xref: /openbmc/linux/fs/btrfs/inode.c (revision 90290e19820e3323ce6b9c2888eeb68bf29c278b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57 
58 struct btrfs_iget_args {
59 	u64 ino;
60 	struct btrfs_root *root;
61 };
62 
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72 
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
82 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
83 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
84 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
85 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
86 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
87 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
88 };
89 
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
93 static noinline int cow_file_range(struct inode *inode,
94 				   struct page *locked_page,
95 				   u64 start, u64 end, int *page_started,
96 				   unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 				struct btrfs_root *root, struct inode *inode);
99 
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 				     struct inode *inode,  struct inode *dir,
102 				     const struct qstr *qstr)
103 {
104 	int err;
105 
106 	err = btrfs_init_acl(trans, inode, dir);
107 	if (!err)
108 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 	return err;
110 }
111 
112 /*
113  * this does all the hard work for inserting an inline extent into
114  * the btree.  The caller should have done a btrfs_drop_extents so that
115  * no overlapping inline items exist in the btree
116  */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 				struct btrfs_root *root, struct inode *inode,
119 				u64 start, size_t size, size_t compressed_size,
120 				int compress_type,
121 				struct page **compressed_pages)
122 {
123 	struct btrfs_key key;
124 	struct btrfs_path *path;
125 	struct extent_buffer *leaf;
126 	struct page *page = NULL;
127 	char *kaddr;
128 	unsigned long ptr;
129 	struct btrfs_file_extent_item *ei;
130 	int err = 0;
131 	int ret;
132 	size_t cur_size = size;
133 	size_t datasize;
134 	unsigned long offset;
135 
136 	if (compressed_size && compressed_pages)
137 		cur_size = compressed_size;
138 
139 	path = btrfs_alloc_path();
140 	if (!path)
141 		return -ENOMEM;
142 
143 	path->leave_spinning = 1;
144 
145 	key.objectid = btrfs_ino(inode);
146 	key.offset = start;
147 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
149 
150 	inode_add_bytes(inode, size);
151 	ret = btrfs_insert_empty_item(trans, root, path, &key,
152 				      datasize);
153 	BUG_ON(ret);
154 	if (ret) {
155 		err = ret;
156 		goto fail;
157 	}
158 	leaf = path->nodes[0];
159 	ei = btrfs_item_ptr(leaf, path->slots[0],
160 			    struct btrfs_file_extent_item);
161 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
162 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
163 	btrfs_set_file_extent_encryption(leaf, ei, 0);
164 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
165 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
166 	ptr = btrfs_file_extent_inline_start(ei);
167 
168 	if (compress_type != BTRFS_COMPRESS_NONE) {
169 		struct page *cpage;
170 		int i = 0;
171 		while (compressed_size > 0) {
172 			cpage = compressed_pages[i];
173 			cur_size = min_t(unsigned long, compressed_size,
174 				       PAGE_CACHE_SIZE);
175 
176 			kaddr = kmap_atomic(cpage, KM_USER0);
177 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
178 			kunmap_atomic(kaddr, KM_USER0);
179 
180 			i++;
181 			ptr += cur_size;
182 			compressed_size -= cur_size;
183 		}
184 		btrfs_set_file_extent_compression(leaf, ei,
185 						  compress_type);
186 	} else {
187 		page = find_get_page(inode->i_mapping,
188 				     start >> PAGE_CACHE_SHIFT);
189 		btrfs_set_file_extent_compression(leaf, ei, 0);
190 		kaddr = kmap_atomic(page, KM_USER0);
191 		offset = start & (PAGE_CACHE_SIZE - 1);
192 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
193 		kunmap_atomic(kaddr, KM_USER0);
194 		page_cache_release(page);
195 	}
196 	btrfs_mark_buffer_dirty(leaf);
197 	btrfs_free_path(path);
198 
199 	/*
200 	 * we're an inline extent, so nobody can
201 	 * extend the file past i_size without locking
202 	 * a page we already have locked.
203 	 *
204 	 * We must do any isize and inode updates
205 	 * before we unlock the pages.  Otherwise we
206 	 * could end up racing with unlink.
207 	 */
208 	BTRFS_I(inode)->disk_i_size = inode->i_size;
209 	btrfs_update_inode(trans, root, inode);
210 
211 	return 0;
212 fail:
213 	btrfs_free_path(path);
214 	return err;
215 }
216 
217 
218 /*
219  * conditionally insert an inline extent into the file.  This
220  * does the checks required to make sure the data is small enough
221  * to fit as an inline extent.
222  */
223 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
224 				 struct btrfs_root *root,
225 				 struct inode *inode, u64 start, u64 end,
226 				 size_t compressed_size, int compress_type,
227 				 struct page **compressed_pages)
228 {
229 	u64 isize = i_size_read(inode);
230 	u64 actual_end = min(end + 1, isize);
231 	u64 inline_len = actual_end - start;
232 	u64 aligned_end = (end + root->sectorsize - 1) &
233 			~((u64)root->sectorsize - 1);
234 	u64 hint_byte;
235 	u64 data_len = inline_len;
236 	int ret;
237 
238 	if (compressed_size)
239 		data_len = compressed_size;
240 
241 	if (start > 0 ||
242 	    actual_end >= PAGE_CACHE_SIZE ||
243 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
244 	    (!compressed_size &&
245 	    (actual_end & (root->sectorsize - 1)) == 0) ||
246 	    end + 1 < isize ||
247 	    data_len > root->fs_info->max_inline) {
248 		return 1;
249 	}
250 
251 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
252 				 &hint_byte, 1);
253 	BUG_ON(ret);
254 
255 	if (isize > actual_end)
256 		inline_len = min_t(u64, isize, actual_end);
257 	ret = insert_inline_extent(trans, root, inode, start,
258 				   inline_len, compressed_size,
259 				   compress_type, compressed_pages);
260 	BUG_ON(ret);
261 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
262 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
263 	return 0;
264 }
265 
266 struct async_extent {
267 	u64 start;
268 	u64 ram_size;
269 	u64 compressed_size;
270 	struct page **pages;
271 	unsigned long nr_pages;
272 	int compress_type;
273 	struct list_head list;
274 };
275 
276 struct async_cow {
277 	struct inode *inode;
278 	struct btrfs_root *root;
279 	struct page *locked_page;
280 	u64 start;
281 	u64 end;
282 	struct list_head extents;
283 	struct btrfs_work work;
284 };
285 
286 static noinline int add_async_extent(struct async_cow *cow,
287 				     u64 start, u64 ram_size,
288 				     u64 compressed_size,
289 				     struct page **pages,
290 				     unsigned long nr_pages,
291 				     int compress_type)
292 {
293 	struct async_extent *async_extent;
294 
295 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
296 	BUG_ON(!async_extent);
297 	async_extent->start = start;
298 	async_extent->ram_size = ram_size;
299 	async_extent->compressed_size = compressed_size;
300 	async_extent->pages = pages;
301 	async_extent->nr_pages = nr_pages;
302 	async_extent->compress_type = compress_type;
303 	list_add_tail(&async_extent->list, &cow->extents);
304 	return 0;
305 }
306 
307 /*
308  * we create compressed extents in two phases.  The first
309  * phase compresses a range of pages that have already been
310  * locked (both pages and state bits are locked).
311  *
312  * This is done inside an ordered work queue, and the compression
313  * is spread across many cpus.  The actual IO submission is step
314  * two, and the ordered work queue takes care of making sure that
315  * happens in the same order things were put onto the queue by
316  * writepages and friends.
317  *
318  * If this code finds it can't get good compression, it puts an
319  * entry onto the work queue to write the uncompressed bytes.  This
320  * makes sure that both compressed inodes and uncompressed inodes
321  * are written in the same order that pdflush sent them down.
322  */
323 static noinline int compress_file_range(struct inode *inode,
324 					struct page *locked_page,
325 					u64 start, u64 end,
326 					struct async_cow *async_cow,
327 					int *num_added)
328 {
329 	struct btrfs_root *root = BTRFS_I(inode)->root;
330 	struct btrfs_trans_handle *trans;
331 	u64 num_bytes;
332 	u64 blocksize = root->sectorsize;
333 	u64 actual_end;
334 	u64 isize = i_size_read(inode);
335 	int ret = 0;
336 	struct page **pages = NULL;
337 	unsigned long nr_pages;
338 	unsigned long nr_pages_ret = 0;
339 	unsigned long total_compressed = 0;
340 	unsigned long total_in = 0;
341 	unsigned long max_compressed = 128 * 1024;
342 	unsigned long max_uncompressed = 128 * 1024;
343 	int i;
344 	int will_compress;
345 	int compress_type = root->fs_info->compress_type;
346 
347 	/* if this is a small write inside eof, kick off a defragbot */
348 	if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
349 		btrfs_add_inode_defrag(NULL, inode);
350 
351 	actual_end = min_t(u64, isize, end + 1);
352 again:
353 	will_compress = 0;
354 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
355 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
356 
357 	/*
358 	 * we don't want to send crud past the end of i_size through
359 	 * compression, that's just a waste of CPU time.  So, if the
360 	 * end of the file is before the start of our current
361 	 * requested range of bytes, we bail out to the uncompressed
362 	 * cleanup code that can deal with all of this.
363 	 *
364 	 * It isn't really the fastest way to fix things, but this is a
365 	 * very uncommon corner.
366 	 */
367 	if (actual_end <= start)
368 		goto cleanup_and_bail_uncompressed;
369 
370 	total_compressed = actual_end - start;
371 
372 	/* we want to make sure that amount of ram required to uncompress
373 	 * an extent is reasonable, so we limit the total size in ram
374 	 * of a compressed extent to 128k.  This is a crucial number
375 	 * because it also controls how easily we can spread reads across
376 	 * cpus for decompression.
377 	 *
378 	 * We also want to make sure the amount of IO required to do
379 	 * a random read is reasonably small, so we limit the size of
380 	 * a compressed extent to 128k.
381 	 */
382 	total_compressed = min(total_compressed, max_uncompressed);
383 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
384 	num_bytes = max(blocksize,  num_bytes);
385 	total_in = 0;
386 	ret = 0;
387 
388 	/*
389 	 * we do compression for mount -o compress and when the
390 	 * inode has not been flagged as nocompress.  This flag can
391 	 * change at any time if we discover bad compression ratios.
392 	 */
393 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
394 	    (btrfs_test_opt(root, COMPRESS) ||
395 	     (BTRFS_I(inode)->force_compress) ||
396 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
397 		WARN_ON(pages);
398 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
399 		if (!pages) {
400 			/* just bail out to the uncompressed code */
401 			goto cont;
402 		}
403 
404 		if (BTRFS_I(inode)->force_compress)
405 			compress_type = BTRFS_I(inode)->force_compress;
406 
407 		ret = btrfs_compress_pages(compress_type,
408 					   inode->i_mapping, start,
409 					   total_compressed, pages,
410 					   nr_pages, &nr_pages_ret,
411 					   &total_in,
412 					   &total_compressed,
413 					   max_compressed);
414 
415 		if (!ret) {
416 			unsigned long offset = total_compressed &
417 				(PAGE_CACHE_SIZE - 1);
418 			struct page *page = pages[nr_pages_ret - 1];
419 			char *kaddr;
420 
421 			/* zero the tail end of the last page, we might be
422 			 * sending it down to disk
423 			 */
424 			if (offset) {
425 				kaddr = kmap_atomic(page, KM_USER0);
426 				memset(kaddr + offset, 0,
427 				       PAGE_CACHE_SIZE - offset);
428 				kunmap_atomic(kaddr, KM_USER0);
429 			}
430 			will_compress = 1;
431 		}
432 	}
433 cont:
434 	if (start == 0) {
435 		trans = btrfs_join_transaction(root);
436 		BUG_ON(IS_ERR(trans));
437 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
438 
439 		/* lets try to make an inline extent */
440 		if (ret || total_in < (actual_end - start)) {
441 			/* we didn't compress the entire range, try
442 			 * to make an uncompressed inline extent.
443 			 */
444 			ret = cow_file_range_inline(trans, root, inode,
445 						    start, end, 0, 0, NULL);
446 		} else {
447 			/* try making a compressed inline extent */
448 			ret = cow_file_range_inline(trans, root, inode,
449 						    start, end,
450 						    total_compressed,
451 						    compress_type, pages);
452 		}
453 		if (ret == 0) {
454 			/*
455 			 * inline extent creation worked, we don't need
456 			 * to create any more async work items.  Unlock
457 			 * and free up our temp pages.
458 			 */
459 			extent_clear_unlock_delalloc(inode,
460 			     &BTRFS_I(inode)->io_tree,
461 			     start, end, NULL,
462 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
463 			     EXTENT_CLEAR_DELALLOC |
464 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
465 
466 			btrfs_end_transaction(trans, root);
467 			goto free_pages_out;
468 		}
469 		btrfs_end_transaction(trans, root);
470 	}
471 
472 	if (will_compress) {
473 		/*
474 		 * we aren't doing an inline extent round the compressed size
475 		 * up to a block size boundary so the allocator does sane
476 		 * things
477 		 */
478 		total_compressed = (total_compressed + blocksize - 1) &
479 			~(blocksize - 1);
480 
481 		/*
482 		 * one last check to make sure the compression is really a
483 		 * win, compare the page count read with the blocks on disk
484 		 */
485 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
486 			~(PAGE_CACHE_SIZE - 1);
487 		if (total_compressed >= total_in) {
488 			will_compress = 0;
489 		} else {
490 			num_bytes = total_in;
491 		}
492 	}
493 	if (!will_compress && pages) {
494 		/*
495 		 * the compression code ran but failed to make things smaller,
496 		 * free any pages it allocated and our page pointer array
497 		 */
498 		for (i = 0; i < nr_pages_ret; i++) {
499 			WARN_ON(pages[i]->mapping);
500 			page_cache_release(pages[i]);
501 		}
502 		kfree(pages);
503 		pages = NULL;
504 		total_compressed = 0;
505 		nr_pages_ret = 0;
506 
507 		/* flag the file so we don't compress in the future */
508 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
509 		    !(BTRFS_I(inode)->force_compress)) {
510 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
511 		}
512 	}
513 	if (will_compress) {
514 		*num_added += 1;
515 
516 		/* the async work queues will take care of doing actual
517 		 * allocation on disk for these compressed pages,
518 		 * and will submit them to the elevator.
519 		 */
520 		add_async_extent(async_cow, start, num_bytes,
521 				 total_compressed, pages, nr_pages_ret,
522 				 compress_type);
523 
524 		if (start + num_bytes < end) {
525 			start += num_bytes;
526 			pages = NULL;
527 			cond_resched();
528 			goto again;
529 		}
530 	} else {
531 cleanup_and_bail_uncompressed:
532 		/*
533 		 * No compression, but we still need to write the pages in
534 		 * the file we've been given so far.  redirty the locked
535 		 * page if it corresponds to our extent and set things up
536 		 * for the async work queue to run cow_file_range to do
537 		 * the normal delalloc dance
538 		 */
539 		if (page_offset(locked_page) >= start &&
540 		    page_offset(locked_page) <= end) {
541 			__set_page_dirty_nobuffers(locked_page);
542 			/* unlocked later on in the async handlers */
543 		}
544 		add_async_extent(async_cow, start, end - start + 1,
545 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
546 		*num_added += 1;
547 	}
548 
549 out:
550 	return 0;
551 
552 free_pages_out:
553 	for (i = 0; i < nr_pages_ret; i++) {
554 		WARN_ON(pages[i]->mapping);
555 		page_cache_release(pages[i]);
556 	}
557 	kfree(pages);
558 
559 	goto out;
560 }
561 
562 /*
563  * phase two of compressed writeback.  This is the ordered portion
564  * of the code, which only gets called in the order the work was
565  * queued.  We walk all the async extents created by compress_file_range
566  * and send them down to the disk.
567  */
568 static noinline int submit_compressed_extents(struct inode *inode,
569 					      struct async_cow *async_cow)
570 {
571 	struct async_extent *async_extent;
572 	u64 alloc_hint = 0;
573 	struct btrfs_trans_handle *trans;
574 	struct btrfs_key ins;
575 	struct extent_map *em;
576 	struct btrfs_root *root = BTRFS_I(inode)->root;
577 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
578 	struct extent_io_tree *io_tree;
579 	int ret = 0;
580 
581 	if (list_empty(&async_cow->extents))
582 		return 0;
583 
584 
585 	while (!list_empty(&async_cow->extents)) {
586 		async_extent = list_entry(async_cow->extents.next,
587 					  struct async_extent, list);
588 		list_del(&async_extent->list);
589 
590 		io_tree = &BTRFS_I(inode)->io_tree;
591 
592 retry:
593 		/* did the compression code fall back to uncompressed IO? */
594 		if (!async_extent->pages) {
595 			int page_started = 0;
596 			unsigned long nr_written = 0;
597 
598 			lock_extent(io_tree, async_extent->start,
599 					 async_extent->start +
600 					 async_extent->ram_size - 1, GFP_NOFS);
601 
602 			/* allocate blocks */
603 			ret = cow_file_range(inode, async_cow->locked_page,
604 					     async_extent->start,
605 					     async_extent->start +
606 					     async_extent->ram_size - 1,
607 					     &page_started, &nr_written, 0);
608 
609 			/*
610 			 * if page_started, cow_file_range inserted an
611 			 * inline extent and took care of all the unlocking
612 			 * and IO for us.  Otherwise, we need to submit
613 			 * all those pages down to the drive.
614 			 */
615 			if (!page_started && !ret)
616 				extent_write_locked_range(io_tree,
617 						  inode, async_extent->start,
618 						  async_extent->start +
619 						  async_extent->ram_size - 1,
620 						  btrfs_get_extent,
621 						  WB_SYNC_ALL);
622 			kfree(async_extent);
623 			cond_resched();
624 			continue;
625 		}
626 
627 		lock_extent(io_tree, async_extent->start,
628 			    async_extent->start + async_extent->ram_size - 1,
629 			    GFP_NOFS);
630 
631 		trans = btrfs_join_transaction(root);
632 		BUG_ON(IS_ERR(trans));
633 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
634 		ret = btrfs_reserve_extent(trans, root,
635 					   async_extent->compressed_size,
636 					   async_extent->compressed_size,
637 					   0, alloc_hint,
638 					   (u64)-1, &ins, 1);
639 		btrfs_end_transaction(trans, root);
640 
641 		if (ret) {
642 			int i;
643 			for (i = 0; i < async_extent->nr_pages; i++) {
644 				WARN_ON(async_extent->pages[i]->mapping);
645 				page_cache_release(async_extent->pages[i]);
646 			}
647 			kfree(async_extent->pages);
648 			async_extent->nr_pages = 0;
649 			async_extent->pages = NULL;
650 			unlock_extent(io_tree, async_extent->start,
651 				      async_extent->start +
652 				      async_extent->ram_size - 1, GFP_NOFS);
653 			goto retry;
654 		}
655 
656 		/*
657 		 * here we're doing allocation and writeback of the
658 		 * compressed pages
659 		 */
660 		btrfs_drop_extent_cache(inode, async_extent->start,
661 					async_extent->start +
662 					async_extent->ram_size - 1, 0);
663 
664 		em = alloc_extent_map();
665 		BUG_ON(!em);
666 		em->start = async_extent->start;
667 		em->len = async_extent->ram_size;
668 		em->orig_start = em->start;
669 
670 		em->block_start = ins.objectid;
671 		em->block_len = ins.offset;
672 		em->bdev = root->fs_info->fs_devices->latest_bdev;
673 		em->compress_type = async_extent->compress_type;
674 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
675 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
676 
677 		while (1) {
678 			write_lock(&em_tree->lock);
679 			ret = add_extent_mapping(em_tree, em);
680 			write_unlock(&em_tree->lock);
681 			if (ret != -EEXIST) {
682 				free_extent_map(em);
683 				break;
684 			}
685 			btrfs_drop_extent_cache(inode, async_extent->start,
686 						async_extent->start +
687 						async_extent->ram_size - 1, 0);
688 		}
689 
690 		ret = btrfs_add_ordered_extent_compress(inode,
691 						async_extent->start,
692 						ins.objectid,
693 						async_extent->ram_size,
694 						ins.offset,
695 						BTRFS_ORDERED_COMPRESSED,
696 						async_extent->compress_type);
697 		BUG_ON(ret);
698 
699 		/*
700 		 * clear dirty, set writeback and unlock the pages.
701 		 */
702 		extent_clear_unlock_delalloc(inode,
703 				&BTRFS_I(inode)->io_tree,
704 				async_extent->start,
705 				async_extent->start +
706 				async_extent->ram_size - 1,
707 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
708 				EXTENT_CLEAR_UNLOCK |
709 				EXTENT_CLEAR_DELALLOC |
710 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
711 
712 		ret = btrfs_submit_compressed_write(inode,
713 				    async_extent->start,
714 				    async_extent->ram_size,
715 				    ins.objectid,
716 				    ins.offset, async_extent->pages,
717 				    async_extent->nr_pages);
718 
719 		BUG_ON(ret);
720 		alloc_hint = ins.objectid + ins.offset;
721 		kfree(async_extent);
722 		cond_resched();
723 	}
724 
725 	return 0;
726 }
727 
728 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
729 				      u64 num_bytes)
730 {
731 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 	struct extent_map *em;
733 	u64 alloc_hint = 0;
734 
735 	read_lock(&em_tree->lock);
736 	em = search_extent_mapping(em_tree, start, num_bytes);
737 	if (em) {
738 		/*
739 		 * if block start isn't an actual block number then find the
740 		 * first block in this inode and use that as a hint.  If that
741 		 * block is also bogus then just don't worry about it.
742 		 */
743 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
744 			free_extent_map(em);
745 			em = search_extent_mapping(em_tree, 0, 0);
746 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
747 				alloc_hint = em->block_start;
748 			if (em)
749 				free_extent_map(em);
750 		} else {
751 			alloc_hint = em->block_start;
752 			free_extent_map(em);
753 		}
754 	}
755 	read_unlock(&em_tree->lock);
756 
757 	return alloc_hint;
758 }
759 
760 /*
761  * when extent_io.c finds a delayed allocation range in the file,
762  * the call backs end up in this code.  The basic idea is to
763  * allocate extents on disk for the range, and create ordered data structs
764  * in ram to track those extents.
765  *
766  * locked_page is the page that writepage had locked already.  We use
767  * it to make sure we don't do extra locks or unlocks.
768  *
769  * *page_started is set to one if we unlock locked_page and do everything
770  * required to start IO on it.  It may be clean and already done with
771  * IO when we return.
772  */
773 static noinline int cow_file_range(struct inode *inode,
774 				   struct page *locked_page,
775 				   u64 start, u64 end, int *page_started,
776 				   unsigned long *nr_written,
777 				   int unlock)
778 {
779 	struct btrfs_root *root = BTRFS_I(inode)->root;
780 	struct btrfs_trans_handle *trans;
781 	u64 alloc_hint = 0;
782 	u64 num_bytes;
783 	unsigned long ram_size;
784 	u64 disk_num_bytes;
785 	u64 cur_alloc_size;
786 	u64 blocksize = root->sectorsize;
787 	struct btrfs_key ins;
788 	struct extent_map *em;
789 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
790 	int ret = 0;
791 
792 	BUG_ON(btrfs_is_free_space_inode(root, inode));
793 	trans = btrfs_join_transaction(root);
794 	BUG_ON(IS_ERR(trans));
795 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
796 
797 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
798 	num_bytes = max(blocksize,  num_bytes);
799 	disk_num_bytes = num_bytes;
800 	ret = 0;
801 
802 	/* if this is a small write inside eof, kick off defrag */
803 	if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
804 		btrfs_add_inode_defrag(trans, inode);
805 
806 	if (start == 0) {
807 		/* lets try to make an inline extent */
808 		ret = cow_file_range_inline(trans, root, inode,
809 					    start, end, 0, 0, NULL);
810 		if (ret == 0) {
811 			extent_clear_unlock_delalloc(inode,
812 				     &BTRFS_I(inode)->io_tree,
813 				     start, end, NULL,
814 				     EXTENT_CLEAR_UNLOCK_PAGE |
815 				     EXTENT_CLEAR_UNLOCK |
816 				     EXTENT_CLEAR_DELALLOC |
817 				     EXTENT_CLEAR_DIRTY |
818 				     EXTENT_SET_WRITEBACK |
819 				     EXTENT_END_WRITEBACK);
820 
821 			*nr_written = *nr_written +
822 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
823 			*page_started = 1;
824 			ret = 0;
825 			goto out;
826 		}
827 	}
828 
829 	BUG_ON(disk_num_bytes >
830 	       btrfs_super_total_bytes(root->fs_info->super_copy));
831 
832 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
833 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
834 
835 	while (disk_num_bytes > 0) {
836 		unsigned long op;
837 
838 		cur_alloc_size = disk_num_bytes;
839 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
840 					   root->sectorsize, 0, alloc_hint,
841 					   (u64)-1, &ins, 1);
842 		BUG_ON(ret);
843 
844 		em = alloc_extent_map();
845 		BUG_ON(!em);
846 		em->start = start;
847 		em->orig_start = em->start;
848 		ram_size = ins.offset;
849 		em->len = ins.offset;
850 
851 		em->block_start = ins.objectid;
852 		em->block_len = ins.offset;
853 		em->bdev = root->fs_info->fs_devices->latest_bdev;
854 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
855 
856 		while (1) {
857 			write_lock(&em_tree->lock);
858 			ret = add_extent_mapping(em_tree, em);
859 			write_unlock(&em_tree->lock);
860 			if (ret != -EEXIST) {
861 				free_extent_map(em);
862 				break;
863 			}
864 			btrfs_drop_extent_cache(inode, start,
865 						start + ram_size - 1, 0);
866 		}
867 
868 		cur_alloc_size = ins.offset;
869 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
870 					       ram_size, cur_alloc_size, 0);
871 		BUG_ON(ret);
872 
873 		if (root->root_key.objectid ==
874 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
875 			ret = btrfs_reloc_clone_csums(inode, start,
876 						      cur_alloc_size);
877 			BUG_ON(ret);
878 		}
879 
880 		if (disk_num_bytes < cur_alloc_size)
881 			break;
882 
883 		/* we're not doing compressed IO, don't unlock the first
884 		 * page (which the caller expects to stay locked), don't
885 		 * clear any dirty bits and don't set any writeback bits
886 		 *
887 		 * Do set the Private2 bit so we know this page was properly
888 		 * setup for writepage
889 		 */
890 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
891 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
892 			EXTENT_SET_PRIVATE2;
893 
894 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
895 					     start, start + ram_size - 1,
896 					     locked_page, op);
897 		disk_num_bytes -= cur_alloc_size;
898 		num_bytes -= cur_alloc_size;
899 		alloc_hint = ins.objectid + ins.offset;
900 		start += cur_alloc_size;
901 	}
902 out:
903 	ret = 0;
904 	btrfs_end_transaction(trans, root);
905 
906 	return ret;
907 }
908 
909 /*
910  * work queue call back to started compression on a file and pages
911  */
912 static noinline void async_cow_start(struct btrfs_work *work)
913 {
914 	struct async_cow *async_cow;
915 	int num_added = 0;
916 	async_cow = container_of(work, struct async_cow, work);
917 
918 	compress_file_range(async_cow->inode, async_cow->locked_page,
919 			    async_cow->start, async_cow->end, async_cow,
920 			    &num_added);
921 	if (num_added == 0)
922 		async_cow->inode = NULL;
923 }
924 
925 /*
926  * work queue call back to submit previously compressed pages
927  */
928 static noinline void async_cow_submit(struct btrfs_work *work)
929 {
930 	struct async_cow *async_cow;
931 	struct btrfs_root *root;
932 	unsigned long nr_pages;
933 
934 	async_cow = container_of(work, struct async_cow, work);
935 
936 	root = async_cow->root;
937 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
938 		PAGE_CACHE_SHIFT;
939 
940 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
941 
942 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
943 	    5 * 1042 * 1024 &&
944 	    waitqueue_active(&root->fs_info->async_submit_wait))
945 		wake_up(&root->fs_info->async_submit_wait);
946 
947 	if (async_cow->inode)
948 		submit_compressed_extents(async_cow->inode, async_cow);
949 }
950 
951 static noinline void async_cow_free(struct btrfs_work *work)
952 {
953 	struct async_cow *async_cow;
954 	async_cow = container_of(work, struct async_cow, work);
955 	kfree(async_cow);
956 }
957 
958 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
959 				u64 start, u64 end, int *page_started,
960 				unsigned long *nr_written)
961 {
962 	struct async_cow *async_cow;
963 	struct btrfs_root *root = BTRFS_I(inode)->root;
964 	unsigned long nr_pages;
965 	u64 cur_end;
966 	int limit = 10 * 1024 * 1042;
967 
968 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
969 			 1, 0, NULL, GFP_NOFS);
970 	while (start < end) {
971 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
972 		BUG_ON(!async_cow);
973 		async_cow->inode = inode;
974 		async_cow->root = root;
975 		async_cow->locked_page = locked_page;
976 		async_cow->start = start;
977 
978 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
979 			cur_end = end;
980 		else
981 			cur_end = min(end, start + 512 * 1024 - 1);
982 
983 		async_cow->end = cur_end;
984 		INIT_LIST_HEAD(&async_cow->extents);
985 
986 		async_cow->work.func = async_cow_start;
987 		async_cow->work.ordered_func = async_cow_submit;
988 		async_cow->work.ordered_free = async_cow_free;
989 		async_cow->work.flags = 0;
990 
991 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
992 			PAGE_CACHE_SHIFT;
993 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
994 
995 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
996 				   &async_cow->work);
997 
998 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
999 			wait_event(root->fs_info->async_submit_wait,
1000 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1001 			    limit));
1002 		}
1003 
1004 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1005 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1006 			wait_event(root->fs_info->async_submit_wait,
1007 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1008 			   0));
1009 		}
1010 
1011 		*nr_written += nr_pages;
1012 		start = cur_end + 1;
1013 	}
1014 	*page_started = 1;
1015 	return 0;
1016 }
1017 
1018 static noinline int csum_exist_in_range(struct btrfs_root *root,
1019 					u64 bytenr, u64 num_bytes)
1020 {
1021 	int ret;
1022 	struct btrfs_ordered_sum *sums;
1023 	LIST_HEAD(list);
1024 
1025 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1026 				       bytenr + num_bytes - 1, &list, 0);
1027 	if (ret == 0 && list_empty(&list))
1028 		return 0;
1029 
1030 	while (!list_empty(&list)) {
1031 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1032 		list_del(&sums->list);
1033 		kfree(sums);
1034 	}
1035 	return 1;
1036 }
1037 
1038 /*
1039  * when nowcow writeback call back.  This checks for snapshots or COW copies
1040  * of the extents that exist in the file, and COWs the file as required.
