1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include "compat.h" 43 #include "ctree.h" 44 #include "disk-io.h" 45 #include "transaction.h" 46 #include "btrfs_inode.h" 47 #include "ioctl.h" 48 #include "print-tree.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "volumes.h" 53 #include "compression.h" 54 #include "locking.h" 55 #include "free-space-cache.h" 56 #include "inode-map.h" 57 58 struct btrfs_iget_args { 59 u64 ino; 60 struct btrfs_root *root; 61 }; 62 63 static const struct inode_operations btrfs_dir_inode_operations; 64 static const struct inode_operations btrfs_symlink_inode_operations; 65 static const struct inode_operations btrfs_dir_ro_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct address_space_operations btrfs_symlink_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 struct kmem_cache *btrfs_trans_handle_cachep; 75 struct kmem_cache *btrfs_transaction_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 79 #define S_SHIFT 12 80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 88 }; 89 90 static int btrfs_setsize(struct inode *inode, loff_t newsize); 91 static int btrfs_truncate(struct inode *inode); 92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 93 static noinline int cow_file_range(struct inode *inode, 94 struct page *locked_page, 95 u64 start, u64 end, int *page_started, 96 unsigned long *nr_written, int unlock); 97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 98 struct btrfs_root *root, struct inode *inode); 99 100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 101 struct inode *inode, struct inode *dir, 102 const struct qstr *qstr) 103 { 104 int err; 105 106 err = btrfs_init_acl(trans, inode, dir); 107 if (!err) 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 109 return err; 110 } 111 112 /* 113 * this does all the hard work for inserting an inline extent into 114 * the btree. The caller should have done a btrfs_drop_extents so that 115 * no overlapping inline items exist in the btree 116 */ 117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 118 struct btrfs_root *root, struct inode *inode, 119 u64 start, size_t size, size_t compressed_size, 120 int compress_type, 121 struct page **compressed_pages) 122 { 123 struct btrfs_key key; 124 struct btrfs_path *path; 125 struct extent_buffer *leaf; 126 struct page *page = NULL; 127 char *kaddr; 128 unsigned long ptr; 129 struct btrfs_file_extent_item *ei; 130 int err = 0; 131 int ret; 132 size_t cur_size = size; 133 size_t datasize; 134 unsigned long offset; 135 136 if (compressed_size && compressed_pages) 137 cur_size = compressed_size; 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 path->leave_spinning = 1; 144 145 key.objectid = btrfs_ino(inode); 146 key.offset = start; 147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 148 datasize = btrfs_file_extent_calc_inline_size(cur_size); 149 150 inode_add_bytes(inode, size); 151 ret = btrfs_insert_empty_item(trans, root, path, &key, 152 datasize); 153 BUG_ON(ret); 154 if (ret) { 155 err = ret; 156 goto fail; 157 } 158 leaf = path->nodes[0]; 159 ei = btrfs_item_ptr(leaf, path->slots[0], 160 struct btrfs_file_extent_item); 161 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 163 btrfs_set_file_extent_encryption(leaf, ei, 0); 164 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 165 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 166 ptr = btrfs_file_extent_inline_start(ei); 167 168 if (compress_type != BTRFS_COMPRESS_NONE) { 169 struct page *cpage; 170 int i = 0; 171 while (compressed_size > 0) { 172 cpage = compressed_pages[i]; 173 cur_size = min_t(unsigned long, compressed_size, 174 PAGE_CACHE_SIZE); 175 176 kaddr = kmap_atomic(cpage, KM_USER0); 177 write_extent_buffer(leaf, kaddr, ptr, cur_size); 178 kunmap_atomic(kaddr, KM_USER0); 179 180 i++; 181 ptr += cur_size; 182 compressed_size -= cur_size; 183 } 184 btrfs_set_file_extent_compression(leaf, ei, 185 compress_type); 186 } else { 187 page = find_get_page(inode->i_mapping, 188 start >> PAGE_CACHE_SHIFT); 189 btrfs_set_file_extent_compression(leaf, ei, 0); 190 kaddr = kmap_atomic(page, KM_USER0); 191 offset = start & (PAGE_CACHE_SIZE - 1); 192 write_extent_buffer(leaf, kaddr + offset, ptr, size); 193 kunmap_atomic(kaddr, KM_USER0); 194 page_cache_release(page); 195 } 196 btrfs_mark_buffer_dirty(leaf); 197 btrfs_free_path(path); 198 199 /* 200 * we're an inline extent, so nobody can 201 * extend the file past i_size without locking 202 * a page we already have locked. 203 * 204 * We must do any isize and inode updates 205 * before we unlock the pages. Otherwise we 206 * could end up racing with unlink. 207 */ 208 BTRFS_I(inode)->disk_i_size = inode->i_size; 209 btrfs_update_inode(trans, root, inode); 210 211 return 0; 212 fail: 213 btrfs_free_path(path); 214 return err; 215 } 216 217 218 /* 219 * conditionally insert an inline extent into the file. This 220 * does the checks required to make sure the data is small enough 221 * to fit as an inline extent. 222 */ 223 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 224 struct btrfs_root *root, 225 struct inode *inode, u64 start, u64 end, 226 size_t compressed_size, int compress_type, 227 struct page **compressed_pages) 228 { 229 u64 isize = i_size_read(inode); 230 u64 actual_end = min(end + 1, isize); 231 u64 inline_len = actual_end - start; 232 u64 aligned_end = (end + root->sectorsize - 1) & 233 ~((u64)root->sectorsize - 1); 234 u64 hint_byte; 235 u64 data_len = inline_len; 236 int ret; 237 238 if (compressed_size) 239 data_len = compressed_size; 240 241 if (start > 0 || 242 actual_end >= PAGE_CACHE_SIZE || 243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 244 (!compressed_size && 245 (actual_end & (root->sectorsize - 1)) == 0) || 246 end + 1 < isize || 247 data_len > root->fs_info->max_inline) { 248 return 1; 249 } 250 251 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 252 &hint_byte, 1); 253 BUG_ON(ret); 254 255 if (isize > actual_end) 256 inline_len = min_t(u64, isize, actual_end); 257 ret = insert_inline_extent(trans, root, inode, start, 258 inline_len, compressed_size, 259 compress_type, compressed_pages); 260 BUG_ON(ret); 261 btrfs_delalloc_release_metadata(inode, end + 1 - start); 262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 263 return 0; 264 } 265 266 struct async_extent { 267 u64 start; 268 u64 ram_size; 269 u64 compressed_size; 270 struct page **pages; 271 unsigned long nr_pages; 272 int compress_type; 273 struct list_head list; 274 }; 275 276 struct async_cow { 277 struct inode *inode; 278 struct btrfs_root *root; 279 struct page *locked_page; 280 u64 start; 281 u64 end; 282 struct list_head extents; 283 struct btrfs_work work; 284 }; 285 286 static noinline int add_async_extent(struct async_cow *cow, 287 u64 start, u64 ram_size, 288 u64 compressed_size, 289 struct page **pages, 290 unsigned long nr_pages, 291 int compress_type) 292 { 293 struct async_extent *async_extent; 294 295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 296 BUG_ON(!async_extent); 297 async_extent->start = start; 298 async_extent->ram_size = ram_size; 299 async_extent->compressed_size = compressed_size; 300 async_extent->pages = pages; 301 async_extent->nr_pages = nr_pages; 302 async_extent->compress_type = compress_type; 303 list_add_tail(&async_extent->list, &cow->extents); 304 return 0; 305 } 306 307 /* 308 * we create compressed extents in two phases. The first 309 * phase compresses a range of pages that have already been 310 * locked (both pages and state bits are locked). 311 * 312 * This is done inside an ordered work queue, and the compression 313 * is spread across many cpus. The actual IO submission is step 314 * two, and the ordered work queue takes care of making sure that 315 * happens in the same order things were put onto the queue by 316 * writepages and friends. 317 * 318 * If this code finds it can't get good compression, it puts an 319 * entry onto the work queue to write the uncompressed bytes. This 320 * makes sure that both compressed inodes and uncompressed inodes 321 * are written in the same order that pdflush sent them down. 322 */ 323 static noinline int compress_file_range(struct inode *inode, 324 struct page *locked_page, 325 u64 start, u64 end, 326 struct async_cow *async_cow, 327 int *num_added) 328 { 329 struct btrfs_root *root = BTRFS_I(inode)->root; 330 struct btrfs_trans_handle *trans; 331 u64 num_bytes; 332 u64 blocksize = root->sectorsize; 333 u64 actual_end; 334 u64 isize = i_size_read(inode); 335 int ret = 0; 336 struct page **pages = NULL; 337 unsigned long nr_pages; 338 unsigned long nr_pages_ret = 0; 339 unsigned long total_compressed = 0; 340 unsigned long total_in = 0; 341 unsigned long max_compressed = 128 * 1024; 342 unsigned long max_uncompressed = 128 * 1024; 343 int i; 344 int will_compress; 345 int compress_type = root->fs_info->compress_type; 346 347 /* if this is a small write inside eof, kick off a defragbot */ 348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024) 349 btrfs_add_inode_defrag(NULL, inode); 350 351 actual_end = min_t(u64, isize, end + 1); 352 again: 353 will_compress = 0; 354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 356 357 /* 358 * we don't want to send crud past the end of i_size through 359 * compression, that's just a waste of CPU time. So, if the 360 * end of the file is before the start of our current 361 * requested range of bytes, we bail out to the uncompressed 362 * cleanup code that can deal with all of this. 363 * 364 * It isn't really the fastest way to fix things, but this is a 365 * very uncommon corner. 366 */ 367 if (actual_end <= start) 368 goto cleanup_and_bail_uncompressed; 369 370 total_compressed = actual_end - start; 371 372 /* we want to make sure that amount of ram required to uncompress 373 * an extent is reasonable, so we limit the total size in ram 374 * of a compressed extent to 128k. This is a crucial number 375 * because it also controls how easily we can spread reads across 376 * cpus for decompression. 377 * 378 * We also want to make sure the amount of IO required to do 379 * a random read is reasonably small, so we limit the size of 380 * a compressed extent to 128k. 381 */ 382 total_compressed = min(total_compressed, max_uncompressed); 383 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 384 num_bytes = max(blocksize, num_bytes); 385 total_in = 0; 386 ret = 0; 387 388 /* 389 * we do compression for mount -o compress and when the 390 * inode has not been flagged as nocompress. This flag can 391 * change at any time if we discover bad compression ratios. 392 */ 393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 394 (btrfs_test_opt(root, COMPRESS) || 395 (BTRFS_I(inode)->force_compress) || 396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 397 WARN_ON(pages); 398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 399 if (!pages) { 400 /* just bail out to the uncompressed code */ 401 goto cont; 402 } 403 404 if (BTRFS_I(inode)->force_compress) 405 compress_type = BTRFS_I(inode)->force_compress; 406 407 ret = btrfs_compress_pages(compress_type, 408 inode->i_mapping, start, 409 total_compressed, pages, 410 nr_pages, &nr_pages_ret, 411 &total_in, 412 &total_compressed, 413 max_compressed); 414 415 if (!ret) { 416 unsigned long offset = total_compressed & 417 (PAGE_CACHE_SIZE - 1); 418 struct page *page = pages[nr_pages_ret - 1]; 419 char *kaddr; 420 421 /* zero the tail end of the last page, we might be 422 * sending it down to disk 423 */ 424 if (offset) { 425 kaddr = kmap_atomic(page, KM_USER0); 426 memset(kaddr + offset, 0, 427 PAGE_CACHE_SIZE - offset); 428 kunmap_atomic(kaddr, KM_USER0); 429 } 430 will_compress = 1; 431 } 432 } 433 cont: 434 if (start == 0) { 435 trans = btrfs_join_transaction(root); 436 BUG_ON(IS_ERR(trans)); 437 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 438 439 /* lets try to make an inline extent */ 440 if (ret || total_in < (actual_end - start)) { 441 /* we didn't compress the entire range, try 442 * to make an uncompressed inline extent. 443 */ 444 ret = cow_file_range_inline(trans, root, inode, 445 start, end, 0, 0, NULL); 446 } else { 447 /* try making a compressed inline extent */ 448 ret = cow_file_range_inline(trans, root, inode, 449 start, end, 450 total_compressed, 451 compress_type, pages); 452 } 453 if (ret == 0) { 454 /* 455 * inline extent creation worked, we don't need 456 * to create any more async work items. Unlock 457 * and free up our temp pages. 458 */ 459 extent_clear_unlock_delalloc(inode, 460 &BTRFS_I(inode)->io_tree, 461 start, end, NULL, 462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 463 EXTENT_CLEAR_DELALLOC | 464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 465 466 btrfs_end_transaction(trans, root); 467 goto free_pages_out; 468 } 469 btrfs_end_transaction(trans, root); 470 } 471 472 if (will_compress) { 473 /* 474 * we aren't doing an inline extent round the compressed size 475 * up to a block size boundary so the allocator does sane 476 * things 477 */ 478 total_compressed = (total_compressed + blocksize - 1) & 479 ~(blocksize - 1); 480 481 /* 482 * one last check to make sure the compression is really a 483 * win, compare the page count read with the blocks on disk 484 */ 485 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 486 ~(PAGE_CACHE_SIZE - 1); 487 if (total_compressed >= total_in) { 488 will_compress = 0; 489 } else { 490 num_bytes = total_in; 491 } 492 } 493 if (!will_compress && pages) { 494 /* 495 * the compression code ran but failed to make things smaller, 496 * free any pages it allocated and our page pointer array 497 */ 498 for (i = 0; i < nr_pages_ret; i++) { 499 WARN_ON(pages[i]->mapping); 500 page_cache_release(pages[i]); 501 } 502 kfree(pages); 503 pages = NULL; 504 total_compressed = 0; 505 nr_pages_ret = 0; 506 507 /* flag the file so we don't compress in the future */ 508 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 509 !(BTRFS_I(inode)->force_compress)) { 510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 511 } 512 } 513 if (will_compress) { 514 *num_added += 1; 515 516 /* the async work queues will take care of doing actual 517 * allocation on disk for these compressed pages, 518 * and will submit them to the elevator. 519 */ 520 add_async_extent(async_cow, start, num_bytes, 521 total_compressed, pages, nr_pages_ret, 522 compress_type); 523 524 if (start + num_bytes < end) { 525 start += num_bytes; 526 pages = NULL; 527 cond_resched(); 528 goto again; 529 } 530 } else { 531 cleanup_and_bail_uncompressed: 532 /* 533 * No compression, but we still need to write the pages in 534 * the file we've been given so far. redirty the locked 535 * page if it corresponds to our extent and set things up 536 * for the async work queue to run cow_file_range to do 537 * the normal delalloc dance 538 */ 539 if (page_offset(locked_page) >= start && 540 page_offset(locked_page) <= end) { 541 __set_page_dirty_nobuffers(locked_page); 542 /* unlocked later on in the async handlers */ 543 } 544 add_async_extent(async_cow, start, end - start + 1, 545 0, NULL, 0, BTRFS_COMPRESS_NONE); 546 *num_added += 1; 547 } 548 549 out: 550 return 0; 551 552 free_pages_out: 553 for (i = 0; i < nr_pages_ret; i++) { 554 WARN_ON(pages[i]->mapping); 555 page_cache_release(pages[i]); 556 } 557 kfree(pages); 558 559 goto out; 560 } 561 562 /* 563 * phase two of compressed writeback. This is the ordered portion 564 * of the code, which only gets called in the order the work was 565 * queued. We walk all the async extents created by compress_file_range 566 * and send them down to the disk. 567 */ 568 static noinline int submit_compressed_extents(struct inode *inode, 569 struct async_cow *async_cow) 570 { 571 struct async_extent *async_extent; 572 u64 alloc_hint = 0; 573 struct btrfs_trans_handle *trans; 574 struct btrfs_key ins; 575 struct extent_map *em; 576 struct btrfs_root *root = BTRFS_I(inode)->root; 577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 578 struct extent_io_tree *io_tree; 579 int ret = 0; 580 581 if (list_empty(&async_cow->extents)) 582 return 0; 583 584 585 while (!list_empty(&async_cow->extents)) { 586 async_extent = list_entry(async_cow->extents.next, 587 struct async_extent, list); 588 list_del(&async_extent->list); 589 590 io_tree = &BTRFS_I(inode)->io_tree; 591 592 retry: 593 /* did the compression code fall back to uncompressed IO? */ 594 if (!async_extent->pages) { 595 int page_started = 0; 596 unsigned long nr_written = 0; 597 598 lock_extent(io_tree, async_extent->start, 599 async_extent->start + 600 async_extent->ram_size - 1, GFP_NOFS); 601 602 /* allocate blocks */ 603 ret = cow_file_range(inode, async_cow->locked_page, 604 async_extent->start, 605 async_extent->start + 606 async_extent->ram_size - 1, 607 &page_started, &nr_written, 0); 608 609 /* 610 * if page_started, cow_file_range inserted an 611 * inline extent and took care of all the unlocking 612 * and IO for us. Otherwise, we need to submit 613 * all those pages down to the drive. 614 */ 615 if (!page_started && !ret) 616 extent_write_locked_range(io_tree, 617 inode, async_extent->start, 618 async_extent->start + 619 async_extent->ram_size - 1, 620 btrfs_get_extent, 621 WB_SYNC_ALL); 622 kfree(async_extent); 623 cond_resched(); 624 continue; 625 } 626 627 lock_extent(io_tree, async_extent->start, 628 async_extent->start + async_extent->ram_size - 1, 629 GFP_NOFS); 630 631 trans = btrfs_join_transaction(root); 632 BUG_ON(IS_ERR(trans)); 633 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 634 ret = btrfs_reserve_extent(trans, root, 635 async_extent->compressed_size, 636 async_extent->compressed_size, 637 0, alloc_hint, 638 (u64)-1, &ins, 1); 639 btrfs_end_transaction(trans, root); 640 641 if (ret) { 642 int i; 643 for (i = 0; i < async_extent->nr_pages; i++) { 644 WARN_ON(async_extent->pages[i]->mapping); 645 page_cache_release(async_extent->pages[i]); 646 } 647 kfree(async_extent->pages); 648 async_extent->nr_pages = 0; 649 async_extent->pages = NULL; 650 unlock_extent(io_tree, async_extent->start, 651 async_extent->start + 652 async_extent->ram_size - 1, GFP_NOFS); 653 goto retry; 654 } 655 656 /* 657 * here we're doing allocation and writeback of the 658 * compressed pages 659 */ 660 btrfs_drop_extent_cache(inode, async_extent->start, 661 async_extent->start + 662 async_extent->ram_size - 1, 0); 663 664 em = alloc_extent_map(); 665 BUG_ON(!em); 666 em->start = async_extent->start; 667 em->len = async_extent->ram_size; 668 em->orig_start = em->start; 669 670 em->block_start = ins.objectid; 671 em->block_len = ins.offset; 672 em->bdev = root->fs_info->fs_devices->latest_bdev; 673 em->compress_type = async_extent->compress_type; 674 set_bit(EXTENT_FLAG_PINNED, &em->flags); 675 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 676 677 while (1) { 678 write_lock(&em_tree->lock); 679 ret = add_extent_mapping(em_tree, em); 680 write_unlock(&em_tree->lock); 681 if (ret != -EEXIST) { 682 free_extent_map(em); 683 break; 684 } 685 btrfs_drop_extent_cache(inode, async_extent->start, 686 async_extent->start + 687 async_extent->ram_size - 1, 0); 688 } 689 690 ret = btrfs_add_ordered_extent_compress(inode, 691 async_extent->start, 692 ins.objectid, 693 async_extent->ram_size, 694 ins.offset, 695 BTRFS_ORDERED_COMPRESSED, 696 async_extent->compress_type); 697 BUG_ON(ret); 698 699 /* 700 * clear dirty, set writeback and unlock the pages. 701 */ 702 extent_clear_unlock_delalloc(inode, 703 &BTRFS_I(inode)->io_tree, 704 async_extent->start, 705 async_extent->start + 706 async_extent->ram_size - 1, 707 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 708 EXTENT_CLEAR_UNLOCK | 709 EXTENT_CLEAR_DELALLOC | 710 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 711 712 ret = btrfs_submit_compressed_write(inode, 713 async_extent->start, 714 async_extent->ram_size, 715 ins.objectid, 716 ins.offset, async_extent->pages, 717 async_extent->nr_pages); 718 719 BUG_ON(ret); 720 alloc_hint = ins.objectid + ins.offset; 721 kfree(async_extent); 722 cond_resched(); 723 } 724 725 return 0; 726 } 727 728 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 729 u64 num_bytes) 730 { 731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 732 struct extent_map *em; 733 u64 alloc_hint = 0; 734 735 read_lock(&em_tree->lock); 736 em = search_extent_mapping(em_tree, start, num_bytes); 737 if (em) { 738 /* 739 * if block start isn't an actual block number then find the 740 * first block in this inode and use that as a hint. If that 741 * block is also bogus then just don't worry about it. 742 */ 743 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 744 free_extent_map(em); 745 em = search_extent_mapping(em_tree, 0, 0); 746 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 747 alloc_hint = em->block_start; 748 if (em) 749 free_extent_map(em); 750 } else { 751 alloc_hint = em->block_start; 752 free_extent_map(em); 753 } 754 } 755 read_unlock(&em_tree->lock); 756 757 return alloc_hint; 758 } 759 760 /* 761 * when extent_io.c finds a delayed allocation range in the file, 762 * the call backs end up in this code. The basic idea is to 763 * allocate extents on disk for the range, and create ordered data structs 764 * in ram to track those extents. 765 * 766 * locked_page is the page that writepage had locked already. We use 767 * it to make sure we don't do extra locks or unlocks. 768 * 769 * *page_started is set to one if we unlock locked_page and do everything 770 * required to start IO on it. It may be clean and already done with 771 * IO when we return. 772 */ 773 static noinline int cow_file_range(struct inode *inode, 774 struct page *locked_page, 775 u64 start, u64 end, int *page_started, 776 unsigned long *nr_written, 777 int unlock) 778 { 779 struct btrfs_root *root = BTRFS_I(inode)->root; 780 struct btrfs_trans_handle *trans; 781 u64 alloc_hint = 0; 782 u64 num_bytes; 783 unsigned long ram_size; 784 u64 disk_num_bytes; 785 u64 cur_alloc_size; 786 u64 blocksize = root->sectorsize; 787 struct btrfs_key ins; 788 struct extent_map *em; 789 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 790 int ret = 0; 791 792 BUG_ON(btrfs_is_free_space_inode(root, inode)); 793 trans = btrfs_join_transaction(root); 794 BUG_ON(IS_ERR(trans)); 795 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 796 797 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 798 num_bytes = max(blocksize, num_bytes); 799 disk_num_bytes = num_bytes; 800 ret = 0; 801 802 /* if this is a small write inside eof, kick off defrag */ 803 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024) 804 btrfs_add_inode_defrag(trans, inode); 805 806 if (start == 0) { 807 /* lets try to make an inline extent */ 808 ret = cow_file_range_inline(trans, root, inode, 809 start, end, 0, 0, NULL); 810 if (ret == 0) { 811 extent_clear_unlock_delalloc(inode, 812 &BTRFS_I(inode)->io_tree, 813 start, end, NULL, 814 EXTENT_CLEAR_UNLOCK_PAGE | 815 EXTENT_CLEAR_UNLOCK | 816 EXTENT_CLEAR_DELALLOC | 817 EXTENT_CLEAR_DIRTY | 818 EXTENT_SET_WRITEBACK | 819 EXTENT_END_WRITEBACK); 820 821 *nr_written = *nr_written + 822 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 823 *page_started = 1; 824 ret = 0; 825 goto out; 826 } 827 } 828 829 BUG_ON(disk_num_bytes > 830 btrfs_super_total_bytes(root->fs_info->super_copy)); 831 832 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 833 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 834 835 while (disk_num_bytes > 0) { 836 unsigned long op; 837 838 cur_alloc_size = disk_num_bytes; 839 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 840 root->sectorsize, 0, alloc_hint, 841 (u64)-1, &ins, 1); 842 BUG_ON(ret); 843 844 em = alloc_extent_map(); 845 BUG_ON(!em); 846 em->start = start; 847 em->orig_start = em->start; 848 ram_size = ins.offset; 849 em->len = ins.offset; 850 851 em->block_start = ins.objectid; 852 em->block_len = ins.offset; 853 em->bdev = root->fs_info->fs_devices->latest_bdev; 854 set_bit(EXTENT_FLAG_PINNED, &em->flags); 855 856 while (1) { 857 write_lock(&em_tree->lock); 858 ret = add_extent_mapping(em_tree, em); 859 write_unlock(&em_tree->lock); 860 if (ret != -EEXIST) { 861 free_extent_map(em); 862 break; 863 } 864 btrfs_drop_extent_cache(inode, start, 865 start + ram_size - 1, 0); 866 } 867 868 cur_alloc_size = ins.offset; 869 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 870 ram_size, cur_alloc_size, 0); 871 BUG_ON(ret); 872 873 if (root->root_key.objectid == 874 BTRFS_DATA_RELOC_TREE_OBJECTID) { 875 ret = btrfs_reloc_clone_csums(inode, start, 876 cur_alloc_size); 877 BUG_ON(ret); 878 } 879 880 if (disk_num_bytes < cur_alloc_size) 881 break; 882 883 /* we're not doing compressed IO, don't unlock the first 884 * page (which the caller expects to stay locked), don't 885 * clear any dirty bits and don't set any writeback bits 886 * 887 * Do set the Private2 bit so we know this page was properly 888 * setup for writepage 889 */ 890 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 891 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 892 EXTENT_SET_PRIVATE2; 893 894 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 895 start, start + ram_size - 1, 896 locked_page, op); 897 disk_num_bytes -= cur_alloc_size; 898 num_bytes -= cur_alloc_size; 899 alloc_hint = ins.objectid + ins.offset; 900 start += cur_alloc_size; 901 } 902 out: 903 ret = 0; 904 btrfs_end_transaction(trans, root); 905 906 return ret; 907 } 908 909 /* 910 * work queue call back to started compression on a file and pages 911 */ 912 static noinline void async_cow_start(struct btrfs_work *work) 913 { 914 struct async_cow *async_cow; 915 int num_added = 0; 916 async_cow = container_of(work, struct async_cow, work); 917 918 compress_file_range(async_cow->inode, async_cow->locked_page, 919 async_cow->start, async_cow->end, async_cow, 920 &num_added); 921 if (num_added == 0) 922 async_cow->inode = NULL; 923 } 924 925 /* 926 * work queue call back to submit previously compressed pages 927 */ 928 static noinline void async_cow_submit(struct btrfs_work *work) 929 { 930 struct async_cow *async_cow; 931 struct btrfs_root *root; 932 unsigned long nr_pages; 933 934 async_cow = container_of(work, struct async_cow, work); 935 936 root = async_cow->root; 937 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 938 PAGE_CACHE_SHIFT; 939 940 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 941 942 if (atomic_read(&root->fs_info->async_delalloc_pages) < 943 5 * 1042 * 1024 && 944 waitqueue_active(&root->fs_info->async_submit_wait)) 945 wake_up(&root->fs_info->async_submit_wait); 946 947 if (async_cow->inode) 948 submit_compressed_extents(async_cow->inode, async_cow); 949 } 950 951 static noinline void async_cow_free(struct btrfs_work *work) 952 { 953 struct async_cow *async_cow; 954 async_cow = container_of(work, struct async_cow, work); 955 kfree(async_cow); 956 } 957 958 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 959 u64 start, u64 end, int *page_started, 960 unsigned long *nr_written) 961 { 962 struct async_cow *async_cow; 963 struct btrfs_root *root = BTRFS_I(inode)->root; 964 unsigned long nr_pages; 965 u64 cur_end; 966 int limit = 10 * 1024 * 1042; 967 968 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 969 1, 0, NULL, GFP_NOFS); 970 while (start < end) { 971 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 972 BUG_ON(!async_cow); 973 async_cow->inode = inode; 974 async_cow->root = root; 975 async_cow->locked_page = locked_page; 976 async_cow->start = start; 977 978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 979 cur_end = end; 980 else 981 cur_end = min(end, start + 512 * 1024 - 1); 982 983 async_cow->end = cur_end; 984 INIT_LIST_HEAD(&async_cow->extents); 985 986 async_cow->work.func = async_cow_start; 987 async_cow->work.ordered_func = async_cow_submit; 988 async_cow->work.ordered_free = async_cow_free; 989 async_cow->work.flags = 0; 990 991 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 992 PAGE_CACHE_SHIFT; 993 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 994 995 btrfs_queue_worker(&root->fs_info->delalloc_workers, 996 &async_cow->work); 997 998 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 999 wait_event(root->fs_info->async_submit_wait, 1000 (atomic_read(&root->fs_info->async_delalloc_pages) < 1001 limit)); 1002 } 1003 1004 while (atomic_read(&root->fs_info->async_submit_draining) && 1005 atomic_read(&root->fs_info->async_delalloc_pages)) { 1006 wait_event(root->fs_info->async_submit_wait, 1007 (atomic_read(&root->fs_info->async_delalloc_pages) == 1008 0)); 1009 } 1010 1011 *nr_written += nr_pages; 1012 start = cur_end + 1; 1013 } 1014 *page_started = 1; 1015 return 0; 1016 } 1017 1018 static noinline int csum_exist_in_range(struct btrfs_root *root, 1019 u64 bytenr, u64 num_bytes) 1020 { 1021 int ret; 1022 struct btrfs_ordered_sum *sums; 1023 LIST_HEAD(list); 1024 1025 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1026 bytenr + num_bytes - 1, &list, 0); 1027 if (ret == 0 && list_empty(&list)) 1028 return 0; 1029 1030 while (!list_empty(&list)) { 1031 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1032 list_del(&sums->list); 1033 kfree(sums); 1034 } 1035 return 1; 1036 } 1037 1038 /* 1039 * when nowcow writeback call back. This checks for snapshots or COW copies 1040 * of the extents that exist in the file, and COWs the file as required. 