xref: /openbmc/linux/fs/btrfs/inode.c (revision 98509cfc5a6857bddcfe4b19a9539726655ec9bd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51 
52 struct btrfs_iget_args {
53 	u64 ino;
54 	struct btrfs_root *root;
55 };
56 
57 static struct inode_operations btrfs_dir_inode_operations;
58 static struct inode_operations btrfs_symlink_inode_operations;
59 static struct inode_operations btrfs_dir_ro_inode_operations;
60 static struct inode_operations btrfs_special_inode_operations;
61 static struct inode_operations btrfs_file_inode_operations;
62 static struct address_space_operations btrfs_aops;
63 static struct address_space_operations btrfs_symlink_aops;
64 static struct file_operations btrfs_dir_file_operations;
65 static struct extent_io_ops btrfs_extent_io_ops;
66 
67 static struct kmem_cache *btrfs_inode_cachep;
68 struct kmem_cache *btrfs_trans_handle_cachep;
69 struct kmem_cache *btrfs_transaction_cachep;
70 struct kmem_cache *btrfs_bit_radix_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72 
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
76 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
77 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
78 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
79 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
80 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
81 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
82 };
83 
84 static void btrfs_truncate(struct inode *inode);
85 
86 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
87 			   int for_del)
88 {
89 	u64 total;
90 	u64 used;
91 	u64 thresh;
92 	unsigned long flags;
93 	int ret = 0;
94 
95 	spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
96 	total = btrfs_super_total_bytes(&root->fs_info->super_copy);
97 	used = btrfs_super_bytes_used(&root->fs_info->super_copy);
98 	if (for_del)
99 		thresh = total * 90;
100 	else
101 		thresh = total * 85;
102 
103 	do_div(thresh, 100);
104 
105 	if (used + root->fs_info->delalloc_bytes + num_required > thresh)
106 		ret = -ENOSPC;
107 	spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
108 	return ret;
109 }
110 
111 static int cow_file_range(struct inode *inode, u64 start, u64 end)
112 {
113 	struct btrfs_root *root = BTRFS_I(inode)->root;
114 	struct btrfs_trans_handle *trans;
115 	u64 alloc_hint = 0;
116 	u64 num_bytes;
117 	u64 cur_alloc_size;
118 	u64 blocksize = root->sectorsize;
119 	u64 orig_num_bytes;
120 	struct btrfs_key ins;
121 	struct extent_map *em;
122 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 	int ret = 0;
124 
125 	trans = btrfs_join_transaction(root, 1);
126 	BUG_ON(!trans);
127 	btrfs_set_trans_block_group(trans, inode);
128 
129 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
130 	num_bytes = max(blocksize,  num_bytes);
131 	orig_num_bytes = num_bytes;
132 
133 	if (alloc_hint == EXTENT_MAP_INLINE)
134 		goto out;
135 
136 	BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
137 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
138 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
139 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
140 
141 	while(num_bytes > 0) {
142 		cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
143 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
144 					   root->sectorsize, 0, 0,
145 					   (u64)-1, &ins, 1);
146 		if (ret) {
147 			WARN_ON(1);
148 			goto out;
149 		}
150 		em = alloc_extent_map(GFP_NOFS);
151 		em->start = start;
152 		em->len = ins.offset;
153 		em->block_start = ins.objectid;
154 		em->bdev = root->fs_info->fs_devices->latest_bdev;
155 		mutex_lock(&BTRFS_I(inode)->extent_mutex);
156 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
157 		while(1) {
158 			spin_lock(&em_tree->lock);
159 			ret = add_extent_mapping(em_tree, em);
160 			spin_unlock(&em_tree->lock);
161 			if (ret != -EEXIST) {
162 				free_extent_map(em);
163 				break;
164 			}
165 			btrfs_drop_extent_cache(inode, start,
166 						start + ins.offset - 1);
167 		}
168 		mutex_unlock(&BTRFS_I(inode)->extent_mutex);
169 
170 		cur_alloc_size = ins.offset;
171 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
172 					       ins.offset, 0);
173 		BUG_ON(ret);
174 		if (num_bytes < cur_alloc_size) {
175 			printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
176 			       cur_alloc_size);
177 			break;
178 		}
179 		num_bytes -= cur_alloc_size;
180 		alloc_hint = ins.objectid + ins.offset;
181 		start += cur_alloc_size;
182 	}
183 out:
184 	btrfs_end_transaction(trans, root);
185 	return ret;
186 }
187 
188 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
189 {
190 	u64 extent_start;
191 	u64 extent_end;
192 	u64 bytenr;
193 	u64 loops = 0;
194 	u64 total_fs_bytes;
195 	struct btrfs_root *root = BTRFS_I(inode)->root;
196 	struct btrfs_block_group_cache *block_group;
197 	struct btrfs_trans_handle *trans;
198 	struct extent_buffer *leaf;
199 	int found_type;
200 	struct btrfs_path *path;
201 	struct btrfs_file_extent_item *item;
202 	int ret;
203 	int err = 0;
204 	struct btrfs_key found_key;
205 
206 	total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
207 	path = btrfs_alloc_path();
208 	BUG_ON(!path);
209 	trans = btrfs_join_transaction(root, 1);
210 	BUG_ON(!trans);
211 again:
212 	ret = btrfs_lookup_file_extent(NULL, root, path,
213 				       inode->i_ino, start, 0);
214 	if (ret < 0) {
215 		err = ret;
216 		goto out;
217 	}
218 
219 	if (ret != 0) {
220 		if (path->slots[0] == 0)
221 			goto not_found;
222 		path->slots[0]--;
223 	}
224 
225 	leaf = path->nodes[0];
226 	item = btrfs_item_ptr(leaf, path->slots[0],
227 			      struct btrfs_file_extent_item);
228 
229 	/* are we inside the extent that was found? */
230 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 	found_type = btrfs_key_type(&found_key);
232 	if (found_key.objectid != inode->i_ino ||
233 	    found_type != BTRFS_EXTENT_DATA_KEY)
234 		goto not_found;
235 
236 	found_type = btrfs_file_extent_type(leaf, item);
237 	extent_start = found_key.offset;
238 	if (found_type == BTRFS_FILE_EXTENT_REG) {
239 		u64 extent_num_bytes;
240 
241 		extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
242 		extent_end = extent_start + extent_num_bytes;
243 		err = 0;
244 
245 		if (loops && start != extent_start)
246 			goto not_found;
247 
248 		if (start < extent_start || start >= extent_end)
249 			goto not_found;
250 
251 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
252 		if (bytenr == 0)
253 			goto not_found;
254 
255 		if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
256 			goto not_found;
257 		/*
258 		 * we may be called by the resizer, make sure we're inside
259 		 * the limits of the FS
260 		 */
261 		block_group = btrfs_lookup_block_group(root->fs_info,
262 						       bytenr);
263 		if (!block_group || block_group->ro)
264 			goto not_found;
265 
266 		bytenr += btrfs_file_extent_offset(leaf, item);
267 		extent_num_bytes = min(end + 1, extent_end) - start;
268 		ret = btrfs_add_ordered_extent(inode, start, bytenr,
269 						extent_num_bytes, 1);
270 		if (ret) {
271 			err = ret;
272 			goto out;
273 		}
274 
275 		btrfs_release_path(root, path);
276 		start = extent_end;
277 		if (start <= end) {
278 			loops++;
279 			goto again;
280 		}
281 	} else {
282 not_found:
283 		btrfs_end_transaction(trans, root);
284 		btrfs_free_path(path);
285 		return cow_file_range(inode, start, end);
286 	}
287 out:
288 	WARN_ON(err);
289 	btrfs_end_transaction(trans, root);
290 	btrfs_free_path(path);
291 	return err;
292 }
293 
294 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
295 {
296 	struct btrfs_root *root = BTRFS_I(inode)->root;
297 	int ret;
298 
299 	if (btrfs_test_opt(root, NODATACOW) ||
300 	    btrfs_test_flag(inode, NODATACOW))
301 		ret = run_delalloc_nocow(inode, start, end);
302 	else
303 		ret = cow_file_range(inode, start, end);
304 
305 	return ret;
306 }
307 
308 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
309 		       unsigned long old, unsigned long bits)
310 {
311 	unsigned long flags;
312 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
313 		struct btrfs_root *root = BTRFS_I(inode)->root;
314 		spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
315 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
316 		root->fs_info->delalloc_bytes += end - start + 1;
317 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
318 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
319 				      &root->fs_info->delalloc_inodes);
320 		}
321 		spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
322 	}
323 	return 0;
324 }
325 
326 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
327 			 unsigned long old, unsigned long bits)
328 {
329 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
330 		struct btrfs_root *root = BTRFS_I(inode)->root;
331 		unsigned long flags;
332 
333 		spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
334 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
335 			printk("warning: delalloc account %Lu %Lu\n",
336 			       end - start + 1, root->fs_info->delalloc_bytes);
337 			root->fs_info->delalloc_bytes = 0;
338 			BTRFS_I(inode)->delalloc_bytes = 0;
339 		} else {
340 			root->fs_info->delalloc_bytes -= end - start + 1;
341 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
342 		}
343 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
344 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
345 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
346 		}
347 		spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
348 	}
349 	return 0;
350 }
351 
352 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
353 			 size_t size, struct bio *bio)
354 {
355 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
356 	struct btrfs_mapping_tree *map_tree;
357 	u64 logical = bio->bi_sector << 9;
358 	u64 length = 0;
359 	u64 map_length;
360 	int ret;
361 
362 	length = bio->bi_size;
363 	map_tree = &root->fs_info->mapping_tree;
364 	map_length = length;
365 	ret = btrfs_map_block(map_tree, READ, logical,
366 			      &map_length, NULL, 0);
367 
368 	if (map_length < length + size) {
369 		return 1;
370 	}
371 	return 0;
372 }
373 
374 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
375 			  int mirror_num)
376 {
377 	struct btrfs_root *root = BTRFS_I(inode)->root;
378 	int ret = 0;
379 
380 	ret = btrfs_csum_one_bio(root, inode, bio);
381 	BUG_ON(ret);
382 
383 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
384 }
385 
386 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
387 			  int mirror_num)
388 {
389 	struct btrfs_root *root = BTRFS_I(inode)->root;
390 	int ret = 0;
391 
392 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393 	BUG_ON(ret);
394 
395 	if (btrfs_test_opt(root, NODATASUM) ||
396 	    btrfs_test_flag(inode, NODATASUM)) {
397 		goto mapit;
398 	}
399 
400 	if (!(rw & (1 << BIO_RW))) {
401 		btrfs_lookup_bio_sums(root, inode, bio);
402 		goto mapit;
403 	}
404 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
405 				   inode, rw, bio, mirror_num,
406 				   __btrfs_submit_bio_hook);
407 mapit:
408 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
409 }
410 
411 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
412 			     struct inode *inode, u64 file_offset,
413 			     struct list_head *list)
414 {
415 	struct list_head *cur;
416 	struct btrfs_ordered_sum *sum;
417 
418 	btrfs_set_trans_block_group(trans, inode);
419 	list_for_each(cur, list) {
420 		sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 		btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
422 				       inode, sum);
423 	}
424 	return 0;
425 }
426 
427 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
428 {
429 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
430 				   GFP_NOFS);
431 }
432 
433 struct btrfs_writepage_fixup {
434 	struct page *page;
435 	struct btrfs_work work;
436 };
437 
438 /* see btrfs_writepage_start_hook for details on why this is required */
439 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
440 {
441 	struct btrfs_writepage_fixup *fixup;
442 	struct btrfs_ordered_extent *ordered;
443 	struct page *page;
444 	struct inode *inode;
445 	u64 page_start;
446 	u64 page_end;
447 
448 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
449 	page = fixup->page;
450 again:
451 	lock_page(page);
452 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
453 		ClearPageChecked(page);
454 		goto out_page;
455 	}
456 
457 	inode = page->mapping->host;
458 	page_start = page_offset(page);
459 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
460 
461 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
462 
463 	/* already ordered? We're done */
464 	if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
465 			     EXTENT_ORDERED, 0)) {
466 		goto out;
467 	}
468 
469 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
470 	if (ordered) {
471 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
472 			      page_end, GFP_NOFS);
473 		unlock_page(page);
474 		btrfs_start_ordered_extent(inode, ordered, 1);
475 		goto again;
476 	}
477 
478 	btrfs_set_extent_delalloc(inode, page_start, page_end);
479 	ClearPageChecked(page);
480 out:
481 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
482 out_page:
483 	unlock_page(page);
484 	page_cache_release(page);
485 }
486 
487 /*
488  * There are a few paths in the higher layers of the kernel that directly
489  * set the page dirty bit without asking the filesystem if it is a
490  * good idea.  This causes problems because we want to make sure COW
491  * properly happens and the data=ordered rules are followed.
492  *
493  * In our case any range that doesn't have the EXTENT_ORDERED bit set
494  * hasn't been properly setup for IO.  We kick off an async process
495  * to fix it up.  The async helper will wait for ordered extents, set
496  * the delalloc bit and make it safe to write the page.