1041  *
1042  * If no cow copies or snapshots exist, we write directly to the existing
1043  * blocks on disk
1044  */
1045 static noinline int run_delalloc_nocow(struct inode *inode,
1046 				       struct page *locked_page,
1047 			      u64 start, u64 end, int *page_started, int force,
1048 			      unsigned long *nr_written)
1049 {
1050 	struct btrfs_root *root = BTRFS_I(inode)->root;
1051 	struct btrfs_trans_handle *trans;
1052 	struct extent_buffer *leaf;
1053 	struct btrfs_path *path;
1054 	struct btrfs_file_extent_item *fi;
1055 	struct btrfs_key found_key;
1056 	u64 cow_start;
1057 	u64 cur_offset;
1058 	u64 extent_end;
1059 	u64 extent_offset;
1060 	u64 disk_bytenr;
1061 	u64 num_bytes;
1062 	int extent_type;
1063 	int ret;
1064 	int type;
1065 	int nocow;
1066 	int check_prev = 1;
1067 	bool nolock;
1068 	u64 ino = btrfs_ino(inode);
1069 
1070 	path = btrfs_alloc_path();
1071 	if (!path)
1072 		return -ENOMEM;
1073 
1074 	nolock = btrfs_is_free_space_inode(root, inode);
1075 
1076 	if (nolock)
1077 		trans = btrfs_join_transaction_nolock(root);
1078 	else
1079 		trans = btrfs_join_transaction(root);
1080 
1081 	BUG_ON(IS_ERR(trans));
1082 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1083 
1084 	cow_start = (u64)-1;
1085 	cur_offset = start;
1086 	while (1) {
1087 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1088 					       cur_offset, 0);
1089 		BUG_ON(ret < 0);
1090 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1091 			leaf = path->nodes[0];
1092 			btrfs_item_key_to_cpu(leaf, &found_key,
1093 					      path->slots[0] - 1);
1094 			if (found_key.objectid == ino &&
1095 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1096 				path->slots[0]--;
1097 		}
1098 		check_prev = 0;
1099 next_slot:
1100 		leaf = path->nodes[0];
1101 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1102 			ret = btrfs_next_leaf(root, path);
1103 			if (ret < 0)
1104 				BUG_ON(1);
1105 			if (ret > 0)
1106 				break;
1107 			leaf = path->nodes[0];
1108 		}
1109 
1110 		nocow = 0;
1111 		disk_bytenr = 0;
1112 		num_bytes = 0;
1113 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1114 
1115 		if (found_key.objectid > ino ||
1116 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1117 		    found_key.offset > end)
1118 			break;
1119 
1120 		if (found_key.offset > cur_offset) {
1121 			extent_end = found_key.offset;
1122 			extent_type = 0;
1123 			goto out_check;
1124 		}
1125 
1126 		fi = btrfs_item_ptr(leaf, path->slots[0],
1127 				    struct btrfs_file_extent_item);
1128 		extent_type = btrfs_file_extent_type(leaf, fi);
1129 
1130 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1131 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1132 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1133 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1134 			extent_end = found_key.offset +
1135 				btrfs_file_extent_num_bytes(leaf, fi);
1136 			if (extent_end <= start) {
1137 				path->slots[0]++;
1138 				goto next_slot;
1139 			}
1140 			if (disk_bytenr == 0)
1141 				goto out_check;
1142 			if (btrfs_file_extent_compression(leaf, fi) ||
1143 			    btrfs_file_extent_encryption(leaf, fi) ||
1144 			    btrfs_file_extent_other_encoding(leaf, fi))
1145 				goto out_check;
1146 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1147 				goto out_check;
1148 			if (btrfs_extent_readonly(root, disk_bytenr))
1149 				goto out_check;
1150 			if (btrfs_cross_ref_exist(trans, root, ino,
1151 						  found_key.offset -
1152 						  extent_offset, disk_bytenr))
1153 				goto out_check;
1154 			disk_bytenr += extent_offset;
1155 			disk_bytenr += cur_offset - found_key.offset;
1156 			num_bytes = min(end + 1, extent_end) - cur_offset;
1157 			/*
1158 			 * force cow if csum exists in the range.
1159 			 * this ensure that csum for a given extent are
1160 			 * either valid or do not exist.
1161 			 */
1162 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1163 				goto out_check;
1164 			nocow = 1;
1165 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1166 			extent_end = found_key.offset +
1167 				btrfs_file_extent_inline_len(leaf, fi);
1168 			extent_end = ALIGN(extent_end, root->sectorsize);
1169 		} else {
1170 			BUG_ON(1);
1171 		}
1172 out_check:
1173 		if (extent_end <= start) {
1174 			path->slots[0]++;
1175 			goto next_slot;
1176 		}
1177 		if (!nocow) {
1178 			if (cow_start == (u64)-1)
1179 				cow_start = cur_offset;
1180 			cur_offset = extent_end;
1181 			if (cur_offset > end)
1182 				break;
1183 			path->slots[0]++;
1184 			goto next_slot;
1185 		}
1186 
1187 		btrfs_release_path(path);
1188 		if (cow_start != (u64)-1) {
1189 			ret = cow_file_range(inode, locked_page, cow_start,
1190 					found_key.offset - 1, page_started,
1191 					nr_written, 1);
1192 			BUG_ON(ret);
1193 			cow_start = (u64)-1;
1194 		}
1195 
1196 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1197 			struct extent_map *em;
1198 			struct extent_map_tree *em_tree;
1199 			em_tree = &BTRFS_I(inode)->extent_tree;
1200 			em = alloc_extent_map();
1201 			BUG_ON(!em);
1202 			em->start = cur_offset;
1203 			em->orig_start = em->start;
1204 			em->len = num_bytes;
1205 			em->block_len = num_bytes;
1206 			em->block_start = disk_bytenr;
1207 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1208 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1209 			while (1) {
1210 				write_lock(&em_tree->lock);
1211 				ret = add_extent_mapping(em_tree, em);
1212 				write_unlock(&em_tree->lock);
1213 				if (ret != -EEXIST) {
1214 					free_extent_map(em);
1215 					break;
1216 				}
1217 				btrfs_drop_extent_cache(inode, em->start,
1218 						em->start + em->len - 1, 0);
1219 			}
1220 			type = BTRFS_ORDERED_PREALLOC;
1221 		} else {
1222 			type = BTRFS_ORDERED_NOCOW;
1223 		}
1224 
1225 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1226 					       num_bytes, num_bytes, type);
1227 		BUG_ON(ret);
1228 
1229 		if (root->root_key.objectid ==
1230 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1231 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1232 						      num_bytes);
1233 			BUG_ON(ret);
1234 		}
1235 
1236 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1237 				cur_offset, cur_offset + num_bytes - 1,
1238 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1239 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1240 				EXTENT_SET_PRIVATE2);
1241 		cur_offset = extent_end;
1242 		if (cur_offset > end)
1243 			break;
1244 	}
1245 	btrfs_release_path(path);
1246 
1247 	if (cur_offset <= end && cow_start == (u64)-1)
1248 		cow_start = cur_offset;
1249 	if (cow_start != (u64)-1) {
1250 		ret = cow_file_range(inode, locked_page, cow_start, end,
1251 				     page_started, nr_written, 1);
1252 		BUG_ON(ret);
1253 	}
1254 
1255 	if (nolock) {
1256 		ret = btrfs_end_transaction_nolock(trans, root);
1257 		BUG_ON(ret);
1258 	} else {
1259 		ret = btrfs_end_transaction(trans, root);
1260 		BUG_ON(ret);
1261 	}
1262 	btrfs_free_path(path);
1263 	return 0;
1264 }
1265 
1266 /*
1267  * extent_io.c call back to do delayed allocation processing
1268  */
1269 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1270 			      u64 start, u64 end, int *page_started,
1271 			      unsigned long *nr_written)
1272 {
1273 	int ret;
1274 	struct btrfs_root *root = BTRFS_I(inode)->root;
1275 
1276 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1277 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1278 					 page_started, 1, nr_written);
1279 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1280 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1281 					 page_started, 0, nr_written);
1282 	else if (!btrfs_test_opt(root, COMPRESS) &&
1283 		 !(BTRFS_I(inode)->force_compress) &&
1284 		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1285 		ret = cow_file_range(inode, locked_page, start, end,
1286 				      page_started, nr_written, 1);
1287 	else
1288 		ret = cow_file_range_async(inode, locked_page, start, end,
1289 					   page_started, nr_written);
1290 	return ret;
1291 }
1292 
1293 static void btrfs_split_extent_hook(struct inode *inode,
1294 				    struct extent_state *orig, u64 split)
1295 {
1296 	/* not delalloc, ignore it */
1297 	if (!(orig->state & EXTENT_DELALLOC))
1298 		return;
1299 
1300 	spin_lock(&BTRFS_I(inode)->lock);
1301 	BTRFS_I(inode)->outstanding_extents++;
1302 	spin_unlock(&BTRFS_I(inode)->lock);
1303 }
1304 
1305 /*
1306  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307  * extents so we can keep track of new extents that are just merged onto old
1308  * extents, such as when we are doing sequential writes, so we can properly
1309  * account for the metadata space we'll need.
1310  */
1311 static void btrfs_merge_extent_hook(struct inode *inode,
1312 				    struct extent_state *new,
1313 				    struct extent_state *other)
1314 {
1315 	/* not delalloc, ignore it */
1316 	if (!(other->state & EXTENT_DELALLOC))
1317 		return;
1318 
1319 	spin_lock(&BTRFS_I(inode)->lock);
1320 	BTRFS_I(inode)->outstanding_extents--;
1321 	spin_unlock(&BTRFS_I(inode)->lock);
1322 }
1323 
1324 /*
1325  * extent_io.c set_bit_hook, used to track delayed allocation
1326  * bytes in this file, and to maintain the list of inodes that
1327  * have pending delalloc work to be done.
1328  */
1329 static void btrfs_set_bit_hook(struct inode *inode,
1330 			       struct extent_state *state, int *bits)
1331 {
1332 
1333 	/*
1334 	 * set_bit and clear bit hooks normally require _irqsave/restore
1335 	 * but in this case, we are only testing for the DELALLOC
1336 	 * bit, which is only set or cleared with irqs on
1337 	 */
1338 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1339 		struct btrfs_root *root = BTRFS_I(inode)->root;
1340 		u64 len = state->end + 1 - state->start;
1341 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1342 
1343 		if (*bits & EXTENT_FIRST_DELALLOC) {
1344 			*bits &= ~EXTENT_FIRST_DELALLOC;
1345 		} else {
1346 			spin_lock(&BTRFS_I(inode)->lock);
1347 			BTRFS_I(inode)->outstanding_extents++;
1348 			spin_unlock(&BTRFS_I(inode)->lock);
1349 		}
1350 
1351 		spin_lock(&root->fs_info->delalloc_lock);
1352 		BTRFS_I(inode)->delalloc_bytes += len;
1353 		root->fs_info->delalloc_bytes += len;
1354 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1355 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1356 				      &root->fs_info->delalloc_inodes);
1357 		}
1358 		spin_unlock(&root->fs_info->delalloc_lock);
1359 	}
1360 }
1361 
1362 /*
1363  * extent_io.c clear_bit_hook, see set_bit_hook for why
1364  */
1365 static void btrfs_clear_bit_hook(struct inode *inode,
1366 				 struct extent_state *state, int *bits)
1367 {
1368 	/*
1369 	 * set_bit and clear bit hooks normally require _irqsave/restore
1370 	 * but in this case, we are only testing for the DELALLOC
1371 	 * bit, which is only set or cleared with irqs on
1372 	 */
1373 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1374 		struct btrfs_root *root = BTRFS_I(inode)->root;
1375 		u64 len = state->end + 1 - state->start;
1376 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1377 
1378 		if (*bits & EXTENT_FIRST_DELALLOC) {
1379 			*bits &= ~EXTENT_FIRST_DELALLOC;
1380 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1381 			spin_lock(&BTRFS_I(inode)->lock);
1382 			BTRFS_I(inode)->outstanding_extents--;
1383 			spin_unlock(&BTRFS_I(inode)->lock);
1384 		}
1385 
1386 		if (*bits & EXTENT_DO_ACCOUNTING)
1387 			btrfs_delalloc_release_metadata(inode, len);
1388 
1389 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1390 		    && do_list)
1391 			btrfs_free_reserved_data_space(inode, len);
1392 
1393 		spin_lock(&root->fs_info->delalloc_lock);
1394 		root->fs_info->delalloc_bytes -= len;
1395 		BTRFS_I(inode)->delalloc_bytes -= len;
1396 
1397 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1398 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1399 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1400 		}
1401 		spin_unlock(&root->fs_info->delalloc_lock);
1402 	}
1403 }
1404 
1405 /*
1406  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407  * we don't create bios that span stripes or chunks
1408  */
1409 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1410 			 size_t size, struct bio *bio,
1411 			 unsigned long bio_flags)
1412 {
1413 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1414 	struct btrfs_mapping_tree *map_tree;
1415 	u64 logical = (u64)bio->bi_sector << 9;
1416 	u64 length = 0;
1417 	u64 map_length;
1418 	int ret;
1419 
1420 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1421 		return 0;
1422 
1423 	length = bio->bi_size;
1424 	map_tree = &root->fs_info->mapping_tree;
1425 	map_length = length;
1426 	ret = btrfs_map_block(map_tree, READ, logical,
1427 			      &map_length, NULL, 0);
1428 
1429 	if (map_length < length + size)
1430 		return 1;
1431 	return ret;
1432 }
1433 
1434 /*
1435  * in order to insert checksums into the metadata in large chunks,
1436  * we wait until bio submission time.   All the pages in the bio are
1437  * checksummed and sums are attached onto the ordered extent record.
1438  *
1439  * At IO completion time the cums attached on the ordered extent record
1440  * are inserted into the btree
1441  */
1442 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1443 				    struct bio *bio, int mirror_num,
1444 				    unsigned long bio_flags,
1445 				    u64 bio_offset)
1446 {
1447 	struct btrfs_root *root = BTRFS_I(inode)->root;
1448 	int ret = 0;
1449 
1450 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1451 	BUG_ON(ret);
1452 	return 0;
1453 }
1454 
1455 /*
1456  * in order to insert checksums into the metadata in large chunks,
1457  * we wait until bio submission time.   All the pages in the bio are
1458  * checksummed and sums are attached onto the ordered extent record.
1459  *
1460  * At IO completion time the cums attached on the ordered extent record
1461  * are inserted into the btree
1462  */
1463 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1464 			  int mirror_num, unsigned long bio_flags,
1465 			  u64 bio_offset)
1466 {
1467 	struct btrfs_root *root = BTRFS_I(inode)->root;
1468 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1469 }
1470 
1471 /*
1472  * extent_io.c submission hook. This does the right thing for csum calculation
1473  * on write, or reading the csums from the tree before a read
1474  */
1475 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1476 			  int mirror_num, unsigned long bio_flags,
1477 			  u64 bio_offset)
1478 {
1479 	struct btrfs_root *root = BTRFS_I(inode)->root;
1480 	int ret = 0;
1481 	int skip_sum;
1482 
1483 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1484 
1485 	if (btrfs_is_free_space_inode(root, inode))
1486 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1487 	else
1488 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1489 	BUG_ON(ret);
1490 
1491 	if (!(rw & REQ_WRITE)) {
1492 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1493 			return btrfs_submit_compressed_read(inode, bio,
1494 						    mirror_num, bio_flags);
1495 		} else if (!skip_sum) {
1496 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1497 			if (ret)
1498 				return ret;
1499 		}
1500 		goto mapit;
1501 	} else if (!skip_sum) {
1502 		/* csum items have already been cloned */
1503 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1504 			goto mapit;
1505 		/* we're doing a write, do the async checksumming */
1506 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1507 				   inode, rw, bio, mirror_num,
1508 				   bio_flags, bio_offset,
1509 				   __btrfs_submit_bio_start,
1510 				   __btrfs_submit_bio_done);
1511 	}
1512 
1513 mapit:
1514 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1515 }
1516 
1517 /*
1518  * given a list of ordered sums record them in the inode.  This happens
1519  * at IO completion time based on sums calculated at bio submission time.
1520  */
1521 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1522 			     struct inode *inode, u64 file_offset,
1523 			     struct list_head *list)
1524 {
1525 	struct btrfs_ordered_sum *sum;
1526 
1527 	list_for_each_entry(sum, list, list) {
1528 		btrfs_csum_file_blocks(trans,
1529 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1530 	}
1531 	return 0;
1532 }
1533 
1534 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1535 			      struct extent_state **cached_state)
1536 {
1537 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1538 		WARN_ON(1);
1539 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1540 				   cached_state, GFP_NOFS);
1541 }
1542 
1543 /* see btrfs_writepage_start_hook for details on why this is required */
1544 struct btrfs_writepage_fixup {
1545 	struct page *page;
1546 	struct btrfs_work work;
1547 };
1548 
1549 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1550 {
1551 	struct btrfs_writepage_fixup *fixup;
1552 	struct btrfs_ordered_extent *ordered;
1553 	struct extent_state *cached_state = NULL;
1554 	struct page *page;
1555 	struct inode *inode;
1556 	u64 page_start;
1557 	u64 page_end;
1558 
1559 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1560 	page = fixup->page;
1561 again:
1562 	lock_page(page);
1563 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1564 		ClearPageChecked(page);
1565 		goto out_page;
1566 	}
1567 
1568 	inode = page->mapping->host;
1569 	page_start = page_offset(page);
1570 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1571 
1572 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1573 			 &cached_state, GFP_NOFS);
1574 
1575 	/* already ordered? We're done */
1576 	if (PagePrivate2(page))
1577 		goto out;
1578 
1579 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1580 	if (ordered) {
1581 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1582 				     page_end, &cached_state, GFP_NOFS);
1583 		unlock_page(page);
1584 		btrfs_start_ordered_extent(inode, ordered, 1);
1585 		goto again;
1586 	}
1587 
1588 	BUG();
1589 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1590 	ClearPageChecked(page);
1591 out:
1592 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1593 			     &cached_state, GFP_NOFS);
1594 out_page:
1595 	unlock_page(page);
1596 	page_cache_release(page);
1597 	kfree(fixup);
1598 }
1599 
1600 /*
1601  * There are a few paths in the higher layers of the kernel that directly
1602  * set the page dirty bit without asking the filesystem if it is a
1603  * good idea.  This causes problems because we want to make sure COW
1604  * properly happens and the data=ordered rules are followed.
1605  *
1606  * In our case any range that doesn't have the ORDERED bit set
1607  * hasn't been properly setup for IO.  We kick off an async process
1608  * to fix it up.  The async helper will wait for ordered extents, set
1609  * the delalloc bit and make it safe to write the page.
1610  */
1611 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1612 {
1613 	struct inode *inode = page->mapping->host;
1614 	struct btrfs_writepage_fixup *fixup;
1615 	struct btrfs_root *root = BTRFS_I(inode)->root;
1616 
1617 	/* this page is properly in the ordered list */
1618 	if (TestClearPagePrivate2(page))
1619 		return 0;
1620 
1621 	if (PageChecked(page))
1622 		return -EAGAIN;
1623 
1624 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1625 	if (!fixup)
1626 		return -EAGAIN;
1627 
1628 	SetPageChecked(page);
1629 	page_cache_get(page);
1630 	fixup->work.func = btrfs_writepage_fixup_worker;
1631 	fixup->page = page;
1632 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1633 	return -EAGAIN;
1634 }
1635 
1636 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1637 				       struct inode *inode, u64 file_pos,
1638 				       u64 disk_bytenr, u64 disk_num_bytes,
1639 				       u64 num_bytes, u64 ram_bytes,
1640 				       u8 compression, u8 encryption,
1641 				       u16 other_encoding, int extent_type)
1642 {
1643 	struct btrfs_root *root = BTRFS_I(inode)->root;
1644 	struct btrfs_file_extent_item *fi;
1645 	struct btrfs_path *path;
1646 	struct extent_buffer *leaf;
1647 	struct btrfs_key ins;
1648 	u64 hint;
1649 	int ret;
1650 
1651 	path = btrfs_alloc_path();
1652 	if (!path)
1653 		return -ENOMEM;
1654 
1655 	path->leave_spinning = 1;
1656 
1657 	/*
1658 	 * we may be replacing one extent in the tree with another.
1659 	 * The new extent is pinned in the extent map, and we don't want
1660 	 * to drop it from the cache until it is completely in the btree.
1661 	 *
1662 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1663 	 * the caller is expected to unpin it and allow it to be merged
1664 	 * with the others.
1665 	 */
1666 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1667 				 &hint, 0);
1668 	BUG_ON(ret);
1669 
1670 	ins.objectid = btrfs_ino(inode);
1671 	ins.offset = file_pos;
1672 	ins.type = BTRFS_EXTENT_DATA_KEY;
1673 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1674 	BUG_ON(ret);
1675 	leaf = path->nodes[0];
1676 	fi = btrfs_item_ptr(leaf, path->slots[0],
1677 			    struct btrfs_file_extent_item);
1678 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1679 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1680 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1681 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1682 	btrfs_set_file_extent_offset(leaf, fi, 0);
1683 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1684 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1685 	btrfs_set_file_extent_compression(leaf, fi, compression);
1686 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1687 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1688 
1689 	btrfs_unlock_up_safe(path, 1);
1690 	btrfs_set_lock_blocking(leaf);
1691 
1692 	btrfs_mark_buffer_dirty(leaf);
1693 
1694 	inode_add_bytes(inode, num_bytes);
1695 
1696 	ins.objectid = disk_bytenr;
1697 	ins.offset = disk_num_bytes;
1698 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1699 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1700 					root->root_key.objectid,
1701 					btrfs_ino(inode), file_pos, &ins);
1702 	BUG_ON(ret);
1703 	btrfs_free_path(path);
1704 
1705 	return 0;
1706 }
1707 
1708 /*
1709  * helper function for btrfs_finish_ordered_io, this
1710  * just reads in some of the csum leaves to prime them into ram
1711  * before we start the transaction.  It limits the amount of btree
1712  * reads required while inside the transaction.
1713  */
1714 /* as ordered data IO finishes, this gets called so we can finish
1715  * an ordered extent if the range of bytes in the file it covers are
1716  * fully written.
1717  */
1718 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1719 {
1720 	struct btrfs_root *root = BTRFS_I(inode)->root;
1721 	struct btrfs_trans_handle *trans = NULL;
1722 	struct btrfs_ordered_extent *ordered_extent = NULL;
1723 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1724 	struct extent_state *cached_state = NULL;
1725 	int compress_type = 0;
1726 	int ret;
1727 	bool nolock;
1728 
1729 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1730 					     end - start + 1);
1731 	if (!ret)
1732 		return 0;
1733 	BUG_ON(!ordered_extent);
1734 
1735 	nolock = btrfs_is_free_space_inode(root, inode);
1736 
1737 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1738 		BUG_ON(!list_empty(&ordered_extent->list));
1739 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1740 		if (!ret) {
1741 			if (nolock)
1742 				trans = btrfs_join_transaction_nolock(root);
1743 			else
1744 				trans = btrfs_join_transaction(root);
1745 			BUG_ON(IS_ERR(trans));
1746 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1747 			ret = btrfs_update_inode_fallback(trans, root, inode);
1748 			BUG_ON(ret);
1749 		}
1750 		goto out;
1751 	}
1752 
1753 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1754 			 ordered_extent->file_offset + ordered_extent->len - 1,
1755 			 0, &cached_state, GFP_NOFS);
1756 
1757 	if (nolock)
1758 		trans = btrfs_join_transaction_nolock(root);
1759 	else
1760 		trans = btrfs_join_transaction(root);
1761 	BUG_ON(IS_ERR(trans));
1762 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1763 
1764 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1765 		compress_type = ordered_extent->compress_type;
1766 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1767 		BUG_ON(compress_type);
1768 		ret = btrfs_mark_extent_written(trans, inode,
1769 						ordered_extent->file_offset,
1770 						ordered_extent->file_offset +
1771 						ordered_extent->len);
1772 		BUG_ON(ret);
1773 	} else {
1774 		BUG_ON(root == root->fs_info->tree_root);
1775 		ret = insert_reserved_file_extent(trans, inode,
1776 						ordered_extent->file_offset,
1777 						ordered_extent->start,
1778 						ordered_extent->disk_len,
1779 						ordered_extent->len,
1780 						ordered_extent->len,
1781 						compress_type, 0, 0,
1782 						BTRFS_FILE_EXTENT_REG);
1783 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1784 				   ordered_extent->file_offset,
1785 				   ordered_extent->len);
1786 		BUG_ON(ret);
1787 	}
1788 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1789 			     ordered_extent->file_offset +
1790 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1791 
1792 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1793 			  &ordered_extent->list);
1794 
1795 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1796 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1797 		ret = btrfs_update_inode_fallback(trans, root, inode);
1798 		BUG_ON(ret);
1799 	}
1800 	ret = 0;
1801 out:
1802 	if (root != root->fs_info->tree_root)
1803 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1804 	if (trans) {
1805 		if (nolock)
1806 			btrfs_end_transaction_nolock(trans, root);
1807 		else
1808 			btrfs_end_transaction(trans, root);
1809 	}
1810 
1811 	/* once for us */
1812 	btrfs_put_ordered_extent(ordered_extent);
1813 	/* once for the tree */
1814 	btrfs_put_ordered_extent(ordered_extent);
1815 
1816 	return 0;
1817 }
1818 
1819 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1820 				struct extent_state *state, int uptodate)
1821 {
1822 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1823 
1824 	ClearPagePrivate2(page);
1825 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1826 }
1827 
1828 /*
1829  * when reads are done, we need to check csums to verify the data is correct
1830  * if there's a match, we allow the bio to finish.  If not, the code in
1831  * extent_io.c will try to find good copies for us.
1832  */
1833 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1834 			       struct extent_state *state)
1835 {
1836 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1837 	struct inode *inode = page->mapping->host;
1838 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1839 	char *kaddr;
1840 	u64 private = ~(u32)0;
1841 	int ret;
1842 	struct btrfs_root *root = BTRFS_I(inode)->root;
1843 	u32 csum = ~(u32)0;
1844 
1845 	if (PageChecked(page)) {
1846 		ClearPageChecked(page);
1847 		goto good;
1848 	}
1849 
1850 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1851 		goto good;
1852 
1853 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1854 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1855 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1856 				  GFP_NOFS);
1857 		return 0;
1858 	}
1859 
1860 	if (state && state->start == start) {
1861 		private = state->private;
1862 		ret = 0;
1863 	} else {
1864 		ret = get_state_private(io_tree, start, &private);
1865 	}
1866 	kaddr = kmap_atomic(page, KM_USER0);
1867 	if (ret)
1868 		goto zeroit;
1869 
1870 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1871 	btrfs_csum_final(csum, (char *)&csum);
1872 	if (csum != private)
1873 		goto zeroit;
1874 
1875 	kunmap_atomic(kaddr, KM_USER0);
1876 good:
1877 	return 0;
1878 
1879 zeroit:
1880 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1881 		       "private %llu\n",
1882 		       (unsigned long long)btrfs_ino(page->mapping->host),
1883 		       (unsigned long long)start, csum,
1884 		       (unsigned long long)private);
1885 	memset(kaddr + offset, 1, end - start + 1);
1886 	flush_dcache_page(page);
1887 	kunmap_atomic(kaddr, KM_USER0);
1888 	if (private == 0)
1889 		return 0;
1890 	return -EIO;
1891 }
1892 
1893 struct delayed_iput {
1894 	struct list_head list;
1895 	struct inode *inode;
1896 };
1897 
1898 void btrfs_add_delayed_iput(struct inode *inode)
1899 {
1900 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1901 	struct delayed_iput *delayed;
1902 
1903 	if (atomic_add_unless(&inode->i_count, -1, 1))
1904 		return;
1905 
1906 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1907 	delayed->inode = inode;
1908 
1909 	spin_lock(&fs_info->delayed_iput_lock);
1910 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1911 	spin_unlock(&fs_info->delayed_iput_lock);
1912 }
1913 
1914 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1915 {
1916 	LIST_HEAD(list);
1917 	struct btrfs_fs_info *fs_info = root->fs_info;
1918 	struct delayed_iput *delayed;
1919 	int empty;
1920 
1921 	spin_lock(&fs_info->delayed_iput_lock);
1922 	empty = list_empty(&fs_info->delayed_iputs);
1923 	spin_unlock(&fs_info->delayed_iput_lock);
1924 	if (empty)
1925 		return;
1926 
1927 	down_read(&root->fs_info->cleanup_work_sem);
1928 	spin_lock(&fs_info->delayed_iput_lock);
1929 	list_splice_init(&fs_info->delayed_iputs, &list);
1930 	spin_unlock(&fs_info->delayed_iput_lock);
1931 
1932 	while (!list_empty(&list)) {
1933 		delayed = list_entry(list.next, struct delayed_iput, list);
1934 		list_del(&delayed->list);
1935 		iput(delayed->inode);
1936 		kfree(delayed);
1937 	}
1938 	up_read(&root->fs_info->cleanup_work_sem);
1939 }
1940 
1941 enum btrfs_orphan_cleanup_state {
1942 	ORPHAN_CLEANUP_STARTED	= 1,
1943 	ORPHAN_CLEANUP_DONE	= 2,
1944 };
1945 
1946 /*
1947  * This is called in transaction commmit time. If there are no orphan
1948  * files in the subvolume, it removes orphan item and frees block_rsv
1949  * structure.
