xref: /openbmc/linux/fs/btrfs/inode.c (revision 4cb5300bc839b8a943eb19c9f27f25470e22d0ca)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56 
57 struct btrfs_iget_args {
58 	u64 ino;
59 	struct btrfs_root *root;
60 };
61 
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71 
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77 
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
81 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
82 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
83 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
84 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
85 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
86 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
87 };
88 
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 				   struct page *locked_page,
94 				   u64 start, u64 end, int *page_started,
95 				   unsigned long *nr_written, int unlock);
96 
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98 				     struct inode *inode,  struct inode *dir,
99 				     const struct qstr *qstr)
100 {
101 	int err;
102 
103 	err = btrfs_init_acl(trans, inode, dir);
104 	if (!err)
105 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106 	return err;
107 }
108 
109 /*
110  * this does all the hard work for inserting an inline extent into
111  * the btree.  The caller should have done a btrfs_drop_extents so that
112  * no overlapping inline items exist in the btree
113  */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115 				struct btrfs_root *root, struct inode *inode,
116 				u64 start, size_t size, size_t compressed_size,
117 				int compress_type,
118 				struct page **compressed_pages)
119 {
120 	struct btrfs_key key;
121 	struct btrfs_path *path;
122 	struct extent_buffer *leaf;
123 	struct page *page = NULL;
124 	char *kaddr;
125 	unsigned long ptr;
126 	struct btrfs_file_extent_item *ei;
127 	int err = 0;
128 	int ret;
129 	size_t cur_size = size;
130 	size_t datasize;
131 	unsigned long offset;
132 
133 	if (compressed_size && compressed_pages)
134 		cur_size = compressed_size;
135 
136 	path = btrfs_alloc_path();
137 	if (!path)
138 		return -ENOMEM;
139 
140 	path->leave_spinning = 1;
141 	btrfs_set_trans_block_group(trans, inode);
142 
143 	key.objectid = btrfs_ino(inode);
144 	key.offset = start;
145 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
146 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
147 
148 	inode_add_bytes(inode, size);
149 	ret = btrfs_insert_empty_item(trans, root, path, &key,
150 				      datasize);
151 	BUG_ON(ret);
152 	if (ret) {
153 		err = ret;
154 		goto fail;
155 	}
156 	leaf = path->nodes[0];
157 	ei = btrfs_item_ptr(leaf, path->slots[0],
158 			    struct btrfs_file_extent_item);
159 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
160 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
161 	btrfs_set_file_extent_encryption(leaf, ei, 0);
162 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
163 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
164 	ptr = btrfs_file_extent_inline_start(ei);
165 
166 	if (compress_type != BTRFS_COMPRESS_NONE) {
167 		struct page *cpage;
168 		int i = 0;
169 		while (compressed_size > 0) {
170 			cpage = compressed_pages[i];
171 			cur_size = min_t(unsigned long, compressed_size,
172 				       PAGE_CACHE_SIZE);
173 
174 			kaddr = kmap_atomic(cpage, KM_USER0);
175 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
176 			kunmap_atomic(kaddr, KM_USER0);
177 
178 			i++;
179 			ptr += cur_size;
180 			compressed_size -= cur_size;
181 		}
182 		btrfs_set_file_extent_compression(leaf, ei,
183 						  compress_type);
184 	} else {
185 		page = find_get_page(inode->i_mapping,
186 				     start >> PAGE_CACHE_SHIFT);
187 		btrfs_set_file_extent_compression(leaf, ei, 0);
188 		kaddr = kmap_atomic(page, KM_USER0);
189 		offset = start & (PAGE_CACHE_SIZE - 1);
190 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
191 		kunmap_atomic(kaddr, KM_USER0);
192 		page_cache_release(page);
193 	}
194 	btrfs_mark_buffer_dirty(leaf);
195 	btrfs_free_path(path);
196 
197 	/*
198 	 * we're an inline extent, so nobody can
199 	 * extend the file past i_size without locking
200 	 * a page we already have locked.
201 	 *
202 	 * We must do any isize and inode updates
203 	 * before we unlock the pages.  Otherwise we
204 	 * could end up racing with unlink.
205 	 */
206 	BTRFS_I(inode)->disk_i_size = inode->i_size;
207 	btrfs_update_inode(trans, root, inode);
208 
209 	return 0;
210 fail:
211 	btrfs_free_path(path);
212 	return err;
213 }
214 
215 
216 /*
217  * conditionally insert an inline extent into the file.  This
218  * does the checks required to make sure the data is small enough
219  * to fit as an inline extent.
220  */
221 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
222 				 struct btrfs_root *root,
223 				 struct inode *inode, u64 start, u64 end,
224 				 size_t compressed_size, int compress_type,
225 				 struct page **compressed_pages)
226 {
227 	u64 isize = i_size_read(inode);
228 	u64 actual_end = min(end + 1, isize);
229 	u64 inline_len = actual_end - start;
230 	u64 aligned_end = (end + root->sectorsize - 1) &
231 			~((u64)root->sectorsize - 1);
232 	u64 hint_byte;
233 	u64 data_len = inline_len;
234 	int ret;
235 
236 	if (compressed_size)
237 		data_len = compressed_size;
238 
239 	if (start > 0 ||
240 	    actual_end >= PAGE_CACHE_SIZE ||
241 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242 	    (!compressed_size &&
243 	    (actual_end & (root->sectorsize - 1)) == 0) ||
244 	    end + 1 < isize ||
245 	    data_len > root->fs_info->max_inline) {
246 		return 1;
247 	}
248 
249 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
250 				 &hint_byte, 1);
251 	BUG_ON(ret);
252 
253 	if (isize > actual_end)
254 		inline_len = min_t(u64, isize, actual_end);
255 	ret = insert_inline_extent(trans, root, inode, start,
256 				   inline_len, compressed_size,
257 				   compress_type, compressed_pages);
258 	BUG_ON(ret);
259 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
260 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
261 	return 0;
262 }
263 
264 struct async_extent {
265 	u64 start;
266 	u64 ram_size;
267 	u64 compressed_size;
268 	struct page **pages;
269 	unsigned long nr_pages;
270 	int compress_type;
271 	struct list_head list;
272 };
273 
274 struct async_cow {
275 	struct inode *inode;
276 	struct btrfs_root *root;
277 	struct page *locked_page;
278 	u64 start;
279 	u64 end;
280 	struct list_head extents;
281 	struct btrfs_work work;
282 };
283 
284 static noinline int add_async_extent(struct async_cow *cow,
285 				     u64 start, u64 ram_size,
286 				     u64 compressed_size,
287 				     struct page **pages,
288 				     unsigned long nr_pages,
289 				     int compress_type)
290 {
291 	struct async_extent *async_extent;
292 
293 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
294 	BUG_ON(!async_extent);
295 	async_extent->start = start;
296 	async_extent->ram_size = ram_size;
297 	async_extent->compressed_size = compressed_size;
298 	async_extent->pages = pages;
299 	async_extent->nr_pages = nr_pages;
300 	async_extent->compress_type = compress_type;
301 	list_add_tail(&async_extent->list, &cow->extents);
302 	return 0;
303 }
304 
305 /*
306  * we create compressed extents in two phases.  The first
307  * phase compresses a range of pages that have already been
308  * locked (both pages and state bits are locked).
309  *
310  * This is done inside an ordered work queue, and the compression
311  * is spread across many cpus.  The actual IO submission is step
312  * two, and the ordered work queue takes care of making sure that
313  * happens in the same order things were put onto the queue by
314  * writepages and friends.
315  *
316  * If this code finds it can't get good compression, it puts an
317  * entry onto the work queue to write the uncompressed bytes.  This
318  * makes sure that both compressed inodes and uncompressed inodes
319  * are written in the same order that pdflush sent them down.
320  */
321 static noinline int compress_file_range(struct inode *inode,
322 					struct page *locked_page,
323 					u64 start, u64 end,
324 					struct async_cow *async_cow,
325 					int *num_added)
326 {
327 	struct btrfs_root *root = BTRFS_I(inode)->root;
328 	struct btrfs_trans_handle *trans;
329 	u64 num_bytes;
330 	u64 blocksize = root->sectorsize;
331 	u64 actual_end;
332 	u64 isize = i_size_read(inode);
333 	int ret = 0;
334 	struct page **pages = NULL;
335 	unsigned long nr_pages;
336 	unsigned long nr_pages_ret = 0;
337 	unsigned long total_compressed = 0;
338 	unsigned long total_in = 0;
339 	unsigned long max_compressed = 128 * 1024;
340 	unsigned long max_uncompressed = 128 * 1024;
341 	int i;
342 	int will_compress;
343 	int compress_type = root->fs_info->compress_type;
344 
345 	/* if this is a small write inside eof, kick off a defragbot */
346 	if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
347 		btrfs_add_inode_defrag(NULL, inode);
348 
349 	actual_end = min_t(u64, isize, end + 1);
350 again:
351 	will_compress = 0;
352 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
353 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
354 
355 	/*
356 	 * we don't want to send crud past the end of i_size through
357 	 * compression, that's just a waste of CPU time.  So, if the
358 	 * end of the file is before the start of our current
359 	 * requested range of bytes, we bail out to the uncompressed
360 	 * cleanup code that can deal with all of this.
361 	 *
362 	 * It isn't really the fastest way to fix things, but this is a
363 	 * very uncommon corner.
364 	 */
365 	if (actual_end <= start)
366 		goto cleanup_and_bail_uncompressed;
367 
368 	total_compressed = actual_end - start;
369 
370 	/* we want to make sure that amount of ram required to uncompress
371 	 * an extent is reasonable, so we limit the total size in ram
372 	 * of a compressed extent to 128k.  This is a crucial number
373 	 * because it also controls how easily we can spread reads across
374 	 * cpus for decompression.
375 	 *
376 	 * We also want to make sure the amount of IO required to do
377 	 * a random read is reasonably small, so we limit the size of
378 	 * a compressed extent to 128k.
379 	 */
380 	total_compressed = min(total_compressed, max_uncompressed);
381 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
382 	num_bytes = max(blocksize,  num_bytes);
383 	total_in = 0;
384 	ret = 0;
385 
386 	/*
387 	 * we do compression for mount -o compress and when the
388 	 * inode has not been flagged as nocompress.  This flag can
389 	 * change at any time if we discover bad compression ratios.
390 	 */
391 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
392 	    (btrfs_test_opt(root, COMPRESS) ||
393 	     (BTRFS_I(inode)->force_compress) ||
394 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
395 		WARN_ON(pages);
396 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
397 		BUG_ON(!pages);
398 
399 		if (BTRFS_I(inode)->force_compress)
400 			compress_type = BTRFS_I(inode)->force_compress;
401 
402 		ret = btrfs_compress_pages(compress_type,
403 					   inode->i_mapping, start,
404 					   total_compressed, pages,
405 					   nr_pages, &nr_pages_ret,
406 					   &total_in,
407 					   &total_compressed,
408 					   max_compressed);
409 
410 		if (!ret) {
411 			unsigned long offset = total_compressed &
412 				(PAGE_CACHE_SIZE - 1);
413 			struct page *page = pages[nr_pages_ret - 1];
414 			char *kaddr;
415 
416 			/* zero the tail end of the last page, we might be
417 			 * sending it down to disk
418 			 */
419 			if (offset) {
420 				kaddr = kmap_atomic(page, KM_USER0);
421 				memset(kaddr + offset, 0,
422 				       PAGE_CACHE_SIZE - offset);
423 				kunmap_atomic(kaddr, KM_USER0);
424 			}
425 			will_compress = 1;
426 		}
427 	}
428 	if (start == 0) {
429 		trans = btrfs_join_transaction(root, 1);
430 		BUG_ON(IS_ERR(trans));
431 		btrfs_set_trans_block_group(trans, inode);
432 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
433 
434 		/* lets try to make an inline extent */
435 		if (ret || total_in < (actual_end - start)) {
436 			/* we didn't compress the entire range, try
437 			 * to make an uncompressed inline extent.
438 			 */
439 			ret = cow_file_range_inline(trans, root, inode,
440 						    start, end, 0, 0, NULL);
441 		} else {
442 			/* try making a compressed inline extent */
443 			ret = cow_file_range_inline(trans, root, inode,
444 						    start, end,
445 						    total_compressed,
446 						    compress_type, pages);
447 		}
448 		if (ret == 0) {
449 			/*
450 			 * inline extent creation worked, we don't need
451 			 * to create any more async work items.  Unlock
452 			 * and free up our temp pages.