1041 * 1042 * If no cow copies or snapshots exist, we write directly to the existing 1043 * blocks on disk 1044 */ 1045 static noinline int run_delalloc_nocow(struct inode *inode, 1046 struct page *locked_page, 1047 u64 start, u64 end, int *page_started, int force, 1048 unsigned long *nr_written) 1049 { 1050 struct btrfs_root *root = BTRFS_I(inode)->root; 1051 struct btrfs_trans_handle *trans; 1052 struct extent_buffer *leaf; 1053 struct btrfs_path *path; 1054 struct btrfs_file_extent_item *fi; 1055 struct btrfs_key found_key; 1056 u64 cow_start; 1057 u64 cur_offset; 1058 u64 extent_end; 1059 u64 extent_offset; 1060 u64 disk_bytenr; 1061 u64 num_bytes; 1062 int extent_type; 1063 int ret; 1064 int type; 1065 int nocow; 1066 int check_prev = 1; 1067 bool nolock; 1068 u64 ino = btrfs_ino(inode); 1069 1070 path = btrfs_alloc_path(); 1071 if (!path) 1072 return -ENOMEM; 1073 1074 nolock = btrfs_is_free_space_inode(root, inode); 1075 1076 if (nolock) 1077 trans = btrfs_join_transaction_nolock(root); 1078 else 1079 trans = btrfs_join_transaction(root); 1080 1081 BUG_ON(IS_ERR(trans)); 1082 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1083 1084 cow_start = (u64)-1; 1085 cur_offset = start; 1086 while (1) { 1087 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1088 cur_offset, 0); 1089 BUG_ON(ret < 0); 1090 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1091 leaf = path->nodes[0]; 1092 btrfs_item_key_to_cpu(leaf, &found_key, 1093 path->slots[0] - 1); 1094 if (found_key.objectid == ino && 1095 found_key.type == BTRFS_EXTENT_DATA_KEY) 1096 path->slots[0]--; 1097 } 1098 check_prev = 0; 1099 next_slot: 1100 leaf = path->nodes[0]; 1101 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1102 ret = btrfs_next_leaf(root, path); 1103 if (ret < 0) 1104 BUG_ON(1); 1105 if (ret > 0) 1106 break; 1107 leaf = path->nodes[0]; 1108 } 1109 1110 nocow = 0; 1111 disk_bytenr = 0; 1112 num_bytes = 0; 1113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1114 1115 if (found_key.objectid > ino || 1116 found_key.type > BTRFS_EXTENT_DATA_KEY || 1117 found_key.offset > end) 1118 break; 1119 1120 if (found_key.offset > cur_offset) { 1121 extent_end = found_key.offset; 1122 extent_type = 0; 1123 goto out_check; 1124 } 1125 1126 fi = btrfs_item_ptr(leaf, path->slots[0], 1127 struct btrfs_file_extent_item); 1128 extent_type = btrfs_file_extent_type(leaf, fi); 1129 1130 if (extent_type == BTRFS_FILE_EXTENT_REG || 1131 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1132 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1133 extent_offset = btrfs_file_extent_offset(leaf, fi); 1134 extent_end = found_key.offset + 1135 btrfs_file_extent_num_bytes(leaf, fi); 1136 if (extent_end <= start) { 1137 path->slots[0]++; 1138 goto next_slot; 1139 } 1140 if (disk_bytenr == 0) 1141 goto out_check; 1142 if (btrfs_file_extent_compression(leaf, fi) || 1143 btrfs_file_extent_encryption(leaf, fi) || 1144 btrfs_file_extent_other_encoding(leaf, fi)) 1145 goto out_check; 1146 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1147 goto out_check; 1148 if (btrfs_extent_readonly(root, disk_bytenr)) 1149 goto out_check; 1150 if (btrfs_cross_ref_exist(trans, root, ino, 1151 found_key.offset - 1152 extent_offset, disk_bytenr)) 1153 goto out_check; 1154 disk_bytenr += extent_offset; 1155 disk_bytenr += cur_offset - found_key.offset; 1156 num_bytes = min(end + 1, extent_end) - cur_offset; 1157 /* 1158 * force cow if csum exists in the range. 1159 * this ensure that csum for a given extent are 1160 * either valid or do not exist. 1161 */ 1162 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1163 goto out_check; 1164 nocow = 1; 1165 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1166 extent_end = found_key.offset + 1167 btrfs_file_extent_inline_len(leaf, fi); 1168 extent_end = ALIGN(extent_end, root->sectorsize); 1169 } else { 1170 BUG_ON(1); 1171 } 1172 out_check: 1173 if (extent_end <= start) { 1174 path->slots[0]++; 1175 goto next_slot; 1176 } 1177 if (!nocow) { 1178 if (cow_start == (u64)-1) 1179 cow_start = cur_offset; 1180 cur_offset = extent_end; 1181 if (cur_offset > end) 1182 break; 1183 path->slots[0]++; 1184 goto next_slot; 1185 } 1186 1187 btrfs_release_path(path); 1188 if (cow_start != (u64)-1) { 1189 ret = cow_file_range(inode, locked_page, cow_start, 1190 found_key.offset - 1, page_started, 1191 nr_written, 1); 1192 BUG_ON(ret); 1193 cow_start = (u64)-1; 1194 } 1195 1196 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1197 struct extent_map *em; 1198 struct extent_map_tree *em_tree; 1199 em_tree = &BTRFS_I(inode)->extent_tree; 1200 em = alloc_extent_map(); 1201 BUG_ON(!em); 1202 em->start = cur_offset; 1203 em->orig_start = em->start; 1204 em->len = num_bytes; 1205 em->block_len = num_bytes; 1206 em->block_start = disk_bytenr; 1207 em->bdev = root->fs_info->fs_devices->latest_bdev; 1208 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1209 while (1) { 1210 write_lock(&em_tree->lock); 1211 ret = add_extent_mapping(em_tree, em); 1212 write_unlock(&em_tree->lock); 1213 if (ret != -EEXIST) { 1214 free_extent_map(em); 1215 break; 1216 } 1217 btrfs_drop_extent_cache(inode, em->start, 1218 em->start + em->len - 1, 0); 1219 } 1220 type = BTRFS_ORDERED_PREALLOC; 1221 } else { 1222 type = BTRFS_ORDERED_NOCOW; 1223 } 1224 1225 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1226 num_bytes, num_bytes, type); 1227 BUG_ON(ret); 1228 1229 if (root->root_key.objectid == 1230 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1231 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1232 num_bytes); 1233 BUG_ON(ret); 1234 } 1235 1236 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1237 cur_offset, cur_offset + num_bytes - 1, 1238 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1239 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1240 EXTENT_SET_PRIVATE2); 1241 cur_offset = extent_end; 1242 if (cur_offset > end) 1243 break; 1244 } 1245 btrfs_release_path(path); 1246 1247 if (cur_offset <= end && cow_start == (u64)-1) 1248 cow_start = cur_offset; 1249 if (cow_start != (u64)-1) { 1250 ret = cow_file_range(inode, locked_page, cow_start, end, 1251 page_started, nr_written, 1); 1252 BUG_ON(ret); 1253 } 1254 1255 if (nolock) { 1256 ret = btrfs_end_transaction_nolock(trans, root); 1257 BUG_ON(ret); 1258 } else { 1259 ret = btrfs_end_transaction(trans, root); 1260 BUG_ON(ret); 1261 } 1262 btrfs_free_path(path); 1263 return 0; 1264 } 1265 1266 /* 1267 * extent_io.c call back to do delayed allocation processing 1268 */ 1269 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1270 u64 start, u64 end, int *page_started, 1271 unsigned long *nr_written) 1272 { 1273 int ret; 1274 struct btrfs_root *root = BTRFS_I(inode)->root; 1275 1276 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1277 ret = run_delalloc_nocow(inode, locked_page, start, end, 1278 page_started, 1, nr_written); 1279 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1280 ret = run_delalloc_nocow(inode, locked_page, start, end, 1281 page_started, 0, nr_written); 1282 else if (!btrfs_test_opt(root, COMPRESS) && 1283 !(BTRFS_I(inode)->force_compress) && 1284 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) 1285 ret = cow_file_range(inode, locked_page, start, end, 1286 page_started, nr_written, 1); 1287 else 1288 ret = cow_file_range_async(inode, locked_page, start, end, 1289 page_started, nr_written); 1290 return ret; 1291 } 1292 1293 static void btrfs_split_extent_hook(struct inode *inode, 1294 struct extent_state *orig, u64 split) 1295 { 1296 /* not delalloc, ignore it */ 1297 if (!(orig->state & EXTENT_DELALLOC)) 1298 return; 1299 1300 spin_lock(&BTRFS_I(inode)->lock); 1301 BTRFS_I(inode)->outstanding_extents++; 1302 spin_unlock(&BTRFS_I(inode)->lock); 1303 } 1304 1305 /* 1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1307 * extents so we can keep track of new extents that are just merged onto old 1308 * extents, such as when we are doing sequential writes, so we can properly 1309 * account for the metadata space we'll need. 1310 */ 1311 static void btrfs_merge_extent_hook(struct inode *inode, 1312 struct extent_state *new, 1313 struct extent_state *other) 1314 { 1315 /* not delalloc, ignore it */ 1316 if (!(other->state & EXTENT_DELALLOC)) 1317 return; 1318 1319 spin_lock(&BTRFS_I(inode)->lock); 1320 BTRFS_I(inode)->outstanding_extents--; 1321 spin_unlock(&BTRFS_I(inode)->lock); 1322 } 1323 1324 /* 1325 * extent_io.c set_bit_hook, used to track delayed allocation 1326 * bytes in this file, and to maintain the list of inodes that 1327 * have pending delalloc work to be done. 1328 */ 1329 static void btrfs_set_bit_hook(struct inode *inode, 1330 struct extent_state *state, int *bits) 1331 { 1332 1333 /* 1334 * set_bit and clear bit hooks normally require _irqsave/restore 1335 * but in this case, we are only testing for the DELALLOC 1336 * bit, which is only set or cleared with irqs on 1337 */ 1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1339 struct btrfs_root *root = BTRFS_I(inode)->root; 1340 u64 len = state->end + 1 - state->start; 1341 bool do_list = !btrfs_is_free_space_inode(root, inode); 1342 1343 if (*bits & EXTENT_FIRST_DELALLOC) { 1344 *bits &= ~EXTENT_FIRST_DELALLOC; 1345 } else { 1346 spin_lock(&BTRFS_I(inode)->lock); 1347 BTRFS_I(inode)->outstanding_extents++; 1348 spin_unlock(&BTRFS_I(inode)->lock); 1349 } 1350 1351 spin_lock(&root->fs_info->delalloc_lock); 1352 BTRFS_I(inode)->delalloc_bytes += len; 1353 root->fs_info->delalloc_bytes += len; 1354 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1355 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1356 &root->fs_info->delalloc_inodes); 1357 } 1358 spin_unlock(&root->fs_info->delalloc_lock); 1359 } 1360 } 1361 1362 /* 1363 * extent_io.c clear_bit_hook, see set_bit_hook for why 1364 */ 1365 static void btrfs_clear_bit_hook(struct inode *inode, 1366 struct extent_state *state, int *bits) 1367 { 1368 /* 1369 * set_bit and clear bit hooks normally require _irqsave/restore 1370 * but in this case, we are only testing for the DELALLOC 1371 * bit, which is only set or cleared with irqs on 1372 */ 1373 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1374 struct btrfs_root *root = BTRFS_I(inode)->root; 1375 u64 len = state->end + 1 - state->start; 1376 bool do_list = !btrfs_is_free_space_inode(root, inode); 1377 1378 if (*bits & EXTENT_FIRST_DELALLOC) { 1379 *bits &= ~EXTENT_FIRST_DELALLOC; 1380 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1381 spin_lock(&BTRFS_I(inode)->lock); 1382 BTRFS_I(inode)->outstanding_extents--; 1383 spin_unlock(&BTRFS_I(inode)->lock); 1384 } 1385 1386 if (*bits & EXTENT_DO_ACCOUNTING) 1387 btrfs_delalloc_release_metadata(inode, len); 1388 1389 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1390 && do_list) 1391 btrfs_free_reserved_data_space(inode, len); 1392 1393 spin_lock(&root->fs_info->delalloc_lock); 1394 root->fs_info->delalloc_bytes -= len; 1395 BTRFS_I(inode)->delalloc_bytes -= len; 1396 1397 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1398 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1399 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1400 } 1401 spin_unlock(&root->fs_info->delalloc_lock); 1402 } 1403 } 1404 1405 /* 1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1407 * we don't create bios that span stripes or chunks 1408 */ 1409 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1410 size_t size, struct bio *bio, 1411 unsigned long bio_flags) 1412 { 1413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1414 struct btrfs_mapping_tree *map_tree; 1415 u64 logical = (u64)bio->bi_sector << 9; 1416 u64 length = 0; 1417 u64 map_length; 1418 int ret; 1419 1420 if (bio_flags & EXTENT_BIO_COMPRESSED) 1421 return 0; 1422 1423 length = bio->bi_size; 1424 map_tree = &root->fs_info->mapping_tree; 1425 map_length = length; 1426 ret = btrfs_map_block(map_tree, READ, logical, 1427 &map_length, NULL, 0); 1428 1429 if (map_length < length + size) 1430 return 1; 1431 return ret; 1432 } 1433 1434 /* 1435 * in order to insert checksums into the metadata in large chunks, 1436 * we wait until bio submission time. All the pages in the bio are 1437 * checksummed and sums are attached onto the ordered extent record. 1438 * 1439 * At IO completion time the cums attached on the ordered extent record 1440 * are inserted into the btree 1441 */ 1442 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1443 struct bio *bio, int mirror_num, 1444 unsigned long bio_flags, 1445 u64 bio_offset) 1446 { 1447 struct btrfs_root *root = BTRFS_I(inode)->root; 1448 int ret = 0; 1449 1450 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1451 BUG_ON(ret); 1452 return 0; 1453 } 1454 1455 /* 1456 * in order to insert checksums into the metadata in large chunks, 1457 * we wait until bio submission time. All the pages in the bio are 1458 * checksummed and sums are attached onto the ordered extent record. 1459 * 1460 * At IO completion time the cums attached on the ordered extent record 1461 * are inserted into the btree 1462 */ 1463 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1464 int mirror_num, unsigned long bio_flags, 1465 u64 bio_offset) 1466 { 1467 struct btrfs_root *root = BTRFS_I(inode)->root; 1468 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1469 } 1470 1471 /* 1472 * extent_io.c submission hook. This does the right thing for csum calculation 1473 * on write, or reading the csums from the tree before a read 1474 */ 1475 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1476 int mirror_num, unsigned long bio_flags, 1477 u64 bio_offset) 1478 { 1479 struct btrfs_root *root = BTRFS_I(inode)->root; 1480 int ret = 0; 1481 int skip_sum; 1482 1483 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1484 1485 if (btrfs_is_free_space_inode(root, inode)) 1486 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1487 else 1488 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1489 BUG_ON(ret); 1490 1491 if (!(rw & REQ_WRITE)) { 1492 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1493 return btrfs_submit_compressed_read(inode, bio, 1494 mirror_num, bio_flags); 1495 } else if (!skip_sum) { 1496 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1497 if (ret) 1498 return ret; 1499 } 1500 goto mapit; 1501 } else if (!skip_sum) { 1502 /* csum items have already been cloned */ 1503 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1504 goto mapit; 1505 /* we're doing a write, do the async checksumming */ 1506 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1507 inode, rw, bio, mirror_num, 1508 bio_flags, bio_offset, 1509 __btrfs_submit_bio_start, 1510 __btrfs_submit_bio_done); 1511 } 1512 1513 mapit: 1514 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1515 } 1516 1517 /* 1518 * given a list of ordered sums record them in the inode. This happens 1519 * at IO completion time based on sums calculated at bio submission time. 1520 */ 1521 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1522 struct inode *inode, u64 file_offset, 1523 struct list_head *list) 1524 { 1525 struct btrfs_ordered_sum *sum; 1526 1527 list_for_each_entry(sum, list, list) { 1528 btrfs_csum_file_blocks(trans, 1529 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1530 } 1531 return 0; 1532 } 1533 1534 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1535 struct extent_state **cached_state) 1536 { 1537 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1538 WARN_ON(1); 1539 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1540 cached_state, GFP_NOFS); 1541 } 1542 1543 /* see btrfs_writepage_start_hook for details on why this is required */ 1544 struct btrfs_writepage_fixup { 1545 struct page *page; 1546 struct btrfs_work work; 1547 }; 1548 1549 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1550 { 1551 struct btrfs_writepage_fixup *fixup; 1552 struct btrfs_ordered_extent *ordered; 1553 struct extent_state *cached_state = NULL; 1554 struct page *page; 1555 struct inode *inode; 1556 u64 page_start; 1557 u64 page_end; 1558 1559 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1560 page = fixup->page; 1561 again: 1562 lock_page(page); 1563 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1564 ClearPageChecked(page); 1565 goto out_page; 1566 } 1567 1568 inode = page->mapping->host; 1569 page_start = page_offset(page); 1570 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1571 1572 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1573 &cached_state, GFP_NOFS); 1574 1575 /* already ordered? We're done */ 1576 if (PagePrivate2(page)) 1577 goto out; 1578 1579 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1580 if (ordered) { 1581 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1582 page_end, &cached_state, GFP_NOFS); 1583 unlock_page(page); 1584 btrfs_start_ordered_extent(inode, ordered, 1); 1585 goto again; 1586 } 1587 1588 BUG(); 1589 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1590 ClearPageChecked(page); 1591 out: 1592 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1593 &cached_state, GFP_NOFS); 1594 out_page: 1595 unlock_page(page); 1596 page_cache_release(page); 1597 kfree(fixup); 1598 } 1599 1600 /* 1601 * There are a few paths in the higher layers of the kernel that directly 1602 * set the page dirty bit without asking the filesystem if it is a 1603 * good idea. This causes problems because we want to make sure COW 1604 * properly happens and the data=ordered rules are followed. 1605 * 1606 * In our case any range that doesn't have the ORDERED bit set 1607 * hasn't been properly setup for IO. We kick off an async process 1608 * to fix it up. The async helper will wait for ordered extents, set 1609 * the delalloc bit and make it safe to write the page. 1610 */ 1611 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1612 { 1613 struct inode *inode = page->mapping->host; 1614 struct btrfs_writepage_fixup *fixup; 1615 struct btrfs_root *root = BTRFS_I(inode)->root; 1616 1617 /* this page is properly in the ordered list */ 1618 if (TestClearPagePrivate2(page)) 1619 return 0; 1620 1621 if (PageChecked(page)) 1622 return -EAGAIN; 1623 1624 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1625 if (!fixup) 1626 return -EAGAIN; 1627 1628 SetPageChecked(page); 1629 page_cache_get(page); 1630 fixup->work.func = btrfs_writepage_fixup_worker; 1631 fixup->page = page; 1632 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1633 return -EAGAIN; 1634 } 1635 1636 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1637 struct inode *inode, u64 file_pos, 1638 u64 disk_bytenr, u64 disk_num_bytes, 1639 u64 num_bytes, u64 ram_bytes, 1640 u8 compression, u8 encryption, 1641 u16 other_encoding, int extent_type) 1642 { 1643 struct btrfs_root *root = BTRFS_I(inode)->root; 1644 struct btrfs_file_extent_item *fi; 1645 struct btrfs_path *path; 1646 struct extent_buffer *leaf; 1647 struct btrfs_key ins; 1648 u64 hint; 1649 int ret; 1650 1651 path = btrfs_alloc_path(); 1652 if (!path) 1653 return -ENOMEM; 1654 1655 path->leave_spinning = 1; 1656 1657 /* 1658 * we may be replacing one extent in the tree with another. 1659 * The new extent is pinned in the extent map, and we don't want 1660 * to drop it from the cache until it is completely in the btree. 1661 * 1662 * So, tell btrfs_drop_extents to leave this extent in the cache. 1663 * the caller is expected to unpin it and allow it to be merged 1664 * with the others. 1665 */ 1666 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1667 &hint, 0); 1668 BUG_ON(ret); 1669 1670 ins.objectid = btrfs_ino(inode); 1671 ins.offset = file_pos; 1672 ins.type = BTRFS_EXTENT_DATA_KEY; 1673 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1674 BUG_ON(ret); 1675 leaf = path->nodes[0]; 1676 fi = btrfs_item_ptr(leaf, path->slots[0], 1677 struct btrfs_file_extent_item); 1678 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1679 btrfs_set_file_extent_type(leaf, fi, extent_type); 1680 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1681 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1682 btrfs_set_file_extent_offset(leaf, fi, 0); 1683 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1684 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1685 btrfs_set_file_extent_compression(leaf, fi, compression); 1686 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1687 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1688 1689 btrfs_unlock_up_safe(path, 1); 1690 btrfs_set_lock_blocking(leaf); 1691 1692 btrfs_mark_buffer_dirty(leaf); 1693 1694 inode_add_bytes(inode, num_bytes); 1695 1696 ins.objectid = disk_bytenr; 1697 ins.offset = disk_num_bytes; 1698 ins.type = BTRFS_EXTENT_ITEM_KEY; 1699 ret = btrfs_alloc_reserved_file_extent(trans, root, 1700 root->root_key.objectid, 1701 btrfs_ino(inode), file_pos, &ins); 1702 BUG_ON(ret); 1703 btrfs_free_path(path); 1704 1705 return 0; 1706 } 1707 1708 /* 1709 * helper function for btrfs_finish_ordered_io, this 1710 * just reads in some of the csum leaves to prime them into ram 1711 * before we start the transaction. It limits the amount of btree 1712 * reads required while inside the transaction. 1713 */ 1714 /* as ordered data IO finishes, this gets called so we can finish 1715 * an ordered extent if the range of bytes in the file it covers are 1716 * fully written. 1717 */ 1718 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1719 { 1720 struct btrfs_root *root = BTRFS_I(inode)->root; 1721 struct btrfs_trans_handle *trans = NULL; 1722 struct btrfs_ordered_extent *ordered_extent = NULL; 1723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1724 struct extent_state *cached_state = NULL; 1725 int compress_type = 0; 1726 int ret; 1727 bool nolock; 1728 1729 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1730 end - start + 1); 1731 if (!ret) 1732 return 0; 1733 BUG_ON(!ordered_extent); 1734 1735 nolock = btrfs_is_free_space_inode(root, inode); 1736 1737 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1738 BUG_ON(!list_empty(&ordered_extent->list)); 1739 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1740 if (!ret) { 1741 if (nolock) 1742 trans = btrfs_join_transaction_nolock(root); 1743 else 1744 trans = btrfs_join_transaction(root); 1745 BUG_ON(IS_ERR(trans)); 1746 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1747 ret = btrfs_update_inode_fallback(trans, root, inode); 1748 BUG_ON(ret); 1749 } 1750 goto out; 1751 } 1752 1753 lock_extent_bits(io_tree, ordered_extent->file_offset, 1754 ordered_extent->file_offset + ordered_extent->len - 1, 1755 0, &cached_state, GFP_NOFS); 1756 1757 if (nolock) 1758 trans = btrfs_join_transaction_nolock(root); 1759 else 1760 trans = btrfs_join_transaction(root); 1761 BUG_ON(IS_ERR(trans)); 1762 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1763 1764 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1765 compress_type = ordered_extent->compress_type; 1766 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1767 BUG_ON(compress_type); 1768 ret = btrfs_mark_extent_written(trans, inode, 1769 ordered_extent->file_offset, 1770 ordered_extent->file_offset + 1771 ordered_extent->len); 1772 BUG_ON(ret); 1773 } else { 1774 BUG_ON(root == root->fs_info->tree_root); 1775 ret = insert_reserved_file_extent(trans, inode, 1776 ordered_extent->file_offset, 1777 ordered_extent->start, 1778 ordered_extent->disk_len, 1779 ordered_extent->len, 1780 ordered_extent->len, 1781 compress_type, 0, 0, 1782 BTRFS_FILE_EXTENT_REG); 1783 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1784 ordered_extent->file_offset, 1785 ordered_extent->len); 1786 BUG_ON(ret); 1787 } 1788 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1789 ordered_extent->file_offset + 1790 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1791 1792 add_pending_csums(trans, inode, ordered_extent->file_offset, 1793 &ordered_extent->list); 1794 1795 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1796 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1797 ret = btrfs_update_inode_fallback(trans, root, inode); 1798 BUG_ON(ret); 1799 } 1800 ret = 0; 1801 out: 1802 if (root != root->fs_info->tree_root) 1803 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1804 if (trans) { 1805 if (nolock) 1806 btrfs_end_transaction_nolock(trans, root); 1807 else 1808 btrfs_end_transaction(trans, root); 1809 } 1810 1811 /* once for us */ 1812 btrfs_put_ordered_extent(ordered_extent); 1813 /* once for the tree */ 1814 btrfs_put_ordered_extent(ordered_extent); 1815 1816 return 0; 1817 } 1818 1819 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1820 struct extent_state *state, int uptodate) 1821 { 1822 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 1823 1824 ClearPagePrivate2(page); 1825 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1826 } 1827 1828 /* 1829 * when reads are done, we need to check csums to verify the data is correct 1830 * if there's a match, we allow the bio to finish. If not, the code in 1831 * extent_io.c will try to find good copies for us. 1832 */ 1833 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1834 struct extent_state *state) 1835 { 1836 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1837 struct inode *inode = page->mapping->host; 1838 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1839 char *kaddr; 1840 u64 private = ~(u32)0; 1841 int ret; 1842 struct btrfs_root *root = BTRFS_I(inode)->root; 1843 u32 csum = ~(u32)0; 1844 1845 if (PageChecked(page)) { 1846 ClearPageChecked(page); 1847 goto good; 1848 } 1849 1850 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1851 goto good; 1852 1853 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1854 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1855 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1856 GFP_NOFS); 1857 return 0; 1858 } 1859 1860 if (state && state->start == start) { 1861 private = state->private; 1862 ret = 0; 1863 } else { 1864 ret = get_state_private(io_tree, start, &private); 1865 } 1866 kaddr = kmap_atomic(page, KM_USER0); 1867 if (ret) 1868 goto zeroit; 1869 1870 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1871 btrfs_csum_final(csum, (char *)&csum); 1872 if (csum != private) 1873 goto zeroit; 1874 1875 kunmap_atomic(kaddr, KM_USER0); 1876 good: 1877 return 0; 1878 1879 zeroit: 1880 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 1881 "private %llu\n", 1882 (unsigned long long)btrfs_ino(page->mapping->host), 1883 (unsigned long long)start, csum, 1884 (unsigned long long)private); 1885 memset(kaddr + offset, 1, end - start + 1); 1886 flush_dcache_page(page); 1887 kunmap_atomic(kaddr, KM_USER0); 1888 if (private == 0) 1889 return 0; 1890 return -EIO; 1891 } 1892 1893 struct delayed_iput { 1894 struct list_head list; 1895 struct inode *inode; 1896 }; 1897 1898 void btrfs_add_delayed_iput(struct inode *inode) 1899 { 1900 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1901 struct delayed_iput *delayed; 1902 1903 if (atomic_add_unless(&inode->i_count, -1, 1)) 1904 return; 1905 1906 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 1907 delayed->inode = inode; 1908 1909 spin_lock(&fs_info->delayed_iput_lock); 1910 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 1911 spin_unlock(&fs_info->delayed_iput_lock); 1912 } 1913 1914 void btrfs_run_delayed_iputs(struct btrfs_root *root) 1915 { 1916 LIST_HEAD(list); 1917 struct btrfs_fs_info *fs_info = root->fs_info; 1918 struct delayed_iput *delayed; 1919 int empty; 1920 1921 spin_lock(&fs_info->delayed_iput_lock); 1922 empty = list_empty(&fs_info->delayed_iputs); 1923 spin_unlock(&fs_info->delayed_iput_lock); 1924 if (empty) 1925 return; 1926 1927 down_read(&root->fs_info->cleanup_work_sem); 1928 spin_lock(&fs_info->delayed_iput_lock); 1929 list_splice_init(&fs_info->delayed_iputs, &list); 1930 spin_unlock(&fs_info->delayed_iput_lock); 1931 1932 while (!list_empty(&list)) { 1933 delayed = list_entry(list.next, struct delayed_iput, list); 1934 list_del(&delayed->list); 1935 iput(delayed->inode); 1936 kfree(delayed); 1937 } 1938 up_read(&root->fs_info->cleanup_work_sem); 1939 } 1940 1941 enum btrfs_orphan_cleanup_state { 1942 ORPHAN_CLEANUP_STARTED = 1, 1943 ORPHAN_CLEANUP_DONE = 2, 1944 }; 1945 1946 /* 1947 * This is called in transaction commmit time. If there are no orphan 1948 * files in the subvolume, it removes orphan item and frees block_rsv 1949 * structure. 