497  */
498 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
499 {
500 	struct inode *inode = page->mapping->host;
501 	struct btrfs_writepage_fixup *fixup;
502 	struct btrfs_root *root = BTRFS_I(inode)->root;
503 	int ret;
504 
505 	ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
506 			     EXTENT_ORDERED, 0);
507 	if (ret)
508 		return 0;
509 
510 	if (PageChecked(page))
511 		return -EAGAIN;
512 
513 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
514 	if (!fixup)
515 		return -EAGAIN;
516 
517 	SetPageChecked(page);
518 	page_cache_get(page);
519 	fixup->work.func = btrfs_writepage_fixup_worker;
520 	fixup->page = page;
521 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
522 	return -EAGAIN;
523 }
524 
525 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
526 {
527 	struct btrfs_root *root = BTRFS_I(inode)->root;
528 	struct btrfs_trans_handle *trans;
529 	struct btrfs_ordered_extent *ordered_extent;
530 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
531 	u64 alloc_hint = 0;
532 	struct list_head list;
533 	struct btrfs_key ins;
534 	int ret;
535 
536 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
537 	if (!ret)
538 		return 0;
539 
540 	trans = btrfs_join_transaction(root, 1);
541 
542 	ordered_extent = btrfs_lookup_ordered_extent(inode, start);
543 	BUG_ON(!ordered_extent);
544 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
545 		goto nocow;
546 
547 	lock_extent(io_tree, ordered_extent->file_offset,
548 		    ordered_extent->file_offset + ordered_extent->len - 1,
549 		    GFP_NOFS);
550 
551 	INIT_LIST_HEAD(&list);
552 
553 	ins.objectid = ordered_extent->start;
554 	ins.offset = ordered_extent->len;
555 	ins.type = BTRFS_EXTENT_ITEM_KEY;
556 
557 	ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
558 					  trans->transid, inode->i_ino,
559 					  ordered_extent->file_offset, &ins);
560 	BUG_ON(ret);
561 
562 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
563 
564 	ret = btrfs_drop_extents(trans, root, inode,
565 				 ordered_extent->file_offset,
566 				 ordered_extent->file_offset +
567 				 ordered_extent->len,
568 				 ordered_extent->file_offset, &alloc_hint);
569 	BUG_ON(ret);
570 	ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
571 				       ordered_extent->file_offset,
572 				       ordered_extent->start,
573 				       ordered_extent->len,
574 				       ordered_extent->len, 0);
575 	BUG_ON(ret);
576 
577 	btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
578 				ordered_extent->file_offset +
579 				ordered_extent->len - 1);
580 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
581 
582 	inode->i_blocks += ordered_extent->len >> 9;
583 	unlock_extent(io_tree, ordered_extent->file_offset,
584 		    ordered_extent->file_offset + ordered_extent->len - 1,
585 		    GFP_NOFS);
586 nocow:
587 	add_pending_csums(trans, inode, ordered_extent->file_offset,
588 			  &ordered_extent->list);
589 
590 	btrfs_ordered_update_i_size(inode, ordered_extent);
591 	btrfs_update_inode(trans, root, inode);
592 	btrfs_remove_ordered_extent(inode, ordered_extent);
593 
594 	/* once for us */
595 	btrfs_put_ordered_extent(ordered_extent);
596 	/* once for the tree */
597 	btrfs_put_ordered_extent(ordered_extent);
598 
599 	btrfs_end_transaction(trans, root);
600 	return 0;
601 }
602 
603 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
604 				struct extent_state *state, int uptodate)
605 {
606 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
607 }
608 
609 struct io_failure_record {
610 	struct page *page;
611 	u64 start;
612 	u64 len;
613 	u64 logical;
614 	int last_mirror;
615 };
616 
617 int btrfs_io_failed_hook(struct bio *failed_bio,
618 			 struct page *page, u64 start, u64 end,
619 			 struct extent_state *state)
620 {
621 	struct io_failure_record *failrec = NULL;
622 	u64 private;
623 	struct extent_map *em;
624 	struct inode *inode = page->mapping->host;
625 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
626 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
627 	struct bio *bio;
628 	int num_copies;
629 	int ret;
630 	int rw;
631 	u64 logical;
632 
633 	ret = get_state_private(failure_tree, start, &private);
634 	if (ret) {
635 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
636 		if (!failrec)
637 			return -ENOMEM;
638 		failrec->start = start;
639 		failrec->len = end - start + 1;
640 		failrec->last_mirror = 0;
641 
642 		spin_lock(&em_tree->lock);
643 		em = lookup_extent_mapping(em_tree, start, failrec->len);
644 		if (em->start > start || em->start + em->len < start) {
645 			free_extent_map(em);
646 			em = NULL;
647 		}
648 		spin_unlock(&em_tree->lock);
649 
650 		if (!em || IS_ERR(em)) {
651 			kfree(failrec);
652 			return -EIO;
653 		}
654 		logical = start - em->start;
655 		logical = em->block_start + logical;
656 		failrec->logical = logical;
657 		free_extent_map(em);
658 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
659 				EXTENT_DIRTY, GFP_NOFS);
660 		set_state_private(failure_tree, start,
661 				 (u64)(unsigned long)failrec);
662 	} else {
663 		failrec = (struct io_failure_record *)(unsigned long)private;
664 	}
665 	num_copies = btrfs_num_copies(
666 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
667 			      failrec->logical, failrec->len);
668 	failrec->last_mirror++;
669 	if (!state) {
670 		spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
671 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
672 						    failrec->start,
673 						    EXTENT_LOCKED);
674 		if (state && state->start != failrec->start)
675 			state = NULL;
676 		spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
677 	}
678 	if (!state || failrec->last_mirror > num_copies) {
679 		set_state_private(failure_tree, failrec->start, 0);
680 		clear_extent_bits(failure_tree, failrec->start,
681 				  failrec->start + failrec->len - 1,
682 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
683 		kfree(failrec);
684 		return -EIO;
685 	}
686 	bio = bio_alloc(GFP_NOFS, 1);
687 	bio->bi_private = state;
688 	bio->bi_end_io = failed_bio->bi_end_io;
689 	bio->bi_sector = failrec->logical >> 9;
690 	bio->bi_bdev = failed_bio->bi_bdev;
691 	bio->bi_size = 0;
692 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
693 	if (failed_bio->bi_rw & (1 << BIO_RW))
694 		rw = WRITE;
695 	else
696 		rw = READ;
697 
698 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
699 						      failrec->last_mirror);
700 	return 0;
701 }
702 
703 int btrfs_clean_io_failures(struct inode *inode, u64 start)
704 {
705 	u64 private;
706 	u64 private_failure;
707 	struct io_failure_record *failure;
708 	int ret;
709 
710 	private = 0;
711 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
712 			     (u64)-1, 1, EXTENT_DIRTY)) {
713 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
714 					start, &private_failure);
715 		if (ret == 0) {
716 			failure = (struct io_failure_record *)(unsigned long)
717 				   private_failure;
718 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
719 					  failure->start, 0);
720 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
721 					  failure->start,
722 					  failure->start + failure->len - 1,
723 					  EXTENT_DIRTY | EXTENT_LOCKED,
724 					  GFP_NOFS);
725 			kfree(failure);
726 		}
727 	}
728 	return 0;
729 }
730 
731 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
732 			       struct extent_state *state)
733 {
734 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
735 	struct inode *inode = page->mapping->host;
736 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
737 	char *kaddr;
738 	u64 private = ~(u32)0;
739 	int ret;
740 	struct btrfs_root *root = BTRFS_I(inode)->root;
741 	u32 csum = ~(u32)0;
742 	unsigned long flags;
743 
744 	if (btrfs_test_opt(root, NODATASUM) ||
745 	    btrfs_test_flag(inode, NODATASUM))
746 		return 0;
747 	if (state && state->start == start) {
748 		private = state->private;
749 		ret = 0;
750 	} else {
751 		ret = get_state_private(io_tree, start, &private);
752 	}
753 	local_irq_save(flags);
754 	kaddr = kmap_atomic(page, KM_IRQ0);
755 	if (ret) {
756 		goto zeroit;
757 	}
758 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
759 	btrfs_csum_final(csum, (char *)&csum);
760 	if (csum != private) {
761 		goto zeroit;
762 	}
763 	kunmap_atomic(kaddr, KM_IRQ0);
764 	local_irq_restore(flags);
765 
766 	/* if the io failure tree for this inode is non-empty,
767 	 * check to see if we've recovered from a failed IO
768 	 */
769 	btrfs_clean_io_failures(inode, start);
770 	return 0;
771 
772 zeroit:
773 	printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
774 	       page->mapping->host->i_ino, (unsigned long long)start, csum,
775 	       private);
776 	memset(kaddr + offset, 1, end - start + 1);
777 	flush_dcache_page(page);
778 	kunmap_atomic(kaddr, KM_IRQ0);
779 	local_irq_restore(flags);
780 	if (private == 0)
781 		return 0;
782 	return -EIO;
783 }
784 
785 /*
786  * This creates an orphan entry for the given inode in case something goes
787  * wrong in the middle of an unlink/truncate.
788  */
789 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
790 {
791 	struct btrfs_root *root = BTRFS_I(inode)->root;
792 	int ret = 0;
793 
794 	spin_lock(&root->list_lock);
795 
796 	/* already on the orphan list, we're good */
797 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
798 		spin_unlock(&root->list_lock);
799 		return 0;
800 	}
801 
802 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
803 
804 	spin_unlock(&root->list_lock);
805 
806 	/*
807 	 * insert an orphan item to track this unlinked/truncated file
808 	 */
809 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
810 
811 	return ret;
812 }
813 
814 /*
815  * We have done the truncate/delete so we can go ahead and remove the orphan
816  * item for this particular inode.
817  */
818 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
819 {
820 	struct btrfs_root *root = BTRFS_I(inode)->root;
821 	int ret = 0;
822 
823 	spin_lock(&root->list_lock);
824 
825 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
826 		spin_unlock(&root->list_lock);
827 		return 0;
828 	}
829 
830 	list_del_init(&BTRFS_I(inode)->i_orphan);
831 	if (!trans) {
832 		spin_unlock(&root->list_lock);
833 		return 0;
834 	}
835 
836 	spin_unlock(&root->list_lock);
837 
838 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
839 
840 	return ret;
841 }
842 
843 /*
844  * this cleans up any orphans that may be left on the list from the last use
845  * of this root.
846  */
847 void btrfs_orphan_cleanup(struct btrfs_root *root)
848 {
849 	struct btrfs_path *path;
850 	struct extent_buffer *leaf;
851 	struct btrfs_item *item;
852 	struct btrfs_key key, found_key;
853 	struct btrfs_trans_handle *trans;
854 	struct inode *inode;
855 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
856 
857 	/* don't do orphan cleanup if the fs is readonly. */
858 	if (root->inode->i_sb->s_flags & MS_RDONLY)
859 		return;
860 
861 	path = btrfs_alloc_path();
862 	if (!path)
863 		return;
864 	path->reada = -1;
865 
866 	key.objectid = BTRFS_ORPHAN_OBJECTID;
867 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
868 	key.offset = (u64)-1;
869 
870 	trans = btrfs_start_transaction(root, 1);
871 	btrfs_set_trans_block_group(trans, root->inode);
872 
873 	while (1) {
874 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
875 		if (ret < 0) {
876 			printk(KERN_ERR "Error searching slot for orphan: %d"
877 			       "\n", ret);
878 			break;
879 		}
880 
881 		/*
882 		 * if ret == 0 means we found what we were searching for, which
883 		 * is weird, but possible, so only screw with path if we didnt
884 		 * find the key and see if we have stuff that matches
885 		 */
886 		if (ret > 0) {
887 			if (path->slots[0] == 0)
888 				break;
889 			path->slots[0]--;
890 		}
891 
892 		/* pull out the item */
893 		leaf = path->nodes[0];
894 		item = btrfs_item_nr(leaf, path->slots[0]);
895 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
896 
897 		/* make sure the item matches what we want */
898 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
899 			break;
900 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
901 			break;
902 
903 		/* release the path since we're done with it */
904 		btrfs_release_path(root, path);
905 
906 		/*
907 		 * this is where we are basically btrfs_lookup, without the
908 		 * crossing root thing.  we store the inode number in the
909 		 * offset of the orphan item.
910 		 */
911 		inode = btrfs_iget_locked(root->inode->i_sb,
912 					  found_key.offset, root);
913 		if (!inode)
914 			break;
915 
916 		if (inode->i_state & I_NEW) {
917 			BTRFS_I(inode)->root = root;
918 
919 			/* have to set the location manually */
920 			BTRFS_I(inode)->location.objectid = inode->i_ino;
921 			BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
922 			BTRFS_I(inode)->location.offset = 0;
923 
924 			btrfs_read_locked_inode(inode);
925 			unlock_new_inode(inode);
926 		}
927 
928 		/*
929 		 * add this inode to the orphan list so btrfs_orphan_del does
930 		 * the proper thing when we hit it
931 		 */
932 		spin_lock(&root->list_lock);
933 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
934 		spin_unlock(&root->list_lock);
935 
936 		/*
937 		 * if this is a bad inode, means we actually succeeded in
938 		 * removing the inode, but not the orphan record, which means
939 		 * we need to manually delete the orphan since iput will just
940 		 * do a destroy_inode
941 		 */
942 		if (is_bad_inode(inode)) {
943 			btrfs_orphan_del(trans, inode);
944 			iput(inode);
945 			continue;
946 		}
947 
948 		/* if we have links, this was a truncate, lets do that */
949 		if (inode->i_nlink) {
950 			nr_truncate++;
951 			btrfs_truncate(inode);
952 		} else {
953 			nr_unlink++;
954 		}
955 
956 		/* this will do delete_inode and everything for us */
957 		iput(inode);
958 	}
959 
960 	if (nr_unlink)
961 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
962 	if (nr_truncate)
963 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
964 
965 	btrfs_free_path(path);
966 	btrfs_end_transaction(trans, root);
967 }
968 
969 void btrfs_read_locked_inode(struct inode *inode)
970 {
971 	struct btrfs_path *path;
972 	struct extent_buffer *leaf;
973 	struct btrfs_inode_item *inode_item;
974 	struct btrfs_timespec *tspec;
975 	struct btrfs_root *root = BTRFS_I(inode)->root;
976 	struct btrfs_key location;
977 	u64 alloc_group_block;
978 	u32 rdev;
979 	int ret;
980 
981 	path = btrfs_alloc_path();
982 	BUG_ON(!path);
983 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
984 
985 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
986 	if (ret)
987 		goto make_bad;
988 
989 	leaf = path->nodes[0];
990 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
991 				    struct btrfs_inode_item);
992 
993 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
994 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
995 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
996 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
997 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
998 
999 	tspec = btrfs_inode_atime(inode_item);
1000 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1001 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1002 
1003 	tspec = btrfs_inode_mtime(inode_item);
1004 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1005 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1006 
1007 	tspec = btrfs_inode_ctime(inode_item);
1008 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1009 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1010 
