty(leaf);
2626 			} else {
2627 				extent_num_bytes =
2628 					btrfs_file_extent_disk_num_bytes(leaf,
2629 									 fi);
2630 				/* FIXME blocksize != 4096 */
2631 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2632 				if (extent_start != 0) {
2633 					found_extent = 1;
2634 					if (root->ref_cows)
2635 						inode_sub_bytes(inode, num_dec);
2636 				}
2637 				root_gen = btrfs_header_generation(leaf);
2638 				root_owner = btrfs_header_owner(leaf);
2639 			}
2640 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2641 			/*
2642 			 * we can't truncate inline items that have had
2643 			 * special encodings
2644 			 */
2645 			if (!del_item &&
2646 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2647 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2648 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2649 				u32 size = new_size - found_key.offset;
2650 
2651 				if (root->ref_cows) {
2652 					inode_sub_bytes(inode, item_end + 1 -
2653 							new_size);
2654 				}
2655 				size =
2656 				    btrfs_file_extent_calc_inline_size(size);
2657 				ret = btrfs_truncate_item(trans, root, path,
2658 							  size, 1);
2659 				BUG_ON(ret);
2660 			} else if (root->ref_cows) {
2661 				inode_sub_bytes(inode, item_end + 1 -
2662 						found_key.offset);
2663 			}
2664 		}
2665 delete:
2666 		if (del_item) {
2667 			if (!pending_del_nr) {
2668 				/* no pending yet, add ourselves */
2669 				pending_del_slot = path->slots[0];
2670 				pending_del_nr = 1;
2671 			} else if (pending_del_nr &&
2672 				   path->slots[0] + 1 == pending_del_slot) {
2673 				/* hop on the pending chunk */
2674 				pending_del_nr++;
2675 				pending_del_slot = path->slots[0];
2676 			} else {
2677 				BUG();
2678 			}
2679 		} else {
2680 			break;
2681 		}
2682 		if (found_extent) {
2683 			ret = btrfs_free_extent(trans, root, extent_start,
2684 						extent_num_bytes,
2685 						leaf->start, root_owner,
2686 						root_gen, inode->i_ino, 0);
2687 			BUG_ON(ret);
2688 		}
2689 next:
2690 		if (path->slots[0] == 0) {
2691 			if (pending_del_nr)
2692 				goto del_pending;
2693 			btrfs_release_path(root, path);
2694 			if (found_type == BTRFS_INODE_ITEM_KEY)
2695 				break;
2696 			goto search_again;
2697 		}
2698 
2699 		path->slots[0]--;
2700 		if (pending_del_nr &&
2701 		    path->slots[0] + 1 != pending_del_slot) {
2702 			struct btrfs_key debug;
2703 del_pending:
2704 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
2705 					      pending_del_slot);
2706 			ret = btrfs_del_items(trans, root, path,
2707 					      pending_del_slot,
2708 					      pending_del_nr);
2709 			BUG_ON(ret);
2710 			pending_del_nr = 0;
2711 			btrfs_release_path(root, path);
2712 			if (found_type == BTRFS_INODE_ITEM_KEY)
2713 				break;
2714 			goto search_again;
2715 		}
2716 	}
2717 	ret = 0;
2718 error:
2719 	if (pending_del_nr) {
2720 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
2721 				      pending_del_nr);
2722 	}
2723 	btrfs_free_path(path);
2724 	inode->i_sb->s_dirt = 1;
2725 	return ret;
2726 }
2727 
2728 /*
2729  * taken from block_truncate_page, but does cow as it zeros out
2730  * any bytes left in the last page in the file.
2731  */
2732 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2733 {
2734 	struct inode *inode = mapping->host;
2735 	struct btrfs_root *root = BTRFS_I(inode)->root;
2736 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2737 	struct btrfs_ordered_extent *ordered;
2738 	char *kaddr;
2739 	u32 blocksize = root->sectorsize;
2740 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2741 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2742 	struct page *page;
2743 	int ret = 0;
2744 	u64 page_start;
2745 	u64 page_end;
2746 
2747 	if ((offset & (blocksize - 1)) == 0)
2748 		goto out;
2749 
2750 	ret = -ENOMEM;
2751 again:
2752 	page = grab_cache_page(mapping, index);
2753 	if (!page)
2754 		goto out;
2755 
2756 	page_start = page_offset(page);
2757 	page_end = page_start + PAGE_CACHE_SIZE - 1;
2758 
2759 	if (!PageUptodate(page)) {
2760 		ret = btrfs_readpage(NULL, page);
2761 		lock_page(page);
2762 		if (page->mapping != mapping) {
2763 			unlock_page(page);
2764 			page_cache_release(page);
2765 			goto again;
2766 		}
2767 		if (!PageUptodate(page)) {
2768 			ret = -EIO;
2769 			goto out_unlock;
2770 		}
2771 	}
2772 	wait_on_page_writeback(page);
2773 
2774 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2775 	set_page_extent_mapped(page);
2776 
2777 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2778 	if (ordered) {
2779 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2780 		unlock_page(page);
2781 		page_cache_release(page);
2782 		btrfs_start_ordered_extent(inode, ordered, 1);
2783 		btrfs_put_ordered_extent(ordered);
2784 		goto again;
2785 	}
2786 
2787 	btrfs_set_extent_delalloc(inode, page_start, page_end);
2788 	ret = 0;
2789 	if (offset != PAGE_CACHE_SIZE) {
2790 		kaddr = kmap(page);
2791 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2792 		flush_dcache_page(page);
2793 		kunmap(page);
2794 	}
2795 	ClearPageChecked(page);
2796 	set_page_dirty(page);
2797 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2798 
2799 out_unlock:
2800 	unlock_page(page);
2801 	page_cache_release(page);
2802 out:
2803 	return ret;
2804 }
2805 
2806 int btrfs_cont_expand(struct inode *inode, loff_t size)
2807 {
2808 	struct btrfs_trans_handle *trans;
2809 	struct btrfs_root *root = BTRFS_I(inode)->root;
2810 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2811 	struct extent_map *em;
2812 	u64 mask = root->sectorsize - 1;
2813 	u64 hole_start = (inode->i_size + mask) & ~mask;
2814 	u64 block_end = (size + mask) & ~mask;
2815 	u64 last_byte;
2816 	u64 cur_offset;
2817 	u64 hole_size;
2818 	int err;
2819 
2820 	if (size <= hole_start)
2821 		return 0;
2822 
2823 	err = btrfs_check_free_space(root, 1, 0);
2824 	if (err)
2825 		return err;
2826 
2827 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
2828 
2829 	while (1) {
2830 		struct btrfs_ordered_extent *ordered;
2831 		btrfs_wait_ordered_range(inode, hole_start,
2832 					 block_end - hole_start);
2833 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2834 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2835 		if (!ordered)
2836 			break;
2837 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2838 		btrfs_put_ordered_extent(ordered);
2839 	}
2840 
2841 	trans = btrfs_start_transaction(root, 1);
2842 	btrfs_set_trans_block_group(trans, inode);
2843 
2844 	cur_offset = hole_start;
2845 	while (1) {
2846 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2847 				block_end - cur_offset, 0);
2848 		BUG_ON(IS_ERR(em) || !em);
2849 		last_byte = min(extent_map_end(em), block_end);
2850 		last_byte = (last_byte + mask) & ~mask;
2851 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2852 			u64 hint_byte = 0;
2853 			hole_size = last_byte - cur_offset;
2854 			err = btrfs_drop_extents(trans, root, inode,
2855 						 cur_offset,
2856 						 cur_offset + hole_size,
2857 						 cur_offset, &hint_byte);
2858 			if (err)
2859 				break;
2860 			err = btrfs_insert_file_extent(trans, root,
2861 					inode->i_ino, cur_offset, 0,
2862 					0, hole_size, 0, hole_size,
2863 					0, 0, 0);
2864 			btrfs_drop_extent_cache(inode, hole_start,
2865 					last_byte - 1, 0);
2866 		}
2867 		free_extent_map(em);
2868 		cur_offset = last_byte;
2869 		if (err || cur_offset >= block_end)
2870 			break;
2871 	}
2872 
2873 	btrfs_end_transaction(trans, root);
2874 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2875 	return err;
2876 }
2877 
2878 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2879 {
2880 	struct inode *inode = dentry->d_inode;
2881 	int err;
2882 
2883 	err = inode_change_ok(inode, attr);
2884 	if (err)
2885 		return err;
2886 
2887 	if (S_ISREG(inode->i_mode) &&
2888 	    attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2889 		err = btrfs_cont_expand(inode, attr->ia_size);
2890 		if (err)
2891 			return err;
2892 	}
2893 
2894 	err = inode_setattr(inode, attr);
2895 
2896 	if (!err && ((attr->ia_valid & ATTR_MODE)))
2897 		err = btrfs_acl_chmod(inode);
2898 	return err;
2899 }
2900 
2901 void btrfs_delete_inode(struct inode *inode)
2902 {
2903 	struct btrfs_trans_handle *trans;
2904 	struct btrfs_root *root = BTRFS_I(inode)->root;
2905 	unsigned long nr;
2906 	int ret;
2907 
2908 	truncate_inode_pages(&inode->i_data, 0);
2909 	if (is_bad_inode(inode)) {
2910 		btrfs_orphan_del(NULL, inode);
2911 		goto no_delete;
2912 	}
2913 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
2914 
2915 	btrfs_i_size_write(inode, 0);
2916 	trans = btrfs_join_transaction(root, 1);
2917 
2918 	btrfs_set_trans_block_group(trans, inode);
2919 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2920 	if (ret) {
2921 		btrfs_orphan_del(NULL, inode);
2922 		goto no_delete_lock;
2923 	}
2924 
2925 	btrfs_orphan_del(trans, inode);
2926 
2927 	nr = trans->blocks_used;
2928 	clear_inode(inode);
2929 
2930 	btrfs_end_transaction(trans, root);
2931 	btrfs_btree_balance_dirty(root, nr);
2932 	return;
2933 
2934 no_delete_lock:
2935 	nr = trans->blocks_used;
2936 	btrfs_end_transaction(trans, root);
2937 	btrfs_btree_balance_dirty(root, nr);
2938 no_delete:
2939 	clear_inode(inode);
2940 }
2941 
2942 /*
2943  * this returns the key found in the dir entry in the location pointer.
2944  * If no dir entries were found, location->objectid is 0.