1950 */ 1951 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 1952 struct btrfs_root *root) 1953 { 1954 struct btrfs_block_rsv *block_rsv; 1955 int ret; 1956 1957 if (!list_empty(&root->orphan_list) || 1958 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 1959 return; 1960 1961 spin_lock(&root->orphan_lock); 1962 if (!list_empty(&root->orphan_list)) { 1963 spin_unlock(&root->orphan_lock); 1964 return; 1965 } 1966 1967 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 1968 spin_unlock(&root->orphan_lock); 1969 return; 1970 } 1971 1972 block_rsv = root->orphan_block_rsv; 1973 root->orphan_block_rsv = NULL; 1974 spin_unlock(&root->orphan_lock); 1975 1976 if (root->orphan_item_inserted && 1977 btrfs_root_refs(&root->root_item) > 0) { 1978 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 1979 root->root_key.objectid); 1980 BUG_ON(ret); 1981 root->orphan_item_inserted = 0; 1982 } 1983 1984 if (block_rsv) { 1985 WARN_ON(block_rsv->size > 0); 1986 btrfs_free_block_rsv(root, block_rsv); 1987 } 1988 } 1989 1990 /* 1991 * This creates an orphan entry for the given inode in case something goes 1992 * wrong in the middle of an unlink/truncate. 1993 * 1994 * NOTE: caller of this function should reserve 5 units of metadata for 1995 * this function. 1996 */ 1997 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1998 { 1999 struct btrfs_root *root = BTRFS_I(inode)->root; 2000 struct btrfs_block_rsv *block_rsv = NULL; 2001 int reserve = 0; 2002 int insert = 0; 2003 int ret; 2004 2005 if (!root->orphan_block_rsv) { 2006 block_rsv = btrfs_alloc_block_rsv(root); 2007 if (!block_rsv) 2008 return -ENOMEM; 2009 } 2010 2011 spin_lock(&root->orphan_lock); 2012 if (!root->orphan_block_rsv) { 2013 root->orphan_block_rsv = block_rsv; 2014 } else if (block_rsv) { 2015 btrfs_free_block_rsv(root, block_rsv); 2016 block_rsv = NULL; 2017 } 2018 2019 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2020 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2021 #if 0 2022 /* 2023 * For proper ENOSPC handling, we should do orphan 2024 * cleanup when mounting. But this introduces backward 2025 * compatibility issue. 2026 */ 2027 if (!xchg(&root->orphan_item_inserted, 1)) 2028 insert = 2; 2029 else 2030 insert = 1; 2031 #endif 2032 insert = 1; 2033 } 2034 2035 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2036 BTRFS_I(inode)->orphan_meta_reserved = 1; 2037 reserve = 1; 2038 } 2039 spin_unlock(&root->orphan_lock); 2040 2041 /* grab metadata reservation from transaction handle */ 2042 if (reserve) { 2043 ret = btrfs_orphan_reserve_metadata(trans, inode); 2044 BUG_ON(ret); 2045 } 2046 2047 /* insert an orphan item to track this unlinked/truncated file */ 2048 if (insert >= 1) { 2049 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2050 BUG_ON(ret && ret != -EEXIST); 2051 } 2052 2053 /* insert an orphan item to track subvolume contains orphan files */ 2054 if (insert >= 2) { 2055 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2056 root->root_key.objectid); 2057 BUG_ON(ret); 2058 } 2059 return 0; 2060 } 2061 2062 /* 2063 * We have done the truncate/delete so we can go ahead and remove the orphan 2064 * item for this particular inode. 2065 */ 2066 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2067 { 2068 struct btrfs_root *root = BTRFS_I(inode)->root; 2069 int delete_item = 0; 2070 int release_rsv = 0; 2071 int ret = 0; 2072 2073 spin_lock(&root->orphan_lock); 2074 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2075 list_del_init(&BTRFS_I(inode)->i_orphan); 2076 delete_item = 1; 2077 } 2078 2079 if (BTRFS_I(inode)->orphan_meta_reserved) { 2080 BTRFS_I(inode)->orphan_meta_reserved = 0; 2081 release_rsv = 1; 2082 } 2083 spin_unlock(&root->orphan_lock); 2084 2085 if (trans && delete_item) { 2086 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2087 BUG_ON(ret); 2088 } 2089 2090 if (release_rsv) 2091 btrfs_orphan_release_metadata(inode); 2092 2093 return 0; 2094 } 2095 2096 /* 2097 * this cleans up any orphans that may be left on the list from the last use 2098 * of this root. 2099 */ 2100 int btrfs_orphan_cleanup(struct btrfs_root *root) 2101 { 2102 struct btrfs_path *path; 2103 struct extent_buffer *leaf; 2104 struct btrfs_key key, found_key; 2105 struct btrfs_trans_handle *trans; 2106 struct inode *inode; 2107 u64 last_objectid = 0; 2108 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2109 2110 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2111 return 0; 2112 2113 path = btrfs_alloc_path(); 2114 if (!path) { 2115 ret = -ENOMEM; 2116 goto out; 2117 } 2118 path->reada = -1; 2119 2120 key.objectid = BTRFS_ORPHAN_OBJECTID; 2121 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2122 key.offset = (u64)-1; 2123 2124 while (1) { 2125 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2126 if (ret < 0) 2127 goto out; 2128 2129 /* 2130 * if ret == 0 means we found what we were searching for, which 2131 * is weird, but possible, so only screw with path if we didn't 2132 * find the key and see if we have stuff that matches 2133 */ 2134 if (ret > 0) { 2135 ret = 0; 2136 if (path->slots[0] == 0) 2137 break; 2138 path->slots[0]--; 2139 } 2140 2141 /* pull out the item */ 2142 leaf = path->nodes[0]; 2143 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2144 2145 /* make sure the item matches what we want */ 2146 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2147 break; 2148 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2149 break; 2150 2151 /* release the path since we're done with it */ 2152 btrfs_release_path(path); 2153 2154 /* 2155 * this is where we are basically btrfs_lookup, without the 2156 * crossing root thing. we store the inode number in the 2157 * offset of the orphan item. 2158 */ 2159 2160 if (found_key.offset == last_objectid) { 2161 printk(KERN_ERR "btrfs: Error removing orphan entry, " 2162 "stopping orphan cleanup\n"); 2163 ret = -EINVAL; 2164 goto out; 2165 } 2166 2167 last_objectid = found_key.offset; 2168 2169 found_key.objectid = found_key.offset; 2170 found_key.type = BTRFS_INODE_ITEM_KEY; 2171 found_key.offset = 0; 2172 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2173 ret = PTR_RET(inode); 2174 if (ret && ret != -ESTALE) 2175 goto out; 2176 2177 if (ret == -ESTALE && root == root->fs_info->tree_root) { 2178 struct btrfs_root *dead_root; 2179 struct btrfs_fs_info *fs_info = root->fs_info; 2180 int is_dead_root = 0; 2181 2182 /* 2183 * this is an orphan in the tree root. Currently these 2184 * could come from 2 sources: 2185 * a) a snapshot deletion in progress 2186 * b) a free space cache inode 2187 * We need to distinguish those two, as the snapshot 2188 * orphan must not get deleted. 2189 * find_dead_roots already ran before us, so if this 2190 * is a snapshot deletion, we should find the root 2191 * in the dead_roots list 2192 */ 2193 spin_lock(&fs_info->trans_lock); 2194 list_for_each_entry(dead_root, &fs_info->dead_roots, 2195 root_list) { 2196 if (dead_root->root_key.objectid == 2197 found_key.objectid) { 2198 is_dead_root = 1; 2199 break; 2200 } 2201 } 2202 spin_unlock(&fs_info->trans_lock); 2203 if (is_dead_root) { 2204 /* prevent this orphan from being found again */ 2205 key.offset = found_key.objectid - 1; 2206 continue; 2207 } 2208 } 2209 /* 2210 * Inode is already gone but the orphan item is still there, 2211 * kill the orphan item. 2212 */ 2213 if (ret == -ESTALE) { 2214 trans = btrfs_start_transaction(root, 1); 2215 if (IS_ERR(trans)) { 2216 ret = PTR_ERR(trans); 2217 goto out; 2218 } 2219 ret = btrfs_del_orphan_item(trans, root, 2220 found_key.objectid); 2221 BUG_ON(ret); 2222 btrfs_end_transaction(trans, root); 2223 continue; 2224 } 2225 2226 /* 2227 * add this inode to the orphan list so btrfs_orphan_del does 2228 * the proper thing when we hit it 2229 */ 2230 spin_lock(&root->orphan_lock); 2231 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2232 spin_unlock(&root->orphan_lock); 2233 2234 /* if we have links, this was a truncate, lets do that */ 2235 if (inode->i_nlink) { 2236 if (!S_ISREG(inode->i_mode)) { 2237 WARN_ON(1); 2238 iput(inode); 2239 continue; 2240 } 2241 nr_truncate++; 2242 /* 2243 * Need to hold the imutex for reservation purposes, not 2244 * a huge deal here but I have a WARN_ON in 2245 * btrfs_delalloc_reserve_space to catch offenders. 2246 */ 2247 mutex_lock(&inode->i_mutex); 2248 ret = btrfs_truncate(inode); 2249 mutex_unlock(&inode->i_mutex); 2250 } else { 2251 nr_unlink++; 2252 } 2253 2254 /* this will do delete_inode and everything for us */ 2255 iput(inode); 2256 if (ret) 2257 goto out; 2258 } 2259 /* release the path since we're done with it */ 2260 btrfs_release_path(path); 2261 2262 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2263 2264 if (root->orphan_block_rsv) 2265 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2266 (u64)-1); 2267 2268 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2269 trans = btrfs_join_transaction(root); 2270 if (!IS_ERR(trans)) 2271 btrfs_end_transaction(trans, root); 2272 } 2273 2274 if (nr_unlink) 2275 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2276 if (nr_truncate) 2277 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2278 2279 out: 2280 if (ret) 2281 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2282 btrfs_free_path(path); 2283 return ret; 2284 } 2285 2286 /* 2287 * very simple check to peek ahead in the leaf looking for xattrs. If we 2288 * don't find any xattrs, we know there can't be any acls. 2289 * 2290 * slot is the slot the inode is in, objectid is the objectid of the inode 2291 */ 2292 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2293 int slot, u64 objectid) 2294 { 2295 u32 nritems = btrfs_header_nritems(leaf); 2296 struct btrfs_key found_key; 2297 int scanned = 0; 2298 2299 slot++; 2300 while (slot < nritems) { 2301 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2302 2303 /* we found a different objectid, there must not be acls */ 2304 if (found_key.objectid != objectid) 2305 return 0; 2306 2307 /* we found an xattr, assume we've got an acl */ 2308 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2309 return 1; 2310 2311 /* 2312 * we found a key greater than an xattr key, there can't 2313 * be any acls later on 2314 */ 2315 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2316 return 0; 2317 2318 slot++; 2319 scanned++; 2320 2321 /* 2322 * it goes inode, inode backrefs, xattrs, extents, 2323 * so if there are a ton of hard links to an inode there can 2324 * be a lot of backrefs. Don't waste time searching too hard, 2325 * this is just an optimization 2326 */ 2327 if (scanned >= 8) 2328 break; 2329 } 2330 /* we hit the end of the leaf before we found an xattr or 2331 * something larger than an xattr. We have to assume the inode 2332 * has acls 2333 */ 2334 return 1; 2335 } 2336 2337 /* 2338 * read an inode from the btree into the in-memory inode 2339 */ 2340 static void btrfs_read_locked_inode(struct inode *inode) 2341 { 2342 struct btrfs_path *path; 2343 struct extent_buffer *leaf; 2344 struct btrfs_inode_item *inode_item; 2345 struct btrfs_timespec *tspec; 2346 struct btrfs_root *root = BTRFS_I(inode)->root; 2347 struct btrfs_key location; 2348 int maybe_acls; 2349 u32 rdev; 2350 int ret; 2351 bool filled = false; 2352 2353 ret = btrfs_fill_inode(inode, &rdev); 2354 if (!ret) 2355 filled = true; 2356 2357 path = btrfs_alloc_path(); 2358 if (!path) 2359 goto make_bad; 2360 2361 path->leave_spinning = 1; 2362 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2363 2364 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2365 if (ret) 2366 goto make_bad; 2367 2368 leaf = path->nodes[0]; 2369 2370 if (filled) 2371 goto cache_acl; 2372 2373 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2374 struct btrfs_inode_item); 2375 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2376 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 2377 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2378 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2379 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2380 2381 tspec = btrfs_inode_atime(inode_item); 2382 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2383 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2384 2385 tspec = btrfs_inode_mtime(inode_item); 2386 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2387 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2388 2389 tspec = btrfs_inode_ctime(inode_item); 2390 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2391 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2392 2393 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2394 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2395 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2396 inode->i_generation = BTRFS_I(inode)->generation; 2397 inode->i_rdev = 0; 2398 rdev = btrfs_inode_rdev(leaf, inode_item); 2399 2400 BTRFS_I(inode)->index_cnt = (u64)-1; 2401 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2402 cache_acl: 2403 /* 2404 * try to precache a NULL acl entry for files that don't have 2405 * any xattrs or acls 2406 */ 2407 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2408 btrfs_ino(inode)); 2409 if (!maybe_acls) 2410 cache_no_acl(inode); 2411 2412 btrfs_free_path(path); 2413 2414 switch (inode->i_mode & S_IFMT) { 2415 case S_IFREG: 2416 inode->i_mapping->a_ops = &btrfs_aops; 2417 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2418 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2419 inode->i_fop = &btrfs_file_operations; 2420 inode->i_op = &btrfs_file_inode_operations; 2421 break; 2422 case S_IFDIR: 2423 inode->i_fop = &btrfs_dir_file_operations; 2424 if (root == root->fs_info->tree_root) 2425 inode->i_op = &btrfs_dir_ro_inode_operations; 2426 else 2427 inode->i_op = &btrfs_dir_inode_operations; 2428 break; 2429 case S_IFLNK: 2430 inode->i_op = &btrfs_symlink_inode_operations; 2431 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2432 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2433 break; 2434 default: 2435 inode->i_op = &btrfs_special_inode_operations; 2436 init_special_inode(inode, inode->i_mode, rdev); 2437 break; 2438 } 2439 2440 btrfs_update_iflags(inode); 2441 return; 2442 2443 make_bad: 2444 btrfs_free_path(path); 2445 make_bad_inode(inode); 2446 } 2447 2448 /* 2449 * given a leaf and an inode, copy the inode fields into the leaf 2450 */ 2451 static void fill_inode_item(struct btrfs_trans_handle *trans, 2452 struct extent_buffer *leaf, 2453 struct btrfs_inode_item *item, 2454 struct inode *inode) 2455 { 2456 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2457 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2458 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2459 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2460 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2461 2462 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2463 inode->i_atime.tv_sec); 2464 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2465 inode->i_atime.tv_nsec); 2466 2467 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2468 inode->i_mtime.tv_sec); 2469 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2470 inode->i_mtime.tv_nsec); 2471 2472 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2473 inode->i_ctime.tv_sec); 2474 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2475 inode->i_ctime.tv_nsec); 2476 2477 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2478 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2479 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2480 btrfs_set_inode_transid(leaf, item, trans->transid); 2481 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2482 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2483 btrfs_set_inode_block_group(leaf, item, 0); 2484 } 2485 2486 /* 2487 * copy everything in the in-memory inode into the btree. 2488 */ 2489 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 2490 struct btrfs_root *root, struct inode *inode) 2491 { 2492 struct btrfs_inode_item *inode_item; 2493 struct btrfs_path *path; 2494 struct extent_buffer *leaf; 2495 int ret; 2496 2497 path = btrfs_alloc_path(); 2498 if (!path) 2499 return -ENOMEM; 2500 2501 path->leave_spinning = 1; 2502 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2503 1); 2504 if (ret) { 2505 if (ret > 0) 2506 ret = -ENOENT; 2507 goto failed; 2508 } 2509 2510 btrfs_unlock_up_safe(path, 1); 2511 leaf = path->nodes[0]; 2512 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2513 struct btrfs_inode_item); 2514 2515 fill_inode_item(trans, leaf, inode_item, inode); 2516 btrfs_mark_buffer_dirty(leaf); 2517 btrfs_set_inode_last_trans(trans, inode); 2518 ret = 0; 2519 failed: 2520 btrfs_free_path(path); 2521 return ret; 2522 } 2523 2524 /* 2525 * copy everything in the in-memory inode into the btree. 2526 */ 2527 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2528 struct btrfs_root *root, struct inode *inode) 2529 { 2530 int ret; 2531 2532 /* 2533 * If the inode is a free space inode, we can deadlock during commit 2534 * if we put it into the delayed code. 2535 * 2536 * The data relocation inode should also be directly updated 2537 * without delay 2538 */ 2539 if (!btrfs_is_free_space_inode(root, inode) 2540 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2541 ret = btrfs_delayed_update_inode(trans, root, inode); 2542 if (!ret) 2543 btrfs_set_inode_last_trans(trans, inode); 2544 return ret; 2545 } 2546 2547 return btrfs_update_inode_item(trans, root, inode); 2548 } 2549 2550 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 2551 struct btrfs_root *root, struct inode *inode) 2552 { 2553 int ret; 2554 2555 ret = btrfs_update_inode(trans, root, inode); 2556 if (ret == -ENOSPC) 2557 return btrfs_update_inode_item(trans, root, inode); 2558 return ret; 2559 } 2560 2561 /* 2562 * unlink helper that gets used here in inode.c and in the tree logging 2563 * recovery code. It remove a link in a directory with a given name, and 2564 * also drops the back refs in the inode to the directory 2565 */ 2566 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2567 struct btrfs_root *root, 2568 struct inode *dir, struct inode *inode, 2569 const char *name, int name_len) 2570 { 2571 struct btrfs_path *path; 2572 int ret = 0; 2573 struct extent_buffer *leaf; 2574 struct btrfs_dir_item *di; 2575 struct btrfs_key key; 2576 u64 index; 2577 u64 ino = btrfs_ino(inode); 2578 u64 dir_ino = btrfs_ino(dir); 2579 2580 path = btrfs_alloc_path(); 2581 if (!path) { 2582 ret = -ENOMEM; 2583 goto out; 2584 } 2585 2586 path->leave_spinning = 1; 2587 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2588 name, name_len, -1); 2589 if (IS_ERR(di)) { 2590 ret = PTR_ERR(di); 2591 goto err; 2592 } 2593 if (!di) { 2594 ret = -ENOENT; 2595 goto err; 2596 } 2597 leaf = path->nodes[0]; 2598 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2599 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2600 if (ret) 2601 goto err; 2602 btrfs_release_path(path); 2603 2604 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2605 dir_ino, &index); 2606 if (ret) { 2607 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2608 "inode %llu parent %llu\n", name_len, name, 2609 (unsigned long long)ino, (unsigned long long)dir_ino); 2610 goto err; 2611 } 2612 2613 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2614 if (ret) 2615 goto err; 2616 2617 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2618 inode, dir_ino); 2619 BUG_ON(ret != 0 && ret != -ENOENT); 2620 2621 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2622 dir, index); 2623 if (ret == -ENOENT) 2624 ret = 0; 2625 err: 2626 btrfs_free_path(path); 2627 if (ret) 2628 goto out; 2629 2630 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2631 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2632 btrfs_update_inode(trans, root, dir); 2633 out: 2634 return ret; 2635 } 2636 2637 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2638 struct btrfs_root *root, 2639 struct inode *dir, struct inode *inode, 2640 const char *name, int name_len) 2641 { 2642 int ret; 2643 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2644 if (!ret) { 2645 btrfs_drop_nlink(inode); 2646 ret = btrfs_update_inode(trans, root, inode); 2647 } 2648 return ret; 2649 } 2650 2651 2652 /* helper to check if there is any shared block in the path */ 2653 static int check_path_shared(struct btrfs_root *root, 2654 struct btrfs_path *path) 2655 { 2656 struct extent_buffer *eb; 2657 int level; 2658 u64 refs = 1; 2659 2660 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2661 int ret; 2662 2663 if (!path->nodes[level]) 2664 break; 2665 eb = path->nodes[level]; 2666 if (!btrfs_block_can_be_shared(root, eb)) 2667 continue; 2668 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2669 &refs, NULL); 2670 if (refs > 1) 2671 return 1; 2672 } 2673 return 0; 2674 } 2675 2676 /* 2677 * helper to start transaction for unlink and rmdir. 2678 * 2679 * unlink and rmdir are special in btrfs, they do not always free space. 2680 * so in enospc case, we should make sure they will free space before 2681 * allowing them to use the global metadata reservation. 