1950  */
1951 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1952 			      struct btrfs_root *root)
1953 {
1954 	struct btrfs_block_rsv *block_rsv;
1955 	int ret;
1956 
1957 	if (!list_empty(&root->orphan_list) ||
1958 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1959 		return;
1960 
1961 	spin_lock(&root->orphan_lock);
1962 	if (!list_empty(&root->orphan_list)) {
1963 		spin_unlock(&root->orphan_lock);
1964 		return;
1965 	}
1966 
1967 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
1968 		spin_unlock(&root->orphan_lock);
1969 		return;
1970 	}
1971 
1972 	block_rsv = root->orphan_block_rsv;
1973 	root->orphan_block_rsv = NULL;
1974 	spin_unlock(&root->orphan_lock);
1975 
1976 	if (root->orphan_item_inserted &&
1977 	    btrfs_root_refs(&root->root_item) > 0) {
1978 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1979 					    root->root_key.objectid);
1980 		BUG_ON(ret);
1981 		root->orphan_item_inserted = 0;
1982 	}
1983 
1984 	if (block_rsv) {
1985 		WARN_ON(block_rsv->size > 0);
1986 		btrfs_free_block_rsv(root, block_rsv);
1987 	}
1988 }
1989 
1990 /*
1991  * This creates an orphan entry for the given inode in case something goes
1992  * wrong in the middle of an unlink/truncate.
1993  *
1994  * NOTE: caller of this function should reserve 5 units of metadata for
1995  *	 this function.
1996  */
1997 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1998 {
1999 	struct btrfs_root *root = BTRFS_I(inode)->root;
2000 	struct btrfs_block_rsv *block_rsv = NULL;
2001 	int reserve = 0;
2002 	int insert = 0;
2003 	int ret;
2004 
2005 	if (!root->orphan_block_rsv) {
2006 		block_rsv = btrfs_alloc_block_rsv(root);
2007 		if (!block_rsv)
2008 			return -ENOMEM;
2009 	}
2010 
2011 	spin_lock(&root->orphan_lock);
2012 	if (!root->orphan_block_rsv) {
2013 		root->orphan_block_rsv = block_rsv;
2014 	} else if (block_rsv) {
2015 		btrfs_free_block_rsv(root, block_rsv);
2016 		block_rsv = NULL;
2017 	}
2018 
2019 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2020 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2021 #if 0
2022 		/*
2023 		 * For proper ENOSPC handling, we should do orphan
2024 		 * cleanup when mounting. But this introduces backward
2025 		 * compatibility issue.
2026 		 */
2027 		if (!xchg(&root->orphan_item_inserted, 1))
2028 			insert = 2;
2029 		else
2030 			insert = 1;
2031 #endif
2032 		insert = 1;
2033 	}
2034 
2035 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2036 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2037 		reserve = 1;
2038 	}
2039 	spin_unlock(&root->orphan_lock);
2040 
2041 	/* grab metadata reservation from transaction handle */
2042 	if (reserve) {
2043 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2044 		BUG_ON(ret);
2045 	}
2046 
2047 	/* insert an orphan item to track this unlinked/truncated file */
2048 	if (insert >= 1) {
2049 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2050 		BUG_ON(ret && ret != -EEXIST);
2051 	}
2052 
2053 	/* insert an orphan item to track subvolume contains orphan files */
2054 	if (insert >= 2) {
2055 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2056 					       root->root_key.objectid);
2057 		BUG_ON(ret);
2058 	}
2059 	return 0;
2060 }
2061 
2062 /*
2063  * We have done the truncate/delete so we can go ahead and remove the orphan
2064  * item for this particular inode.
2065  */
2066 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2067 {
2068 	struct btrfs_root *root = BTRFS_I(inode)->root;
2069 	int delete_item = 0;
2070 	int release_rsv = 0;
2071 	int ret = 0;
2072 
2073 	spin_lock(&root->orphan_lock);
2074 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2075 		list_del_init(&BTRFS_I(inode)->i_orphan);
2076 		delete_item = 1;
2077 	}
2078 
2079 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2080 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2081 		release_rsv = 1;
2082 	}
2083 	spin_unlock(&root->orphan_lock);
2084 
2085 	if (trans && delete_item) {
2086 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2087 		BUG_ON(ret);
2088 	}
2089 
2090 	if (release_rsv)
2091 		btrfs_orphan_release_metadata(inode);
2092 
2093 	return 0;
2094 }
2095 
2096 /*
2097  * this cleans up any orphans that may be left on the list from the last use
2098  * of this root.
2099  */
2100 int btrfs_orphan_cleanup(struct btrfs_root *root)
2101 {
2102 	struct btrfs_path *path;
2103 	struct extent_buffer *leaf;
2104 	struct btrfs_key key, found_key;
2105 	struct btrfs_trans_handle *trans;
2106 	struct inode *inode;
2107 	u64 last_objectid = 0;
2108 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2109 
2110 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2111 		return 0;
2112 
2113 	path = btrfs_alloc_path();
2114 	if (!path) {
2115 		ret = -ENOMEM;
2116 		goto out;
2117 	}
2118 	path->reada = -1;
2119 
2120 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2121 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2122 	key.offset = (u64)-1;
2123 
2124 	while (1) {
2125 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2126 		if (ret < 0)
2127 			goto out;
2128 
2129 		/*
2130 		 * if ret == 0 means we found what we were searching for, which
2131 		 * is weird, but possible, so only screw with path if we didn't
2132 		 * find the key and see if we have stuff that matches
2133 		 */
2134 		if (ret > 0) {
2135 			ret = 0;
2136 			if (path->slots[0] == 0)
2137 				break;
2138 			path->slots[0]--;
2139 		}
2140 
2141 		/* pull out the item */
2142 		leaf = path->nodes[0];
2143 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2144 
2145 		/* make sure the item matches what we want */
2146 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2147 			break;
2148 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2149 			break;
2150 
2151 		/* release the path since we're done with it */
2152 		btrfs_release_path(path);
2153 
2154 		/*
2155 		 * this is where we are basically btrfs_lookup, without the
2156 		 * crossing root thing.  we store the inode number in the
2157 		 * offset of the orphan item.
2158 		 */
2159 
2160 		if (found_key.offset == last_objectid) {
2161 			printk(KERN_ERR "btrfs: Error removing orphan entry, "
2162 			       "stopping orphan cleanup\n");
2163 			ret = -EINVAL;
2164 			goto out;
2165 		}
2166 
2167 		last_objectid = found_key.offset;
2168 
2169 		found_key.objectid = found_key.offset;
2170 		found_key.type = BTRFS_INODE_ITEM_KEY;
2171 		found_key.offset = 0;
2172 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2173 		ret = PTR_RET(inode);
2174 		if (ret && ret != -ESTALE)
2175 			goto out;
2176 
2177 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
2178 			struct btrfs_root *dead_root;
2179 			struct btrfs_fs_info *fs_info = root->fs_info;
2180 			int is_dead_root = 0;
2181 
2182 			/*
2183 			 * this is an orphan in the tree root. Currently these
2184 			 * could come from 2 sources:
2185 			 *  a) a snapshot deletion in progress
2186 			 *  b) a free space cache inode
2187 			 * We need to distinguish those two, as the snapshot
2188 			 * orphan must not get deleted.
2189 			 * find_dead_roots already ran before us, so if this
2190 			 * is a snapshot deletion, we should find the root
2191 			 * in the dead_roots list
2192 			 */
2193 			spin_lock(&fs_info->trans_lock);
2194 			list_for_each_entry(dead_root, &fs_info->dead_roots,
2195 					    root_list) {
2196 				if (dead_root->root_key.objectid ==
2197 				    found_key.objectid) {
2198 					is_dead_root = 1;
2199 					break;
2200 				}
2201 			}
2202 			spin_unlock(&fs_info->trans_lock);
2203 			if (is_dead_root) {
2204 				/* prevent this orphan from being found again */
2205 				key.offset = found_key.objectid - 1;
2206 				continue;
2207 			}
2208 		}
2209 		/*
2210 		 * Inode is already gone but the orphan item is still there,
2211 		 * kill the orphan item.
2212 		 */
2213 		if (ret == -ESTALE) {
2214 			trans = btrfs_start_transaction(root, 1);
2215 			if (IS_ERR(trans)) {
2216 				ret = PTR_ERR(trans);
2217 				goto out;
2218 			}
2219 			ret = btrfs_del_orphan_item(trans, root,
2220 						    found_key.objectid);
2221 			BUG_ON(ret);
2222 			btrfs_end_transaction(trans, root);
2223 			continue;
2224 		}
2225 
2226 		/*
2227 		 * add this inode to the orphan list so btrfs_orphan_del does
2228 		 * the proper thing when we hit it
2229 		 */
2230 		spin_lock(&root->orphan_lock);
2231 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2232 		spin_unlock(&root->orphan_lock);
2233 
2234 		/* if we have links, this was a truncate, lets do that */
2235 		if (inode->i_nlink) {
2236 			if (!S_ISREG(inode->i_mode)) {
2237 				WARN_ON(1);
2238 				iput(inode);
2239 				continue;
2240 			}
2241 			nr_truncate++;
2242 			/*
2243 			 * Need to hold the imutex for reservation purposes, not
2244 			 * a huge deal here but I have a WARN_ON in
2245 			 * btrfs_delalloc_reserve_space to catch offenders.
2246 			 */
2247 			mutex_lock(&inode->i_mutex);
2248 			ret = btrfs_truncate(inode);
2249 			mutex_unlock(&inode->i_mutex);
2250 		} else {
2251 			nr_unlink++;
2252 		}
2253 
2254 		/* this will do delete_inode and everything for us */
2255 		iput(inode);
2256 		if (ret)
2257 			goto out;
2258 	}
2259 	/* release the path since we're done with it */
2260 	btrfs_release_path(path);
2261 
2262 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2263 
2264 	if (root->orphan_block_rsv)
2265 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2266 					(u64)-1);
2267 
2268 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2269 		trans = btrfs_join_transaction(root);
2270 		if (!IS_ERR(trans))
2271 			btrfs_end_transaction(trans, root);
2272 	}
2273 
2274 	if (nr_unlink)
2275 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2276 	if (nr_truncate)
2277 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2278 
2279 out:
2280 	if (ret)
2281 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2282 	btrfs_free_path(path);
2283 	return ret;
2284 }
2285 
2286 /*
2287  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2288  * don't find any xattrs, we know there can't be any acls.
2289  *
2290  * slot is the slot the inode is in, objectid is the objectid of the inode
2291  */
2292 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2293 					  int slot, u64 objectid)
2294 {
2295 	u32 nritems = btrfs_header_nritems(leaf);
2296 	struct btrfs_key found_key;
2297 	int scanned = 0;
2298 
2299 	slot++;
2300 	while (slot < nritems) {
2301 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2302 
2303 		/* we found a different objectid, there must not be acls */
2304 		if (found_key.objectid != objectid)
2305 			return 0;
2306 
2307 		/* we found an xattr, assume we've got an acl */
2308 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2309 			return 1;
2310 
2311 		/*
2312 		 * we found a key greater than an xattr key, there can't
2313 		 * be any acls later on
2314 		 */
2315 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2316 			return 0;
2317 
2318 		slot++;
2319 		scanned++;
2320 
2321 		/*
2322 		 * it goes inode, inode backrefs, xattrs, extents,
2323 		 * so if there are a ton of hard links to an inode there can
2324 		 * be a lot of backrefs.  Don't waste time searching too hard,
2325 		 * this is just an optimization
2326 		 */
2327 		if (scanned >= 8)
2328 			break;
2329 	}
2330 	/* we hit the end of the leaf before we found an xattr or
2331 	 * something larger than an xattr.  We have to assume the inode
2332 	 * has acls
2333 	 */
2334 	return 1;
2335 }
2336 
2337 /*
2338  * read an inode from the btree into the in-memory inode
2339  */
2340 static void btrfs_read_locked_inode(struct inode *inode)
2341 {
2342 	struct btrfs_path *path;
2343 	struct extent_buffer *leaf;
2344 	struct btrfs_inode_item *inode_item;
2345 	struct btrfs_timespec *tspec;
2346 	struct btrfs_root *root = BTRFS_I(inode)->root;
2347 	struct btrfs_key location;
2348 	int maybe_acls;
2349 	u32 rdev;
2350 	int ret;
2351 	bool filled = false;
2352 
2353 	ret = btrfs_fill_inode(inode, &rdev);
2354 	if (!ret)
2355 		filled = true;
2356 
2357 	path = btrfs_alloc_path();
2358 	if (!path)
2359 		goto make_bad;
2360 
2361 	path->leave_spinning = 1;
2362 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2363 
2364 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2365 	if (ret)
2366 		goto make_bad;
2367 
2368 	leaf = path->nodes[0];
2369 
2370 	if (filled)
2371 		goto cache_acl;
2372 
2373 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2374 				    struct btrfs_inode_item);
2375 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2376 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2377 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2378 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2379 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2380 
2381 	tspec = btrfs_inode_atime(inode_item);
2382 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2383 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2384 
2385 	tspec = btrfs_inode_mtime(inode_item);
2386 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2387 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2388 
2389 	tspec = btrfs_inode_ctime(inode_item);
2390 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2391 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2392 
2393 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2394 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2395 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2396 	inode->i_generation = BTRFS_I(inode)->generation;
2397 	inode->i_rdev = 0;
2398 	rdev = btrfs_inode_rdev(leaf, inode_item);
2399 
2400 	BTRFS_I(inode)->index_cnt = (u64)-1;
2401 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2402 cache_acl:
2403 	/*
2404 	 * try to precache a NULL acl entry for files that don't have
2405 	 * any xattrs or acls
2406 	 */
2407 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2408 					   btrfs_ino(inode));
2409 	if (!maybe_acls)
2410 		cache_no_acl(inode);
2411 
2412 	btrfs_free_path(path);
2413 
2414 	switch (inode->i_mode & S_IFMT) {
2415 	case S_IFREG:
2416 		inode->i_mapping->a_ops = &btrfs_aops;
2417 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2418 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2419 		inode->i_fop = &btrfs_file_operations;
2420 		inode->i_op = &btrfs_file_inode_operations;
2421 		break;
2422 	case S_IFDIR:
2423 		inode->i_fop = &btrfs_dir_file_operations;
2424 		if (root == root->fs_info->tree_root)
2425 			inode->i_op = &btrfs_dir_ro_inode_operations;
2426 		else
2427 			inode->i_op = &btrfs_dir_inode_operations;
2428 		break;
2429 	case S_IFLNK:
2430 		inode->i_op = &btrfs_symlink_inode_operations;
2431 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2432 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2433 		break;
2434 	default:
2435 		inode->i_op = &btrfs_special_inode_operations;
2436 		init_special_inode(inode, inode->i_mode, rdev);
2437 		break;
2438 	}
2439 
2440 	btrfs_update_iflags(inode);
2441 	return;
2442 
2443 make_bad:
2444 	btrfs_free_path(path);
2445 	make_bad_inode(inode);
2446 }
2447 
2448 /*
2449  * given a leaf and an inode, copy the inode fields into the leaf
2450  */
2451 static void fill_inode_item(struct btrfs_trans_handle *trans,
2452 			    struct extent_buffer *leaf,
2453 			    struct btrfs_inode_item *item,
2454 			    struct inode *inode)
2455 {
2456 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2457 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2458 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2459 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2460 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2461 
2462 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2463 			       inode->i_atime.tv_sec);
2464 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2465 				inode->i_atime.tv_nsec);
2466 
2467 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2468 			       inode->i_mtime.tv_sec);
2469 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2470 				inode->i_mtime.tv_nsec);
2471 
2472 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2473 			       inode->i_ctime.tv_sec);
2474 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2475 				inode->i_ctime.tv_nsec);
2476 
2477 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2478 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2479 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2480 	btrfs_set_inode_transid(leaf, item, trans->transid);
2481 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2482 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2483 	btrfs_set_inode_block_group(leaf, item, 0);
2484 }
2485 
2486 /*
2487  * copy everything in the in-memory inode into the btree.
2488  */
2489 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2490 				struct btrfs_root *root, struct inode *inode)
2491 {
2492 	struct btrfs_inode_item *inode_item;
2493 	struct btrfs_path *path;
2494 	struct extent_buffer *leaf;
2495 	int ret;
2496 
2497 	path = btrfs_alloc_path();
2498 	if (!path)
2499 		return -ENOMEM;
2500 
2501 	path->leave_spinning = 1;
2502 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2503 				 1);
2504 	if (ret) {
2505 		if (ret > 0)
2506 			ret = -ENOENT;
2507 		goto failed;
2508 	}
2509 
2510 	btrfs_unlock_up_safe(path, 1);
2511 	leaf = path->nodes[0];
2512 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2513 				    struct btrfs_inode_item);
2514 
2515 	fill_inode_item(trans, leaf, inode_item, inode);
2516 	btrfs_mark_buffer_dirty(leaf);
2517 	btrfs_set_inode_last_trans(trans, inode);
2518 	ret = 0;
2519 failed:
2520 	btrfs_free_path(path);
2521 	return ret;
2522 }
2523 
2524 /*
2525  * copy everything in the in-memory inode into the btree.
2526  */
2527 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2528 				struct btrfs_root *root, struct inode *inode)
2529 {
2530 	int ret;
2531 
2532 	/*
2533 	 * If the inode is a free space inode, we can deadlock during commit
2534 	 * if we put it into the delayed code.
2535 	 *
2536 	 * The data relocation inode should also be directly updated
2537 	 * without delay
2538 	 */
2539 	if (!btrfs_is_free_space_inode(root, inode)
2540 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2541 		ret = btrfs_delayed_update_inode(trans, root, inode);
2542 		if (!ret)
2543 			btrfs_set_inode_last_trans(trans, inode);
2544 		return ret;
2545 	}
2546 
2547 	return btrfs_update_inode_item(trans, root, inode);
2548 }
2549 
2550 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2551 				struct btrfs_root *root, struct inode *inode)
2552 {
2553 	int ret;
2554 
2555 	ret = btrfs_update_inode(trans, root, inode);
2556 	if (ret == -ENOSPC)
2557 		return btrfs_update_inode_item(trans, root, inode);
2558 	return ret;
2559 }
2560 
2561 /*
2562  * unlink helper that gets used here in inode.c and in the tree logging
2563  * recovery code.  It remove a link in a directory with a given name, and
2564  * also drops the back refs in the inode to the directory
2565  */
2566 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2567 				struct btrfs_root *root,
2568 				struct inode *dir, struct inode *inode,
2569 				const char *name, int name_len)
2570 {
2571 	struct btrfs_path *path;
2572 	int ret = 0;
2573 	struct extent_buffer *leaf;
2574 	struct btrfs_dir_item *di;
2575 	struct btrfs_key key;
2576 	u64 index;
2577 	u64 ino = btrfs_ino(inode);
2578 	u64 dir_ino = btrfs_ino(dir);
2579 
2580 	path = btrfs_alloc_path();
2581 	if (!path) {
2582 		ret = -ENOMEM;
2583 		goto out;
2584 	}
2585 
2586 	path->leave_spinning = 1;
2587 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2588 				    name, name_len, -1);
2589 	if (IS_ERR(di)) {
2590 		ret = PTR_ERR(di);
2591 		goto err;
2592 	}
2593 	if (!di) {
2594 		ret = -ENOENT;
2595 		goto err;
2596 	}
2597 	leaf = path->nodes[0];
2598 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2599 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2600 	if (ret)
2601 		goto err;
2602 	btrfs_release_path(path);
2603 
2604 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2605 				  dir_ino, &index);
2606 	if (ret) {
2607 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2608 		       "inode %llu parent %llu\n", name_len, name,
2609 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2610 		goto err;
2611 	}
2612 
2613 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2614 	if (ret)
2615 		goto err;
2616 
2617 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2618 					 inode, dir_ino);
2619 	BUG_ON(ret != 0 && ret != -ENOENT);
2620 
2621 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2622 					   dir, index);
2623 	if (ret == -ENOENT)
2624 		ret = 0;
2625 err:
2626 	btrfs_free_path(path);
2627 	if (ret)
2628 		goto out;
2629 
2630 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2631 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2632 	btrfs_update_inode(trans, root, dir);
2633 out:
2634 	return ret;
2635 }
2636 
2637 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2638 		       struct btrfs_root *root,
2639 		       struct inode *dir, struct inode *inode,
2640 		       const char *name, int name_len)
2641 {
2642 	int ret;
2643 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2644 	if (!ret) {
2645 		btrfs_drop_nlink(inode);
2646 		ret = btrfs_update_inode(trans, root, inode);
2647 	}
2648 	return ret;
2649 }
2650 
2651 
2652 /* helper to check if there is any shared block in the path */
2653 static int check_path_shared(struct btrfs_root *root,
2654 			     struct btrfs_path *path)
2655 {
2656 	struct extent_buffer *eb;
2657 	int level;
2658 	u64 refs = 1;
2659 
2660 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2661 		int ret;
2662 
2663 		if (!path->nodes[level])
2664 			break;
2665 		eb = path->nodes[level];
2666 		if (!btrfs_block_can_be_shared(root, eb))
2667 			continue;
2668 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2669 					       &refs, NULL);
2670 		if (refs > 1)
2671 			return 1;
2672 	}
2673 	return 0;
2674 }
2675 
2676 /*
2677  * helper to start transaction for unlink and rmdir.
2678  *
2679  * unlink and rmdir are special in btrfs, they do not always free space.
2680  * so in enospc case, we should make sure they will free space before
2681  * allowing them to use the global metadata reservation.
2682  */
2683 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2684 						       struct dentry *dentry)
2685 {
2686 	struct btrfs_trans_handle *trans;
2687 	struct btrfs_root *root = BTRFS_I(dir)->root;
2688 	struct btrfs_path *path;
2689 	struct btrfs_inode_ref *ref;
2690 	struct btrfs_dir_item *di;
2691 	struct inode *inode = dentry->d_inode;
2692 	u64 index;
2693 	int check_link = 1;
2694 	int err = -ENOSPC;
2695 	int ret;
2696 	u64 ino = btrfs_ino(inode);
2697 	u64 dir_ino = btrfs_ino(dir);
2698 
2699 	/*
2700 	 * 1 for the possible orphan item
2701 	 * 1 for the dir item
2702 	 * 1 for the dir index
2703 	 * 1 for the inode ref
2704 	 * 1 for the inode ref in the tree log
2705 	 * 2 for the dir entries in the log
2706 	 * 1 for the inode
2707 	 */
2708 	trans = btrfs_start_transaction(root, 8);
2709 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2710 		return trans;
2711 
2712 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2713 		return ERR_PTR(-ENOSPC);
2714 
2715 	/* check if there is someone else holds reference */
2716 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2717 		return ERR_PTR(-ENOSPC);
2718 
2719 	if (atomic_read(&inode->i_count) > 2)
2720 		return ERR_PTR(-ENOSPC);
2721 
2722 	if (xchg(&root->fs_info->enospc_unlink, 1))
2723 		return ERR_PTR(-ENOSPC);
2724 
2725 	path = btrfs_alloc_path();
2726 	if (!path) {
2727 		root->fs_info->enospc_unlink = 0;
2728 		return ERR_PTR(-ENOMEM);
2729 	}
2730 
2731 	/* 1 for the orphan item */
2732 	trans = btrfs_start_transaction(root, 1);
2733 	if (IS_ERR(trans)) {
2734 		btrfs_free_path(path);
2735 		root->fs_info->enospc_unlink = 0;
2736 		return trans;
2737 	}
2738 
2739 	path->skip_locking = 1;
2740 	path->search_commit_root = 1;
2741 
2742 	ret = btrfs_lookup_inode(trans, root, path,
2743 				&BTRFS_I(dir)->location, 0);
2744 	if (ret < 0) {
2745 		err = ret;
2746 		goto out;
2747 	}
2748 	if (ret == 0) {
2749 		if (check_path_shared(root, path))
2750 			goto out;
2751 	} else {
2752 		check_link = 0;
2753 	}
2754 	btrfs_release_path(path);
2755 
2756 	ret = btrfs_lookup_inode(trans, root, path,
2757 				&BTRFS_I(inode)->location, 0);
2758 	if (ret < 0) {
2759 		err = ret;
2760 		goto out;
2761 	}
2762 	if (ret == 0) {
2763 		if (check_path_shared(root, path))
2764 			goto out;
2765 	} else {
2766 		check_link = 0;
2767 	}
2768 	btrfs_release_path(path);
2769 
2770 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2771 		ret = btrfs_lookup_file_extent(trans, root, path,
2772 					       ino, (u64)-1, 0);
2773 		if (ret < 0) {
2774 			err = ret;
2775 			goto out;
2776 		}
2777 		BUG_ON(ret == 0);
2778 		if (check_path_shared(root, path))
2779 			goto out;
2780 		btrfs_release_path(path);
2781 	}
2782 
2783 	if (!check_link) {
2784 		err = 0;
2785 		goto out;
2786 	}
2787 
2788 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2789 				dentry->d_name.name, dentry->d_name.len, 0);
2790 	if (IS_ERR(di)) {
2791 		err = PTR_ERR(di);
2792 		goto out;
2793 	}
2794 	if (di) {
2795 		if (check_path_shared(root, path))
2796 			goto out;
2797 	} else {
2798 		err = 0;
2799 		goto out;
2800 	}
2801 	btrfs_release_path(path);
2802 
2803 	ref = btrfs_lookup_inode_ref(trans, root, path,
2804 				dentry->d_name.name, dentry->d_name.len,
2805 				ino, dir_ino, 0);
2806 	if (IS_ERR(ref)) {
2807 		err = PTR_ERR(ref);
2808 		goto out;
2809 	}
2810 	BUG_ON(!ref);
2811 	if (check_path_shared(root, path))
2812 		goto out;
2813 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2814 	btrfs_release_path(path);
2815 
2816 	/*
2817 	 * This is a commit root search, if we can lookup inode item and other
2818 	 * relative items in the commit root, it means the transaction of
2819 	 * dir/file creation has been committed, and the dir index item that we
2820 	 * delay to insert has also been inserted into the commit root. So
2821 	 * we needn't worry about the delayed insertion of the dir index item
2822 	 * here.