2945  */
2946 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2947 			       struct btrfs_key *location)
2948 {
2949 	const char *name = dentry->d_name.name;
2950 	int namelen = dentry->d_name.len;
2951 	struct btrfs_dir_item *di;
2952 	struct btrfs_path *path;
2953 	struct btrfs_root *root = BTRFS_I(dir)->root;
2954 	int ret = 0;
2955 
2956 	path = btrfs_alloc_path();
2957 	BUG_ON(!path);
2958 
2959 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2960 				    namelen, 0);
2961 	if (IS_ERR(di))
2962 		ret = PTR_ERR(di);
2963 
2964 	if (!di || IS_ERR(di))
2965 		goto out_err;
2966 
2967 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2968 out:
2969 	btrfs_free_path(path);
2970 	return ret;
2971 out_err:
2972 	location->objectid = 0;
2973 	goto out;
2974 }
2975 
2976 /*
2977  * when we hit a tree root in a directory, the btrfs part of the inode
2978  * needs to be changed to reflect the root directory of the tree root.  This
2979  * is kind of like crossing a mount point.
2980  */
2981 static int fixup_tree_root_location(struct btrfs_root *root,
2982 			     struct btrfs_key *location,
2983 			     struct btrfs_root **sub_root,
2984 			     struct dentry *dentry)
2985 {
2986 	struct btrfs_root_item *ri;
2987 
2988 	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2989 		return 0;
2990 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2991 		return 0;
2992 
2993 	*sub_root = btrfs_read_fs_root(root->fs_info, location,
2994 					dentry->d_name.name,
2995 					dentry->d_name.len);
2996 	if (IS_ERR(*sub_root))
2997 		return PTR_ERR(*sub_root);
2998 
2999 	ri = &(*sub_root)->root_item;
3000 	location->objectid = btrfs_root_dirid(ri);
3001 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3002 	location->offset = 0;
3003 
3004 	return 0;
3005 }
3006 
3007 static noinline void init_btrfs_i(struct inode *inode)
3008 {
3009 	struct btrfs_inode *bi = BTRFS_I(inode);
3010 
3011 	bi->i_acl = NULL;
3012 	bi->i_default_acl = NULL;
3013 
3014 	bi->generation = 0;
3015 	bi->sequence = 0;
3016 	bi->last_trans = 0;
3017 	bi->logged_trans = 0;
3018 	bi->delalloc_bytes = 0;
3019 	bi->disk_i_size = 0;
3020 	bi->flags = 0;
3021 	bi->index_cnt = (u64)-1;
3022 	bi->log_dirty_trans = 0;
3023 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3024 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3025 			     inode->i_mapping, GFP_NOFS);
3026 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3027 			     inode->i_mapping, GFP_NOFS);
3028 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3029 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3030 	mutex_init(&BTRFS_I(inode)->extent_mutex);
3031 	mutex_init(&BTRFS_I(inode)->log_mutex);
3032 }
3033 
3034 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3035 {
3036 	struct btrfs_iget_args *args = p;
3037 	inode->i_ino = args->ino;
3038 	init_btrfs_i(inode);
3039 	BTRFS_I(inode)->root = args->root;
3040 	return 0;
3041 }
3042 
3043 static int btrfs_find_actor(struct inode *inode, void *opaque)
3044 {
3045 	struct btrfs_iget_args *args = opaque;
3046 	return args->ino == inode->i_ino &&
3047 		args->root == BTRFS_I(inode)->root;
3048 }
3049 
3050 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3051 			    struct btrfs_root *root, int wait)
3052 {
3053 	struct inode *inode;
3054 	struct btrfs_iget_args args;
3055 	args.ino = objectid;
3056 	args.root = root;
3057 
3058 	if (wait) {
3059 		inode = ilookup5(s, objectid, btrfs_find_actor,
3060 				 (void *)&args);
3061 	} else {
3062 		inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3063 					(void *)&args);
3064 	}
3065 	return inode;
3066 }
3067 
3068 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3069 				struct btrfs_root *root)
3070 {
3071 	struct inode *inode;
3072 	struct btrfs_iget_args args;
3073 	args.ino = objectid;
3074 	args.root = root;
3075 
3076 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3077 			     btrfs_init_locked_inode,
3078 			     (void *)&args);
3079 	return inode;
3080 }
3081 
3082 /* Get an inode object given its location and corresponding root.
3083  * Returns in *is_new if the inode was read from disk
3084  */
3085 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3086 			 struct btrfs_root *root, int *is_new)
3087 {
3088 	struct inode *inode;
3089 
3090 	inode = btrfs_iget_locked(s, location->objectid, root);
3091 	if (!inode)
3092 		return ERR_PTR(-EACCES);
3093 
3094 	if (inode->i_state & I_NEW) {
3095 		BTRFS_I(inode)->root = root;
3096 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3097 		btrfs_read_locked_inode(inode);
3098 		unlock_new_inode(inode);
3099 		if (is_new)
3100 			*is_new = 1;
3101 	} else {
3102 		if (is_new)
3103 			*is_new = 0;
3104 	}
3105 
3106 	return inode;
3107 }
3108 
3109 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3110 {
3111 	struct inode *inode;
3112 	struct btrfs_inode *bi = BTRFS_I(dir);
3113 	struct btrfs_root *root = bi->root;
3114 	struct btrfs_root *sub_root = root;
3115 	struct btrfs_key location;
3116 	int ret, new;
3117 
3118 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3119 		return ERR_PTR(-ENAMETOOLONG);
3120 
3121 	ret = btrfs_inode_by_name(dir, dentry, &location);
3122 
3123 	if (ret < 0)
3124 		return ERR_PTR(ret);
3125 
3126 	inode = NULL;
3127 	if (location.objectid) {
3128 		ret = fixup_tree_root_location(root, &location, &sub_root,
3129 						dentry);
3130 		if (ret < 0)
3131 			return ERR_PTR(ret);
3132 		if (ret > 0)
3133 			return ERR_PTR(-ENOENT);
3134 		inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3135 		if (IS_ERR(inode))
3136 			return ERR_CAST(inode);
3137 	}
3138 	return inode;
3139 }
3140 
3141 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3142 				   struct nameidata *nd)
3143 {
3144 	struct inode *inode;
3145 
3146 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3147 		return ERR_PTR(-ENAMETOOLONG);
3148 
3149 	inode = btrfs_lookup_dentry(dir, dentry);
3150 	if (IS_ERR(inode))
3151 		return ERR_CAST(inode);
3152 
3153 	return d_splice_alias(inode, dentry);
3154 }
3155 
3156 static unsigned char btrfs_filetype_table[] = {
3157 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3158 };
3159 
3160 static int btrfs_real_readdir(struct file *filp, void *dirent,
3161 			      filldir_t filldir)
3162 {
3163 	struct inode *inode = filp->f_dentry->d_inode;
3164 	struct btrfs_root *root = BTRFS_I(inode)->root;
3165 	struct btrfs_item *item;
3166 	struct btrfs_dir_item *di;
3167 	struct btrfs_key key;
3168 	struct btrfs_key found_key;
3169 	struct btrfs_path *path;
3170 	int ret;
3171 	u32 nritems;
3172 	struct extent_buffer *leaf;
3173 	int slot;
3174 	int advance;
3175 	unsigned char d_type;
3176 	int over = 0;
3177 	u32 di_cur;
3178 	u32 di_total;
3179 	u32 di_len;
3180 	int key_type = BTRFS_DIR_INDEX_KEY;
3181 	char tmp_name[32];
3182 	char *name_ptr;
3183 	int name_len;
3184 
3185 	/* FIXME, use a real flag for deciding about the key type */
3186 	if (root->fs_info->tree_root == root)
3187 		key_type = BTRFS_DIR_ITEM_KEY;
3188 
3189 	/* special case for "." */
3190 	if (filp->f_pos == 0) {
3191 		over = filldir(dirent, ".", 1,
3192 			       1, inode->i_ino,
3193 			       DT_DIR);
3194 		if (over)
3195 			return 0;
3196 		filp->f_pos = 1;
3197 	}
3198 	/* special case for .., just use the back ref */
3199 	if (filp->f_pos == 1) {
3200 		u64 pino = parent_ino(filp->f_path.dentry);
3201 		over = filldir(dirent, "..", 2,
3202 			       2, pino, DT_DIR);
3203 		if (over)
3204 			return 0;
3205 		filp->f_pos = 2;
3206 	}
3207 	path = btrfs_alloc_path();
3208 	path->reada = 2;
3209 
3210 	btrfs_set_key_type(&key, key_type);
3211 	key.offset = filp->f_pos;
3212 	key.objectid = inode->i_ino;
3213 
3214 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3215 	if (ret < 0)
3216 		goto err;
3217 	advance = 0;
3218 
3219 	while (1) {
3220 		leaf = path->nodes[0];
3221 		nritems = btrfs_header_nritems(leaf);
3222 		slot = path->slots[0];
3223 		if (advance || slot >= nritems) {
3224 			if (slot >= nritems - 1) {
3225 				ret = btrfs_next_leaf(root, path);
3226 				if (ret)
3227 					break;
3228 				leaf = path->nodes[0];
3229 				nritems = btrfs_header_nritems(leaf);
3230 				slot = path->slots[0];
3231 			} else {
3232 				slot++;
3233 				path->slots[0]++;
3234 			}
3235 		}
3236 
3237 		advance = 1;
3238 		item = btrfs_item_nr(leaf, slot);
3239 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3240 
3241 		if (found_key.objectid != key.objectid)
3242 			break;
3243 		if (btrfs_key_type(&found_key) != key_type)
3244 			break;
3245 		if (found_key.offset < filp->f_pos)
3246 			continue;
3247 
3248 		filp->f_pos = found_key.offset;
3249 
3250 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3251 		di_cur = 0;
3252 		di_total = btrfs_item_size(leaf, item);
3253 
3254 		while (di_cur < di_total) {
3255 			struct btrfs_key location;
3256 
3257 			name_len = btrfs_dir_name_len(leaf, di);
3258 			if (name_len <= sizeof(tmp_name)) {
3259 				name_ptr = tmp_name;
3260 			} else {
3261 				name_ptr = kmalloc(name_len, GFP_NOFS);
3262 				if (!name_ptr) {
3263 					ret = -ENOMEM;
3264 					goto err;
3265 				}
3266 			}
3267 			read_extent_buffer(leaf, name_ptr,
3268 					   (unsigned long)(di + 1), name_len);
3269 
3270 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3271 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3272 
3273 			/* is this a reference to our own snapshot? If so
3274 			 * skip it
3275 			 */
3276 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3277 			    location.objectid == root->root_key.objectid) {
3278 				over = 0;
3279 				goto skip;
3280 			}
3281 			over = filldir(dirent, name_ptr, name_len,
3282 				       found_key.offset, location.objectid,
3283 				       d_type);
3284 
3285 skip:
3286 			if (name_ptr != tmp_name)
3287 				kfree(name_ptr);
3288 
3289 			if (over)
3290 				goto nopos;
3291 			di_len = btrfs_dir_name_len(leaf, di) +
3292 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3293 			di_cur += di_len;
3294 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3295 		}
3296 	}
3297 
3298 	/* Reached end of directory/root. Bump pos past the last item. */
3299 	if (key_type == BTRFS_DIR_INDEX_KEY)
3300 		filp->f_pos = INT_LIMIT(off_t);
3301 	else
3302 		filp->f_pos++;
3303 nopos:
3304 	ret = 0;
3305 err:
3306 	btrfs_free_path(path);
3307 	return ret;
3308 }
3309 
3310 int btrfs_write_inode(struct inode *inode, int wait)
3311 {
3312 	struct btrfs_root *root = BTRFS_I(inode)->root;
3313 	struct btrfs_trans_handle *trans;
3314 	int ret = 0;
3315 
3316 	if (root->fs_info->btree_inode == inode)
3317 		return 0;
3318 
3319 	if (wait) {
3320 		trans = btrfs_join_transaction(root, 1);
3321 		btrfs_set_trans_block_group(trans, inode);
3322 		ret = btrfs_commit_transaction(trans, root);
3323 	}
3324 	return ret;
3325 }
3326 
3327 /*
3328  * This is somewhat expensive, updating the tree every time the
3329  * inode changes.  But, it is most likely to find the inode in cache.