2682 */ 2683 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2684 struct dentry *dentry) 2685 { 2686 struct btrfs_trans_handle *trans; 2687 struct btrfs_root *root = BTRFS_I(dir)->root; 2688 struct btrfs_path *path; 2689 struct btrfs_inode_ref *ref; 2690 struct btrfs_dir_item *di; 2691 struct inode *inode = dentry->d_inode; 2692 u64 index; 2693 int check_link = 1; 2694 int err = -ENOSPC; 2695 int ret; 2696 u64 ino = btrfs_ino(inode); 2697 u64 dir_ino = btrfs_ino(dir); 2698 2699 /* 2700 * 1 for the possible orphan item 2701 * 1 for the dir item 2702 * 1 for the dir index 2703 * 1 for the inode ref 2704 * 1 for the inode ref in the tree log 2705 * 2 for the dir entries in the log 2706 * 1 for the inode 2707 */ 2708 trans = btrfs_start_transaction(root, 8); 2709 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2710 return trans; 2711 2712 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2713 return ERR_PTR(-ENOSPC); 2714 2715 /* check if there is someone else holds reference */ 2716 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2717 return ERR_PTR(-ENOSPC); 2718 2719 if (atomic_read(&inode->i_count) > 2) 2720 return ERR_PTR(-ENOSPC); 2721 2722 if (xchg(&root->fs_info->enospc_unlink, 1)) 2723 return ERR_PTR(-ENOSPC); 2724 2725 path = btrfs_alloc_path(); 2726 if (!path) { 2727 root->fs_info->enospc_unlink = 0; 2728 return ERR_PTR(-ENOMEM); 2729 } 2730 2731 /* 1 for the orphan item */ 2732 trans = btrfs_start_transaction(root, 1); 2733 if (IS_ERR(trans)) { 2734 btrfs_free_path(path); 2735 root->fs_info->enospc_unlink = 0; 2736 return trans; 2737 } 2738 2739 path->skip_locking = 1; 2740 path->search_commit_root = 1; 2741 2742 ret = btrfs_lookup_inode(trans, root, path, 2743 &BTRFS_I(dir)->location, 0); 2744 if (ret < 0) { 2745 err = ret; 2746 goto out; 2747 } 2748 if (ret == 0) { 2749 if (check_path_shared(root, path)) 2750 goto out; 2751 } else { 2752 check_link = 0; 2753 } 2754 btrfs_release_path(path); 2755 2756 ret = btrfs_lookup_inode(trans, root, path, 2757 &BTRFS_I(inode)->location, 0); 2758 if (ret < 0) { 2759 err = ret; 2760 goto out; 2761 } 2762 if (ret == 0) { 2763 if (check_path_shared(root, path)) 2764 goto out; 2765 } else { 2766 check_link = 0; 2767 } 2768 btrfs_release_path(path); 2769 2770 if (ret == 0 && S_ISREG(inode->i_mode)) { 2771 ret = btrfs_lookup_file_extent(trans, root, path, 2772 ino, (u64)-1, 0); 2773 if (ret < 0) { 2774 err = ret; 2775 goto out; 2776 } 2777 BUG_ON(ret == 0); 2778 if (check_path_shared(root, path)) 2779 goto out; 2780 btrfs_release_path(path); 2781 } 2782 2783 if (!check_link) { 2784 err = 0; 2785 goto out; 2786 } 2787 2788 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2789 dentry->d_name.name, dentry->d_name.len, 0); 2790 if (IS_ERR(di)) { 2791 err = PTR_ERR(di); 2792 goto out; 2793 } 2794 if (di) { 2795 if (check_path_shared(root, path)) 2796 goto out; 2797 } else { 2798 err = 0; 2799 goto out; 2800 } 2801 btrfs_release_path(path); 2802 2803 ref = btrfs_lookup_inode_ref(trans, root, path, 2804 dentry->d_name.name, dentry->d_name.len, 2805 ino, dir_ino, 0); 2806 if (IS_ERR(ref)) { 2807 err = PTR_ERR(ref); 2808 goto out; 2809 } 2810 BUG_ON(!ref); 2811 if (check_path_shared(root, path)) 2812 goto out; 2813 index = btrfs_inode_ref_index(path->nodes[0], ref); 2814 btrfs_release_path(path); 2815 2816 /* 2817 * This is a commit root search, if we can lookup inode item and other 2818 * relative items in the commit root, it means the transaction of 2819 * dir/file creation has been committed, and the dir index item that we 2820 * delay to insert has also been inserted into the commit root. So 2821 * we needn't worry about the delayed insertion of the dir index item 2822 * here. 2823 */ 2824 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 2825 dentry->d_name.name, dentry->d_name.len, 0); 2826 if (IS_ERR(di)) { 2827 err = PTR_ERR(di); 2828 goto out; 2829 } 2830 BUG_ON(ret == -ENOENT); 2831 if (check_path_shared(root, path)) 2832 goto out; 2833 2834 err = 0; 2835 out: 2836 btrfs_free_path(path); 2837 /* Migrate the orphan reservation over */ 2838 if (!err) 2839 err = btrfs_block_rsv_migrate(trans->block_rsv, 2840 &root->fs_info->global_block_rsv, 2841 trans->bytes_reserved); 2842 2843 if (err) { 2844 btrfs_end_transaction(trans, root); 2845 root->fs_info->enospc_unlink = 0; 2846 return ERR_PTR(err); 2847 } 2848 2849 trans->block_rsv = &root->fs_info->global_block_rsv; 2850 return trans; 2851 } 2852 2853 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2854 struct btrfs_root *root) 2855 { 2856 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2857 btrfs_block_rsv_release(root, trans->block_rsv, 2858 trans->bytes_reserved); 2859 trans->block_rsv = &root->fs_info->trans_block_rsv; 2860 BUG_ON(!root->fs_info->enospc_unlink); 2861 root->fs_info->enospc_unlink = 0; 2862 } 2863 btrfs_end_transaction(trans, root); 2864 } 2865 2866 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2867 { 2868 struct btrfs_root *root = BTRFS_I(dir)->root; 2869 struct btrfs_trans_handle *trans; 2870 struct inode *inode = dentry->d_inode; 2871 int ret; 2872 unsigned long nr = 0; 2873 2874 trans = __unlink_start_trans(dir, dentry); 2875 if (IS_ERR(trans)) 2876 return PTR_ERR(trans); 2877 2878 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2879 2880 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2881 dentry->d_name.name, dentry->d_name.len); 2882 if (ret) 2883 goto out; 2884 2885 if (inode->i_nlink == 0) { 2886 ret = btrfs_orphan_add(trans, inode); 2887 if (ret) 2888 goto out; 2889 } 2890 2891 out: 2892 nr = trans->blocks_used; 2893 __unlink_end_trans(trans, root); 2894 btrfs_btree_balance_dirty(root, nr); 2895 return ret; 2896 } 2897 2898 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2899 struct btrfs_root *root, 2900 struct inode *dir, u64 objectid, 2901 const char *name, int name_len) 2902 { 2903 struct btrfs_path *path; 2904 struct extent_buffer *leaf; 2905 struct btrfs_dir_item *di; 2906 struct btrfs_key key; 2907 u64 index; 2908 int ret; 2909 u64 dir_ino = btrfs_ino(dir); 2910 2911 path = btrfs_alloc_path(); 2912 if (!path) 2913 return -ENOMEM; 2914 2915 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2916 name, name_len, -1); 2917 BUG_ON(IS_ERR_OR_NULL(di)); 2918 2919 leaf = path->nodes[0]; 2920 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2921 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2922 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2923 BUG_ON(ret); 2924 btrfs_release_path(path); 2925 2926 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2927 objectid, root->root_key.objectid, 2928 dir_ino, &index, name, name_len); 2929 if (ret < 0) { 2930 BUG_ON(ret != -ENOENT); 2931 di = btrfs_search_dir_index_item(root, path, dir_ino, 2932 name, name_len); 2933 BUG_ON(IS_ERR_OR_NULL(di)); 2934 2935 leaf = path->nodes[0]; 2936 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2937 btrfs_release_path(path); 2938 index = key.offset; 2939 } 2940 btrfs_release_path(path); 2941 2942 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2943 BUG_ON(ret); 2944 2945 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2946 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2947 ret = btrfs_update_inode(trans, root, dir); 2948 BUG_ON(ret); 2949 2950 btrfs_free_path(path); 2951 return 0; 2952 } 2953 2954 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2955 { 2956 struct inode *inode = dentry->d_inode; 2957 int err = 0; 2958 struct btrfs_root *root = BTRFS_I(dir)->root; 2959 struct btrfs_trans_handle *trans; 2960 unsigned long nr = 0; 2961 2962 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2963 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 2964 return -ENOTEMPTY; 2965 2966 trans = __unlink_start_trans(dir, dentry); 2967 if (IS_ERR(trans)) 2968 return PTR_ERR(trans); 2969 2970 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2971 err = btrfs_unlink_subvol(trans, root, dir, 2972 BTRFS_I(inode)->location.objectid, 2973 dentry->d_name.name, 2974 dentry->d_name.len); 2975 goto out; 2976 } 2977 2978 err = btrfs_orphan_add(trans, inode); 2979 if (err) 2980 goto out; 2981 2982 /* now the directory is empty */ 2983 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2984 dentry->d_name.name, dentry->d_name.len); 2985 if (!err) 2986 btrfs_i_size_write(inode, 0); 2987 out: 2988 nr = trans->blocks_used; 2989 __unlink_end_trans(trans, root); 2990 btrfs_btree_balance_dirty(root, nr); 2991 2992 return err; 2993 } 2994 2995 /* 2996 * this can truncate away extent items, csum items and directory items. 2997 * It starts at a high offset and removes keys until it can't find 2998 * any higher than new_size 2999 * 3000 * csum items that cross the new i_size are truncated to the new size 3001 * as well. 3002 * 3003 * min_type is the minimum key type to truncate down to. If set to 0, this 3004 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3005 */ 3006 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3007 struct btrfs_root *root, 3008 struct inode *inode, 3009 u64 new_size, u32 min_type) 3010 { 3011 struct btrfs_path *path; 3012 struct extent_buffer *leaf; 3013 struct btrfs_file_extent_item *fi; 3014 struct btrfs_key key; 3015 struct btrfs_key found_key; 3016 u64 extent_start = 0; 3017 u64 extent_num_bytes = 0; 3018 u64 extent_offset = 0; 3019 u64 item_end = 0; 3020 u64 mask = root->sectorsize - 1; 3021 u32 found_type = (u8)-1; 3022 int found_extent; 3023 int del_item; 3024 int pending_del_nr = 0; 3025 int pending_del_slot = 0; 3026 int extent_type = -1; 3027 int ret; 3028 int err = 0; 3029 u64 ino = btrfs_ino(inode); 3030 3031 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3032 3033 path = btrfs_alloc_path(); 3034 if (!path) 3035 return -ENOMEM; 3036 path->reada = -1; 3037 3038 if (root->ref_cows || root == root->fs_info->tree_root) 3039 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3040 3041 /* 3042 * This function is also used to drop the items in the log tree before 3043 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3044 * it is used to drop the loged items. So we shouldn't kill the delayed 3045 * items. 3046 */ 3047 if (min_type == 0 && root == BTRFS_I(inode)->root) 3048 btrfs_kill_delayed_inode_items(inode); 3049 3050 key.objectid = ino; 3051 key.offset = (u64)-1; 3052 key.type = (u8)-1; 3053 3054 search_again: 3055 path->leave_spinning = 1; 3056 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3057 if (ret < 0) { 3058 err = ret; 3059 goto out; 3060 } 3061 3062 if (ret > 0) { 3063 /* there are no items in the tree for us to truncate, we're 3064 * done 3065 */ 3066 if (path->slots[0] == 0) 3067 goto out; 3068 path->slots[0]--; 3069 } 3070 3071 while (1) { 3072 fi = NULL; 3073 leaf = path->nodes[0]; 3074 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3075 found_type = btrfs_key_type(&found_key); 3076 3077 if (found_key.objectid != ino) 3078 break; 3079 3080 if (found_type < min_type) 3081 break; 3082 3083 item_end = found_key.offset; 3084 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3085 fi = btrfs_item_ptr(leaf, path->slots[0], 3086 struct btrfs_file_extent_item); 3087 extent_type = btrfs_file_extent_type(leaf, fi); 3088 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3089 item_end += 3090 btrfs_file_extent_num_bytes(leaf, fi); 3091 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3092 item_end += btrfs_file_extent_inline_len(leaf, 3093 fi); 3094 } 3095 item_end--; 3096 } 3097 if (found_type > min_type) { 3098 del_item = 1; 3099 } else { 3100 if (item_end < new_size) 3101 break; 3102 if (found_key.offset >= new_size) 3103 del_item = 1; 3104 else 3105 del_item = 0; 3106 } 3107 found_extent = 0; 3108 /* FIXME, shrink the extent if the ref count is only 1 */ 3109 if (found_type != BTRFS_EXTENT_DATA_KEY) 3110 goto delete; 3111 3112 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3113 u64 num_dec; 3114 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3115 if (!del_item) { 3116 u64 orig_num_bytes = 3117 btrfs_file_extent_num_bytes(leaf, fi); 3118 extent_num_bytes = new_size - 3119 found_key.offset + root->sectorsize - 1; 3120 extent_num_bytes = extent_num_bytes & 3121 ~((u64)root->sectorsize - 1); 3122 btrfs_set_file_extent_num_bytes(leaf, fi, 3123 extent_num_bytes); 3124 num_dec = (orig_num_bytes - 3125 extent_num_bytes); 3126 if (root->ref_cows && extent_start != 0) 3127 inode_sub_bytes(inode, num_dec); 3128 btrfs_mark_buffer_dirty(leaf); 3129 } else { 3130 extent_num_bytes = 3131 btrfs_file_extent_disk_num_bytes(leaf, 3132 fi); 3133 extent_offset = found_key.offset - 3134 btrfs_file_extent_offset(leaf, fi); 3135 3136 /* FIXME blocksize != 4096 */ 3137 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3138 if (extent_start != 0) { 3139 found_extent = 1; 3140 if (root->ref_cows) 3141 inode_sub_bytes(inode, num_dec); 3142 } 3143 } 3144 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3145 /* 3146 * we can't truncate inline items that have had 3147 * special encodings 3148 */ 3149 if (!del_item && 3150 btrfs_file_extent_compression(leaf, fi) == 0 && 3151 btrfs_file_extent_encryption(leaf, fi) == 0 && 3152 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3153 u32 size = new_size - found_key.offset; 3154 3155 if (root->ref_cows) { 3156 inode_sub_bytes(inode, item_end + 1 - 3157 new_size); 3158 } 3159 size = 3160 btrfs_file_extent_calc_inline_size(size); 3161 ret = btrfs_truncate_item(trans, root, path, 3162 size, 1); 3163 } else if (root->ref_cows) { 3164 inode_sub_bytes(inode, item_end + 1 - 3165 found_key.offset); 3166 } 3167 } 3168 delete: 3169 if (del_item) { 3170 if (!pending_del_nr) { 3171 /* no pending yet, add ourselves */ 3172 pending_del_slot = path->slots[0]; 3173 pending_del_nr = 1; 3174 } else if (pending_del_nr && 3175 path->slots[0] + 1 == pending_del_slot) { 3176 /* hop on the pending chunk */ 3177 pending_del_nr++; 3178 pending_del_slot = path->slots[0]; 3179 } else { 3180 BUG(); 3181 } 3182 } else { 3183 break; 3184 } 3185 if (found_extent && (root->ref_cows || 3186 root == root->fs_info->tree_root)) { 3187 btrfs_set_path_blocking(path); 3188 ret = btrfs_free_extent(trans, root, extent_start, 3189 extent_num_bytes, 0, 3190 btrfs_header_owner(leaf), 3191 ino, extent_offset, 0); 3192 BUG_ON(ret); 3193 } 3194 3195 if (found_type == BTRFS_INODE_ITEM_KEY) 3196 break; 3197 3198 if (path->slots[0] == 0 || 3199 path->slots[0] != pending_del_slot) { 3200 if (root->ref_cows && 3201 BTRFS_I(inode)->location.objectid != 3202 BTRFS_FREE_INO_OBJECTID) { 3203 err = -EAGAIN; 3204 goto out; 3205 } 3206 if (pending_del_nr) { 3207 ret = btrfs_del_items(trans, root, path, 3208 pending_del_slot, 3209 pending_del_nr); 3210 BUG_ON(ret); 3211 pending_del_nr = 0; 3212 } 3213 btrfs_release_path(path); 3214 goto search_again; 3215 } else { 3216 path->slots[0]--; 3217 } 3218 } 3219 out: 3220 if (pending_del_nr) { 3221 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3222 pending_del_nr); 3223 BUG_ON(ret); 3224 } 3225 btrfs_free_path(path); 3226 return err; 3227 } 3228 3229 /* 3230 * taken from block_truncate_page, but does cow as it zeros out 3231 * any bytes left in the last page in the file. 3232 */ 3233 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3234 { 3235 struct inode *inode = mapping->host; 3236 struct btrfs_root *root = BTRFS_I(inode)->root; 3237 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3238 struct btrfs_ordered_extent *ordered; 3239 struct extent_state *cached_state = NULL; 3240 char *kaddr; 3241 u32 blocksize = root->sectorsize; 3242 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3243 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3244 struct page *page; 3245 gfp_t mask = btrfs_alloc_write_mask(mapping); 3246 int ret = 0; 3247 u64 page_start; 3248 u64 page_end; 3249 3250 if ((offset & (blocksize - 1)) == 0) 3251 goto out; 3252 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3253 if (ret) 3254 goto out; 3255 3256 ret = -ENOMEM; 3257 again: 3258 page = find_or_create_page(mapping, index, mask); 3259 if (!page) { 3260 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3261 goto out; 3262 } 3263 3264 page_start = page_offset(page); 3265 page_end = page_start + PAGE_CACHE_SIZE - 1; 3266 3267 if (!PageUptodate(page)) { 3268 ret = btrfs_readpage(NULL, page); 3269 lock_page(page); 3270 if (page->mapping != mapping) { 3271 unlock_page(page); 3272 page_cache_release(page); 3273 goto again; 3274 } 3275 if (!PageUptodate(page)) { 3276 ret = -EIO; 3277 goto out_unlock; 3278 } 3279 } 3280 wait_on_page_writeback(page); 3281 3282 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3283 GFP_NOFS); 3284 set_page_extent_mapped(page); 3285 3286 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3287 if (ordered) { 3288 unlock_extent_cached(io_tree, page_start, page_end, 3289 &cached_state, GFP_NOFS); 3290 unlock_page(page); 3291 page_cache_release(page); 3292 btrfs_start_ordered_extent(inode, ordered, 1); 3293 btrfs_put_ordered_extent(ordered); 3294 goto again; 3295 } 3296 3297 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3298 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3299 0, 0, &cached_state, GFP_NOFS); 3300 3301 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3302 &cached_state); 3303 if (ret) { 3304 unlock_extent_cached(io_tree, page_start, page_end, 3305 &cached_state, GFP_NOFS); 3306 goto out_unlock; 3307 } 3308 3309 ret = 0; 3310 if (offset != PAGE_CACHE_SIZE) { 3311 kaddr = kmap(page); 3312 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3313 flush_dcache_page(page); 3314 kunmap(page); 3315 } 3316 ClearPageChecked(page); 3317 set_page_dirty(page); 3318 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3319 GFP_NOFS); 3320 3321 out_unlock: 3322 if (ret) 3323 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3324 unlock_page(page); 3325 page_cache_release(page); 3326 out: 3327 return ret; 3328 } 3329 3330 /* 3331 * This function puts in dummy file extents for the area we're creating a hole 3332 * for. So if we are truncating this file to a larger size we need to insert 3333 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3334 * the range between oldsize and size 3335 */ 3336 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3337 { 3338 struct btrfs_trans_handle *trans; 3339 struct btrfs_root *root = BTRFS_I(inode)->root; 3340 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3341 struct extent_map *em = NULL; 3342 struct extent_state *cached_state = NULL; 3343 u64 mask = root->sectorsize - 1; 3344 u64 hole_start = (oldsize + mask) & ~mask; 3345 u64 block_end = (size + mask) & ~mask; 3346 u64 last_byte; 3347 u64 cur_offset; 3348 u64 hole_size; 3349 int err = 0; 3350 3351 if (size <= hole_start) 3352 return 0; 3353 3354 while (1) { 3355 struct btrfs_ordered_extent *ordered; 3356 btrfs_wait_ordered_range(inode, hole_start, 3357 block_end - hole_start); 3358 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3359 &cached_state, GFP_NOFS); 3360 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3361 if (!ordered) 3362 break; 3363 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3364 &cached_state, GFP_NOFS); 3365 btrfs_put_ordered_extent(ordered); 3366 } 3367 3368 cur_offset = hole_start; 3369 while (1) { 3370 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3371 block_end - cur_offset, 0); 3372 BUG_ON(IS_ERR_OR_NULL(em)); 3373 last_byte = min(extent_map_end(em), block_end); 3374 last_byte = (last_byte + mask) & ~mask; 3375 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3376 u64 hint_byte = 0; 3377 hole_size = last_byte - cur_offset; 3378 3379 trans = btrfs_start_transaction(root, 3); 3380 if (IS_ERR(trans)) { 3381 err = PTR_ERR(trans); 3382 break; 3383 } 3384 3385 err = btrfs_drop_extents(trans, inode, cur_offset, 3386 cur_offset + hole_size, 3387 &hint_byte, 1); 3388 if (err) { 3389 btrfs_update_inode(trans, root, inode); 3390 btrfs_end_transaction(trans, root); 3391 break; 3392 } 3393 3394 err = btrfs_insert_file_extent(trans, root, 3395 btrfs_ino(inode), cur_offset, 0, 3396 0, hole_size, 0, hole_size, 3397 0, 0, 0); 3398 if (err) { 3399 btrfs_update_inode(trans, root, inode); 3400 btrfs_end_transaction(trans, root); 3401 break; 3402 } 3403 3404 btrfs_drop_extent_cache(inode, hole_start, 3405 last_byte - 1, 0); 3406 3407 btrfs_update_inode(trans, root, inode); 3408 btrfs_end_transaction(trans, root); 3409 } 3410 free_extent_map(em); 3411 em = NULL; 3412 cur_offset = last_byte; 3413 if (cur_offset >= block_end) 3414 break; 3415 } 3416 3417 free_extent_map(em); 3418 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3419 GFP_NOFS); 3420 return err; 3421 } 3422 3423 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3424 { 3425 struct btrfs_root *root = BTRFS_I(inode)->root; 3426 struct btrfs_trans_handle *trans; 3427 loff_t oldsize = i_size_read(inode); 3428 int ret; 3429 3430 if (newsize == oldsize) 3431 return 0; 3432 3433 if (newsize > oldsize) { 3434 truncate_pagecache(inode, oldsize, newsize); 3435 ret = btrfs_cont_expand(inode, oldsize, newsize); 3436 if (ret) 3437 return ret; 3438 3439 trans = btrfs_start_transaction(root, 1); 3440 if (IS_ERR(trans)) 3441 return PTR_ERR(trans); 3442 3443 i_size_write(inode, newsize); 3444 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3445 ret = btrfs_update_inode(trans, root, inode); 3446 btrfs_end_transaction(trans, root); 3447 } else { 3448 3449 /* 3450 * We're truncating a file that used to have good data down to 3451 * zero. Make sure it gets into the ordered flush list so that 3452 * any new writes get down to disk quickly. 3453 */ 3454 if (newsize == 0) 3455 BTRFS_I(inode)->ordered_data_close = 1; 3456 3457 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3458 truncate_setsize(inode, newsize); 3459 ret = btrfs_truncate(inode); 3460 } 3461 3462 return ret; 3463 } 3464 3465 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3466 { 3467 struct inode *inode = dentry->d_inode; 3468 struct btrfs_root *root = BTRFS_I(inode)->root; 3469 int err; 3470 3471 if (btrfs_root_readonly(root)) 3472 return -EROFS; 3473 3474 err = inode_change_ok(inode, attr); 3475 if (err) 3476 return err; 3477 3478 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3479 err = btrfs_setsize(inode, attr->ia_size); 3480 if (err) 3481 return err; 3482 } 3483 3484 if (attr->ia_valid) { 3485 setattr_copy(inode, attr); 3486 err = btrfs_dirty_inode(inode); 3487 3488 if (!err && attr->ia_valid & ATTR_MODE) 3489 err = btrfs_acl_chmod(inode); 3490 } 3491 3492 return err; 3493 } 3494 3495 void btrfs_evict_inode(struct inode *inode) 3496 { 3497 struct btrfs_trans_handle *trans; 3498 struct btrfs_root *root = BTRFS_I(inode)->root; 3499 struct btrfs_block_rsv *rsv, *global_rsv; 3500 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 3501 unsigned long nr; 3502 int ret; 3503 3504 trace_btrfs_inode_evict(inode); 3505 3506 truncate_inode_pages(&inode->i_data, 0); 3507 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3508 btrfs_is_free_space_inode(root, inode))) 3509 goto no_delete; 3510 3511 if (is_bad_inode(inode)) { 3512 btrfs_orphan_del(NULL, inode); 3513 goto no_delete; 3514 } 3515 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3516 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3517 3518 if (root->fs_info->log_root_recovering) { 3519 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3520 goto no_delete; 3521 } 3522 3523 if (inode->i_nlink > 0) { 3524 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3525 goto no_delete; 3526 } 3527 3528 rsv = btrfs_alloc_block_rsv(root); 3529 if (!rsv) { 3530 btrfs_orphan_del(NULL, inode); 3531 goto no_delete; 3532 } 3533 rsv->size = min_size; 3534 global_rsv = &root->fs_info->global_block_rsv; 3535 3536 btrfs_i_size_write(inode, 0); 3537 3538 /* 3539 * This is a bit simpler than btrfs_truncate since 3540 * 3541 * 1) We've already reserved our space for our orphan item in the 3542 * unlink. 3543 * 2) We're going to delete the inode item, so we don't need to update 3544 * it at all. 3545 * 3546 * So we just need to reserve some slack space in case we add bytes when 3547 * doing the truncate. 3548 */ 3549 while (1) { 3550 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size); 3551 3552 /* 3553 * Try and steal from the global reserve since we will 3554 * likely not use this space anyway, we want to try as 3555 * hard as possible to get this to work. 3556 */ 3557 if (ret) 3558 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 3559 3560 if (ret) { 3561 printk(KERN_WARNING "Could not get space for a " 3562 "delete, will truncate on mount %d\n", ret); 3563 btrfs_orphan_del(NULL, inode); 3564 btrfs_free_block_rsv(root, rsv); 3565 goto no_delete; 3566 } 3567 3568 trans = btrfs_start_transaction(root, 0); 3569 if (IS_ERR(trans)) { 3570 btrfs_orphan_del(NULL, inode); 3571 btrfs_free_block_rsv(root, rsv); 3572 goto no_delete; 3573 } 3574 3575 trans->block_rsv = rsv; 3576 3577 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3578 if (ret != -EAGAIN) 3579 break; 3580 3581 nr = trans->blocks_used; 3582 btrfs_end_transaction(trans, root); 3583 trans = NULL; 3584 btrfs_btree_balance_dirty(root, nr); 3585 } 3586 3587 btrfs_free_block_rsv(root, rsv); 3588 3589 if (ret == 0) { 3590 trans->block_rsv = root->orphan_block_rsv; 3591 ret = btrfs_orphan_del(trans, inode); 3592 BUG_ON(ret); 3593 } 3594 3595 trans->block_rsv = &root->fs_info->trans_block_rsv; 3596 if (!(root == root->fs_info->tree_root || 3597 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3598 btrfs_return_ino(root, btrfs_ino(inode)); 3599 3600 nr = trans->blocks_used; 3601 btrfs_end_transaction(trans, root); 3602 btrfs_btree_balance_dirty(root, nr); 3603 no_delete: 3604 end_writeback(inode); 3605 return; 3606 } 3607 3608 /* 3609 * this returns the key found in the dir entry in the location pointer. 3610 * If no dir entries were found, location->objectid is 0. 3611 */ 3612 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3613 struct btrfs_key *location) 3614 { 3615 const char *name = dentry->d_name.name; 3616 int namelen = dentry->d_name.len; 3617 struct btrfs_dir_item *di; 3618 struct btrfs_path *path; 3619 struct btrfs_root *root = BTRFS_I(dir)->root; 3620 int ret = 0; 3621 3622 path = btrfs_alloc_path(); 3623 if (!path) 3624 return -ENOMEM; 3625 3626 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3627 namelen, 0); 3628 if (IS_ERR(di)) 3629 ret = PTR_ERR(di); 3630 3631 if (IS_ERR_OR_NULL(di)) 3632 goto out_err; 3633 3634 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3635 out: 3636 btrfs_free_path(path); 3637 return ret; 3638 out_err: 3639 location->objectid = 0; 3640 goto out; 3641 } 3642 3643 /* 3644 * when we hit a tree root in a directory, the btrfs part of the inode 3645 * needs to be changed to reflect the root directory of the tree root. This 3646 * is kind of like crossing a mount point. 3647 */ 3648 static int fixup_tree_root_location(struct btrfs_root *root, 3649 struct inode *dir, 3650 struct dentry *dentry, 3651 struct btrfs_key *location, 3652 struct btrfs_root **sub_root) 3653 { 3654 struct btrfs_path *path; 3655 struct btrfs_root *new_root; 3656 struct btrfs_root_ref *ref; 3657 struct extent_buffer *leaf; 3658 int ret; 3659 int err = 0; 3660 3661 path = btrfs_alloc_path(); 3662 if (!path) { 3663 err = -ENOMEM; 3664 goto out; 3665 } 3666 3667 err = -ENOENT; 3668 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3669 BTRFS_I(dir)->root->root_key.objectid, 3670 location->objectid); 3671 if (ret) { 3672 if (ret < 0) 3673 err = ret; 3674 goto out; 3675 } 3676 3677 leaf = path->nodes[0]; 3678 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3679 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3680 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3681 goto out; 3682 3683 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3684 (unsigned long)(ref + 1), 3685 dentry->d_name.len); 3686 if (ret) 3687 goto out; 3688 3689 btrfs_release_path(path); 3690 3691 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3692 if (IS_ERR(new_root)) { 3693 err = PTR_ERR(new_root); 3694 goto out; 3695 } 3696 3697 if (btrfs_root_refs(&new_root->root_item) == 0) { 3698 err = -ENOENT; 3699 goto out; 3700 } 3701 3702 *sub_root = new_root; 3703 location->objectid = btrfs_root_dirid(&new_root->root_item); 3704 location->type = BTRFS_INODE_ITEM_KEY; 3705 location->offset = 0; 3706 err = 0; 3707 out: 3708 btrfs_free_path(path); 3709 return err; 3710 } 3711 3712 static void inode_tree_add(struct inode *inode) 3713 { 3714 struct btrfs_root *root = BTRFS_I(inode)->root; 3715 struct btrfs_inode *entry; 3716 struct rb_node **p; 3717 struct rb_node *parent; 3718 u64 ino = btrfs_ino(inode); 3719 again: 3720 p = &root->inode_tree.rb_node; 3721 parent = NULL; 3722 3723 if (inode_unhashed(inode)) 3724 return; 3725 3726 spin_lock(&root->inode_lock); 3727 while (*p) { 3728 parent = *p; 3729 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3730 3731 if (ino < btrfs_ino(&entry->vfs_inode)) 3732 p = &parent->rb_left; 3733 else if (ino > btrfs_ino(&entry->vfs_inode)) 3734 p = &parent->rb_right; 3735 else { 3736 WARN_ON(!