1011 	inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1012 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1013 	inode->i_generation = BTRFS_I(inode)->generation;
1014 	inode->i_rdev = 0;
1015 	rdev = btrfs_inode_rdev(leaf, inode_item);
1016 
1017 	BTRFS_I(inode)->index_cnt = (u64)-1;
1018 
1019 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1020 	BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1021 						       alloc_group_block);
1022 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1023 	if (!BTRFS_I(inode)->block_group) {
1024 		BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1025 						 NULL, 0,
1026 						 BTRFS_BLOCK_GROUP_METADATA, 0);
1027 	}
1028 	btrfs_free_path(path);
1029 	inode_item = NULL;
1030 
1031 	switch (inode->i_mode & S_IFMT) {
1032 	case S_IFREG:
1033 		inode->i_mapping->a_ops = &btrfs_aops;
1034 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1035 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1036 		inode->i_fop = &btrfs_file_operations;
1037 		inode->i_op = &btrfs_file_inode_operations;
1038 		break;
1039 	case S_IFDIR:
1040 		inode->i_fop = &btrfs_dir_file_operations;
1041 		if (root == root->fs_info->tree_root)
1042 			inode->i_op = &btrfs_dir_ro_inode_operations;
1043 		else
1044 			inode->i_op = &btrfs_dir_inode_operations;
1045 		break;
1046 	case S_IFLNK:
1047 		inode->i_op = &btrfs_symlink_inode_operations;
1048 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
1049 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1050 		break;
1051 	default:
1052 		init_special_inode(inode, inode->i_mode, rdev);
1053 		break;
1054 	}
1055 	return;
1056 
1057 make_bad:
1058 	btrfs_free_path(path);
1059 	make_bad_inode(inode);
1060 }
1061 
1062 static void fill_inode_item(struct btrfs_trans_handle *trans,
1063 			    struct extent_buffer *leaf,
1064 			    struct btrfs_inode_item *item,
1065 			    struct inode *inode)
1066 {
1067 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
1068 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
1069 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1070 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
1071 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1072 
1073 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1074 			       inode->i_atime.tv_sec);
1075 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1076 				inode->i_atime.tv_nsec);
1077 
1078 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1079 			       inode->i_mtime.tv_sec);
1080 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1081 				inode->i_mtime.tv_nsec);
1082 
1083 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1084 			       inode->i_ctime.tv_sec);
1085 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1086 				inode->i_ctime.tv_nsec);
1087 
1088 	btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1089 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1090 	btrfs_set_inode_transid(leaf, item, trans->transid);
1091 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1092 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1093 	btrfs_set_inode_block_group(leaf, item,
1094 				    BTRFS_I(inode)->block_group->key.objectid);
1095 }
1096 
1097 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1098 			      struct btrfs_root *root,
1099 			      struct inode *inode)
1100 {
1101 	struct btrfs_inode_item *inode_item;
1102 	struct btrfs_path *path;
1103 	struct extent_buffer *leaf;
1104 	int ret;
1105 
1106 	path = btrfs_alloc_path();
1107 	BUG_ON(!path);
1108 	ret = btrfs_lookup_inode(trans, root, path,
1109 				 &BTRFS_I(inode)->location, 1);
1110 	if (ret) {
1111 		if (ret > 0)
1112 			ret = -ENOENT;
1113 		goto failed;
1114 	}
1115 
1116 	leaf = path->nodes[0];
1117 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1118 				  struct btrfs_inode_item);
1119 
1120 	fill_inode_item(trans, leaf, inode_item, inode);
1121 	btrfs_mark_buffer_dirty(leaf);
1122 	btrfs_set_inode_last_trans(trans, inode);
1123 	ret = 0;
1124 failed:
1125 	btrfs_free_path(path);
1126 	return ret;
1127 }
1128 
1129 
1130 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1131 		       struct btrfs_root *root,
1132 		       struct inode *dir, struct inode *inode,
1133 		       const char *name, int name_len)
1134 {
1135 	struct btrfs_path *path;
1136 	int ret = 0;
1137 	struct extent_buffer *leaf;
1138 	struct btrfs_dir_item *di;
1139 	struct btrfs_key key;
1140 	u64 index;
1141 
1142 	path = btrfs_alloc_path();
1143 	if (!path) {
1144 		ret = -ENOMEM;
1145 		goto err;
1146 	}
1147 
1148 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1149 				    name, name_len, -1);
1150 	if (IS_ERR(di)) {
1151 		ret = PTR_ERR(di);
1152 		goto err;
1153 	}
1154 	if (!di) {
1155 		ret = -ENOENT;
1156 		goto err;
1157 	}
1158 	leaf = path->nodes[0];
1159 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
1160 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
1161 	if (ret)
1162 		goto err;
1163 	btrfs_release_path(root, path);
1164 
1165 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
1166 				  inode->i_ino,
1167 				  dir->i_ino, &index);
1168 	if (ret) {
1169 		printk("failed to delete reference to %.*s, "
1170 		       "inode %lu parent %lu\n", name_len, name,
1171 		       inode->i_ino, dir->i_ino);
1172 		goto err;
1173 	}
1174 
1175 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1176 					 index, name, name_len, -1);
1177 	if (IS_ERR(di)) {
1178 		ret = PTR_ERR(di);
1179 		goto err;
1180 	}
1181 	if (!di) {
1182 		ret = -ENOENT;
1183 		goto err;
1184 	}
1185 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
1186 	btrfs_release_path(root, path);
1187 
1188 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1189 					 inode, dir->i_ino);
1190 	BUG_ON(ret);
1191 
1192 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1193 					   dir, index);
1194 	BUG_ON(ret);
1195 err:
1196 	btrfs_free_path(path);
1197 	if (ret)
1198 		goto out;
1199 
1200 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1201 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1202 	btrfs_update_inode(trans, root, dir);
1203 	btrfs_drop_nlink(inode);
1204 	ret = btrfs_update_inode(trans, root, inode);
1205 	dir->i_sb->s_dirt = 1;
1206 out:
1207 	return ret;
1208 }
1209 
1210 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1211 {
1212 	struct btrfs_root *root;
1213 	struct btrfs_trans_handle *trans;
1214 	struct inode *inode = dentry->d_inode;
1215 	int ret;
1216 	unsigned long nr = 0;
1217 
1218 	root = BTRFS_I(dir)->root;
1219 
1220 	ret = btrfs_check_free_space(root, 1, 1);
1221 	if (ret)
1222 		goto fail;
1223 
1224 	trans = btrfs_start_transaction(root, 1);
1225 
1226 	btrfs_set_trans_block_group(trans, dir);
1227 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1228 				 dentry->d_name.name, dentry->d_name.len);
1229 
1230 	if (inode->i_nlink == 0)
1231 		ret = btrfs_orphan_add(trans, inode);
1232 
1233 	nr = trans->blocks_used;
1234 
1235 	btrfs_end_transaction_throttle(trans, root);
1236 fail:
1237 	btrfs_btree_balance_dirty(root, nr);
1238 	return ret;
1239 }
1240 
1241 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1242 {
1243 	struct inode *inode = dentry->d_inode;
1244 	int err = 0;
1245 	int ret;
1246 	struct btrfs_root *root = BTRFS_I(dir)->root;
1247 	struct btrfs_trans_handle *trans;
1248 	unsigned long nr = 0;
1249 
1250 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1251 		return -ENOTEMPTY;
1252 	}
1253 
1254 	ret = btrfs_check_free_space(root, 1, 1);
1255 	if (ret)
1256 		goto fail;
1257 
1258 	trans = btrfs_start_transaction(root, 1);
1259 	btrfs_set_trans_block_group(trans, dir);
1260 
1261 	err = btrfs_orphan_add(trans, inode);
1262 	if (err)
1263 		goto fail_trans;
1264 
1265 	/* now the directory is empty */
1266 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1267 				 dentry->d_name.name, dentry->d_name.len);
1268 	if (!err) {
1269 		btrfs_i_size_write(inode, 0);
1270 	}
1271 
1272 fail_trans:
1273 	nr = trans->blocks_used;
1274 	ret = btrfs_end_transaction_throttle(trans, root);
1275 fail:
1276 	btrfs_btree_balance_dirty(root, nr);
1277 
1278 	if (ret && !err)
1279 		err = ret;
1280 	return err;
1281 }
1282 
1283 /*
1284  * this can truncate away extent items, csum items and directory items.
1285  * It starts at a high offset and removes keys until it can't find
1286  * any higher than i_size.
1287  *
1288  * csum items that cross the new i_size are truncated to the new size
1289  * as well.
1290  *
1291  * min_type is the minimum key type to truncate down to.  If set to 0, this
1292  * will kill all the items on this inode, including the INODE_ITEM_KEY.
1293  */
1294 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1295 					struct btrfs_root *root,
1296 					struct inode *inode,
1297 					u64 new_size, u32 min_type)
1298 {
1299 	int ret;
1300 	struct btrfs_path *path;
1301 	struct btrfs_key key;
1302 	struct btrfs_key found_key;
1303 	u32 found_type;
1304 	struct extent_buffer *leaf;
1305 	struct btrfs_file_extent_item *fi;
1306 	u64 extent_start = 0;
1307 	u64 extent_num_bytes = 0;
1308 	u64 item_end = 0;
1309 	u64 root_gen = 0;
1310 	u64 root_owner = 0;
1311 	int found_extent;
1312 	int del_item;
1313 	int pending_del_nr = 0;
1314 	int pending_del_slot = 0;
1315 	int extent_type = -1;
1316 	u64 mask = root->sectorsize - 1;
1317 
1318 	if (root->ref_cows)
1319 		btrfs_drop_extent_cache(inode,
1320 					new_size & (~mask), (u64)-1);
1321 	path = btrfs_alloc_path();
1322 	path->reada = -1;
1323 	BUG_ON(!path);
1324 
1325 	/* FIXME, add redo link to tree so we don't leak on crash */
1326 	key.objectid = inode->i_ino;
1327 	key.offset = (u64)-1;
1328 	key.type = (u8)-1;
1329 
1330 	btrfs_init_path(path);
1331 search_again:
1332 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1333 	if (ret < 0) {
1334 		goto error;
1335 	}
1336 	if (ret > 0) {
1337 		/* there are no items in the tree for us to truncate, we're
1338 		 * done
1339 		 */
1340 		if (path->slots[0] == 0) {
1341 			ret = 0;
1342 			goto error;
1343 		}
1344 		path->slots[0]--;
1345 	}
1346 
1347 	while(1) {
1348 		fi = NULL;
1349 		leaf = path->nodes[0];
1350 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1351 		found_type = btrfs_key_type(&found_key);
1352 
1353 		if (found_key.objectid != inode->i_ino)
1354 			break;
1355 
1356 		if (found_type < min_type)
1357 			break;
1358 
1359 		item_end = found_key.offset;
1360 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
1361 			fi = btrfs_item_ptr(leaf, path->slots[0],
1362 					    struct btrfs_file_extent_item);
1363 			extent_type = btrfs_file_extent_type(leaf, fi);
1364 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1365 				item_end +=
1366 				    btrfs_file_extent_num_bytes(leaf, fi);
1367 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1368 				struct btrfs_item *item = btrfs_item_nr(leaf,
1369 							        path->slots[0]);
1370 				item_end += btrfs_file_extent_inline_len(leaf,
1371 									 item);
1372 			}
1373 			item_end--;
1374 		}
1375 		if (found_type == BTRFS_CSUM_ITEM_KEY) {
1376 			ret = btrfs_csum_truncate(trans, root, path,
1377 						  new_size);
1378 			BUG_ON(ret);
1379 		}
1380 		if (item_end < new_size) {
1381 			if (found_type == BTRFS_DIR_ITEM_KEY) {
1382 				found_type = BTRFS_INODE_ITEM_KEY;
1383 			} else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1384 				found_type = BTRFS_CSUM_ITEM_KEY;
1385 			} else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1386 				found_type = BTRFS_XATTR_ITEM_KEY;
1387 			} else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1388 				found_type = BTRFS_INODE_REF_KEY;
1389 			} else if (found_type) {
1390 				found_type--;
1391 			} else {
1392 				break;
1393 			}
1394 			btrfs_set_key_type(&key, found_type);
1395 			goto next;
1396 		}
1397 		if (found_key.offset >= new_size)
1398 			del_item = 1;
1399 		else
1400 			del_item = 0;
1401 		found_extent = 0;
1402 
1403 		/* FIXME, shrink the extent if the ref count is only 1 */
1404 		if (found_type != BTRFS_EXTENT_DATA_KEY)
1405 			goto delete;
1406 
1407 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1408 			u64 num_dec;
1409 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1410 			if (!del_item) {
1411 				u64 orig_num_bytes =
1412 					btrfs_file_extent_num_bytes(leaf, fi);
1413 				extent_num_bytes = new_size -
1414 					found_key.offset + root->sectorsize - 1;
1415 				extent_num_bytes = extent_num_bytes &
1416 					~((u64)root->sectorsize - 1);
1417 				btrfs_set_file_extent_num_bytes(leaf, fi,
1418 							 extent_num_bytes);
1419 				num_dec = (orig_num_bytes -
1420 					   extent_num_bytes);
1421 				if (root->ref_cows && extent_start != 0)
1422 					dec_i_blocks(inode, num_dec);
1423 				btrfs_mark_buffer_dirty(leaf);
1424 			} else {
1425 				extent_num_bytes =
1426 					btrfs_file_extent_disk_num_bytes(leaf,
1427 									 fi);
1428 				/* FIXME blocksize != 4096 */
1429 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1430 				if (extent_start != 0) {
1431 					found_extent = 1;
1432 					if (root->ref_cows)
1433 						dec_i_blocks(inode, num_dec);
1434 				}
1435 				if (root->ref_cows) {
1436 					root_gen =
1437 						btrfs_header_generation(leaf);
1438 				}
1439 				root_owner = btrfs_header_owner(leaf);
1440 			}
1441 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1442 			if (!del_item) {
1443 				u32 size = new_size - found_key.offset;
1444 
1445 				if (root->ref_cows) {
1446 					dec_i_blocks(inode, item_end + 1 -
1447 						    found_key.offset - size);
1448 				}
1449 				size =
1450 				    btrfs_file_extent_calc_inline_size(size);
1451 				ret = btrfs_truncate_item(trans, root, path,
1452 							  size, 1);
1453 				BUG_ON(ret);
1454 			} else if (root->ref_cows) {
1455 				dec_i_blocks(inode, item_end + 1 -
1456 					     found_key.offset);
1457 			}
1458 		}
1459 delete:
1460 		if (del_item) {
1461 			if (!pending_del_nr) {
1462 				/* no pending yet, add ourselves */
1463 				pending_del_slot = path->slots[0];
1464 				pending_del_nr = 1;
1465 			} else if (pending_del_nr &&
1466 				   path->slots[0] + 1 == pending_del_slot) {
1467 				/* hop on the pending chunk */
1468 				pending_del_nr++;
1469 				pending_del_slot = path->slots[0];
1470 			} else {
1471 				printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1472 			}
1473 		} else {
1474 			break;
1475 		}
1476 		if (found_extent) {
1477 			ret = btrfs_free_extent(trans, root, extent_start,
1478 						extent_num_bytes,
1479 						root_owner,
1480 						root_gen, inode->i_ino,
1481 						found_key.offset, 0);
1482 			BUG_ON(ret);
1483 		}
1484 next:
1485 		if (path->slots[0] == 0) {
1486 			if (pending_del_nr)
1487 				goto del_pending;
1488 			btrfs_release_path(root, path);
1489 			goto search_again;
1490 		}
1491 
1492 		path->slots[0]--;
1493 		if (pending_del_nr &&
1494 		    path->slots[0] + 1 != pending_del_slot) {
1495 			struct btrfs_key debug;
1496 del_pending:
1497 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
1498 					      pending_del_slot);
1499 			ret = btrfs_del_items(trans, root, path,
1500 					      pending_del_slot,
1501 					      pending_del_nr);
1502 			BUG_ON(ret);
1503 			pending_del_nr = 0;
1504 			btrfs_release_path(root, path);
1505 			goto search_again;
1506 		}
1507 	}
1508 	ret = 0;
1509 error:
1510 	if (pending_del_nr) {
1511 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
1512 				      pending_del_nr);
1513 	}
1514 	btrfs_free_path(path);
1515 	inode->i_sb->s_dirt = 1;
1516 	return ret;
1517 }
1518 
1519 /*
1520  * taken from block_truncate_page, but does cow as it zeros out
1521  * any bytes left in the last page in the file.