3330  * FIXME, needs more benchmarking...there are no reasons other than performance
3331  * to keep or drop this code.
3332  */
3333 void btrfs_dirty_inode(struct inode *inode)
3334 {
3335 	struct btrfs_root *root = BTRFS_I(inode)->root;
3336 	struct btrfs_trans_handle *trans;
3337 
3338 	trans = btrfs_join_transaction(root, 1);
3339 	btrfs_set_trans_block_group(trans, inode);
3340 	btrfs_update_inode(trans, root, inode);
3341 	btrfs_end_transaction(trans, root);
3342 }
3343 
3344 /*
3345  * find the highest existing sequence number in a directory
3346  * and then set the in-memory index_cnt variable to reflect
3347  * free sequence numbers
3348  */
3349 static int btrfs_set_inode_index_count(struct inode *inode)
3350 {
3351 	struct btrfs_root *root = BTRFS_I(inode)->root;
3352 	struct btrfs_key key, found_key;
3353 	struct btrfs_path *path;
3354 	struct extent_buffer *leaf;
3355 	int ret;
3356 
3357 	key.objectid = inode->i_ino;
3358 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3359 	key.offset = (u64)-1;
3360 
3361 	path = btrfs_alloc_path();
3362 	if (!path)
3363 		return -ENOMEM;
3364 
3365 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3366 	if (ret < 0)
3367 		goto out;
3368 	/* FIXME: we should be able to handle this */
3369 	if (ret == 0)
3370 		goto out;
3371 	ret = 0;
3372 
3373 	/*
3374 	 * MAGIC NUMBER EXPLANATION:
3375 	 * since we search a directory based on f_pos we have to start at 2
3376 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3377 	 * else has to start at 2
3378 	 */
3379 	if (path->slots[0] == 0) {
3380 		BTRFS_I(inode)->index_cnt = 2;
3381 		goto out;
3382 	}
3383 
3384 	path->slots[0]--;
3385 
3386 	leaf = path->nodes[0];
3387 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3388 
3389 	if (found_key.objectid != inode->i_ino ||
3390 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3391 		BTRFS_I(inode)->index_cnt = 2;
3392 		goto out;
3393 	}
3394 
3395 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3396 out:
3397 	btrfs_free_path(path);
3398 	return ret;
3399 }
3400 
3401 /*
3402  * helper to find a free sequence number in a given directory.  This current
3403  * code is very simple, later versions will do smarter things in the btree
3404  */
3405 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3406 {
3407 	int ret = 0;
3408 
3409 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3410 		ret = btrfs_set_inode_index_count(dir);
3411 		if (ret)
3412 			return ret;
3413 	}
3414 
3415 	*index = BTRFS_I(dir)->index_cnt;
3416 	BTRFS_I(dir)->index_cnt++;
3417 
3418 	return ret;
3419 }
3420 
3421 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3422 				     struct btrfs_root *root,
3423 				     struct inode *dir,
3424 				     const char *name, int name_len,
3425 				     u64 ref_objectid, u64 objectid,
3426 				     u64 alloc_hint, int mode, u64 *index)
3427 {
3428 	struct inode *inode;
3429 	struct btrfs_inode_item *inode_item;
3430 	struct btrfs_key *location;
3431 	struct btrfs_path *path;
3432 	struct btrfs_inode_ref *ref;
3433 	struct btrfs_key key[2];
3434 	u32 sizes[2];
3435 	unsigned long ptr;
3436 	int ret;
3437 	int owner;
3438 
3439 	path = btrfs_alloc_path();
3440 	BUG_ON(!path);
3441 
3442 	inode = new_inode(root->fs_info->sb);
3443 	if (!inode)
3444 		return ERR_PTR(-ENOMEM);
3445 
3446 	if (dir) {
3447 		ret = btrfs_set_inode_index(dir, index);
3448 		if (ret)
3449 			return ERR_PTR(ret);
3450 	}
3451 	/*
3452 	 * index_cnt is ignored for everything but a dir,
3453 	 * btrfs_get_inode_index_count has an explanation for the magic
3454 	 * number
3455 	 */
3456 	init_btrfs_i(inode);
3457 	BTRFS_I(inode)->index_cnt = 2;
3458 	BTRFS_I(inode)->root = root;
3459 	BTRFS_I(inode)->generation = trans->transid;
3460 
3461 	if (mode & S_IFDIR)
3462 		owner = 0;
3463 	else
3464 		owner = 1;
3465 	BTRFS_I(inode)->block_group =
3466 			btrfs_find_block_group(root, 0, alloc_hint, owner);
3467 	if ((mode & S_IFREG)) {
3468 		if (btrfs_test_opt(root, NODATASUM))
3469 			btrfs_set_flag(inode, NODATASUM);
3470 		if (btrfs_test_opt(root, NODATACOW))
3471 			btrfs_set_flag(inode, NODATACOW);
3472 	}
3473 
3474 	key[0].objectid = objectid;
3475 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3476 	key[0].offset = 0;
3477 
3478 	key[1].objectid = objectid;
3479 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3480 	key[1].offset = ref_objectid;
3481 
3482 	sizes[0] = sizeof(struct btrfs_inode_item);
3483 	sizes[1] = name_len + sizeof(*ref);
3484 
3485 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3486 	if (ret != 0)
3487 		goto fail;
3488 
3489 	if (objectid > root->highest_inode)
3490 		root->highest_inode = objectid;
3491 
3492 	inode->i_uid = current_fsuid();
3493 
3494 	if (dir && (dir->i_mode & S_ISGID)) {
3495 		inode->i_gid = dir->i_gid;
3496 		if (S_ISDIR(mode))
3497 			mode |= S_ISGID;
3498 	} else
3499 		inode->i_gid = current_fsgid();
3500 
3501 	inode->i_mode = mode;
3502 	inode->i_ino = objectid;
3503 	inode_set_bytes(inode, 0);
3504 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3505 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3506 				  struct btrfs_inode_item);
3507 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
3508 
3509 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3510 			     struct btrfs_inode_ref);
3511 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3512 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3513 	ptr = (unsigned long)(ref + 1);
3514 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
3515 
3516 	btrfs_mark_buffer_dirty(path->nodes[0]);
3517 	btrfs_free_path(path);
3518 
3519 	location = &BTRFS_I(inode)->location;
3520 	location->objectid = objectid;
3521 	location->offset = 0;
3522 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3523 
3524 	insert_inode_hash(inode);
3525 	return inode;
3526 fail:
3527 	if (dir)
3528 		BTRFS_I(dir)->index_cnt--;
3529 	btrfs_free_path(path);
3530 	return ERR_PTR(ret);
3531 }
3532 
3533 static inline u8 btrfs_inode_type(struct inode *inode)
3534 {
3535 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3536 }
3537 
3538 /*
3539  * utility function to add 'inode' into 'parent_inode' with
3540  * a give name and a given sequence number.
3541  * if 'add_backref' is true, also insert a backref from the
3542  * inode to the parent directory.