(entry->vfs_inode.i_state & 3737 (I_WILL_FREE | I_FREEING))); 3738 rb_erase(parent, &root->inode_tree); 3739 RB_CLEAR_NODE(parent); 3740 spin_unlock(&root->inode_lock); 3741 goto again; 3742 } 3743 } 3744 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3745 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3746 spin_unlock(&root->inode_lock); 3747 } 3748 3749 static void inode_tree_del(struct inode *inode) 3750 { 3751 struct btrfs_root *root = BTRFS_I(inode)->root; 3752 int empty = 0; 3753 3754 spin_lock(&root->inode_lock); 3755 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3756 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3757 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3758 empty = RB_EMPTY_ROOT(&root->inode_tree); 3759 } 3760 spin_unlock(&root->inode_lock); 3761 3762 /* 3763 * Free space cache has inodes in the tree root, but the tree root has a 3764 * root_refs of 0, so this could end up dropping the tree root as a 3765 * snapshot, so we need the extra !root->fs_info->tree_root check to 3766 * make sure we don't drop it. 3767 */ 3768 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3769 root != root->fs_info->tree_root) { 3770 synchronize_srcu(&root->fs_info->subvol_srcu); 3771 spin_lock(&root->inode_lock); 3772 empty = RB_EMPTY_ROOT(&root->inode_tree); 3773 spin_unlock(&root->inode_lock); 3774 if (empty) 3775 btrfs_add_dead_root(root); 3776 } 3777 } 3778 3779 int btrfs_invalidate_inodes(struct btrfs_root *root) 3780 { 3781 struct rb_node *node; 3782 struct rb_node *prev; 3783 struct btrfs_inode *entry; 3784 struct inode *inode; 3785 u64 objectid = 0; 3786 3787 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3788 3789 spin_lock(&root->inode_lock); 3790 again: 3791 node = root->inode_tree.rb_node; 3792 prev = NULL; 3793 while (node) { 3794 prev = node; 3795 entry = rb_entry(node, struct btrfs_inode, rb_node); 3796 3797 if (objectid < btrfs_ino(&entry->vfs_inode)) 3798 node = node->rb_left; 3799 else if (objectid > btrfs_ino(&entry->vfs_inode)) 3800 node = node->rb_right; 3801 else 3802 break; 3803 } 3804 if (!node) { 3805 while (prev) { 3806 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3807 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 3808 node = prev; 3809 break; 3810 } 3811 prev = rb_next(prev); 3812 } 3813 } 3814 while (node) { 3815 entry = rb_entry(node, struct btrfs_inode, rb_node); 3816 objectid = btrfs_ino(&entry->vfs_inode) + 1; 3817 inode = igrab(&entry->vfs_inode); 3818 if (inode) { 3819 spin_unlock(&root->inode_lock); 3820 if (atomic_read(&inode->i_count) > 1) 3821 d_prune_aliases(inode); 3822 /* 3823 * btrfs_drop_inode will have it removed from 3824 * the inode cache when its usage count 3825 * hits zero. 3826 */ 3827 iput(inode); 3828 cond_resched(); 3829 spin_lock(&root->inode_lock); 3830 goto again; 3831 } 3832 3833 if (cond_resched_lock(&root->inode_lock)) 3834 goto again; 3835 3836 node = rb_next(node); 3837 } 3838 spin_unlock(&root->inode_lock); 3839 return 0; 3840 } 3841 3842 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3843 { 3844 struct btrfs_iget_args *args = p; 3845 inode->i_ino = args->ino; 3846 BTRFS_I(inode)->root = args->root; 3847 btrfs_set_inode_space_info(args->root, inode); 3848 return 0; 3849 } 3850 3851 static int btrfs_find_actor(struct inode *inode, void *opaque) 3852 { 3853 struct btrfs_iget_args *args = opaque; 3854 return args->ino == btrfs_ino(inode) && 3855 args->root == BTRFS_I(inode)->root; 3856 } 3857 3858 static struct inode *btrfs_iget_locked(struct super_block *s, 3859 u64 objectid, 3860 struct btrfs_root *root) 3861 { 3862 struct inode *inode; 3863 struct btrfs_iget_args args; 3864 args.ino = objectid; 3865 args.root = root; 3866 3867 inode = iget5_locked(s, objectid, btrfs_find_actor, 3868 btrfs_init_locked_inode, 3869 (void *)&args); 3870 return inode; 3871 } 3872 3873 /* Get an inode object given its location and corresponding root. 3874 * Returns in *is_new if the inode was read from disk 3875 */ 3876 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3877 struct btrfs_root *root, int *new) 3878 { 3879 struct inode *inode; 3880 3881 inode = btrfs_iget_locked(s, location->objectid, root); 3882 if (!inode) 3883 return ERR_PTR(-ENOMEM); 3884 3885 if (inode->i_state & I_NEW) { 3886 BTRFS_I(inode)->root = root; 3887 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3888 btrfs_read_locked_inode(inode); 3889 if (!is_bad_inode(inode)) { 3890 inode_tree_add(inode); 3891 unlock_new_inode(inode); 3892 if (new) 3893 *new = 1; 3894 } else { 3895 unlock_new_inode(inode); 3896 iput(inode); 3897 inode = ERR_PTR(-ESTALE); 3898 } 3899 } 3900 3901 return inode; 3902 } 3903 3904 static struct inode *new_simple_dir(struct super_block *s, 3905 struct btrfs_key *key, 3906 struct btrfs_root *root) 3907 { 3908 struct inode *inode = new_inode(s); 3909 3910 if (!inode) 3911 return ERR_PTR(-ENOMEM); 3912 3913 BTRFS_I(inode)->root = root; 3914 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3915 BTRFS_I(inode)->dummy_inode = 1; 3916 3917 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3918 inode->i_op = &simple_dir_inode_operations; 3919 inode->i_fop = &simple_dir_operations; 3920 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 3921 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3922 3923 return inode; 3924 } 3925 3926 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3927 { 3928 struct inode *inode; 3929 struct btrfs_root *root = BTRFS_I(dir)->root; 3930 struct btrfs_root *sub_root = root; 3931 struct btrfs_key location; 3932 int index; 3933 int ret = 0; 3934 3935 if (dentry->d_name.len > BTRFS_NAME_LEN) 3936 return ERR_PTR(-ENAMETOOLONG); 3937 3938 if (unlikely(d_need_lookup(dentry))) { 3939 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key)); 3940 kfree(dentry->d_fsdata); 3941 dentry->d_fsdata = NULL; 3942 /* This thing is hashed, drop it for now */ 3943 d_drop(dentry); 3944 } else { 3945 ret = btrfs_inode_by_name(dir, dentry, &location); 3946 } 3947 3948 if (ret < 0) 3949 return ERR_PTR(ret); 3950 3951 if (location.objectid == 0) 3952 return NULL; 3953 3954 if (location.type == BTRFS_INODE_ITEM_KEY) { 3955 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 3956 return inode; 3957 } 3958 3959 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 3960 3961 index = srcu_read_lock(&root->fs_info->subvol_srcu); 3962 ret = fixup_tree_root_location(root, dir, dentry, 3963 &location, &sub_root); 3964 if (ret < 0) { 3965 if (ret != -ENOENT) 3966 inode = ERR_PTR(ret); 3967 else 3968 inode = new_simple_dir(dir->i_sb, &location, sub_root); 3969 } else { 3970 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 3971 } 3972 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 3973 3974 if (!IS_ERR(inode) && root != sub_root) { 3975 down_read(&root->fs_info->cleanup_work_sem); 3976 if (!(inode->i_sb->s_flags & MS_RDONLY)) 3977 ret = btrfs_orphan_cleanup(sub_root); 3978 up_read(&root->fs_info->cleanup_work_sem); 3979 if (ret) 3980 inode = ERR_PTR(ret); 3981 } 3982 3983 return inode; 3984 } 3985 3986 static int btrfs_dentry_delete(const struct dentry *dentry) 3987 { 3988 struct btrfs_root *root; 3989 3990 if (!dentry->d_inode && !IS_ROOT(dentry)) 3991 dentry = dentry->d_parent; 3992 3993 if (dentry->d_inode) { 3994 root = BTRFS_I(dentry->d_inode)->root; 3995 if (btrfs_root_refs(&root->root_item) == 0) 3996 return 1; 3997 } 3998 return 0; 3999 } 4000 4001 static void btrfs_dentry_release(struct dentry *dentry) 4002 { 4003 if (dentry->d_fsdata) 4004 kfree(dentry->d_fsdata); 4005 } 4006 4007 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4008 struct nameidata *nd) 4009 { 4010 struct dentry *ret; 4011 4012 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4013 if (unlikely(d_need_lookup(dentry))) { 4014 spin_lock(&dentry->d_lock); 4015 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 4016 spin_unlock(&dentry->d_lock); 4017 } 4018 return ret; 4019 } 4020 4021 unsigned char btrfs_filetype_table[] = { 4022 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4023 }; 4024 4025 static int btrfs_real_readdir(struct file *filp, void *dirent, 4026 filldir_t filldir) 4027 { 4028 struct inode *inode = filp->f_dentry->d_inode; 4029 struct btrfs_root *root = BTRFS_I(inode)->root; 4030 struct btrfs_item *item; 4031 struct btrfs_dir_item *di; 4032 struct btrfs_key key; 4033 struct btrfs_key found_key; 4034 struct btrfs_path *path; 4035 struct list_head ins_list; 4036 struct list_head del_list; 4037 struct qstr q; 4038 int ret; 4039 struct extent_buffer *leaf; 4040 int slot; 4041 unsigned char d_type; 4042 int over = 0; 4043 u32 di_cur; 4044 u32 di_total; 4045 u32 di_len; 4046 int key_type = BTRFS_DIR_INDEX_KEY; 4047 char tmp_name[32]; 4048 char *name_ptr; 4049 int name_len; 4050 int is_curr = 0; /* filp->f_pos points to the current index? */ 4051 4052 /* FIXME, use a real flag for deciding about the key type */ 4053 if (root->fs_info->tree_root == root) 4054 key_type = BTRFS_DIR_ITEM_KEY; 4055 4056 /* special case for "." */ 4057 if (filp->f_pos == 0) { 4058 over = filldir(dirent, ".", 1, 4059 filp->f_pos, btrfs_ino(inode), DT_DIR); 4060 if (over) 4061 return 0; 4062 filp->f_pos = 1; 4063 } 4064 /* special case for .., just use the back ref */ 4065 if (filp->f_pos == 1) { 4066 u64 pino = parent_ino(filp->f_path.dentry); 4067 over = filldir(dirent, "..", 2, 4068 filp->f_pos, pino, DT_DIR); 4069 if (over) 4070 return 0; 4071 filp->f_pos = 2; 4072 } 4073 path = btrfs_alloc_path(); 4074 if (!path) 4075 return -ENOMEM; 4076 4077 path->reada = 1; 4078 4079 if (key_type == BTRFS_DIR_INDEX_KEY) { 4080 INIT_LIST_HEAD(&ins_list); 4081 INIT_LIST_HEAD(&del_list); 4082 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4083 } 4084 4085 btrfs_set_key_type(&key, key_type); 4086 key.offset = filp->f_pos; 4087 key.objectid = btrfs_ino(inode); 4088 4089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4090 if (ret < 0) 4091 goto err; 4092 4093 while (1) { 4094 leaf = path->nodes[0]; 4095 slot = path->slots[0]; 4096 if (slot >= btrfs_header_nritems(leaf)) { 4097 ret = btrfs_next_leaf(root, path); 4098 if (ret < 0) 4099 goto err; 4100 else if (ret > 0) 4101 break; 4102 continue; 4103 } 4104 4105 item = btrfs_item_nr(leaf, slot); 4106 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4107 4108 if (found_key.objectid != key.objectid) 4109 break; 4110 if (btrfs_key_type(&found_key) != key_type) 4111 break; 4112 if (found_key.offset < filp->f_pos) 4113 goto next; 4114 if (key_type == BTRFS_DIR_INDEX_KEY && 4115 btrfs_should_delete_dir_index(&del_list, 4116 found_key.offset)) 4117 goto next; 4118 4119 filp->f_pos = found_key.offset; 4120 is_curr = 1; 4121 4122 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4123 di_cur = 0; 4124 di_total = btrfs_item_size(leaf, item); 4125 4126 while (di_cur < di_total) { 4127 struct btrfs_key location; 4128 struct dentry *tmp; 4129 4130 if (verify_dir_item(root, leaf, di)) 4131 break; 4132 4133 name_len = btrfs_dir_name_len(leaf, di); 4134 if (name_len <= sizeof(tmp_name)) { 4135 name_ptr = tmp_name; 4136 } else { 4137 name_ptr = kmalloc(name_len, GFP_NOFS); 4138 if (!name_ptr) { 4139 ret = -ENOMEM; 4140 goto err; 4141 } 4142 } 4143 read_extent_buffer(leaf, name_ptr, 4144 (unsigned long)(di + 1), name_len); 4145 4146 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4147 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4148 4149 q.name = name_ptr; 4150 q.len = name_len; 4151 q.hash = full_name_hash(q.name, q.len); 4152 tmp = d_lookup(filp->f_dentry, &q); 4153 if (!tmp) { 4154 struct btrfs_key *newkey; 4155 4156 newkey = kzalloc(sizeof(struct btrfs_key), 4157 GFP_NOFS); 4158 if (!newkey) 4159 goto no_dentry; 4160 tmp = d_alloc(filp->f_dentry, &q); 4161 if (!tmp) { 4162 kfree(newkey); 4163 dput(tmp); 4164 goto no_dentry; 4165 } 4166 memcpy(newkey, &location, 4167 sizeof(struct btrfs_key)); 4168 tmp->d_fsdata = newkey; 4169 tmp->d_flags |= DCACHE_NEED_LOOKUP; 4170 d_rehash(tmp); 4171 dput(tmp); 4172 } else { 4173 dput(tmp); 4174 } 4175 no_dentry: 4176 /* is this a reference to our own snapshot? If so 4177 * skip it 4178 */ 4179 if (location.type == BTRFS_ROOT_ITEM_KEY && 4180 location.objectid == root->root_key.objectid) { 4181 over = 0; 4182 goto skip; 4183 } 4184 over = filldir(dirent, name_ptr, name_len, 4185 found_key.offset, location.objectid, 4186 d_type); 4187 4188 skip: 4189 if (name_ptr != tmp_name) 4190 kfree(name_ptr); 4191 4192 if (over) 4193 goto nopos; 4194 di_len = btrfs_dir_name_len(leaf, di) + 4195 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4196 di_cur += di_len; 4197 di = (struct btrfs_dir_item *)((char *)di + di_len); 4198 } 4199 next: 4200 path->slots[0]++; 4201 } 4202 4203 if (key_type == BTRFS_DIR_INDEX_KEY) { 4204 if (is_curr) 4205 filp->f_pos++; 4206 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4207 &ins_list); 4208 if (ret) 4209 goto nopos; 4210 } 4211 4212 /* Reached end of directory/root. Bump pos past the last item. */ 4213 if (key_type == BTRFS_DIR_INDEX_KEY) 4214 /* 4215 * 32-bit glibc will use getdents64, but then strtol - 4216 * so the last number we can serve is this. 4217 */ 4218 filp->f_pos = 0x7fffffff; 4219 else 4220 filp->f_pos++; 4221 nopos: 4222 ret = 0; 4223 err: 4224 if (key_type == BTRFS_DIR_INDEX_KEY) 4225 btrfs_put_delayed_items(&ins_list, &del_list); 4226 btrfs_free_path(path); 4227 return ret; 4228 } 4229 4230 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4231 { 4232 struct btrfs_root *root = BTRFS_I(inode)->root; 4233 struct btrfs_trans_handle *trans; 4234 int ret = 0; 4235 bool nolock = false; 4236 4237 if (BTRFS_I(inode)->dummy_inode) 4238 return 0; 4239 4240 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode)) 4241 nolock = true; 4242 4243 if (wbc->sync_mode == WB_SYNC_ALL) { 4244 if (nolock) 4245 trans = btrfs_join_transaction_nolock(root); 4246 else 4247 trans = btrfs_join_transaction(root); 4248 if (IS_ERR(trans)) 4249 return PTR_ERR(trans); 4250 if (nolock) 4251 ret = btrfs_end_transaction_nolock(trans, root); 4252 else 4253 ret = btrfs_commit_transaction(trans, root); 4254 } 4255 return ret; 4256 } 4257 4258 /* 4259 * This is somewhat expensive, updating the tree every time the 4260 * inode changes. But, it is most likely to find the inode in cache. 4261 * FIXME, needs more benchmarking...there are no reasons other than performance 4262 * to keep or drop this code. 4263 */ 4264 int btrfs_dirty_inode(struct inode *inode) 4265 { 4266 struct btrfs_root *root = BTRFS_I(inode)->root; 4267 struct btrfs_trans_handle *trans; 4268 int ret; 4269 4270 if (BTRFS_I(inode)->dummy_inode) 4271 return 0; 4272 4273 trans = btrfs_join_transaction(root); 4274 if (IS_ERR(trans)) 4275 return PTR_ERR(trans); 4276 4277 ret = btrfs_update_inode(trans, root, inode); 4278 if (ret && ret == -ENOSPC) { 4279 /* whoops, lets try again with the full transaction */ 4280 btrfs_end_transaction(trans, root); 4281 trans = btrfs_start_transaction(root, 1); 4282 if (IS_ERR(trans)) 4283 return PTR_ERR(trans); 4284 4285 ret = btrfs_update_inode(trans, root, inode); 4286 } 4287 btrfs_end_transaction(trans, root); 4288 if (BTRFS_I(inode)->delayed_node) 4289 btrfs_balance_delayed_items(root); 4290 4291 return ret; 4292 } 4293 4294 /* 4295 * This is a copy of file_update_time. We need this so we can return error on 4296 * ENOSPC for updating the inode in the case of file write and mmap writes. 4297 */ 4298 int btrfs_update_time(struct file *file) 4299 { 4300 struct inode *inode = file->f_path.dentry->d_inode; 4301 struct timespec now; 4302 int ret; 4303 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 4304 4305 /* First try to exhaust all avenues to not sync */ 4306 if (IS_NOCMTIME(inode)) 4307 return 0; 4308 4309 now = current_fs_time(inode->i_sb); 4310 if (!timespec_equal(&inode->i_mtime, &now)) 4311 sync_it = S_MTIME; 4312 4313 if (!timespec_equal(&inode->i_ctime, &now)) 4314 sync_it |= S_CTIME; 4315 4316 if (IS_I_VERSION(inode)) 4317 sync_it |= S_VERSION; 4318 4319 if (!sync_it) 4320 return 0; 4321 4322 /* Finally allowed to write? Takes lock. */ 4323 if (mnt_want_write_file(file)) 4324 return 0; 4325 4326 /* Only change inode inside the lock region */ 4327 if (sync_it & S_VERSION) 4328 inode_inc_iversion(inode); 4329 if (sync_it & S_CTIME) 4330 inode->i_ctime = now; 4331 if (sync_it & S_MTIME) 4332 inode->i_mtime = now; 4333 ret = btrfs_dirty_inode(inode); 4334 if (!ret) 4335 mark_inode_dirty_sync(inode); 4336 mnt_drop_write(file->f_path.mnt); 4337 return ret; 4338 } 4339 4340 /* 4341 * find the highest existing sequence number in a directory 4342 * and then set the in-memory index_cnt variable to reflect 4343 * free sequence numbers 4344 */ 4345 static int btrfs_set_inode_index_count(struct inode *inode) 4346 { 4347 struct btrfs_root *root = BTRFS_I(inode)->root; 4348 struct btrfs_key key, found_key; 4349 struct btrfs_path *path; 4350 struct extent_buffer *leaf; 4351 int ret; 4352 4353 key.objectid = btrfs_ino(inode); 4354 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4355 key.offset = (u64)-1; 4356 4357 path = btrfs_alloc_path(); 4358 if (!path) 4359 return -ENOMEM; 4360 4361 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4362 if (ret < 0) 4363 goto out; 4364 /* FIXME: we should be able to handle this */ 4365 if (ret == 0) 4366 goto out; 4367 ret = 0; 4368 4369 /* 4370 * MAGIC NUMBER EXPLANATION: 4371 * since we search a directory based on f_pos we have to start at 2 4372 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4373 * else has to start at 2 4374 */ 4375 if (path->slots[0] == 0) { 4376 BTRFS_I(inode)->index_cnt = 2; 4377 goto out; 4378 } 4379 4380 path->slots[0]--; 4381 4382 leaf = path->nodes[0]; 4383 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4384 4385 if (found_key.objectid != btrfs_ino(inode) || 4386 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4387 BTRFS_I(inode)->index_cnt = 2; 4388 goto out; 4389 } 4390 4391 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4392 out: 4393 btrfs_free_path(path); 4394 return ret; 4395 } 4396 4397 /* 4398 * helper to find a free sequence number in a given directory. This current 4399 * code is very simple, later versions will do smarter things in the btree 4400 */ 4401 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4402 { 4403 int ret = 0; 4404 4405 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4406 ret = btrfs_inode_delayed_dir_index_count(dir); 4407 if (ret) { 4408 ret = btrfs_set_inode_index_count(dir); 4409 if (ret) 4410 return ret; 4411 } 4412 } 4413 4414 *index = BTRFS_I(dir)->index_cnt; 4415 BTRFS_I(dir)->index_cnt++; 4416 4417 return ret; 4418 } 4419 4420 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4421 struct btrfs_root *root, 4422 struct inode *dir, 4423 const char *name, int name_len, 4424 u64 ref_objectid, u64 objectid, int mode, 4425 u64 *index) 4426 { 4427 struct inode *inode; 4428 struct btrfs_inode_item *inode_item; 4429 struct btrfs_key *location; 4430 struct btrfs_path *path; 4431 struct btrfs_inode_ref *ref; 4432 struct btrfs_key key[2]; 4433 u32 sizes[2]; 4434 unsigned long ptr; 4435 int ret; 4436 int owner; 4437 4438 path = btrfs_alloc_path(); 4439 if (!path) 4440 return ERR_PTR(-ENOMEM); 4441 4442 inode = new_inode(root->fs_info->sb); 4443 if (!inode) { 4444 btrfs_free_path(path); 4445 return ERR_PTR(-ENOMEM); 4446 } 4447 4448 /* 4449 * we have to initialize this early, so we can reclaim the inode 4450 * number if we fail afterwards in this function. 4451 */ 4452 inode->i_ino = objectid; 4453 4454 if (dir) { 4455 trace_btrfs_inode_request(dir); 4456 4457 ret = btrfs_set_inode_index(dir, index); 4458 if (ret) { 4459 btrfs_free_path(path); 4460 iput(inode); 4461 return ERR_PTR(ret); 4462 } 4463 } 4464 /* 4465 * index_cnt is ignored for everything but a dir, 4466 * btrfs_get_inode_index_count has an explanation for the magic 4467 * number 4468 */ 4469 BTRFS_I(inode)->index_cnt = 2; 4470 BTRFS_I(inode)->root = root; 4471 BTRFS_I(inode)->generation = trans->transid; 4472 inode->i_generation = BTRFS_I(inode)->generation; 4473 btrfs_set_inode_space_info(root, inode); 4474 4475 if (S_ISDIR(mode)) 4476 owner = 0; 4477 else 4478 owner = 1; 4479 4480 key[0].objectid = objectid; 4481 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4482 key[0].offset = 0; 4483 4484 key[1].objectid = objectid; 4485 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4486 key[1].offset = ref_objectid; 4487 4488 sizes[0] = sizeof(struct btrfs_inode_item); 4489 sizes[1] = name_len + sizeof(*ref); 4490 4491 path->leave_spinning = 1; 4492 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4493 if (ret != 0) 4494 goto fail; 4495 4496 inode_init_owner(inode, dir, mode); 4497 inode_set_bytes(inode, 0); 4498 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4499 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4500 struct btrfs_inode_item); 4501 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4502 4503 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4504 struct btrfs_inode_ref); 4505 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4506 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4507 ptr = (unsigned long)(ref + 1); 4508 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4509 4510 btrfs_mark_buffer_dirty(path->nodes[0]); 4511 btrfs_free_path(path); 4512 4513 location = &BTRFS_I(inode)->location; 4514 location->objectid = objectid; 4515 location->offset = 0; 4516 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4517 4518 btrfs_inherit_iflags(inode, dir); 4519 4520 if (S_ISREG(mode)) { 4521 if (btrfs_test_opt(root, NODATASUM)) 4522 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4523 if (btrfs_test_opt(root, NODATACOW) || 4524 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4525 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4526 } 4527 4528 insert_inode_hash(inode); 4529 inode_tree_add(inode); 4530 4531 trace_btrfs_inode_new(inode); 4532 btrfs_set_inode_last_trans(trans, inode); 4533 4534 return inode; 4535 fail: 4536 if (dir) 4537 BTRFS_I(dir)->index_cnt--; 4538 btrfs_free_path(path); 4539 iput(inode); 4540 return ERR_PTR(ret); 4541 } 4542 4543 static inline u8 btrfs_inode_type(struct inode *inode) 4544 { 4545 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4546 } 4547 4548 /* 4549 * utility function to add 'inode' into 'parent_inode' with 4550 * a give name and a given sequence number. 4551 * if 'add_backref' is true, also insert a backref from the 4552 * inode to the parent directory. 4553 */ 4554 int btrfs_add_link(struct btrfs_trans_handle *trans, 4555 struct inode *parent_inode, struct inode *inode, 4556 const char *name, int name_len, int add_backref, u64 index) 4557 { 4558 int ret = 0; 4559 struct btrfs_key key; 4560 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4561 u64 ino = btrfs_ino(inode); 4562 u64 parent_ino = btrfs_ino(parent_inode); 4563 4564 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4565 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4566 } else { 4567 key.objectid = ino; 4568 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4569 key.offset = 0; 4570 } 4571 4572 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4573 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4574 key.objectid, root->root_key.objectid, 4575 parent_ino, index, name, name_len); 4576 } else if (add_backref) { 4577 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4578 parent_ino, index); 4579 } 4580 4581 if (ret == 0) { 4582 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4583 parent_inode, &key, 4584 btrfs_inode_type(inode), index); 4585 BUG_ON(ret); 4586 4587 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4588 name_len * 2); 4589 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4590 ret = btrfs_update_inode(trans, root, parent_inode); 4591 } 4592 return ret; 4593 } 4594 4595 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4596 struct inode *dir, struct dentry *dentry, 4597 struct inode *inode, int backref, u64 index) 4598 { 4599 int err = btrfs_add_link(trans, dir, inode, 4600 dentry->d_name.name, dentry->d_name.len, 4601 backref, index); 4602 if (err > 0) 4603 err = -EEXIST; 4604 return err; 4605 } 4606 4607 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4608 int mode, dev_t rdev) 4609 { 4610 struct btrfs_trans_handle *trans; 4611 struct btrfs_root *root = BTRFS_I(dir)->root; 4612 struct inode *inode = NULL; 4613 int err; 4614 int drop_inode = 0; 4615 u64 objectid; 4616 unsigned long nr = 0; 4617 u64 index = 0; 4618 4619 if (!new_valid_dev(rdev)) 4620 return -EINVAL; 4621 4622 /* 4623 * 2 for inode item and ref 4624 * 2 for dir items 4625 * 1 for xattr if selinux is on 4626 */ 4627 trans = btrfs_start_transaction(root, 5); 4628 if (IS_ERR(trans)) 4629 return PTR_ERR(trans); 4630 4631 err = btrfs_find_free_ino(root, &objectid); 4632 if (err) 4633 goto out_unlock; 4634 4635 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4636 dentry->d_name.len, btrfs_ino(dir), objectid, 4637 mode, &index); 4638 if (IS_ERR(inode)) { 4639 err = PTR_ERR(inode); 4640 goto out_unlock; 4641 } 4642 4643 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4644 if (err) { 4645 drop_inode = 1; 4646 goto out_unlock; 4647 } 4648 4649 /* 4650 * If the active LSM wants to access the inode during 4651 * d_instantiate it needs these. Smack checks to see 4652 * if the filesystem supports xattrs by looking at the 4653 * ops vector. 4654 */ 4655 4656 inode->i_op = &btrfs_special_inode_operations; 4657 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4658 if (err) 4659 drop_inode = 1; 4660 else { 4661 init_special_inode(inode, inode->i_mode, rdev); 4662 btrfs_update_inode(trans, root, inode); 4663 d_instantiate(dentry, inode); 4664 } 4665 out_unlock: 4666 nr = trans->blocks_used; 4667 btrfs_end_transaction(trans, root); 4668 btrfs_btree_balance_dirty(root, nr); 4669 if (drop_inode) { 4670 inode_dec_link_count(inode); 4671 iput(inode); 4672 } 4673 return err; 4674 } 4675 4676 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4677 int mode, struct nameidata *nd) 4678 { 4679 struct btrfs_trans_handle *trans; 4680 struct btrfs_root *root = BTRFS_I(dir)->root; 4681 struct inode *inode = NULL; 4682 int drop_inode = 0; 4683 int err; 4684 unsigned long nr = 0; 4685 u64 objectid; 4686 u64 index = 0; 4687 4688 /* 4689 * 2 for inode item and ref 4690 * 2 for dir items 4691 * 1 for xattr if selinux is on 4692 */ 4693 trans = btrfs_start_transaction(root, 5); 4694 if (IS_ERR(trans)) 4695 return PTR_ERR(trans); 4696 4697 err = btrfs_find_free_ino(root, &objectid); 4698 if (err) 4699 goto out_unlock; 4700 4701 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4702 dentry->d_name.len, btrfs_ino(dir), objectid, 4703 mode, &index); 4704 if (IS_ERR(inode)) { 4705 err = PTR_ERR(inode); 4706 goto out_unlock; 4707 } 4708 4709 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4710 if (err) { 4711 drop_inode = 1; 4712 goto out_unlock; 4713 } 4714 4715 /* 4716 * If the active LSM wants to access the inode during 4717 * d_instantiate it needs these. Smack checks to see 4718 * if the filesystem supports xattrs by looking at the 4719 * ops vector. 