453 			 */
454 			extent_clear_unlock_delalloc(inode,
455 			     &BTRFS_I(inode)->io_tree,
456 			     start, end, NULL,
457 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
458 			     EXTENT_CLEAR_DELALLOC |
459 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
460 
461 			btrfs_end_transaction(trans, root);
462 			goto free_pages_out;
463 		}
464 		btrfs_end_transaction(trans, root);
465 	}
466 
467 	if (will_compress) {
468 		/*
469 		 * we aren't doing an inline extent round the compressed size
470 		 * up to a block size boundary so the allocator does sane
471 		 * things
472 		 */
473 		total_compressed = (total_compressed + blocksize - 1) &
474 			~(blocksize - 1);
475 
476 		/*
477 		 * one last check to make sure the compression is really a
478 		 * win, compare the page count read with the blocks on disk
479 		 */
480 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
481 			~(PAGE_CACHE_SIZE - 1);
482 		if (total_compressed >= total_in) {
483 			will_compress = 0;
484 		} else {
485 			num_bytes = total_in;
486 		}
487 	}
488 	if (!will_compress && pages) {
489 		/*
490 		 * the compression code ran but failed to make things smaller,
491 		 * free any pages it allocated and our page pointer array
492 		 */
493 		for (i = 0; i < nr_pages_ret; i++) {
494 			WARN_ON(pages[i]->mapping);
495 			page_cache_release(pages[i]);
496 		}
497 		kfree(pages);
498 		pages = NULL;
499 		total_compressed = 0;
500 		nr_pages_ret = 0;
501 
502 		/* flag the file so we don't compress in the future */
503 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
504 		    !(BTRFS_I(inode)->force_compress)) {
505 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
506 		}
507 	}
508 	if (will_compress) {
509 		*num_added += 1;
510 
511 		/* the async work queues will take care of doing actual
512 		 * allocation on disk for these compressed pages,
513 		 * and will submit them to the elevator.
514 		 */
515 		add_async_extent(async_cow, start, num_bytes,
516 				 total_compressed, pages, nr_pages_ret,
517 				 compress_type);
518 
519 		if (start + num_bytes < end) {
520 			start += num_bytes;
521 			pages = NULL;
522 			cond_resched();
523 			goto again;
524 		}
525 	} else {
526 cleanup_and_bail_uncompressed:
527 		/*
528 		 * No compression, but we still need to write the pages in
529 		 * the file we've been given so far.  redirty the locked
530 		 * page if it corresponds to our extent and set things up
531 		 * for the async work queue to run cow_file_range to do
532 		 * the normal delalloc dance
533 		 */
534 		if (page_offset(locked_page) >= start &&
535 		    page_offset(locked_page) <= end) {
536 			__set_page_dirty_nobuffers(locked_page);
537 			/* unlocked later on in the async handlers */
538 		}
539 		add_async_extent(async_cow, start, end - start + 1,
540 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
541 		*num_added += 1;
542 	}
543 
544 out:
545 	return 0;
546 
547 free_pages_out:
548 	for (i = 0; i < nr_pages_ret; i++) {
549 		WARN_ON(pages[i]->mapping);
550 		page_cache_release(pages[i]);
551 	}
552 	kfree(pages);
553 
554 	goto out;
555 }
556 
557 /*
558  * phase two of compressed writeback.  This is the ordered portion
559  * of the code, which only gets called in the order the work was
560  * queued.  We walk all the async extents created by compress_file_range
561  * and send them down to the disk.
562  */
563 static noinline int submit_compressed_extents(struct inode *inode,
564 					      struct async_cow *async_cow)
565 {
566 	struct async_extent *async_extent;
567 	u64 alloc_hint = 0;
568 	struct btrfs_trans_handle *trans;
569 	struct btrfs_key ins;
570 	struct extent_map *em;
571 	struct btrfs_root *root = BTRFS_I(inode)->root;
572 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
573 	struct extent_io_tree *io_tree;
574 	int ret = 0;
575 
576 	if (list_empty(&async_cow->extents))
577 		return 0;
578 
579 
580 	while (!list_empty(&async_cow->extents)) {
581 		async_extent = list_entry(async_cow->extents.next,
582 					  struct async_extent, list);
583 		list_del(&async_extent->list);
584 
585 		io_tree = &BTRFS_I(inode)->io_tree;
586 
587 retry:
588 		/* did the compression code fall back to uncompressed IO? */
589 		if (!async_extent->pages) {
590 			int page_started = 0;
591 			unsigned long nr_written = 0;
592 
593 			lock_extent(io_tree, async_extent->start,
594 					 async_extent->start +
595 					 async_extent->ram_size - 1, GFP_NOFS);
596 
597 			/* allocate blocks */
598 			ret = cow_file_range(inode, async_cow->locked_page,
599 					     async_extent->start,
600 					     async_extent->start +
601 					     async_extent->ram_size - 1,
602 					     &page_started, &nr_written, 0);
603 
604 			/*
605 			 * if page_started, cow_file_range inserted an
606 			 * inline extent and took care of all the unlocking
607 			 * and IO for us.  Otherwise, we need to submit
608 			 * all those pages down to the drive.
609 			 */
610 			if (!page_started && !ret)
611 				extent_write_locked_range(io_tree,
612 						  inode, async_extent->start,
613 						  async_extent->start +
614 						  async_extent->ram_size - 1,
615 						  btrfs_get_extent,
616 						  WB_SYNC_ALL);
617 			kfree(async_extent);
618 			cond_resched();
619 			continue;
620 		}
621 
622 		lock_extent(io_tree, async_extent->start,
623 			    async_extent->start + async_extent->ram_size - 1,
624 			    GFP_NOFS);
625 
626 		trans = btrfs_join_transaction(root, 1);
627 		BUG_ON(IS_ERR(trans));
628 		ret = btrfs_reserve_extent(trans, root,
629 					   async_extent->compressed_size,
630 					   async_extent->compressed_size,
631 					   0, alloc_hint,
632 					   (u64)-1, &ins, 1);
633 		btrfs_end_transaction(trans, root);
634 
635 		if (ret) {
636 			int i;
637 			for (i = 0; i < async_extent->nr_pages; i++) {
638 				WARN_ON(async_extent->pages[i]->mapping);
639 				page_cache_release(async_extent->pages[i]);
640 			}
641 			kfree(async_extent->pages);
642 			async_extent->nr_pages = 0;
643 			async_extent->pages = NULL;
644 			unlock_extent(io_tree, async_extent->start,
645 				      async_extent->start +
646 				      async_extent->ram_size - 1, GFP_NOFS);
647 			goto retry;
648 		}
649 
650 		/*
651 		 * here we're doing allocation and writeback of the
652 		 * compressed pages
653 		 */
654 		btrfs_drop_extent_cache(inode, async_extent->start,
655 					async_extent->start +
656 					async_extent->ram_size - 1, 0);
657 
658 		em = alloc_extent_map();
659 		BUG_ON(!em);
660 		em->start = async_extent->start;
661 		em->len = async_extent->ram_size;
662 		em->orig_start = em->start;
663 
664 		em->block_start = ins.objectid;
665 		em->block_len = ins.offset;
666 		em->bdev = root->fs_info->fs_devices->latest_bdev;
667 		em->compress_type = async_extent->compress_type;
668 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
669 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
670 
671 		while (1) {
672 			write_lock(&em_tree->lock);
673 			ret = add_extent_mapping(em_tree, em);
674 			write_unlock(&em_tree->lock);
675 			if (ret != -EEXIST) {
676 				free_extent_map(em);
677 				break;
678 			}
679 			btrfs_drop_extent_cache(inode, async_extent->start,
680 						async_extent->start +
681 						async_extent->ram_size - 1, 0);
682 		}
683 
684 		ret = btrfs_add_ordered_extent_compress(inode,
685 						async_extent->start,
686 						ins.objectid,
687 						async_extent->ram_size,
688 						ins.offset,
689 						BTRFS_ORDERED_COMPRESSED,
690 						async_extent->compress_type);
691 		BUG_ON(ret);
692 
693 		/*
694 		 * clear dirty, set writeback and unlock the pages.
695 		 */
696 		extent_clear_unlock_delalloc(inode,
697 				&BTRFS_I(inode)->io_tree,
698 				async_extent->start,
699 				async_extent->start +
700 				async_extent->ram_size - 1,
701 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
702 				EXTENT_CLEAR_UNLOCK |
703 				EXTENT_CLEAR_DELALLOC |
704 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
705 
706 		ret = btrfs_submit_compressed_write(inode,
707 				    async_extent->start,
708 				    async_extent->ram_size,
709 				    ins.objectid,
710 				    ins.offset, async_extent->pages,
711 				    async_extent->nr_pages);
712 
713 		BUG_ON(ret);
714 		alloc_hint = ins.objectid + ins.offset;
715 		kfree(async_extent);
716 		cond_resched();
717 	}
718 
719 	return 0;
720 }
721 
722 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
723 				      u64 num_bytes)
724 {
725 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
726 	struct extent_map *em;
727 	u64 alloc_hint = 0;
728 
729 	read_lock(&em_tree->lock);
730 	em = search_extent_mapping(em_tree, start, num_bytes);
731 	if (em) {
732 		/*
733 		 * if block start isn't an actual block number then find the
734 		 * first block in this inode and use that as a hint.  If that
735 		 * block is also bogus then just don't worry about it.
736 		 */
737 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
738 			free_extent_map(em);
739 			em = search_extent_mapping(em_tree, 0, 0);
740 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
741 				alloc_hint = em->block_start;
742 			if (em)
743 				free_extent_map(em);
744 		} else {
745 			alloc_hint = em->block_start;
746 			free_extent_map(em);
747 		}
748 	}
749 	read_unlock(&em_tree->lock);
750 
751 	return alloc_hint;
752 }
753 
754 static inline bool is_free_space_inode(struct btrfs_root *root,
755 				       struct inode *inode)
756 {
757 	if (root == root->fs_info->tree_root ||
758 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
759 		return true;
760 	return false;
761 }
762 
763 /*
764  * when extent_io.c finds a delayed allocation range in the file,
765  * the call backs end up in this code.  The basic idea is to
766  * allocate extents on disk for the range, and create ordered data structs
767  * in ram to track those extents.
768  *
769  * locked_page is the page that writepage had locked already.  We use
770  * it to make sure we don't do extra locks or unlocks.
771  *
772  * *page_started is set to one if we unlock locked_page and do everything
773  * required to start IO on it.  It may be clean and already done with
774  * IO when we return.