3543  */
3544 int btrfs_add_link(struct btrfs_trans_handle *trans,
3545 		   struct inode *parent_inode, struct inode *inode,
3546 		   const char *name, int name_len, int add_backref, u64 index)
3547 {
3548 	int ret;
3549 	struct btrfs_key key;
3550 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3551 
3552 	key.objectid = inode->i_ino;
3553 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3554 	key.offset = 0;
3555 
3556 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
3557 				    parent_inode->i_ino,
3558 				    &key, btrfs_inode_type(inode),
3559 				    index);
3560 	if (ret == 0) {
3561 		if (add_backref) {
3562 			ret = btrfs_insert_inode_ref(trans, root,
3563 						     name, name_len,
3564 						     inode->i_ino,
3565 						     parent_inode->i_ino,
3566 						     index);
3567 		}
3568 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
3569 				   name_len * 2);
3570 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3571 		ret = btrfs_update_inode(trans, root, parent_inode);
3572 	}
3573 	return ret;
3574 }
3575 
3576 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3577 			    struct dentry *dentry, struct inode *inode,
3578 			    int backref, u64 index)
3579 {
3580 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3581 				 inode, dentry->d_name.name,
3582 				 dentry->d_name.len, backref, index);
3583 	if (!err) {
3584 		d_instantiate(dentry, inode);
3585 		return 0;
3586 	}
3587 	if (err > 0)
3588 		err = -EEXIST;
3589 	return err;
3590 }
3591 
3592 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3593 			int mode, dev_t rdev)
3594 {
3595 	struct btrfs_trans_handle *trans;
3596 	struct btrfs_root *root = BTRFS_I(dir)->root;
3597 	struct inode *inode = NULL;
3598 	int err;
3599 	int drop_inode = 0;
3600 	u64 objectid;
3601 	unsigned long nr = 0;
3602 	u64 index = 0;
3603 
3604 	if (!new_valid_dev(rdev))
3605 		return -EINVAL;
3606 
3607 	err = btrfs_check_free_space(root, 1, 0);
3608 	if (err)
3609 		goto fail;
3610 
3611 	trans = btrfs_start_transaction(root, 1);
3612 	btrfs_set_trans_block_group(trans, dir);
3613 
3614 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3615 	if (err) {
3616 		err = -ENOSPC;
3617 		goto out_unlock;
3618 	}
3619 
3620 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3621 				dentry->d_name.len,
3622 				dentry->d_parent->d_inode->i_ino, objectid,
3623 				BTRFS_I(dir)->block_group, mode, &index);
3624 	err = PTR_ERR(inode);
3625 	if (IS_ERR(inode))
3626 		goto out_unlock;
3627 
3628 	err = btrfs_init_inode_security(inode, dir);
3629 	if (err) {
3630 		drop_inode = 1;
3631 		goto out_unlock;
3632 	}
3633 
3634 	btrfs_set_trans_block_group(trans, inode);
3635 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3636 	if (err)
3637 		drop_inode = 1;
3638 	else {
3639 		inode->i_op = &btrfs_special_inode_operations;
3640 		init_special_inode(inode, inode->i_mode, rdev);
3641 		btrfs_update_inode(trans, root, inode);
3642 	}
3643 	dir->i_sb->s_dirt = 1;
3644 	btrfs_update_inode_block_group(trans, inode);
3645 	btrfs_update_inode_block_group(trans, dir);
3646 out_unlock:
3647 	nr = trans->blocks_used;
3648 	btrfs_end_transaction_throttle(trans, root);
3649 fail:
3650 	if (drop_inode) {
3651 		inode_dec_link_count(inode);
3652 		iput(inode);
3653 	}
3654 	btrfs_btree_balance_dirty(root, nr);
3655 	return err;
3656 }
3657 
3658 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3659 			int mode, struct nameidata *nd)
3660 {
3661 	struct btrfs_trans_handle *trans;
3662 	struct btrfs_root *root = BTRFS_I(dir)->root;
3663 	struct inode *inode = NULL;
3664 	int err;
3665 	int drop_inode = 0;
3666 	unsigned long nr = 0;
3667 	u64 objectid;
3668 	u64 index = 0;
3669 
3670 	err = btrfs_check_free_space(root, 1, 0);
3671 	if (err)
3672 		goto fail;
3673 	trans = btrfs_start_transaction(root, 1);
3674 	btrfs_set_trans_block_group(trans, dir);
3675 
3676 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3677 	if (err) {
3678 		err = -ENOSPC;
3679 		goto out_unlock;
3680 	}
3681 
3682 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3683 				dentry->d_name.len,
3684 				dentry->d_parent->d_inode->i_ino,
3685 				objectid, BTRFS_I(dir)->block_group, mode,
3686 				&index);
3687 	err = PTR_ERR(inode);
3688 	if (IS_ERR(inode))
3689 		goto out_unlock;
3690 
3691 	err = btrfs_init_inode_security(inode, dir);
3692 	if (err) {
3693 		drop_inode = 1;
3694 		goto out_unlock;
3695 	}
3696 
3697 	btrfs_set_trans_block_group(trans, inode);
3698 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3699 	if (err)
3700 		drop_inode = 1;
3701 	else {
3702 		inode->i_mapping->a_ops = &btrfs_aops;
3703 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3704 		inode->i_fop = &btrfs_file_operations;
3705 		inode->i_op = &btrfs_file_inode_operations;
3706 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3707 	}
3708 	dir->i_sb->s_dirt = 1;
3709 	btrfs_update_inode_block_group(trans, inode);
3710 	btrfs_update_inode_block_group(trans, dir);
3711 out_unlock:
3712 	nr = trans->blocks_used;
3713 	btrfs_end_transaction_throttle(trans, root);
3714 fail:
3715 	if (drop_inode) {
3716 		inode_dec_link_count(inode);
3717 		iput(inode);
3718 	}
3719 	btrfs_btree_balance_dirty(root, nr);
3720 	return err;
3721 }
3722 
3723 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3724 		      struct dentry *dentry)
3725 {
3726 	struct btrfs_trans_handle *trans;
3727 	struct btrfs_root *root = BTRFS_I(dir)->root;
3728 	struct inode *inode = old_dentry->d_inode;
3729 	u64 index;
3730 	unsigned long nr = 0;
3731 	int err;
3732 	int drop_inode = 0;
3733 
3734 	if (inode->i_nlink == 0)
3735 		return -ENOENT;
3736 
3737 	btrfs_inc_nlink(inode);
3738 	err = btrfs_check_free_space(root, 1, 0);
3739 	if (err)
3740 		goto fail;
3741 	err = btrfs_set_inode_index(dir, &index);
3742 	if (err)
3743 		goto fail;
3744 
3745 	trans = btrfs_start_transaction(root, 1);
3746 
3747 	btrfs_set_trans_block_group(trans, dir);
3748 	atomic_inc(&inode->i_count);
3749 
3750 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3751 
3752 	if (err)
3753 		drop_inode = 1;
3754 
3755 	dir->i_sb->s_dirt = 1;
3756 	btrfs_update_inode_block_group(trans, dir);
3757 	err = btrfs_update_inode(trans, root, inode);
3758 
3759 	if (err)
3760 		drop_inode = 1;
3761 
3762 	nr = trans->blocks_used;
3763 	btrfs_end_transaction_throttle(trans, root);
3764 fail:
3765 	if (drop_inode) {
3766 		inode_dec_link_count(inode);
3767 		iput(inode);
3768 	}
3769 	btrfs_btree_balance_dirty(root, nr);
3770 	return err;
3771 }
3772 
3773 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3774 {
3775 	struct inode *inode = NULL;
3776 	struct btrfs_trans_handle *trans;
3777 	struct btrfs_root *root = BTRFS_I(dir)->root;
3778 	int err = 0;
3779 	int drop_on_err = 0;
3780 	u64 objectid = 0;
3781 	u64 index = 0;
3782 	unsigned long nr = 1;
3783 
3784 	err = btrfs_check_free_space(root, 1, 0);
3785 	if (err)
3786 		goto out_unlock;
3787 
3788 	trans = btrfs_start_transaction(root, 1);
3789 	btrfs_set_trans_block_group(trans, dir);
3790 
3791 	if (IS_ERR(trans)) {
3792 		err = PTR_ERR(trans);
3793 		goto out_unlock;
3794 	}
3795 
3796 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3797 	if (err) {
3798 		err = -ENOSPC;
3799 		goto out_unlock;
3800 	}
3801 
3802 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3803 				dentry->d_name.len,
3804 				dentry->d_parent->d_inode->i_ino, objectid,
3805 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
3806 				&index);
3807 	if (IS_ERR(inode)) {
3808 		err = PTR_ERR(inode);
3809 		goto out_fail;
3810 	}
3811 
3812 	drop_on_err = 1;
3813 
3814 	err = btrfs_init_inode_security(inode, dir);
3815 	if (err)
3816 		goto out_fail;
3817 
3818 	inode->i_op = &btrfs_dir_inode_operations;
3819 	inode->i_fop = &btrfs_dir_file_operations;
3820 	btrfs_set_trans_block_group(trans, inode);
3821 
3822 	btrfs_i_size_write(inode, 0);
3823 	err = btrfs_update_inode(trans, root, inode);
3824 	if (err)
3825 		goto out_fail;
3826 
3827 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3828 				 inode, dentry->d_name.name,
3829 				 dentry->d_name.len, 0, index);
3830 	if (err)
3831 		goto out_fail;
3832 
3833 	d_instantiate(dentry, inode);
3834 	drop_on_err = 0;
3835 	dir->i_sb->s_dirt = 1;
3836 	btrfs_update_inode_block_group(trans, inode);
3837 	btrfs_update_inode_block_group(trans, dir);
3838 
3839 out_fail:
3840 	nr = trans->blocks_used;
3841 	btrfs_end_transaction_throttle(trans, root);
3842 
3843 out_unlock:
3844 	if (drop_on_err)
3845 		iput(inode);
3846 	btrfs_btree_balance_dirty(root, nr);
3847 	return err;
3848 }
3849 
3850 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3851  * and an extent that you want to insert, deal with overlap and insert
3852  * the new extent into the tree.
3853  */
3854 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3855 				struct extent_map *existing,
3856 				struct extent_map *em,
3857 				u64 map_start, u64 map_len)
3858 {
3859 	u64 start_diff;
3860 
3861 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3862 	start_diff = map_start - em->start;
3863 	em->start = map_start;
3864 	em->len = map_len;
3865 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3866 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3867 		em->block_start += start_diff;
3868 		em->block_len -= start_diff;
3869 	}
3870 	return add_extent_mapping(em_tree, em);
3871 }
3872 
3873 static noinline int uncompress_inline(struct btrfs_path *path,
3874 				      struct inode *inode, struct page *page,
3875 				      size_t pg_offset, u64 extent_offset,
3876 				      struct btrfs_file_extent_item *item)
3877 {
3878 	int ret;
3879 	struct extent_buffer *leaf = path->nodes[0];
3880 	char *tmp;
3881 	size_t max_size;
3882 	unsigned long inline_size;
3883 	unsigned long ptr;
3884 
3885 	WARN_ON(pg_offset != 0);
3886 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
3887 	inline_size = btrfs_file_extent_inline_item_len(leaf,
3888 					btrfs_item_nr(leaf, path->slots[0]));
3889 	tmp = kmalloc(inline_size, GFP_NOFS);
3890 	ptr = btrfs_file_extent_inline_start(item);
3891 
3892 	read_extent_buffer(leaf, tmp, ptr, inline_size);
3893 
3894 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3895 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3896 				    inline_size, max_size);
3897 	if (ret) {
3898 		char *kaddr = kmap_atomic(page, KM_USER0);
3899 		unsigned long copy_size = min_t(u64,
3900 				  PAGE_CACHE_SIZE - pg_offset,
3901 				  max_size - extent_offset);
3902 		memset(kaddr + pg_offset, 0, copy_size);
3903 		kunmap_atomic(kaddr, KM_USER0);
3904 	}
3905 	kfree(tmp);
3906 	return 0;
3907 }
3908 
3909 /*
3910  * a bit scary, this does extent mapping from logical file offset to the disk.