4720 */ 4721 inode->i_fop = &btrfs_file_operations; 4722 inode->i_op = &btrfs_file_inode_operations; 4723 4724 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4725 if (err) 4726 drop_inode = 1; 4727 else { 4728 inode->i_mapping->a_ops = &btrfs_aops; 4729 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4730 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4731 d_instantiate(dentry, inode); 4732 } 4733 out_unlock: 4734 nr = trans->blocks_used; 4735 btrfs_end_transaction(trans, root); 4736 if (drop_inode) { 4737 inode_dec_link_count(inode); 4738 iput(inode); 4739 } 4740 btrfs_btree_balance_dirty(root, nr); 4741 return err; 4742 } 4743 4744 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4745 struct dentry *dentry) 4746 { 4747 struct btrfs_trans_handle *trans; 4748 struct btrfs_root *root = BTRFS_I(dir)->root; 4749 struct inode *inode = old_dentry->d_inode; 4750 u64 index; 4751 unsigned long nr = 0; 4752 int err; 4753 int drop_inode = 0; 4754 4755 /* do not allow sys_link's with other subvols of the same device */ 4756 if (root->objectid != BTRFS_I(inode)->root->objectid) 4757 return -EXDEV; 4758 4759 if (inode->i_nlink == ~0U) 4760 return -EMLINK; 4761 4762 err = btrfs_set_inode_index(dir, &index); 4763 if (err) 4764 goto fail; 4765 4766 /* 4767 * 2 items for inode and inode ref 4768 * 2 items for dir items 4769 * 1 item for parent inode 4770 */ 4771 trans = btrfs_start_transaction(root, 5); 4772 if (IS_ERR(trans)) { 4773 err = PTR_ERR(trans); 4774 goto fail; 4775 } 4776 4777 btrfs_inc_nlink(inode); 4778 inode->i_ctime = CURRENT_TIME; 4779 ihold(inode); 4780 4781 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4782 4783 if (err) { 4784 drop_inode = 1; 4785 } else { 4786 struct dentry *parent = dentry->d_parent; 4787 err = btrfs_update_inode(trans, root, inode); 4788 BUG_ON(err); 4789 d_instantiate(dentry, inode); 4790 btrfs_log_new_name(trans, inode, NULL, parent); 4791 } 4792 4793 nr = trans->blocks_used; 4794 btrfs_end_transaction(trans, root); 4795 fail: 4796 if (drop_inode) { 4797 inode_dec_link_count(inode); 4798 iput(inode); 4799 } 4800 btrfs_btree_balance_dirty(root, nr); 4801 return err; 4802 } 4803 4804 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4805 { 4806 struct inode *inode = NULL; 4807 struct btrfs_trans_handle *trans; 4808 struct btrfs_root *root = BTRFS_I(dir)->root; 4809 int err = 0; 4810 int drop_on_err = 0; 4811 u64 objectid = 0; 4812 u64 index = 0; 4813 unsigned long nr = 1; 4814 4815 /* 4816 * 2 items for inode and ref 4817 * 2 items for dir items 4818 * 1 for xattr if selinux is on 4819 */ 4820 trans = btrfs_start_transaction(root, 5); 4821 if (IS_ERR(trans)) 4822 return PTR_ERR(trans); 4823 4824 err = btrfs_find_free_ino(root, &objectid); 4825 if (err) 4826 goto out_fail; 4827 4828 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4829 dentry->d_name.len, btrfs_ino(dir), objectid, 4830 S_IFDIR | mode, &index); 4831 if (IS_ERR(inode)) { 4832 err = PTR_ERR(inode); 4833 goto out_fail; 4834 } 4835 4836 drop_on_err = 1; 4837 4838 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4839 if (err) 4840 goto out_fail; 4841 4842 inode->i_op = &btrfs_dir_inode_operations; 4843 inode->i_fop = &btrfs_dir_file_operations; 4844 4845 btrfs_i_size_write(inode, 0); 4846 err = btrfs_update_inode(trans, root, inode); 4847 if (err) 4848 goto out_fail; 4849 4850 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4851 dentry->d_name.len, 0, index); 4852 if (err) 4853 goto out_fail; 4854 4855 d_instantiate(dentry, inode); 4856 drop_on_err = 0; 4857 4858 out_fail: 4859 nr = trans->blocks_used; 4860 btrfs_end_transaction(trans, root); 4861 if (drop_on_err) 4862 iput(inode); 4863 btrfs_btree_balance_dirty(root, nr); 4864 return err; 4865 } 4866 4867 /* helper for btfs_get_extent. Given an existing extent in the tree, 4868 * and an extent that you want to insert, deal with overlap and insert 4869 * the new extent into the tree. 4870 */ 4871 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4872 struct extent_map *existing, 4873 struct extent_map *em, 4874 u64 map_start, u64 map_len) 4875 { 4876 u64 start_diff; 4877 4878 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4879 start_diff = map_start - em->start; 4880 em->start = map_start; 4881 em->len = map_len; 4882 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4883 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4884 em->block_start += start_diff; 4885 em->block_len -= start_diff; 4886 } 4887 return add_extent_mapping(em_tree, em); 4888 } 4889 4890 static noinline int uncompress_inline(struct btrfs_path *path, 4891 struct inode *inode, struct page *page, 4892 size_t pg_offset, u64 extent_offset, 4893 struct btrfs_file_extent_item *item) 4894 { 4895 int ret; 4896 struct extent_buffer *leaf = path->nodes[0]; 4897 char *tmp; 4898 size_t max_size; 4899 unsigned long inline_size; 4900 unsigned long ptr; 4901 int compress_type; 4902 4903 WARN_ON(pg_offset != 0); 4904 compress_type = btrfs_file_extent_compression(leaf, item); 4905 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4906 inline_size = btrfs_file_extent_inline_item_len(leaf, 4907 btrfs_item_nr(leaf, path->slots[0])); 4908 tmp = kmalloc(inline_size, GFP_NOFS); 4909 if (!tmp) 4910 return -ENOMEM; 4911 ptr = btrfs_file_extent_inline_start(item); 4912 4913 read_extent_buffer(leaf, tmp, ptr, inline_size); 4914 4915 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4916 ret = btrfs_decompress(compress_type, tmp, page, 4917 extent_offset, inline_size, max_size); 4918 if (ret) { 4919 char *kaddr = kmap_atomic(page, KM_USER0); 4920 unsigned long copy_size = min_t(u64, 4921 PAGE_CACHE_SIZE - pg_offset, 4922 max_size - extent_offset); 4923 memset(kaddr + pg_offset, 0, copy_size); 4924 kunmap_atomic(kaddr, KM_USER0); 4925 } 4926 kfree(tmp); 4927 return 0; 4928 } 4929 4930 /* 4931 * a bit scary, this does extent mapping from logical file offset to the disk. 4932 * the ugly parts come from merging extents from the disk with the in-ram 4933 * representation. This gets more complex because of the data=ordered code, 4934 * where the in-ram extents might be locked pending data=ordered completion. 4935 * 4936 * This also copies inline extents directly into the page. 4937 */ 4938 4939 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4940 size_t pg_offset, u64 start, u64 len, 4941 int create) 4942 { 4943 int ret; 4944 int err = 0; 4945 u64 bytenr; 4946 u64 extent_start = 0; 4947 u64 extent_end = 0; 4948 u64 objectid = btrfs_ino(inode); 4949 u32 found_type; 4950 struct btrfs_path *path = NULL; 4951 struct btrfs_root *root = BTRFS_I(inode)->root; 4952 struct btrfs_file_extent_item *item; 4953 struct extent_buffer *leaf; 4954 struct btrfs_key found_key; 4955 struct extent_map *em = NULL; 4956 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4957 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4958 struct btrfs_trans_handle *trans = NULL; 4959 int compress_type; 4960 4961 again: 4962 read_lock(&em_tree->lock); 4963 em = lookup_extent_mapping(em_tree, start, len); 4964 if (em) 4965 em->bdev = root->fs_info->fs_devices->latest_bdev; 4966 read_unlock(&em_tree->lock); 4967 4968 if (em) { 4969 if (em->start > start || em->start + em->len <= start) 4970 free_extent_map(em); 4971 else if (em->block_start == EXTENT_MAP_INLINE && page) 4972 free_extent_map(em); 4973 else 4974 goto out; 4975 } 4976 em = alloc_extent_map(); 4977 if (!em) { 4978 err = -ENOMEM; 4979 goto out; 4980 } 4981 em->bdev = root->fs_info->fs_devices->latest_bdev; 4982 em->start = EXTENT_MAP_HOLE; 4983 em->orig_start = EXTENT_MAP_HOLE; 4984 em->len = (u64)-1; 4985 em->block_len = (u64)-1; 4986 4987 if (!path) { 4988 path = btrfs_alloc_path(); 4989 if (!path) { 4990 err = -ENOMEM; 4991 goto out; 4992 } 4993 /* 4994 * Chances are we'll be called again, so go ahead and do 4995 * readahead 4996 */ 4997 path->reada = 1; 4998 } 4999 5000 ret = btrfs_lookup_file_extent(trans, root, path, 5001 objectid, start, trans != NULL); 5002 if (ret < 0) { 5003 err = ret; 5004 goto out; 5005 } 5006 5007 if (ret != 0) { 5008 if (path->slots[0] == 0) 5009 goto not_found; 5010 path->slots[0]--; 5011 } 5012 5013 leaf = path->nodes[0]; 5014 item = btrfs_item_ptr(leaf, path->slots[0], 5015 struct btrfs_file_extent_item); 5016 /* are we inside the extent that was found? */ 5017 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5018 found_type = btrfs_key_type(&found_key); 5019 if (found_key.objectid != objectid || 5020 found_type != BTRFS_EXTENT_DATA_KEY) { 5021 goto not_found; 5022 } 5023 5024 found_type = btrfs_file_extent_type(leaf, item); 5025 extent_start = found_key.offset; 5026 compress_type = btrfs_file_extent_compression(leaf, item); 5027 if (found_type == BTRFS_FILE_EXTENT_REG || 5028 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5029 extent_end = extent_start + 5030 btrfs_file_extent_num_bytes(leaf, item); 5031 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5032 size_t size; 5033 size = btrfs_file_extent_inline_len(leaf, item); 5034 extent_end = (extent_start + size + root->sectorsize - 1) & 5035 ~((u64)root->sectorsize - 1); 5036 } 5037 5038 if (start >= extent_end) { 5039 path->slots[0]++; 5040 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5041 ret = btrfs_next_leaf(root, path); 5042 if (ret < 0) { 5043 err = ret; 5044 goto out; 5045 } 5046 if (ret > 0) 5047 goto not_found; 5048 leaf = path->nodes[0]; 5049 } 5050 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5051 if (found_key.objectid != objectid || 5052 found_key.type != BTRFS_EXTENT_DATA_KEY) 5053 goto not_found; 5054 if (start + len <= found_key.offset) 5055 goto not_found; 5056 em->start = start; 5057 em->len = found_key.offset - start; 5058 goto not_found_em; 5059 } 5060 5061 if (found_type == BTRFS_FILE_EXTENT_REG || 5062 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5063 em->start = extent_start; 5064 em->len = extent_end - extent_start; 5065 em->orig_start = extent_start - 5066 btrfs_file_extent_offset(leaf, item); 5067 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5068 if (bytenr == 0) { 5069 em->block_start = EXTENT_MAP_HOLE; 5070 goto insert; 5071 } 5072 if (compress_type != BTRFS_COMPRESS_NONE) { 5073 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5074 em->compress_type = compress_type; 5075 em->block_start = bytenr; 5076 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5077 item); 5078 } else { 5079 bytenr += btrfs_file_extent_offset(leaf, item); 5080 em->block_start = bytenr; 5081 em->block_len = em->len; 5082 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5083 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5084 } 5085 goto insert; 5086 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5087 unsigned long ptr; 5088 char *map; 5089 size_t size; 5090 size_t extent_offset; 5091 size_t copy_size; 5092 5093 em->block_start = EXTENT_MAP_INLINE; 5094 if (!page || create) { 5095 em->start = extent_start; 5096 em->len = extent_end - extent_start; 5097 goto out; 5098 } 5099 5100 size = btrfs_file_extent_inline_len(leaf, item); 5101 extent_offset = page_offset(page) + pg_offset - extent_start; 5102 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5103 size - extent_offset); 5104 em->start = extent_start + extent_offset; 5105 em->len = (copy_size + root->sectorsize - 1) & 5106 ~((u64)root->sectorsize - 1); 5107 em->orig_start = EXTENT_MAP_INLINE; 5108 if (compress_type) { 5109 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5110 em->compress_type = compress_type; 5111 } 5112 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5113 if (create == 0 && !PageUptodate(page)) { 5114 if (btrfs_file_extent_compression(leaf, item) != 5115 BTRFS_COMPRESS_NONE) { 5116 ret = uncompress_inline(path, inode, page, 5117 pg_offset, 5118 extent_offset, item); 5119 BUG_ON(ret); 5120 } else { 5121 map = kmap(page); 5122 read_extent_buffer(leaf, map + pg_offset, ptr, 5123 copy_size); 5124 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5125 memset(map + pg_offset + copy_size, 0, 5126 PAGE_CACHE_SIZE - pg_offset - 5127 copy_size); 5128 } 5129 kunmap(page); 5130 } 5131 flush_dcache_page(page); 5132 } else if (create && PageUptodate(page)) { 5133 BUG(); 5134 if (!trans) { 5135 kunmap(page); 5136 free_extent_map(em); 5137 em = NULL; 5138 5139 btrfs_release_path(path); 5140 trans = btrfs_join_transaction(root); 5141 5142 if (IS_ERR(trans)) 5143 return ERR_CAST(trans); 5144 goto again; 5145 } 5146 map = kmap(page); 5147 write_extent_buffer(leaf, map + pg_offset, ptr, 5148 copy_size); 5149 kunmap(page); 5150 btrfs_mark_buffer_dirty(leaf); 5151 } 5152 set_extent_uptodate(io_tree, em->start, 5153 extent_map_end(em) - 1, NULL, GFP_NOFS); 5154 goto insert; 5155 } else { 5156 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5157 WARN_ON(1); 5158 } 5159 not_found: 5160 em->start = start; 5161 em->len = len; 5162 not_found_em: 5163 em->block_start = EXTENT_MAP_HOLE; 5164 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5165 insert: 5166 btrfs_release_path(path); 5167 if (em->start > start || extent_map_end(em) <= start) { 5168 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5169 "[%llu %llu]\n", (unsigned long long)em->start, 5170 (unsigned long long)em->len, 5171 (unsigned long long)start, 5172 (unsigned long long)len); 5173 err = -EIO; 5174 goto out; 5175 } 5176 5177 err = 0; 5178 write_lock(&em_tree->lock); 5179 ret = add_extent_mapping(em_tree, em); 5180 /* it is possible that someone inserted the extent into the tree 5181 * while we had the lock dropped. It is also possible that 5182 * an overlapping map exists in the tree 5183 */ 5184 if (ret == -EEXIST) { 5185 struct extent_map *existing; 5186 5187 ret = 0; 5188 5189 existing = lookup_extent_mapping(em_tree, start, len); 5190 if (existing && (existing->start > start || 5191 existing->start + existing->len <= start)) { 5192 free_extent_map(existing); 5193 existing = NULL; 5194 } 5195 if (!existing) { 5196 existing = lookup_extent_mapping(em_tree, em->start, 5197 em->len); 5198 if (existing) { 5199 err = merge_extent_mapping(em_tree, existing, 5200 em, start, 5201 root->sectorsize); 5202 free_extent_map(existing); 5203 if (err) { 5204 free_extent_map(em); 5205 em = NULL; 5206 } 5207 } else { 5208 err = -EIO; 5209 free_extent_map(em); 5210 em = NULL; 5211 } 5212 } else { 5213 free_extent_map(em); 5214 em = existing; 5215 err = 0; 5216 } 5217 } 5218 write_unlock(&em_tree->lock); 5219 out: 5220 5221 trace_btrfs_get_extent(root, em); 5222 5223 if (path) 5224 btrfs_free_path(path); 5225 if (trans) { 5226 ret = btrfs_end_transaction(trans, root); 5227 if (!err) 5228 err = ret; 5229 } 5230 if (err) { 5231 free_extent_map(em); 5232 return ERR_PTR(err); 5233 } 5234 return em; 5235 } 5236 5237 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5238 size_t pg_offset, u64 start, u64 len, 5239 int create) 5240 { 5241 struct extent_map *em; 5242 struct extent_map *hole_em = NULL; 5243 u64 range_start = start; 5244 u64 end; 5245 u64 found; 5246 u64 found_end; 5247 int err = 0; 5248 5249 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5250 if (IS_ERR(em)) 5251 return em; 5252 if (em) { 5253 /* 5254 * if our em maps to a hole, there might 5255 * actually be delalloc bytes behind it 5256 */ 5257 if (em->block_start != EXTENT_MAP_HOLE) 5258 return em; 5259 else 5260 hole_em = em; 5261 } 5262 5263 /* check to see if we've wrapped (len == -1 or similar) */ 5264 end = start + len; 5265 if (end < start) 5266 end = (u64)-1; 5267 else 5268 end -= 1; 5269 5270 em = NULL; 5271 5272 /* ok, we didn't find anything, lets look for delalloc */ 5273 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5274 end, len, EXTENT_DELALLOC, 1); 5275 found_end = range_start + found; 5276 if (found_end < range_start) 5277 found_end = (u64)-1; 5278 5279 /* 5280 * we didn't find anything useful, return 5281 * the original results from get_extent() 5282 */ 5283 if (range_start > end || found_end <= start) { 5284 em = hole_em; 5285 hole_em = NULL; 5286 goto out; 5287 } 5288 5289 /* adjust the range_start to make sure it doesn't 5290 * go backwards from the start they passed in 5291 */ 5292 range_start = max(start,range_start); 5293 found = found_end - range_start; 5294 5295 if (found > 0) { 5296 u64 hole_start = start; 5297 u64 hole_len = len; 5298 5299 em = alloc_extent_map(); 5300 if (!em) { 5301 err = -ENOMEM; 5302 goto out; 5303 } 5304 /* 5305 * when btrfs_get_extent can't find anything it 5306 * returns one huge hole 5307 * 5308 * make sure what it found really fits our range, and 5309 * adjust to make sure it is based on the start from 5310 * the caller 5311 */ 5312 if (hole_em) { 5313 u64 calc_end = extent_map_end(hole_em); 5314 5315 if (calc_end <= start || (hole_em->start > end)) { 5316 free_extent_map(hole_em); 5317 hole_em = NULL; 5318 } else { 5319 hole_start = max(hole_em->start, start); 5320 hole_len = calc_end - hole_start; 5321 } 5322 } 5323 em->bdev = NULL; 5324 if (hole_em && range_start > hole_start) { 5325 /* our hole starts before our delalloc, so we 5326 * have to return just the parts of the hole 5327 * that go until the delalloc starts 5328 */ 5329 em->len = min(hole_len, 5330 range_start - hole_start); 5331 em->start = hole_start; 5332 em->orig_start = hole_start; 5333 /* 5334 * don't adjust block start at all, 5335 * it is fixed at EXTENT_MAP_HOLE 5336 */ 5337 em->block_start = hole_em->block_start; 5338 em->block_len = hole_len; 5339 } else { 5340 em->start = range_start; 5341 em->len = found; 5342 em->orig_start = range_start; 5343 em->block_start = EXTENT_MAP_DELALLOC; 5344 em->block_len = found; 5345 } 5346 } else if (hole_em) { 5347 return hole_em; 5348 } 5349 out: 5350 5351 free_extent_map(hole_em); 5352 if (err) { 5353 free_extent_map(em); 5354 return ERR_PTR(err); 5355 } 5356 return em; 5357 } 5358 5359 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5360 struct extent_map *em, 5361 u64 start, u64 len) 5362 { 5363 struct btrfs_root *root = BTRFS_I(inode)->root; 5364 struct btrfs_trans_handle *trans; 5365 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5366 struct btrfs_key ins; 5367 u64 alloc_hint; 5368 int ret; 5369 bool insert = false; 5370 5371 /* 5372 * Ok if the extent map we looked up is a hole and is for the exact 5373 * range we want, there is no reason to allocate a new one, however if 5374 * it is not right then we need to free this one and drop the cache for 5375 * our range. 5376 */ 5377 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5378 em->len != len) { 5379 free_extent_map(em); 5380 em = NULL; 5381 insert = true; 5382 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5383 } 5384 5385 trans = btrfs_join_transaction(root); 5386 if (IS_ERR(trans)) 5387 return ERR_CAST(trans); 5388 5389 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5390 btrfs_add_inode_defrag(trans, inode); 5391 5392 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5393 5394 alloc_hint = get_extent_allocation_hint(inode, start, len); 5395 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5396 alloc_hint, (u64)-1, &ins, 1); 5397 if (ret) { 5398 em = ERR_PTR(ret); 5399 goto out; 5400 } 5401 5402 if (!em) { 5403 em = alloc_extent_map(); 5404 if (!em) { 5405 em = ERR_PTR(-ENOMEM); 5406 goto out; 5407 } 5408 } 5409 5410 em->start = start; 5411 em->orig_start = em->start; 5412 em->len = ins.offset; 5413 5414 em->block_start = ins.objectid; 5415 em->block_len = ins.offset; 5416 em->bdev = root->fs_info->fs_devices->latest_bdev; 5417 5418 /* 5419 * We need to do this because if we're using the original em we searched 5420 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5421 */ 5422 em->flags = 0; 5423 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5424 5425 while (insert) { 5426 write_lock(&em_tree->lock); 5427 ret = add_extent_mapping(em_tree, em); 5428 write_unlock(&em_tree->lock); 5429 if (ret != -EEXIST) 5430 break; 5431 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5432 } 5433 5434 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5435 ins.offset, ins.offset, 0); 5436 if (ret) { 5437 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5438 em = ERR_PTR(ret); 5439 } 5440 out: 5441 btrfs_end_transaction(trans, root); 5442 return em; 5443 } 5444 5445 /* 5446 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5447 * block must be cow'd 5448 */ 5449 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5450 struct inode *inode, u64 offset, u64 len) 5451 { 5452 struct btrfs_path *path; 5453 int ret; 5454 struct extent_buffer *leaf; 5455 struct btrfs_root *root = BTRFS_I(inode)->root; 5456 struct btrfs_file_extent_item *fi; 5457 struct btrfs_key key; 5458 u64 disk_bytenr; 5459 u64 backref_offset; 5460 u64 extent_end; 5461 u64 num_bytes; 5462 int slot; 5463 int found_type; 5464 5465 path = btrfs_alloc_path(); 5466 if (!path) 5467 return -ENOMEM; 5468 5469 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5470 offset, 0); 5471 if (ret < 0) 5472 goto out; 5473 5474 slot = path->slots[0]; 5475 if (ret == 1) { 5476 if (slot == 0) { 5477 /* can't find the item, must cow */ 5478 ret = 0; 5479 goto out; 5480 } 5481 slot--; 5482 } 5483 ret = 0; 5484 leaf = path->nodes[0]; 5485 btrfs_item_key_to_cpu(leaf, &key, slot); 5486 if (key.objectid != btrfs_ino(inode) || 5487 key.type != BTRFS_EXTENT_DATA_KEY) { 5488 /* not our file or wrong item type, must cow */ 5489 goto out; 5490 } 5491 5492 if (key.offset > offset) { 5493 /* Wrong offset, must cow */ 5494 goto out; 5495 } 5496 5497 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5498 found_type = btrfs_file_extent_type(leaf, fi); 5499 if (found_type != BTRFS_FILE_EXTENT_REG && 5500 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5501 /* not a regular extent, must cow */ 5502 goto out; 5503 } 5504 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5505 backref_offset = btrfs_file_extent_offset(leaf, fi); 5506 5507 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5508 if (extent_end < offset + len) { 5509 /* extent doesn't include our full range, must cow */ 5510 goto out; 5511 } 5512 5513 if (btrfs_extent_readonly(root, disk_bytenr)) 5514 goto out; 5515 5516 /* 5517 * look for other files referencing this extent, if we 5518 * find any we must cow 5519 */ 5520 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5521 key.offset - backref_offset, disk_bytenr)) 5522 goto out; 5523 5524 /* 5525 * adjust disk_bytenr and num_bytes to cover just the bytes 5526 * in this extent we are about to write. If there 5527 * are any csums in that range we have to cow in order 5528 * to keep the csums correct 5529 */ 5530 disk_bytenr += backref_offset; 5531 disk_bytenr += offset - key.offset; 5532 num_bytes = min(offset + len, extent_end) - offset; 5533 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5534 goto out; 5535 /* 5536 * all of the above have passed, it is safe to overwrite this extent 5537 * without cow 5538 */ 5539 ret = 1; 5540 out: 5541 btrfs_free_path(path); 5542 return ret; 5543 } 5544 5545 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5546 struct buffer_head *bh_result, int create) 5547 { 5548 struct extent_map *em; 5549 struct btrfs_root *root = BTRFS_I(inode)->root; 5550 u64 start = iblock << inode->i_blkbits; 5551 u64 len = bh_result->b_size; 5552 struct btrfs_trans_handle *trans; 5553 5554 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5555 if (IS_ERR(em)) 5556 return PTR_ERR(em); 5557 5558 /* 5559 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5560 * io. INLINE is special, and we could probably kludge it in here, but 5561 * it's still buffered so for safety lets just fall back to the generic 5562 * buffered path. 5563 * 5564 * For COMPRESSED we _have_ to read the entire extent in so we can 5565 * decompress it, so there will be buffering required no matter what we 5566 * do, so go ahead and fallback to buffered. 5567 * 5568 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5569 * to buffered IO. Don't blame me, this is the price we pay for using 5570 * the generic code. 5571 */ 5572 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5573 em->block_start == EXTENT_MAP_INLINE) { 5574 free_extent_map(em); 5575 return -ENOTBLK; 5576 } 5577 5578 /* Just a good old fashioned hole, return */ 5579 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5580 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5581 free_extent_map(em); 5582 /* DIO will do one hole at a time, so just unlock a sector */ 5583 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5584 start + root->sectorsize - 1, GFP_NOFS); 5585 return 0; 5586 } 5587 5588 /* 5589 * We don't allocate a new extent in the following cases 5590 * 5591 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5592 * existing extent. 5593 * 2) The extent is marked as PREALLOC. We're good to go here and can 5594 * just use the extent. 