775  */
776 static noinline int cow_file_range(struct inode *inode,
777 				   struct page *locked_page,
778 				   u64 start, u64 end, int *page_started,
779 				   unsigned long *nr_written,
780 				   int unlock)
781 {
782 	struct btrfs_root *root = BTRFS_I(inode)->root;
783 	struct btrfs_trans_handle *trans;
784 	u64 alloc_hint = 0;
785 	u64 num_bytes;
786 	unsigned long ram_size;
787 	u64 disk_num_bytes;
788 	u64 cur_alloc_size;
789 	u64 blocksize = root->sectorsize;
790 	struct btrfs_key ins;
791 	struct extent_map *em;
792 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
793 	int ret = 0;
794 
795 	BUG_ON(is_free_space_inode(root, inode));
796 	trans = btrfs_join_transaction(root, 1);
797 	BUG_ON(IS_ERR(trans));
798 	btrfs_set_trans_block_group(trans, inode);
799 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
800 
801 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
802 	num_bytes = max(blocksize,  num_bytes);
803 	disk_num_bytes = num_bytes;
804 	ret = 0;
805 
806 	/* if this is a small write inside eof, kick off defrag */
807 	if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
808 		btrfs_add_inode_defrag(trans, inode);
809 
810 	if (start == 0) {
811 		/* lets try to make an inline extent */
812 		ret = cow_file_range_inline(trans, root, inode,
813 					    start, end, 0, 0, NULL);
814 		if (ret == 0) {
815 			extent_clear_unlock_delalloc(inode,
816 				     &BTRFS_I(inode)->io_tree,
817 				     start, end, NULL,
818 				     EXTENT_CLEAR_UNLOCK_PAGE |
819 				     EXTENT_CLEAR_UNLOCK |
820 				     EXTENT_CLEAR_DELALLOC |
821 				     EXTENT_CLEAR_DIRTY |
822 				     EXTENT_SET_WRITEBACK |
823 				     EXTENT_END_WRITEBACK);
824 
825 			*nr_written = *nr_written +
826 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
827 			*page_started = 1;
828 			ret = 0;
829 			goto out;
830 		}
831 	}
832 
833 	BUG_ON(disk_num_bytes >
834 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
835 
836 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
837 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
838 
839 	while (disk_num_bytes > 0) {
840 		unsigned long op;
841 
842 		cur_alloc_size = disk_num_bytes;
843 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
844 					   root->sectorsize, 0, alloc_hint,
845 					   (u64)-1, &ins, 1);
846 		BUG_ON(ret);
847 
848 		em = alloc_extent_map();
849 		BUG_ON(!em);
850 		em->start = start;
851 		em->orig_start = em->start;
852 		ram_size = ins.offset;
853 		em->len = ins.offset;
854 
855 		em->block_start = ins.objectid;
856 		em->block_len = ins.offset;
857 		em->bdev = root->fs_info->fs_devices->latest_bdev;
858 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
859 
860 		while (1) {
861 			write_lock(&em_tree->lock);
862 			ret = add_extent_mapping(em_tree, em);
863 			write_unlock(&em_tree->lock);
864 			if (ret != -EEXIST) {
865 				free_extent_map(em);
866 				break;
867 			}
868 			btrfs_drop_extent_cache(inode, start,
869 						start + ram_size - 1, 0);
870 		}
871 
872 		cur_alloc_size = ins.offset;
873 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
874 					       ram_size, cur_alloc_size, 0);
875 		BUG_ON(ret);
876 
877 		if (root->root_key.objectid ==
878 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
879 			ret = btrfs_reloc_clone_csums(inode, start,
880 						      cur_alloc_size);
881 			BUG_ON(ret);
882 		}
883 
884 		if (disk_num_bytes < cur_alloc_size)
885 			break;
886 
887 		/* we're not doing compressed IO, don't unlock the first
888 		 * page (which the caller expects to stay locked), don't
889 		 * clear any dirty bits and don't set any writeback bits
890 		 *
891 		 * Do set the Private2 bit so we know this page was properly
892 		 * setup for writepage
893 		 */
894 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
895 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
896 			EXTENT_SET_PRIVATE2;
897 
898 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
899 					     start, start + ram_size - 1,
900 					     locked_page, op);
901 		disk_num_bytes -= cur_alloc_size;
902 		num_bytes -= cur_alloc_size;
903 		alloc_hint = ins.objectid + ins.offset;
904 		start += cur_alloc_size;
905 	}
906 out:
907 	ret = 0;
908 	btrfs_end_transaction(trans, root);
909 
910 	return ret;
911 }
912 
913 /*
914  * work queue call back to started compression on a file and pages
915  */
916 static noinline void async_cow_start(struct btrfs_work *work)
917 {
918 	struct async_cow *async_cow;
919 	int num_added = 0;
920 	async_cow = container_of(work, struct async_cow, work);
921 
922 	compress_file_range(async_cow->inode, async_cow->locked_page,
923 			    async_cow->start, async_cow->end, async_cow,
924 			    &num_added);
925 	if (num_added == 0)
926 		async_cow->inode = NULL;
927 }
928 
929 /*
930  * work queue call back to submit previously compressed pages
931  */
932 static noinline void async_cow_submit(struct btrfs_work *work)
933 {
934 	struct async_cow *async_cow;
935 	struct btrfs_root *root;
936 	unsigned long nr_pages;
937 
938 	async_cow = container_of(work, struct async_cow, work);
939 
940 	root = async_cow->root;
941 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
942 		PAGE_CACHE_SHIFT;
943 
944 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
945 
946 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
947 	    5 * 1042 * 1024 &&
948 	    waitqueue_active(&root->fs_info->async_submit_wait))
949 		wake_up(&root->fs_info->async_submit_wait);
950 
951 	if (async_cow->inode)
952 		submit_compressed_extents(async_cow->inode, async_cow);
953 }
954 
955 static noinline void async_cow_free(struct btrfs_work *work)
956 {
957 	struct async_cow *async_cow;
958 	async_cow = container_of(work, struct async_cow, work);
959 	kfree(async_cow);
960 }
961 
962 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
963 				u64 start, u64 end, int *page_started,
964 				unsigned long *nr_written)
965 {
966 	struct async_cow *async_cow;
967 	struct btrfs_root *root = BTRFS_I(inode)->root;
968 	unsigned long nr_pages;
969 	u64 cur_end;
970 	int limit = 10 * 1024 * 1042;
971 
972 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
973 			 1, 0, NULL, GFP_NOFS);
974 	while (start < end) {
975 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
976 		BUG_ON(!async_cow);
977 		async_cow->inode = inode;
978 		async_cow->root = root;
979 		async_cow->locked_page = locked_page;
980 		async_cow->start = start;
981 
982 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
983 			cur_end = end;
984 		else
985 			cur_end = min(end, start + 512 * 1024 - 1);
986 
987 		async_cow->end = cur_end;
988 		INIT_LIST_HEAD(&async_cow->extents);
989 
990 		async_cow->work.func = async_cow_start;
991 		async_cow->work.ordered_func = async_cow_submit;
992 		async_cow->work.ordered_free = async_cow_free;
993 		async_cow->work.flags = 0;
994 
995 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
996 			PAGE_CACHE_SHIFT;
997 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
998 
999 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
1000 				   &async_cow->work);
1001 
1002 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1003 			wait_event(root->fs_info->async_submit_wait,
1004 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1005 			    limit));
1006 		}
1007 
1008 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1009 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1010 			wait_event(root->fs_info->async_submit_wait,
1011 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1012 			   0));
1013 		}
1014 
1015 		*nr_written += nr_pages;
1016 		start = cur_end + 1;
1017 	}
1018 	*page_started = 1;
1019 	return 0;
1020 }
1021 
1022 static noinline int csum_exist_in_range(struct btrfs_root *root,
1023 					u64 bytenr, u64 num_bytes)
1024 {
1025 	int ret;
1026 	struct btrfs_ordered_sum *sums;
1027 	LIST_HEAD(list);
1028 
1029 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1030 				       bytenr + num_bytes - 1, &list, 0);
1031 	if (ret == 0 && list_empty(&list))
1032 		return 0;
1033 
1034 	while (!list_empty(&list)) {
1035 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1036 		list_del(&sums->list);
1037 		kfree(sums);
1038 	}
1039 	return 1;
1040 }
1041 
1042 /*
1043  * when nowcow writeback call back.  This checks for snapshots or COW copies
1044  * of the extents that exist in the file, and COWs the file as required.
1045  *
1046  * If no cow copies or snapshots exist, we write directly to the existing
1047  * blocks on disk
1048  */
1049 static noinline int run_delalloc_nocow(struct inode *inode,
1050 				       struct page *locked_page,
1051 			      u64 start, u64 end, int *page_started, int force,
1052 			      unsigned long *nr_written)
1053 {
1054 	struct btrfs_root *root = BTRFS_I(inode)->root;
1055 	struct btrfs_trans_handle *trans;
1056 	struct extent_buffer *leaf;
1057 	struct btrfs_path *path;
1058 	struct btrfs_file_extent_item *fi;
1059 	struct btrfs_key found_key;
1060 	u64 cow_start;
1061 	u64 cur_offset;
1062 	u64 extent_end;
1063 	u64 extent_offset;
1064 	u64 disk_bytenr;
1065 	u64 num_bytes;
1066 	int extent_type;
1067 	int ret;
1068 	int type;
1069 	int nocow;
1070 	int check_prev = 1;
1071 	bool nolock;
1072 	u64 ino = btrfs_ino(inode);
1073 
1074 	path = btrfs_alloc_path();
1075 	BUG_ON(!path);
1076 
1077 	nolock = is_free_space_inode(root, inode);
1078 
1079 	if (nolock)
1080 		trans = btrfs_join_transaction_nolock(root, 1);
1081 	else
1082 		trans = btrfs_join_transaction(root, 1);
1083 	BUG_ON(IS_ERR(trans));
1084 
1085 	cow_start = (u64)-1;
1086 	cur_offset = start;
1087 	while (1) {
1088 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1089 					       cur_offset, 0);
1090 		BUG_ON(ret < 0);
1091 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1092 			leaf = path->nodes[0];
1093 			btrfs_item_key_to_cpu(leaf, &found_key,
1094 					      path->slots[0] - 1);
1095 			if (found_key.objectid == ino &&
1096 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1097 				path->slots[0]--;
1098 		}
1099 		check_prev = 0;
1100 next_slot:
1101 		leaf = path->nodes[0];
1102 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1103 			ret = btrfs_next_leaf(root, path);
1104 			if (ret < 0)
1105 				BUG_ON(1);
1106 			if (ret > 0)
1107 				break;
1108 			leaf = path->nodes[0];
1109 		}
1110 
1111 		nocow = 0;
1112 		disk_bytenr = 0;
1113 		num_bytes = 0;
1114 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115 
1116 		if (found_key.objectid > ino ||
1117 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1118 		    found_key.offset > end)
1119 			break;
1120 
1121 		if (found_key.offset > cur_offset) {
1122 			extent_end = found_key.offset;
1123 			extent_type = 0;
1124 			goto out_check;
1125 		}
1126 
1127 		fi = btrfs_item_ptr(leaf, path->slots[0],
1128 				    struct btrfs_file_extent_item);
1129 		extent_type = btrfs_file_extent_type(leaf, fi);
1130 
1131 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1132 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1133 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1135 			extent_end = found_key.offset +
1136 				btrfs_file_extent_num_bytes(leaf, fi);
1137 			if (extent_end <= start) {
1138 				path->slots[0]++;
1139 				goto next_slot;
1140 			}
1141 			if (disk_bytenr == 0)
1142 				goto out_check;
1143 			if (btrfs_file_extent_compression(leaf, fi) ||
1144 			    btrfs_file_extent_encryption(leaf, fi) ||
1145 			    btrfs_file_extent_other_encoding(leaf, fi))
1146 				goto out_check;
1147 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1148 				goto out_check;
1149 			if (btrfs_extent_readonly(root, disk_bytenr))
1150 				goto out_check;
1151 			if (btrfs_cross_ref_exist(trans, root, ino,
1152 						  found_key.offset -
1153 						  extent_offset, disk_bytenr))
1154 				goto out_check;
1155 			disk_bytenr += extent_offset;
1156 			disk_bytenr += cur_offset - found_key.offset;
1157 			num_bytes = min(end + 1, extent_end) - cur_offset;
1158 			/*
1159 			 * force cow if csum exists in the range.
1160 			 * this ensure that csum for a given extent are
1161 			 * either valid or do not exist.
1162 			 */
1163 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1164 				goto out_check;
1165 			nocow = 1;
1166 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1167 			extent_end = found_key.offset +
1168 				btrfs_file_extent_inline_len(leaf, fi);
1169 			extent_end = ALIGN(extent_end, root->sectorsize);
1170 		} else {
1171 			BUG_ON(1);
1172 		}
1173 out_check:
1174 		if (extent_end <= start) {
1175 			path->slots[0]++;
1176 			goto next_slot;
1177 		}
1178 		if (!nocow) {
1179 			if (cow_start == (u64)-1)
1180 				cow_start = cur_offset;
1181 			cur_offset = extent_end;
1182 			if (cur_offset > end)
1183 				break;
1184 			path->slots[0]++;
1185 			goto next_slot;
1186 		}
1187 
1188 		btrfs_release_path(path);
1189 		if (cow_start != (u64)-1) {
1190 			ret = cow_file_range(inode, locked_page, cow_start,
1191 					found_key.offset - 1, page_started,
1192 					nr_written, 1);
1193 			BUG_ON(ret);
1194 			cow_start = (u64)-1;
1195 		}
1196 
1197 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1198 			struct extent_map *em;
1199 			struct extent_map_tree *em_tree;
1200 			em_tree = &BTRFS_I(inode)->extent_tree;
1201 			em = alloc_extent_map();
1202 			BUG_ON(!em);
1203 			em->start = cur_offset;
1204 			em->orig_start = em->start;
1205 			em->len = num_bytes;
1206 			em->block_len = num_bytes;
1207 			em->block_start = disk_bytenr;
1208 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1209 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1210 			while (1) {
1211 				write_lock(&em_tree->lock);
1212 				ret = add_extent_mapping(em_tree, em);
1213 				write_unlock(&em_tree->lock);
1214 				if (ret != -EEXIST) {
1215 					free_extent_map(em);
1216 					break;
1217 				}
1218 				btrfs_drop_extent_cache(inode, em->start,
1219 						em->start + em->len - 1, 0);
1220 			}
1221 			type = BTRFS_ORDERED_PREALLOC;
1222 		} else {
1223 			type = BTRFS_ORDERED_NOCOW;
1224 		}
1225 
1226 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1227 					       num_bytes, num_bytes, type);
1228 		BUG_ON(ret);
1229 
1230 		if (root->root_key.objectid ==
1231 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1232 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1233 						      num_bytes);
1234 			BUG_ON(ret);
1235 		}
1236 
1237 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1238 				cur_offset, cur_offset + num_bytes - 1,
1239 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1240 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1241 				EXTENT_SET_PRIVATE2);
1242 		cur_offset = extent_end;
1243 		if (cur_offset > end)
1244 			break;
1245 	}
1246 	btrfs_release_path(path);
1247 
1248 	if (cur_offset <= end && cow_start == (u64)-1)
1249 		cow_start = cur_offset;
1250 	if (cow_start != (u64)-1) {
1251 		ret = cow_file_range(inode, locked_page, cow_start, end,
1252 				     page_started, nr_written, 1);
1253 		BUG_ON(ret);
1254 	}
1255 
1256 	if (nolock) {
1257 		ret = btrfs_end_transaction_nolock(trans, root);
1258 		BUG_ON(ret);
1259 	} else {
1260 		ret = btrfs_end_transaction(trans, root);
1261 		BUG_ON(ret);
1262 	}
1263 	btrfs_free_path(path);
1264 	return 0;
1265 }
1266 
1267 /*
1268  * extent_io.c call back to do delayed allocation processing
1269  */
1270 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1271 			      u64 start, u64 end, int *page_started,
1272 			      unsigned long *nr_written)
1273 {
1274 	int ret;
1275 	struct btrfs_root *root = BTRFS_I(inode)->root;
1276 
1277 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1278 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1279 					 page_started, 1, nr_written);
1280 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1281 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1282 					 page_started, 0, nr_written);
1283 	else if (!btrfs_test_opt(root, COMPRESS) &&
1284 		 !(BTRFS_I(inode)->force_compress) &&
1285 		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1286 		ret = cow_file_range(inode, locked_page, start, end,
1287 				      page_started, nr_written, 1);
1288 	else
1289 		ret = cow_file_range_async(inode, locked_page, start, end,
1290 					   page_started, nr_written);
1291 	return ret;
1292 }
1293 
1294 static int btrfs_split_extent_hook(struct inode *inode,
1295 				   struct extent_state *orig, u64 split)
1296 {
1297 	/* not delalloc, ignore it */
1298 	if (!(orig->state & EXTENT_DELALLOC))
1299 		return 0;
1300 
1301 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1302 	return 0;
1303 }
1304 
1305 /*
1306  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307  * extents so we can keep track of new extents that are just merged onto old
1308  * extents, such as when we are doing sequential writes, so we can properly
1309  * account for the metadata space we'll need.