3911  * the ugly parts come from merging extents from the disk with the in-ram
3912  * representation.  This gets more complex because of the data=ordered code,
3913  * where the in-ram extents might be locked pending data=ordered completion.
3914  *
3915  * This also copies inline extents directly into the page.
3916  */
3917 
3918 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3919 				    size_t pg_offset, u64 start, u64 len,
3920 				    int create)
3921 {
3922 	int ret;
3923 	int err = 0;
3924 	u64 bytenr;
3925 	u64 extent_start = 0;
3926 	u64 extent_end = 0;
3927 	u64 objectid = inode->i_ino;
3928 	u32 found_type;
3929 	struct btrfs_path *path = NULL;
3930 	struct btrfs_root *root = BTRFS_I(inode)->root;
3931 	struct btrfs_file_extent_item *item;
3932 	struct extent_buffer *leaf;
3933 	struct btrfs_key found_key;
3934 	struct extent_map *em = NULL;
3935 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3936 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3937 	struct btrfs_trans_handle *trans = NULL;
3938 	int compressed;
3939 
3940 again:
3941 	spin_lock(&em_tree->lock);
3942 	em = lookup_extent_mapping(em_tree, start, len);
3943 	if (em)
3944 		em->bdev = root->fs_info->fs_devices->latest_bdev;
3945 	spin_unlock(&em_tree->lock);
3946 
3947 	if (em) {
3948 		if (em->start > start || em->start + em->len <= start)
3949 			free_extent_map(em);
3950 		else if (em->block_start == EXTENT_MAP_INLINE && page)
3951 			free_extent_map(em);
3952 		else
3953 			goto out;
3954 	}
3955 	em = alloc_extent_map(GFP_NOFS);
3956 	if (!em) {
3957 		err = -ENOMEM;
3958 		goto out;
3959 	}
3960 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3961 	em->start = EXTENT_MAP_HOLE;
3962 	em->orig_start = EXTENT_MAP_HOLE;
3963 	em->len = (u64)-1;
3964 	em->block_len = (u64)-1;
3965 
3966 	if (!path) {
3967 		path = btrfs_alloc_path();
3968 		BUG_ON(!path);
3969 	}
3970 
3971 	ret = btrfs_lookup_file_extent(trans, root, path,
3972 				       objectid, start, trans != NULL);
3973 	if (ret < 0) {
3974 		err = ret;
3975 		goto out;
3976 	}
3977 
3978 	if (ret != 0) {
3979 		if (path->slots[0] == 0)
3980 			goto not_found;
3981 		path->slots[0]--;
3982 	}
3983 
3984 	leaf = path->nodes[0];
3985 	item = btrfs_item_ptr(leaf, path->slots[0],
3986 			      struct btrfs_file_extent_item);
3987 	/* are we inside the extent that was found? */
3988 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3989 	found_type = btrfs_key_type(&found_key);
3990 	if (found_key.objectid != objectid ||
3991 	    found_type != BTRFS_EXTENT_DATA_KEY) {
3992 		goto not_found;
3993 	}
3994 
3995 	found_type = btrfs_file_extent_type(leaf, item);
3996 	extent_start = found_key.offset;
3997 	compressed = btrfs_file_extent_compression(leaf, item);
3998 	if (found_type == BTRFS_FILE_EXTENT_REG ||
3999 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4000 		extent_end = extent_start +
4001 		       btrfs_file_extent_num_bytes(leaf, item);
4002 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4003 		size_t size;
4004 		size = btrfs_file_extent_inline_len(leaf, item);
4005 		extent_end = (extent_start + size + root->sectorsize - 1) &
4006 			~((u64)root->sectorsize - 1);
4007 	}
4008 
4009 	if (start >= extent_end) {
4010 		path->slots[0]++;
4011 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4012 			ret = btrfs_next_leaf(root, path);
4013 			if (ret < 0) {
4014 				err = ret;
4015 				goto out;
4016 			}
4017 			if (ret > 0)
4018 				goto not_found;
4019 			leaf = path->nodes[0];
4020 		}
4021 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4022 		if (found_key.objectid != objectid ||
4023 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4024 			goto not_found;
4025 		if (start + len <= found_key.offset)
4026 			goto not_found;
4027 		em->start = start;
4028 		em->len = found_key.offset - start;
4029 		goto not_found_em;
4030 	}
4031 
4032 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4033 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4034 		em->start = extent_start;
4035 		em->len = extent_end - extent_start;
4036 		em->orig_start = extent_start -
4037 				 btrfs_file_extent_offset(leaf, item);
4038 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4039 		if (bytenr == 0) {
4040 			em->block_start = EXTENT_MAP_HOLE;
4041 			goto insert;
4042 		}
4043 		if (compressed) {
4044 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4045 			em->block_start = bytenr;
4046 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4047 									 item);
4048 		} else {
4049 			bytenr += btrfs_file_extent_offset(leaf, item);
4050 			em->block_start = bytenr;
4051 			em->block_len = em->len;
4052 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4053 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4054 		}
4055 		goto insert;
4056 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4057 		unsigned long ptr;
4058 		char *map;
4059 		size_t size;
4060 		size_t extent_offset;
4061 		size_t copy_size;
4062 
4063 		em->block_start = EXTENT_MAP_INLINE;
4064 		if (!page || create) {
4065 			em->start = extent_start;
4066 			em->len = extent_end - extent_start;
4067 			goto out;
4068 		}
4069 
4070 		size = btrfs_file_extent_inline_len(leaf, item);
4071 		extent_offset = page_offset(page) + pg_offset - extent_start;
4072 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4073 				size - extent_offset);
4074 		em->start = extent_start + extent_offset;
4075 		em->len = (copy_size + root->sectorsize - 1) &
4076 			~((u64)root->sectorsize - 1);
4077 		em->orig_start = EXTENT_MAP_INLINE;
4078 		if (compressed)
4079 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4080 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4081 		if (create == 0 && !PageUptodate(page)) {
4082 			if (btrfs_file_extent_compression(leaf, item) ==
4083 			    BTRFS_COMPRESS_ZLIB) {
4084 				ret = uncompress_inline(path, inode, page,
4085 							pg_offset,
4086 							extent_offset, item);
4087 				BUG_ON(ret);
4088 			} else {
4089 				map = kmap(page);
4090 				read_extent_buffer(leaf, map + pg_offset, ptr,
4091 						   copy_size);
4092 				kunmap(page);
4093 			}
4094 			flush_dcache_page(page);
4095 		} else if (create && PageUptodate(page)) {
4096 			if (!trans) {
4097 				kunmap(page);
4098 				free_extent_map(em);
4099 				em = NULL;
4100 				btrfs_release_path(root, path);
4101 				trans = btrfs_join_transaction(root, 1);
4102 				goto again;
4103 			}
4104 			map = kmap(page);
4105 			write_extent_buffer(leaf, map + pg_offset, ptr,
4106 					    copy_size);
4107 			kunmap(page);
4108 			btrfs_mark_buffer_dirty(leaf);
4109 		}
4110 		set_extent_uptodate(io_tree, em->start,
4111 				    extent_map_end(em) - 1, GFP_NOFS);
4112 		goto insert;
4113 	} else {
4114 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4115 		WARN_ON(1);
4116 	}
4117 not_found:
4118 	em->start = start;
4119 	em->len = len;
4120 not_found_em:
4121 	em->block_start = EXTENT_MAP_HOLE;
4122 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4123 insert:
4124 	btrfs_release_path(root, path);
4125 	if (em->start > start || extent_map_end(em) <= start) {
4126 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4127 		       "[%llu %llu]\n", (unsigned long long)em->start,
4128 		       (unsigned long long)em->len,
4129 		       (unsigned long long)start,
4130 		       (unsigned long long)len);
4131 		err = -EIO;
4132 		goto out;
4133 	}
4134 
4135 	err = 0;
4136 	spin_lock(&em_tree->lock);
4137 	ret = add_extent_mapping(em_tree, em);
4138 	/* it is possible that someone inserted the extent into the tree
4139 	 * while we had the lock dropped.  It is also possible that
4140 	 * an overlapping map exists in the tree
4141 	 */
4142 	if (ret == -EEXIST) {
4143 		struct extent_map *existing;
4144 
4145 		ret = 0;
4146 
4147 		existing = lookup_extent_mapping(em_tree, start, len);
4148 		if (existing && (existing->start > start ||
4149 		    existing->start + existing->len <= start)) {
4150 			free_extent_map(existing);
4151 			existing = NULL;
4152 		}
4153 		if (!existing) {
4154 			existing = lookup_extent_mapping(em_tree, em->start,
4155 							 em->len);
4156 			if (existing) {
4157 				err = merge_extent_mapping(em_tree, existing,
4158 							   em, start,
4159 							   root->sectorsize);
4160 				free_extent_map(existing);
4161 				if (err) {
4162 					free_extent_map(em);
4163 					em = NULL;
4164 				}
4165 			} else {
4166 				err = -EIO;
4167 				free_extent_map(em);
4168 				em = NULL;
4169 			}
4170 		} else {
4171 			free_extent_map(em);
4172 			em = existing;
4173 			err = 0;
4174 		}
4175 	}
4176 	spin_unlock(&em_tree->lock);
4177 out:
4178 	if (path)
4179 		btrfs_free_path(path);
4180 	if (trans) {
4181 		ret = btrfs_end_transaction(trans, root);
4182 		if (!err)
4183 			err = ret;
4184 	}
4185 	if (err) {
4186 		free_extent_map(em);
4187 		WARN_ON(1);
4188 		return ERR_PTR(err);
4189 	}
4190 	return em;
4191 }
4192 
4193 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4194 			const struct iovec *iov, loff_t offset,
4195 			unsigned long nr_segs)
4196 {
4197 	return -EINVAL;
4198 }
4199 
4200 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4201 		__u64 start, __u64 len)
4202 {
4203 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4204 }
4205 
4206 int btrfs_readpage(struct file *file, struct page *page)
4207 {
4208 	struct extent_io_tree *tree;
4209 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4210 	return extent_read_full_page(tree, page, btrfs_get_extent);
4211 }
4212 
4213 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4214 {
4215 	struct extent_io_tree *tree;
4216 
4217 
4218 	if (current->flags & PF_MEMALLOC) {
4219 		redirty_page_for_writepage(wbc, page);
4220 		unlock_page(page);
4221 		return 0;
4222 	}
4223 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4224 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4225 }
4226 
4227 int btrfs_writepages(struct address_space *mapping,
4228 		     struct writeback_control *wbc)
4229 {
4230 	struct extent_io_tree *tree;
4231 
4232 	tree = &BTRFS_I(mapping->host)->io_tree;
4233 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4234 }
4235 
4236 static int
4237 btrfs_readpages(struct file *file, struct address_space *mapping,
4238 		struct list_head *pages, unsigned nr_pages)
4239 {
4240 	struct extent_io_tree *tree;
4241 	tree = &BTRFS_I(mapping->host)->io_tree;
4242 	return extent_readpages(tree, mapping, pages, nr_pages,
4243 				btrfs_get_extent);
4244 }
4245 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4246 {
4247 	struct extent_io_tree *tree;
4248 	struct extent_map_tree *map;
4249 	int ret;
4250 
4251 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4252 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4253 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4254 	if (ret == 1) {
4255 		ClearPagePrivate(page);
4256 		set_page_private(page, 0);
4257 		page_cache_release(page);
4258 	}
4259 	return ret;
4260 }
4261 
4262 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4263 {
4264 	if (PageWriteback(page) || PageDirty(page))
4265 		return 0;
4266 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4267 }
4268 
4269 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4270 {
4271 	struct extent_io_tree *tree;
4272 	struct btrfs_ordered_extent *ordered;
4273 	u64 page_start = page_offset(page);
4274 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4275 
4276 	wait_on_page_writeback(page);
4277 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4278 	if (offset) {
4279 		btrfs_releasepage(page, GFP_NOFS);
4280 		return;
4281 	}
4282 
4283 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4284 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4285 					   page_offset(page));
4286 	if (ordered) {
4287 		/*
4288 		 * IO on this page will never be started, so we need
4289 		 * to account for any ordered extents now
4290 		 */
4291 		clear_extent_bit(tree, page_start, page_end,
4292 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4293 				 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4294 		btrfs_finish_ordered_io(page->mapping->host,
4295 					page_start, page_end);
4296 		btrfs_put_ordered_extent(ordered);
4297 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4298 	}
4299 	clear_extent_bit(tree, page_start, page_end,
4300 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4301 		 EXTENT_ORDERED,
4302 		 1, 1, GFP_NOFS);
4303 	__btrfs_releasepage(page, GFP_NOFS);
4304 
4305 	ClearPageChecked(page);
4306 	if (PagePrivate(page)) {
4307 		ClearPagePrivate(page);
4308 		set_page_private(page, 0);
4309 		page_cache_release(page);
4310 	}
4311 }
4312 
4313 /*
4314  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4315  * called from a page fault handler when a page is first dirtied. Hence we must
4316  * be careful to check for EOF conditions here. We set the page up correctly
4317  * for a written page which means we get ENOSPC checking when writing into
4318  * holes and correct delalloc and unwritten extent mapping on filesystems that
4319  * support these features.