2823 	 */
2824 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2825 				dentry->d_name.name, dentry->d_name.len, 0);
2826 	if (IS_ERR(di)) {
2827 		err = PTR_ERR(di);
2828 		goto out;
2829 	}
2830 	BUG_ON(ret == -ENOENT);
2831 	if (check_path_shared(root, path))
2832 		goto out;
2833 
2834 	err = 0;
2835 out:
2836 	btrfs_free_path(path);
2837 	/* Migrate the orphan reservation over */
2838 	if (!err)
2839 		err = btrfs_block_rsv_migrate(trans->block_rsv,
2840 				&root->fs_info->global_block_rsv,
2841 				trans->bytes_reserved);
2842 
2843 	if (err) {
2844 		btrfs_end_transaction(trans, root);
2845 		root->fs_info->enospc_unlink = 0;
2846 		return ERR_PTR(err);
2847 	}
2848 
2849 	trans->block_rsv = &root->fs_info->global_block_rsv;
2850 	return trans;
2851 }
2852 
2853 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2854 			       struct btrfs_root *root)
2855 {
2856 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2857 		btrfs_block_rsv_release(root, trans->block_rsv,
2858 					trans->bytes_reserved);
2859 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2860 		BUG_ON(!root->fs_info->enospc_unlink);
2861 		root->fs_info->enospc_unlink = 0;
2862 	}
2863 	btrfs_end_transaction(trans, root);
2864 }
2865 
2866 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2867 {
2868 	struct btrfs_root *root = BTRFS_I(dir)->root;
2869 	struct btrfs_trans_handle *trans;
2870 	struct inode *inode = dentry->d_inode;
2871 	int ret;
2872 	unsigned long nr = 0;
2873 
2874 	trans = __unlink_start_trans(dir, dentry);
2875 	if (IS_ERR(trans))
2876 		return PTR_ERR(trans);
2877 
2878 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2879 
2880 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2881 				 dentry->d_name.name, dentry->d_name.len);
2882 	if (ret)
2883 		goto out;
2884 
2885 	if (inode->i_nlink == 0) {
2886 		ret = btrfs_orphan_add(trans, inode);
2887 		if (ret)
2888 			goto out;
2889 	}
2890 
2891 out:
2892 	nr = trans->blocks_used;
2893 	__unlink_end_trans(trans, root);
2894 	btrfs_btree_balance_dirty(root, nr);
2895 	return ret;
2896 }
2897 
2898 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2899 			struct btrfs_root *root,
2900 			struct inode *dir, u64 objectid,
2901 			const char *name, int name_len)
2902 {
2903 	struct btrfs_path *path;
2904 	struct extent_buffer *leaf;
2905 	struct btrfs_dir_item *di;
2906 	struct btrfs_key key;
2907 	u64 index;
2908 	int ret;
2909 	u64 dir_ino = btrfs_ino(dir);
2910 
2911 	path = btrfs_alloc_path();
2912 	if (!path)
2913 		return -ENOMEM;
2914 
2915 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2916 				   name, name_len, -1);
2917 	BUG_ON(IS_ERR_OR_NULL(di));
2918 
2919 	leaf = path->nodes[0];
2920 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2921 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2922 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2923 	BUG_ON(ret);
2924 	btrfs_release_path(path);
2925 
2926 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2927 				 objectid, root->root_key.objectid,
2928 				 dir_ino, &index, name, name_len);
2929 	if (ret < 0) {
2930 		BUG_ON(ret != -ENOENT);
2931 		di = btrfs_search_dir_index_item(root, path, dir_ino,
2932 						 name, name_len);
2933 		BUG_ON(IS_ERR_OR_NULL(di));
2934 
2935 		leaf = path->nodes[0];
2936 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2937 		btrfs_release_path(path);
2938 		index = key.offset;
2939 	}
2940 	btrfs_release_path(path);
2941 
2942 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2943 	BUG_ON(ret);
2944 
2945 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2946 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2947 	ret = btrfs_update_inode(trans, root, dir);
2948 	BUG_ON(ret);
2949 
2950 	btrfs_free_path(path);
2951 	return 0;
2952 }
2953 
2954 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2955 {
2956 	struct inode *inode = dentry->d_inode;
2957 	int err = 0;
2958 	struct btrfs_root *root = BTRFS_I(dir)->root;
2959 	struct btrfs_trans_handle *trans;
2960 	unsigned long nr = 0;
2961 
2962 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2963 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
2964 		return -ENOTEMPTY;
2965 
2966 	trans = __unlink_start_trans(dir, dentry);
2967 	if (IS_ERR(trans))
2968 		return PTR_ERR(trans);
2969 
2970 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2971 		err = btrfs_unlink_subvol(trans, root, dir,
2972 					  BTRFS_I(inode)->location.objectid,
2973 					  dentry->d_name.name,
2974 					  dentry->d_name.len);
2975 		goto out;
2976 	}
2977 
2978 	err = btrfs_orphan_add(trans, inode);
2979 	if (err)
2980 		goto out;
2981 
2982 	/* now the directory is empty */
2983 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2984 				 dentry->d_name.name, dentry->d_name.len);
2985 	if (!err)
2986 		btrfs_i_size_write(inode, 0);
2987 out:
2988 	nr = trans->blocks_used;
2989 	__unlink_end_trans(trans, root);
2990 	btrfs_btree_balance_dirty(root, nr);
2991 
2992 	return err;
2993 }
2994 
2995 /*
2996  * this can truncate away extent items, csum items and directory items.
2997  * It starts at a high offset and removes keys until it can't find
2998  * any higher than new_size
2999  *
3000  * csum items that cross the new i_size are truncated to the new size
3001  * as well.
3002  *
3003  * min_type is the minimum key type to truncate down to.  If set to 0, this
3004  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3005  */
3006 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3007 			       struct btrfs_root *root,
3008 			       struct inode *inode,
3009 			       u64 new_size, u32 min_type)
3010 {
3011 	struct btrfs_path *path;
3012 	struct extent_buffer *leaf;
3013 	struct btrfs_file_extent_item *fi;
3014 	struct btrfs_key key;
3015 	struct btrfs_key found_key;
3016 	u64 extent_start = 0;
3017 	u64 extent_num_bytes = 0;
3018 	u64 extent_offset = 0;
3019 	u64 item_end = 0;
3020 	u64 mask = root->sectorsize - 1;
3021 	u32 found_type = (u8)-1;
3022 	int found_extent;
3023 	int del_item;
3024 	int pending_del_nr = 0;
3025 	int pending_del_slot = 0;
3026 	int extent_type = -1;
3027 	int ret;
3028 	int err = 0;
3029 	u64 ino = btrfs_ino(inode);
3030 
3031 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3032 
3033 	path = btrfs_alloc_path();
3034 	if (!path)
3035 		return -ENOMEM;
3036 	path->reada = -1;
3037 
3038 	if (root->ref_cows || root == root->fs_info->tree_root)
3039 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3040 
3041 	/*
3042 	 * This function is also used to drop the items in the log tree before
3043 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3044 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3045 	 * items.
3046 	 */
3047 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3048 		btrfs_kill_delayed_inode_items(inode);
3049 
3050 	key.objectid = ino;
3051 	key.offset = (u64)-1;
3052 	key.type = (u8)-1;
3053 
3054 search_again:
3055 	path->leave_spinning = 1;
3056 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3057 	if (ret < 0) {
3058 		err = ret;
3059 		goto out;
3060 	}
3061 
3062 	if (ret > 0) {
3063 		/* there are no items in the tree for us to truncate, we're
3064 		 * done
3065 		 */
3066 		if (path->slots[0] == 0)
3067 			goto out;
3068 		path->slots[0]--;
3069 	}
3070 
3071 	while (1) {
3072 		fi = NULL;
3073 		leaf = path->nodes[0];
3074 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3075 		found_type = btrfs_key_type(&found_key);
3076 
3077 		if (found_key.objectid != ino)
3078 			break;
3079 
3080 		if (found_type < min_type)
3081 			break;
3082 
3083 		item_end = found_key.offset;
3084 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3085 			fi = btrfs_item_ptr(leaf, path->slots[0],
3086 					    struct btrfs_file_extent_item);
3087 			extent_type = btrfs_file_extent_type(leaf, fi);
3088 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3089 				item_end +=
3090 				    btrfs_file_extent_num_bytes(leaf, fi);
3091 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3092 				item_end += btrfs_file_extent_inline_len(leaf,
3093 									 fi);
3094 			}
3095 			item_end--;
3096 		}
3097 		if (found_type > min_type) {
3098 			del_item = 1;
3099 		} else {
3100 			if (item_end < new_size)
3101 				break;
3102 			if (found_key.offset >= new_size)
3103 				del_item = 1;
3104 			else
3105 				del_item = 0;
3106 		}
3107 		found_extent = 0;
3108 		/* FIXME, shrink the extent if the ref count is only 1 */
3109 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3110 			goto delete;
3111 
3112 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3113 			u64 num_dec;
3114 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3115 			if (!del_item) {
3116 				u64 orig_num_bytes =
3117 					btrfs_file_extent_num_bytes(leaf, fi);
3118 				extent_num_bytes = new_size -
3119 					found_key.offset + root->sectorsize - 1;
3120 				extent_num_bytes = extent_num_bytes &
3121 					~((u64)root->sectorsize - 1);
3122 				btrfs_set_file_extent_num_bytes(leaf, fi,
3123 							 extent_num_bytes);
3124 				num_dec = (orig_num_bytes -
3125 					   extent_num_bytes);
3126 				if (root->ref_cows && extent_start != 0)
3127 					inode_sub_bytes(inode, num_dec);
3128 				btrfs_mark_buffer_dirty(leaf);
3129 			} else {
3130 				extent_num_bytes =
3131 					btrfs_file_extent_disk_num_bytes(leaf,
3132 									 fi);
3133 				extent_offset = found_key.offset -
3134 					btrfs_file_extent_offset(leaf, fi);
3135 
3136 				/* FIXME blocksize != 4096 */
3137 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3138 				if (extent_start != 0) {
3139 					found_extent = 1;
3140 					if (root->ref_cows)
3141 						inode_sub_bytes(inode, num_dec);
3142 				}
3143 			}
3144 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3145 			/*
3146 			 * we can't truncate inline items that have had
3147 			 * special encodings
3148 			 */
3149 			if (!del_item &&
3150 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3151 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3152 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3153 				u32 size = new_size - found_key.offset;
3154 
3155 				if (root->ref_cows) {
3156 					inode_sub_bytes(inode, item_end + 1 -
3157 							new_size);
3158 				}
3159 				size =
3160 				    btrfs_file_extent_calc_inline_size(size);
3161 				ret = btrfs_truncate_item(trans, root, path,
3162 							  size, 1);
3163 			} else if (root->ref_cows) {
3164 				inode_sub_bytes(inode, item_end + 1 -
3165 						found_key.offset);
3166 			}
3167 		}
3168 delete:
3169 		if (del_item) {
3170 			if (!pending_del_nr) {
3171 				/* no pending yet, add ourselves */
3172 				pending_del_slot = path->slots[0];
3173 				pending_del_nr = 1;
3174 			} else if (pending_del_nr &&
3175 				   path->slots[0] + 1 == pending_del_slot) {
3176 				/* hop on the pending chunk */
3177 				pending_del_nr++;
3178 				pending_del_slot = path->slots[0];
3179 			} else {
3180 				BUG();
3181 			}
3182 		} else {
3183 			break;
3184 		}
3185 		if (found_extent && (root->ref_cows ||
3186 				     root == root->fs_info->tree_root)) {
3187 			btrfs_set_path_blocking(path);
3188 			ret = btrfs_free_extent(trans, root, extent_start,
3189 						extent_num_bytes, 0,
3190 						btrfs_header_owner(leaf),
3191 						ino, extent_offset, 0);
3192 			BUG_ON(ret);
3193 		}
3194 
3195 		if (found_type == BTRFS_INODE_ITEM_KEY)
3196 			break;
3197 
3198 		if (path->slots[0] == 0 ||
3199 		    path->slots[0] != pending_del_slot) {
3200 			if (root->ref_cows &&
3201 			    BTRFS_I(inode)->location.objectid !=
3202 						BTRFS_FREE_INO_OBJECTID) {
3203 				err = -EAGAIN;
3204 				goto out;
3205 			}
3206 			if (pending_del_nr) {
3207 				ret = btrfs_del_items(trans, root, path,
3208 						pending_del_slot,
3209 						pending_del_nr);
3210 				BUG_ON(ret);
3211 				pending_del_nr = 0;
3212 			}
3213 			btrfs_release_path(path);
3214 			goto search_again;
3215 		} else {
3216 			path->slots[0]--;
3217 		}
3218 	}
3219 out:
3220 	if (pending_del_nr) {
3221 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3222 				      pending_del_nr);
3223 		BUG_ON(ret);
3224 	}
3225 	btrfs_free_path(path);
3226 	return err;
3227 }
3228 
3229 /*
3230  * taken from block_truncate_page, but does cow as it zeros out
3231  * any bytes left in the last page in the file.
3232  */
3233 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3234 {
3235 	struct inode *inode = mapping->host;
3236 	struct btrfs_root *root = BTRFS_I(inode)->root;
3237 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3238 	struct btrfs_ordered_extent *ordered;
3239 	struct extent_state *cached_state = NULL;
3240 	char *kaddr;
3241 	u32 blocksize = root->sectorsize;
3242 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3243 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3244 	struct page *page;
3245 	gfp_t mask = btrfs_alloc_write_mask(mapping);
3246 	int ret = 0;
3247 	u64 page_start;
3248 	u64 page_end;
3249 
3250 	if ((offset & (blocksize - 1)) == 0)
3251 		goto out;
3252 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3253 	if (ret)
3254 		goto out;
3255 
3256 	ret = -ENOMEM;
3257 again:
3258 	page = find_or_create_page(mapping, index, mask);
3259 	if (!page) {
3260 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3261 		goto out;
3262 	}
3263 
3264 	page_start = page_offset(page);
3265 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3266 
3267 	if (!PageUptodate(page)) {
3268 		ret = btrfs_readpage(NULL, page);
3269 		lock_page(page);
3270 		if (page->mapping != mapping) {
3271 			unlock_page(page);
3272 			page_cache_release(page);
3273 			goto again;
3274 		}
3275 		if (!PageUptodate(page)) {
3276 			ret = -EIO;
3277 			goto out_unlock;
3278 		}
3279 	}
3280 	wait_on_page_writeback(page);
3281 
3282 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3283 			 GFP_NOFS);
3284 	set_page_extent_mapped(page);
3285 
3286 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3287 	if (ordered) {
3288 		unlock_extent_cached(io_tree, page_start, page_end,
3289 				     &cached_state, GFP_NOFS);
3290 		unlock_page(page);
3291 		page_cache_release(page);
3292 		btrfs_start_ordered_extent(inode, ordered, 1);
3293 		btrfs_put_ordered_extent(ordered);
3294 		goto again;
3295 	}
3296 
3297 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3298 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3299 			  0, 0, &cached_state, GFP_NOFS);
3300 
3301 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3302 					&cached_state);
3303 	if (ret) {
3304 		unlock_extent_cached(io_tree, page_start, page_end,
3305 				     &cached_state, GFP_NOFS);
3306 		goto out_unlock;
3307 	}
3308 
3309 	ret = 0;
3310 	if (offset != PAGE_CACHE_SIZE) {
3311 		kaddr = kmap(page);
3312 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3313 		flush_dcache_page(page);
3314 		kunmap(page);
3315 	}
3316 	ClearPageChecked(page);
3317 	set_page_dirty(page);
3318 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3319 			     GFP_NOFS);
3320 
3321 out_unlock:
3322 	if (ret)
3323 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3324 	unlock_page(page);
3325 	page_cache_release(page);
3326 out:
3327 	return ret;
3328 }
3329 
3330 /*
3331  * This function puts in dummy file extents for the area we're creating a hole
3332  * for.  So if we are truncating this file to a larger size we need to insert
3333  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3334  * the range between oldsize and size
3335  */
3336 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3337 {
3338 	struct btrfs_trans_handle *trans;
3339 	struct btrfs_root *root = BTRFS_I(inode)->root;
3340 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3341 	struct extent_map *em = NULL;
3342 	struct extent_state *cached_state = NULL;
3343 	u64 mask = root->sectorsize - 1;
3344 	u64 hole_start = (oldsize + mask) & ~mask;
3345 	u64 block_end = (size + mask) & ~mask;
3346 	u64 last_byte;
3347 	u64 cur_offset;
3348 	u64 hole_size;
3349 	int err = 0;
3350 
3351 	if (size <= hole_start)
3352 		return 0;
3353 
3354 	while (1) {
3355 		struct btrfs_ordered_extent *ordered;
3356 		btrfs_wait_ordered_range(inode, hole_start,
3357 					 block_end - hole_start);
3358 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3359 				 &cached_state, GFP_NOFS);
3360 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3361 		if (!ordered)
3362 			break;
3363 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3364 				     &cached_state, GFP_NOFS);
3365 		btrfs_put_ordered_extent(ordered);
3366 	}
3367 
3368 	cur_offset = hole_start;
3369 	while (1) {
3370 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3371 				block_end - cur_offset, 0);
3372 		BUG_ON(IS_ERR_OR_NULL(em));
3373 		last_byte = min(extent_map_end(em), block_end);
3374 		last_byte = (last_byte + mask) & ~mask;
3375 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3376 			u64 hint_byte = 0;
3377 			hole_size = last_byte - cur_offset;
3378 
3379 			trans = btrfs_start_transaction(root, 3);
3380 			if (IS_ERR(trans)) {
3381 				err = PTR_ERR(trans);
3382 				break;
3383 			}
3384 
3385 			err = btrfs_drop_extents(trans, inode, cur_offset,
3386 						 cur_offset + hole_size,
3387 						 &hint_byte, 1);
3388 			if (err) {
3389 				btrfs_update_inode(trans, root, inode);
3390 				btrfs_end_transaction(trans, root);
3391 				break;
3392 			}
3393 
3394 			err = btrfs_insert_file_extent(trans, root,
3395 					btrfs_ino(inode), cur_offset, 0,
3396 					0, hole_size, 0, hole_size,
3397 					0, 0, 0);
3398 			if (err) {
3399 				btrfs_update_inode(trans, root, inode);
3400 				btrfs_end_transaction(trans, root);
3401 				break;
3402 			}
3403 
3404 			btrfs_drop_extent_cache(inode, hole_start,
3405 					last_byte - 1, 0);
3406 
3407 			btrfs_update_inode(trans, root, inode);
3408 			btrfs_end_transaction(trans, root);
3409 		}
3410 		free_extent_map(em);
3411 		em = NULL;
3412 		cur_offset = last_byte;
3413 		if (cur_offset >= block_end)
3414 			break;
3415 	}
3416 
3417 	free_extent_map(em);
3418 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3419 			     GFP_NOFS);
3420 	return err;
3421 }
3422 
3423 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3424 {
3425 	struct btrfs_root *root = BTRFS_I(inode)->root;
3426 	struct btrfs_trans_handle *trans;
3427 	loff_t oldsize = i_size_read(inode);
3428 	int ret;
3429 
3430 	if (newsize == oldsize)
3431 		return 0;
3432 
3433 	if (newsize > oldsize) {
3434 		truncate_pagecache(inode, oldsize, newsize);
3435 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3436 		if (ret)
3437 			return ret;
3438 
3439 		trans = btrfs_start_transaction(root, 1);
3440 		if (IS_ERR(trans))
3441 			return PTR_ERR(trans);
3442 
3443 		i_size_write(inode, newsize);
3444 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3445 		ret = btrfs_update_inode(trans, root, inode);
3446 		btrfs_end_transaction(trans, root);
3447 	} else {
3448 
3449 		/*
3450 		 * We're truncating a file that used to have good data down to
3451 		 * zero. Make sure it gets into the ordered flush list so that
3452 		 * any new writes get down to disk quickly.
3453 		 */
3454 		if (newsize == 0)
3455 			BTRFS_I(inode)->ordered_data_close = 1;
3456 
3457 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3458 		truncate_setsize(inode, newsize);
3459 		ret = btrfs_truncate(inode);
3460 	}
3461 
3462 	return ret;
3463 }
3464 
3465 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3466 {
3467 	struct inode *inode = dentry->d_inode;
3468 	struct btrfs_root *root = BTRFS_I(inode)->root;
3469 	int err;
3470 
3471 	if (btrfs_root_readonly(root))
3472 		return -EROFS;
3473 
3474 	err = inode_change_ok(inode, attr);
3475 	if (err)
3476 		return err;
3477 
3478 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3479 		err = btrfs_setsize(inode, attr->ia_size);
3480 		if (err)
3481 			return err;
3482 	}
3483 
3484 	if (attr->ia_valid) {
3485 		setattr_copy(inode, attr);
3486 		err = btrfs_dirty_inode(inode);
3487 
3488 		if (!err && attr->ia_valid & ATTR_MODE)
3489 			err = btrfs_acl_chmod(inode);
3490 	}
3491 
3492 	return err;
3493 }
3494 
3495 void btrfs_evict_inode(struct inode *inode)
3496 {
3497 	struct btrfs_trans_handle *trans;
3498 	struct btrfs_root *root = BTRFS_I(inode)->root;
3499 	struct btrfs_block_rsv *rsv, *global_rsv;
3500 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3501 	unsigned long nr;
3502 	int ret;
3503 
3504 	trace_btrfs_inode_evict(inode);
3505 
3506 	truncate_inode_pages(&inode->i_data, 0);
3507 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3508 			       btrfs_is_free_space_inode(root, inode)))
3509 		goto no_delete;
3510 
3511 	if (is_bad_inode(inode)) {
3512 		btrfs_orphan_del(NULL, inode);
3513 		goto no_delete;
3514 	}
3515 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3516 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3517 
3518 	if (root->fs_info->log_root_recovering) {
3519 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3520 		goto no_delete;
3521 	}
3522 
3523 	if (inode->i_nlink > 0) {
3524 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3525 		goto no_delete;
3526 	}
3527 
3528 	rsv = btrfs_alloc_block_rsv(root);
3529 	if (!rsv) {
3530 		btrfs_orphan_del(NULL, inode);
3531 		goto no_delete;
3532 	}
3533 	rsv->size = min_size;
3534 	global_rsv = &root->fs_info->global_block_rsv;
3535 
3536 	btrfs_i_size_write(inode, 0);
3537 
3538 	/*
3539 	 * This is a bit simpler than btrfs_truncate since
3540 	 *
3541 	 * 1) We've already reserved our space for our orphan item in the
3542 	 *    unlink.
3543 	 * 2) We're going to delete the inode item, so we don't need to update
3544 	 *    it at all.
3545 	 *
3546 	 * So we just need to reserve some slack space in case we add bytes when
3547 	 * doing the truncate.
3548 	 */
3549 	while (1) {
3550 		ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3551 
3552 		/*
3553 		 * Try and steal from the global reserve since we will
3554 		 * likely not use this space anyway, we want to try as
3555 		 * hard as possible to get this to work.
3556 		 */
3557 		if (ret)
3558 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3559 
3560 		if (ret) {
3561 			printk(KERN_WARNING "Could not get space for a "
3562 			       "delete, will truncate on mount %d\n", ret);
3563 			btrfs_orphan_del(NULL, inode);
3564 			btrfs_free_block_rsv(root, rsv);
3565 			goto no_delete;
3566 		}
3567 
3568 		trans = btrfs_start_transaction(root, 0);
3569 		if (IS_ERR(trans)) {
3570 			btrfs_orphan_del(NULL, inode);
3571 			btrfs_free_block_rsv(root, rsv);
3572 			goto no_delete;
3573 		}
3574 
3575 		trans->block_rsv = rsv;
3576 
3577 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3578 		if (ret != -EAGAIN)
3579 			break;
3580 
3581 		nr = trans->blocks_used;
3582 		btrfs_end_transaction(trans, root);
3583 		trans = NULL;
3584 		btrfs_btree_balance_dirty(root, nr);
3585 	}
3586 
3587 	btrfs_free_block_rsv(root, rsv);
3588 
3589 	if (ret == 0) {
3590 		trans->block_rsv = root->orphan_block_rsv;
3591 		ret = btrfs_orphan_del(trans, inode);
3592 		BUG_ON(ret);
3593 	}
3594 
3595 	trans->block_rsv = &root->fs_info->trans_block_rsv;
3596 	if (!(root == root->fs_info->tree_root ||
3597 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3598 		btrfs_return_ino(root, btrfs_ino(inode));
3599 
3600 	nr = trans->blocks_used;
3601 	btrfs_end_transaction(trans, root);
3602 	btrfs_btree_balance_dirty(root, nr);
3603 no_delete:
3604 	end_writeback(inode);
3605 	return;
3606 }
3607 
3608 /*
3609  * this returns the key found in the dir entry in the location pointer.
3610  * If no dir entries were found, location->objectid is 0.
3611  */
3612 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3613 			       struct btrfs_key *location)
3614 {
3615 	const char *name = dentry->d_name.name;
3616 	int namelen = dentry->d_name.len;
3617 	struct btrfs_dir_item *di;
3618 	struct btrfs_path *path;
3619 	struct btrfs_root *root = BTRFS_I(dir)->root;
3620 	int ret = 0;
3621 
3622 	path = btrfs_alloc_path();
3623 	if (!path)
3624 		return -ENOMEM;
3625 
3626 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3627 				    namelen, 0);
3628 	if (IS_ERR(di))
3629 		ret = PTR_ERR(di);
3630 
3631 	if (IS_ERR_OR_NULL(di))
3632 		goto out_err;
3633 
3634 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3635 out:
3636 	btrfs_free_path(path);
3637 	return ret;
3638 out_err:
3639 	location->objectid = 0;
3640 	goto out;
3641 }
3642 
3643 /*
3644  * when we hit a tree root in a directory, the btrfs part of the inode
3645  * needs to be changed to reflect the root directory of the tree root.  This
3646  * is kind of like crossing a mount point.
3647  */
3648 static int fixup_tree_root_location(struct btrfs_root *root,
3649 				    struct inode *dir,
3650 				    struct dentry *dentry,
3651 				    struct btrfs_key *location,
3652 				    struct btrfs_root **sub_root)
3653 {
3654 	struct btrfs_path *path;
3655 	struct btrfs_root *new_root;
3656 	struct btrfs_root_ref *ref;
3657 	struct extent_buffer *leaf;
3658 	int ret;
3659 	int err = 0;
3660 
3661 	path = btrfs_alloc_path();
3662 	if (!path) {
3663 		err = -ENOMEM;
3664 		goto out;
3665 	}
3666 
3667 	err = -ENOENT;
3668 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3669 				  BTRFS_I(dir)->root->root_key.objectid,
3670 				  location->objectid);
3671 	if (ret) {
3672 		if (ret < 0)
3673 			err = ret;
3674 		goto out;
3675 	}
3676 
3677 	leaf = path->nodes[0];
3678 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3679 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3680 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3681 		goto out;
3682 
3683 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3684 				   (unsigned long)(ref + 1),
3685 				   dentry->d_name.len);
3686 	if (ret)
3687 		goto out;
3688 
3689 	btrfs_release_path(path);
3690 
3691 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3692 	if (IS_ERR(new_root)) {
3693 		err = PTR_ERR(new_root);
3694 		goto out;
3695 	}
3696 
3697 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3698 		err = -ENOENT;
3699 		goto out;
3700 	}
3701 
3702 	*sub_root = new_root;
3703 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3704 	location->type = BTRFS_INODE_ITEM_KEY;
3705 	location->offset = 0;
3706 	err = 0;
3707 out:
3708 	btrfs_free_path(path);
3709 	return err;
3710 }
3711 
3712 static void inode_tree_add(struct inode *inode)
3713 {
3714 	struct btrfs_root *root = BTRFS_I(inode)->root;
3715 	struct btrfs_inode *entry;
3716 	struct rb_node **p;
3717 	struct rb_node *parent;
3718 	u64 ino = btrfs_ino(inode);
3719 again:
3720 	p = &root->inode_tree.rb_node;
3721 	parent = NULL;
3722 
3723 	if (inode_unhashed(inode))
3724 		return;
3725 
3726 	spin_lock(&root->inode_lock);
3727 	while (*p) {
3728 		parent = *p;
3729 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3730 
3731 		if (ino < btrfs_ino(&entry->vfs_inode))
3732 			p = &parent->rb_left;
3733 		else if (ino > btrfs_ino(&entry->vfs_inode))
3734 			p = &parent->rb_right;
3735 		else {
3736 			WARN_ON(!(entry->vfs_inode.i_state &
3737 				  (I_WILL_FREE | I_FREEING)));
3738 			rb_erase(parent, &root->inode_tree);
3739 			RB_CLEAR_NODE(parent);
3740 			spin_unlock(&root->inode_lock);
3741 			goto again;
3742 		}
3743 	}
3744 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3745 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3746 	spin_unlock(&root->inode_lock);
3747 }
3748 
3749 static void inode_tree_del(struct inode *inode)
3750 {
3751 	struct btrfs_root *root = BTRFS_I(inode)->root;
3752 	int empty = 0;
3753 
3754 	spin_lock(&root->inode_lock);
3755 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3756 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3757 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3758 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3759 	}
3760 	spin_unlock(&root->inode_lock);
3761 
3762 	/*
3763 	 * Free space cache has inodes in the tree root, but the tree root has a
3764 	 * root_refs of 0, so this could end up dropping the tree root as a
3765 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3766 	 * make sure we don't drop it.
3767 	 */
3768 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3769 	    root != root->fs_info->tree_root) {
3770 		synchronize_srcu(&root->fs_info->subvol_srcu);
3771 		spin_lock(&root->inode_lock);
3772 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3773 		spin_unlock(&root->inode_lock);
3774 		if (empty)
3775 			btrfs_add_dead_root(root);
3776 	}
3777 }
3778 
3779 int btrfs_invalidate_inodes(struct btrfs_root *root)
3780 {
3781 	struct rb_node *node;
3782 	struct rb_node *prev;
3783 	struct btrfs_inode *entry;
3784 	struct inode *inode;
3785 	u64 objectid = 0;
3786 
3787 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3788 
3789 	spin_lock(&root->inode_lock);
3790 again:
3791 	node = root->inode_tree.rb_node;
3792 	prev = NULL;
3793 	while (node) {
3794 		prev = node;
3795 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3796 
3797 		if (objectid < btrfs_ino(&entry->vfs_inode))
3798 			node = node->rb_left;
3799 		else if (objectid > btrfs_ino(&entry->vfs_inode))
3800 			node = node->rb_right;
3801 		else
3802 			break;
3803 	}
3804 	if (!node) {
3805 		while (prev) {
3806 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3807 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3808 				node = prev;
3809 				break;
3810 			}
3811 			prev = rb_next(prev);
3812 		}
3813 	}
3814 	while (node) {
3815 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3816 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
3817 		inode = igrab(&entry->vfs_inode);
3818 		if (inode) {
3819 			spin_unlock(&root->inode_lock);
3820 			if (atomic_read(&inode->i_count) > 1)
3821 				d_prune_aliases(inode);
3822 			/*
3823 			 * btrfs_drop_inode will have it removed from
3824 			 * the inode cache when its usage count
3825 			 * hits zero.