1522  */
1523 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1524 {
1525 	struct inode *inode = mapping->host;
1526 	struct btrfs_root *root = BTRFS_I(inode)->root;
1527 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1528 	struct btrfs_ordered_extent *ordered;
1529 	char *kaddr;
1530 	u32 blocksize = root->sectorsize;
1531 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
1532 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1533 	struct page *page;
1534 	int ret = 0;
1535 	u64 page_start;
1536 	u64 page_end;
1537 
1538 	if ((offset & (blocksize - 1)) == 0)
1539 		goto out;
1540 
1541 	ret = -ENOMEM;
1542 again:
1543 	page = grab_cache_page(mapping, index);
1544 	if (!page)
1545 		goto out;
1546 
1547 	page_start = page_offset(page);
1548 	page_end = page_start + PAGE_CACHE_SIZE - 1;
1549 
1550 	if (!PageUptodate(page)) {
1551 		ret = btrfs_readpage(NULL, page);
1552 		lock_page(page);
1553 		if (page->mapping != mapping) {
1554 			unlock_page(page);
1555 			page_cache_release(page);
1556 			goto again;
1557 		}
1558 		if (!PageUptodate(page)) {
1559 			ret = -EIO;
1560 			goto out_unlock;
1561 		}
1562 	}
1563 	wait_on_page_writeback(page);
1564 
1565 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1566 	set_page_extent_mapped(page);
1567 
1568 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1569 	if (ordered) {
1570 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1571 		unlock_page(page);
1572 		page_cache_release(page);
1573 		btrfs_start_ordered_extent(inode, ordered, 1);
1574 		btrfs_put_ordered_extent(ordered);
1575 		goto again;
1576 	}
1577 
1578 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1579 	ret = 0;
1580 	if (offset != PAGE_CACHE_SIZE) {
1581 		kaddr = kmap(page);
1582 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1583 		flush_dcache_page(page);
1584 		kunmap(page);
1585 	}
1586 	ClearPageChecked(page);
1587 	set_page_dirty(page);
1588 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1589 
1590 out_unlock:
1591 	unlock_page(page);
1592 	page_cache_release(page);
1593 out:
1594 	return ret;
1595 }
1596 
1597 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1598 {
1599 	struct inode *inode = dentry->d_inode;
1600 	int err;
1601 
1602 	err = inode_change_ok(inode, attr);
1603 	if (err)
1604 		return err;
1605 
1606 	if (S_ISREG(inode->i_mode) &&
1607 	    attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1608 		struct btrfs_trans_handle *trans;
1609 		struct btrfs_root *root = BTRFS_I(inode)->root;
1610 		struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1611 
1612 		u64 mask = root->sectorsize - 1;
1613 		u64 hole_start = (inode->i_size + mask) & ~mask;
1614 		u64 block_end = (attr->ia_size + mask) & ~mask;
1615 		u64 hole_size;
1616 		u64 alloc_hint = 0;
1617 
1618 		if (attr->ia_size <= hole_start)
1619 			goto out;
1620 
1621 		err = btrfs_check_free_space(root, 1, 0);
1622 		if (err)
1623 			goto fail;
1624 
1625 		btrfs_truncate_page(inode->i_mapping, inode->i_size);
1626 
1627 		hole_size = block_end - hole_start;
1628 		while(1) {
1629 			struct btrfs_ordered_extent *ordered;
1630 			btrfs_wait_ordered_range(inode, hole_start, hole_size);
1631 
1632 			lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1633 			ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1634 			if (ordered) {
1635 				unlock_extent(io_tree, hole_start,
1636 					      block_end - 1, GFP_NOFS);
1637 				btrfs_put_ordered_extent(ordered);
1638 			} else {
1639 				break;
1640 			}
1641 		}
1642 
1643 		trans = btrfs_start_transaction(root, 1);
1644 		btrfs_set_trans_block_group(trans, inode);
1645 		mutex_lock(&BTRFS_I(inode)->extent_mutex);
1646 		err = btrfs_drop_extents(trans, root, inode,
1647 					 hole_start, block_end, hole_start,
1648 					 &alloc_hint);
1649 
1650 		if (alloc_hint != EXTENT_MAP_INLINE) {
1651 			err = btrfs_insert_file_extent(trans, root,
1652 						       inode->i_ino,
1653 						       hole_start, 0, 0,
1654 						       hole_size, 0);
1655 			btrfs_drop_extent_cache(inode, hole_start,
1656 						(u64)-1);
1657 			btrfs_check_file(root, inode);
1658 		}
1659 		mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1660 		btrfs_end_transaction(trans, root);
1661 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1662 		if (err)
1663 			return err;
1664 	}
1665 out:
1666 	err = inode_setattr(inode, attr);
1667 
1668 	if (!err && ((attr->ia_valid & ATTR_MODE)))
1669 		err = btrfs_acl_chmod(inode);
1670 fail:
1671 	return err;
1672 }
1673 
1674 void btrfs_delete_inode(struct inode *inode)
1675 {
1676 	struct btrfs_trans_handle *trans;
1677 	struct btrfs_root *root = BTRFS_I(inode)->root;
1678 	unsigned long nr;
1679 	int ret;
1680 
1681 	truncate_inode_pages(&inode->i_data, 0);
1682 	if (is_bad_inode(inode)) {
1683 		btrfs_orphan_del(NULL, inode);
1684 		goto no_delete;
1685 	}
1686 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1687 
1688 	btrfs_i_size_write(inode, 0);
1689 	trans = btrfs_start_transaction(root, 1);
1690 
1691 	btrfs_set_trans_block_group(trans, inode);
1692 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
1693 	if (ret) {
1694 		btrfs_orphan_del(NULL, inode);
1695 		goto no_delete_lock;
1696 	}
1697 
1698 	btrfs_orphan_del(trans, inode);
1699 
1700 	nr = trans->blocks_used;
1701 	clear_inode(inode);
1702 
1703 	btrfs_end_transaction(trans, root);
1704 	btrfs_btree_balance_dirty(root, nr);
1705 	return;
1706 
1707 no_delete_lock:
1708 	nr = trans->blocks_used;
1709 	btrfs_end_transaction(trans, root);
1710 	btrfs_btree_balance_dirty(root, nr);
1711 no_delete:
1712 	clear_inode(inode);
1713 }
1714 
1715 /*
1716  * this returns the key found in the dir entry in the location pointer.
1717  * If no dir entries were found, location->objectid is 0.
1718  */
1719 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1720 			       struct btrfs_key *location)
1721 {
1722 	const char *name = dentry->d_name.name;
1723 	int namelen = dentry->d_name.len;
1724 	struct btrfs_dir_item *di;
1725 	struct btrfs_path *path;
1726 	struct btrfs_root *root = BTRFS_I(dir)->root;
1727 	int ret = 0;
1728 
1729 	path = btrfs_alloc_path();
1730 	BUG_ON(!path);
1731 
1732 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1733 				    namelen, 0);
1734 	if (IS_ERR(di))
1735 		ret = PTR_ERR(di);
1736 	if (!di || IS_ERR(di)) {
1737 		goto out_err;
1738 	}
1739 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1740 out:
1741 	btrfs_free_path(path);
1742 	return ret;
1743 out_err:
1744 	location->objectid = 0;
1745 	goto out;
1746 }
1747 
1748 /*
1749  * when we hit a tree root in a directory, the btrfs part of the inode
1750  * needs to be changed to reflect the root directory of the tree root.  This
1751  * is kind of like crossing a mount point.
1752  */
1753 static int fixup_tree_root_location(struct btrfs_root *root,
1754 			     struct btrfs_key *location,
1755 			     struct btrfs_root **sub_root,
1756 			     struct dentry *dentry)
1757 {
1758 	struct btrfs_root_item *ri;
1759 
1760 	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1761 		return 0;
1762 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1763 		return 0;
1764 
1765 	*sub_root = btrfs_read_fs_root(root->fs_info, location,
1766 					dentry->d_name.name,
1767 					dentry->d_name.len);
1768 	if (IS_ERR(*sub_root))
1769 		return PTR_ERR(*sub_root);
1770 
1771 	ri = &(*sub_root)->root_item;
1772 	location->objectid = btrfs_root_dirid(ri);
1773 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1774 	location->offset = 0;
1775 
1776 	return 0;
1777 }
1778 
1779 static noinline void init_btrfs_i(struct inode *inode)
1780 {
1781 	struct btrfs_inode *bi = BTRFS_I(inode);
1782 
1783 	bi->i_acl = NULL;
1784 	bi->i_default_acl = NULL;
1785 
1786 	bi->generation = 0;
1787 	bi->last_trans = 0;
1788 	bi->logged_trans = 0;
1789 	bi->delalloc_bytes = 0;
1790 	bi->disk_i_size = 0;
1791 	bi->flags = 0;
1792 	bi->index_cnt = (u64)-1;
1793 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1794 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1795 			     inode->i_mapping, GFP_NOFS);
1796 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1797 			     inode->i_mapping, GFP_NOFS);
1798 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1799 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1800 	mutex_init(&BTRFS_I(inode)->csum_mutex);
1801 	mutex_init(&BTRFS_I(inode)->extent_mutex);
1802 	mutex_init(&BTRFS_I(inode)->log_mutex);
1803 }
1804 
1805 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1806 {
1807 	struct btrfs_iget_args *args = p;
1808 	inode->i_ino = args->ino;
1809 	init_btrfs_i(inode);
1810 	BTRFS_I(inode)->root = args->root;
1811 	return 0;
1812 }
1813 
1814 static int btrfs_find_actor(struct inode *inode, void *opaque)
1815 {
1816 	struct btrfs_iget_args *args = opaque;
1817 	return (args->ino == inode->i_ino &&
1818 		args->root == BTRFS_I(inode)->root);
1819 }
1820 
1821 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1822 				struct btrfs_root *root)
1823 {
1824 	struct inode *inode;
1825 	struct btrfs_iget_args args;
1826 	args.ino = objectid;
1827 	args.root = root;
1828 
1829 	inode = iget5_locked(s, objectid, btrfs_find_actor,
1830 			     btrfs_init_locked_inode,
1831 			     (void *)&args);
1832 	return inode;
1833 }
1834 
1835 /* Get an inode object given its location and corresponding root.
1836  * Returns in *is_new if the inode was read from disk
1837  */
1838 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
1839 			 struct btrfs_root *root, int *is_new)
1840 {
1841 	struct inode *inode;
1842 
1843 	inode = btrfs_iget_locked(s, location->objectid, root);
1844 	if (!inode)
1845 		return ERR_PTR(-EACCES);
1846 
1847 	if (inode->i_state & I_NEW) {
1848 		BTRFS_I(inode)->root = root;
1849 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
1850 		btrfs_read_locked_inode(inode);
1851 		unlock_new_inode(inode);
1852 		if (is_new)
1853 			*is_new = 1;
1854 	} else {
1855 		if (is_new)
1856 			*is_new = 0;
1857 	}
1858 
1859 	return inode;
1860 }
1861 
1862 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1863 				   struct nameidata *nd)
1864 {
1865 	struct inode * inode;
1866 	struct btrfs_inode *bi = BTRFS_I(dir);
1867 	struct btrfs_root *root = bi->root;
1868 	struct btrfs_root *sub_root = root;
1869 	struct btrfs_key location;
1870 	int ret, new, do_orphan = 0;
1871 
1872 	if (dentry->d_name.len > BTRFS_NAME_LEN)
1873 		return ERR_PTR(-ENAMETOOLONG);
1874 
1875 	ret = btrfs_inode_by_name(dir, dentry, &location);
1876 
1877 	if (ret < 0)
1878 		return ERR_PTR(ret);
1879 
1880 	inode = NULL;
1881 	if (location.objectid) {
1882 		ret = fixup_tree_root_location(root, &location, &sub_root,
1883 						dentry);
1884 		if (ret < 0)
1885 			return ERR_PTR(ret);
1886 		if (ret > 0)
1887 			return ERR_PTR(-ENOENT);
1888 		inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
1889 		if (IS_ERR(inode))
1890 			return ERR_CAST(inode);
1891 
1892 		/* the inode and parent dir are two different roots */
1893 		if (new && root != sub_root) {
1894 			igrab(inode);
1895 			sub_root->inode = inode;
1896 			do_orphan = 1;
1897 		}
1898 	}
1899 
1900 	if (unlikely(do_orphan))
1901 		btrfs_orphan_cleanup(sub_root);
1902 
1903 	return d_splice_alias(inode, dentry);
1904 }
1905 
1906 static unsigned char btrfs_filetype_table[] = {
1907 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1908 };
1909 
1910 static int btrfs_real_readdir(struct file *filp, void *dirent,
1911 			      filldir_t filldir)
1912 {
1913 	struct inode *inode = filp->f_dentry->d_inode;
1914 	struct btrfs_root *root = BTRFS_I(inode)->root;
1915 	struct btrfs_item *item;
1916 	struct btrfs_dir_item *di;
1917 	struct btrfs_key key;
1918 	struct btrfs_key found_key;
1919 	struct btrfs_path *path;
1920 	int ret;
1921 	u32 nritems;
1922 	struct extent_buffer *leaf;
1923 	int slot;
1924 	int advance;
1925 	unsigned char d_type;
1926 	int over = 0;
1927 	u32 di_cur;
1928 	u32 di_total;
1929 	u32 di_len;
1930 	int key_type = BTRFS_DIR_INDEX_KEY;
1931 	char tmp_name[32];
1932 	char *name_ptr;
1933 	int name_len;
1934 
1935 	/* FIXME, use a real flag for deciding about the key type */
1936 	if (root->fs_info->tree_root == root)
1937 		key_type = BTRFS_DIR_ITEM_KEY;
1938 
1939 	/* special case for "." */
1940 	if (filp->f_pos == 0) {
1941 		over = filldir(dirent, ".", 1,
1942 			       1, inode->i_ino,
1943 			       DT_DIR);
1944 		if (over)
1945 			return 0;
1946 		filp->f_pos = 1;
1947 	}
1948 	/* special case for .., just use the back ref */
1949 	if (filp->f_pos == 1) {