5595 * 5596 */ 5597 if (!create) { 5598 len = em->len - (start - em->start); 5599 goto map; 5600 } 5601 5602 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5603 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5604 em->block_start != EXTENT_MAP_HOLE)) { 5605 int type; 5606 int ret; 5607 u64 block_start; 5608 5609 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5610 type = BTRFS_ORDERED_PREALLOC; 5611 else 5612 type = BTRFS_ORDERED_NOCOW; 5613 len = min(len, em->len - (start - em->start)); 5614 block_start = em->block_start + (start - em->start); 5615 5616 /* 5617 * we're not going to log anything, but we do need 5618 * to make sure the current transaction stays open 5619 * while we look for nocow cross refs 5620 */ 5621 trans = btrfs_join_transaction(root); 5622 if (IS_ERR(trans)) 5623 goto must_cow; 5624 5625 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5626 ret = btrfs_add_ordered_extent_dio(inode, start, 5627 block_start, len, len, type); 5628 btrfs_end_transaction(trans, root); 5629 if (ret) { 5630 free_extent_map(em); 5631 return ret; 5632 } 5633 goto unlock; 5634 } 5635 btrfs_end_transaction(trans, root); 5636 } 5637 must_cow: 5638 /* 5639 * this will cow the extent, reset the len in case we changed 5640 * it above 5641 */ 5642 len = bh_result->b_size; 5643 em = btrfs_new_extent_direct(inode, em, start, len); 5644 if (IS_ERR(em)) 5645 return PTR_ERR(em); 5646 len = min(len, em->len - (start - em->start)); 5647 unlock: 5648 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5649 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5650 0, NULL, GFP_NOFS); 5651 map: 5652 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5653 inode->i_blkbits; 5654 bh_result->b_size = len; 5655 bh_result->b_bdev = em->bdev; 5656 set_buffer_mapped(bh_result); 5657 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5658 set_buffer_new(bh_result); 5659 5660 free_extent_map(em); 5661 5662 return 0; 5663 } 5664 5665 struct btrfs_dio_private { 5666 struct inode *inode; 5667 u64 logical_offset; 5668 u64 disk_bytenr; 5669 u64 bytes; 5670 u32 *csums; 5671 void *private; 5672 5673 /* number of bios pending for this dio */ 5674 atomic_t pending_bios; 5675 5676 /* IO errors */ 5677 int errors; 5678 5679 struct bio *orig_bio; 5680 }; 5681 5682 static void btrfs_endio_direct_read(struct bio *bio, int err) 5683 { 5684 struct btrfs_dio_private *dip = bio->bi_private; 5685 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5686 struct bio_vec *bvec = bio->bi_io_vec; 5687 struct inode *inode = dip->inode; 5688 struct btrfs_root *root = BTRFS_I(inode)->root; 5689 u64 start; 5690 u32 *private = dip->csums; 5691 5692 start = dip->logical_offset; 5693 do { 5694 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5695 struct page *page = bvec->bv_page; 5696 char *kaddr; 5697 u32 csum = ~(u32)0; 5698 unsigned long flags; 5699 5700 local_irq_save(flags); 5701 kaddr = kmap_atomic(page, KM_IRQ0); 5702 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5703 csum, bvec->bv_len); 5704 btrfs_csum_final(csum, (char *)&csum); 5705 kunmap_atomic(kaddr, KM_IRQ0); 5706 local_irq_restore(flags); 5707 5708 flush_dcache_page(bvec->bv_page); 5709 if (csum != *private) { 5710 printk(KERN_ERR "btrfs csum failed ino %llu off" 5711 " %llu csum %u private %u\n", 5712 (unsigned long long)btrfs_ino(inode), 5713 (unsigned long long)start, 5714 csum, *private); 5715 err = -EIO; 5716 } 5717 } 5718 5719 start += bvec->bv_len; 5720 private++; 5721 bvec++; 5722 } while (bvec <= bvec_end); 5723 5724 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5725 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5726 bio->bi_private = dip->private; 5727 5728 kfree(dip->csums); 5729 kfree(dip); 5730 5731 /* If we had a csum failure make sure to clear the uptodate flag */ 5732 if (err) 5733 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5734 dio_end_io(bio, err); 5735 } 5736 5737 static void btrfs_endio_direct_write(struct bio *bio, int err) 5738 { 5739 struct btrfs_dio_private *dip = bio->bi_private; 5740 struct inode *inode = dip->inode; 5741 struct btrfs_root *root = BTRFS_I(inode)->root; 5742 struct btrfs_trans_handle *trans; 5743 struct btrfs_ordered_extent *ordered = NULL; 5744 struct extent_state *cached_state = NULL; 5745 u64 ordered_offset = dip->logical_offset; 5746 u64 ordered_bytes = dip->bytes; 5747 int ret; 5748 5749 if (err) 5750 goto out_done; 5751 again: 5752 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5753 &ordered_offset, 5754 ordered_bytes); 5755 if (!ret) 5756 goto out_test; 5757 5758 BUG_ON(!ordered); 5759 5760 trans = btrfs_join_transaction(root); 5761 if (IS_ERR(trans)) { 5762 err = -ENOMEM; 5763 goto out; 5764 } 5765 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5766 5767 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5768 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5769 if (!ret) 5770 err = btrfs_update_inode_fallback(trans, root, inode); 5771 goto out; 5772 } 5773 5774 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5775 ordered->file_offset + ordered->len - 1, 0, 5776 &cached_state, GFP_NOFS); 5777 5778 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5779 ret = btrfs_mark_extent_written(trans, inode, 5780 ordered->file_offset, 5781 ordered->file_offset + 5782 ordered->len); 5783 if (ret) { 5784 err = ret; 5785 goto out_unlock; 5786 } 5787 } else { 5788 ret = insert_reserved_file_extent(trans, inode, 5789 ordered->file_offset, 5790 ordered->start, 5791 ordered->disk_len, 5792 ordered->len, 5793 ordered->len, 5794 0, 0, 0, 5795 BTRFS_FILE_EXTENT_REG); 5796 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5797 ordered->file_offset, ordered->len); 5798 if (ret) { 5799 err = ret; 5800 WARN_ON(1); 5801 goto out_unlock; 5802 } 5803 } 5804 5805 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5806 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5807 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 5808 btrfs_update_inode_fallback(trans, root, inode); 5809 ret = 0; 5810 out_unlock: 5811 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5812 ordered->file_offset + ordered->len - 1, 5813 &cached_state, GFP_NOFS); 5814 out: 5815 btrfs_delalloc_release_metadata(inode, ordered->len); 5816 btrfs_end_transaction(trans, root); 5817 ordered_offset = ordered->file_offset + ordered->len; 5818 btrfs_put_ordered_extent(ordered); 5819 btrfs_put_ordered_extent(ordered); 5820 5821 out_test: 5822 /* 5823 * our bio might span multiple ordered extents. If we haven't 5824 * completed the accounting for the whole dio, go back and try again 5825 */ 5826 if (ordered_offset < dip->logical_offset + dip->bytes) { 5827 ordered_bytes = dip->logical_offset + dip->bytes - 5828 ordered_offset; 5829 goto again; 5830 } 5831 out_done: 5832 bio->bi_private = dip->private; 5833 5834 kfree(dip->csums); 5835 kfree(dip); 5836 5837 /* If we had an error make sure to clear the uptodate flag */ 5838 if (err) 5839 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5840 dio_end_io(bio, err); 5841 } 5842 5843 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5844 struct bio *bio, int mirror_num, 5845 unsigned long bio_flags, u64 offset) 5846 { 5847 int ret; 5848 struct btrfs_root *root = BTRFS_I(inode)->root; 5849 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5850 BUG_ON(ret); 5851 return 0; 5852 } 5853 5854 static void btrfs_end_dio_bio(struct bio *bio, int err) 5855 { 5856 struct btrfs_dio_private *dip = bio->bi_private; 5857 5858 if (err) { 5859 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 5860 "sector %#Lx len %u err no %d\n", 5861 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 5862 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5863 dip->errors = 1; 5864 5865 /* 5866 * before atomic variable goto zero, we must make sure 5867 * dip->errors is perceived to be set. 5868 */ 5869 smp_mb__before_atomic_dec(); 5870 } 5871 5872 /* if there are more bios still pending for this dio, just exit */ 5873 if (!atomic_dec_and_test(&dip->pending_bios)) 5874 goto out; 5875 5876 if (dip->errors) 5877 bio_io_error(dip->orig_bio); 5878 else { 5879 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5880 bio_endio(dip->orig_bio, 0); 5881 } 5882 out: 5883 bio_put(bio); 5884 } 5885 5886 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5887 u64 first_sector, gfp_t gfp_flags) 5888 { 5889 int nr_vecs = bio_get_nr_vecs(bdev); 5890 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5891 } 5892 5893 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5894 int rw, u64 file_offset, int skip_sum, 5895 u32 *csums, int async_submit) 5896 { 5897 int write = rw & REQ_WRITE; 5898 struct btrfs_root *root = BTRFS_I(inode)->root; 5899 int ret; 5900 5901 bio_get(bio); 5902 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5903 if (ret) 5904 goto err; 5905 5906 if (skip_sum) 5907 goto map; 5908 5909 if (write && async_submit) { 5910 ret = btrfs_wq_submit_bio(root->fs_info, 5911 inode, rw, bio, 0, 0, 5912 file_offset, 5913 __btrfs_submit_bio_start_direct_io, 5914 __btrfs_submit_bio_done); 5915 goto err; 5916 } else if (write) { 5917 /* 5918 * If we aren't doing async submit, calculate the csum of the 5919 * bio now. 5920 */ 5921 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 5922 if (ret) 5923 goto err; 5924 } else if (!skip_sum) { 5925 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, 5926 file_offset, csums); 5927 if (ret) 5928 goto err; 5929 } 5930 5931 map: 5932 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 5933 err: 5934 bio_put(bio); 5935 return ret; 5936 } 5937 5938 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5939 int skip_sum) 5940 { 5941 struct inode *inode = dip->inode; 5942 struct btrfs_root *root = BTRFS_I(inode)->root; 5943 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5944 struct bio *bio; 5945 struct bio *orig_bio = dip->orig_bio; 5946 struct bio_vec *bvec = orig_bio->bi_io_vec; 5947 u64 start_sector = orig_bio->bi_sector; 5948 u64 file_offset = dip->logical_offset; 5949 u64 submit_len = 0; 5950 u64 map_length; 5951 int nr_pages = 0; 5952 u32 *csums = dip->csums; 5953 int ret = 0; 5954 int async_submit = 0; 5955 int write = rw & REQ_WRITE; 5956 5957 map_length = orig_bio->bi_size; 5958 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5959 &map_length, NULL, 0); 5960 if (ret) { 5961 bio_put(orig_bio); 5962 return -EIO; 5963 } 5964 5965 if (map_length >= orig_bio->bi_size) { 5966 bio = orig_bio; 5967 goto submit; 5968 } 5969 5970 async_submit = 1; 5971 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5972 if (!bio) 5973 return -ENOMEM; 5974 bio->bi_private = dip; 5975 bio->bi_end_io = btrfs_end_dio_bio; 5976 atomic_inc(&dip->pending_bios); 5977 5978 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5979 if (unlikely(map_length < submit_len + bvec->bv_len || 5980 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5981 bvec->bv_offset) < bvec->bv_len)) { 5982 /* 5983 * inc the count before we submit the bio so 5984 * we know the end IO handler won't happen before 5985 * we inc the count. Otherwise, the dip might get freed 5986 * before we're done setting it up 5987 */ 5988 atomic_inc(&dip->pending_bios); 5989 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5990 file_offset, skip_sum, 5991 csums, async_submit); 5992 if (ret) { 5993 bio_put(bio); 5994 atomic_dec(&dip->pending_bios); 5995 goto out_err; 5996 } 5997 5998 /* Write's use the ordered csums */ 5999 if (!write && !skip_sum) 6000 csums = csums + nr_pages; 6001 start_sector += submit_len >> 9; 6002 file_offset += submit_len; 6003 6004 submit_len = 0; 6005 nr_pages = 0; 6006 6007 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6008 start_sector, GFP_NOFS); 6009 if (!bio) 6010 goto out_err; 6011 bio->bi_private = dip; 6012 bio->bi_end_io = btrfs_end_dio_bio; 6013 6014 map_length = orig_bio->bi_size; 6015 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6016 &map_length, NULL, 0); 6017 if (ret) { 6018 bio_put(bio); 6019 goto out_err; 6020 } 6021 } else { 6022 submit_len += bvec->bv_len; 6023 nr_pages ++; 6024 bvec++; 6025 } 6026 } 6027 6028 submit: 6029 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6030 csums, async_submit); 6031 if (!ret) 6032 return 0; 6033 6034 bio_put(bio); 6035 out_err: 6036 dip->errors = 1; 6037 /* 6038 * before atomic variable goto zero, we must 6039 * make sure dip->errors is perceived to be set. 6040 */ 6041 smp_mb__before_atomic_dec(); 6042 if (atomic_dec_and_test(&dip->pending_bios)) 6043 bio_io_error(dip->orig_bio); 6044 6045 /* bio_end_io() will handle error, so we needn't return it */ 6046 return 0; 6047 } 6048 6049 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6050 loff_t file_offset) 6051 { 6052 struct btrfs_root *root = BTRFS_I(inode)->root; 6053 struct btrfs_dio_private *dip; 6054 struct bio_vec *bvec = bio->bi_io_vec; 6055 int skip_sum; 6056 int write = rw & REQ_WRITE; 6057 int ret = 0; 6058 6059 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6060 6061 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6062 if (!dip) { 6063 ret = -ENOMEM; 6064 goto free_ordered; 6065 } 6066 dip->csums = NULL; 6067 6068 /* Write's use the ordered csum stuff, so we don't need dip->csums */ 6069 if (!write && !skip_sum) { 6070 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6071 if (!dip->csums) { 6072 kfree(dip); 6073 ret = -ENOMEM; 6074 goto free_ordered; 6075 } 6076 } 6077 6078 dip->private = bio->bi_private; 6079 dip->inode = inode; 6080 dip->logical_offset = file_offset; 6081 6082 dip->bytes = 0; 6083 do { 6084 dip->bytes += bvec->bv_len; 6085 bvec++; 6086 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6087 6088 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6089 bio->bi_private = dip; 6090 dip->errors = 0; 6091 dip->orig_bio = bio; 6092 atomic_set(&dip->pending_bios, 0); 6093 6094 if (write) 6095 bio->bi_end_io = btrfs_endio_direct_write; 6096 else 6097 bio->bi_end_io = btrfs_endio_direct_read; 6098 6099 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6100 if (!ret) 6101 return; 6102 free_ordered: 6103 /* 6104 * If this is a write, we need to clean up the reserved space and kill 6105 * the ordered extent. 6106 */ 6107 if (write) { 6108 struct btrfs_ordered_extent *ordered; 6109 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6110 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6111 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6112 btrfs_free_reserved_extent(root, ordered->start, 6113 ordered->disk_len); 6114 btrfs_put_ordered_extent(ordered); 6115 btrfs_put_ordered_extent(ordered); 6116 } 6117 bio_endio(bio, ret); 6118 } 6119 6120 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6121 const struct iovec *iov, loff_t offset, 6122 unsigned long nr_segs) 6123 { 6124 int seg; 6125 int i; 6126 size_t size; 6127 unsigned long addr; 6128 unsigned blocksize_mask = root->sectorsize - 1; 6129 ssize_t retval = -EINVAL; 6130 loff_t end = offset; 6131 6132 if (offset & blocksize_mask) 6133 goto out; 6134 6135 /* Check the memory alignment. Blocks cannot straddle pages */ 6136 for (seg = 0; seg < nr_segs; seg++) { 6137 addr = (unsigned long)iov[seg].iov_base; 6138 size = iov[seg].iov_len; 6139 end += size; 6140 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6141 goto out; 6142 6143 /* If this is a write we don't need to check anymore */ 6144 if (rw & WRITE) 6145 continue; 6146 6147 /* 6148 * Check to make sure we don't have duplicate iov_base's in this 6149 * iovec, if so return EINVAL, otherwise we'll get csum errors 6150 * when reading back. 6151 */ 6152 for (i = seg + 1; i < nr_segs; i++) { 6153 if (iov[seg].iov_base == iov[i].iov_base) 6154 goto out; 6155 } 6156 } 6157 retval = 0; 6158 out: 6159 return retval; 6160 } 6161 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6162 const struct iovec *iov, loff_t offset, 6163 unsigned long nr_segs) 6164 { 6165 struct file *file = iocb->ki_filp; 6166 struct inode *inode = file->f_mapping->host; 6167 struct btrfs_ordered_extent *ordered; 6168 struct extent_state *cached_state = NULL; 6169 u64 lockstart, lockend; 6170 ssize_t ret; 6171 int writing = rw & WRITE; 6172 int write_bits = 0; 6173 size_t count = iov_length(iov, nr_segs); 6174 6175 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6176 offset, nr_segs)) { 6177 return 0; 6178 } 6179 6180 lockstart = offset; 6181 lockend = offset + count - 1; 6182 6183 if (writing) { 6184 ret = btrfs_delalloc_reserve_space(inode, count); 6185 if (ret) 6186 goto out; 6187 } 6188 6189 while (1) { 6190 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6191 0, &cached_state, GFP_NOFS); 6192 /* 6193 * We're concerned with the entire range that we're going to be 6194 * doing DIO to, so we need to make sure theres no ordered 6195 * extents in this range. 6196 */ 6197 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6198 lockend - lockstart + 1); 6199 if (!ordered) 6200 break; 6201 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6202 &cached_state, GFP_NOFS); 6203 btrfs_start_ordered_extent(inode, ordered, 1); 6204 btrfs_put_ordered_extent(ordered); 6205 cond_resched(); 6206 } 6207 6208 /* 6209 * we don't use btrfs_set_extent_delalloc because we don't want 6210 * the dirty or uptodate bits 6211 */ 6212 if (writing) { 6213 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6214 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6215 EXTENT_DELALLOC, 0, NULL, &cached_state, 6216 GFP_NOFS); 6217 if (ret) { 6218 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6219 lockend, EXTENT_LOCKED | write_bits, 6220 1, 0, &cached_state, GFP_NOFS); 6221 goto out; 6222 } 6223 } 6224 6225 free_extent_state(cached_state); 6226 cached_state = NULL; 6227 6228 ret = __blockdev_direct_IO(rw, iocb, inode, 6229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6230 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6231 btrfs_submit_direct, 0); 6232 6233 if (ret < 0 && ret != -EIOCBQUEUED) { 6234 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6235 offset + iov_length(iov, nr_segs) - 1, 6236 EXTENT_LOCKED | write_bits, 1, 0, 6237 &cached_state, GFP_NOFS); 6238 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6239 /* 6240 * We're falling back to buffered, unlock the section we didn't 6241 * do IO on. 6242 */ 6243 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6244 offset + iov_length(iov, nr_segs) - 1, 6245 EXTENT_LOCKED | write_bits, 1, 0, 6246 &cached_state, GFP_NOFS); 6247 } 6248 out: 6249 free_extent_state(cached_state); 6250 return ret; 6251 } 6252 6253 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6254 __u64 start, __u64 len) 6255 { 6256 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6257 } 6258 6259 int btrfs_readpage(struct file *file, struct page *page) 6260 { 6261 struct extent_io_tree *tree; 6262 tree = &BTRFS_I(page->mapping->host)->io_tree; 6263 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 6264 } 6265 6266 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6267 { 6268 struct extent_io_tree *tree; 6269 6270 6271 if (current->flags & PF_MEMALLOC) { 6272 redirty_page_for_writepage(wbc, page); 6273 unlock_page(page); 6274 return 0; 6275 } 6276 tree = &BTRFS_I(page->mapping->host)->io_tree; 6277 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6278 } 6279 6280 int btrfs_writepages(struct address_space *mapping, 6281 struct writeback_control *wbc) 6282 { 6283 struct extent_io_tree *tree; 6284 6285 tree = &BTRFS_I(mapping->host)->io_tree; 6286 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6287 } 6288 6289 static int 6290 btrfs_readpages(struct file *file, struct address_space *mapping, 6291 struct list_head *pages, unsigned nr_pages) 6292 { 6293 struct extent_io_tree *tree; 6294 tree = &BTRFS_I(mapping->host)->io_tree; 6295 return extent_readpages(tree, mapping, pages, nr_pages, 6296 btrfs_get_extent); 6297 } 6298 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6299 { 6300 struct extent_io_tree *tree; 6301 struct extent_map_tree *map; 6302 int ret; 6303 6304 tree = &BTRFS_I(page->mapping->host)->io_tree; 6305 map = &BTRFS_I(page->mapping->host)->extent_tree; 6306 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6307 if (ret == 1) { 6308 ClearPagePrivate(page); 6309 set_page_private(page, 0); 6310 page_cache_release(page); 6311 } 6312 return ret; 6313 } 6314 6315 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6316 { 6317 if (PageWriteback(page) || PageDirty(page)) 6318 return 0; 6319 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6320 } 6321 6322 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6323 { 6324 struct extent_io_tree *tree; 6325 struct btrfs_ordered_extent *ordered; 6326 struct extent_state *cached_state = NULL; 6327 u64 page_start = page_offset(page); 6328 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6329 6330 6331 /* 6332 * we have the page locked, so new writeback can't start, 6333 * and the dirty bit won't be cleared while we are here. 6334 * 6335 * Wait for IO on this page so that we can safely clear 6336 * the PagePrivate2 bit and do ordered accounting 6337 */ 6338 wait_on_page_writeback(page); 6339 6340 tree = &BTRFS_I(page->mapping->host)->io_tree; 6341 if (offset) { 6342 btrfs_releasepage(page, GFP_NOFS); 6343 return; 6344 } 6345 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6346 GFP_NOFS); 6347 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6348 page_offset(page)); 6349 if (ordered) { 6350 /* 6351 * IO on this page will never be started, so we need 6352 * to account for any ordered extents now 6353 */ 6354 clear_extent_bit(tree, page_start, page_end, 6355 EXTENT_DIRTY | EXTENT_DELALLOC | 6356 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6357 &cached_state, GFP_NOFS); 6358 /* 6359 * whoever cleared the private bit is responsible 6360 * for the finish_ordered_io 6361 */ 6362 if (TestClearPagePrivate2(page)) { 6363 btrfs_finish_ordered_io(page->mapping->host, 6364 page_start, page_end); 6365 } 6366 btrfs_put_ordered_extent(ordered); 6367 cached_state = NULL; 6368 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6369 GFP_NOFS); 6370 } 6371 clear_extent_bit(tree, page_start, page_end, 6372 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6373 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6374 __btrfs_releasepage(page, GFP_NOFS); 6375 6376 ClearPageChecked(page); 6377 if (PagePrivate(page)) { 6378 ClearPagePrivate(page); 6379 set_page_private(page, 0); 6380 page_cache_release(page); 6381 } 6382 } 6383 6384 /* 6385 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6386 * called from a page fault handler when a page is first dirtied. Hence we must 6387 * be careful to check for EOF conditions here. We set the page up correctly 6388 * for a written page which means we get ENOSPC checking when writing into 6389 * holes and correct delalloc and unwritten extent mapping on filesystems that 6390 * support these features. 6391 * 6392 * We are not allowed to take the i_mutex here so we have to play games to 6393 * protect against truncate races as the page could now be beyond EOF. Because 6394 * vmtruncate() writes the inode size before removing pages, once we have the 6395 * page lock we can determine safely if the page is beyond EOF. If it is not 6396 * beyond EOF, then the page is guaranteed safe against truncation until we 6397 * unlock the page. 6398 */ 6399 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6400 { 6401 struct page *page = vmf->page; 6402 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6403 struct btrfs_root *root = BTRFS_I(inode)->root; 6404 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6405 struct btrfs_ordered_extent *ordered; 6406 struct extent_state *cached_state = NULL; 6407 char *kaddr; 6408 unsigned long zero_start; 6409 loff_t size; 6410 int ret; 6411 u64 page_start; 6412 u64 page_end; 6413 6414 /* Need this to keep space reservations serialized */ 6415 mutex_lock(&inode->i_mutex); 6416 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6417 mutex_unlock(&inode->i_mutex); 6418 if (!ret) 6419 ret = btrfs_update_time(vma->vm_file); 6420 if (ret) { 6421 if (ret == -ENOMEM) 6422 ret = VM_FAULT_OOM; 6423 else /* -ENOSPC, -EIO, etc */ 6424 ret = VM_FAULT_SIGBUS; 6425 goto out; 6426 } 6427 6428 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6429 again: 6430 lock_page(page); 6431 size = i_size_read(inode); 6432 page_start = page_offset(page); 6433 page_end = page_start + PAGE_CACHE_SIZE - 1; 6434 6435 if ((page->mapping != inode->i_mapping) || 6436 (page_start >= size)) { 6437 /* page got truncated out from underneath us */ 6438 goto out_unlock; 6439 } 6440 wait_on_page_writeback(page); 6441 6442 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6443 GFP_NOFS); 6444 set_page_extent_mapped(page); 6445 6446 /* 6447 * we can't set the delalloc bits if there are pending ordered 6448 * extents. Drop our locks and wait for them to finish 6449 */ 6450 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6451 if (ordered) { 6452 unlock_extent_cached(io_tree, page_start, page_end, 6453 &cached_state, GFP_NOFS); 6454 unlock_page(page); 6455 btrfs_start_ordered_extent(inode, ordered, 1); 6456 btrfs_put_ordered_extent(ordered); 6457 goto again; 6458 } 6459 6460 /* 6461 * XXX - page_mkwrite gets called every time the page is dirtied, even 6462 * if it was already dirty, so for space accounting reasons we need to 6463 * clear any delalloc bits for the range we are fixing to save. There 6464 * is probably a better way to do this, but for now keep consistent with 6465 * prepare_pages in the normal write path. 6466 */ 6467 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6468 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6469 0, 0, &cached_state, GFP_NOFS); 6470 6471 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6472 &cached_state); 6473 if (ret) { 6474 unlock_extent_cached(io_tree, page_start, page_end, 6475 &cached_state, GFP_NOFS); 6476 ret = VM_FAULT_SIGBUS; 6477 goto out_unlock; 6478 } 6479 ret = 0; 6480 6481 /* page is wholly or partially inside EOF */ 6482 if (page_start + PAGE_CACHE_SIZE > size) 6483 zero_start = size & ~PAGE_CACHE_MASK; 6484 else 6485 zero_start = PAGE_CACHE_SIZE; 6486 6487 if (zero_start != PAGE_CACHE_SIZE) { 6488 kaddr = kmap(page); 6489 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6490 flush_dcache_page(page); 6491 kunmap(page); 6492 } 6493 ClearPageChecked(page); 6494 set_page_dirty(page); 6495 SetPageUptodate(page); 6496 6497 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6498 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6499 6500 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6501 6502 out_unlock: 6503 if (!ret) 6504 return VM_FAULT_LOCKED; 6505 unlock_page(page); 6506 out: 6507 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6508 return ret; 6509 } 6510 6511 static int btrfs_truncate(struct inode *inode) 6512 { 6513 struct btrfs_root *root = BTRFS_I(inode)->root; 6514 struct btrfs_block_rsv *rsv; 6515 int ret; 6516 int err = 0; 6517 struct btrfs_trans_handle *trans; 6518 unsigned long nr; 6519 u64 mask = root->sectorsize - 1; 6520 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 6521 6522 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6523 if (ret) 6524 return ret; 6525 6526 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6527 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6528 6529 /* 6530 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6531 * 3 things going on here 6532 * 6533 * 1) We need to reserve space for our orphan item and the space to 6534 * delete our orphan item. Lord knows we don't want to have a dangling 6535 * orphan item because we didn't reserve space to remove it. 6536 * 6537 * 2) We need to reserve space to update our inode. 6538 * 6539 * 3) We need to have something to cache all the space that is going to 6540 * be free'd up by the truncate operation, but also have some slack 6541 * space reserved in case it uses space during the truncate (thank you 6542 * very much snapshotting). 6543 * 6544 * And we need these to all be seperate. The fact is we can use alot of 6545 * space doing the truncate, and we have no earthly idea how much space 6546 * we will use, so we need the truncate reservation to be seperate so it 6547 * doesn't end up using space reserved for updating the inode or 6548 * removing the orphan item. We also need to be able to stop the 6549 * transaction and start a new one, which means we need to be able to 6550 * update the inode several times, and we have no idea of knowing how 6551 * many times that will be, so we can't just reserve 1 item for the 6552 * entirety of the opration, so that has to be done seperately as well. 6553 * Then there is the orphan item, which does indeed need to be held on 6554 * to for the whole operation, and we need nobody to touch this reserved 6555 * space except the orphan code. 6556 * 6557 * So that leaves us with 6558 * 6559 * 1) root->orphan_block_rsv - for the orphan deletion. 6560 * 2) rsv - for the truncate reservation, which we will steal from the 6561 * transaction reservation. 6562 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6563 * updating the inode. 6564 */ 6565 rsv = btrfs_alloc_block_rsv(root); 6566 if (!rsv) 6567 return -ENOMEM; 6568 rsv->size = min_size; 6569 6570 /* 6571 * 1 for the truncate slack space 6572 * 1 for the orphan item we're going to add 6573 * 1 for the orphan item deletion 6574 * 1 for updating the inode. 6575 */ 6576 trans = btrfs_start_transaction(root, 4); 6577 if (IS_ERR(trans)) { 6578 err = PTR_ERR(trans); 6579 goto out; 6580 } 6581 6582 /* Migrate the slack space for the truncate to our reserve */ 6583 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 6584 min_size); 6585 BUG_ON(ret); 6586 6587 ret = btrfs_orphan_add(trans, inode); 6588 if (ret) { 6589 btrfs_end_transaction(trans, root); 6590 goto out; 6591 } 6592 6593 /* 6594 * setattr is responsible for setting the ordered_data_close flag, 6595 * but that is only tested during the last file release. That 6596 * could happen well after the next commit, leaving a great big 6597 * window where new writes may get lost if someone chooses to write 6598 * to this file after truncating to zero 6599 * 6600 * The inode doesn't have any dirty data here, and so if we commit 6601 * this is a noop. If someone immediately starts writing to the inode 6602 * it is very likely we'll catch some of their writes in this 6603 * transaction, and the commit will find this file on the ordered 6604 * data list with good things to send down. 6605 * 6606 * This is a best effort solution, there is still a window where 6607 * using truncate to replace the contents of the file will 6608 * end up with a zero length file after a crash. 