3826 			 */
3827 			iput(inode);
3828 			cond_resched();
3829 			spin_lock(&root->inode_lock);
3830 			goto again;
3831 		}
3832 
3833 		if (cond_resched_lock(&root->inode_lock))
3834 			goto again;
3835 
3836 		node = rb_next(node);
3837 	}
3838 	spin_unlock(&root->inode_lock);
3839 	return 0;
3840 }
3841 
3842 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3843 {
3844 	struct btrfs_iget_args *args = p;
3845 	inode->i_ino = args->ino;
3846 	BTRFS_I(inode)->root = args->root;
3847 	btrfs_set_inode_space_info(args->root, inode);
3848 	return 0;
3849 }
3850 
3851 static int btrfs_find_actor(struct inode *inode, void *opaque)
3852 {
3853 	struct btrfs_iget_args *args = opaque;
3854 	return args->ino == btrfs_ino(inode) &&
3855 		args->root == BTRFS_I(inode)->root;
3856 }
3857 
3858 static struct inode *btrfs_iget_locked(struct super_block *s,
3859 				       u64 objectid,
3860 				       struct btrfs_root *root)
3861 {
3862 	struct inode *inode;
3863 	struct btrfs_iget_args args;
3864 	args.ino = objectid;
3865 	args.root = root;
3866 
3867 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3868 			     btrfs_init_locked_inode,
3869 			     (void *)&args);
3870 	return inode;
3871 }
3872 
3873 /* Get an inode object given its location and corresponding root.
3874  * Returns in *is_new if the inode was read from disk
3875  */
3876 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3877 			 struct btrfs_root *root, int *new)
3878 {
3879 	struct inode *inode;
3880 
3881 	inode = btrfs_iget_locked(s, location->objectid, root);
3882 	if (!inode)
3883 		return ERR_PTR(-ENOMEM);
3884 
3885 	if (inode->i_state & I_NEW) {
3886 		BTRFS_I(inode)->root = root;
3887 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3888 		btrfs_read_locked_inode(inode);
3889 		if (!is_bad_inode(inode)) {
3890 			inode_tree_add(inode);
3891 			unlock_new_inode(inode);
3892 			if (new)
3893 				*new = 1;
3894 		} else {
3895 			unlock_new_inode(inode);
3896 			iput(inode);
3897 			inode = ERR_PTR(-ESTALE);
3898 		}
3899 	}
3900 
3901 	return inode;
3902 }
3903 
3904 static struct inode *new_simple_dir(struct super_block *s,
3905 				    struct btrfs_key *key,
3906 				    struct btrfs_root *root)
3907 {
3908 	struct inode *inode = new_inode(s);
3909 
3910 	if (!inode)
3911 		return ERR_PTR(-ENOMEM);
3912 
3913 	BTRFS_I(inode)->root = root;
3914 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3915 	BTRFS_I(inode)->dummy_inode = 1;
3916 
3917 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3918 	inode->i_op = &simple_dir_inode_operations;
3919 	inode->i_fop = &simple_dir_operations;
3920 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3921 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3922 
3923 	return inode;
3924 }
3925 
3926 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3927 {
3928 	struct inode *inode;
3929 	struct btrfs_root *root = BTRFS_I(dir)->root;
3930 	struct btrfs_root *sub_root = root;
3931 	struct btrfs_key location;
3932 	int index;
3933 	int ret = 0;
3934 
3935 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3936 		return ERR_PTR(-ENAMETOOLONG);
3937 
3938 	if (unlikely(d_need_lookup(dentry))) {
3939 		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3940 		kfree(dentry->d_fsdata);
3941 		dentry->d_fsdata = NULL;
3942 		/* This thing is hashed, drop it for now */
3943 		d_drop(dentry);
3944 	} else {
3945 		ret = btrfs_inode_by_name(dir, dentry, &location);
3946 	}
3947 
3948 	if (ret < 0)
3949 		return ERR_PTR(ret);
3950 
3951 	if (location.objectid == 0)
3952 		return NULL;
3953 
3954 	if (location.type == BTRFS_INODE_ITEM_KEY) {
3955 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3956 		return inode;
3957 	}
3958 
3959 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3960 
3961 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
3962 	ret = fixup_tree_root_location(root, dir, dentry,
3963 				       &location, &sub_root);
3964 	if (ret < 0) {
3965 		if (ret != -ENOENT)
3966 			inode = ERR_PTR(ret);
3967 		else
3968 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
3969 	} else {
3970 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3971 	}
3972 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3973 
3974 	if (!IS_ERR(inode) && root != sub_root) {
3975 		down_read(&root->fs_info->cleanup_work_sem);
3976 		if (!(inode->i_sb->s_flags & MS_RDONLY))
3977 			ret = btrfs_orphan_cleanup(sub_root);
3978 		up_read(&root->fs_info->cleanup_work_sem);
3979 		if (ret)
3980 			inode = ERR_PTR(ret);
3981 	}
3982 
3983 	return inode;
3984 }
3985 
3986 static int btrfs_dentry_delete(const struct dentry *dentry)
3987 {
3988 	struct btrfs_root *root;
3989 
3990 	if (!dentry->d_inode && !IS_ROOT(dentry))
3991 		dentry = dentry->d_parent;
3992 
3993 	if (dentry->d_inode) {
3994 		root = BTRFS_I(dentry->d_inode)->root;
3995 		if (btrfs_root_refs(&root->root_item) == 0)
3996 			return 1;
3997 	}
3998 	return 0;
3999 }
4000 
4001 static void btrfs_dentry_release(struct dentry *dentry)
4002 {
4003 	if (dentry->d_fsdata)
4004 		kfree(dentry->d_fsdata);
4005 }
4006 
4007 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4008 				   struct nameidata *nd)
4009 {
4010 	struct dentry *ret;
4011 
4012 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4013 	if (unlikely(d_need_lookup(dentry))) {
4014 		spin_lock(&dentry->d_lock);
4015 		dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4016 		spin_unlock(&dentry->d_lock);
4017 	}
4018 	return ret;
4019 }
4020 
4021 unsigned char btrfs_filetype_table[] = {
4022 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4023 };
4024 
4025 static int btrfs_real_readdir(struct file *filp, void *dirent,
4026 			      filldir_t filldir)
4027 {
4028 	struct inode *inode = filp->f_dentry->d_inode;
4029 	struct btrfs_root *root = BTRFS_I(inode)->root;
4030 	struct btrfs_item *item;
4031 	struct btrfs_dir_item *di;
4032 	struct btrfs_key key;
4033 	struct btrfs_key found_key;
4034 	struct btrfs_path *path;
4035 	struct list_head ins_list;
4036 	struct list_head del_list;
4037 	struct qstr q;
4038 	int ret;
4039 	struct extent_buffer *leaf;
4040 	int slot;
4041 	unsigned char d_type;
4042 	int over = 0;
4043 	u32 di_cur;
4044 	u32 di_total;
4045 	u32 di_len;
4046 	int key_type = BTRFS_DIR_INDEX_KEY;
4047 	char tmp_name[32];
4048 	char *name_ptr;
4049 	int name_len;
4050 	int is_curr = 0;	/* filp->f_pos points to the current index? */
4051 
4052 	/* FIXME, use a real flag for deciding about the key type */
4053 	if (root->fs_info->tree_root == root)
4054 		key_type = BTRFS_DIR_ITEM_KEY;
4055 
4056 	/* special case for "." */
4057 	if (filp->f_pos == 0) {
4058 		over = filldir(dirent, ".", 1,
4059 			       filp->f_pos, btrfs_ino(inode), DT_DIR);
4060 		if (over)
4061 			return 0;
4062 		filp->f_pos = 1;
4063 	}
4064 	/* special case for .., just use the back ref */
4065 	if (filp->f_pos == 1) {
4066 		u64 pino = parent_ino(filp->f_path.dentry);
4067 		over = filldir(dirent, "..", 2,
4068 			       filp->f_pos, pino, DT_DIR);
4069 		if (over)
4070 			return 0;
4071 		filp->f_pos = 2;
4072 	}
4073 	path = btrfs_alloc_path();
4074 	if (!path)
4075 		return -ENOMEM;
4076 
4077 	path->reada = 1;
4078 
4079 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4080 		INIT_LIST_HEAD(&ins_list);
4081 		INIT_LIST_HEAD(&del_list);
4082 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4083 	}
4084 
4085 	btrfs_set_key_type(&key, key_type);
4086 	key.offset = filp->f_pos;
4087 	key.objectid = btrfs_ino(inode);
4088 
4089 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4090 	if (ret < 0)
4091 		goto err;
4092 
4093 	while (1) {
4094 		leaf = path->nodes[0];
4095 		slot = path->slots[0];
4096 		if (slot >= btrfs_header_nritems(leaf)) {
4097 			ret = btrfs_next_leaf(root, path);
4098 			if (ret < 0)
4099 				goto err;
4100 			else if (ret > 0)
4101 				break;
4102 			continue;
4103 		}
4104 
4105 		item = btrfs_item_nr(leaf, slot);
4106 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4107 
4108 		if (found_key.objectid != key.objectid)
4109 			break;
4110 		if (btrfs_key_type(&found_key) != key_type)
4111 			break;
4112 		if (found_key.offset < filp->f_pos)
4113 			goto next;
4114 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4115 		    btrfs_should_delete_dir_index(&del_list,
4116 						  found_key.offset))
4117 			goto next;
4118 
4119 		filp->f_pos = found_key.offset;
4120 		is_curr = 1;
4121 
4122 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4123 		di_cur = 0;
4124 		di_total = btrfs_item_size(leaf, item);
4125 
4126 		while (di_cur < di_total) {
4127 			struct btrfs_key location;
4128 			struct dentry *tmp;
4129 
4130 			if (verify_dir_item(root, leaf, di))
4131 				break;
4132 
4133 			name_len = btrfs_dir_name_len(leaf, di);
4134 			if (name_len <= sizeof(tmp_name)) {
4135 				name_ptr = tmp_name;
4136 			} else {
4137 				name_ptr = kmalloc(name_len, GFP_NOFS);
4138 				if (!name_ptr) {
4139 					ret = -ENOMEM;
4140 					goto err;
4141 				}
4142 			}
4143 			read_extent_buffer(leaf, name_ptr,
4144 					   (unsigned long)(di + 1), name_len);
4145 
4146 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4147 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4148 
4149 			q.name = name_ptr;
4150 			q.len = name_len;
4151 			q.hash = full_name_hash(q.name, q.len);
4152 			tmp = d_lookup(filp->f_dentry, &q);
4153 			if (!tmp) {
4154 				struct btrfs_key *newkey;
4155 
4156 				newkey = kzalloc(sizeof(struct btrfs_key),
4157 						 GFP_NOFS);
4158 				if (!newkey)
4159 					goto no_dentry;
4160 				tmp = d_alloc(filp->f_dentry, &q);
4161 				if (!tmp) {
4162 					kfree(newkey);
4163 					dput(tmp);
4164 					goto no_dentry;
4165 				}
4166 				memcpy(newkey, &location,
4167 				       sizeof(struct btrfs_key));
4168 				tmp->d_fsdata = newkey;
4169 				tmp->d_flags |= DCACHE_NEED_LOOKUP;
4170 				d_rehash(tmp);
4171 				dput(tmp);
4172 			} else {
4173 				dput(tmp);
4174 			}
4175 no_dentry:
4176 			/* is this a reference to our own snapshot? If so
4177 			 * skip it
4178 			 */
4179 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4180 			    location.objectid == root->root_key.objectid) {
4181 				over = 0;
4182 				goto skip;
4183 			}
4184 			over = filldir(dirent, name_ptr, name_len,
4185 				       found_key.offset, location.objectid,
4186 				       d_type);
4187 
4188 skip:
4189 			if (name_ptr != tmp_name)
4190 				kfree(name_ptr);
4191 
4192 			if (over)
4193 				goto nopos;
4194 			di_len = btrfs_dir_name_len(leaf, di) +
4195 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4196 			di_cur += di_len;
4197 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4198 		}
4199 next:
4200 		path->slots[0]++;
4201 	}
4202 
4203 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4204 		if (is_curr)
4205 			filp->f_pos++;
4206 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4207 						      &ins_list);
4208 		if (ret)
4209 			goto nopos;
4210 	}
4211 
4212 	/* Reached end of directory/root. Bump pos past the last item. */
4213 	if (key_type == BTRFS_DIR_INDEX_KEY)
4214 		/*
4215 		 * 32-bit glibc will use getdents64, but then strtol -
4216 		 * so the last number we can serve is this.
4217 		 */
4218 		filp->f_pos = 0x7fffffff;
4219 	else
4220 		filp->f_pos++;
4221 nopos:
4222 	ret = 0;
4223 err:
4224 	if (key_type == BTRFS_DIR_INDEX_KEY)
4225 		btrfs_put_delayed_items(&ins_list, &del_list);
4226 	btrfs_free_path(path);
4227 	return ret;
4228 }
4229 
4230 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4231 {
4232 	struct btrfs_root *root = BTRFS_I(inode)->root;
4233 	struct btrfs_trans_handle *trans;
4234 	int ret = 0;
4235 	bool nolock = false;
4236 
4237 	if (BTRFS_I(inode)->dummy_inode)
4238 		return 0;
4239 
4240 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4241 		nolock = true;
4242 
4243 	if (wbc->sync_mode == WB_SYNC_ALL) {
4244 		if (nolock)
4245 			trans = btrfs_join_transaction_nolock(root);
4246 		else
4247 			trans = btrfs_join_transaction(root);
4248 		if (IS_ERR(trans))
4249 			return PTR_ERR(trans);
4250 		if (nolock)
4251 			ret = btrfs_end_transaction_nolock(trans, root);
4252 		else
4253 			ret = btrfs_commit_transaction(trans, root);
4254 	}
4255 	return ret;
4256 }
4257 
4258 /*
4259  * This is somewhat expensive, updating the tree every time the
4260  * inode changes.  But, it is most likely to find the inode in cache.
4261  * FIXME, needs more benchmarking...there are no reasons other than performance
4262  * to keep or drop this code.
4263  */
4264 int btrfs_dirty_inode(struct inode *inode)
4265 {
4266 	struct btrfs_root *root = BTRFS_I(inode)->root;
4267 	struct btrfs_trans_handle *trans;
4268 	int ret;
4269 
4270 	if (BTRFS_I(inode)->dummy_inode)
4271 		return 0;
4272 
4273 	trans = btrfs_join_transaction(root);
4274 	if (IS_ERR(trans))
4275 		return PTR_ERR(trans);
4276 
4277 	ret = btrfs_update_inode(trans, root, inode);
4278 	if (ret && ret == -ENOSPC) {
4279 		/* whoops, lets try again with the full transaction */
4280 		btrfs_end_transaction(trans, root);
4281 		trans = btrfs_start_transaction(root, 1);
4282 		if (IS_ERR(trans))
4283 			return PTR_ERR(trans);
4284 
4285 		ret = btrfs_update_inode(trans, root, inode);
4286 	}
4287 	btrfs_end_transaction(trans, root);
4288 	if (BTRFS_I(inode)->delayed_node)
4289 		btrfs_balance_delayed_items(root);
4290 
4291 	return ret;
4292 }
4293 
4294 /*
4295  * This is a copy of file_update_time.  We need this so we can return error on
4296  * ENOSPC for updating the inode in the case of file write and mmap writes.
4297  */
4298 int btrfs_update_time(struct file *file)
4299 {
4300 	struct inode *inode = file->f_path.dentry->d_inode;
4301 	struct timespec now;
4302 	int ret;
4303 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4304 
4305 	/* First try to exhaust all avenues to not sync */
4306 	if (IS_NOCMTIME(inode))
4307 		return 0;
4308 
4309 	now = current_fs_time(inode->i_sb);
4310 	if (!timespec_equal(&inode->i_mtime, &now))
4311 		sync_it = S_MTIME;
4312 
4313 	if (!timespec_equal(&inode->i_ctime, &now))
4314 		sync_it |= S_CTIME;
4315 
4316 	if (IS_I_VERSION(inode))
4317 		sync_it |= S_VERSION;
4318 
4319 	if (!sync_it)
4320 		return 0;
4321 
4322 	/* Finally allowed to write? Takes lock. */
4323 	if (mnt_want_write_file(file))
4324 		return 0;
4325 
4326 	/* Only change inode inside the lock region */
4327 	if (sync_it & S_VERSION)
4328 		inode_inc_iversion(inode);
4329 	if (sync_it & S_CTIME)
4330 		inode->i_ctime = now;
4331 	if (sync_it & S_MTIME)
4332 		inode->i_mtime = now;
4333 	ret = btrfs_dirty_inode(inode);
4334 	if (!ret)
4335 		mark_inode_dirty_sync(inode);
4336 	mnt_drop_write(file->f_path.mnt);
4337 	return ret;
4338 }
4339 
4340 /*
4341  * find the highest existing sequence number in a directory
4342  * and then set the in-memory index_cnt variable to reflect
4343  * free sequence numbers
4344  */
4345 static int btrfs_set_inode_index_count(struct inode *inode)
4346 {
4347 	struct btrfs_root *root = BTRFS_I(inode)->root;
4348 	struct btrfs_key key, found_key;
4349 	struct btrfs_path *path;
4350 	struct extent_buffer *leaf;
4351 	int ret;
4352 
4353 	key.objectid = btrfs_ino(inode);
4354 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4355 	key.offset = (u64)-1;
4356 
4357 	path = btrfs_alloc_path();
4358 	if (!path)
4359 		return -ENOMEM;
4360 
4361 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4362 	if (ret < 0)
4363 		goto out;
4364 	/* FIXME: we should be able to handle this */
4365 	if (ret == 0)
4366 		goto out;
4367 	ret = 0;
4368 
4369 	/*
4370 	 * MAGIC NUMBER EXPLANATION:
4371 	 * since we search a directory based on f_pos we have to start at 2
4372 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4373 	 * else has to start at 2
4374 	 */
4375 	if (path->slots[0] == 0) {
4376 		BTRFS_I(inode)->index_cnt = 2;
4377 		goto out;
4378 	}
4379 
4380 	path->slots[0]--;
4381 
4382 	leaf = path->nodes[0];
4383 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4384 
4385 	if (found_key.objectid != btrfs_ino(inode) ||
4386 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4387 		BTRFS_I(inode)->index_cnt = 2;
4388 		goto out;
4389 	}
4390 
4391 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4392 out:
4393 	btrfs_free_path(path);
4394 	return ret;
4395 }
4396 
4397 /*
4398  * helper to find a free sequence number in a given directory.  This current
4399  * code is very simple, later versions will do smarter things in the btree
4400  */
4401 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4402 {
4403 	int ret = 0;
4404 
4405 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4406 		ret = btrfs_inode_delayed_dir_index_count(dir);
4407 		if (ret) {
4408 			ret = btrfs_set_inode_index_count(dir);
4409 			if (ret)
4410 				return ret;
4411 		}
4412 	}
4413 
4414 	*index = BTRFS_I(dir)->index_cnt;
4415 	BTRFS_I(dir)->index_cnt++;
4416 
4417 	return ret;
4418 }
4419 
4420 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4421 				     struct btrfs_root *root,
4422 				     struct inode *dir,
4423 				     const char *name, int name_len,
4424 				     u64 ref_objectid, u64 objectid, int mode,
4425 				     u64 *index)
4426 {
4427 	struct inode *inode;
4428 	struct btrfs_inode_item *inode_item;
4429 	struct btrfs_key *location;
4430 	struct btrfs_path *path;
4431 	struct btrfs_inode_ref *ref;
4432 	struct btrfs_key key[2];
4433 	u32 sizes[2];
4434 	unsigned long ptr;
4435 	int ret;
4436 	int owner;
4437 
4438 	path = btrfs_alloc_path();
4439 	if (!path)
4440 		return ERR_PTR(-ENOMEM);
4441 
4442 	inode = new_inode(root->fs_info->sb);
4443 	if (!inode) {
4444 		btrfs_free_path(path);
4445 		return ERR_PTR(-ENOMEM);
4446 	}
4447 
4448 	/*
4449 	 * we have to initialize this early, so we can reclaim the inode
4450 	 * number if we fail afterwards in this function.
4451 	 */
4452 	inode->i_ino = objectid;
4453 
4454 	if (dir) {
4455 		trace_btrfs_inode_request(dir);
4456 
4457 		ret = btrfs_set_inode_index(dir, index);
4458 		if (ret) {
4459 			btrfs_free_path(path);
4460 			iput(inode);
4461 			return ERR_PTR(ret);
4462 		}
4463 	}
4464 	/*
4465 	 * index_cnt is ignored for everything but a dir,
4466 	 * btrfs_get_inode_index_count has an explanation for the magic
4467 	 * number
4468 	 */
4469 	BTRFS_I(inode)->index_cnt = 2;
4470 	BTRFS_I(inode)->root = root;
4471 	BTRFS_I(inode)->generation = trans->transid;
4472 	inode->i_generation = BTRFS_I(inode)->generation;
4473 	btrfs_set_inode_space_info(root, inode);
4474 
4475 	if (S_ISDIR(mode))
4476 		owner = 0;
4477 	else
4478 		owner = 1;
4479 
4480 	key[0].objectid = objectid;
4481 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4482 	key[0].offset = 0;
4483 
4484 	key[1].objectid = objectid;
4485 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4486 	key[1].offset = ref_objectid;
4487 
4488 	sizes[0] = sizeof(struct btrfs_inode_item);
4489 	sizes[1] = name_len + sizeof(*ref);
4490 
4491 	path->leave_spinning = 1;
4492 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4493 	if (ret != 0)
4494 		goto fail;
4495 
4496 	inode_init_owner(inode, dir, mode);
4497 	inode_set_bytes(inode, 0);
4498 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4499 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4500 				  struct btrfs_inode_item);
4501 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4502 
4503 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4504 			     struct btrfs_inode_ref);
4505 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4506 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4507 	ptr = (unsigned long)(ref + 1);
4508 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4509 
4510 	btrfs_mark_buffer_dirty(path->nodes[0]);
4511 	btrfs_free_path(path);
4512 
4513 	location = &BTRFS_I(inode)->location;
4514 	location->objectid = objectid;
4515 	location->offset = 0;
4516 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4517 
4518 	btrfs_inherit_iflags(inode, dir);
4519 
4520 	if (S_ISREG(mode)) {
4521 		if (btrfs_test_opt(root, NODATASUM))
4522 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4523 		if (btrfs_test_opt(root, NODATACOW) ||
4524 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4525 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4526 	}
4527 
4528 	insert_inode_hash(inode);
4529 	inode_tree_add(inode);
4530 
4531 	trace_btrfs_inode_new(inode);
4532 	btrfs_set_inode_last_trans(trans, inode);
4533 
4534 	return inode;
4535 fail:
4536 	if (dir)
4537 		BTRFS_I(dir)->index_cnt--;
4538 	btrfs_free_path(path);
4539 	iput(inode);
4540 	return ERR_PTR(ret);
4541 }
4542 
4543 static inline u8 btrfs_inode_type(struct inode *inode)
4544 {
4545 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4546 }
4547 
4548 /*
4549  * utility function to add 'inode' into 'parent_inode' with
4550  * a give name and a given sequence number.
4551  * if 'add_backref' is true, also insert a backref from the
4552  * inode to the parent directory.
4553  */
4554 int btrfs_add_link(struct btrfs_trans_handle *trans,
4555 		   struct inode *parent_inode, struct inode *inode,
4556 		   const char *name, int name_len, int add_backref, u64 index)
4557 {
4558 	int ret = 0;
4559 	struct btrfs_key key;
4560 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4561 	u64 ino = btrfs_ino(inode);
4562 	u64 parent_ino = btrfs_ino(parent_inode);
4563 
4564 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4565 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4566 	} else {
4567 		key.objectid = ino;
4568 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4569 		key.offset = 0;
4570 	}
4571 
4572 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4573 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4574 					 key.objectid, root->root_key.objectid,
4575 					 parent_ino, index, name, name_len);
4576 	} else if (add_backref) {
4577 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4578 					     parent_ino, index);
4579 	}
4580 
4581 	if (ret == 0) {
4582 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4583 					    parent_inode, &key,
4584 					    btrfs_inode_type(inode), index);
4585 		BUG_ON(ret);
4586 
4587 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4588 				   name_len * 2);
4589 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4590 		ret = btrfs_update_inode(trans, root, parent_inode);
4591 	}
4592 	return ret;
4593 }
4594 
4595 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4596 			    struct inode *dir, struct dentry *dentry,
4597 			    struct inode *inode, int backref, u64 index)
4598 {
4599 	int err = btrfs_add_link(trans, dir, inode,
4600 				 dentry->d_name.name, dentry->d_name.len,
4601 				 backref, index);
4602 	if (err > 0)
4603 		err = -EEXIST;
4604 	return err;
4605 }
4606 
4607 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4608 			int mode, dev_t rdev)
4609 {
4610 	struct btrfs_trans_handle *trans;
4611 	struct btrfs_root *root = BTRFS_I(dir)->root;
4612 	struct inode *inode = NULL;
4613 	int err;
4614 	int drop_inode = 0;
4615 	u64 objectid;
4616 	unsigned long nr = 0;
4617 	u64 index = 0;
4618 
4619 	if (!new_valid_dev(rdev))
4620 		return -EINVAL;
4621 
4622 	/*
4623 	 * 2 for inode item and ref
4624 	 * 2 for dir items
4625 	 * 1 for xattr if selinux is on
4626 	 */
4627 	trans = btrfs_start_transaction(root, 5);
4628 	if (IS_ERR(trans))
4629 		return PTR_ERR(trans);
4630 
4631 	err = btrfs_find_free_ino(root, &objectid);
4632 	if (err)
4633 		goto out_unlock;
4634 
4635 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4636 				dentry->d_name.len, btrfs_ino(dir), objectid,
4637 				mode, &index);
4638 	if (IS_ERR(inode)) {
4639 		err = PTR_ERR(inode);
4640 		goto out_unlock;
4641 	}
4642 
4643 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4644 	if (err) {
4645 		drop_inode = 1;
4646 		goto out_unlock;
4647 	}
4648 
4649 	/*
4650 	* If the active LSM wants to access the inode during
4651 	* d_instantiate it needs these. Smack checks to see
4652 	* if the filesystem supports xattrs by looking at the
4653 	* ops vector.
4654 	*/
4655 
4656 	inode->i_op = &btrfs_special_inode_operations;
4657 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4658 	if (err)
4659 		drop_inode = 1;
4660 	else {
4661 		init_special_inode(inode, inode->i_mode, rdev);
4662 		btrfs_update_inode(trans, root, inode);
4663 		d_instantiate(dentry, inode);
4664 	}
4665 out_unlock:
4666 	nr = trans->blocks_used;
4667 	btrfs_end_transaction(trans, root);
4668 	btrfs_btree_balance_dirty(root, nr);
4669 	if (drop_inode) {
4670 		inode_dec_link_count(inode);
4671 		iput(inode);
4672 	}
4673 	return err;
4674 }
4675 
4676 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4677 			int mode, struct nameidata *nd)
4678 {
4679 	struct btrfs_trans_handle *trans;
4680 	struct btrfs_root *root = BTRFS_I(dir)->root;
4681 	struct inode *inode = NULL;
4682 	int drop_inode = 0;
4683 	int err;
4684 	unsigned long nr = 0;
4685 	u64 objectid;
4686 	u64 index = 0;
4687 
4688 	/*
4689 	 * 2 for inode item and ref
4690 	 * 2 for dir items
4691 	 * 1 for xattr if selinux is on
4692 	 */
4693 	trans = btrfs_start_transaction(root, 5);
4694 	if (IS_ERR(trans))
4695 		return PTR_ERR(trans);
4696 
4697 	err = btrfs_find_free_ino(root, &objectid);
4698 	if (err)
4699 		goto out_unlock;
4700 
4701 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4702 				dentry->d_name.len, btrfs_ino(dir), objectid,
4703 				mode, &index);
4704 	if (IS_ERR(inode)) {
4705 		err = PTR_ERR(inode);
4706 		goto out_unlock;
4707 	}
4708 
4709 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4710 	if (err) {
4711 		drop_inode = 1;
4712 		goto out_unlock;
4713 	}
4714 
4715 	/*
4716 	* If the active LSM wants to access the inode during
4717 	* d_instantiate it needs these. Smack checks to see
4718 	* if the filesystem supports xattrs by looking at the
4719 	* ops vector.