1950 		u64 pino = parent_ino(filp->f_path.dentry);
1951 		over = filldir(dirent, "..", 2,
1952 			       2, pino, DT_DIR);
1953 		if (over)
1954 			return 0;
1955 		filp->f_pos = 2;
1956 	}
1957 
1958 	path = btrfs_alloc_path();
1959 	path->reada = 2;
1960 
1961 	btrfs_set_key_type(&key, key_type);
1962 	key.offset = filp->f_pos;
1963 	key.objectid = inode->i_ino;
1964 
1965 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1966 	if (ret < 0)
1967 		goto err;
1968 	advance = 0;
1969 
1970 	while (1) {
1971 		leaf = path->nodes[0];
1972 		nritems = btrfs_header_nritems(leaf);
1973 		slot = path->slots[0];
1974 		if (advance || slot >= nritems) {
1975 			if (slot >= nritems - 1) {
1976 				ret = btrfs_next_leaf(root, path);
1977 				if (ret)
1978 					break;
1979 				leaf = path->nodes[0];
1980 				nritems = btrfs_header_nritems(leaf);
1981 				slot = path->slots[0];
1982 			} else {
1983 				slot++;
1984 				path->slots[0]++;
1985 			}
1986 		}
1987 		advance = 1;
1988 		item = btrfs_item_nr(leaf, slot);
1989 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1990 
1991 		if (found_key.objectid != key.objectid)
1992 			break;
1993 		if (btrfs_key_type(&found_key) != key_type)
1994 			break;
1995 		if (found_key.offset < filp->f_pos)
1996 			continue;
1997 
1998 		filp->f_pos = found_key.offset;
1999 
2000 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2001 		di_cur = 0;
2002 		di_total = btrfs_item_size(leaf, item);
2003 
2004 		while (di_cur < di_total) {
2005 			struct btrfs_key location;
2006 
2007 			name_len = btrfs_dir_name_len(leaf, di);
2008 			if (name_len <= sizeof(tmp_name)) {
2009 				name_ptr = tmp_name;
2010 			} else {
2011 				name_ptr = kmalloc(name_len, GFP_NOFS);
2012 				if (!name_ptr) {
2013 					ret = -ENOMEM;
2014 					goto err;
2015 				}
2016 			}
2017 			read_extent_buffer(leaf, name_ptr,
2018 					   (unsigned long)(di + 1), name_len);
2019 
2020 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2021 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
2022 			over = filldir(dirent, name_ptr, name_len,
2023 				       found_key.offset, location.objectid,
2024 				       d_type);
2025 
2026 			if (name_ptr != tmp_name)
2027 				kfree(name_ptr);
2028 
2029 			if (over)
2030 				goto nopos;
2031 
2032 			di_len = btrfs_dir_name_len(leaf, di) +
2033 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2034 			di_cur += di_len;
2035 			di = (struct btrfs_dir_item *)((char *)di + di_len);
2036 		}
2037 	}
2038 
2039 	/* Reached end of directory/root. Bump pos past the last item. */
2040 	if (key_type == BTRFS_DIR_INDEX_KEY)
2041 		filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2042 	else
2043 		filp->f_pos++;
2044 nopos:
2045 	ret = 0;
2046 err:
2047 	btrfs_free_path(path);
2048 	return ret;
2049 }
2050 
2051 /* Kernels earlier than 2.6.28 still have the NFS deadlock where nfsd
2052    will call the file system's ->lookup() method from within its
2053    filldir callback, which in turn was called from the file system's
2054    ->readdir() method. And will deadlock for many file systems. */
2055 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
2056 
2057 struct nfshack_dirent {
2058 	u64		ino;
2059 	loff_t		offset;
2060 	int		namlen;
2061 	unsigned int	d_type;
2062 	char		name[];
2063 };
2064 
2065 struct nfshack_readdir {
2066 	char		*dirent;
2067 	size_t		used;
2068 	int		full;
2069 };
2070 
2071 
2072 
2073 static int btrfs_nfshack_filldir(void *__buf, const char *name, int namlen,
2074 			      loff_t offset, u64 ino, unsigned int d_type)
2075 {
2076 	struct nfshack_readdir *buf = __buf;
2077 	struct nfshack_dirent *de = (void *)(buf->dirent + buf->used);
2078 	unsigned int reclen;
2079 
2080 	reclen = ALIGN(sizeof(struct nfshack_dirent) + namlen, sizeof(u64));
2081 	if (buf->used + reclen > PAGE_SIZE) {
2082 		buf->full = 1;
2083 		return -EINVAL;
2084 	}
2085 
2086 	de->namlen = namlen;
2087 	de->offset = offset;
2088 	de->ino = ino;
2089 	de->d_type = d_type;
2090 	memcpy(de->name, name, namlen);
2091 	buf->used += reclen;
2092 
2093 	return 0;
2094 }
2095 
2096 static int btrfs_nfshack_readdir(struct file *file, void *dirent,
2097 				 filldir_t filldir)
2098 {
2099 	struct nfshack_readdir buf;
2100 	struct nfshack_dirent *de;
2101 	int err;
2102 	int size;
2103 	loff_t offset;
2104 
2105 	buf.dirent = (void *)__get_free_page(GFP_KERNEL);
2106 	if (!buf.dirent)
2107 		return -ENOMEM;
2108 
2109 	offset = file->f_pos;
2110 
2111 	do {
2112 		unsigned int reclen;
2113 
2114 		buf.used = 0;
2115 		buf.full = 0;
2116 		err = btrfs_real_readdir(file, &buf, btrfs_nfshack_filldir);
2117 		if (err)
2118 			break;
2119 
2120 		size = buf.used;
2121 
2122 		if (!size)
2123 			break;
2124 
2125 		de = (struct nfshack_dirent *)buf.dirent;
2126 		while (size > 0) {
2127 			offset = de->offset;
2128 
2129 			if (filldir(dirent, de->name, de->namlen, de->offset,
2130 				    de->ino, de->d_type))
2131 				goto done;
2132 			offset = file->f_pos;
2133 
2134 			reclen = ALIGN(sizeof(*de) + de->namlen,
2135 				       sizeof(u64));
2136 			size -= reclen;
2137 			de = (struct nfshack_dirent *)((char *)de + reclen);
2138 		}
2139 	} while (buf.full);
2140 
2141  done:
2142 	free_page((unsigned long)buf.dirent);
2143 	file->f_pos = offset;
2144 
2145 	return err;
2146 }
2147 #endif
2148 
2149 int btrfs_write_inode(struct inode *inode, int wait)
2150 {
2151 	struct btrfs_root *root = BTRFS_I(inode)->root;
2152 	struct btrfs_trans_handle *trans;
2153 	int ret = 0;
2154 
2155 	if (root->fs_info->closing > 1)
2156 		return 0;
2157 
2158 	if (wait) {
2159 		trans = btrfs_join_transaction(root, 1);
2160 		btrfs_set_trans_block_group(trans, inode);
2161 		ret = btrfs_commit_transaction(trans, root);
2162 	}
2163 	return ret;
2164 }
2165 
2166 /*
2167  * This is somewhat expensive, updating the tree every time the
2168  * inode changes.  But, it is most likely to find the inode in cache.
2169  * FIXME, needs more benchmarking...there are no reasons other than performance
2170  * to keep or drop this code.
2171  */
2172 void btrfs_dirty_inode(struct inode *inode)
2173 {
2174 	struct btrfs_root *root = BTRFS_I(inode)->root;
2175 	struct btrfs_trans_handle *trans;
2176 
2177 	trans = btrfs_join_transaction(root, 1);
2178 	btrfs_set_trans_block_group(trans, inode);
2179 	btrfs_update_inode(trans, root, inode);
2180 	btrfs_end_transaction(trans, root);
2181 }
2182 
2183 static int btrfs_set_inode_index_count(struct inode *inode)
2184 {
2185 	struct btrfs_root *root = BTRFS_I(inode)->root;
2186 	struct btrfs_key key, found_key;
2187 	struct btrfs_path *path;
2188 	struct extent_buffer *leaf;
2189 	int ret;
2190 
2191 	key.objectid = inode->i_ino;
2192 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2193 	key.offset = (u64)-1;
2194 
2195 	path = btrfs_alloc_path();
2196 	if (!path)
2197 		return -ENOMEM;
2198 
2199 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2200 	if (ret < 0)
2201 		goto out;
2202 	/* FIXME: we should be able to handle this */
2203 	if (ret == 0)
2204 		goto out;
2205 	ret = 0;
2206 
2207 	/*
2208 	 * MAGIC NUMBER EXPLANATION:
2209 	 * since we search a directory based on f_pos we have to start at 2
2210 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2211 	 * else has to start at 2
2212 	 */
2213 	if (path->slots[0] == 0) {
2214 		BTRFS_I(inode)->index_cnt = 2;
2215 		goto out;
2216 	}
2217 
2218 	path->slots[0]--;
2219 
2220 	leaf = path->nodes[0];
2221 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2222 
2223 	if (found_key.objectid != inode->i_ino ||
2224 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2225 		BTRFS_I(inode)->index_cnt = 2;
2226 		goto out;
2227 	}
2228 
2229 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2230 out:
2231 	btrfs_free_path(path);
2232 	return ret;
2233 }
2234 
2235 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2236 				 u64 *index)
2237 {
2238 	int ret = 0;
2239 
2240 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2241 		ret = btrfs_set_inode_index_count(dir);
2242 		if (ret) {
2243 			return ret;
2244 		}
2245 	}
2246 
2247 	*index = BTRFS_I(dir)->index_cnt;
2248 	BTRFS_I(dir)->index_cnt++;
2249 
2250 	return ret;
2251 }
2252 
2253 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2254 				     struct btrfs_root *root,
2255 				     struct inode *dir,
2256 				     const char *name, int name_len,
2257 				     u64 ref_objectid,
2258 				     u64 objectid,
2259 				     struct btrfs_block_group_cache *group,
2260 				     int mode, u64 *index)
2261 {
2262 	struct inode *inode;
2263 	struct btrfs_inode_item *inode_item;
2264 	struct btrfs_block_group_cache *new_inode_group;
2265 	struct btrfs_key *location;
2266 	struct btrfs_path *path;
2267 	struct btrfs_inode_ref *ref;
2268 	struct btrfs_key key[2];
2269 	u32 sizes[2];
2270 	unsigned long ptr;
2271 	int ret;
2272 	int owner;
2273 
2274 	path = btrfs_alloc_path();
2275 	BUG_ON(!path);
2276 
2277 	inode = new_inode(root->fs_info->sb);
2278 	if (!inode)
2279 		return ERR_PTR(-ENOMEM);
2280 
2281 	if (dir) {
2282 		ret = btrfs_set_inode_index(dir, inode, index);
2283 		if (ret)
2284 			return ERR_PTR(ret);
2285 	}
2286 	/*
2287 	 * index_cnt is ignored for everything but a dir,
2288 	 * btrfs_get_inode_index_count has an explanation for the magic
2289 	 * number
2290 	 */
2291 	init_btrfs_i(inode);
2292 	BTRFS_I(inode)->index_cnt = 2;
2293 	BTRFS_I(inode)->root = root;
2294 	BTRFS_I(inode)->generation = trans->transid;
2295 
2296 	if (mode & S_IFDIR)
2297 		owner = 0;
2298 	else
2299 		owner = 1;
2300 	new_inode_group = btrfs_find_block_group(root, group, 0,
2301 				       BTRFS_BLOCK_GROUP_METADATA, owner);
2302 	if (!new_inode_group) {
2303 		printk("find_block group failed\n");
2304 		new_inode_group = group;
2305 	}
2306 	BTRFS_I(inode)->block_group = new_inode_group;
2307 
2308 	key[0].objectid = objectid;
2309 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2310 	key[0].offset = 0;
2311 
2312 	key[1].objectid = objectid;
2313 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2314 	key[1].offset = ref_objectid;
2315 
2316 	sizes[0] = sizeof(struct btrfs_inode_item);
2317 	sizes[1] = name_len + sizeof(*ref);
2318 
2319 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2320 	if (ret != 0)
2321 		goto fail;
2322 
2323 	if (objectid > root->highest_inode)
2324 		root->highest_inode = objectid;
2325 
2326 	inode->i_uid = current->fsuid;
2327 	inode->i_gid = current->fsgid;
2328 	inode->i_mode = mode;
2329 	inode->i_ino = objectid;
2330 	inode->i_blocks = 0;
2331 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2332 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2333 				  struct btrfs_inode_item);
2334 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
2335 
2336 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2337 			     struct btrfs_inode_ref);
2338 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2339 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2340 	ptr = (unsigned long)(ref + 1);
2341 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
2342 
2343 	btrfs_mark_buffer_dirty(path->nodes[0]);
2344 	btrfs_free_path(path);
2345 
2346 	location = &BTRFS_I(inode)->location;
2347 	location->objectid = objectid;
2348 	location->offset = 0;
2349 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2350 
2351 	insert_inode_hash(inode);
2352 	return inode;
2353 fail:
2354 	if (dir)
2355 		BTRFS_I(dir)->index_cnt--;
2356 	btrfs_free_path(path);
2357 	return ERR_PTR(ret);
2358 }
2359 
2360 static inline u8 btrfs_inode_type(struct inode *inode)
2361 {
2362 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2363 }
2364 
2365 int btrfs_add_link(struct btrfs_trans_handle *trans,
2366 		   struct inode *parent_inode, struct inode *inode,
2367 		   const char *name, int name_len, int add_backref, u64 index)
2368 {
2369 	int ret;
2370 	struct btrfs_key key;
2371 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
2372 
2373 	key.objectid = inode->i_ino;
2374 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2375 	key.offset = 0;
2376 
2377 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
2378 				    parent_inode->i_ino,
2379 				    &key, btrfs_inode_type(inode),
2380 				    index);
2381 	if (ret == 0) {
2382 		if (add_backref) {
2383 			ret = btrfs_insert_inode_ref(trans, root,
2384 						     name, name_len,
2385 						     inode->i_ino,
2386 						     parent_inode->i_ino,
2387 						     index);
2388 		}
2389 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
2390 				   name_len * 2);