1310  */
1311 static int btrfs_merge_extent_hook(struct inode *inode,
1312 				   struct extent_state *new,
1313 				   struct extent_state *other)
1314 {
1315 	/* not delalloc, ignore it */
1316 	if (!(other->state & EXTENT_DELALLOC))
1317 		return 0;
1318 
1319 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1320 	return 0;
1321 }
1322 
1323 /*
1324  * extent_io.c set_bit_hook, used to track delayed allocation
1325  * bytes in this file, and to maintain the list of inodes that
1326  * have pending delalloc work to be done.
1327  */
1328 static int btrfs_set_bit_hook(struct inode *inode,
1329 			      struct extent_state *state, int *bits)
1330 {
1331 
1332 	/*
1333 	 * set_bit and clear bit hooks normally require _irqsave/restore
1334 	 * but in this case, we are only testing for the DELALLOC
1335 	 * bit, which is only set or cleared with irqs on
1336 	 */
1337 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1338 		struct btrfs_root *root = BTRFS_I(inode)->root;
1339 		u64 len = state->end + 1 - state->start;
1340 		bool do_list = !is_free_space_inode(root, inode);
1341 
1342 		if (*bits & EXTENT_FIRST_DELALLOC)
1343 			*bits &= ~EXTENT_FIRST_DELALLOC;
1344 		else
1345 			atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1346 
1347 		spin_lock(&root->fs_info->delalloc_lock);
1348 		BTRFS_I(inode)->delalloc_bytes += len;
1349 		root->fs_info->delalloc_bytes += len;
1350 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1351 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1352 				      &root->fs_info->delalloc_inodes);
1353 		}
1354 		spin_unlock(&root->fs_info->delalloc_lock);
1355 	}
1356 	return 0;
1357 }
1358 
1359 /*
1360  * extent_io.c clear_bit_hook, see set_bit_hook for why
1361  */
1362 static int btrfs_clear_bit_hook(struct inode *inode,
1363 				struct extent_state *state, int *bits)
1364 {
1365 	/*
1366 	 * set_bit and clear bit hooks normally require _irqsave/restore
1367 	 * but in this case, we are only testing for the DELALLOC
1368 	 * bit, which is only set or cleared with irqs on
1369 	 */
1370 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1371 		struct btrfs_root *root = BTRFS_I(inode)->root;
1372 		u64 len = state->end + 1 - state->start;
1373 		bool do_list = !is_free_space_inode(root, inode);
1374 
1375 		if (*bits & EXTENT_FIRST_DELALLOC)
1376 			*bits &= ~EXTENT_FIRST_DELALLOC;
1377 		else if (!(*bits & EXTENT_DO_ACCOUNTING))
1378 			atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1379 
1380 		if (*bits & EXTENT_DO_ACCOUNTING)
1381 			btrfs_delalloc_release_metadata(inode, len);
1382 
1383 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1384 		    && do_list)
1385 			btrfs_free_reserved_data_space(inode, len);
1386 
1387 		spin_lock(&root->fs_info->delalloc_lock);
1388 		root->fs_info->delalloc_bytes -= len;
1389 		BTRFS_I(inode)->delalloc_bytes -= len;
1390 
1391 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1392 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1393 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1394 		}
1395 		spin_unlock(&root->fs_info->delalloc_lock);
1396 	}
1397 	return 0;
1398 }
1399 
1400 /*
1401  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1402  * we don't create bios that span stripes or chunks
1403  */
1404 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1405 			 size_t size, struct bio *bio,
1406 			 unsigned long bio_flags)
1407 {
1408 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1409 	struct btrfs_mapping_tree *map_tree;
1410 	u64 logical = (u64)bio->bi_sector << 9;
1411 	u64 length = 0;
1412 	u64 map_length;
1413 	int ret;
1414 
1415 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1416 		return 0;
1417 
1418 	length = bio->bi_size;
1419 	map_tree = &root->fs_info->mapping_tree;
1420 	map_length = length;
1421 	ret = btrfs_map_block(map_tree, READ, logical,
1422 			      &map_length, NULL, 0);
1423 
1424 	if (map_length < length + size)
1425 		return 1;
1426 	return ret;
1427 }
1428 
1429 /*
1430  * in order to insert checksums into the metadata in large chunks,
1431  * we wait until bio submission time.   All the pages in the bio are
1432  * checksummed and sums are attached onto the ordered extent record.
1433  *
1434  * At IO completion time the cums attached on the ordered extent record
1435  * are inserted into the btree
1436  */
1437 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1438 				    struct bio *bio, int mirror_num,
1439 				    unsigned long bio_flags,
1440 				    u64 bio_offset)
1441 {
1442 	struct btrfs_root *root = BTRFS_I(inode)->root;
1443 	int ret = 0;
1444 
1445 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1446 	BUG_ON(ret);
1447 	return 0;
1448 }
1449 
1450 /*
1451  * in order to insert checksums into the metadata in large chunks,
1452  * we wait until bio submission time.   All the pages in the bio are
1453  * checksummed and sums are attached onto the ordered extent record.
1454  *
1455  * At IO completion time the cums attached on the ordered extent record
1456  * are inserted into the btree
1457  */
1458 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1459 			  int mirror_num, unsigned long bio_flags,
1460 			  u64 bio_offset)
1461 {
1462 	struct btrfs_root *root = BTRFS_I(inode)->root;
1463 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1464 }
1465 
1466 /*
1467  * extent_io.c submission hook. This does the right thing for csum calculation
1468  * on write, or reading the csums from the tree before a read
1469  */
1470 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1471 			  int mirror_num, unsigned long bio_flags,
1472 			  u64 bio_offset)
1473 {
1474 	struct btrfs_root *root = BTRFS_I(inode)->root;
1475 	int ret = 0;
1476 	int skip_sum;
1477 
1478 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1479 
1480 	if (is_free_space_inode(root, inode))
1481 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1482 	else
1483 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1484 	BUG_ON(ret);
1485 
1486 	if (!(rw & REQ_WRITE)) {
1487 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1488 			return btrfs_submit_compressed_read(inode, bio,
1489 						    mirror_num, bio_flags);
1490 		} else if (!skip_sum) {
1491 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1492 			if (ret)
1493 				return ret;
1494 		}
1495 		goto mapit;
1496 	} else if (!skip_sum) {
1497 		/* csum items have already been cloned */
1498 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1499 			goto mapit;
1500 		/* we're doing a write, do the async checksumming */
1501 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1502 				   inode, rw, bio, mirror_num,
1503 				   bio_flags, bio_offset,
1504 				   __btrfs_submit_bio_start,
1505 				   __btrfs_submit_bio_done);
1506 	}
1507 
1508 mapit:
1509 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1510 }
1511 
1512 /*
1513  * given a list of ordered sums record them in the inode.  This happens
1514  * at IO completion time based on sums calculated at bio submission time.
1515  */
1516 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1517 			     struct inode *inode, u64 file_offset,
1518 			     struct list_head *list)
1519 {
1520 	struct btrfs_ordered_sum *sum;
1521 
1522 	btrfs_set_trans_block_group(trans, inode);
1523 
1524 	list_for_each_entry(sum, list, list) {
1525 		btrfs_csum_file_blocks(trans,
1526 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1527 	}
1528 	return 0;
1529 }
1530 
1531 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1532 			      struct extent_state **cached_state)
1533 {
1534 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1535 		WARN_ON(1);
1536 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1537 				   cached_state, GFP_NOFS);
1538 }
1539 
1540 /* see btrfs_writepage_start_hook for details on why this is required */
1541 struct btrfs_writepage_fixup {
1542 	struct page *page;
1543 	struct btrfs_work work;
1544 };
1545 
1546 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1547 {
1548 	struct btrfs_writepage_fixup *fixup;
1549 	struct btrfs_ordered_extent *ordered;
1550 	struct extent_state *cached_state = NULL;
1551 	struct page *page;
1552 	struct inode *inode;
1553 	u64 page_start;
1554 	u64 page_end;
1555 
1556 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1557 	page = fixup->page;
1558 again:
1559 	lock_page(page);
1560 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1561 		ClearPageChecked(page);
1562 		goto out_page;
1563 	}
1564 
1565 	inode = page->mapping->host;
1566 	page_start = page_offset(page);
1567 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1568 
1569 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1570 			 &cached_state, GFP_NOFS);
1571 
1572 	/* already ordered? We're done */
1573 	if (PagePrivate2(page))
1574 		goto out;
1575 
1576 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1577 	if (ordered) {
1578 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1579 				     page_end, &cached_state, GFP_NOFS);
1580 		unlock_page(page);
1581 		btrfs_start_ordered_extent(inode, ordered, 1);
1582 		goto again;
1583 	}
1584 
1585 	BUG();
1586 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1587 	ClearPageChecked(page);
1588 out:
1589 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1590 			     &cached_state, GFP_NOFS);
1591 out_page:
1592 	unlock_page(page);
1593 	page_cache_release(page);
1594 	kfree(fixup);
1595 }
1596 
1597 /*
1598  * There are a few paths in the higher layers of the kernel that directly
1599  * set the page dirty bit without asking the filesystem if it is a
1600  * good idea.  This causes problems because we want to make sure COW
1601  * properly happens and the data=ordered rules are followed.
1602  *
1603  * In our case any range that doesn't have the ORDERED bit set
1604  * hasn't been properly setup for IO.  We kick off an async process
1605  * to fix it up.  The async helper will wait for ordered extents, set
1606  * the delalloc bit and make it safe to write the page.
1607  */
1608 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1609 {
1610 	struct inode *inode = page->mapping->host;
1611 	struct btrfs_writepage_fixup *fixup;
1612 	struct btrfs_root *root = BTRFS_I(inode)->root;
1613 
1614 	/* this page is properly in the ordered list */
1615 	if (TestClearPagePrivate2(page))
1616 		return 0;
1617 
1618 	if (PageChecked(page))
1619 		return -EAGAIN;
1620 
1621 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1622 	if (!fixup)
1623 		return -EAGAIN;
1624 
1625 	SetPageChecked(page);
1626 	page_cache_get(page);
1627 	fixup->work.func = btrfs_writepage_fixup_worker;
1628 	fixup->page = page;
1629 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1630 	return -EAGAIN;
1631 }
1632 
1633 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1634 				       struct inode *inode, u64 file_pos,
1635 				       u64 disk_bytenr, u64 disk_num_bytes,
1636 				       u64 num_bytes, u64 ram_bytes,
1637 				       u8 compression, u8 encryption,
1638 				       u16 other_encoding, int extent_type)
1639 {
1640 	struct btrfs_root *root = BTRFS_I(inode)->root;
1641 	struct btrfs_file_extent_item *fi;
1642 	struct btrfs_path *path;
1643 	struct extent_buffer *leaf;
1644 	struct btrfs_key ins;
1645 	u64 hint;
1646 	int ret;
1647 
1648 	path = btrfs_alloc_path();
1649 	BUG_ON(!path);
1650 
1651 	path->leave_spinning = 1;
1652 
1653 	/*
1654 	 * we may be replacing one extent in the tree with another.
1655 	 * The new extent is pinned in the extent map, and we don't want
1656 	 * to drop it from the cache until it is completely in the btree.
1657 	 *
1658 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1659 	 * the caller is expected to unpin it and allow it to be merged
1660 	 * with the others.