4720 	*/
4721 	inode->i_fop = &btrfs_file_operations;
4722 	inode->i_op = &btrfs_file_inode_operations;
4723 
4724 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4725 	if (err)
4726 		drop_inode = 1;
4727 	else {
4728 		inode->i_mapping->a_ops = &btrfs_aops;
4729 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4730 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4731 		d_instantiate(dentry, inode);
4732 	}
4733 out_unlock:
4734 	nr = trans->blocks_used;
4735 	btrfs_end_transaction(trans, root);
4736 	if (drop_inode) {
4737 		inode_dec_link_count(inode);
4738 		iput(inode);
4739 	}
4740 	btrfs_btree_balance_dirty(root, nr);
4741 	return err;
4742 }
4743 
4744 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4745 		      struct dentry *dentry)
4746 {
4747 	struct btrfs_trans_handle *trans;
4748 	struct btrfs_root *root = BTRFS_I(dir)->root;
4749 	struct inode *inode = old_dentry->d_inode;
4750 	u64 index;
4751 	unsigned long nr = 0;
4752 	int err;
4753 	int drop_inode = 0;
4754 
4755 	/* do not allow sys_link's with other subvols of the same device */
4756 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4757 		return -EXDEV;
4758 
4759 	if (inode->i_nlink == ~0U)
4760 		return -EMLINK;
4761 
4762 	err = btrfs_set_inode_index(dir, &index);
4763 	if (err)
4764 		goto fail;
4765 
4766 	/*
4767 	 * 2 items for inode and inode ref
4768 	 * 2 items for dir items
4769 	 * 1 item for parent inode
4770 	 */
4771 	trans = btrfs_start_transaction(root, 5);
4772 	if (IS_ERR(trans)) {
4773 		err = PTR_ERR(trans);
4774 		goto fail;
4775 	}
4776 
4777 	btrfs_inc_nlink(inode);
4778 	inode->i_ctime = CURRENT_TIME;
4779 	ihold(inode);
4780 
4781 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4782 
4783 	if (err) {
4784 		drop_inode = 1;
4785 	} else {
4786 		struct dentry *parent = dentry->d_parent;
4787 		err = btrfs_update_inode(trans, root, inode);
4788 		BUG_ON(err);
4789 		d_instantiate(dentry, inode);
4790 		btrfs_log_new_name(trans, inode, NULL, parent);
4791 	}
4792 
4793 	nr = trans->blocks_used;
4794 	btrfs_end_transaction(trans, root);
4795 fail:
4796 	if (drop_inode) {
4797 		inode_dec_link_count(inode);
4798 		iput(inode);
4799 	}
4800 	btrfs_btree_balance_dirty(root, nr);
4801 	return err;
4802 }
4803 
4804 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4805 {
4806 	struct inode *inode = NULL;
4807 	struct btrfs_trans_handle *trans;
4808 	struct btrfs_root *root = BTRFS_I(dir)->root;
4809 	int err = 0;
4810 	int drop_on_err = 0;
4811 	u64 objectid = 0;
4812 	u64 index = 0;
4813 	unsigned long nr = 1;
4814 
4815 	/*
4816 	 * 2 items for inode and ref
4817 	 * 2 items for dir items
4818 	 * 1 for xattr if selinux is on
4819 	 */
4820 	trans = btrfs_start_transaction(root, 5);
4821 	if (IS_ERR(trans))
4822 		return PTR_ERR(trans);
4823 
4824 	err = btrfs_find_free_ino(root, &objectid);
4825 	if (err)
4826 		goto out_fail;
4827 
4828 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4829 				dentry->d_name.len, btrfs_ino(dir), objectid,
4830 				S_IFDIR | mode, &index);
4831 	if (IS_ERR(inode)) {
4832 		err = PTR_ERR(inode);
4833 		goto out_fail;
4834 	}
4835 
4836 	drop_on_err = 1;
4837 
4838 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4839 	if (err)
4840 		goto out_fail;
4841 
4842 	inode->i_op = &btrfs_dir_inode_operations;
4843 	inode->i_fop = &btrfs_dir_file_operations;
4844 
4845 	btrfs_i_size_write(inode, 0);
4846 	err = btrfs_update_inode(trans, root, inode);
4847 	if (err)
4848 		goto out_fail;
4849 
4850 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4851 			     dentry->d_name.len, 0, index);
4852 	if (err)
4853 		goto out_fail;
4854 
4855 	d_instantiate(dentry, inode);
4856 	drop_on_err = 0;
4857 
4858 out_fail:
4859 	nr = trans->blocks_used;
4860 	btrfs_end_transaction(trans, root);
4861 	if (drop_on_err)
4862 		iput(inode);
4863 	btrfs_btree_balance_dirty(root, nr);
4864 	return err;
4865 }
4866 
4867 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4868  * and an extent that you want to insert, deal with overlap and insert
4869  * the new extent into the tree.
4870  */
4871 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4872 				struct extent_map *existing,
4873 				struct extent_map *em,
4874 				u64 map_start, u64 map_len)
4875 {
4876 	u64 start_diff;
4877 
4878 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4879 	start_diff = map_start - em->start;
4880 	em->start = map_start;
4881 	em->len = map_len;
4882 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4883 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4884 		em->block_start += start_diff;
4885 		em->block_len -= start_diff;
4886 	}
4887 	return add_extent_mapping(em_tree, em);
4888 }
4889 
4890 static noinline int uncompress_inline(struct btrfs_path *path,
4891 				      struct inode *inode, struct page *page,
4892 				      size_t pg_offset, u64 extent_offset,
4893 				      struct btrfs_file_extent_item *item)
4894 {
4895 	int ret;
4896 	struct extent_buffer *leaf = path->nodes[0];
4897 	char *tmp;
4898 	size_t max_size;
4899 	unsigned long inline_size;
4900 	unsigned long ptr;
4901 	int compress_type;
4902 
4903 	WARN_ON(pg_offset != 0);
4904 	compress_type = btrfs_file_extent_compression(leaf, item);
4905 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4906 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4907 					btrfs_item_nr(leaf, path->slots[0]));
4908 	tmp = kmalloc(inline_size, GFP_NOFS);
4909 	if (!tmp)
4910 		return -ENOMEM;
4911 	ptr = btrfs_file_extent_inline_start(item);
4912 
4913 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4914 
4915 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4916 	ret = btrfs_decompress(compress_type, tmp, page,
4917 			       extent_offset, inline_size, max_size);
4918 	if (ret) {
4919 		char *kaddr = kmap_atomic(page, KM_USER0);
4920 		unsigned long copy_size = min_t(u64,
4921 				  PAGE_CACHE_SIZE - pg_offset,
4922 				  max_size - extent_offset);
4923 		memset(kaddr + pg_offset, 0, copy_size);
4924 		kunmap_atomic(kaddr, KM_USER0);
4925 	}
4926 	kfree(tmp);
4927 	return 0;
4928 }
4929 
4930 /*
4931  * a bit scary, this does extent mapping from logical file offset to the disk.
4932  * the ugly parts come from merging extents from the disk with the in-ram
4933  * representation.  This gets more complex because of the data=ordered code,
4934  * where the in-ram extents might be locked pending data=ordered completion.
4935  *
4936  * This also copies inline extents directly into the page.
4937  */
4938 
4939 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4940 				    size_t pg_offset, u64 start, u64 len,
4941 				    int create)
4942 {
4943 	int ret;
4944 	int err = 0;
4945 	u64 bytenr;
4946 	u64 extent_start = 0;
4947 	u64 extent_end = 0;
4948 	u64 objectid = btrfs_ino(inode);
4949 	u32 found_type;
4950 	struct btrfs_path *path = NULL;
4951 	struct btrfs_root *root = BTRFS_I(inode)->root;
4952 	struct btrfs_file_extent_item *item;
4953 	struct extent_buffer *leaf;
4954 	struct btrfs_key found_key;
4955 	struct extent_map *em = NULL;
4956 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4957 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4958 	struct btrfs_trans_handle *trans = NULL;
4959 	int compress_type;
4960 
4961 again:
4962 	read_lock(&em_tree->lock);
4963 	em = lookup_extent_mapping(em_tree, start, len);
4964 	if (em)
4965 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4966 	read_unlock(&em_tree->lock);
4967 
4968 	if (em) {
4969 		if (em->start > start || em->start + em->len <= start)
4970 			free_extent_map(em);
4971 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4972 			free_extent_map(em);
4973 		else
4974 			goto out;
4975 	}
4976 	em = alloc_extent_map();
4977 	if (!em) {
4978 		err = -ENOMEM;
4979 		goto out;
4980 	}
4981 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4982 	em->start = EXTENT_MAP_HOLE;
4983 	em->orig_start = EXTENT_MAP_HOLE;
4984 	em->len = (u64)-1;
4985 	em->block_len = (u64)-1;
4986 
4987 	if (!path) {
4988 		path = btrfs_alloc_path();
4989 		if (!path) {
4990 			err = -ENOMEM;
4991 			goto out;
4992 		}
4993 		/*
4994 		 * Chances are we'll be called again, so go ahead and do
4995 		 * readahead
4996 		 */
4997 		path->reada = 1;
4998 	}
4999 
5000 	ret = btrfs_lookup_file_extent(trans, root, path,
5001 				       objectid, start, trans != NULL);
5002 	if (ret < 0) {
5003 		err = ret;
5004 		goto out;
5005 	}
5006 
5007 	if (ret != 0) {
5008 		if (path->slots[0] == 0)
5009 			goto not_found;
5010 		path->slots[0]--;
5011 	}
5012 
5013 	leaf = path->nodes[0];
5014 	item = btrfs_item_ptr(leaf, path->slots[0],
5015 			      struct btrfs_file_extent_item);
5016 	/* are we inside the extent that was found? */
5017 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5018 	found_type = btrfs_key_type(&found_key);
5019 	if (found_key.objectid != objectid ||
5020 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5021 		goto not_found;
5022 	}
5023 
5024 	found_type = btrfs_file_extent_type(leaf, item);
5025 	extent_start = found_key.offset;
5026 	compress_type = btrfs_file_extent_compression(leaf, item);
5027 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5028 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5029 		extent_end = extent_start +
5030 		       btrfs_file_extent_num_bytes(leaf, item);
5031 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5032 		size_t size;
5033 		size = btrfs_file_extent_inline_len(leaf, item);
5034 		extent_end = (extent_start + size + root->sectorsize - 1) &
5035 			~((u64)root->sectorsize - 1);
5036 	}
5037 
5038 	if (start >= extent_end) {
5039 		path->slots[0]++;
5040 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5041 			ret = btrfs_next_leaf(root, path);
5042 			if (ret < 0) {
5043 				err = ret;
5044 				goto out;
5045 			}
5046 			if (ret > 0)
5047 				goto not_found;
5048 			leaf = path->nodes[0];
5049 		}
5050 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5051 		if (found_key.objectid != objectid ||
5052 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5053 			goto not_found;
5054 		if (start + len <= found_key.offset)
5055 			goto not_found;
5056 		em->start = start;
5057 		em->len = found_key.offset - start;
5058 		goto not_found_em;
5059 	}
5060 
5061 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5062 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5063 		em->start = extent_start;
5064 		em->len = extent_end - extent_start;
5065 		em->orig_start = extent_start -
5066 				 btrfs_file_extent_offset(leaf, item);
5067 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5068 		if (bytenr == 0) {
5069 			em->block_start = EXTENT_MAP_HOLE;
5070 			goto insert;
5071 		}
5072 		if (compress_type != BTRFS_COMPRESS_NONE) {
5073 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5074 			em->compress_type = compress_type;
5075 			em->block_start = bytenr;
5076 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5077 									 item);
5078 		} else {
5079 			bytenr += btrfs_file_extent_offset(leaf, item);
5080 			em->block_start = bytenr;
5081 			em->block_len = em->len;
5082 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5083 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5084 		}
5085 		goto insert;
5086 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5087 		unsigned long ptr;
5088 		char *map;
5089 		size_t size;
5090 		size_t extent_offset;
5091 		size_t copy_size;
5092 
5093 		em->block_start = EXTENT_MAP_INLINE;
5094 		if (!page || create) {
5095 			em->start = extent_start;
5096 			em->len = extent_end - extent_start;
5097 			goto out;
5098 		}
5099 
5100 		size = btrfs_file_extent_inline_len(leaf, item);
5101 		extent_offset = page_offset(page) + pg_offset - extent_start;
5102 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5103 				size - extent_offset);
5104 		em->start = extent_start + extent_offset;
5105 		em->len = (copy_size + root->sectorsize - 1) &
5106 			~((u64)root->sectorsize - 1);
5107 		em->orig_start = EXTENT_MAP_INLINE;
5108 		if (compress_type) {
5109 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5110 			em->compress_type = compress_type;
5111 		}
5112 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5113 		if (create == 0 && !PageUptodate(page)) {
5114 			if (btrfs_file_extent_compression(leaf, item) !=
5115 			    BTRFS_COMPRESS_NONE) {
5116 				ret = uncompress_inline(path, inode, page,
5117 							pg_offset,
5118 							extent_offset, item);
5119 				BUG_ON(ret);
5120 			} else {
5121 				map = kmap(page);
5122 				read_extent_buffer(leaf, map + pg_offset, ptr,
5123 						   copy_size);
5124 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5125 					memset(map + pg_offset + copy_size, 0,
5126 					       PAGE_CACHE_SIZE - pg_offset -
5127 					       copy_size);
5128 				}
5129 				kunmap(page);
5130 			}
5131 			flush_dcache_page(page);
5132 		} else if (create && PageUptodate(page)) {
5133 			BUG();
5134 			if (!trans) {
5135 				kunmap(page);
5136 				free_extent_map(em);
5137 				em = NULL;
5138 
5139 				btrfs_release_path(path);
5140 				trans = btrfs_join_transaction(root);
5141 
5142 				if (IS_ERR(trans))
5143 					return ERR_CAST(trans);
5144 				goto again;
5145 			}
5146 			map = kmap(page);
5147 			write_extent_buffer(leaf, map + pg_offset, ptr,
5148 					    copy_size);
5149 			kunmap(page);
5150 			btrfs_mark_buffer_dirty(leaf);
5151 		}
5152 		set_extent_uptodate(io_tree, em->start,
5153 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5154 		goto insert;
5155 	} else {
5156 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5157 		WARN_ON(1);
5158 	}
5159 not_found:
5160 	em->start = start;
5161 	em->len = len;
5162 not_found_em:
5163 	em->block_start = EXTENT_MAP_HOLE;
5164 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5165 insert:
5166 	btrfs_release_path(path);
5167 	if (em->start > start || extent_map_end(em) <= start) {
5168 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5169 		       "[%llu %llu]\n", (unsigned long long)em->start,
5170 		       (unsigned long long)em->len,
5171 		       (unsigned long long)start,
5172 		       (unsigned long long)len);
5173 		err = -EIO;
5174 		goto out;
5175 	}
5176 
5177 	err = 0;
5178 	write_lock(&em_tree->lock);
5179 	ret = add_extent_mapping(em_tree, em);
5180 	/* it is possible that someone inserted the extent into the tree
5181 	 * while we had the lock dropped.  It is also possible that
5182 	 * an overlapping map exists in the tree
5183 	 */
5184 	if (ret == -EEXIST) {
5185 		struct extent_map *existing;
5186 
5187 		ret = 0;
5188 
5189 		existing = lookup_extent_mapping(em_tree, start, len);
5190 		if (existing && (existing->start > start ||
5191 		    existing->start + existing->len <= start)) {
5192 			free_extent_map(existing);
5193 			existing = NULL;
5194 		}
5195 		if (!existing) {
5196 			existing = lookup_extent_mapping(em_tree, em->start,
5197 							 em->len);
5198 			if (existing) {
5199 				err = merge_extent_mapping(em_tree, existing,
5200 							   em, start,
5201 							   root->sectorsize);
5202 				free_extent_map(existing);
5203 				if (err) {
5204 					free_extent_map(em);
5205 					em = NULL;
5206 				}
5207 			} else {
5208 				err = -EIO;
5209 				free_extent_map(em);
5210 				em = NULL;
5211 			}
5212 		} else {
5213 			free_extent_map(em);
5214 			em = existing;
5215 			err = 0;
5216 		}
5217 	}
5218 	write_unlock(&em_tree->lock);
5219 out:
5220 
5221 	trace_btrfs_get_extent(root, em);
5222 
5223 	if (path)
5224 		btrfs_free_path(path);
5225 	if (trans) {
5226 		ret = btrfs_end_transaction(trans, root);
5227 		if (!err)
5228 			err = ret;
5229 	}
5230 	if (err) {
5231 		free_extent_map(em);
5232 		return ERR_PTR(err);
5233 	}
5234 	return em;
5235 }
5236 
5237 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5238 					   size_t pg_offset, u64 start, u64 len,
5239 					   int create)
5240 {
5241 	struct extent_map *em;
5242 	struct extent_map *hole_em = NULL;
5243 	u64 range_start = start;
5244 	u64 end;
5245 	u64 found;
5246 	u64 found_end;
5247 	int err = 0;
5248 
5249 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5250 	if (IS_ERR(em))
5251 		return em;
5252 	if (em) {
5253 		/*
5254 		 * if our em maps to a hole, there might
5255 		 * actually be delalloc bytes behind it
5256 		 */
5257 		if (em->block_start != EXTENT_MAP_HOLE)
5258 			return em;
5259 		else
5260 			hole_em = em;
5261 	}
5262 
5263 	/* check to see if we've wrapped (len == -1 or similar) */
5264 	end = start + len;
5265 	if (end < start)
5266 		end = (u64)-1;
5267 	else
5268 		end -= 1;
5269 
5270 	em = NULL;
5271 
5272 	/* ok, we didn't find anything, lets look for delalloc */
5273 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5274 				 end, len, EXTENT_DELALLOC, 1);
5275 	found_end = range_start + found;
5276 	if (found_end < range_start)
5277 		found_end = (u64)-1;
5278 
5279 	/*
5280 	 * we didn't find anything useful, return
5281 	 * the original results from get_extent()
5282 	 */
5283 	if (range_start > end || found_end <= start) {
5284 		em = hole_em;
5285 		hole_em = NULL;
5286 		goto out;
5287 	}
5288 
5289 	/* adjust the range_start to make sure it doesn't
5290 	 * go backwards from the start they passed in
5291 	 */
5292 	range_start = max(start,range_start);
5293 	found = found_end - range_start;
5294 
5295 	if (found > 0) {
5296 		u64 hole_start = start;
5297 		u64 hole_len = len;
5298 
5299 		em = alloc_extent_map();
5300 		if (!em) {
5301 			err = -ENOMEM;
5302 			goto out;
5303 		}
5304 		/*
5305 		 * when btrfs_get_extent can't find anything it
5306 		 * returns one huge hole
5307 		 *
5308 		 * make sure what it found really fits our range, and
5309 		 * adjust to make sure it is based on the start from
5310 		 * the caller
5311 		 */
5312 		if (hole_em) {
5313 			u64 calc_end = extent_map_end(hole_em);
5314 
5315 			if (calc_end <= start || (hole_em->start > end)) {
5316 				free_extent_map(hole_em);
5317 				hole_em = NULL;
5318 			} else {
5319 				hole_start = max(hole_em->start, start);
5320 				hole_len = calc_end - hole_start;
5321 			}
5322 		}
5323 		em->bdev = NULL;
5324 		if (hole_em && range_start > hole_start) {
5325 			/* our hole starts before our delalloc, so we
5326 			 * have to return just the parts of the hole
5327 			 * that go until  the delalloc starts
5328 			 */
5329 			em->len = min(hole_len,
5330 				      range_start - hole_start);
5331 			em->start = hole_start;
5332 			em->orig_start = hole_start;
5333 			/*
5334 			 * don't adjust block start at all,
5335 			 * it is fixed at EXTENT_MAP_HOLE
5336 			 */
5337 			em->block_start = hole_em->block_start;
5338 			em->block_len = hole_len;
5339 		} else {
5340 			em->start = range_start;
5341 			em->len = found;
5342 			em->orig_start = range_start;
5343 			em->block_start = EXTENT_MAP_DELALLOC;
5344 			em->block_len = found;
5345 		}
5346 	} else if (hole_em) {
5347 		return hole_em;
5348 	}
5349 out:
5350 
5351 	free_extent_map(hole_em);
5352 	if (err) {
5353 		free_extent_map(em);
5354 		return ERR_PTR(err);
5355 	}
5356 	return em;
5357 }
5358 
5359 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5360 						  struct extent_map *em,
5361 						  u64 start, u64 len)
5362 {
5363 	struct btrfs_root *root = BTRFS_I(inode)->root;
5364 	struct btrfs_trans_handle *trans;
5365 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5366 	struct btrfs_key ins;
5367 	u64 alloc_hint;
5368 	int ret;
5369 	bool insert = false;
5370 
5371 	/*
5372 	 * Ok if the extent map we looked up is a hole and is for the exact
5373 	 * range we want, there is no reason to allocate a new one, however if
5374 	 * it is not right then we need to free this one and drop the cache for
5375 	 * our range.
5376 	 */
5377 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5378 	    em->len != len) {
5379 		free_extent_map(em);
5380 		em = NULL;
5381 		insert = true;
5382 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5383 	}
5384 
5385 	trans = btrfs_join_transaction(root);
5386 	if (IS_ERR(trans))
5387 		return ERR_CAST(trans);
5388 
5389 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5390 		btrfs_add_inode_defrag(trans, inode);
5391 
5392 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5393 
5394 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5395 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5396 				   alloc_hint, (u64)-1, &ins, 1);
5397 	if (ret) {
5398 		em = ERR_PTR(ret);
5399 		goto out;
5400 	}
5401 
5402 	if (!em) {
5403 		em = alloc_extent_map();
5404 		if (!em) {
5405 			em = ERR_PTR(-ENOMEM);
5406 			goto out;
5407 		}
5408 	}
5409 
5410 	em->start = start;
5411 	em->orig_start = em->start;
5412 	em->len = ins.offset;
5413 
5414 	em->block_start = ins.objectid;
5415 	em->block_len = ins.offset;
5416 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5417 
5418 	/*
5419 	 * We need to do this because if we're using the original em we searched
5420 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5421 	 */
5422 	em->flags = 0;
5423 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5424 
5425 	while (insert) {
5426 		write_lock(&em_tree->lock);
5427 		ret = add_extent_mapping(em_tree, em);
5428 		write_unlock(&em_tree->lock);
5429 		if (ret != -EEXIST)
5430 			break;
5431 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5432 	}
5433 
5434 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5435 					   ins.offset, ins.offset, 0);
5436 	if (ret) {
5437 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5438 		em = ERR_PTR(ret);
5439 	}
5440 out:
5441 	btrfs_end_transaction(trans, root);
5442 	return em;
5443 }
5444 
5445 /*
5446  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5447  * block must be cow'd
5448  */
5449 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5450 				      struct inode *inode, u64 offset, u64 len)
5451 {
5452 	struct btrfs_path *path;
5453 	int ret;
5454 	struct extent_buffer *leaf;
5455 	struct btrfs_root *root = BTRFS_I(inode)->root;
5456 	struct btrfs_file_extent_item *fi;
5457 	struct btrfs_key key;
5458 	u64 disk_bytenr;
5459 	u64 backref_offset;
5460 	u64 extent_end;
5461 	u64 num_bytes;
5462 	int slot;
5463 	int found_type;
5464 
5465 	path = btrfs_alloc_path();
5466 	if (!path)
5467 		return -ENOMEM;
5468 
5469 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5470 				       offset, 0);
5471 	if (ret < 0)
5472 		goto out;
5473 
5474 	slot = path->slots[0];
5475 	if (ret == 1) {
5476 		if (slot == 0) {
5477 			/* can't find the item, must cow */
5478 			ret = 0;
5479 			goto out;
5480 		}
5481 		slot--;
5482 	}
5483 	ret = 0;
5484 	leaf = path->nodes[0];
5485 	btrfs_item_key_to_cpu(leaf, &key, slot);
5486 	if (key.objectid != btrfs_ino(inode) ||
5487 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5488 		/* not our file or wrong item type, must cow */
5489 		goto out;
5490 	}
5491 
5492 	if (key.offset > offset) {
5493 		/* Wrong offset, must cow */
5494 		goto out;
5495 	}
5496 
5497 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5498 	found_type = btrfs_file_extent_type(leaf, fi);
5499 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5500 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5501 		/* not a regular extent, must cow */
5502 		goto out;
5503 	}
5504 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5505 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5506 
5507 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5508 	if (extent_end < offset + len) {
5509 		/* extent doesn't include our full range, must cow */
5510 		goto out;
5511 	}
5512 
5513 	if (btrfs_extent_readonly(root, disk_bytenr))
5514 		goto out;
5515 
5516 	/*
5517 	 * look for other files referencing this extent, if we
5518 	 * find any we must cow
5519 	 */
5520 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5521 				  key.offset - backref_offset, disk_bytenr))
5522 		goto out;
5523 
5524 	/*
5525 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5526 	 * in this extent we are about to write.  If there
5527 	 * are any csums in that range we have to cow in order
5528 	 * to keep the csums correct
5529 	 */
5530 	disk_bytenr += backref_offset;
5531 	disk_bytenr += offset - key.offset;
5532 	num_bytes = min(offset + len, extent_end) - offset;
5533 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5534 				goto out;
5535 	/*
5536 	 * all of the above have passed, it is safe to overwrite this extent
5537 	 * without cow
5538 	 */
5539 	ret = 1;
5540 out:
5541 	btrfs_free_path(path);
5542 	return ret;
5543 }
5544 
5545 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5546 				   struct buffer_head *bh_result, int create)
5547 {
5548 	struct extent_map *em;
5549 	struct btrfs_root *root = BTRFS_I(inode)->root;
5550 	u64 start = iblock << inode->i_blkbits;
5551 	u64 len = bh_result->b_size;
5552 	struct btrfs_trans_handle *trans;
5553 
5554 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5555 	if (IS_ERR(em))
5556 		return PTR_ERR(em);
5557 
5558 	/*
5559 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5560 	 * io.  INLINE is special, and we could probably kludge it in here, but
5561 	 * it's still buffered so for safety lets just fall back to the generic
5562 	 * buffered path.
5563 	 *
5564 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5565 	 * decompress it, so there will be buffering required no matter what we
5566 	 * do, so go ahead and fallback to buffered.
5567 	 *
5568 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5569 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5570 	 * the generic code.
5571 	 */
5572 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5573 	    em->block_start == EXTENT_MAP_INLINE) {
5574 		free_extent_map(em);
5575 		return -ENOTBLK;
5576 	}
5577 
5578 	/* Just a good old fashioned hole, return */
5579 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5580 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5581 		free_extent_map(em);
5582 		/* DIO will do one hole at a time, so just unlock a sector */
5583 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5584 			      start + root->sectorsize - 1, GFP_NOFS);
5585 		return 0;
5586 	}
5587 
5588 	/*
5589 	 * We don't allocate a new extent in the following cases
5590 	 *
5591 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5592 	 * existing extent.
5593 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5594 	 * just use the extent.