6609 */ 6610 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6611 btrfs_add_ordered_operation(trans, root, inode); 6612 6613 while (1) { 6614 ret = btrfs_block_rsv_refill(root, rsv, min_size); 6615 if (ret) { 6616 /* 6617 * This can only happen with the original transaction we 6618 * started above, every other time we shouldn't have a 6619 * transaction started yet. 6620 */ 6621 if (ret == -EAGAIN) 6622 goto end_trans; 6623 err = ret; 6624 break; 6625 } 6626 6627 if (!trans) { 6628 /* Just need the 1 for updating the inode */ 6629 trans = btrfs_start_transaction(root, 1); 6630 if (IS_ERR(trans)) { 6631 ret = err = PTR_ERR(trans); 6632 trans = NULL; 6633 break; 6634 } 6635 } 6636 6637 trans->block_rsv = rsv; 6638 6639 ret = btrfs_truncate_inode_items(trans, root, inode, 6640 inode->i_size, 6641 BTRFS_EXTENT_DATA_KEY); 6642 if (ret != -EAGAIN) { 6643 err = ret; 6644 break; 6645 } 6646 6647 trans->block_rsv = &root->fs_info->trans_block_rsv; 6648 ret = btrfs_update_inode(trans, root, inode); 6649 if (ret) { 6650 err = ret; 6651 break; 6652 } 6653 end_trans: 6654 nr = trans->blocks_used; 6655 btrfs_end_transaction(trans, root); 6656 trans = NULL; 6657 btrfs_btree_balance_dirty(root, nr); 6658 } 6659 6660 if (ret == 0 && inode->i_nlink > 0) { 6661 trans->block_rsv = root->orphan_block_rsv; 6662 ret = btrfs_orphan_del(trans, inode); 6663 if (ret) 6664 err = ret; 6665 } else if (ret && inode->i_nlink > 0) { 6666 /* 6667 * Failed to do the truncate, remove us from the in memory 6668 * orphan list. 6669 */ 6670 ret = btrfs_orphan_del(NULL, inode); 6671 } 6672 6673 if (trans) { 6674 trans->block_rsv = &root->fs_info->trans_block_rsv; 6675 ret = btrfs_update_inode(trans, root, inode); 6676 if (ret && !err) 6677 err = ret; 6678 6679 nr = trans->blocks_used; 6680 ret = btrfs_end_transaction(trans, root); 6681 btrfs_btree_balance_dirty(root, nr); 6682 } 6683 6684 out: 6685 btrfs_free_block_rsv(root, rsv); 6686 6687 if (ret && !err) 6688 err = ret; 6689 6690 return err; 6691 } 6692 6693 /* 6694 * create a new subvolume directory/inode (helper for the ioctl). 6695 */ 6696 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6697 struct btrfs_root *new_root, u64 new_dirid) 6698 { 6699 struct inode *inode; 6700 int err; 6701 u64 index = 0; 6702 6703 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6704 new_dirid, S_IFDIR | 0700, &index); 6705 if (IS_ERR(inode)) 6706 return PTR_ERR(inode); 6707 inode->i_op = &btrfs_dir_inode_operations; 6708 inode->i_fop = &btrfs_dir_file_operations; 6709 6710 set_nlink(inode, 1); 6711 btrfs_i_size_write(inode, 0); 6712 6713 err = btrfs_update_inode(trans, new_root, inode); 6714 BUG_ON(err); 6715 6716 iput(inode); 6717 return 0; 6718 } 6719 6720 struct inode *btrfs_alloc_inode(struct super_block *sb) 6721 { 6722 struct btrfs_inode *ei; 6723 struct inode *inode; 6724 6725 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6726 if (!ei) 6727 return NULL; 6728 6729 ei->root = NULL; 6730 ei->space_info = NULL; 6731 ei->generation = 0; 6732 ei->sequence = 0; 6733 ei->last_trans = 0; 6734 ei->last_sub_trans = 0; 6735 ei->logged_trans = 0; 6736 ei->delalloc_bytes = 0; 6737 ei->disk_i_size = 0; 6738 ei->flags = 0; 6739 ei->csum_bytes = 0; 6740 ei->index_cnt = (u64)-1; 6741 ei->last_unlink_trans = 0; 6742 6743 spin_lock_init(&ei->lock); 6744 ei->outstanding_extents = 0; 6745 ei->reserved_extents = 0; 6746 6747 ei->ordered_data_close = 0; 6748 ei->orphan_meta_reserved = 0; 6749 ei->dummy_inode = 0; 6750 ei->in_defrag = 0; 6751 ei->delalloc_meta_reserved = 0; 6752 ei->force_compress = BTRFS_COMPRESS_NONE; 6753 6754 ei->delayed_node = NULL; 6755 6756 inode = &ei->vfs_inode; 6757 extent_map_tree_init(&ei->extent_tree); 6758 extent_io_tree_init(&ei->io_tree, &inode->i_data); 6759 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 6760 mutex_init(&ei->log_mutex); 6761 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6762 INIT_LIST_HEAD(&ei->i_orphan); 6763 INIT_LIST_HEAD(&ei->delalloc_inodes); 6764 INIT_LIST_HEAD(&ei->ordered_operations); 6765 RB_CLEAR_NODE(&ei->rb_node); 6766 6767 return inode; 6768 } 6769 6770 static void btrfs_i_callback(struct rcu_head *head) 6771 { 6772 struct inode *inode = container_of(head, struct inode, i_rcu); 6773 INIT_LIST_HEAD(&inode->i_dentry); 6774 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6775 } 6776 6777 void btrfs_destroy_inode(struct inode *inode) 6778 { 6779 struct btrfs_ordered_extent *ordered; 6780 struct btrfs_root *root = BTRFS_I(inode)->root; 6781 6782 WARN_ON(!list_empty(&inode->i_dentry)); 6783 WARN_ON(inode->i_data.nrpages); 6784 WARN_ON(BTRFS_I(inode)->outstanding_extents); 6785 WARN_ON(BTRFS_I(inode)->reserved_extents); 6786 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 6787 WARN_ON(BTRFS_I(inode)->csum_bytes); 6788 6789 /* 6790 * This can happen where we create an inode, but somebody else also 6791 * created the same inode and we need to destroy the one we already 6792 * created. 6793 */ 6794 if (!root) 6795 goto free; 6796 6797 /* 6798 * Make sure we're properly removed from the ordered operation 6799 * lists. 6800 */ 6801 smp_mb(); 6802 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6803 spin_lock(&root->fs_info->ordered_extent_lock); 6804 list_del_init(&BTRFS_I(inode)->ordered_operations); 6805 spin_unlock(&root->fs_info->ordered_extent_lock); 6806 } 6807 6808 spin_lock(&root->orphan_lock); 6809 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6810 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 6811 (unsigned long long)btrfs_ino(inode)); 6812 list_del_init(&BTRFS_I(inode)->i_orphan); 6813 } 6814 spin_unlock(&root->orphan_lock); 6815 6816 while (1) { 6817 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6818 if (!ordered) 6819 break; 6820 else { 6821 printk(KERN_ERR "btrfs found ordered " 6822 "extent %llu %llu on inode cleanup\n", 6823 (unsigned long long)ordered->file_offset, 6824 (unsigned long long)ordered->len); 6825 btrfs_remove_ordered_extent(inode, ordered); 6826 btrfs_put_ordered_extent(ordered); 6827 btrfs_put_ordered_extent(ordered); 6828 } 6829 } 6830 inode_tree_del(inode); 6831 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6832 free: 6833 btrfs_remove_delayed_node(inode); 6834 call_rcu(&inode->i_rcu, btrfs_i_callback); 6835 } 6836 6837 int btrfs_drop_inode(struct inode *inode) 6838 { 6839 struct btrfs_root *root = BTRFS_I(inode)->root; 6840 6841 if (btrfs_root_refs(&root->root_item) == 0 && 6842 !btrfs_is_free_space_inode(root, inode)) 6843 return 1; 6844 else 6845 return generic_drop_inode(inode); 6846 } 6847 6848 static void init_once(void *foo) 6849 { 6850 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6851 6852 inode_init_once(&ei->vfs_inode); 6853 } 6854 6855 void btrfs_destroy_cachep(void) 6856 { 6857 if (btrfs_inode_cachep) 6858 kmem_cache_destroy(btrfs_inode_cachep); 6859 if (btrfs_trans_handle_cachep) 6860 kmem_cache_destroy(btrfs_trans_handle_cachep); 6861 if (btrfs_transaction_cachep) 6862 kmem_cache_destroy(btrfs_transaction_cachep); 6863 if (btrfs_path_cachep) 6864 kmem_cache_destroy(btrfs_path_cachep); 6865 if (btrfs_free_space_cachep) 6866 kmem_cache_destroy(btrfs_free_space_cachep); 6867 } 6868 6869 int btrfs_init_cachep(void) 6870 { 6871 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6872 sizeof(struct btrfs_inode), 0, 6873 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6874 if (!btrfs_inode_cachep) 6875 goto fail; 6876 6877 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6878 sizeof(struct btrfs_trans_handle), 0, 6879 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6880 if (!btrfs_trans_handle_cachep) 6881 goto fail; 6882 6883 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6884 sizeof(struct btrfs_transaction), 0, 6885 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6886 if (!btrfs_transaction_cachep) 6887 goto fail; 6888 6889 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6890 sizeof(struct btrfs_path), 0, 6891 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6892 if (!btrfs_path_cachep) 6893 goto fail; 6894 6895 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache", 6896 sizeof(struct btrfs_free_space), 0, 6897 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6898 if (!btrfs_free_space_cachep) 6899 goto fail; 6900 6901 return 0; 6902 fail: 6903 btrfs_destroy_cachep(); 6904 return -ENOMEM; 6905 } 6906 6907 static int btrfs_getattr(struct vfsmount *mnt, 6908 struct dentry *dentry, struct kstat *stat) 6909 { 6910 struct inode *inode = dentry->d_inode; 6911 u32 blocksize = inode->i_sb->s_blocksize; 6912 6913 generic_fillattr(inode, stat); 6914 stat->dev = BTRFS_I(inode)->root->anon_dev; 6915 stat->blksize = PAGE_CACHE_SIZE; 6916 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 6917 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9; 6918 return 0; 6919 } 6920 6921 /* 6922 * If a file is moved, it will inherit the cow and compression flags of the new 6923 * directory. 6924 */ 6925 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 6926 { 6927 struct btrfs_inode *b_dir = BTRFS_I(dir); 6928 struct btrfs_inode *b_inode = BTRFS_I(inode); 6929 6930 if (b_dir->flags & BTRFS_INODE_NODATACOW) 6931 b_inode->flags |= BTRFS_INODE_NODATACOW; 6932 else 6933 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 6934 6935 if (b_dir->flags & BTRFS_INODE_COMPRESS) 6936 b_inode->flags |= BTRFS_INODE_COMPRESS; 6937 else 6938 b_inode->flags &= ~BTRFS_INODE_COMPRESS; 6939 } 6940 6941 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6942 struct inode *new_dir, struct dentry *new_dentry) 6943 { 6944 struct btrfs_trans_handle *trans; 6945 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6946 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6947 struct inode *new_inode = new_dentry->d_inode; 6948 struct inode *old_inode = old_dentry->d_inode; 6949 struct timespec ctime = CURRENT_TIME; 6950 u64 index = 0; 6951 u64 root_objectid; 6952 int ret; 6953 u64 old_ino = btrfs_ino(old_inode); 6954 6955 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6956 return -EPERM; 6957 6958 /* we only allow rename subvolume link between subvolumes */ 6959 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6960 return -EXDEV; 6961 6962 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6963 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 6964 return -ENOTEMPTY; 6965 6966 if (S_ISDIR(old_inode->i_mode) && new_inode && 6967 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6968 return -ENOTEMPTY; 6969 /* 6970 * we're using rename to replace one file with another. 6971 * and the replacement file is large. Start IO on it now so 6972 * we don't add too much work to the end of the transaction 6973 */ 6974 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6975 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6976 filemap_flush(old_inode->i_mapping); 6977 6978 /* close the racy window with snapshot create/destroy ioctl */ 6979 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 6980 down_read(&root->fs_info->subvol_sem); 6981 /* 6982 * We want to reserve the absolute worst case amount of items. So if 6983 * both inodes are subvols and we need to unlink them then that would 6984 * require 4 item modifications, but if they are both normal inodes it 6985 * would require 5 item modifications, so we'll assume their normal 6986 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6987 * should cover the worst case number of items we'll modify. 6988 */ 6989 trans = btrfs_start_transaction(root, 20); 6990 if (IS_ERR(trans)) { 6991 ret = PTR_ERR(trans); 6992 goto out_notrans; 6993 } 6994 6995 if (dest != root) 6996 btrfs_record_root_in_trans(trans, dest); 6997 6998 ret = btrfs_set_inode_index(new_dir, &index); 6999 if (ret) 7000 goto out_fail; 7001 7002 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7003 /* force full log commit if subvolume involved. */ 7004 root->fs_info->last_trans_log_full_commit = trans->transid; 7005 } else { 7006 ret = btrfs_insert_inode_ref(trans, dest, 7007 new_dentry->d_name.name, 7008 new_dentry->d_name.len, 7009 old_ino, 7010 btrfs_ino(new_dir), index); 7011 if (ret) 7012 goto out_fail; 7013 /* 7014 * this is an ugly little race, but the rename is required 7015 * to make sure that if we crash, the inode is either at the 7016 * old name or the new one. pinning the log transaction lets 7017 * us make sure we don't allow a log commit to come in after 7018 * we unlink the name but before we add the new name back in. 7019 */ 7020 btrfs_pin_log_trans(root); 7021 } 7022 /* 7023 * make sure the inode gets flushed if it is replacing 7024 * something. 7025 */ 7026 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7027 btrfs_add_ordered_operation(trans, root, old_inode); 7028 7029 old_dir->i_ctime = old_dir->i_mtime = ctime; 7030 new_dir->i_ctime = new_dir->i_mtime = ctime; 7031 old_inode->i_ctime = ctime; 7032 7033 if (old_dentry->d_parent != new_dentry->d_parent) 7034 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7035 7036 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7037 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7038 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7039 old_dentry->d_name.name, 7040 old_dentry->d_name.len); 7041 } else { 7042 ret = __btrfs_unlink_inode(trans, root, old_dir, 7043 old_dentry->d_inode, 7044 old_dentry->d_name.name, 7045 old_dentry->d_name.len); 7046 if (!ret) 7047 ret = btrfs_update_inode(trans, root, old_inode); 7048 } 7049 BUG_ON(ret); 7050 7051 if (new_inode) { 7052 new_inode->i_ctime = CURRENT_TIME; 7053 if (unlikely(btrfs_ino(new_inode) == 7054 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7055 root_objectid = BTRFS_I(new_inode)->location.objectid; 7056 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7057 root_objectid, 7058 new_dentry->d_name.name, 7059 new_dentry->d_name.len); 7060 BUG_ON(new_inode->i_nlink == 0); 7061 } else { 7062 ret = btrfs_unlink_inode(trans, dest, new_dir, 7063 new_dentry->d_inode, 7064 new_dentry->d_name.name, 7065 new_dentry->d_name.len); 7066 } 7067 BUG_ON(ret); 7068 if (new_inode->i_nlink == 0) { 7069 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7070 BUG_ON(ret); 7071 } 7072 } 7073 7074 fixup_inode_flags(new_dir, old_inode); 7075 7076 ret = btrfs_add_link(trans, new_dir, old_inode, 7077 new_dentry->d_name.name, 7078 new_dentry->d_name.len, 0, index); 7079 BUG_ON(ret); 7080 7081 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7082 struct dentry *parent = new_dentry->d_parent; 7083 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7084 btrfs_end_log_trans(root); 7085 } 7086 out_fail: 7087 btrfs_end_transaction(trans, root); 7088 out_notrans: 7089 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7090 up_read(&root->fs_info->subvol_sem); 7091 7092 return ret; 7093 } 7094 7095 /* 7096 * some fairly slow code that needs optimization. This walks the list 7097 * of all the inodes with pending delalloc and forces them to disk. 7098 */ 7099 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7100 { 7101 struct list_head *head = &root->fs_info->delalloc_inodes; 7102 struct btrfs_inode *binode; 7103 struct inode *inode; 7104 7105 if (root->fs_info->sb->s_flags & MS_RDONLY) 7106 return -EROFS; 7107 7108 spin_lock(&root->fs_info->delalloc_lock); 7109 while (!list_empty(head)) { 7110 binode = list_entry(head->next, struct btrfs_inode, 7111 delalloc_inodes); 7112 inode = igrab(&binode->vfs_inode); 7113 if (!inode) 7114 list_del_init(&binode->delalloc_inodes); 7115 spin_unlock(&root->fs_info->delalloc_lock); 7116 if (inode) { 7117 filemap_flush(inode->i_mapping); 7118 if (delay_iput) 7119 btrfs_add_delayed_iput(inode); 7120 else 7121 iput(inode); 7122 } 7123 cond_resched(); 7124 spin_lock(&root->fs_info->delalloc_lock); 7125 } 7126 spin_unlock(&root->fs_info->delalloc_lock); 7127 7128 /* the filemap_flush will queue IO into the worker threads, but 7129 * we have to make sure the IO is actually started and that 7130 * ordered extents get created before we return 7131 */ 7132 atomic_inc(&root->fs_info->async_submit_draining); 7133 while (atomic_read(&root->fs_info->nr_async_submits) || 7134 atomic_read(&root->fs_info->async_delalloc_pages)) { 7135 wait_event(root->fs_info->async_submit_wait, 7136 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7137 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7138 } 7139 atomic_dec(&root->fs_info->async_submit_draining); 7140 return 0; 7141 } 7142 7143 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7144 const char *symname) 7145 { 7146 struct btrfs_trans_handle *trans; 7147 struct btrfs_root *root = BTRFS_I(dir)->root; 7148 struct btrfs_path *path; 7149 struct btrfs_key key; 7150 struct inode *inode = NULL; 7151 int err; 7152 int drop_inode = 0; 7153 u64 objectid; 7154 u64 index = 0 ; 7155 int name_len; 7156 int datasize; 7157 unsigned long ptr; 7158 struct btrfs_file_extent_item *ei; 7159 struct extent_buffer *leaf; 7160 unsigned long nr = 0; 7161 7162 name_len = strlen(symname) + 1; 7163 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7164 return -ENAMETOOLONG; 7165 7166 /* 7167 * 2 items for inode item and ref 7168 * 2 items for dir items 7169 * 1 item for xattr if selinux is on 7170 */ 7171 trans = btrfs_start_transaction(root, 5); 7172 if (IS_ERR(trans)) 7173 return PTR_ERR(trans); 7174 7175 err = btrfs_find_free_ino(root, &objectid); 7176 if (err) 7177 goto out_unlock; 7178 7179 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7180 dentry->d_name.len, btrfs_ino(dir), objectid, 7181 S_IFLNK|S_IRWXUGO, &index); 7182 if (IS_ERR(inode)) { 7183 err = PTR_ERR(inode); 7184 goto out_unlock; 7185 } 7186 7187 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7188 if (err) { 7189 drop_inode = 1; 7190 goto out_unlock; 7191 } 7192 7193 /* 7194 * If the active LSM wants to access the inode during 7195 * d_instantiate it needs these. Smack checks to see 7196 * if the filesystem supports xattrs by looking at the 7197 * ops vector. 7198 */ 7199 inode->i_fop = &btrfs_file_operations; 7200 inode->i_op = &btrfs_file_inode_operations; 7201 7202 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7203 if (err) 7204 drop_inode = 1; 7205 else { 7206 inode->i_mapping->a_ops = &btrfs_aops; 7207 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7208 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7209 } 7210 if (drop_inode) 7211 goto out_unlock; 7212 7213 path = btrfs_alloc_path(); 7214 if (!path) { 7215 err = -ENOMEM; 7216 drop_inode = 1; 7217 goto out_unlock; 7218 } 7219 key.objectid = btrfs_ino(inode); 7220 key.offset = 0; 7221 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7222 datasize = btrfs_file_extent_calc_inline_size(name_len); 7223 err = btrfs_insert_empty_item(trans, root, path, &key, 7224 datasize); 7225 if (err) { 7226 drop_inode = 1; 7227 btrfs_free_path(path); 7228 goto out_unlock; 7229 } 7230 leaf = path->nodes[0]; 7231 ei = btrfs_item_ptr(leaf, path->slots[0], 7232 struct btrfs_file_extent_item); 7233 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7234 btrfs_set_file_extent_type(leaf, ei, 7235 BTRFS_FILE_EXTENT_INLINE); 7236 btrfs_set_file_extent_encryption(leaf, ei, 0); 7237 btrfs_set_file_extent_compression(leaf, ei, 0); 7238 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7239 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7240 7241 ptr = btrfs_file_extent_inline_start(ei); 7242 write_extent_buffer(leaf, symname, ptr, name_len); 7243 btrfs_mark_buffer_dirty(leaf); 7244 btrfs_free_path(path); 7245 7246 inode->i_op = &btrfs_symlink_inode_operations; 7247 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7248 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7249 inode_set_bytes(inode, name_len); 7250 btrfs_i_size_write(inode, name_len - 1); 7251 err = btrfs_update_inode(trans, root, inode); 7252 if (err) 7253 drop_inode = 1; 7254 7255 out_unlock: 7256 if (!err) 7257 d_instantiate(dentry, inode); 7258 nr = trans->blocks_used; 7259 btrfs_end_transaction(trans, root); 7260 if (drop_inode) { 7261 inode_dec_link_count(inode); 7262 iput(inode); 7263 } 7264 btrfs_btree_balance_dirty(root, nr); 7265 return err; 7266 } 7267 7268 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7269 u64 start, u64 num_bytes, u64 min_size, 7270 loff_t actual_len, u64 *alloc_hint, 7271 struct btrfs_trans_handle *trans) 7272 { 7273 struct btrfs_root *root = BTRFS_I(inode)->root; 7274 struct btrfs_key ins; 7275 u64 cur_offset = start; 7276 u64 i_size; 7277 int ret = 0; 7278 bool own_trans = true; 7279 7280 if (trans) 7281 own_trans = false; 7282 while (num_bytes > 0) { 7283 if (own_trans) { 7284 trans = btrfs_start_transaction(root, 3); 7285 if (IS_ERR(trans)) { 7286 ret = PTR_ERR(trans); 7287 break; 7288 } 7289 } 7290 7291 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7292 0, *alloc_hint, (u64)-1, &ins, 1); 7293 if (ret) { 7294 if (own_trans) 7295 btrfs_end_transaction(trans, root); 7296 break; 7297 } 7298 7299 ret = insert_reserved_file_extent(trans, inode, 7300 cur_offset, ins.objectid, 7301 ins.offset, ins.offset, 7302 ins.offset, 0, 0, 0, 7303 BTRFS_FILE_EXTENT_PREALLOC); 7304 BUG_ON(ret); 7305 btrfs_drop_extent_cache(inode, cur_offset, 7306 cur_offset + ins.offset -1, 0); 7307 7308 num_bytes -= ins.offset; 7309 cur_offset += ins.offset; 7310 *alloc_hint = ins.objectid + ins.offset; 7311 7312 inode->i_ctime = CURRENT_TIME; 7313 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7314 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7315 (actual_len > inode->i_size) && 7316 (cur_offset > inode->i_size)) { 7317 if (cur_offset > actual_len) 7318 i_size = actual_len; 7319 else 7320 i_size = cur_offset; 7321 i_size_write(inode, i_size); 7322 btrfs_ordered_update_i_size(inode, i_size, NULL); 7323 } 7324 7325 ret = btrfs_update_inode(trans, root, inode); 7326 BUG_ON(ret); 7327 7328 if (own_trans) 7329 btrfs_end_transaction(trans, root); 7330 } 7331 return ret; 7332 } 7333 7334 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7335 u64 start, u64 num_bytes, u64 min_size, 7336 loff_t actual_len, u64 *alloc_hint) 7337 { 7338 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7339 min_size, actual_len, alloc_hint, 7340 NULL); 7341 } 7342 7343 int btrfs_prealloc_file_range_trans(struct inode *inode, 7344 struct btrfs_trans_handle *trans, int mode, 7345 u64 start, u64 num_bytes, u64 min_size, 7346 loff_t actual_len, u64 *alloc_hint) 7347 { 7348 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7349 min_size, actual_len, alloc_hint, trans); 7350 } 7351 7352 static int btrfs_set_page_dirty(struct page *page) 7353 { 7354 return __set_page_dirty_nobuffers(page); 7355 } 7356 7357 static int btrfs_permission(struct inode *inode, int mask) 7358 { 7359 struct btrfs_root *root = BTRFS_I(inode)->root; 7360 umode_t mode = inode->i_mode; 7361 7362 if (mask & MAY_WRITE && 7363 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 7364 if (btrfs_root_readonly(root)) 7365 return -EROFS; 7366 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 7367 return -EACCES; 7368 } 7369 return generic_permission(inode, mask); 7370 } 7371 7372 static const struct inode_operations btrfs_dir_inode_operations = { 7373 .getattr = btrfs_getattr, 7374 .lookup = btrfs_lookup, 7375 .create = btrfs_create, 7376 .unlink = btrfs_unlink, 7377 .link = btrfs_link, 7378 .mkdir = btrfs_mkdir, 7379 .rmdir = btrfs_rmdir, 7380 .rename = btrfs_rename, 7381 .symlink = btrfs_symlink, 7382 .setattr = btrfs_setattr, 7383 .mknod = btrfs_mknod, 7384 .setxattr = btrfs_setxattr, 7385 .getxattr = btrfs_getxattr, 7386 .listxattr = btrfs_listxattr, 7387 .removexattr = btrfs_removexattr, 7388 .permission = btrfs_permission, 7389 .get_acl = btrfs_get_acl, 7390 }; 7391 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7392 .lookup = btrfs_lookup, 7393 .permission = btrfs_permission, 7394 .get_acl = btrfs_get_acl, 7395 }; 7396 7397 static const struct file_operations btrfs_dir_file_operations = { 7398 .llseek = generic_file_llseek, 7399 .read = generic_read_dir, 7400 .readdir = btrfs_real_readdir, 7401 .unlocked_ioctl = btrfs_ioctl, 7402 #ifdef CONFIG_COMPAT 7403 .compat_ioctl = btrfs_ioctl, 7404 #endif 7405 .release = btrfs_release_file, 7406 .fsync = btrfs_sync_file, 7407 }; 7408 7409 static struct extent_io_ops btrfs_extent_io_ops = { 7410 .fill_delalloc = run_delalloc_range, 7411 .submit_bio_hook = btrfs_submit_bio_hook, 7412 .merge_bio_hook = btrfs_merge_bio_hook, 7413 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7414 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7415 .writepage_start_hook = btrfs_writepage_start_hook, 7416 .set_bit_hook = btrfs_set_bit_hook, 7417 .clear_bit_hook = btrfs_clear_bit_hook, 7418 .merge_extent_hook = btrfs_merge_extent_hook, 7419 .split_extent_hook = btrfs_split_extent_hook, 7420 }; 7421 7422 /* 7423 * btrfs doesn't support the bmap operation because swapfiles 7424 * use bmap to make a mapping of extents in the file. They assume 7425 * these extents won't change over the life of the file and they 7426 * use the bmap result to do IO directly to the drive. 7427 * 7428 * the btrfs bmap call would return logical addresses that aren't 7429 * suitable for IO and they also will change frequently as COW 7430 * operations happen. So, swapfile + btrfs == corruption. 7431 * 7432 * For now we're avoiding this by dropping bmap. 7433 */ 7434 static const struct address_space_operations btrfs_aops = { 7435 .readpage = btrfs_readpage, 7436 .writepage = btrfs_writepage, 7437 .writepages = btrfs_writepages, 7438 .readpages = btrfs_readpages, 7439 .direct_IO = btrfs_direct_IO, 7440 .invalidatepage = btrfs_invalidatepage, 7441 .releasepage = btrfs_releasepage, 7442 .set_page_dirty = btrfs_set_page_dirty, 7443 .error_remove_page = generic_error_remove_page, 7444 }; 7445 7446 static const struct address_space_operations btrfs_symlink_aops = { 7447 .readpage = btrfs_readpage, 7448 .writepage = btrfs_writepage, 7449 .invalidatepage = btrfs_invalidatepage, 7450 .releasepage = btrfs_releasepage, 7451 }; 7452 7453 static const struct inode_operations btrfs_file_inode_operations = { 7454 .getattr = btrfs_getattr, 7455 .setattr = btrfs_setattr, 7456 .setxattr = btrfs_setxattr, 7457 .getxattr = btrfs_getxattr, 7458 .listxattr = btrfs_listxattr, 7459 .removexattr = btrfs_removexattr, 7460 .permission = btrfs_permission, 7461 .fiemap = btrfs_fiemap, 7462 .get_acl = btrfs_get_acl, 7463 }; 7464 static const struct inode_operations btrfs_special_inode_operations = { 7465 .getattr = btrfs_getattr, 7466 .setattr = btrfs_setattr, 7467 .permission = btrfs_permission, 7468 .setxattr = btrfs_setxattr, 7469 .getxattr = btrfs_getxattr, 7470 .listxattr = btrfs_listxattr, 7471 .removexattr = btrfs_removexattr, 7472 .get_acl = btrfs_get_acl, 7473 }; 7474 static const struct inode_operations btrfs_symlink_inode_operations = { 7475 .readlink = generic_readlink, 7476 .follow_link = page_follow_link_light, 7477 .put_link = page_put_link, 7478 .getattr = btrfs_getattr, 7479 .setattr = btrfs_setattr, 7480 .permission = btrfs_permission, 7481 .setxattr = btrfs_setxattr, 7482 .getxattr = btrfs_getxattr, 7483 .listxattr = btrfs_listxattr, 7484 .removexattr = btrfs_removexattr, 7485 .get_acl = btrfs_get_acl, 7486 }; 7487 7488 const struct dentry_operations btrfs_dentry_operations = { 7489 .d_delete = btrfs_dentry_delete, 7490 .d_release = btrfs_dentry_release, 7491 }; 7492