1661 	 */
1662 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1663 				 &hint, 0);
1664 	BUG_ON(ret);
1665 
1666 	ins.objectid = btrfs_ino(inode);
1667 	ins.offset = file_pos;
1668 	ins.type = BTRFS_EXTENT_DATA_KEY;
1669 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1670 	BUG_ON(ret);
1671 	leaf = path->nodes[0];
1672 	fi = btrfs_item_ptr(leaf, path->slots[0],
1673 			    struct btrfs_file_extent_item);
1674 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1675 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1676 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1677 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1678 	btrfs_set_file_extent_offset(leaf, fi, 0);
1679 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1680 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1681 	btrfs_set_file_extent_compression(leaf, fi, compression);
1682 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1683 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1684 
1685 	btrfs_unlock_up_safe(path, 1);
1686 	btrfs_set_lock_blocking(leaf);
1687 
1688 	btrfs_mark_buffer_dirty(leaf);
1689 
1690 	inode_add_bytes(inode, num_bytes);
1691 
1692 	ins.objectid = disk_bytenr;
1693 	ins.offset = disk_num_bytes;
1694 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1695 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1696 					root->root_key.objectid,
1697 					btrfs_ino(inode), file_pos, &ins);
1698 	BUG_ON(ret);
1699 	btrfs_free_path(path);
1700 
1701 	return 0;
1702 }
1703 
1704 /*
1705  * helper function for btrfs_finish_ordered_io, this
1706  * just reads in some of the csum leaves to prime them into ram
1707  * before we start the transaction.  It limits the amount of btree
1708  * reads required while inside the transaction.
1709  */
1710 /* as ordered data IO finishes, this gets called so we can finish
1711  * an ordered extent if the range of bytes in the file it covers are
1712  * fully written.
1713  */
1714 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1715 {
1716 	struct btrfs_root *root = BTRFS_I(inode)->root;
1717 	struct btrfs_trans_handle *trans = NULL;
1718 	struct btrfs_ordered_extent *ordered_extent = NULL;
1719 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1720 	struct extent_state *cached_state = NULL;
1721 	int compress_type = 0;
1722 	int ret;
1723 	bool nolock;
1724 
1725 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1726 					     end - start + 1);
1727 	if (!ret)
1728 		return 0;
1729 	BUG_ON(!ordered_extent);
1730 
1731 	nolock = is_free_space_inode(root, inode);
1732 
1733 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1734 		BUG_ON(!list_empty(&ordered_extent->list));
1735 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1736 		if (!ret) {
1737 			if (nolock)
1738 				trans = btrfs_join_transaction_nolock(root, 1);
1739 			else
1740 				trans = btrfs_join_transaction(root, 1);
1741 			BUG_ON(IS_ERR(trans));
1742 			btrfs_set_trans_block_group(trans, inode);
1743 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1744 			ret = btrfs_update_inode(trans, root, inode);
1745 			BUG_ON(ret);
1746 		}
1747 		goto out;
1748 	}
1749 
1750 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1751 			 ordered_extent->file_offset + ordered_extent->len - 1,
1752 			 0, &cached_state, GFP_NOFS);
1753 
1754 	if (nolock)
1755 		trans = btrfs_join_transaction_nolock(root, 1);
1756 	else
1757 		trans = btrfs_join_transaction(root, 1);
1758 	BUG_ON(IS_ERR(trans));
1759 	btrfs_set_trans_block_group(trans, inode);
1760 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1761 
1762 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1763 		compress_type = ordered_extent->compress_type;
1764 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1765 		BUG_ON(compress_type);
1766 		ret = btrfs_mark_extent_written(trans, inode,
1767 						ordered_extent->file_offset,
1768 						ordered_extent->file_offset +
1769 						ordered_extent->len);
1770 		BUG_ON(ret);
1771 	} else {
1772 		BUG_ON(root == root->fs_info->tree_root);
1773 		ret = insert_reserved_file_extent(trans, inode,
1774 						ordered_extent->file_offset,
1775 						ordered_extent->start,
1776 						ordered_extent->disk_len,
1777 						ordered_extent->len,
1778 						ordered_extent->len,
1779 						compress_type, 0, 0,
1780 						BTRFS_FILE_EXTENT_REG);
1781 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1782 				   ordered_extent->file_offset,
1783 				   ordered_extent->len);
1784 		BUG_ON(ret);
1785 	}
1786 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1787 			     ordered_extent->file_offset +
1788 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1789 
1790 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1791 			  &ordered_extent->list);
1792 
1793 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1794 	if (!ret) {
1795 		ret = btrfs_update_inode(trans, root, inode);
1796 		BUG_ON(ret);
1797 	}
1798 	ret = 0;
1799 out:
1800 	if (nolock) {
1801 		if (trans)
1802 			btrfs_end_transaction_nolock(trans, root);
1803 	} else {
1804 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1805 		if (trans)
1806 			btrfs_end_transaction(trans, root);
1807 	}
1808 
1809 	/* once for us */
1810 	btrfs_put_ordered_extent(ordered_extent);
1811 	/* once for the tree */
1812 	btrfs_put_ordered_extent(ordered_extent);
1813 
1814 	return 0;
1815 }
1816 
1817 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1818 				struct extent_state *state, int uptodate)
1819 {
1820 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1821 
1822 	ClearPagePrivate2(page);
1823 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1824 }
1825 
1826 /*
1827  * When IO fails, either with EIO or csum verification fails, we
1828  * try other mirrors that might have a good copy of the data.  This
1829  * io_failure_record is used to record state as we go through all the
1830  * mirrors.  If another mirror has good data, the page is set up to date
1831  * and things continue.  If a good mirror can't be found, the original
1832  * bio end_io callback is called to indicate things have failed.
1833  */
1834 struct io_failure_record {
1835 	struct page *page;
1836 	u64 start;
1837 	u64 len;
1838 	u64 logical;
1839 	unsigned long bio_flags;
1840 	int last_mirror;
1841 };
1842 
1843 static int btrfs_io_failed_hook(struct bio *failed_bio,
1844 			 struct page *page, u64 start, u64 end,
1845 			 struct extent_state *state)
1846 {
1847 	struct io_failure_record *failrec = NULL;
1848 	u64 private;
1849 	struct extent_map *em;
1850 	struct inode *inode = page->mapping->host;
1851 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1852 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1853 	struct bio *bio;
1854 	int num_copies;
1855 	int ret;
1856 	int rw;
1857 	u64 logical;
1858 
1859 	ret = get_state_private(failure_tree, start, &private);
1860 	if (ret) {
1861 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1862 		if (!failrec)
1863 			return -ENOMEM;
1864 		failrec->start = start;
1865 		failrec->len = end - start + 1;
1866 		failrec->last_mirror = 0;
1867 		failrec->bio_flags = 0;
1868 
1869 		read_lock(&em_tree->lock);
1870 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1871 		if (em->start > start || em->start + em->len < start) {
1872 			free_extent_map(em);
1873 			em = NULL;
1874 		}
1875 		read_unlock(&em_tree->lock);
1876 
1877 		if (IS_ERR_OR_NULL(em)) {
1878 			kfree(failrec);
1879 			return -EIO;
1880 		}
1881 		logical = start - em->start;
1882 		logical = em->block_start + logical;
1883 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1884 			logical = em->block_start;
1885 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1886 			extent_set_compress_type(&failrec->bio_flags,
1887 						 em->compress_type);
1888 		}
1889 		failrec->logical = logical;
1890 		free_extent_map(em);
1891 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1892 				EXTENT_DIRTY, GFP_NOFS);
1893 		set_state_private(failure_tree, start,
1894 				 (u64)(unsigned long)failrec);
1895 	} else {
1896 		failrec = (struct io_failure_record *)(unsigned long)private;
1897 	}
1898 	num_copies = btrfs_num_copies(
1899 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1900 			      failrec->logical, failrec->len);
1901 	failrec->last_mirror++;
1902 	if (!state) {
1903 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1904 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1905 						    failrec->start,
1906 						    EXTENT_LOCKED);
1907 		if (state && state->start != failrec->start)
1908 			state = NULL;
1909 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1910 	}
1911 	if (!state || failrec->last_mirror > num_copies) {
1912 		set_state_private(failure_tree, failrec->start, 0);
1913 		clear_extent_bits(failure_tree, failrec->start,
1914 				  failrec->start + failrec->len - 1,
1915 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1916 		kfree(failrec);
1917 		return -EIO;
1918 	}
1919 	bio = bio_alloc(GFP_NOFS, 1);
1920 	bio->bi_private = state;
1921 	bio->bi_end_io = failed_bio->bi_end_io;
1922 	bio->bi_sector = failrec->logical >> 9;
1923 	bio->bi_bdev = failed_bio->bi_bdev;
1924 	bio->bi_size = 0;
1925 
1926 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1927 	if (failed_bio->bi_rw & REQ_WRITE)
1928 		rw = WRITE;
1929 	else
1930 		rw = READ;
1931 
1932 	ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1933 						      failrec->last_mirror,
1934 						      failrec->bio_flags, 0);
1935 	return ret;
1936 }
1937 
1938 /*
1939  * each time an IO finishes, we do a fast check in the IO failure tree
1940  * to see if we need to process or clean up an io_failure_record
1941  */
1942 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1943 {
1944 	u64 private;
1945 	u64 private_failure;
1946 	struct io_failure_record *failure;
1947 	int ret;
1948 
1949 	private = 0;
1950 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1951 			     (u64)-1, 1, EXTENT_DIRTY, 0)) {
1952 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1953 					start, &private_failure);
1954 		if (ret == 0) {
1955 			failure = (struct io_failure_record *)(unsigned long)
1956 				   private_failure;
1957 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1958 					  failure->start, 0);
1959 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1960 					  failure->start,
1961 					  failure->start + failure->len - 1,
1962 					  EXTENT_DIRTY | EXTENT_LOCKED,
1963 					  GFP_NOFS);
1964 			kfree(failure);
1965 		}
1966 	}
1967 	return 0;
1968 }
1969 
1970 /*
1971  * when reads are done, we need to check csums to verify the data is correct
1972  * if there's a match, we allow the bio to finish.  If not, we go through
1973  * the io_failure_record routines to find good copies
1974  */
1975 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1976 			       struct extent_state *state)
1977 {
1978 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1979 	struct inode *inode = page->mapping->host;
1980 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1981 	char *kaddr;
1982 	u64 private = ~(u32)0;
1983 	int ret;
1984 	struct btrfs_root *root = BTRFS_I(inode)->root;
1985 	u32 csum = ~(u32)0;
1986 
1987 	if (PageChecked(page)) {
1988 		ClearPageChecked(page);
1989 		goto good;
1990 	}
1991 
1992 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1993 		return 0;
1994 
1995 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1996 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1997 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1998 				  GFP_NOFS);
1999 		return 0;
2000 	}
2001 
2002 	if (state && state->start == start) {
2003 		private = state->private;
2004 		ret = 0;
2005 	} else {
2006 		ret = get_state_private(io_tree, start, &private);
2007 	}
2008 	kaddr = kmap_atomic(page, KM_USER0);
2009 	if (ret)
2010 		goto zeroit;
2011 
2012 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2013 	btrfs_csum_final(csum, (char *)&csum);
2014 	if (csum != private)
2015 		goto zeroit;
2016 
2017 	kunmap_atomic(kaddr, KM_USER0);
2018 good:
2019 	/* if the io failure tree for this inode is non-empty,
2020 	 * check to see if we've recovered from a failed IO
2021 	 */
2022 	btrfs_clean_io_failures(inode, start);
2023 	return 0;
2024 
2025 zeroit:
2026 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2027 		       "private %llu\n",
2028 		       (unsigned long long)btrfs_ino(page->mapping->host),
2029 		       (unsigned long long)start, csum,
2030 		       (unsigned long long)private);
2031 	memset(kaddr + offset, 1, end - start + 1);
2032 	flush_dcache_page(page);
2033 	kunmap_atomic(kaddr, KM_USER0);
2034 	if (private == 0)
2035 		return 0;
2036 	return -EIO;
2037 }
2038 
2039 struct delayed_iput {
2040 	struct list_head list;
2041 	struct inode *inode;
2042 };
2043 
2044 void btrfs_add_delayed_iput(struct inode *inode)
2045 {
2046 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2047 	struct delayed_iput *delayed;
2048 
2049 	if (atomic_add_unless(&inode->i_count, -1, 1))
2050 		return;
2051 
2052 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2053 	delayed->inode = inode;
2054 
2055 	spin_lock(&fs_info->delayed_iput_lock);
2056 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2057 	spin_unlock(&fs_info->delayed_iput_lock);
2058 }
2059 
2060 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2061 {
2062 	LIST_HEAD(list);
2063 	struct btrfs_fs_info *fs_info = root->fs_info;
2064 	struct delayed_iput *delayed;
2065 	int empty;
2066 
2067 	spin_lock(&fs_info->delayed_iput_lock);
2068 	empty = list_empty(&fs_info->delayed_iputs);
2069 	spin_unlock(&fs_info->delayed_iput_lock);
2070 	if (empty)
2071 		return;
2072 
2073 	down_read(&root->fs_info->cleanup_work_sem);
2074 	spin_lock(&fs_info->delayed_iput_lock);
2075 	list_splice_init(&fs_info->delayed_iputs, &list);
2076 	spin_unlock(&fs_info->delayed_iput_lock);
2077 
2078 	while (!list_empty(&list)) {
2079 		delayed = list_entry(list.next, struct delayed_iput, list);
2080 		list_del(&delayed->list);
2081 		iput(delayed->inode);
2082 		kfree(delayed);
2083 	}
2084 	up_read(&root->fs_info->cleanup_work_sem);
2085 }
2086 
2087 /*
2088  * calculate extra metadata reservation when snapshotting a subvolume
2089  * contains orphan files.