5595 	 *
5596 	 */
5597 	if (!create) {
5598 		len = em->len - (start - em->start);
5599 		goto map;
5600 	}
5601 
5602 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5603 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5604 	     em->block_start != EXTENT_MAP_HOLE)) {
5605 		int type;
5606 		int ret;
5607 		u64 block_start;
5608 
5609 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5610 			type = BTRFS_ORDERED_PREALLOC;
5611 		else
5612 			type = BTRFS_ORDERED_NOCOW;
5613 		len = min(len, em->len - (start - em->start));
5614 		block_start = em->block_start + (start - em->start);
5615 
5616 		/*
5617 		 * we're not going to log anything, but we do need
5618 		 * to make sure the current transaction stays open
5619 		 * while we look for nocow cross refs
5620 		 */
5621 		trans = btrfs_join_transaction(root);
5622 		if (IS_ERR(trans))
5623 			goto must_cow;
5624 
5625 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5626 			ret = btrfs_add_ordered_extent_dio(inode, start,
5627 					   block_start, len, len, type);
5628 			btrfs_end_transaction(trans, root);
5629 			if (ret) {
5630 				free_extent_map(em);
5631 				return ret;
5632 			}
5633 			goto unlock;
5634 		}
5635 		btrfs_end_transaction(trans, root);
5636 	}
5637 must_cow:
5638 	/*
5639 	 * this will cow the extent, reset the len in case we changed
5640 	 * it above
5641 	 */
5642 	len = bh_result->b_size;
5643 	em = btrfs_new_extent_direct(inode, em, start, len);
5644 	if (IS_ERR(em))
5645 		return PTR_ERR(em);
5646 	len = min(len, em->len - (start - em->start));
5647 unlock:
5648 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5649 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5650 			  0, NULL, GFP_NOFS);
5651 map:
5652 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5653 		inode->i_blkbits;
5654 	bh_result->b_size = len;
5655 	bh_result->b_bdev = em->bdev;
5656 	set_buffer_mapped(bh_result);
5657 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5658 		set_buffer_new(bh_result);
5659 
5660 	free_extent_map(em);
5661 
5662 	return 0;
5663 }
5664 
5665 struct btrfs_dio_private {
5666 	struct inode *inode;
5667 	u64 logical_offset;
5668 	u64 disk_bytenr;
5669 	u64 bytes;
5670 	u32 *csums;
5671 	void *private;
5672 
5673 	/* number of bios pending for this dio */
5674 	atomic_t pending_bios;
5675 
5676 	/* IO errors */
5677 	int errors;
5678 
5679 	struct bio *orig_bio;
5680 };
5681 
5682 static void btrfs_endio_direct_read(struct bio *bio, int err)
5683 {
5684 	struct btrfs_dio_private *dip = bio->bi_private;
5685 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5686 	struct bio_vec *bvec = bio->bi_io_vec;
5687 	struct inode *inode = dip->inode;
5688 	struct btrfs_root *root = BTRFS_I(inode)->root;
5689 	u64 start;
5690 	u32 *private = dip->csums;
5691 
5692 	start = dip->logical_offset;
5693 	do {
5694 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5695 			struct page *page = bvec->bv_page;
5696 			char *kaddr;
5697 			u32 csum = ~(u32)0;
5698 			unsigned long flags;
5699 
5700 			local_irq_save(flags);
5701 			kaddr = kmap_atomic(page, KM_IRQ0);
5702 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5703 					       csum, bvec->bv_len);
5704 			btrfs_csum_final(csum, (char *)&csum);
5705 			kunmap_atomic(kaddr, KM_IRQ0);
5706 			local_irq_restore(flags);
5707 
5708 			flush_dcache_page(bvec->bv_page);
5709 			if (csum != *private) {
5710 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5711 				      " %llu csum %u private %u\n",
5712 				      (unsigned long long)btrfs_ino(inode),
5713 				      (unsigned long long)start,
5714 				      csum, *private);
5715 				err = -EIO;
5716 			}
5717 		}
5718 
5719 		start += bvec->bv_len;
5720 		private++;
5721 		bvec++;
5722 	} while (bvec <= bvec_end);
5723 
5724 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5725 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5726 	bio->bi_private = dip->private;
5727 
5728 	kfree(dip->csums);
5729 	kfree(dip);
5730 
5731 	/* If we had a csum failure make sure to clear the uptodate flag */
5732 	if (err)
5733 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5734 	dio_end_io(bio, err);
5735 }
5736 
5737 static void btrfs_endio_direct_write(struct bio *bio, int err)
5738 {
5739 	struct btrfs_dio_private *dip = bio->bi_private;
5740 	struct inode *inode = dip->inode;
5741 	struct btrfs_root *root = BTRFS_I(inode)->root;
5742 	struct btrfs_trans_handle *trans;
5743 	struct btrfs_ordered_extent *ordered = NULL;
5744 	struct extent_state *cached_state = NULL;
5745 	u64 ordered_offset = dip->logical_offset;
5746 	u64 ordered_bytes = dip->bytes;
5747 	int ret;
5748 
5749 	if (err)
5750 		goto out_done;
5751 again:
5752 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5753 						   &ordered_offset,
5754 						   ordered_bytes);
5755 	if (!ret)
5756 		goto out_test;
5757 
5758 	BUG_ON(!ordered);
5759 
5760 	trans = btrfs_join_transaction(root);
5761 	if (IS_ERR(trans)) {
5762 		err = -ENOMEM;
5763 		goto out;
5764 	}
5765 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5766 
5767 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5768 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5769 		if (!ret)
5770 			err = btrfs_update_inode_fallback(trans, root, inode);
5771 		goto out;
5772 	}
5773 
5774 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5775 			 ordered->file_offset + ordered->len - 1, 0,
5776 			 &cached_state, GFP_NOFS);
5777 
5778 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5779 		ret = btrfs_mark_extent_written(trans, inode,
5780 						ordered->file_offset,
5781 						ordered->file_offset +
5782 						ordered->len);
5783 		if (ret) {
5784 			err = ret;
5785 			goto out_unlock;
5786 		}
5787 	} else {
5788 		ret = insert_reserved_file_extent(trans, inode,
5789 						  ordered->file_offset,
5790 						  ordered->start,
5791 						  ordered->disk_len,
5792 						  ordered->len,
5793 						  ordered->len,
5794 						  0, 0, 0,
5795 						  BTRFS_FILE_EXTENT_REG);
5796 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5797 				   ordered->file_offset, ordered->len);
5798 		if (ret) {
5799 			err = ret;
5800 			WARN_ON(1);
5801 			goto out_unlock;
5802 		}
5803 	}
5804 
5805 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5806 	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5807 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5808 		btrfs_update_inode_fallback(trans, root, inode);
5809 	ret = 0;
5810 out_unlock:
5811 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5812 			     ordered->file_offset + ordered->len - 1,
5813 			     &cached_state, GFP_NOFS);
5814 out:
5815 	btrfs_delalloc_release_metadata(inode, ordered->len);
5816 	btrfs_end_transaction(trans, root);
5817 	ordered_offset = ordered->file_offset + ordered->len;
5818 	btrfs_put_ordered_extent(ordered);
5819 	btrfs_put_ordered_extent(ordered);
5820 
5821 out_test:
5822 	/*
5823 	 * our bio might span multiple ordered extents.  If we haven't
5824 	 * completed the accounting for the whole dio, go back and try again
5825 	 */
5826 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5827 		ordered_bytes = dip->logical_offset + dip->bytes -
5828 			ordered_offset;
5829 		goto again;
5830 	}
5831 out_done:
5832 	bio->bi_private = dip->private;
5833 
5834 	kfree(dip->csums);
5835 	kfree(dip);
5836 
5837 	/* If we had an error make sure to clear the uptodate flag */
5838 	if (err)
5839 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5840 	dio_end_io(bio, err);
5841 }
5842 
5843 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5844 				    struct bio *bio, int mirror_num,
5845 				    unsigned long bio_flags, u64 offset)
5846 {
5847 	int ret;
5848 	struct btrfs_root *root = BTRFS_I(inode)->root;
5849 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5850 	BUG_ON(ret);
5851 	return 0;
5852 }
5853 
5854 static void btrfs_end_dio_bio(struct bio *bio, int err)
5855 {
5856 	struct btrfs_dio_private *dip = bio->bi_private;
5857 
5858 	if (err) {
5859 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5860 		      "sector %#Lx len %u err no %d\n",
5861 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5862 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5863 		dip->errors = 1;
5864 
5865 		/*
5866 		 * before atomic variable goto zero, we must make sure
5867 		 * dip->errors is perceived to be set.
5868 		 */
5869 		smp_mb__before_atomic_dec();
5870 	}
5871 
5872 	/* if there are more bios still pending for this dio, just exit */
5873 	if (!atomic_dec_and_test(&dip->pending_bios))
5874 		goto out;
5875 
5876 	if (dip->errors)
5877 		bio_io_error(dip->orig_bio);
5878 	else {
5879 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5880 		bio_endio(dip->orig_bio, 0);
5881 	}
5882 out:
5883 	bio_put(bio);
5884 }
5885 
5886 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5887 				       u64 first_sector, gfp_t gfp_flags)
5888 {
5889 	int nr_vecs = bio_get_nr_vecs(bdev);
5890 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5891 }
5892 
5893 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5894 					 int rw, u64 file_offset, int skip_sum,
5895 					 u32 *csums, int async_submit)
5896 {
5897 	int write = rw & REQ_WRITE;
5898 	struct btrfs_root *root = BTRFS_I(inode)->root;
5899 	int ret;
5900 
5901 	bio_get(bio);
5902 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5903 	if (ret)
5904 		goto err;
5905 
5906 	if (skip_sum)
5907 		goto map;
5908 
5909 	if (write && async_submit) {
5910 		ret = btrfs_wq_submit_bio(root->fs_info,
5911 				   inode, rw, bio, 0, 0,
5912 				   file_offset,
5913 				   __btrfs_submit_bio_start_direct_io,
5914 				   __btrfs_submit_bio_done);
5915 		goto err;
5916 	} else if (write) {
5917 		/*
5918 		 * If we aren't doing async submit, calculate the csum of the
5919 		 * bio now.
5920 		 */
5921 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5922 		if (ret)
5923 			goto err;
5924 	} else if (!skip_sum) {
5925 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5926 					  file_offset, csums);
5927 		if (ret)
5928 			goto err;
5929 	}
5930 
5931 map:
5932 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5933 err:
5934 	bio_put(bio);
5935 	return ret;
5936 }
5937 
5938 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5939 				    int skip_sum)
5940 {
5941 	struct inode *inode = dip->inode;
5942 	struct btrfs_root *root = BTRFS_I(inode)->root;
5943 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5944 	struct bio *bio;
5945 	struct bio *orig_bio = dip->orig_bio;
5946 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5947 	u64 start_sector = orig_bio->bi_sector;
5948 	u64 file_offset = dip->logical_offset;
5949 	u64 submit_len = 0;
5950 	u64 map_length;
5951 	int nr_pages = 0;
5952 	u32 *csums = dip->csums;
5953 	int ret = 0;
5954 	int async_submit = 0;
5955 	int write = rw & REQ_WRITE;
5956 
5957 	map_length = orig_bio->bi_size;
5958 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5959 			      &map_length, NULL, 0);
5960 	if (ret) {
5961 		bio_put(orig_bio);
5962 		return -EIO;
5963 	}
5964 
5965 	if (map_length >= orig_bio->bi_size) {
5966 		bio = orig_bio;
5967 		goto submit;
5968 	}
5969 
5970 	async_submit = 1;
5971 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5972 	if (!bio)
5973 		return -ENOMEM;
5974 	bio->bi_private = dip;
5975 	bio->bi_end_io = btrfs_end_dio_bio;
5976 	atomic_inc(&dip->pending_bios);
5977 
5978 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5979 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5980 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5981 				 bvec->bv_offset) < bvec->bv_len)) {
5982 			/*
5983 			 * inc the count before we submit the bio so
5984 			 * we know the end IO handler won't happen before
5985 			 * we inc the count. Otherwise, the dip might get freed
5986 			 * before we're done setting it up
5987 			 */
5988 			atomic_inc(&dip->pending_bios);
5989 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5990 						     file_offset, skip_sum,
5991 						     csums, async_submit);
5992 			if (ret) {
5993 				bio_put(bio);
5994 				atomic_dec(&dip->pending_bios);
5995 				goto out_err;
5996 			}
5997 
5998 			/* Write's use the ordered csums */
5999 			if (!write && !skip_sum)
6000 				csums = csums + nr_pages;
6001 			start_sector += submit_len >> 9;
6002 			file_offset += submit_len;
6003 
6004 			submit_len = 0;
6005 			nr_pages = 0;
6006 
6007 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6008 						  start_sector, GFP_NOFS);
6009 			if (!bio)
6010 				goto out_err;
6011 			bio->bi_private = dip;
6012 			bio->bi_end_io = btrfs_end_dio_bio;
6013 
6014 			map_length = orig_bio->bi_size;
6015 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6016 					      &map_length, NULL, 0);
6017 			if (ret) {
6018 				bio_put(bio);
6019 				goto out_err;
6020 			}
6021 		} else {
6022 			submit_len += bvec->bv_len;
6023 			nr_pages ++;
6024 			bvec++;
6025 		}
6026 	}
6027 
6028 submit:
6029 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6030 				     csums, async_submit);
6031 	if (!ret)
6032 		return 0;
6033 
6034 	bio_put(bio);
6035 out_err:
6036 	dip->errors = 1;
6037 	/*
6038 	 * before atomic variable goto zero, we must
6039 	 * make sure dip->errors is perceived to be set.
6040 	 */
6041 	smp_mb__before_atomic_dec();
6042 	if (atomic_dec_and_test(&dip->pending_bios))
6043 		bio_io_error(dip->orig_bio);
6044 
6045 	/* bio_end_io() will handle error, so we needn't return it */
6046 	return 0;
6047 }
6048 
6049 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6050 				loff_t file_offset)
6051 {
6052 	struct btrfs_root *root = BTRFS_I(inode)->root;
6053 	struct btrfs_dio_private *dip;
6054 	struct bio_vec *bvec = bio->bi_io_vec;
6055 	int skip_sum;
6056 	int write = rw & REQ_WRITE;
6057 	int ret = 0;
6058 
6059 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6060 
6061 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6062 	if (!dip) {
6063 		ret = -ENOMEM;
6064 		goto free_ordered;
6065 	}
6066 	dip->csums = NULL;
6067 
6068 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
6069 	if (!write && !skip_sum) {
6070 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6071 		if (!dip->csums) {
6072 			kfree(dip);
6073 			ret = -ENOMEM;
6074 			goto free_ordered;
6075 		}
6076 	}
6077 
6078 	dip->private = bio->bi_private;
6079 	dip->inode = inode;
6080 	dip->logical_offset = file_offset;
6081 
6082 	dip->bytes = 0;
6083 	do {
6084 		dip->bytes += bvec->bv_len;
6085 		bvec++;
6086 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6087 
6088 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6089 	bio->bi_private = dip;
6090 	dip->errors = 0;
6091 	dip->orig_bio = bio;
6092 	atomic_set(&dip->pending_bios, 0);
6093 
6094 	if (write)
6095 		bio->bi_end_io = btrfs_endio_direct_write;
6096 	else
6097 		bio->bi_end_io = btrfs_endio_direct_read;
6098 
6099 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6100 	if (!ret)
6101 		return;
6102 free_ordered:
6103 	/*
6104 	 * If this is a write, we need to clean up the reserved space and kill
6105 	 * the ordered extent.
6106 	 */
6107 	if (write) {
6108 		struct btrfs_ordered_extent *ordered;
6109 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6110 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6111 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6112 			btrfs_free_reserved_extent(root, ordered->start,
6113 						   ordered->disk_len);
6114 		btrfs_put_ordered_extent(ordered);
6115 		btrfs_put_ordered_extent(ordered);
6116 	}
6117 	bio_endio(bio, ret);
6118 }
6119 
6120 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6121 			const struct iovec *iov, loff_t offset,
6122 			unsigned long nr_segs)
6123 {
6124 	int seg;
6125 	int i;
6126 	size_t size;
6127 	unsigned long addr;
6128 	unsigned blocksize_mask = root->sectorsize - 1;
6129 	ssize_t retval = -EINVAL;
6130 	loff_t end = offset;
6131 
6132 	if (offset & blocksize_mask)
6133 		goto out;
6134 
6135 	/* Check the memory alignment.  Blocks cannot straddle pages */
6136 	for (seg = 0; seg < nr_segs; seg++) {
6137 		addr = (unsigned long)iov[seg].iov_base;
6138 		size = iov[seg].iov_len;
6139 		end += size;
6140 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6141 			goto out;
6142 
6143 		/* If this is a write we don't need to check anymore */
6144 		if (rw & WRITE)
6145 			continue;
6146 
6147 		/*
6148 		 * Check to make sure we don't have duplicate iov_base's in this
6149 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6150 		 * when reading back.
6151 		 */
6152 		for (i = seg + 1; i < nr_segs; i++) {
6153 			if (iov[seg].iov_base == iov[i].iov_base)
6154 				goto out;
6155 		}
6156 	}
6157 	retval = 0;
6158 out:
6159 	return retval;
6160 }
6161 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6162 			const struct iovec *iov, loff_t offset,
6163 			unsigned long nr_segs)
6164 {
6165 	struct file *file = iocb->ki_filp;
6166 	struct inode *inode = file->f_mapping->host;
6167 	struct btrfs_ordered_extent *ordered;
6168 	struct extent_state *cached_state = NULL;
6169 	u64 lockstart, lockend;
6170 	ssize_t ret;
6171 	int writing = rw & WRITE;
6172 	int write_bits = 0;
6173 	size_t count = iov_length(iov, nr_segs);
6174 
6175 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6176 			    offset, nr_segs)) {
6177 		return 0;
6178 	}
6179 
6180 	lockstart = offset;
6181 	lockend = offset + count - 1;
6182 
6183 	if (writing) {
6184 		ret = btrfs_delalloc_reserve_space(inode, count);
6185 		if (ret)
6186 			goto out;
6187 	}
6188 
6189 	while (1) {
6190 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6191 				 0, &cached_state, GFP_NOFS);
6192 		/*
6193 		 * We're concerned with the entire range that we're going to be
6194 		 * doing DIO to, so we need to make sure theres no ordered
6195 		 * extents in this range.
6196 		 */
6197 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6198 						     lockend - lockstart + 1);
6199 		if (!ordered)
6200 			break;
6201 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6202 				     &cached_state, GFP_NOFS);
6203 		btrfs_start_ordered_extent(inode, ordered, 1);
6204 		btrfs_put_ordered_extent(ordered);
6205 		cond_resched();
6206 	}
6207 
6208 	/*
6209 	 * we don't use btrfs_set_extent_delalloc because we don't want
6210 	 * the dirty or uptodate bits
6211 	 */
6212 	if (writing) {
6213 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6214 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6215 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6216 				     GFP_NOFS);
6217 		if (ret) {
6218 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6219 					 lockend, EXTENT_LOCKED | write_bits,
6220 					 1, 0, &cached_state, GFP_NOFS);
6221 			goto out;
6222 		}
6223 	}
6224 
6225 	free_extent_state(cached_state);
6226 	cached_state = NULL;
6227 
6228 	ret = __blockdev_direct_IO(rw, iocb, inode,
6229 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6230 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6231 		   btrfs_submit_direct, 0);
6232 
6233 	if (ret < 0 && ret != -EIOCBQUEUED) {
6234 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6235 			      offset + iov_length(iov, nr_segs) - 1,
6236 			      EXTENT_LOCKED | write_bits, 1, 0,
6237 			      &cached_state, GFP_NOFS);
6238 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6239 		/*
6240 		 * We're falling back to buffered, unlock the section we didn't
6241 		 * do IO on.
6242 		 */
6243 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6244 			      offset + iov_length(iov, nr_segs) - 1,
6245 			      EXTENT_LOCKED | write_bits, 1, 0,
6246 			      &cached_state, GFP_NOFS);
6247 	}
6248 out:
6249 	free_extent_state(cached_state);
6250 	return ret;
6251 }
6252 
6253 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6254 		__u64 start, __u64 len)
6255 {
6256 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6257 }
6258 
6259 int btrfs_readpage(struct file *file, struct page *page)
6260 {
6261 	struct extent_io_tree *tree;
6262 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6263 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6264 }
6265 
6266 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6267 {
6268 	struct extent_io_tree *tree;
6269 
6270 
6271 	if (current->flags & PF_MEMALLOC) {
6272 		redirty_page_for_writepage(wbc, page);
6273 		unlock_page(page);
6274 		return 0;
6275 	}
6276 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6277 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6278 }
6279 
6280 int btrfs_writepages(struct address_space *mapping,
6281 		     struct writeback_control *wbc)
6282 {
6283 	struct extent_io_tree *tree;
6284 
6285 	tree = &BTRFS_I(mapping->host)->io_tree;
6286 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6287 }
6288 
6289 static int
6290 btrfs_readpages(struct file *file, struct address_space *mapping,
6291 		struct list_head *pages, unsigned nr_pages)
6292 {
6293 	struct extent_io_tree *tree;
6294 	tree = &BTRFS_I(mapping->host)->io_tree;
6295 	return extent_readpages(tree, mapping, pages, nr_pages,
6296 				btrfs_get_extent);
6297 }
6298 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6299 {
6300 	struct extent_io_tree *tree;
6301 	struct extent_map_tree *map;
6302 	int ret;
6303 
6304 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6305 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6306 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6307 	if (ret == 1) {
6308 		ClearPagePrivate(page);
6309 		set_page_private(page, 0);
6310 		page_cache_release(page);
6311 	}
6312 	return ret;
6313 }
6314 
6315 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6316 {
6317 	if (PageWriteback(page) || PageDirty(page))
6318 		return 0;
6319 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6320 }
6321 
6322 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6323 {
6324 	struct extent_io_tree *tree;
6325 	struct btrfs_ordered_extent *ordered;
6326 	struct extent_state *cached_state = NULL;
6327 	u64 page_start = page_offset(page);
6328 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6329 
6330 
6331 	/*
6332 	 * we have the page locked, so new writeback can't start,
6333 	 * and the dirty bit won't be cleared while we are here.
6334 	 *
6335 	 * Wait for IO on this page so that we can safely clear
6336 	 * the PagePrivate2 bit and do ordered accounting
6337 	 */
6338 	wait_on_page_writeback(page);
6339 
6340 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6341 	if (offset) {
6342 		btrfs_releasepage(page, GFP_NOFS);
6343 		return;
6344 	}
6345 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6346 			 GFP_NOFS);
6347 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6348 					   page_offset(page));
6349 	if (ordered) {
6350 		/*
6351 		 * IO on this page will never be started, so we need
6352 		 * to account for any ordered extents now
6353 		 */
6354 		clear_extent_bit(tree, page_start, page_end,
6355 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6356 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6357 				 &cached_state, GFP_NOFS);
6358 		/*
6359 		 * whoever cleared the private bit is responsible
6360 		 * for the finish_ordered_io
6361 		 */
6362 		if (TestClearPagePrivate2(page)) {
6363 			btrfs_finish_ordered_io(page->mapping->host,
6364 						page_start, page_end);
6365 		}
6366 		btrfs_put_ordered_extent(ordered);
6367 		cached_state = NULL;
6368 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6369 				 GFP_NOFS);
6370 	}
6371 	clear_extent_bit(tree, page_start, page_end,
6372 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6373 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6374 	__btrfs_releasepage(page, GFP_NOFS);
6375 
6376 	ClearPageChecked(page);
6377 	if (PagePrivate(page)) {
6378 		ClearPagePrivate(page);
6379 		set_page_private(page, 0);
6380 		page_cache_release(page);
6381 	}
6382 }
6383 
6384 /*
6385  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6386  * called from a page fault handler when a page is first dirtied. Hence we must
6387  * be careful to check for EOF conditions here. We set the page up correctly
6388  * for a written page which means we get ENOSPC checking when writing into
6389  * holes and correct delalloc and unwritten extent mapping on filesystems that
6390  * support these features.
6391  *
6392  * We are not allowed to take the i_mutex here so we have to play games to
6393  * protect against truncate races as the page could now be beyond EOF.  Because
6394  * vmtruncate() writes the inode size before removing pages, once we have the
6395  * page lock we can determine safely if the page is beyond EOF. If it is not
6396  * beyond EOF, then the page is guaranteed safe against truncation until we
6397  * unlock the page.
6398  */
6399 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6400 {
6401 	struct page *page = vmf->page;
6402 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6403 	struct btrfs_root *root = BTRFS_I(inode)->root;
6404 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6405 	struct btrfs_ordered_extent *ordered;
6406 	struct extent_state *cached_state = NULL;
6407 	char *kaddr;
6408 	unsigned long zero_start;
6409 	loff_t size;
6410 	int ret;
6411 	u64 page_start;
6412 	u64 page_end;
6413 
6414 	/* Need this to keep space reservations serialized */
6415 	mutex_lock(&inode->i_mutex);
6416 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6417 	mutex_unlock(&inode->i_mutex);
6418 	if (!ret)
6419 		ret = btrfs_update_time(vma->vm_file);
6420 	if (ret) {
6421 		if (ret == -ENOMEM)
6422 			ret = VM_FAULT_OOM;
6423 		else /* -ENOSPC, -EIO, etc */
6424 			ret = VM_FAULT_SIGBUS;
6425 		goto out;
6426 	}
6427 
6428 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6429 again:
6430 	lock_page(page);
6431 	size = i_size_read(inode);
6432 	page_start = page_offset(page);
6433 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6434 
6435 	if ((page->mapping != inode->i_mapping) ||
6436 	    (page_start >= size)) {
6437 		/* page got truncated out from underneath us */
6438 		goto out_unlock;
6439 	}
6440 	wait_on_page_writeback(page);
6441 
6442 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6443 			 GFP_NOFS);
6444 	set_page_extent_mapped(page);
6445 
6446 	/*
6447 	 * we can't set the delalloc bits if there are pending ordered
6448 	 * extents.  Drop our locks and wait for them to finish
6449 	 */
6450 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6451 	if (ordered) {
6452 		unlock_extent_cached(io_tree, page_start, page_end,
6453 				     &cached_state, GFP_NOFS);
6454 		unlock_page(page);
6455 		btrfs_start_ordered_extent(inode, ordered, 1);
6456 		btrfs_put_ordered_extent(ordered);
6457 		goto again;
6458 	}
6459 
6460 	/*
6461 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6462 	 * if it was already dirty, so for space accounting reasons we need to
6463 	 * clear any delalloc bits for the range we are fixing to save.  There
6464 	 * is probably a better way to do this, but for now keep consistent with
6465 	 * prepare_pages in the normal write path.
6466 	 */
6467 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6468 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6469 			  0, 0, &cached_state, GFP_NOFS);
6470 
6471 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6472 					&cached_state);
6473 	if (ret) {
6474 		unlock_extent_cached(io_tree, page_start, page_end,
6475 				     &cached_state, GFP_NOFS);
6476 		ret = VM_FAULT_SIGBUS;
6477 		goto out_unlock;
6478 	}
6479 	ret = 0;
6480 
6481 	/* page is wholly or partially inside EOF */
6482 	if (page_start + PAGE_CACHE_SIZE > size)
6483 		zero_start = size & ~PAGE_CACHE_MASK;
6484 	else
6485 		zero_start = PAGE_CACHE_SIZE;
6486 
6487 	if (zero_start != PAGE_CACHE_SIZE) {
6488 		kaddr = kmap(page);
6489 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6490 		flush_dcache_page(page);
6491 		kunmap(page);
6492 	}
6493 	ClearPageChecked(page);
6494 	set_page_dirty(page);
6495 	SetPageUptodate(page);
6496 
6497 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6498 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6499 
6500 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6501 
6502 out_unlock:
6503 	if (!ret)
6504 		return VM_FAULT_LOCKED;
6505 	unlock_page(page);
6506 out:
6507 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6508 	return ret;
6509 }
6510 
6511 static int btrfs_truncate(struct inode *inode)
6512 {
6513 	struct btrfs_root *root = BTRFS_I(inode)->root;
6514 	struct btrfs_block_rsv *rsv;
6515 	int ret;
6516 	int err = 0;
6517 	struct btrfs_trans_handle *trans;
6518 	unsigned long nr;
6519 	u64 mask = root->sectorsize - 1;
6520 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6521 
6522 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6523 	if (ret)
6524 		return ret;
6525 
6526 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6527 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6528 
6529 	/*
6530 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6531 	 * 3 things going on here
6532 	 *
6533 	 * 1) We need to reserve space for our orphan item and the space to
6534 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6535 	 * orphan item because we didn't reserve space to remove it.
6536 	 *
6537 	 * 2) We need to reserve space to update our inode.
6538 	 *
6539 	 * 3) We need to have something to cache all the space that is going to
6540 	 * be free'd up by the truncate operation, but also have some slack
6541 	 * space reserved in case it uses space during the truncate (thank you
6542 	 * very much snapshotting).
6543 	 *
6544 	 * And we need these to all be seperate.  The fact is we can use alot of
6545 	 * space doing the truncate, and we have no earthly idea how much space
6546 	 * we will use, so we need the truncate reservation to be seperate so it
6547 	 * doesn't end up using space reserved for updating the inode or
6548 	 * removing the orphan item.  We also need to be able to stop the
6549 	 * transaction and start a new one, which means we need to be able to
6550 	 * update the inode several times, and we have no idea of knowing how
6551 	 * many times that will be, so we can't just reserve 1 item for the
6552 	 * entirety of the opration, so that has to be done seperately as well.
6553 	 * Then there is the orphan item, which does indeed need to be held on
6554 	 * to for the whole operation, and we need nobody to touch this reserved
6555 	 * space except the orphan code.
6556 	 *
6557 	 * So that leaves us with
6558 	 *
6559 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6560 	 * 2) rsv - for the truncate reservation, which we will steal from the
6561 	 * transaction reservation.
6562 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6563 	 * updating the inode.
6564 	 */
6565 	rsv = btrfs_alloc_block_rsv(root);
6566 	if (!rsv)
6567 		return -ENOMEM;
6568 	rsv->size = min_size;
6569 
6570 	/*
6571 	 * 1 for the truncate slack space
6572 	 * 1 for the orphan item we're going to add
6573 	 * 1 for the orphan item deletion
6574 	 * 1 for updating the inode.
6575 	 */
6576 	trans = btrfs_start_transaction(root, 4);
6577 	if (IS_ERR(trans)) {
6578 		err = PTR_ERR(trans);
6579 		goto out;
6580 	}
6581 
6582 	/* Migrate the slack space for the truncate to our reserve */
6583 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6584 				      min_size);
6585 	BUG_ON(ret);
6586 
6587 	ret = btrfs_orphan_add(trans, inode);
6588 	if (ret) {
6589 		btrfs_end_transaction(trans, root);
6590 		goto out;
6591 	}
6592 
6593 	/*
6594 	 * setattr is responsible for setting the ordered_data_close flag,
6595 	 * but that is only tested during the last file release.  That
6596 	 * could happen well after the next commit, leaving a great big
6597 	 * window where new writes may get lost if someone chooses to write
6598 	 * to this file after truncating to zero
6599 	 *
6600 	 * The inode doesn't have any dirty data here, and so if we commit
6601 	 * this is a noop.  If someone immediately starts writing to the inode
6602 	 * it is very likely we'll catch some of their writes in this
6603 	 * transaction, and the commit will find this file on the ordered
6604 	 * data list with good things to send down.
6605 	 *
6606 	 * This is a best effort solution, there is still a window where
6607 	 * using truncate to replace the contents of the file will
6608 	 * end up with a zero length file after a crash.
6609 	 */
6610 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6611 		btrfs_add_ordered_operation(trans, root, inode);
6612 
6613 	while (1) {
6614 		ret = btrfs_block_rsv_refill(root, rsv, min_size);
6615 		if (ret) {
6616 			/*
6617 			 * This can only happen with the original transaction we
6618 			 * started above, every other time we shouldn't have a
6619 			 * transaction started yet.
6620 			 */
6621 			if (ret == -EAGAIN)
6622 				goto end_trans;
6623 			err = ret;
6624 			break;
6625 		}
6626 
6627 		if (!trans) {
6628 			/* Just need the 1 for updating the inode */
6629 			trans = btrfs_start_transaction(root, 1);
6630 			if (IS_ERR(trans)) {
6631 				ret = err = PTR_ERR(trans);
6632 				trans = NULL;
6633 				break;
6634 			}
6635 		}
6636 
6637 		trans->block_rsv = rsv;
6638 
6639 		ret = btrfs_truncate_inode_items(trans, root, inode,
6640 						 inode->i_size,
6641 						 BTRFS_EXTENT_DATA_KEY);
6642 		if (ret != -EAGAIN) {
6643 			err = ret;
6644 			break;
6645 		}
6646 
6647 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6648 		ret = btrfs_update_inode(trans, root, inode);
6649 		if (ret) {
6650 			err = ret;
6651 			break;
6652 		}
6653 end_trans:
6654 		nr = trans->blocks_used;
6655 		btrfs_end_transaction(trans, root);
6656 		trans = NULL;
6657 		btrfs_btree_balance_dirty(root, nr);
6658 	}
6659 
6660 	if (ret == 0 && inode->i_nlink > 0) {
6661 		trans->block_rsv = root->orphan_block_rsv;
6662 		ret = btrfs_orphan_del(trans, inode);
6663 		if (ret)
6664 			err = ret;
6665 	} else if (ret && inode->i_nlink > 0) {
6666 		/*
6667 		 * Failed to do the truncate, remove us from the in memory
6668 		 * orphan list.