2391 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2392 		ret = btrfs_update_inode(trans, root, parent_inode);
2393 	}
2394 	return ret;
2395 }
2396 
2397 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2398 			    struct dentry *dentry, struct inode *inode,
2399 			    int backref, u64 index)
2400 {
2401 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2402 				 inode, dentry->d_name.name,
2403 				 dentry->d_name.len, backref, index);
2404 	if (!err) {
2405 		d_instantiate(dentry, inode);
2406 		return 0;
2407 	}
2408 	if (err > 0)
2409 		err = -EEXIST;
2410 	return err;
2411 }
2412 
2413 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2414 			int mode, dev_t rdev)
2415 {
2416 	struct btrfs_trans_handle *trans;
2417 	struct btrfs_root *root = BTRFS_I(dir)->root;
2418 	struct inode *inode = NULL;
2419 	int err;
2420 	int drop_inode = 0;
2421 	u64 objectid;
2422 	unsigned long nr = 0;
2423 	u64 index = 0;
2424 
2425 	if (!new_valid_dev(rdev))
2426 		return -EINVAL;
2427 
2428 	err = btrfs_check_free_space(root, 1, 0);
2429 	if (err)
2430 		goto fail;
2431 
2432 	trans = btrfs_start_transaction(root, 1);
2433 	btrfs_set_trans_block_group(trans, dir);
2434 
2435 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2436 	if (err) {
2437 		err = -ENOSPC;
2438 		goto out_unlock;
2439 	}
2440 
2441 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2442 				dentry->d_name.len,
2443 				dentry->d_parent->d_inode->i_ino, objectid,
2444 				BTRFS_I(dir)->block_group, mode, &index);
2445 	err = PTR_ERR(inode);
2446 	if (IS_ERR(inode))
2447 		goto out_unlock;
2448 
2449 	err = btrfs_init_acl(inode, dir);
2450 	if (err) {
2451 		drop_inode = 1;
2452 		goto out_unlock;
2453 	}
2454 
2455 	btrfs_set_trans_block_group(trans, inode);
2456 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2457 	if (err)
2458 		drop_inode = 1;
2459 	else {
2460 		inode->i_op = &btrfs_special_inode_operations;
2461 		init_special_inode(inode, inode->i_mode, rdev);
2462 		btrfs_update_inode(trans, root, inode);
2463 	}
2464 	dir->i_sb->s_dirt = 1;
2465 	btrfs_update_inode_block_group(trans, inode);
2466 	btrfs_update_inode_block_group(trans, dir);
2467 out_unlock:
2468 	nr = trans->blocks_used;
2469 	btrfs_end_transaction_throttle(trans, root);
2470 fail:
2471 	if (drop_inode) {
2472 		inode_dec_link_count(inode);
2473 		iput(inode);
2474 	}
2475 	btrfs_btree_balance_dirty(root, nr);
2476 	return err;
2477 }
2478 
2479 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2480 			int mode, struct nameidata *nd)
2481 {
2482 	struct btrfs_trans_handle *trans;
2483 	struct btrfs_root *root = BTRFS_I(dir)->root;
2484 	struct inode *inode = NULL;
2485 	int err;
2486 	int drop_inode = 0;
2487 	unsigned long nr = 0;
2488 	u64 objectid;
2489 	u64 index = 0;
2490 
2491 	err = btrfs_check_free_space(root, 1, 0);
2492 	if (err)
2493 		goto fail;
2494 	trans = btrfs_start_transaction(root, 1);
2495 	btrfs_set_trans_block_group(trans, dir);
2496 
2497 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2498 	if (err) {
2499 		err = -ENOSPC;
2500 		goto out_unlock;
2501 	}
2502 
2503 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2504 				dentry->d_name.len,
2505 				dentry->d_parent->d_inode->i_ino,
2506 				objectid, BTRFS_I(dir)->block_group, mode,
2507 				&index);
2508 	err = PTR_ERR(inode);
2509 	if (IS_ERR(inode))
2510 		goto out_unlock;
2511 
2512 	err = btrfs_init_acl(inode, dir);
2513 	if (err) {
2514 		drop_inode = 1;
2515 		goto out_unlock;
2516 	}
2517 
2518 	btrfs_set_trans_block_group(trans, inode);
2519 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2520 	if (err)
2521 		drop_inode = 1;
2522 	else {
2523 		inode->i_mapping->a_ops = &btrfs_aops;
2524 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2525 		inode->i_fop = &btrfs_file_operations;
2526 		inode->i_op = &btrfs_file_inode_operations;
2527 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2528 	}
2529 	dir->i_sb->s_dirt = 1;
2530 	btrfs_update_inode_block_group(trans, inode);
2531 	btrfs_update_inode_block_group(trans, dir);
2532 out_unlock:
2533 	nr = trans->blocks_used;
2534 	btrfs_end_transaction_throttle(trans, root);
2535 fail:
2536 	if (drop_inode) {
2537 		inode_dec_link_count(inode);
2538 		iput(inode);
2539 	}
2540 	btrfs_btree_balance_dirty(root, nr);
2541 	return err;
2542 }
2543 
2544 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2545 		      struct dentry *dentry)
2546 {
2547 	struct btrfs_trans_handle *trans;
2548 	struct btrfs_root *root = BTRFS_I(dir)->root;
2549 	struct inode *inode = old_dentry->d_inode;
2550 	u64 index;
2551 	unsigned long nr = 0;
2552 	int err;
2553 	int drop_inode = 0;
2554 
2555 	if (inode->i_nlink == 0)
2556 		return -ENOENT;
2557 
2558 	btrfs_inc_nlink(inode);
2559 	err = btrfs_check_free_space(root, 1, 0);
2560 	if (err)
2561 		goto fail;
2562 	err = btrfs_set_inode_index(dir, inode, &index);
2563 	if (err)
2564 		goto fail;
2565 
2566 	trans = btrfs_start_transaction(root, 1);
2567 
2568 	btrfs_set_trans_block_group(trans, dir);
2569 	atomic_inc(&inode->i_count);
2570 
2571 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2572 
2573 	if (err)
2574 		drop_inode = 1;
2575 
2576 	dir->i_sb->s_dirt = 1;
2577 	btrfs_update_inode_block_group(trans, dir);
2578 	err = btrfs_update_inode(trans, root, inode);
2579 
2580 	if (err)
2581 		drop_inode = 1;
2582 
2583 	nr = trans->blocks_used;
2584 	btrfs_end_transaction_throttle(trans, root);
2585 fail:
2586 	if (drop_inode) {
2587 		inode_dec_link_count(inode);
2588 		iput(inode);
2589 	}
2590 	btrfs_btree_balance_dirty(root, nr);
2591 	return err;
2592 }
2593 
2594 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2595 {
2596 	struct inode *inode = NULL;
2597 	struct btrfs_trans_handle *trans;
2598 	struct btrfs_root *root = BTRFS_I(dir)->root;
2599 	int err = 0;
2600 	int drop_on_err = 0;
2601 	u64 objectid = 0;
2602 	u64 index = 0;
2603 	unsigned long nr = 1;
2604 
2605 	err = btrfs_check_free_space(root, 1, 0);
2606 	if (err)
2607 		goto out_unlock;
2608 
2609 	trans = btrfs_start_transaction(root, 1);
2610 	btrfs_set_trans_block_group(trans, dir);
2611 
2612 	if (IS_ERR(trans)) {
2613 		err = PTR_ERR(trans);
2614 		goto out_unlock;
2615 	}
2616 
2617 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2618 	if (err) {
2619 		err = -ENOSPC;
2620 		goto out_unlock;
2621 	}
2622 
2623 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2624 				dentry->d_name.len,
2625 				dentry->d_parent->d_inode->i_ino, objectid,
2626 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
2627 				&index);
2628 	if (IS_ERR(inode)) {
2629 		err = PTR_ERR(inode);
2630 		goto out_fail;
2631 	}
2632 
2633 	drop_on_err = 1;
2634 
2635 	err = btrfs_init_acl(inode, dir);
2636 	if (err)
2637 		goto out_fail;
2638 
2639 	inode->i_op = &btrfs_dir_inode_operations;
2640 	inode->i_fop = &btrfs_dir_file_operations;
2641 	btrfs_set_trans_block_group(trans, inode);
2642 
2643 	btrfs_i_size_write(inode, 0);
2644 	err = btrfs_update_inode(trans, root, inode);
2645 	if (err)
2646 		goto out_fail;
2647 
2648 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2649 				 inode, dentry->d_name.name,
2650 				 dentry->d_name.len, 0, index);
2651 	if (err)
2652 		goto out_fail;
2653 
2654 	d_instantiate(dentry, inode);
2655 	drop_on_err = 0;
2656 	dir->i_sb->s_dirt = 1;
2657 	btrfs_update_inode_block_group(trans, inode);
2658 	btrfs_update_inode_block_group(trans, dir);
2659 
2660 out_fail:
2661 	nr = trans->blocks_used;
2662 	btrfs_end_transaction_throttle(trans, root);
2663 
2664 out_unlock:
2665 	if (drop_on_err)
2666 		iput(inode);
2667 	btrfs_btree_balance_dirty(root, nr);
2668 	return err;
2669 }
2670 
2671 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2672 				struct extent_map *existing,
2673 				struct extent_map *em,
2674 				u64 map_start, u64 map_len)
2675 {
2676 	u64 start_diff;
2677 
2678 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2679 	start_diff = map_start - em->start;
2680 	em->start = map_start;
2681 	em->len = map_len;
2682 	if (em->block_start < EXTENT_MAP_LAST_BYTE)
2683 		em->block_start += start_diff;
2684 	return add_extent_mapping(em_tree, em);
2685 }
2686 
2687 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2688 				    size_t pg_offset, u64 start, u64 len,
2689 				    int create)
2690 {
2691 	int ret;
2692 	int err = 0;
2693 	u64 bytenr;
2694 	u64 extent_start = 0;
2695 	u64 extent_end = 0;
2696 	u64 objectid = inode->i_ino;
2697 	u32 found_type;
2698 	struct btrfs_path *path = NULL;
2699 	struct btrfs_root *root = BTRFS_I(inode)->root;
2700 	struct btrfs_file_extent_item *item;
2701 	struct extent_buffer *leaf;
2702 	struct btrfs_key found_key;
2703 	struct extent_map *em = NULL;
2704 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2705 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2706 	struct btrfs_trans_handle *trans = NULL;
2707 
2708 again:
2709 	spin_lock(&em_tree->lock);
2710 	em = lookup_extent_mapping(em_tree, start, len);
2711 	if (em)
2712 		em->bdev = root->fs_info->fs_devices->latest_bdev;
2713 	spin_unlock(&em_tree->lock);
2714 
2715 	if (em) {
2716 		if (em->start > start || em->start + em->len <= start)
2717 			free_extent_map(em);
2718 		else if (em->block_start == EXTENT_MAP_INLINE && page)
2719 			free_extent_map(em);
2720 		else
2721 			goto out;
2722 	}
2723 	em = alloc_extent_map(GFP_NOFS);
2724 	if (!em) {
2725 		err = -ENOMEM;
2726 		goto out;
2727 	}
2728 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2729 	em->start = EXTENT_MAP_HOLE;
2730 	em->len = (u64)-1;
2731 
2732 	if (!path) {
2733 		path = btrfs_alloc_path();
2734 		BUG_ON(!path);
2735 	}
2736 
2737 	ret = btrfs_lookup_file_extent(trans, root, path,
2738 				       objectid, start, trans != NULL);
2739 	if (ret < 0) {
2740 		err = ret;
2741 		goto out;
2742 	}
2743 
2744 	if (ret != 0) {
2745 		if (path->slots[0] == 0)
2746 			goto not_found;
2747 		path->slots[0]--;
2748 	}
2749 
2750 	leaf = path->nodes[0];
2751 	item = btrfs_item_ptr(leaf, path->slots[0],
2752 			      struct btrfs_file_extent_item);
2753 	/* are we inside the extent that was found? */
2754 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2755 	found_type = btrfs_key_type(&found_key);
2756 	if (found_key.objectid != objectid ||
2757 	    found_type != BTRFS_EXTENT_DATA_KEY) {
2758 		goto not_found;
2759 	}
2760 
2761 	found_type = btrfs_file_extent_type(leaf, item);
2762 	extent_start = found_key.offset;
2763 	if (found_type == BTRFS_FILE_EXTENT_REG) {
2764 		extent_end = extent_start +
2765 		       btrfs_file_extent_num_bytes(leaf, item);
2766 		err = 0;
2767 		if (start < extent_start || start >= extent_end) {
2768 			em->start = start;
2769 			if (start < extent_start) {
2770 				if (start + len <= extent_start)
2771 					goto not_found;
2772 				em->len = extent_end - extent_start;
2773 			} else {
2774 				em->len = len;
2775 			}
2776 			goto not_found_em;
2777 		}
2778 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2779 		if (bytenr == 0) {
2780 			em->start = extent_start;
2781 			em->len = extent_end - extent_start;
2782 			em->block_start = EXTENT_MAP_HOLE;
2783 			goto insert;
2784 		}
2785 		bytenr += btrfs_file_extent_offset(leaf, item);
2786 		em->block_start = bytenr;
2787 		em->start = extent_start;
2788 		em->len = extent_end - extent_start;
2789 		goto insert;
2790 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2791 		u64 page_start;
2792 		unsigned long ptr;
2793 		char *map;
2794 		size_t size;
2795 		size_t extent_offset;
2796 		size_t copy_size;
2797 
2798 		size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2799 						    path->slots[0]));
2800 		extent_end = (extent_start + size + root->sectorsize - 1) &
2801 			~((u64)root->sectorsize - 1);
2802 		if (start < extent_start || start >= extent_end) {
2803 			em->start = start;
2804 			if (start < extent_start) {
2805 				if (start + len <= extent_start)
2806 					goto not_found;
2807 				em->len = extent_end - extent_start;
2808 			} else {
2809 				em->len = len;
2810 			}
2811 			goto not_found_em;
2812 		}
2813 		em->block_start = EXTENT_MAP_INLINE;
2814 
2815 		if (!page) {
2816 			em->start = extent_start;
2817 			em->len = size;
2818 			goto out;
2819 		}
2820 
2821 		page_start = page_offset(page) + pg_offset;
2822 		extent_offset = page_start - extent_start;
2823 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2824 				size - extent_offset);
2825 		em->start = extent_start + extent_offset;
2826 		em->len = (copy_size + root->sectorsize - 1) &
2827 			~((u64)root->sectorsize - 1);
2828 		map = kmap(page);