4320  *
4321  * We are not allowed to take the i_mutex here so we have to play games to
4322  * protect against truncate races as the page could now be beyond EOF.  Because
4323  * vmtruncate() writes the inode size before removing pages, once we have the
4324  * page lock we can determine safely if the page is beyond EOF. If it is not
4325  * beyond EOF, then the page is guaranteed safe against truncation until we
4326  * unlock the page.
4327  */
4328 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4329 {
4330 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4331 	struct btrfs_root *root = BTRFS_I(inode)->root;
4332 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4333 	struct btrfs_ordered_extent *ordered;
4334 	char *kaddr;
4335 	unsigned long zero_start;
4336 	loff_t size;
4337 	int ret;
4338 	u64 page_start;
4339 	u64 page_end;
4340 
4341 	ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4342 	if (ret)
4343 		goto out;
4344 
4345 	ret = -EINVAL;
4346 again:
4347 	lock_page(page);
4348 	size = i_size_read(inode);
4349 	page_start = page_offset(page);
4350 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4351 
4352 	if ((page->mapping != inode->i_mapping) ||
4353 	    (page_start >= size)) {
4354 		/* page got truncated out from underneath us */
4355 		goto out_unlock;
4356 	}
4357 	wait_on_page_writeback(page);
4358 
4359 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4360 	set_page_extent_mapped(page);
4361 
4362 	/*
4363 	 * we can't set the delalloc bits if there are pending ordered
4364 	 * extents.  Drop our locks and wait for them to finish
4365 	 */
4366 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4367 	if (ordered) {
4368 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4369 		unlock_page(page);
4370 		btrfs_start_ordered_extent(inode, ordered, 1);
4371 		btrfs_put_ordered_extent(ordered);
4372 		goto again;
4373 	}
4374 
4375 	btrfs_set_extent_delalloc(inode, page_start, page_end);
4376 	ret = 0;
4377 
4378 	/* page is wholly or partially inside EOF */
4379 	if (page_start + PAGE_CACHE_SIZE > size)
4380 		zero_start = size & ~PAGE_CACHE_MASK;
4381 	else
4382 		zero_start = PAGE_CACHE_SIZE;
4383 
4384 	if (zero_start != PAGE_CACHE_SIZE) {
4385 		kaddr = kmap(page);
4386 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4387 		flush_dcache_page(page);
4388 		kunmap(page);
4389 	}
4390 	ClearPageChecked(page);
4391 	set_page_dirty(page);
4392 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4393 
4394 out_unlock:
4395 	unlock_page(page);
4396 out:
4397 	return ret;
4398 }
4399 
4400 static void btrfs_truncate(struct inode *inode)
4401 {
4402 	struct btrfs_root *root = BTRFS_I(inode)->root;
4403 	int ret;
4404 	struct btrfs_trans_handle *trans;
4405 	unsigned long nr;
4406 	u64 mask = root->sectorsize - 1;
4407 
4408 	if (!S_ISREG(inode->i_mode))
4409 		return;
4410 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4411 		return;
4412 
4413 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
4414 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4415 
4416 	trans = btrfs_start_transaction(root, 1);
4417 	btrfs_set_trans_block_group(trans, inode);
4418 	btrfs_i_size_write(inode, inode->i_size);
4419 
4420 	ret = btrfs_orphan_add(trans, inode);
4421 	if (ret)
4422 		goto out;
4423 	/* FIXME, add redo link to tree so we don't leak on crash */
4424 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4425 				      BTRFS_EXTENT_DATA_KEY);
4426 	btrfs_update_inode(trans, root, inode);
4427 
4428 	ret = btrfs_orphan_del(trans, inode);
4429 	BUG_ON(ret);
4430 
4431 out:
4432 	nr = trans->blocks_used;
4433 	ret = btrfs_end_transaction_throttle(trans, root);
4434 	BUG_ON(ret);
4435 	btrfs_btree_balance_dirty(root, nr);
4436 }
4437 
4438 /*
4439  * create a new subvolume directory/inode (helper for the ioctl).
4440  */
4441 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4442 			     struct btrfs_root *new_root, struct dentry *dentry,
4443 			     u64 new_dirid, u64 alloc_hint)
4444 {
4445 	struct inode *inode;
4446 	int error;
4447 	u64 index = 0;
4448 
4449 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4450 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4451 	if (IS_ERR(inode))
4452 		return PTR_ERR(inode);
4453 	inode->i_op = &btrfs_dir_inode_operations;
4454 	inode->i_fop = &btrfs_dir_file_operations;
4455 
4456 	inode->i_nlink = 1;
4457 	btrfs_i_size_write(inode, 0);
4458 
4459 	error = btrfs_update_inode(trans, new_root, inode);
4460 	if (error)
4461 		return error;
4462 
4463 	d_instantiate(dentry, inode);
4464 	return 0;
4465 }
4466 
4467 /* helper function for file defrag and space balancing.  This
4468  * forces readahead on a given range of bytes in an inode
4469  */
4470 unsigned long btrfs_force_ra(struct address_space *mapping,
4471 			      struct file_ra_state *ra, struct file *file,
4472 			      pgoff_t offset, pgoff_t last_index)
4473 {
4474 	pgoff_t req_size = last_index - offset + 1;
4475 
4476 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4477 	return offset + req_size;
4478 }
4479 
4480 struct inode *btrfs_alloc_inode(struct super_block *sb)
4481 {
4482 	struct btrfs_inode *ei;
4483 
4484 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4485 	if (!ei)
4486 		return NULL;
4487 	ei->last_trans = 0;
4488 	ei->logged_trans = 0;
4489 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4490 	ei->i_acl = BTRFS_ACL_NOT_CACHED;
4491 	ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4492 	INIT_LIST_HEAD(&ei->i_orphan);
4493 	return &ei->vfs_inode;
4494 }
4495 
4496 void btrfs_destroy_inode(struct inode *inode)
4497 {
4498 	struct btrfs_ordered_extent *ordered;
4499 	WARN_ON(!list_empty(&inode->i_dentry));
4500 	WARN_ON(inode->i_data.nrpages);
4501 
4502 	if (BTRFS_I(inode)->i_acl &&
4503 	    BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4504 		posix_acl_release(BTRFS_I(inode)->i_acl);
4505 	if (BTRFS_I(inode)->i_default_acl &&
4506 	    BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4507 		posix_acl_release(BTRFS_I(inode)->i_default_acl);
4508 
4509 	spin_lock(&BTRFS_I(inode)->root->list_lock);
4510 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4511 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4512 		       " list\n", inode->i_ino);
4513 		dump_stack();
4514 	}
4515 	spin_unlock(&BTRFS_I(inode)->root->list_lock);
4516 
4517 	while (1) {
4518 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4519 		if (!ordered)
4520 			break;
4521 		else {
4522 			printk(KERN_ERR "btrfs found ordered "
4523 			       "extent %llu %llu on inode cleanup\n",
4524 			       (unsigned long long)ordered->file_offset,
4525 			       (unsigned long long)ordered->len);
4526 			btrfs_remove_ordered_extent(inode, ordered);
4527 			btrfs_put_ordered_extent(ordered);
4528 			btrfs_put_ordered_extent(ordered);
4529 		}
4530 	}
4531 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4532 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4533 }
4534 
4535 static void init_once(void *foo)
4536 {
4537 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4538 
4539 	inode_init_once(&ei->vfs_inode);
4540 }
4541 
4542 void btrfs_destroy_cachep(void)
4543 {
4544 	if (btrfs_inode_cachep)
4545 		kmem_cache_destroy(btrfs_inode_cachep);
4546 	if (btrfs_trans_handle_cachep)
4547 		kmem_cache_destroy(btrfs_trans_handle_cachep);
4548 	if (btrfs_transaction_cachep)
4549 		kmem_cache_destroy(btrfs_transaction_cachep);
4550 	if (btrfs_bit_radix_cachep)
4551 		kmem_cache_destroy(btrfs_bit_radix_cachep);
4552 	if (btrfs_path_cachep)
4553 		kmem_cache_destroy(btrfs_path_cachep);
4554 }
4555 
4556 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4557 				       unsigned long extra_flags,
4558 				       void (*ctor)(void *))
4559 {
4560 	return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4561 				 SLAB_MEM_SPREAD | extra_flags), ctor);
4562 }
4563 
4564 int btrfs_init_cachep(void)
4565 {
4566 	btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4567 					  sizeof(struct btrfs_inode),
4568 					  0, init_once);
4569 	if (!btrfs_inode_cachep)
4570 		goto fail;
4571 	btrfs_trans_handle_cachep =
4572 			btrfs_cache_create("btrfs_trans_handle_cache",
4573 					   sizeof(struct btrfs_trans_handle),
4574 					   0, NULL);
4575 	if (!btrfs_trans_handle_cachep)
4576 		goto fail;
4577 	btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4578 					     sizeof(struct btrfs_transaction),