6669 		 */
6670 		ret = btrfs_orphan_del(NULL, inode);
6671 	}
6672 
6673 	if (trans) {
6674 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6675 		ret = btrfs_update_inode(trans, root, inode);
6676 		if (ret && !err)
6677 			err = ret;
6678 
6679 		nr = trans->blocks_used;
6680 		ret = btrfs_end_transaction(trans, root);
6681 		btrfs_btree_balance_dirty(root, nr);
6682 	}
6683 
6684 out:
6685 	btrfs_free_block_rsv(root, rsv);
6686 
6687 	if (ret && !err)
6688 		err = ret;
6689 
6690 	return err;
6691 }
6692 
6693 /*
6694  * create a new subvolume directory/inode (helper for the ioctl).
6695  */
6696 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6697 			     struct btrfs_root *new_root, u64 new_dirid)
6698 {
6699 	struct inode *inode;
6700 	int err;
6701 	u64 index = 0;
6702 
6703 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6704 				new_dirid, S_IFDIR | 0700, &index);
6705 	if (IS_ERR(inode))
6706 		return PTR_ERR(inode);
6707 	inode->i_op = &btrfs_dir_inode_operations;
6708 	inode->i_fop = &btrfs_dir_file_operations;
6709 
6710 	set_nlink(inode, 1);
6711 	btrfs_i_size_write(inode, 0);
6712 
6713 	err = btrfs_update_inode(trans, new_root, inode);
6714 	BUG_ON(err);
6715 
6716 	iput(inode);
6717 	return 0;
6718 }
6719 
6720 struct inode *btrfs_alloc_inode(struct super_block *sb)
6721 {
6722 	struct btrfs_inode *ei;
6723 	struct inode *inode;
6724 
6725 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6726 	if (!ei)
6727 		return NULL;
6728 
6729 	ei->root = NULL;
6730 	ei->space_info = NULL;
6731 	ei->generation = 0;
6732 	ei->sequence = 0;
6733 	ei->last_trans = 0;
6734 	ei->last_sub_trans = 0;
6735 	ei->logged_trans = 0;
6736 	ei->delalloc_bytes = 0;
6737 	ei->disk_i_size = 0;
6738 	ei->flags = 0;
6739 	ei->csum_bytes = 0;
6740 	ei->index_cnt = (u64)-1;
6741 	ei->last_unlink_trans = 0;
6742 
6743 	spin_lock_init(&ei->lock);
6744 	ei->outstanding_extents = 0;
6745 	ei->reserved_extents = 0;
6746 
6747 	ei->ordered_data_close = 0;
6748 	ei->orphan_meta_reserved = 0;
6749 	ei->dummy_inode = 0;
6750 	ei->in_defrag = 0;
6751 	ei->delalloc_meta_reserved = 0;
6752 	ei->force_compress = BTRFS_COMPRESS_NONE;
6753 
6754 	ei->delayed_node = NULL;
6755 
6756 	inode = &ei->vfs_inode;
6757 	extent_map_tree_init(&ei->extent_tree);
6758 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6759 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6760 	mutex_init(&ei->log_mutex);
6761 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6762 	INIT_LIST_HEAD(&ei->i_orphan);
6763 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6764 	INIT_LIST_HEAD(&ei->ordered_operations);
6765 	RB_CLEAR_NODE(&ei->rb_node);
6766 
6767 	return inode;
6768 }
6769 
6770 static void btrfs_i_callback(struct rcu_head *head)
6771 {
6772 	struct inode *inode = container_of(head, struct inode, i_rcu);
6773 	INIT_LIST_HEAD(&inode->i_dentry);
6774 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6775 }
6776 
6777 void btrfs_destroy_inode(struct inode *inode)
6778 {
6779 	struct btrfs_ordered_extent *ordered;
6780 	struct btrfs_root *root = BTRFS_I(inode)->root;
6781 
6782 	WARN_ON(!list_empty(&inode->i_dentry));
6783 	WARN_ON(inode->i_data.nrpages);
6784 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
6785 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6786 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6787 	WARN_ON(BTRFS_I(inode)->csum_bytes);
6788 
6789 	/*
6790 	 * This can happen where we create an inode, but somebody else also
6791 	 * created the same inode and we need to destroy the one we already
6792 	 * created.
6793 	 */
6794 	if (!root)
6795 		goto free;
6796 
6797 	/*
6798 	 * Make sure we're properly removed from the ordered operation
6799 	 * lists.
6800 	 */
6801 	smp_mb();
6802 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6803 		spin_lock(&root->fs_info->ordered_extent_lock);
6804 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6805 		spin_unlock(&root->fs_info->ordered_extent_lock);
6806 	}
6807 
6808 	spin_lock(&root->orphan_lock);
6809 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6810 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6811 		       (unsigned long long)btrfs_ino(inode));
6812 		list_del_init(&BTRFS_I(inode)->i_orphan);
6813 	}
6814 	spin_unlock(&root->orphan_lock);
6815 
6816 	while (1) {
6817 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6818 		if (!ordered)
6819 			break;
6820 		else {
6821 			printk(KERN_ERR "btrfs found ordered "
6822 			       "extent %llu %llu on inode cleanup\n",
6823 			       (unsigned long long)ordered->file_offset,
6824 			       (unsigned long long)ordered->len);
6825 			btrfs_remove_ordered_extent(inode, ordered);
6826 			btrfs_put_ordered_extent(ordered);
6827 			btrfs_put_ordered_extent(ordered);
6828 		}
6829 	}
6830 	inode_tree_del(inode);
6831 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6832 free:
6833 	btrfs_remove_delayed_node(inode);
6834 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6835 }
6836 
6837 int btrfs_drop_inode(struct inode *inode)
6838 {
6839 	struct btrfs_root *root = BTRFS_I(inode)->root;
6840 
6841 	if (btrfs_root_refs(&root->root_item) == 0 &&
6842 	    !btrfs_is_free_space_inode(root, inode))
6843 		return 1;
6844 	else
6845 		return generic_drop_inode(inode);
6846 }
6847 
6848 static void init_once(void *foo)
6849 {
6850 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6851 
6852 	inode_init_once(&ei->vfs_inode);
6853 }
6854 
6855 void btrfs_destroy_cachep(void)
6856 {
6857 	if (btrfs_inode_cachep)
6858 		kmem_cache_destroy(btrfs_inode_cachep);
6859 	if (btrfs_trans_handle_cachep)
6860 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6861 	if (btrfs_transaction_cachep)
6862 		kmem_cache_destroy(btrfs_transaction_cachep);
6863 	if (btrfs_path_cachep)
6864 		kmem_cache_destroy(btrfs_path_cachep);
6865 	if (btrfs_free_space_cachep)
6866 		kmem_cache_destroy(btrfs_free_space_cachep);
6867 }
6868 
6869 int btrfs_init_cachep(void)
6870 {
6871 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6872 			sizeof(struct btrfs_inode), 0,
6873 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6874 	if (!btrfs_inode_cachep)
6875 		goto fail;
6876 
6877 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6878 			sizeof(struct btrfs_trans_handle), 0,
6879 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6880 	if (!btrfs_trans_handle_cachep)
6881 		goto fail;
6882 
6883 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6884 			sizeof(struct btrfs_transaction), 0,
6885 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6886 	if (!btrfs_transaction_cachep)
6887 		goto fail;
6888 
6889 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6890 			sizeof(struct btrfs_path), 0,
6891 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6892 	if (!btrfs_path_cachep)
6893 		goto fail;
6894 
6895 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6896 			sizeof(struct btrfs_free_space), 0,
6897 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6898 	if (!btrfs_free_space_cachep)
6899 		goto fail;
6900 
6901 	return 0;
6902 fail:
6903 	btrfs_destroy_cachep();
6904 	return -ENOMEM;
6905 }
6906 
6907 static int btrfs_getattr(struct vfsmount *mnt,
6908 			 struct dentry *dentry, struct kstat *stat)
6909 {
6910 	struct inode *inode = dentry->d_inode;
6911 	u32 blocksize = inode->i_sb->s_blocksize;
6912 
6913 	generic_fillattr(inode, stat);
6914 	stat->dev = BTRFS_I(inode)->root->anon_dev;
6915 	stat->blksize = PAGE_CACHE_SIZE;
6916 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
6917 		ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
6918 	return 0;
6919 }
6920 
6921 /*
6922  * If a file is moved, it will inherit the cow and compression flags of the new
6923  * directory.
6924  */
6925 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6926 {
6927 	struct btrfs_inode *b_dir = BTRFS_I(dir);
6928 	struct btrfs_inode *b_inode = BTRFS_I(inode);
6929 
6930 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
6931 		b_inode->flags |= BTRFS_INODE_NODATACOW;
6932 	else
6933 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6934 
6935 	if (b_dir->flags & BTRFS_INODE_COMPRESS)
6936 		b_inode->flags |= BTRFS_INODE_COMPRESS;
6937 	else
6938 		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6939 }
6940 
6941 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6942 			   struct inode *new_dir, struct dentry *new_dentry)
6943 {
6944 	struct btrfs_trans_handle *trans;
6945 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6946 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6947 	struct inode *new_inode = new_dentry->d_inode;
6948 	struct inode *old_inode = old_dentry->d_inode;
6949 	struct timespec ctime = CURRENT_TIME;
6950 	u64 index = 0;
6951 	u64 root_objectid;
6952 	int ret;
6953 	u64 old_ino = btrfs_ino(old_inode);
6954 
6955 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6956 		return -EPERM;
6957 
6958 	/* we only allow rename subvolume link between subvolumes */
6959 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6960 		return -EXDEV;
6961 
6962 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6963 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6964 		return -ENOTEMPTY;
6965 
6966 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6967 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6968 		return -ENOTEMPTY;
6969 	/*
6970 	 * we're using rename to replace one file with another.
6971 	 * and the replacement file is large.  Start IO on it now so
6972 	 * we don't add too much work to the end of the transaction
6973 	 */
6974 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6975 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6976 		filemap_flush(old_inode->i_mapping);
6977 
6978 	/* close the racy window with snapshot create/destroy ioctl */
6979 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6980 		down_read(&root->fs_info->subvol_sem);
6981 	/*
6982 	 * We want to reserve the absolute worst case amount of items.  So if
6983 	 * both inodes are subvols and we need to unlink them then that would
6984 	 * require 4 item modifications, but if they are both normal inodes it
6985 	 * would require 5 item modifications, so we'll assume their normal
6986 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6987 	 * should cover the worst case number of items we'll modify.
6988 	 */
6989 	trans = btrfs_start_transaction(root, 20);
6990 	if (IS_ERR(trans)) {
6991                 ret = PTR_ERR(trans);
6992                 goto out_notrans;
6993         }
6994 
6995 	if (dest != root)
6996 		btrfs_record_root_in_trans(trans, dest);
6997 
6998 	ret = btrfs_set_inode_index(new_dir, &index);
6999 	if (ret)
7000 		goto out_fail;
7001 
7002 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7003 		/* force full log commit if subvolume involved. */
7004 		root->fs_info->last_trans_log_full_commit = trans->transid;
7005 	} else {
7006 		ret = btrfs_insert_inode_ref(trans, dest,
7007 					     new_dentry->d_name.name,
7008 					     new_dentry->d_name.len,
7009 					     old_ino,
7010 					     btrfs_ino(new_dir), index);
7011 		if (ret)
7012 			goto out_fail;
7013 		/*
7014 		 * this is an ugly little race, but the rename is required
7015 		 * to make sure that if we crash, the inode is either at the
7016 		 * old name or the new one.  pinning the log transaction lets
7017 		 * us make sure we don't allow a log commit to come in after
7018 		 * we unlink the name but before we add the new name back in.
7019 		 */
7020 		btrfs_pin_log_trans(root);
7021 	}
7022 	/*
7023 	 * make sure the inode gets flushed if it is replacing
7024 	 * something.
7025 	 */
7026 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7027 		btrfs_add_ordered_operation(trans, root, old_inode);
7028 
7029 	old_dir->i_ctime = old_dir->i_mtime = ctime;
7030 	new_dir->i_ctime = new_dir->i_mtime = ctime;
7031 	old_inode->i_ctime = ctime;
7032 
7033 	if (old_dentry->d_parent != new_dentry->d_parent)
7034 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7035 
7036 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7037 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7038 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7039 					old_dentry->d_name.name,
7040 					old_dentry->d_name.len);
7041 	} else {
7042 		ret = __btrfs_unlink_inode(trans, root, old_dir,
7043 					old_dentry->d_inode,
7044 					old_dentry->d_name.name,
7045 					old_dentry->d_name.len);
7046 		if (!ret)
7047 			ret = btrfs_update_inode(trans, root, old_inode);
7048 	}
7049 	BUG_ON(ret);
7050 
7051 	if (new_inode) {
7052 		new_inode->i_ctime = CURRENT_TIME;
7053 		if (unlikely(btrfs_ino(new_inode) ==
7054 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7055 			root_objectid = BTRFS_I(new_inode)->location.objectid;
7056 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
7057 						root_objectid,
7058 						new_dentry->d_name.name,
7059 						new_dentry->d_name.len);
7060 			BUG_ON(new_inode->i_nlink == 0);
7061 		} else {
7062 			ret = btrfs_unlink_inode(trans, dest, new_dir,
7063 						 new_dentry->d_inode,
7064 						 new_dentry->d_name.name,
7065 						 new_dentry->d_name.len);
7066 		}
7067 		BUG_ON(ret);
7068 		if (new_inode->i_nlink == 0) {
7069 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7070 			BUG_ON(ret);
7071 		}
7072 	}
7073 
7074 	fixup_inode_flags(new_dir, old_inode);
7075 
7076 	ret = btrfs_add_link(trans, new_dir, old_inode,
7077 			     new_dentry->d_name.name,
7078 			     new_dentry->d_name.len, 0, index);
7079 	BUG_ON(ret);
7080 
7081 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7082 		struct dentry *parent = new_dentry->d_parent;
7083 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
7084 		btrfs_end_log_trans(root);
7085 	}
7086 out_fail:
7087 	btrfs_end_transaction(trans, root);
7088 out_notrans:
7089 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7090 		up_read(&root->fs_info->subvol_sem);
7091 
7092 	return ret;
7093 }
7094 
7095 /*
7096  * some fairly slow code that needs optimization. This walks the list
7097  * of all the inodes with pending delalloc and forces them to disk.
7098  */
7099 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7100 {
7101 	struct list_head *head = &root->fs_info->delalloc_inodes;
7102 	struct btrfs_inode *binode;
7103 	struct inode *inode;
7104 
7105 	if (root->fs_info->sb->s_flags & MS_RDONLY)
7106 		return -EROFS;
7107 
7108 	spin_lock(&root->fs_info->delalloc_lock);
7109 	while (!list_empty(head)) {
7110 		binode = list_entry(head->next, struct btrfs_inode,
7111 				    delalloc_inodes);
7112 		inode = igrab(&binode->vfs_inode);
7113 		if (!inode)
7114 			list_del_init(&binode->delalloc_inodes);
7115 		spin_unlock(&root->fs_info->delalloc_lock);
7116 		if (inode) {
7117 			filemap_flush(inode->i_mapping);
7118 			if (delay_iput)
7119 				btrfs_add_delayed_iput(inode);
7120 			else
7121 				iput(inode);
7122 		}
7123 		cond_resched();
7124 		spin_lock(&root->fs_info->delalloc_lock);
7125 	}
7126 	spin_unlock(&root->fs_info->delalloc_lock);
7127 
7128 	/* the filemap_flush will queue IO into the worker threads, but
7129 	 * we have to make sure the IO is actually started and that
7130 	 * ordered extents get created before we return
7131 	 */
7132 	atomic_inc(&root->fs_info->async_submit_draining);
7133 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7134 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7135 		wait_event(root->fs_info->async_submit_wait,
7136 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7137 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7138 	}
7139 	atomic_dec(&root->fs_info->async_submit_draining);
7140 	return 0;
7141 }
7142 
7143 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7144 			 const char *symname)
7145 {
7146 	struct btrfs_trans_handle *trans;
7147 	struct btrfs_root *root = BTRFS_I(dir)->root;
7148 	struct btrfs_path *path;
7149 	struct btrfs_key key;
7150 	struct inode *inode = NULL;
7151 	int err;
7152 	int drop_inode = 0;
7153 	u64 objectid;
7154 	u64 index = 0 ;
7155 	int name_len;
7156 	int datasize;
7157 	unsigned long ptr;
7158 	struct btrfs_file_extent_item *ei;
7159 	struct extent_buffer *leaf;
7160 	unsigned long nr = 0;
7161 
7162 	name_len = strlen(symname) + 1;
7163 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7164 		return -ENAMETOOLONG;
7165 
7166 	/*
7167 	 * 2 items for inode item and ref
7168 	 * 2 items for dir items
7169 	 * 1 item for xattr if selinux is on
7170 	 */
7171 	trans = btrfs_start_transaction(root, 5);
7172 	if (IS_ERR(trans))
7173 		return PTR_ERR(trans);
7174 
7175 	err = btrfs_find_free_ino(root, &objectid);
7176 	if (err)
7177 		goto out_unlock;
7178 
7179 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7180 				dentry->d_name.len, btrfs_ino(dir), objectid,
7181 				S_IFLNK|S_IRWXUGO, &index);
7182 	if (IS_ERR(inode)) {
7183 		err = PTR_ERR(inode);
7184 		goto out_unlock;
7185 	}
7186 
7187 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7188 	if (err) {
7189 		drop_inode = 1;
7190 		goto out_unlock;
7191 	}
7192 
7193 	/*
7194 	* If the active LSM wants to access the inode during
7195 	* d_instantiate it needs these. Smack checks to see
7196 	* if the filesystem supports xattrs by looking at the
7197 	* ops vector.
7198 	*/
7199 	inode->i_fop = &btrfs_file_operations;
7200 	inode->i_op = &btrfs_file_inode_operations;
7201 
7202 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7203 	if (err)
7204 		drop_inode = 1;
7205 	else {
7206 		inode->i_mapping->a_ops = &btrfs_aops;
7207 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7208 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7209 	}
7210 	if (drop_inode)
7211 		goto out_unlock;
7212 
7213 	path = btrfs_alloc_path();
7214 	if (!path) {
7215 		err = -ENOMEM;
7216 		drop_inode = 1;
7217 		goto out_unlock;
7218 	}
7219 	key.objectid = btrfs_ino(inode);
7220 	key.offset = 0;
7221 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7222 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7223 	err = btrfs_insert_empty_item(trans, root, path, &key,
7224 				      datasize);
7225 	if (err) {
7226 		drop_inode = 1;
7227 		btrfs_free_path(path);
7228 		goto out_unlock;
7229 	}
7230 	leaf = path->nodes[0];
7231 	ei = btrfs_item_ptr(leaf, path->slots[0],
7232 			    struct btrfs_file_extent_item);
7233 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7234 	btrfs_set_file_extent_type(leaf, ei,
7235 				   BTRFS_FILE_EXTENT_INLINE);
7236 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7237 	btrfs_set_file_extent_compression(leaf, ei, 0);
7238 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7239 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7240 
7241 	ptr = btrfs_file_extent_inline_start(ei);
7242 	write_extent_buffer(leaf, symname, ptr, name_len);
7243 	btrfs_mark_buffer_dirty(leaf);
7244 	btrfs_free_path(path);
7245 
7246 	inode->i_op = &btrfs_symlink_inode_operations;
7247 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7248 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7249 	inode_set_bytes(inode, name_len);
7250 	btrfs_i_size_write(inode, name_len - 1);
7251 	err = btrfs_update_inode(trans, root, inode);
7252 	if (err)
7253 		drop_inode = 1;
7254 
7255 out_unlock:
7256 	if (!err)
7257 		d_instantiate(dentry, inode);
7258 	nr = trans->blocks_used;
7259 	btrfs_end_transaction(trans, root);
7260 	if (drop_inode) {
7261 		inode_dec_link_count(inode);
7262 		iput(inode);
7263 	}
7264 	btrfs_btree_balance_dirty(root, nr);
7265 	return err;
7266 }
7267 
7268 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7269 				       u64 start, u64 num_bytes, u64 min_size,
7270 				       loff_t actual_len, u64 *alloc_hint,
7271 				       struct btrfs_trans_handle *trans)
7272 {
7273 	struct btrfs_root *root = BTRFS_I(inode)->root;
7274 	struct btrfs_key ins;
7275 	u64 cur_offset = start;
7276 	u64 i_size;
7277 	int ret = 0;
7278 	bool own_trans = true;
7279 
7280 	if (trans)
7281 		own_trans = false;
7282 	while (num_bytes > 0) {
7283 		if (own_trans) {
7284 			trans = btrfs_start_transaction(root, 3);
7285 			if (IS_ERR(trans)) {
7286 				ret = PTR_ERR(trans);
7287 				break;
7288 			}
7289 		}
7290 
7291 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7292 					   0, *alloc_hint, (u64)-1, &ins, 1);
7293 		if (ret) {
7294 			if (own_trans)
7295 				btrfs_end_transaction(trans, root);
7296 			break;
7297 		}
7298 
7299 		ret = insert_reserved_file_extent(trans, inode,
7300 						  cur_offset, ins.objectid,
7301 						  ins.offset, ins.offset,
7302 						  ins.offset, 0, 0, 0,
7303 						  BTRFS_FILE_EXTENT_PREALLOC);
7304 		BUG_ON(ret);
7305 		btrfs_drop_extent_cache(inode, cur_offset,
7306 					cur_offset + ins.offset -1, 0);
7307 
7308 		num_bytes -= ins.offset;
7309 		cur_offset += ins.offset;
7310 		*alloc_hint = ins.objectid + ins.offset;
7311 
7312 		inode->i_ctime = CURRENT_TIME;
7313 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7314 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7315 		    (actual_len > inode->i_size) &&
7316 		    (cur_offset > inode->i_size)) {
7317 			if (cur_offset > actual_len)
7318 				i_size = actual_len;
7319 			else
7320 				i_size = cur_offset;
7321 			i_size_write(inode, i_size);
7322 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7323 		}
7324 
7325 		ret = btrfs_update_inode(trans, root, inode);
7326 		BUG_ON(ret);
7327 
7328 		if (own_trans)
7329 			btrfs_end_transaction(trans, root);
7330 	}
7331 	return ret;
7332 }
7333 
7334 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7335 			      u64 start, u64 num_bytes, u64 min_size,
7336 			      loff_t actual_len, u64 *alloc_hint)
7337 {
7338 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7339 					   min_size, actual_len, alloc_hint,
7340 					   NULL);
7341 }
7342 
7343 int btrfs_prealloc_file_range_trans(struct inode *inode,
7344 				    struct btrfs_trans_handle *trans, int mode,
7345 				    u64 start, u64 num_bytes, u64 min_size,
7346 				    loff_t actual_len, u64 *alloc_hint)
7347 {
7348 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7349 					   min_size, actual_len, alloc_hint, trans);
7350 }
7351 
7352 static int btrfs_set_page_dirty(struct page *page)
7353 {
7354 	return __set_page_dirty_nobuffers(page);
7355 }
7356 
7357 static int btrfs_permission(struct inode *inode, int mask)
7358 {
7359 	struct btrfs_root *root = BTRFS_I(inode)->root;
7360 	umode_t mode = inode->i_mode;
7361 
7362 	if (mask & MAY_WRITE &&
7363 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7364 		if (btrfs_root_readonly(root))
7365 			return -EROFS;
7366 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7367 			return -EACCES;
7368 	}
7369 	return generic_permission(inode, mask);
7370 }
7371 
7372 static const struct inode_operations btrfs_dir_inode_operations = {
7373 	.getattr	= btrfs_getattr,
7374 	.lookup		= btrfs_lookup,
7375 	.create		= btrfs_create,
7376 	.unlink		= btrfs_unlink,
7377 	.link		= btrfs_link,
7378 	.mkdir		= btrfs_mkdir,
7379 	.rmdir		= btrfs_rmdir,
7380 	.rename		= btrfs_rename,
7381 	.symlink	= btrfs_symlink,
7382 	.setattr	= btrfs_setattr,
7383 	.mknod		= btrfs_mknod,
7384 	.setxattr	= btrfs_setxattr,
7385 	.getxattr	= btrfs_getxattr,
7386 	.listxattr	= btrfs_listxattr,
7387 	.removexattr	= btrfs_removexattr,
7388 	.permission	= btrfs_permission,
7389 	.get_acl	= btrfs_get_acl,
7390 };
7391 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7392 	.lookup		= btrfs_lookup,
7393 	.permission	= btrfs_permission,
7394 	.get_acl	= btrfs_get_acl,
7395 };
7396 
7397 static const struct file_operations btrfs_dir_file_operations = {
7398 	.llseek		= generic_file_llseek,
7399 	.read		= generic_read_dir,
7400 	.readdir	= btrfs_real_readdir,
7401 	.unlocked_ioctl	= btrfs_ioctl,
7402 #ifdef CONFIG_COMPAT
7403 	.compat_ioctl	= btrfs_ioctl,
7404 #endif
7405 	.release        = btrfs_release_file,
7406 	.fsync		= btrfs_sync_file,
7407 };
7408 
7409 static struct extent_io_ops btrfs_extent_io_ops = {
7410 	.fill_delalloc = run_delalloc_range,
7411 	.submit_bio_hook = btrfs_submit_bio_hook,
7412 	.merge_bio_hook = btrfs_merge_bio_hook,
7413 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7414 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7415 	.writepage_start_hook = btrfs_writepage_start_hook,
7416 	.set_bit_hook = btrfs_set_bit_hook,
7417 	.clear_bit_hook = btrfs_clear_bit_hook,
7418 	.merge_extent_hook = btrfs_merge_extent_hook,
7419 	.split_extent_hook = btrfs_split_extent_hook,
7420 };
7421 
7422 /*
7423  * btrfs doesn't support the bmap operation because swapfiles
7424  * use bmap to make a mapping of extents in the file.  They assume
7425  * these extents won't change over the life of the file and they
7426  * use the bmap result to do IO directly to the drive.
7427  *
7428  * the btrfs bmap call would return logical addresses that aren't
7429  * suitable for IO and they also will change frequently as COW
7430  * operations happen.  So, swapfile + btrfs == corruption.
7431  *
7432  * For now we're avoiding this by dropping bmap.
7433  */
7434 static const struct address_space_operations btrfs_aops = {
7435 	.readpage	= btrfs_readpage,
7436 	.writepage	= btrfs_writepage,
7437 	.writepages	= btrfs_writepages,
7438 	.readpages	= btrfs_readpages,
7439 	.direct_IO	= btrfs_direct_IO,
7440 	.invalidatepage = btrfs_invalidatepage,
7441 	.releasepage	= btrfs_releasepage,
7442 	.set_page_dirty	= btrfs_set_page_dirty,
7443 	.error_remove_page = generic_error_remove_page,
7444 };
7445 
7446 static const struct address_space_operations btrfs_symlink_aops = {
7447 	.readpage	= btrfs_readpage,
7448 	.writepage	= btrfs_writepage,
7449 	.invalidatepage = btrfs_invalidatepage,
7450 	.releasepage	= btrfs_releasepage,
7451 };
7452 
7453 static const struct inode_operations btrfs_file_inode_operations = {
7454 	.getattr	= btrfs_getattr,
7455 	.setattr	= btrfs_setattr,
7456 	.setxattr	= btrfs_setxattr,
7457 	.getxattr	= btrfs_getxattr,
7458 	.listxattr      = btrfs_listxattr,
7459 	.removexattr	= btrfs_removexattr,
7460 	.permission	= btrfs_permission,
7461 	.fiemap		= btrfs_fiemap,
7462 	.get_acl	= btrfs_get_acl,
7463 };
7464 static const struct inode_operations btrfs_special_inode_operations = {
7465 	.getattr	= btrfs_getattr,
7466 	.setattr	= btrfs_setattr,
7467 	.permission	= btrfs_permission,
7468 	.setxattr	= btrfs_setxattr,
7469 	.getxattr	= btrfs_getxattr,
7470 	.listxattr	= btrfs_listxattr,
7471 	.removexattr	= btrfs_removexattr,
7472 	.get_acl	= btrfs_get_acl,
7473 };
7474 static const struct inode_operations btrfs_symlink_inode_operations = {
7475 	.readlink	= generic_readlink,
7476 	.follow_link	= page_follow_link_light,
7477 	.put_link	= page_put_link,
7478 	.getattr	= btrfs_getattr,
7479 	.setattr	= btrfs_setattr,
7480 	.permission	= btrfs_permission,
7481 	.setxattr	= btrfs_setxattr,
7482 	.getxattr	= btrfs_getxattr,
7483 	.listxattr	= btrfs_listxattr,
7484 	.removexattr	= btrfs_removexattr,
7485 	.get_acl	= btrfs_get_acl,
7486 };
7487 
7488 const struct dentry_operations btrfs_dentry_operations = {
7489 	.d_delete	= btrfs_dentry_delete,
7490 	.d_release	= btrfs_dentry_release,
7491 };
7492