2829 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2830 		if (create == 0 && !PageUptodate(page)) {
2831 			read_extent_buffer(leaf, map + pg_offset, ptr,
2832 					   copy_size);
2833 			flush_dcache_page(page);
2834 		} else if (create && PageUptodate(page)) {
2835 			if (!trans) {
2836 				kunmap(page);
2837 				free_extent_map(em);
2838 				em = NULL;
2839 				btrfs_release_path(root, path);
2840 				trans = btrfs_join_transaction(root, 1);
2841 				goto again;
2842 			}
2843 			write_extent_buffer(leaf, map + pg_offset, ptr,
2844 					    copy_size);
2845 			btrfs_mark_buffer_dirty(leaf);
2846 		}
2847 		kunmap(page);
2848 		set_extent_uptodate(io_tree, em->start,
2849 				    extent_map_end(em) - 1, GFP_NOFS);
2850 		goto insert;
2851 	} else {
2852 		printk("unkknown found_type %d\n", found_type);
2853 		WARN_ON(1);
2854 	}
2855 not_found:
2856 	em->start = start;
2857 	em->len = len;
2858 not_found_em:
2859 	em->block_start = EXTENT_MAP_HOLE;
2860 insert:
2861 	btrfs_release_path(root, path);
2862 	if (em->start > start || extent_map_end(em) <= start) {
2863 		printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2864 		err = -EIO;
2865 		goto out;
2866 	}
2867 
2868 	err = 0;
2869 	spin_lock(&em_tree->lock);
2870 	ret = add_extent_mapping(em_tree, em);
2871 	/* it is possible that someone inserted the extent into the tree
2872 	 * while we had the lock dropped.  It is also possible that
2873 	 * an overlapping map exists in the tree
2874 	 */
2875 	if (ret == -EEXIST) {
2876 		struct extent_map *existing;
2877 
2878 		ret = 0;
2879 
2880 		existing = lookup_extent_mapping(em_tree, start, len);
2881 		if (existing && (existing->start > start ||
2882 		    existing->start + existing->len <= start)) {
2883 			free_extent_map(existing);
2884 			existing = NULL;
2885 		}
2886 		if (!existing) {
2887 			existing = lookup_extent_mapping(em_tree, em->start,
2888 							 em->len);
2889 			if (existing) {
2890 				err = merge_extent_mapping(em_tree, existing,
2891 							   em, start,
2892 							   root->sectorsize);
2893 				free_extent_map(existing);
2894 				if (err) {
2895 					free_extent_map(em);
2896 					em = NULL;
2897 				}
2898 			} else {
2899 				err = -EIO;
2900 				printk("failing to insert %Lu %Lu\n",
2901 				       start, len);
2902 				free_extent_map(em);
2903 				em = NULL;
2904 			}
2905 		} else {
2906 			free_extent_map(em);
2907 			em = existing;
2908 			err = 0;
2909 		}
2910 	}
2911 	spin_unlock(&em_tree->lock);
2912 out:
2913 	if (path)
2914 		btrfs_free_path(path);
2915 	if (trans) {
2916 		ret = btrfs_end_transaction(trans, root);
2917 		if (!err) {
2918 			err = ret;
2919 		}
2920 	}
2921 	if (err) {
2922 		free_extent_map(em);
2923 		WARN_ON(1);
2924 		return ERR_PTR(err);
2925 	}
2926 	return em;
2927 }
2928 
2929 #if 0 /* waiting for O_DIRECT reads */
2930 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2931 			struct buffer_head *bh_result, int create)
2932 {
2933 	struct extent_map *em;
2934 	u64 start = (u64)iblock << inode->i_blkbits;
2935 	struct btrfs_multi_bio *multi = NULL;
2936 	struct btrfs_root *root = BTRFS_I(inode)->root;
2937 	u64 len;
2938 	u64 logical;
2939 	u64 map_length;
2940 	int ret = 0;
2941 
2942 	em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2943 
2944 	if (!em || IS_ERR(em))
2945 		goto out;
2946 
2947 	if (em->start > start || em->start + em->len <= start) {
2948 	    goto out;
2949 	}
2950 
2951 	if (em->block_start == EXTENT_MAP_INLINE) {
2952 		ret = -EINVAL;
2953 		goto out;
2954 	}
2955 
2956 	len = em->start + em->len - start;
2957 	len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2958 
2959 	if (em->block_start == EXTENT_MAP_HOLE ||
2960 	    em->block_start == EXTENT_MAP_DELALLOC) {
2961 		bh_result->b_size = len;
2962 		goto out;
2963 	}
2964 
2965 	logical = start - em->start;
2966 	logical = em->block_start + logical;
2967 
2968 	map_length = len;
2969 	ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2970 			      logical, &map_length, &multi, 0);
2971 	BUG_ON(ret);
2972 	bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2973 	bh_result->b_size = min(map_length, len);
2974 
2975 	bh_result->b_bdev = multi->stripes[0].dev->bdev;
2976 	set_buffer_mapped(bh_result);
2977 	kfree(multi);
2978 out:
2979 	free_extent_map(em);
2980 	return ret;
2981 }
2982 #endif
2983 
2984 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2985 			const struct iovec *iov, loff_t offset,
2986 			unsigned long nr_segs)
2987 {
2988 	return -EINVAL;
2989 #if 0
2990 	struct file *file = iocb->ki_filp;
2991 	struct inode *inode = file->f_mapping->host;
2992 
2993 	if (rw == WRITE)
2994 		return -EINVAL;
2995 
2996 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2997 				  offset, nr_segs, btrfs_get_block, NULL);
2998 #endif
2999 }
3000 
3001 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3002 {
3003 	return extent_bmap(mapping, iblock, btrfs_get_extent);
3004 }
3005 
3006 int btrfs_readpage(struct file *file, struct page *page)
3007 {
3008 	struct extent_io_tree *tree;
3009 	tree = &BTRFS_I(page->mapping->host)->io_tree;
3010 	return extent_read_full_page(tree, page, btrfs_get_extent);
3011 }
3012 
3013 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3014 {
3015 	struct extent_io_tree *tree;
3016 
3017 
3018 	if (current->flags & PF_MEMALLOC) {
3019 		redirty_page_for_writepage(wbc, page);
3020 		unlock_page(page);
3021 		return 0;
3022 	}
3023 	tree = &BTRFS_I(page->mapping->host)->io_tree;
3024 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3025 }
3026 
3027 int btrfs_writepages(struct address_space *mapping,
3028 		     struct writeback_control *wbc)
3029 {
3030 	struct extent_io_tree *tree;
3031 	tree = &BTRFS_I(mapping->host)->io_tree;
3032 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3033 }
3034 
3035 static int
3036 btrfs_readpages(struct file *file, struct address_space *mapping,
3037 		struct list_head *pages, unsigned nr_pages)
3038 {
3039 	struct extent_io_tree *tree;
3040 	tree = &BTRFS_I(mapping->host)->io_tree;
3041 	return extent_readpages(tree, mapping, pages, nr_pages,
3042 				btrfs_get_extent);
3043 }
3044 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3045 {
3046 	struct extent_io_tree *tree;
3047 	struct extent_map_tree *map;
3048 	int ret;
3049 
3050 	tree = &BTRFS_I(page->mapping->host)->io_tree;
3051 	map = &BTRFS_I(page->mapping->host)->extent_tree;
3052 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3053 	if (ret == 1) {
3054 		ClearPagePrivate(page);
3055 		set_page_private(page, 0);
3056 		page_cache_release(page);
3057 	}
3058 	return ret;
3059 }
3060 
3061 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3062 {
3063 	if (PageWriteback(page) || PageDirty(page))
3064 		return 0;
3065 	return __btrfs_releasepage(page, gfp_flags);
3066 }
3067 
3068 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3069 {
3070 	struct extent_io_tree *tree;
3071 	struct btrfs_ordered_extent *ordered;
3072 	u64 page_start = page_offset(page);
3073 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3074 
3075 	wait_on_page_writeback(page);
3076 	tree = &BTRFS_I(page->mapping->host)->io_tree;
3077 	if (offset) {
3078 		btrfs_releasepage(page, GFP_NOFS);
3079 		return;
3080 	}
3081 
3082 	lock_extent(tree, page_start, page_end, GFP_NOFS);
3083 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3084 					   page_offset(page));
3085 	if (ordered) {
3086 		/*
3087 		 * IO on this page will never be started, so we need
3088 		 * to account for any ordered extents now
3089 		 */
3090 		clear_extent_bit(tree, page_start, page_end,
3091 				 EXTENT_DIRTY | EXTENT_DELALLOC |
3092 				 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3093 		btrfs_finish_ordered_io(page->mapping->host,
3094 					page_start, page_end);
3095 		btrfs_put_ordered_extent(ordered);
3096 		lock_extent(tree, page_start, page_end, GFP_NOFS);
3097 	}
3098 	clear_extent_bit(tree, page_start, page_end,
3099 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3100 		 EXTENT_ORDERED,
3101 		 1, 1, GFP_NOFS);
3102 	__btrfs_releasepage(page, GFP_NOFS);
3103 
3104 	ClearPageChecked(page);
3105 	if (PagePrivate(page)) {
3106 		ClearPagePrivate(page);
3107 		set_page_private(page, 0);
3108 		page_cache_release(page);
3109 	}
3110 }
3111 
3112 /*
3113  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3114  * called from a page fault handler when a page is first dirtied. Hence we must
3115  * be careful to check for EOF conditions here. We set the page up correctly
3116  * for a written page which means we get ENOSPC checking when writing into
3117  * holes and correct delalloc and unwritten extent mapping on filesystems that
3118  * support these features.
3119  *
3120  * We are not allowed to take the i_mutex here so we have to play games to
3121  * protect against truncate races as the page could now be beyond EOF.  Because
3122  * vmtruncate() writes the inode size before removing pages, once we have the
3123  * page lock we can determine safely if the page is beyond EOF. If it is not
3124  * beyond EOF, then the page is guaranteed safe against truncation until we
3125  * unlock the page.
3126  */
3127 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3128 {
3129 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
3130 	struct btrfs_root *root = BTRFS_I(inode)->root;
3131 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3132 	struct btrfs_ordered_extent *ordered;
3133 	char *kaddr;
3134 	unsigned long zero_start;
3135 	loff_t size;
3136 	int ret;
3137 	u64 page_start;
3138 	u64 page_end;
3139 
3140 	ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3141 	if (ret)
3142 		goto out;
3143 
3144 	ret = -EINVAL;
3145 again:
3146 	lock_page(page);
3147 	size = i_size_read(inode);
3148 	page_start = page_offset(page);
3149 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3150 
3151 	if ((page->mapping != inode->i_mapping) ||
3152 	    (page_start >= size)) {
3153 		/* page got truncated out from underneath us */
3154 		goto out_unlock;
3155 	}
3156 	wait_on_page_writeback(page);
3157 
3158 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3159 	set_page_extent_mapped(page);
3160 
3161 	/*
3162 	 * we can't set the delalloc bits if there are pending ordered
3163 	 * extents.  Drop our locks and wait for them to finish
3164 	 */
3165 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3166 	if (ordered) {
3167 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3168 		unlock_page(page);
3169 		btrfs_start_ordered_extent(inode, ordered, 1);
3170 		btrfs_put_ordered_extent(ordered);
3171 		goto again;
3172 	}
3173 
3174 	btrfs_set_extent_delalloc(inode, page_start, page_end);
3175 	ret = 0;
3176 
3177 	/* page is wholly or partially inside EOF */
3178 	if (page_start + PAGE_CACHE_SIZE > size)
3179 		zero_start = size & ~PAGE_CACHE_MASK;
3180 	else
3181 		zero_start = PAGE_CACHE_SIZE;
3182 
3183 	if (zero_start != PAGE_CACHE_SIZE) {
3184 		kaddr = kmap(page);
3185 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3186 		flush_dcache_page(page);
3187 		kunmap(page);
3188 	}
3189 	ClearPageChecked(page);
3190 	set_page_dirty(page);
3191 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3192 
3193 out_unlock:
3194 	unlock_page(page);
3195 out:
3196 	return ret;
3197 }
3198 
3199 static void btrfs_truncate(struct inode *inode)
3200 {
3201 	struct btrfs_root *root = BTRFS_I(inode)->root;
3202 	int ret;
3203 	struct btrfs_trans_handle *trans;
3204 	unsigned long nr;
3205 	u64 mask = root->sectorsize - 1;
3206 
3207 	if (!S_ISREG(inode->i_mode))
3208 		return;
3209 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3210 		return;
3211 
3212 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
3213 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3214 
3215 	trans = btrfs_start_transaction(root, 1);
3216 	btrfs_set_trans_block_group(trans, inode);
3217 	btrfs_i_size_write(inode, inode->i_size);
3218 
3219 	ret = btrfs_orphan_add(trans, inode);
3220 	if (ret)
3221 		goto out;
3222 	/* FIXME, add redo link to tree so we don't leak on crash */
3223 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3224 				      BTRFS_EXTENT_DATA_KEY);
3225 	btrfs_update_inode(trans, root, inode);
3226 
3227 	ret = btrfs_orphan_del(trans, inode);
3228 	BUG_ON(ret);
3229 
3230 out:
3231 	nr = trans->blocks_used;
3232 	ret = btrfs_end_transaction_throttle(trans, root);
3233 	BUG_ON(ret);
3234 	btrfs_btree_balance_dirty(root, nr);
3235 }
3236 
3237 /*
3238  * Invalidate a single dcache entry at the root of the filesystem.
3239  * Needed after creation of snapshot or subvolume.