2090  */
2091 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2092 				struct btrfs_pending_snapshot *pending,
2093 				u64 *bytes_to_reserve)
2094 {
2095 	struct btrfs_root *root;
2096 	struct btrfs_block_rsv *block_rsv;
2097 	u64 num_bytes;
2098 	int index;
2099 
2100 	root = pending->root;
2101 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2102 		return;
2103 
2104 	block_rsv = root->orphan_block_rsv;
2105 
2106 	/* orphan block reservation for the snapshot */
2107 	num_bytes = block_rsv->size;
2108 
2109 	/*
2110 	 * after the snapshot is created, COWing tree blocks may use more
2111 	 * space than it frees. So we should make sure there is enough
2112 	 * reserved space.
2113 	 */
2114 	index = trans->transid & 0x1;
2115 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2116 		num_bytes += block_rsv->size -
2117 			     (block_rsv->reserved + block_rsv->freed[index]);
2118 	}
2119 
2120 	*bytes_to_reserve += num_bytes;
2121 }
2122 
2123 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2124 				struct btrfs_pending_snapshot *pending)
2125 {
2126 	struct btrfs_root *root = pending->root;
2127 	struct btrfs_root *snap = pending->snap;
2128 	struct btrfs_block_rsv *block_rsv;
2129 	u64 num_bytes;
2130 	int index;
2131 	int ret;
2132 
2133 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2134 		return;
2135 
2136 	/* refill source subvolume's orphan block reservation */
2137 	block_rsv = root->orphan_block_rsv;
2138 	index = trans->transid & 0x1;
2139 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2140 		num_bytes = block_rsv->size -
2141 			    (block_rsv->reserved + block_rsv->freed[index]);
2142 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2143 					      root->orphan_block_rsv,
2144 					      num_bytes);
2145 		BUG_ON(ret);
2146 	}
2147 
2148 	/* setup orphan block reservation for the snapshot */
2149 	block_rsv = btrfs_alloc_block_rsv(snap);
2150 	BUG_ON(!block_rsv);
2151 
2152 	btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2153 	snap->orphan_block_rsv = block_rsv;
2154 
2155 	num_bytes = root->orphan_block_rsv->size;
2156 	ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2157 				      block_rsv, num_bytes);
2158 	BUG_ON(ret);
2159 
2160 #if 0
2161 	/* insert orphan item for the snapshot */
2162 	WARN_ON(!root->orphan_item_inserted);
2163 	ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2164 				       snap->root_key.objectid);
2165 	BUG_ON(ret);
2166 	snap->orphan_item_inserted = 1;
2167 #endif
2168 }
2169 
2170 enum btrfs_orphan_cleanup_state {
2171 	ORPHAN_CLEANUP_STARTED	= 1,
2172 	ORPHAN_CLEANUP_DONE	= 2,
2173 };
2174 
2175 /*
2176  * This is called in transaction commmit time. If there are no orphan
2177  * files in the subvolume, it removes orphan item and frees block_rsv
2178  * structure.
2179  */
2180 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2181 			      struct btrfs_root *root)
2182 {
2183 	int ret;
2184 
2185 	if (!list_empty(&root->orphan_list) ||
2186 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2187 		return;
2188 
2189 	if (root->orphan_item_inserted &&
2190 	    btrfs_root_refs(&root->root_item) > 0) {
2191 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2192 					    root->root_key.objectid);
2193 		BUG_ON(ret);
2194 		root->orphan_item_inserted = 0;
2195 	}
2196 
2197 	if (root->orphan_block_rsv) {
2198 		WARN_ON(root->orphan_block_rsv->size > 0);
2199 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
2200 		root->orphan_block_rsv = NULL;
2201 	}
2202 }
2203 
2204 /*
2205  * This creates an orphan entry for the given inode in case something goes
2206  * wrong in the middle of an unlink/truncate.
2207  *
2208  * NOTE: caller of this function should reserve 5 units of metadata for
2209  *	 this function.
2210  */
2211 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2212 {
2213 	struct btrfs_root *root = BTRFS_I(inode)->root;
2214 	struct btrfs_block_rsv *block_rsv = NULL;
2215 	int reserve = 0;
2216 	int insert = 0;
2217 	int ret;
2218 
2219 	if (!root->orphan_block_rsv) {
2220 		block_rsv = btrfs_alloc_block_rsv(root);
2221 		BUG_ON(!block_rsv);
2222 	}
2223 
2224 	spin_lock(&root->orphan_lock);
2225 	if (!root->orphan_block_rsv) {
2226 		root->orphan_block_rsv = block_rsv;
2227 	} else if (block_rsv) {
2228 		btrfs_free_block_rsv(root, block_rsv);
2229 		block_rsv = NULL;
2230 	}
2231 
2232 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2233 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2234 #if 0
2235 		/*
2236 		 * For proper ENOSPC handling, we should do orphan
2237 		 * cleanup when mounting. But this introduces backward
2238 		 * compatibility issue.
2239 		 */
2240 		if (!xchg(&root->orphan_item_inserted, 1))
2241 			insert = 2;
2242 		else
2243 			insert = 1;
2244 #endif
2245 		insert = 1;
2246 	}
2247 
2248 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2249 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2250 		reserve = 1;
2251 	}
2252 	spin_unlock(&root->orphan_lock);
2253 
2254 	if (block_rsv)
2255 		btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2256 
2257 	/* grab metadata reservation from transaction handle */
2258 	if (reserve) {
2259 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2260 		BUG_ON(ret);
2261 	}
2262 
2263 	/* insert an orphan item to track this unlinked/truncated file */
2264 	if (insert >= 1) {
2265 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2266 		BUG_ON(ret);
2267 	}
2268 
2269 	/* insert an orphan item to track subvolume contains orphan files */
2270 	if (insert >= 2) {
2271 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2272 					       root->root_key.objectid);
2273 		BUG_ON(ret);
2274 	}
2275 	return 0;
2276 }
2277 
2278 /*
2279  * We have done the truncate/delete so we can go ahead and remove the orphan
2280  * item for this particular inode.
2281  */
2282 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2283 {
2284 	struct btrfs_root *root = BTRFS_I(inode)->root;
2285 	int delete_item = 0;
2286 	int release_rsv = 0;
2287 	int ret = 0;
2288 
2289 	spin_lock(&root->orphan_lock);
2290 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2291 		list_del_init(&BTRFS_I(inode)->i_orphan);
2292 		delete_item = 1;
2293 	}
2294 
2295 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2296 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2297 		release_rsv = 1;
2298 	}
2299 	spin_unlock(&root->orphan_lock);
2300 
2301 	if (trans && delete_item) {
2302 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2303 		BUG_ON(ret);
2304 	}
2305 
2306 	if (release_rsv)
2307 		btrfs_orphan_release_metadata(inode);
2308 
2309 	return 0;
2310 }
2311 
2312 /*
2313  * this cleans up any orphans that may be left on the list from the last use
2314  * of this root.
2315  */
2316 int btrfs_orphan_cleanup(struct btrfs_root *root)
2317 {
2318 	struct btrfs_path *path;
2319 	struct extent_buffer *leaf;
2320 	struct btrfs_key key, found_key;
2321 	struct btrfs_trans_handle *trans;
2322 	struct inode *inode;
2323 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2324 
2325 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2326 		return 0;
2327 
2328 	path = btrfs_alloc_path();
2329 	if (!path) {
2330 		ret = -ENOMEM;
2331 		goto out;
2332 	}
2333 	path->reada = -1;
2334 
2335 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2336 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2337 	key.offset = (u64)-1;
2338 
2339 	while (1) {
2340 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2341 		if (ret < 0)
2342 			goto out;
2343 
2344 		/*
2345 		 * if ret == 0 means we found what we were searching for, which
2346 		 * is weird, but possible, so only screw with path if we didn't
2347 		 * find the key and see if we have stuff that matches
2348 		 */
2349 		if (ret > 0) {
2350 			ret = 0;
2351 			if (path->slots[0] == 0)
2352 				break;
2353 			path->slots[0]--;
2354 		}
2355 
2356 		/* pull out the item */
2357 		leaf = path->nodes[0];
2358 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2359 
2360 		/* make sure the item matches what we want */
2361 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2362 			break;
2363 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2364 			break;
2365 
2366 		/* release the path since we're done with it */
2367 		btrfs_release_path(path);
2368 
2369 		/*
2370 		 * this is where we are basically btrfs_lookup, without the
2371 		 * crossing root thing.  we store the inode number in the
2372 		 * offset of the orphan item.
2373 		 */
2374 		found_key.objectid = found_key.offset;
2375 		found_key.type = BTRFS_INODE_ITEM_KEY;
2376 		found_key.offset = 0;
2377 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2378 		if (IS_ERR(inode)) {
2379 			ret = PTR_ERR(inode);
2380 			goto out;
2381 		}
2382 
2383 		/*
2384 		 * add this inode to the orphan list so btrfs_orphan_del does
2385 		 * the proper thing when we hit it
2386 		 */
2387 		spin_lock(&root->orphan_lock);
2388 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2389 		spin_unlock(&root->orphan_lock);
2390 
2391 		/*
2392 		 * if this is a bad inode, means we actually succeeded in
2393 		 * removing the inode, but not the orphan record, which means
2394 		 * we need to manually delete the orphan since iput will just
2395 		 * do a destroy_inode
2396 		 */
2397 		if (is_bad_inode(inode)) {
2398 			trans = btrfs_start_transaction(root, 0);
2399 			if (IS_ERR(trans)) {
2400 				ret = PTR_ERR(trans);
2401 				goto out;
2402 			}
2403 			btrfs_orphan_del(trans, inode);
2404 			btrfs_end_transaction(trans, root);
2405 			iput(inode);
2406 			continue;
2407 		}
2408 
2409 		/* if we have links, this was a truncate, lets do that */
2410 		if (inode->i_nlink) {
2411 			if (!S_ISREG(inode->i_mode)) {
2412 				WARN_ON(1);
2413 				iput(inode);
2414 				continue;
2415 			}
2416 			nr_truncate++;
2417 			ret = btrfs_truncate(inode);
2418 		} else {
2419 			nr_unlink++;
2420 		}
2421 
2422 		/* this will do delete_inode and everything for us */
2423 		iput(inode);
2424 		if (ret)
2425 			goto out;
2426 	}
2427 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2428 
2429 	if (root->orphan_block_rsv)
2430 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2431 					(u64)-1);
2432 
2433 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2434 		trans = btrfs_join_transaction(root, 1);
2435 		if (!IS_ERR(trans))
2436 			btrfs_end_transaction(trans, root);
2437 	}
2438 
2439 	if (nr_unlink)
2440 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2441 	if (nr_truncate)
2442 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2443 
2444 out:
2445 	if (ret)
2446 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2447 	btrfs_free_path(path);
2448 	return ret;
2449 }
2450 
2451 /*
2452  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2453  * don't find any xattrs, we know there can't be any acls.