4579 					     0, NULL);
4580 	if (!btrfs_transaction_cachep)
4581 		goto fail;
4582 	btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4583 					 sizeof(struct btrfs_path),
4584 					 0, NULL);
4585 	if (!btrfs_path_cachep)
4586 		goto fail;
4587 	btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4588 					      SLAB_DESTROY_BY_RCU, NULL);
4589 	if (!btrfs_bit_radix_cachep)
4590 		goto fail;
4591 	return 0;
4592 fail:
4593 	btrfs_destroy_cachep();
4594 	return -ENOMEM;
4595 }
4596 
4597 static int btrfs_getattr(struct vfsmount *mnt,
4598 			 struct dentry *dentry, struct kstat *stat)
4599 {
4600 	struct inode *inode = dentry->d_inode;
4601 	generic_fillattr(inode, stat);
4602 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4603 	stat->blksize = PAGE_CACHE_SIZE;
4604 	stat->blocks = (inode_get_bytes(inode) +
4605 			BTRFS_I(inode)->delalloc_bytes) >> 9;
4606 	return 0;
4607 }
4608 
4609 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4610 			   struct inode *new_dir, struct dentry *new_dentry)
4611 {
4612 	struct btrfs_trans_handle *trans;
4613 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
4614 	struct inode *new_inode = new_dentry->d_inode;
4615 	struct inode *old_inode = old_dentry->d_inode;
4616 	struct timespec ctime = CURRENT_TIME;
4617 	u64 index = 0;
4618 	int ret;
4619 
4620 	/* we're not allowed to rename between subvolumes */
4621 	if (BTRFS_I(old_inode)->root->root_key.objectid !=
4622 	    BTRFS_I(new_dir)->root->root_key.objectid)
4623 		return -EXDEV;
4624 
4625 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
4626 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4627 		return -ENOTEMPTY;
4628 	}
4629 
4630 	/* to rename a snapshot or subvolume, we need to juggle the
4631 	 * backrefs.  This isn't coded yet
4632 	 */
4633 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4634 		return -EXDEV;
4635 
4636 	ret = btrfs_check_free_space(root, 1, 0);
4637 	if (ret)
4638 		goto out_unlock;
4639 
4640 	trans = btrfs_start_transaction(root, 1);
4641 
4642 	btrfs_set_trans_block_group(trans, new_dir);
4643 
4644 	btrfs_inc_nlink(old_dentry->d_inode);
4645 	old_dir->i_ctime = old_dir->i_mtime = ctime;
4646 	new_dir->i_ctime = new_dir->i_mtime = ctime;
4647 	old_inode->i_ctime = ctime;
4648 
4649 	ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4650 				 old_dentry->d_name.name,
4651 				 old_dentry->d_name.len);
4652 	if (ret)
4653 		goto out_fail;
4654 
4655 	if (new_inode) {
4656 		new_inode->i_ctime = CURRENT_TIME;
4657 		ret = btrfs_unlink_inode(trans, root, new_dir,
4658 					 new_dentry->d_inode,
4659 					 new_dentry->d_name.name,
4660 					 new_dentry->d_name.len);
4661 		if (ret)
4662 			goto out_fail;
4663 		if (new_inode->i_nlink == 0) {
4664 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4665 			if (ret)
4666 				goto out_fail;
4667 		}
4668 
4669 	}
4670 	ret = btrfs_set_inode_index(new_dir, &index);
4671 	if (ret)
4672 		goto out_fail;
4673 
4674 	ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4675 			     old_inode, new_dentry->d_name.name,
4676 			     new_dentry->d_name.len, 1, index);
4677 	if (ret)
4678 		goto out_fail;
4679 
4680 out_fail:
4681 	btrfs_end_transaction_throttle(trans, root);
4682 out_unlock:
4683 	return ret;
4684 }
4685 
4686 /*
4687  * some fairly slow code that needs optimization. This walks the list
4688  * of all the inodes with pending delalloc and forces them to disk.
4689  */
4690 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4691 {
4692 	struct list_head *head = &root->fs_info->delalloc_inodes;
4693 	struct btrfs_inode *binode;
4694 	struct inode *inode;
4695 
4696 	if (root->fs_info->sb->s_flags & MS_RDONLY)
4697 		return -EROFS;
4698 
4699 	spin_lock(&root->fs_info->delalloc_lock);
4700 	while (!list_empty(head)) {
4701 		binode = list_entry(head->next, struct btrfs_inode,
4702 				    delalloc_inodes);
4703 		inode = igrab(&binode->vfs_inode);
4704 		if (!inode)
4705 			list_del_init(&binode->delalloc_inodes);
4706 		spin_unlock(&root->fs_info->delalloc_lock);
4707 		if (inode) {
4708 			filemap_flush(inode->i_mapping);
4709 			iput(inode);
4710 		}
4711 		cond_resched();
4712 		spin_lock(&root->fs_info->delalloc_lock);
4713 	}
4714 	spin_unlock(&root->fs_info->delalloc_lock);
4715 
4716 	/* the filemap_flush will queue IO into the worker threads, but
4717 	 * we have to make sure the IO is actually started and that
4718 	 * ordered extents get created before we return
4719 	 */
4720 	atomic_inc(&root->fs_info->async_submit_draining);
4721 	while (atomic_read(&root->fs_info->nr_async_submits) ||
4722 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
4723 		wait_event(root->fs_info->async_submit_wait,
4724 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4725 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4726 	}
4727 	atomic_dec(&root->fs_info->async_submit_draining);
4728 	return 0;
4729 }
4730 
4731 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4732 			 const char *symname)
4733 {
4734 	struct btrfs_trans_handle *trans;
4735 	struct btrfs_root *root = BTRFS_I(dir)->root;
4736 	struct btrfs_path *path;
4737 	struct btrfs_key key;
4738 	struct inode *inode = NULL;
4739 	int err;
4740 	int drop_inode = 0;
4741 	u64 objectid;
4742 	u64 index = 0 ;
4743 	int name_len;
4744 	int datasize;
4745 	unsigned long ptr;
4746 	struct btrfs_file_extent_item *ei;
4747 	struct extent_buffer *leaf;
4748 	unsigned long nr = 0;
4749 
4750 	name_len = strlen(symname) + 1;
4751 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4752 		return -ENAMETOOLONG;
4753 
4754 	err = btrfs_check_free_space(root, 1, 0);
4755 	if (err)
4756 		goto out_fail;
4757 
4758 	trans = btrfs_start_transaction(root, 1);
4759 	btrfs_set_trans_block_group(trans, dir);
4760 
4761 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4762 	if (err) {
4763 		err = -ENOSPC;
4764 		goto out_unlock;
4765 	}
4766 
4767 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4768 				dentry->d_name.len,
4769 				dentry->d_parent->d_inode->i_ino, objectid,
4770 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4771 				&index);
4772 	err = PTR_ERR(inode);
4773 	if (IS_ERR(inode))
4774 		goto out_unlock;
4775 
4776 	err = btrfs_init_inode_security(inode, dir);
4777 	if (err) {
4778 		drop_inode = 1;
4779 		goto out_unlock;
4780 	}
4781 
4782 	btrfs_set_trans_block_group(trans, inode);
4783 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4784 	if (err)
4785 		drop_inode = 1;
4786 	else {
4787 		inode->i_mapping->a_ops = &btrfs_aops;
4788 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4789 		inode->i_fop = &btrfs_file_operations;
4790 		inode->i_op = &btrfs_file_inode_operations;
4791 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4792 	}
4793 	dir->i_sb->s_dirt = 1;
4794 	btrfs_update_inode_block_group(trans, inode);
4795 	btrfs_update_inode_block_group(trans, dir);
4796 	if (drop_inode)
4797 		goto out_unlock;
4798 
4799 	path = btrfs_alloc_path();
4800 	BUG_ON(!path);
4801 	key.objectid = inode->i_ino;
4802 	key.offset = 0;
4803 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4804 	datasize = btrfs_file_extent_calc_inline_size(name_len);
4805 	err = btrfs_insert_empty_item(trans, root, path, &key,
4806 				      datasize);
4807 	if (err) {
4808 		drop_inode = 1;
4809 		goto out_unlock;
4810 	}
4811 	leaf = path->nodes[0];
4812 	ei = btrfs_item_ptr(leaf, path->slots[0],
4813 			    struct btrfs_file_extent_item);
4814 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4815 	btrfs_set_file_extent_type(leaf, ei,
4816 				   BTRFS_FILE_EXTENT_INLINE);
4817 	btrfs_set_file_extent_encryption(leaf, ei, 0);
4818 	btrfs_set_file_extent_compression(leaf, ei, 0);
4819 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4820 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4821 
4822 	ptr = btrfs_file_extent_inline_start(ei);
4823 	write_extent_buffer(leaf, symname, ptr, name_len);
4824 	btrfs_mark_buffer_dirty(leaf);
4825 	btrfs_free_path(path);
4826 
4827 	inode->i_op = &btrfs_symlink_inode_operations;
4828 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
4829 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4830 	inode_set_bytes(inode, name_len);
4831 	btrfs_i_size_write(inode, name_len - 1);
4832 	err = btrfs_update_inode(trans, root, inode);
4833 	if (err)
4834 		drop_inode = 1;
4835 
4836 out_unlock:
4837 	nr = trans->blocks_used;
4838 	btrfs_end_transaction_throttle(trans, root);
4839 out_fail:
4840 	if (drop_inode) {
4841 		inode_dec_link_count(inode);
4842 		iput(inode);
4843 	}
4844 	btrfs_btree_balance_dirty(root, nr);
4845 	return err;
4846 }
4847 
4848 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4849 			       u64 alloc_hint, int mode)
4850 {
4851 	struct btrfs_trans_handle *trans;
4852 	struct btrfs_root *root = BTRFS_I(inode)->root;
4853 	struct btrfs_key ins;
4854 	u64 alloc_size;
4855 	u64 cur_offset = start;
4856 	u64 num_bytes = end - start;
4857 	int ret = 0;
4858 
4859 	trans = btrfs_join_transaction(root, 1);
4860 	BUG_ON(!trans);
4861 	btrfs_set_trans_block_group(trans, inode);
4862 
4863 	while (num_bytes > 0) {
4864 		alloc_size = min(num_bytes, root->fs_info->max_extent);
4865 		ret = btrfs_reserve_extent(trans, root, alloc_size,
4866 					   root->sectorsize, 0, alloc_hint,
4867 					   (u64)-1, &ins, 1);
4868 		if (ret) {
4869 			WARN_ON(1);
4870 			goto out;
4871 		}
4872 		ret = insert_reserved_file_extent(trans, inode,
4873 						  cur_offset, ins.objectid,
4874 						  ins.offset, ins.offset,
4875 						  ins.offset, 0, 0, 0,
4876 						  BTRFS_FILE_EXTENT_PREALLOC);
4877 		BUG_ON(ret);
4878 		num_bytes -= ins.offset;
4879 		cur_offset += ins.offset;
4880 		alloc_hint = ins.objectid + ins.offset;
4881 	}
4882 out:
4883 	if (cur_offset > start) {
4884 		inode->i_ctime = CURRENT_TIME;
4885 		btrfs_set_flag(inode, PREALLOC);
4886 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4887 		    cur_offset > i_size_read(inode))
4888 			btrfs_i_size_write(inode, cur_offset);
4889 		ret = btrfs_update_inode(trans, root, inode);
4890 		BUG_ON(ret);
4891 	}
4892 
4893 	btrfs_end_transaction(trans, root);
4894 	return ret;
4895 }
4896 
4897 static long btrfs_fallocate(struct inode *inode, int mode,
4898 			    loff_t offset, loff_t len)
4899 {
4900 	u64 cur_offset;
4901 	u64 last_byte;
4902 	u64 alloc_start;
4903 	u64 alloc_end;
4904 	u64 alloc_hint = 0;
4905 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4906 	struct extent_map *em;
4907 	int ret;
4908 
4909 	alloc_start = offset & ~mask;
4910 	alloc_end =  (offset + len + mask) & ~mask;
4911 
4912 	mutex_lock(&inode->i_mutex);
4913 	if (alloc_start > inode->i_size) {
4914 		ret = btrfs_cont_expand(inode, alloc_start);
4915 		if (ret)
4916 			goto out;
4917 	}
4918 
4919 	while (1) {
4920 		struct btrfs_ordered_extent *ordered;
4921 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4922 			    alloc_end - 1, GFP_NOFS);
4923 		ordered = btrfs_lookup_first_ordered_extent(inode,
4924 							    alloc_end - 1);
4925 		if (ordered &&
4926 		    ordered->file_offset + ordered->len > alloc_start &&
4927 		    ordered->file_offset < alloc_end) {
4928 			btrfs_put_ordered_extent(ordered);
4929 			unlock_extent(&BTRFS_I(inode)->io_tree,
4930 				      alloc_start, alloc_end - 1, GFP_NOFS);
4931 			btrfs_wait_ordered_range(inode, alloc_start,
4932 						 alloc_end - alloc_start);
4933 		} else {
4934 			if (ordered)
4935 				btrfs_put_ordered_extent(ordered);
4936 			break;
4937 		}
4938 	}
4939 
4940 	cur_offset = alloc_start;
4941 	while (1) {
4942 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4943 				      alloc_end - cur_offset, 0);
4944 		BUG_ON(IS_ERR(em) || !em);
4945 		last_byte = min(extent_map_end(em), alloc_end);
4946 		last_byte = (last_byte + mask) & ~mask;
4947 		if (em->block_start == EXTENT_MAP_HOLE) {
4948 			ret = prealloc_file_range(inode, cur_offset,
4949 					last_byte, alloc_hint, mode);
4950 			if (ret < 0) {
4951 				free_extent_map(em);
4952 				break;
4953 			}
4954 		}
4955 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4956 			alloc_hint = em->block_start;
4957 		free_extent_map(em);
4958 
4959 		cur_offset = last_byte;
4960 		if (cur_offset >= alloc_end) {
4961 			ret = 0;
4962 			break;
4963 		}
4964 	}
4965 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4966 		      GFP_NOFS);
4967 out:
4968 	mutex_unlock(&inode->i_mutex);
4969 	return ret;
4970 }
4971 
4972 static int btrfs_set_page_dirty(struct page *page)
4973 {
4974 	return __set_page_dirty_nobuffers(page);
4975 }
4976 
4977 static int btrfs_permission(struct inode *inode, int mask)
4978 {
4979 	if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4980 		return -EACCES;
4981 	return generic_permission(inode, mask, btrfs_check_acl);
4982 }
4983 
4984 static struct inode_operations btrfs_dir_inode_operations = {
4985 	.getattr	= btrfs_getattr,
4986 	.lookup		= btrfs_lookup,
4987 	.create		= btrfs_create,
4988 	.unlink		= btrfs_unlink,
4989 	.link		= btrfs_link,
4990 	.mkdir		= btrfs_mkdir,
4991 	.rmdir		= btrfs_rmdir,
4992 	.rename		= btrfs_rename,
4993 	.symlink	= btrfs_symlink,
4994 	.setattr	= btrfs_setattr,
4995 	.mknod		= btrfs_mknod,
4996 	.setxattr	= btrfs_setxattr,
4997 	.getxattr	= btrfs_getxattr,
4998 	.listxattr	= btrfs_listxattr,
4999 	.removexattr	= btrfs_removexattr,
5000 	.permission	= btrfs_permission,
5001 };
5002 static struct inode_operations btrfs_dir_ro_inode_operations = {
5003 	.lookup		= btrfs_lookup,
5004 	.permission	= btrfs_permission,
5005 };
5006 static struct file_operations btrfs_dir_file_operations = {
5007 	.llseek		= generic_file_llseek,
5008 	.read		= generic_read_dir,
5009 	.readdir	= btrfs_real_readdir,
5010 	.unlocked_ioctl	= btrfs_ioctl,
5011 #ifdef CONFIG_COMPAT
5012 	.compat_ioctl	= btrfs_ioctl,
5013 #endif
5014 	.release        = btrfs_release_file,
5015 	.fsync		= btrfs_sync_file,
5016 };
5017 
5018 static struct extent_io_ops btrfs_extent_io_ops = {
5019 	.fill_delalloc = run_delalloc_range,
5020 	.submit_bio_hook = btrfs_submit_bio_hook,
5021 	.merge_bio_hook = btrfs_merge_bio_hook,
5022 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
5023 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
5024 	.writepage_start_hook = btrfs_writepage_start_hook,
5025 	.readpage_io_failed_hook = btrfs_io_failed_hook,
5026 	.set_bit_hook = btrfs_set_bit_hook,
5027 	.clear_bit_hook = btrfs_clear_bit_hook,
5028 };
5029 
5030 /*
5031  * btrfs doesn't support the bmap operation because swapfiles
5032  * use bmap to make a mapping of extents in the file.  They assume
5033  * these extents won't change over the life of the file and they
5034  * use the bmap result to do IO directly to the drive.
5035  *
5036  * the btrfs bmap call would return logical addresses that aren't
5037  * suitable for IO and they also will change frequently as COW
5038  * operations happen.  So, swapfile + btrfs == corruption.
5039  *
5040  * For now we're avoiding this by dropping bmap.
5041  */
5042 static struct address_space_operations btrfs_aops = {
5043 	.readpage	= btrfs_readpage,
5044 	.writepage	= btrfs_writepage,
5045 	.writepages	= btrfs_writepages,
5046 	.readpages	= btrfs_readpages,
5047 	.sync_page	= block_sync_page,
5048 	.direct_IO	= btrfs_direct_IO,
5049 	.invalidatepage = btrfs_invalidatepage,
5050 	.releasepage	= btrfs_releasepage,
5051 	.set_page_dirty	= btrfs_set_page_dirty,
5052 };
5053 
5054 static struct address_space_operations btrfs_symlink_aops = {
5055 	.readpage	= btrfs_readpage,
5056 	.writepage	= btrfs_writepage,
5057 	.invalidatepage = btrfs_invalidatepage,
5058 	.releasepage	= btrfs_releasepage,
5059 };
5060 
5061 static struct inode_operations btrfs_file_inode_operations = {
5062 	.truncate	= btrfs_truncate,
5063 	.getattr	= btrfs_getattr,
5064 	.setattr	= btrfs_setattr,
5065 	.setxattr	= btrfs_setxattr,
5066 	.getxattr	= btrfs_getxattr,
5067 	.listxattr      = btrfs_listxattr,
5068 	.removexattr	= btrfs_removexattr,
5069 	.permission	= btrfs_permission,
5070 	.fallocate	= btrfs_fallocate,
5071 	.fiemap		= btrfs_fiemap,
5072 };
5073 static struct inode_operations btrfs_special_inode_operations = {
5074 	.getattr	= btrfs_getattr,
5075 	.setattr	= btrfs_setattr,
5076 	.permission	= btrfs_permission,
5077 	.setxattr	= btrfs_setxattr,
5078 	.getxattr	= btrfs_getxattr,
5079 	.listxattr	= btrfs_listxattr,
5080 	.removexattr	= btrfs_removexattr,
5081 };
5082 static struct inode_operations btrfs_symlink_inode_operations = {
5083 	.readlink	= generic_readlink,
5084 	.follow_link	= page_follow_link_light,
5085 	.put_link	= page_put_link,
5086 	.permission	= btrfs_permission,
5087 	.setxattr	= btrfs_setxattr,
5088 	.getxattr	= btrfs_getxattr,
5089 	.listxattr	= btrfs_listxattr,
5090 	.removexattr	= btrfs_removexattr,
5091 };
5092