3240  */
3241 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3242 				  int namelen)
3243 {
3244 	struct dentry *alias, *entry;
3245 	struct qstr qstr;
3246 
3247 	alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3248 	if (alias) {
3249 		qstr.name = name;
3250 		qstr.len = namelen;
3251 		/* change me if btrfs ever gets a d_hash operation */
3252 		qstr.hash = full_name_hash(qstr.name, qstr.len);
3253 		entry = d_lookup(alias, &qstr);
3254 		dput(alias);
3255 		if (entry) {
3256 			d_invalidate(entry);
3257 			dput(entry);
3258 		}
3259 	}
3260 }
3261 
3262 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3263 		struct btrfs_trans_handle *trans, u64 new_dirid,
3264 		struct btrfs_block_group_cache *block_group)
3265 {
3266 	struct inode *inode;
3267 	u64 index = 0;
3268 
3269 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3270 				new_dirid, block_group, S_IFDIR | 0700, &index);
3271 	if (IS_ERR(inode))
3272 		return PTR_ERR(inode);
3273 	inode->i_op = &btrfs_dir_inode_operations;
3274 	inode->i_fop = &btrfs_dir_file_operations;
3275 	new_root->inode = inode;
3276 
3277 	inode->i_nlink = 1;
3278 	btrfs_i_size_write(inode, 0);
3279 
3280 	return btrfs_update_inode(trans, new_root, inode);
3281 }
3282 
3283 unsigned long btrfs_force_ra(struct address_space *mapping,
3284 			      struct file_ra_state *ra, struct file *file,
3285 			      pgoff_t offset, pgoff_t last_index)
3286 {
3287 	pgoff_t req_size = last_index - offset + 1;
3288 
3289 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3290 	offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3291 	return offset;
3292 #else
3293 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3294 	return offset + req_size;
3295 #endif
3296 }
3297 
3298 struct inode *btrfs_alloc_inode(struct super_block *sb)
3299 {
3300 	struct btrfs_inode *ei;
3301 
3302 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3303 	if (!ei)
3304 		return NULL;
3305 	ei->last_trans = 0;
3306 	ei->logged_trans = 0;
3307 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3308 	ei->i_acl = BTRFS_ACL_NOT_CACHED;
3309 	ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3310 	INIT_LIST_HEAD(&ei->i_orphan);
3311 	return &ei->vfs_inode;
3312 }
3313 
3314 void btrfs_destroy_inode(struct inode *inode)
3315 {
3316 	struct btrfs_ordered_extent *ordered;
3317 	WARN_ON(!list_empty(&inode->i_dentry));
3318 	WARN_ON(inode->i_data.nrpages);
3319 
3320 	if (BTRFS_I(inode)->i_acl &&
3321 	    BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3322 		posix_acl_release(BTRFS_I(inode)->i_acl);
3323 	if (BTRFS_I(inode)->i_default_acl &&
3324 	    BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3325 		posix_acl_release(BTRFS_I(inode)->i_default_acl);
3326 
3327 	spin_lock(&BTRFS_I(inode)->root->list_lock);
3328 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3329 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3330 		       " list\n", inode->i_ino);
3331 		dump_stack();
3332 	}
3333 	spin_unlock(&BTRFS_I(inode)->root->list_lock);
3334 
3335 	while(1) {
3336 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3337 		if (!ordered)
3338 			break;
3339 		else {
3340 			printk("found ordered extent %Lu %Lu\n",
3341 			       ordered->file_offset, ordered->len);
3342 			btrfs_remove_ordered_extent(inode, ordered);
3343 			btrfs_put_ordered_extent(ordered);
3344 			btrfs_put_ordered_extent(ordered);
3345 		}
3346 	}
3347 	btrfs_drop_extent_cache(inode, 0, (u64)-1);
3348 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3349 }
3350 
3351 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3352 static void init_once(void *foo)
3353 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3354 static void init_once(struct kmem_cache * cachep, void *foo)
3355 #else
3356 static void init_once(void * foo, struct kmem_cache * cachep,
3357 		      unsigned long flags)
3358 #endif
3359 {
3360 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3361 
3362 	inode_init_once(&ei->vfs_inode);
3363 }
3364 
3365 void btrfs_destroy_cachep(void)
3366 {
3367 	if (btrfs_inode_cachep)
3368 		kmem_cache_destroy(btrfs_inode_cachep);
3369 	if (btrfs_trans_handle_cachep)
3370 		kmem_cache_destroy(btrfs_trans_handle_cachep);
3371 	if (btrfs_transaction_cachep)
3372 		kmem_cache_destroy(btrfs_transaction_cachep);
3373 	if (btrfs_bit_radix_cachep)
3374 		kmem_cache_destroy(btrfs_bit_radix_cachep);
3375 	if (btrfs_path_cachep)
3376 		kmem_cache_destroy(btrfs_path_cachep);
3377 }
3378 
3379 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3380 				       unsigned long extra_flags,
3381 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3382 				       void (*ctor)(void *)
3383 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3384 				       void (*ctor)(struct kmem_cache *, void *)
3385 #else
3386 				       void (*ctor)(void *, struct kmem_cache *,
3387 						    unsigned long)
3388 #endif
3389 				     )
3390 {
3391 	return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3392 				 SLAB_MEM_SPREAD | extra_flags), ctor
3393 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3394 				 ,NULL
3395 #endif
3396 				);
3397 }
3398 
3399 int btrfs_init_cachep(void)
3400 {
3401 	btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3402 					  sizeof(struct btrfs_inode),
3403 					  0, init_once);
3404 	if (!btrfs_inode_cachep)
3405 		goto fail;
3406 	btrfs_trans_handle_cachep =
3407 			btrfs_cache_create("btrfs_trans_handle_cache",
3408 					   sizeof(struct btrfs_trans_handle),
3409 					   0, NULL);
3410 	if (!btrfs_trans_handle_cachep)
3411 		goto fail;
3412 	btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3413 					     sizeof(struct btrfs_transaction),
3414 					     0, NULL);
3415 	if (!btrfs_transaction_cachep)
3416 		goto fail;
3417 	btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3418 					 sizeof(struct btrfs_path),
3419 					 0, NULL);
3420 	if (!btrfs_path_cachep)
3421 		goto fail;
3422 	btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3423 					      SLAB_DESTROY_BY_RCU, NULL);
3424 	if (!btrfs_bit_radix_cachep)
3425 		goto fail;
3426 	return 0;
3427 fail:
3428 	btrfs_destroy_cachep();
3429 	return -ENOMEM;
3430 }
3431 
3432 static int btrfs_getattr(struct vfsmount *mnt,
3433 			 struct dentry *dentry, struct kstat *stat)
3434 {
3435 	struct inode *inode = dentry->d_inode;
3436 	generic_fillattr(inode, stat);
3437 	stat->blksize = PAGE_CACHE_SIZE;
3438 	stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3439 	return 0;
3440 }
3441 
3442 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3443 			   struct inode * new_dir,struct dentry *new_dentry)
3444 {
3445 	struct btrfs_trans_handle *trans;
3446 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
3447 	struct inode *new_inode = new_dentry->d_inode;
3448 	struct inode *old_inode = old_dentry->d_inode;
3449 	struct timespec ctime = CURRENT_TIME;
3450 	u64 index = 0;
3451 	int ret;
3452 
3453 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
3454 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3455 		return -ENOTEMPTY;
3456 	}
3457 
3458 	ret = btrfs_check_free_space(root, 1, 0);
3459 	if (ret)
3460 		goto out_unlock;
3461 
3462 	trans = btrfs_start_transaction(root, 1);
3463 
3464 	btrfs_set_trans_block_group(trans, new_dir);
3465 
3466 	btrfs_inc_nlink(old_dentry->d_inode);
3467 	old_dir->i_ctime = old_dir->i_mtime = ctime;
3468 	new_dir->i_ctime = new_dir->i_mtime = ctime;
3469 	old_inode->i_ctime = ctime;
3470 
3471 	ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
3472 				 old_dentry->d_name.name,
3473 				 old_dentry->d_name.len);
3474 	if (ret)
3475 		goto out_fail;
3476 
3477 	if (new_inode) {
3478 		new_inode->i_ctime = CURRENT_TIME;
3479 		ret = btrfs_unlink_inode(trans, root, new_dir,
3480 					 new_dentry->d_inode,
3481 					 new_dentry->d_name.name,
3482 					 new_dentry->d_name.len);
3483 		if (ret)
3484 			goto out_fail;
3485 		if (new_inode->i_nlink == 0) {
3486 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
3487 			if (ret)
3488 				goto out_fail;
3489 		}
3490 
3491 	}
3492 	ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3493 	if (ret)
3494 		goto out_fail;
3495 
3496 	ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
3497 			     old_inode, new_dentry->d_name.name,
3498 			     new_dentry->d_name.len, 1, index);
3499 	if (ret)
3500 		goto out_fail;
3501 
3502 out_fail:
3503 	btrfs_end_transaction_throttle(trans, root);
3504 out_unlock:
3505 	return ret;
3506 }
3507 
3508 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3509 {
3510 	struct list_head *head = &root->fs_info->delalloc_inodes;
3511 	struct btrfs_inode *binode;
3512 	unsigned long flags;
3513 
3514 	spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3515 	while(!list_empty(head)) {
3516 		binode = list_entry(head->next, struct btrfs_inode,
3517 				    delalloc_inodes);
3518 		atomic_inc(&binode->vfs_inode.i_count);
3519 		spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3520 		filemap_write_and_wait(binode->vfs_inode.i_mapping);
3521 		iput(&binode->vfs_inode);
3522 		spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3523 	}
3524 	spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3525 	return 0;
3526 }
3527 
3528 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3529 			 const char *symname)
3530 {
3531 	struct btrfs_trans_handle *trans;
3532 	struct btrfs_root *root = BTRFS_I(dir)->root;
3533 	struct btrfs_path *path;
3534 	struct btrfs_key key;
3535 	struct inode *inode = NULL;
3536 	int err;
3537 	int drop_inode = 0;
3538 	u64 objectid;
3539 	u64 index = 0 ;
3540 	int name_len;
3541 	int datasize;
3542 	unsigned long ptr;
3543 	struct btrfs_file_extent_item *ei;
3544 	struct extent_buffer *leaf;
3545 	unsigned long nr = 0;
3546 
3547 	name_len = strlen(symname) + 1;
3548 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3549 		return -ENAMETOOLONG;
3550 
3551 	err = btrfs_check_free_space(root, 1, 0);
3552 	if (err)
3553 		goto out_fail;
3554 
3555 	trans = btrfs_start_transaction(root, 1);
3556 	btrfs_set_trans_block_group(trans, dir);
3557 
3558 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3559 	if (err) {
3560 		err = -ENOSPC;
3561 		goto out_unlock;
3562 	}
3563 
3564 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3565 				dentry->d_name.len,
3566 				dentry->d_parent->d_inode->i_ino, objectid,
3567 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3568 				&index);
3569 	err = PTR_ERR(inode);
3570 	if (IS_ERR(inode))
3571 		goto out_unlock;
3572 
3573 	err = btrfs_init_acl(inode, dir);
3574 	if (err) {
3575 		drop_inode = 1;
3576 		goto out_unlock;
3577 	}
3578 
3579 	btrfs_set_trans_block_group(trans, inode);
3580 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3581 	if (err)
3582 		drop_inode = 1;
3583 	else {
3584 		inode->i_mapping->a_ops = &btrfs_aops;
3585 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3586 		inode->i_fop = &btrfs_file_operations;
3587 		inode->i_op = &btrfs_file_inode_operations;
3588 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3589 	}
3590 	dir->i_sb->s_dirt = 1;
3591 	btrfs_update_inode_block_group(trans, inode);
3592 	btrfs_update_inode_block_group(trans, dir);
3593 	if (drop_inode)
3594 		goto out_unlock;
3595 
3596 	path = btrfs_alloc_path();
3597 	BUG_ON(!path);
3598 	key.objectid = inode->i_ino;
3599 	key.offset = 0;
3600 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3601 	datasize = btrfs_file_extent_calc_inline_size(name_len);
3602 	err = btrfs_insert_empty_item(trans, root, path, &key,
3603 				      datasize);
3604 	if (err) {
3605 		drop_inode = 1;
3606 		goto out_unlock;
3607 	}
3608 	leaf = path->nodes[0];
3609 	ei = btrfs_item_ptr(leaf, path->slots[0],
3610 			    struct btrfs_file_extent_item);
3611 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3612 	btrfs_set_file_extent_type(leaf, ei,
3613 				   BTRFS_FILE_EXTENT_INLINE);
3614 	ptr = btrfs_file_extent_inline_start(ei);
3615 	write_extent_buffer(leaf, symname, ptr, name_len);
3616 	btrfs_mark_buffer_dirty(leaf);
3617 	btrfs_free_path(path);
3618 
3619 	inode->i_op = &btrfs_symlink_inode_operations;
3620 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
3621 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3622 	btrfs_i_size_write(inode, name_len - 1);
3623 	err = btrfs_update_inode(trans, root, inode);
3624 	if (err)
3625 		drop_inode = 1;
3626 
3627 out_unlock:
3628 	nr = trans->blocks_used;
3629 	btrfs_end_transaction_throttle(trans, root);
3630 out_fail:
3631 	if (drop_inode) {
3632 		inode_dec_link_count(inode);
3633 		iput(inode);
3634 	}
3635 	btrfs_btree_balance_dirty(root, nr);
3636 	return err;
3637 }
3638 
3639 static int btrfs_set_page_dirty(struct page *page)
3640 {
3641 	return __set_page_dirty_nobuffers(page);
3642 }
3643 
3644 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3645 static int btrfs_permission(struct inode *inode, int mask)
3646 #else
3647 static int btrfs_permission(struct inode *inode, int mask,
3648 			    struct nameidata *nd)
3649 #endif
3650 {
3651 	if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3652 		return -EACCES;
3653 	return generic_permission(inode, mask, btrfs_check_acl);
3654 }
3655 
3656 static struct inode_operations btrfs_dir_inode_operations = {
3657 	.lookup		= btrfs_lookup,
3658 	.create		= btrfs_create,
3659 	.unlink		= btrfs_unlink,
3660 	.link		= btrfs_link,
3661 	.mkdir		= btrfs_mkdir,
3662 	.rmdir		= btrfs_rmdir,
3663 	.rename		= btrfs_rename,
3664 	.symlink	= btrfs_symlink,
3665 	.setattr	= btrfs_setattr,
3666 	.mknod		= btrfs_mknod,
3667 	.setxattr	= btrfs_setxattr,
3668 	.getxattr	= btrfs_getxattr,
3669 	.listxattr	= btrfs_listxattr,
3670 	.removexattr	= btrfs_removexattr,
3671 	.permission	= btrfs_permission,
3672 };
3673 static struct inode_operations btrfs_dir_ro_inode_operations = {
3674 	.lookup		= btrfs_lookup,
3675 	.permission	= btrfs_permission,
3676 };
3677 static struct file_operations btrfs_dir_file_operations = {
3678 	.llseek		= generic_file_llseek,
3679 	.read		= generic_read_dir,
3680 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
3681 	.readdir	= btrfs_nfshack_readdir,
3682 #else /* NFSd readdir/lookup deadlock is fixed */
3683 	.readdir	= btrfs_real_readdir,
3684 #endif
3685 	.unlocked_ioctl	= btrfs_ioctl,
3686 #ifdef CONFIG_COMPAT
3687 	.compat_ioctl	= btrfs_ioctl,
3688 #endif
3689 	.release        = btrfs_release_file,
3690 	.fsync		= btrfs_sync_file,
3691 };
3692 
3693 static struct extent_io_ops btrfs_extent_io_ops = {
3694 	.fill_delalloc = run_delalloc_range,
3695 	.submit_bio_hook = btrfs_submit_bio_hook,
3696 	.merge_bio_hook = btrfs_merge_bio_hook,
3697 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
3698 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
3699 	.writepage_start_hook = btrfs_writepage_start_hook,
3700 	.readpage_io_failed_hook = btrfs_io_failed_hook,
3701 	.set_bit_hook = btrfs_set_bit_hook,
3702 	.clear_bit_hook = btrfs_clear_bit_hook,
3703 };
3704 
3705 static struct address_space_operations btrfs_aops = {
3706 	.readpage	= btrfs_readpage,
3707 	.writepage	= btrfs_writepage,
3708 	.writepages	= btrfs_writepages,
3709 	.readpages	= btrfs_readpages,
3710 	.sync_page	= block_sync_page,
3711 	.bmap		= btrfs_bmap,
3712 	.direct_IO	= btrfs_direct_IO,
3713 	.invalidatepage = btrfs_invalidatepage,
3714 	.releasepage	= btrfs_releasepage,
3715 	.set_page_dirty	= btrfs_set_page_dirty,
3716 };
3717 
3718 static struct address_space_operations btrfs_symlink_aops = {
3719 	.readpage	= btrfs_readpage,
3720 	.writepage	= btrfs_writepage,
3721 	.invalidatepage = btrfs_invalidatepage,
3722 	.releasepage	= btrfs_releasepage,
3723 };
3724 
3725 static struct inode_operations btrfs_file_inode_operations = {
3726 	.truncate	= btrfs_truncate,
3727 	.getattr	= btrfs_getattr,
3728 	.setattr	= btrfs_setattr,
3729 	.setxattr	= btrfs_setxattr,
3730 	.getxattr	= btrfs_getxattr,
3731 	.listxattr      = btrfs_listxattr,
3732 	.removexattr	= btrfs_removexattr,
3733 	.permission	= btrfs_permission,
3734 };
3735 static struct inode_operations btrfs_special_inode_operations = {
3736 	.getattr	= btrfs_getattr,
3737 	.setattr	= btrfs_setattr,
3738 	.permission	= btrfs_permission,
3739 	.setxattr	= btrfs_setxattr,
3740 	.getxattr	= btrfs_getxattr,
3741 	.listxattr	= btrfs_listxattr,
3742 	.removexattr	= btrfs_removexattr,
3743 };
3744 static struct inode_operations btrfs_symlink_inode_operations = {
3745 	.readlink	= generic_readlink,
3746 	.follow_link	= page_follow_link_light,
3747 	.put_link	= page_put_link,
3748 	.permission	= btrfs_permission,
3749 };
3750