2454  *
2455  * slot is the slot the inode is in, objectid is the objectid of the inode
2456  */
2457 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2458 					  int slot, u64 objectid)
2459 {
2460 	u32 nritems = btrfs_header_nritems(leaf);
2461 	struct btrfs_key found_key;
2462 	int scanned = 0;
2463 
2464 	slot++;
2465 	while (slot < nritems) {
2466 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2467 
2468 		/* we found a different objectid, there must not be acls */
2469 		if (found_key.objectid != objectid)
2470 			return 0;
2471 
2472 		/* we found an xattr, assume we've got an acl */
2473 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2474 			return 1;
2475 
2476 		/*
2477 		 * we found a key greater than an xattr key, there can't
2478 		 * be any acls later on
2479 		 */
2480 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2481 			return 0;
2482 
2483 		slot++;
2484 		scanned++;
2485 
2486 		/*
2487 		 * it goes inode, inode backrefs, xattrs, extents,
2488 		 * so if there are a ton of hard links to an inode there can
2489 		 * be a lot of backrefs.  Don't waste time searching too hard,
2490 		 * this is just an optimization
2491 		 */
2492 		if (scanned >= 8)
2493 			break;
2494 	}
2495 	/* we hit the end of the leaf before we found an xattr or
2496 	 * something larger than an xattr.  We have to assume the inode
2497 	 * has acls
2498 	 */
2499 	return 1;
2500 }
2501 
2502 /*
2503  * read an inode from the btree into the in-memory inode
2504  */
2505 static void btrfs_read_locked_inode(struct inode *inode)
2506 {
2507 	struct btrfs_path *path;
2508 	struct extent_buffer *leaf;
2509 	struct btrfs_inode_item *inode_item;
2510 	struct btrfs_timespec *tspec;
2511 	struct btrfs_root *root = BTRFS_I(inode)->root;
2512 	struct btrfs_key location;
2513 	int maybe_acls;
2514 	u64 alloc_group_block;
2515 	u32 rdev;
2516 	int ret;
2517 
2518 	path = btrfs_alloc_path();
2519 	BUG_ON(!path);
2520 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2521 
2522 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2523 	if (ret)
2524 		goto make_bad;
2525 
2526 	leaf = path->nodes[0];
2527 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2528 				    struct btrfs_inode_item);
2529 
2530 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2531 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2532 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2533 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2534 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2535 
2536 	tspec = btrfs_inode_atime(inode_item);
2537 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2538 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2539 
2540 	tspec = btrfs_inode_mtime(inode_item);
2541 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2542 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2543 
2544 	tspec = btrfs_inode_ctime(inode_item);
2545 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2546 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2547 
2548 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2549 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2550 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2551 	inode->i_generation = BTRFS_I(inode)->generation;
2552 	inode->i_rdev = 0;
2553 	rdev = btrfs_inode_rdev(leaf, inode_item);
2554 
2555 	BTRFS_I(inode)->index_cnt = (u64)-1;
2556 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2557 
2558 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2559 
2560 	/*
2561 	 * try to precache a NULL acl entry for files that don't have
2562 	 * any xattrs or acls
2563 	 */
2564 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2565 					   btrfs_ino(inode));
2566 	if (!maybe_acls)
2567 		cache_no_acl(inode);
2568 
2569 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2570 						alloc_group_block, 0);
2571 	btrfs_free_path(path);
2572 	inode_item = NULL;
2573 
2574 	switch (inode->i_mode & S_IFMT) {
2575 	case S_IFREG:
2576 		inode->i_mapping->a_ops = &btrfs_aops;
2577 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2578 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2579 		inode->i_fop = &btrfs_file_operations;
2580 		inode->i_op = &btrfs_file_inode_operations;
2581 		break;
2582 	case S_IFDIR:
2583 		inode->i_fop = &btrfs_dir_file_operations;
2584 		if (root == root->fs_info->tree_root)
2585 			inode->i_op = &btrfs_dir_ro_inode_operations;
2586 		else
2587 			inode->i_op = &btrfs_dir_inode_operations;
2588 		break;
2589 	case S_IFLNK:
2590 		inode->i_op = &btrfs_symlink_inode_operations;
2591 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2592 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2593 		break;
2594 	default:
2595 		inode->i_op = &btrfs_special_inode_operations;
2596 		init_special_inode(inode, inode->i_mode, rdev);
2597 		break;
2598 	}
2599 
2600 	btrfs_update_iflags(inode);
2601 	return;
2602 
2603 make_bad:
2604 	btrfs_free_path(path);
2605 	make_bad_inode(inode);
2606 }
2607 
2608 /*
2609  * given a leaf and an inode, copy the inode fields into the leaf
2610  */
2611 static void fill_inode_item(struct btrfs_trans_handle *trans,
2612 			    struct extent_buffer *leaf,
2613 			    struct btrfs_inode_item *item,
2614 			    struct inode *inode)
2615 {
2616 	if (!leaf->map_token)
2617 		map_private_extent_buffer(leaf, (unsigned long)item,
2618 					  sizeof(struct btrfs_inode_item),
2619 					  &leaf->map_token, &leaf->kaddr,
2620 					  &leaf->map_start, &leaf->map_len,
2621 					  KM_USER1);
2622 
2623 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2624 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2625 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2626 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2627 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2628 
2629 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2630 			       inode->i_atime.tv_sec);
2631 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2632 				inode->i_atime.tv_nsec);
2633 
2634 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2635 			       inode->i_mtime.tv_sec);
2636 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2637 				inode->i_mtime.tv_nsec);
2638 
2639 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2640 			       inode->i_ctime.tv_sec);
2641 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2642 				inode->i_ctime.tv_nsec);
2643 
2644 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2645 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2646 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2647 	btrfs_set_inode_transid(leaf, item, trans->transid);
2648 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2649 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2650 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2651 
2652 	if (leaf->map_token) {
2653 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2654 		leaf->map_token = NULL;
2655 	}
2656 }
2657 
2658 /*
2659  * copy everything in the in-memory inode into the btree.
2660  */
2661 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2662 				struct btrfs_root *root, struct inode *inode)
2663 {
2664 	struct btrfs_inode_item *inode_item;
2665 	struct btrfs_path *path;
2666 	struct extent_buffer *leaf;
2667 	int ret;
2668 
2669 	/*
2670 	 * If root is tree root, it means this inode is used to
2671 	 * store free space information. And these inodes are updated
2672 	 * when committing the transaction, so they needn't delaye to
2673 	 * be updated, or deadlock will occured.
2674 	 */
2675 	if (!is_free_space_inode(root, inode)) {
2676 		ret = btrfs_delayed_update_inode(trans, root, inode);
2677 		if (!ret)
2678 			btrfs_set_inode_last_trans(trans, inode);
2679 		return ret;
2680 	}
2681 
2682 	path = btrfs_alloc_path();
2683 	if (!path)
2684 		return -ENOMEM;
2685 
2686 	path->leave_spinning = 1;
2687 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2688 				 1);
2689 	if (ret) {
2690 		if (ret > 0)
2691 			ret = -ENOENT;
2692 		goto failed;
2693 	}
2694 
2695 	btrfs_unlock_up_safe(path, 1);
2696 	leaf = path->nodes[0];
2697 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2698 				    struct btrfs_inode_item);
2699 
2700 	fill_inode_item(trans, leaf, inode_item, inode);
2701 	btrfs_mark_buffer_dirty(leaf);
2702 	btrfs_set_inode_last_trans(trans, inode);
2703 	ret = 0;
2704 failed:
2705 	btrfs_free_path(path);
2706 	return ret;
2707 }
2708 
2709 /*
2710  * unlink helper that gets used here in inode.c and in the tree logging
2711  * recovery code.  It remove a link in a directory with a given name, and
2712  * also drops the back refs in the inode to the directory
2713  */
2714 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2715 				struct btrfs_root *root,
2716 				struct inode *dir, struct inode *inode,
2717 				const char *name, int name_len)
2718 {
2719 	struct btrfs_path *path;
2720 	int ret = 0;
2721 	struct extent_buffer *leaf;
2722 	struct btrfs_dir_item *di;
2723 	struct btrfs_key key;
2724 	u64 index;
2725 	u64 ino = btrfs_ino(inode);
2726 	u64 dir_ino = btrfs_ino(dir);
2727 
2728 	path = btrfs_alloc_path();
2729 	if (!path) {
2730 		ret = -ENOMEM;
2731 		goto out;
2732 	}
2733 
2734 	path->leave_spinning = 1;
2735 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2736 				    name, name_len, -1);
2737 	if (IS_ERR(di)) {
2738 		ret = PTR_ERR(di);
2739 		goto err;
2740 	}
2741 	if (!di) {
2742 		ret = -ENOENT;
2743 		goto err;
2744 	}
2745 	leaf = path->nodes[0];
2746 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2747 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2748 	if (ret)
2749 		goto err;
2750 	btrfs_release_path(path);
2751 
2752 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2753 				  dir_ino, &index);
2754 	if (ret) {
2755 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2756 		       "inode %llu parent %llu\n", name_len, name,
2757 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2758 		goto err;
2759 	}
2760 
2761 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2762 	if (ret)
2763 		goto err;
2764 
2765 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2766 					 inode, dir_ino);
2767 	BUG_ON(ret != 0 && ret != -ENOENT);
2768 
2769 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2770 					   dir, index);
2771 	if (ret == -ENOENT)
2772 		ret = 0;
2773 err:
2774 	btrfs_free_path(path);
2775 	if (ret)
2776 		goto out;
2777 
2778 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2779 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2780 	btrfs_update_inode(trans, root, dir);
2781 out:
2782 	return ret;
2783 }
2784 
2785 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2786 		       struct btrfs_root *root,
2787 		       struct inode *dir, struct inode *inode,
2788 		       const char *name, int name_len)
2789 {
2790 	int ret;
2791 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2792 	if (!ret) {
2793 		btrfs_drop_nlink(inode);
2794 		ret = btrfs_update_inode(trans, root, inode);
2795 	}
2796 	return ret;
2797 }
2798 
2799 
2800 /* helper to check if there is any shared block in the path */
2801 static int check_path_shared(struct btrfs_root *root,
2802 			     struct btrfs_path *path)
2803 {
2804 	struct extent_buffer *eb;
2805 	int level;
2806 	u64 refs = 1;
2807 
2808 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2809 		int ret;
2810 
2811 		if (!path->nodes[level])
2812 			break;
2813 		eb = path->nodes[level];
2814 		if (!btrfs_block_can_be_shared(root, eb))
2815 			continue;
2816 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2817 					       &refs, NULL);
2818 		if (refs > 1)
2819 			return 1;
2820 	}
2821 	return 0;
2822 }
2823 
2824 /*
2825  * helper to start transaction for unlink and rmdir.
2826  *
2827  * unlink and rmdir are special in btrfs, they do not always free space.
2828  * so in enospc case, we should make sure they will free space before
2829  * allowing them to use the global metadata reservation.
2830  */
2831 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2832 						       struct dentry *dentry)
2833 {
2834 	struct btrfs_trans_handle *trans;
2835 	struct btrfs_root *root = BTRFS_I(dir)->root;
2836 	struct btrfs_path *path;
2837 	struct btrfs_inode_ref *ref;
2838 	struct btrfs_dir_item *di;
2839 	struct inode *inode = dentry->d_inode;
2840 	u64 index;
2841 	int check_link = 1;
2842 	int err = -ENOSPC;
2843 	int ret;
2844 	u64 ino = btrfs_ino(inode);
2845 	u64 dir_ino = btrfs_ino(dir);
2846 
2847 	trans = btrfs_start_transaction(root, 10);
2848 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2849 		return trans;
2850 
2851 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2852 		return ERR_PTR(-ENOSPC);
2853 
2854 	/* check if there is someone else holds reference */
2855 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2856 		return ERR_PTR(-ENOSPC);
2857 
2858 	if (atomic_read(&inode->i_count) > 2)
2859 		return ERR_PTR(-ENOSPC);
2860 
2861 	if (xchg(&root->fs_info->enospc_unlink, 1))
2862 		return ERR_PTR(-ENOSPC);
2863 
2864 	path = btrfs_alloc_path();
2865 	if (!path) {
2866 		root->fs_info->enospc_unlink = 0;
2867 		return ERR_PTR(-ENOMEM);
2868 	}
2869 
2870 	trans = btrfs_start_transaction(root, 0);
2871 	if (IS_ERR(trans)) {
2872 		btrfs_free_path(path);
2873 		root->fs_info->enospc_unlink = 0;
2874 		return trans;
2875 	}
2876 
2877 	path->skip_locking = 1;
2878 	path->search_commit_root = 1;
2879 
2880 	ret = btrfs_lookup_inode(trans, root, path,
2881 				&BTRFS_I(dir)->location, 0);
2882 	if (ret < 0) {
2883 		err = ret;
2884 		goto out;
2885 	}
2886 	if (ret == 0) {
2887 		if (check_path_shared(root, path))
2888 			goto out;
2889 	} else {
2890 		check_link = 0;
2891 	}
2892 	btrfs_release_path(path);
2893 
2894 	ret = btrfs_lookup_inode(trans, root, path,
2895 				&BTRFS_I(inode)->location, 0);
2896 	if (ret < 0) {
2897 		err = ret;
2898 		goto out;
2899 	}
2900 	if (ret == 0) {
2901 		if (check_path_shared(root, path))
2902 			goto out;
2903 	} else {
2904 		check_link = 0;
2905 	}
2906 	btrfs_release_path(path);
2907 
2908 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2909 		ret = btrfs_lookup_file_extent(trans, root, path,
2910 					       ino, (u64)-1, 0);
2911 		if (ret < 0) {
2912 			err = ret;
2913 			goto out;
2914 		}
2915 		BUG_ON(ret == 0);
2916 		if (check_path_shared(root, path))
2917 			goto out;
2918 		btrfs_release_path(path);
2919 	}
2920 
2921 	if (!check_link) {
2922 		err = 0;
2923 		goto out;
2924 	}
2925 
2926 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2927 				dentry->d_name.name, dentry->d_name.len, 0);
2928 	if (IS_ERR(di)) {
2929 		err = PTR_ERR(di);
2930 		goto out;
2931 	}
2932 	if (di) {
2933 		if (check_path_shared(root, path))
2934 			goto out;
2935 	} else {
2936 		err = 0;
2937 		goto out;
2938 	}
2939 	btrfs_release_path(path);
2940 
2941 	ref = btrfs_lookup_inode_ref(trans, root, path,
2942 				dentry->d_name.name, dentry->d_name.len,
2943 				ino, dir_ino, 0);
2944 	if (IS_ERR(ref)) {
2945 		err = PTR_ERR(ref);
2946 		goto out;
2947 	}
2948 	BUG_ON(!ref);
2949 	if (check_path_shared(root, path))
2950 		goto out;
2951 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2952 	btrfs_release_path(path);
2953 
2954 	/*
2955 	 * This is a commit root search, if we can lookup inode item and other
2956 	 * relative items in the commit root, it means the transaction of
2957 	 * dir/file creation has been committed, and the dir index item that we
2958 	 * delay to insert has also been inserted into the commit root. So
2959 	 * we needn't worry about the delayed insertion of the dir index item
2960 	 * here.
2961 	 */
2962 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2963 				dentry->d_name.name, dentry->d_name.len, 0);
2964 	if (IS_ERR(di)) {
2965 		err = PTR_ERR(di);
2966 		goto out;
2967 	}
2968 	BUG_ON(ret == -ENOENT);
2969 	if (check_path_shared(root, path))
2970 		goto out;
2971 
2972 	err = 0;
2973 out:
2974 	btrfs_free_path(path);
2975 	if (err) {
2976 		btrfs_end_transaction(trans, root);
2977 		root->fs_info->enospc_unlink = 0;
2978 		return ERR_PTR(err);
2979 	}
2980 
2981 	trans->block_rsv = &root->fs_info->global_block_rsv;
2982 	return trans;
2983 }
2984 
2985 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2986 			       struct btrfs_root *root)
2987 {
2988 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2989 		BUG_ON(!root->fs_info->enospc_unlink);
2990 		root->fs_info->enospc_unlink = 0;
2991 	}
2992 	btrfs_end_transaction_throttle(trans, root);
2993 }
2994 
2995 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2996 {
2997 	struct btrfs_root *root = BTRFS_I(dir)->root;
2998 	struct btrfs_trans_handle *trans;
2999 	struct inode *inode = dentry->d_inode;
3000 	int ret;
3001 	unsigned long nr = 0;
3002 
3003 	trans = __unlink_start_trans(dir, dentry);
3004 	if (IS_ERR(trans))
3005 		return PTR_ERR(trans);
3006 
3007 	btrfs_set_trans_block_group(trans, dir);
3008 
3009 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3010 
3011 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3012 				 dentry->d_name.name, dentry->d_name.len);
3013 	BUG_ON(ret);
3014 
3015 	if (inode->i_nlink == 0) {
3016 		ret = btrfs_orphan_add(trans, inode);
3017 		BUG_ON(ret);
3018 	}
3019 
3020 	nr = trans->blocks_used;
3021 	__unlink_end_trans(trans, root);
3022 	btrfs_btree_balance_dirty(root, nr);
3023 	return ret;
3024 }
3025 
3026 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3027 			struct btrfs_root *root,
3028 			struct inode *dir, u64 objectid,
3029 			const char *name, int name_len)
3030 {
3031 	struct btrfs_path *path;
3032 	struct extent_buffer *leaf;
3033 	struct btrfs_dir_item *di;
3034 	struct btrfs_key key;
3035 	u64 index;
3036 	int ret;
3037 	u64 dir_ino = btrfs_ino(dir);
3038 
3039 	path = btrfs_alloc_path();
3040 	if (!path)
3041 		return -ENOMEM;
3042 
3043 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3044 				   name, name_len, -1);
3045 	BUG_ON(IS_ERR_OR_NULL(di));
3046 
3047 	leaf = path->nodes[0];
3048 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3049 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3050 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3051 	BUG_ON(ret);
3052 	btrfs_release_path(path);
3053 
3054 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3055 				 objectid, root->root_key.objectid,
3056 				 dir_ino, &index, name, name_len);
3057 	if (ret < 0) {
3058 		BUG_ON(ret != -ENOENT);
3059 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3060 						 name, name_len);
3061 		BUG_ON(IS_ERR_OR_NULL(di));
3062 
3063 		leaf = path->nodes[0];
3064 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3065 		btrfs_release_path(path);
3066 		index = key.offset;
3067 	}
3068 	btrfs_release_path(path);
3069 
3070 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3071 	BUG_ON(ret);
3072 
3073 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3074 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3075 	ret = btrfs_update_inode(trans, root, dir);
3076 	BUG_ON(ret);
3077 
3078 	return 0;
3079 }
3080 
3081 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3082 {
3083 	struct inode *inode = dentry->d_inode;
3084 	int err = 0;
3085 	struct btrfs_root *root = BTRFS_I(dir)->root;
3086 	struct btrfs_trans_handle *trans;
3087 	unsigned long nr = 0;
3088 
3089 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3090 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3091 		return -ENOTEMPTY;
3092 
3093 	trans = __unlink_start_trans(dir, dentry);
3094 	if (IS_ERR(trans))
3095 		return PTR_ERR(trans);
3096 
3097 	btrfs_set_trans_block_group(trans, dir);
3098 
3099 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3100 		err = btrfs_unlink_subvol(trans, root, dir,
3101 					  BTRFS_I(inode)->location.objectid,
3102 					  dentry->d_name.name,
3103 					  dentry->d_name.len);
3104 		goto out;
3105 	}
3106 
3107 	err = btrfs_orphan_add(trans, inode);
3108 	if (err)
3109 		goto out;
3110 
3111 	/* now the directory is empty */
3112 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3113 				 dentry->d_name.name, dentry->d_name.len);
3114 	if (!err)
3115 		btrfs_i_size_write(inode, 0);
3116 out:
3117 	nr = trans->blocks_used;
3118 	__unlink_end_trans(trans, root);
3119 	btrfs_btree_balance_dirty(root, nr);
3120 
3121 	return err;
3122 }
3123 
3124 /*
3125  * this can truncate away extent items, csum items and directory items.
3126  * It starts at a high offset and removes keys until it can't find
3127  * any higher than new_size
3128  *
3129  * csum items that cross the new i_size are truncated to the new size
3130  * as well.
3131  *
3132  * min_type is the minimum key type to truncate down to.  If set to 0, this
3133  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3134  */
3135 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3136 			       struct btrfs_root *root,
3137 			       struct inode *inode,
3138 			       u64 new_size, u32 min_type)
3139 {
3140 	struct btrfs_path *path;
3141 	struct extent_buffer *leaf;
3142 	struct btrfs_file_extent_item *fi;
3143 	struct btrfs_key key;
3144 	struct btrfs_key found_key;
3145 	u64 extent_start = 0;
3146 	u64 extent_num_bytes = 0;
3147 	u64 extent_offset = 0;
3148 	u64 item_end = 0;
3149 	u64 mask = root->sectorsize - 1;
3150 	u32 found_type = (u8)-1;
3151 	int found_extent;
3152 	int del_item;
3153 	int pending_del_nr = 0;
3154 	int pending_del_slot = 0;
3155 	int extent_type = -1;
3156 	int encoding;
3157 	int ret;
3158 	int err = 0;
3159 	u64 ino = btrfs_ino(inode);
3160 
3161 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3162 
3163 	if (root->ref_cows || root == root->fs_info->tree_root)
3164 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3165 
3166 	/*
3167 	 * This function is also used to drop the items in the log tree before
3168 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3169 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3170 	 * items.
3171 	 */
3172 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3173 		btrfs_kill_delayed_inode_items(inode);
3174 
3175 	path = btrfs_alloc_path();
3176 	BUG_ON(!path);
3177 	path->reada = -1;
3178 
3179 	key.objectid = ino;
3180 	key.offset = (u64)-1;
3181 	key.type = (u8)-1;
3182 
3183 search_again:
3184 	path->leave_spinning = 1;
3185 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3186 	if (ret < 0) {
3187 		err = ret;
3188 		goto out;
3189 	}
3190 
3191 	if (ret > 0) {
3192 		/* there are no items in the tree for us to truncate, we're
3193 		 * done
3194 		 */
3195 		if (path->slots[0] == 0)
3196 			goto out;
3197 		path->slots[0]--;
3198 	}
3199 
3200 	while (1) {
3201 		fi = NULL;
3202 		leaf = path->nodes[0];
3203 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3204 		found_type = btrfs_key_type(&found_key);
3205 		encoding = 0;
3206 
3207 		if (found_key.objectid != ino)
3208 			break;
3209 
3210 		if (found_type < min_type)
3211 			break;
3212 
3213 		item_end = found_key.offset;
3214 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3215 			fi = btrfs_item_ptr(leaf, path->slots[0],
3216 					    struct btrfs_file_extent_item);
3217 			extent_type = btrfs_file_extent_type(leaf, fi);
3218 			encoding = btrfs_file_extent_compression(leaf, fi);
3219 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3220 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3221 
3222 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3223 				item_end +=
3224 				    btrfs_file_extent_num_bytes(leaf, fi);
3225 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3226 				item_end += btrfs_file_extent_inline_len(leaf,
3227 									 fi);
3228 			}
3229 			item_end--;
3230 		}
3231 		if (found_type > min_type) {
3232 			del_item = 1;
3233 		} else {
3234 			if (item_end < new_size)
3235 				break;
3236 			if (found_key.offset >= new_size)
3237 				del_item = 1;
3238 			else
3239 				del_item = 0;
3240 		}
3241 		found_extent = 0;
3242 		/* FIXME, shrink the extent if the ref count is only 1 */
3243 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3244 			goto delete;
3245 
3246 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3247 			u64 num_dec;
3248 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3249 			if (!del_item && !encoding) {
3250 				u64 orig_num_bytes =
3251 					btrfs_file_extent_num_bytes(leaf, fi);
3252 				extent_num_bytes = new_size -
3253 					found_key.offset + root->sectorsize - 1;
3254 				extent_num_bytes = extent_num_bytes &
3255 					~((u64)root->sectorsize - 1);
3256 				btrfs_set_file_extent_num_bytes(leaf, fi,
3257 							 extent_num_bytes);
3258 				num_dec = (orig_num_bytes -
3259 					   extent_num_bytes);
3260 				if (root->ref_cows && extent_start != 0)
3261 					inode_sub_bytes(inode, num_dec);
3262 				btrfs_mark_buffer_dirty(leaf);
3263 			} else {
3264 				extent_num_bytes =
3265 					btrfs_file_extent_disk_num_bytes(leaf,
3266 									 fi);
3267 				extent_offset = found_key.offset -
3268 					btrfs_file_extent_offset(leaf, fi);
3269 
3270 				/* FIXME blocksize != 4096 */
3271 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3272 				if (extent_start != 0) {
3273 					found_extent = 1;
3274 					if (root->ref_cows)
3275 						inode_sub_bytes(inode, num_dec);
3276 				}
3277 			}
3278 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3279 			/*
3280 			 * we can't truncate inline items that have had
3281 			 * special encodings
3282 			 */
3283 			if (!del_item &&
3284 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3285 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3286 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3287 				u32 size = new_size - found_key.offset;
3288 
3289 				if (root->ref_cows) {
3290 					inode_sub_bytes(inode, item_end + 1 -
3291 							new_size);
3292 				}
3293 				size =
3294 				    btrfs_file_extent_calc_inline_size(size);
3295 				ret = btrfs_truncate_item(trans, root, path,
3296 							  size, 1);
3297 			} else if (root->ref_cows) {
3298 				inode_sub_bytes(inode, item_end + 1 -
3299 						found_key.offset);
3300 			}
3301 		}
3302 delete:
3303 		if (del_item) {
3304 			if (!pending_del_nr) {
3305 				/* no pending yet, add ourselves */
3306 				pending_del_slot = path->slots[0];
3307 				pending_del_nr = 1;
3308 			} else if (pending_del_nr &&
3309 				   path->slots[0] + 1 == pending_del_slot) {
3310 				/* hop on the pending chunk */
3311 				pending_del_nr++;
3312 				pending_del_slot = path->slots[0];
3313 			} else {
3314 				BUG();
3315 			}
3316 		} else {
3317 			break;
3318 		}
3319 		if (found_extent && (root->ref_cows ||
3320 				     root == root->fs_info->tree_root)) {
3321 			btrfs_set_path_blocking(path);
3322 			ret = btrfs_free_extent(trans, root, extent_start,
3323 						extent_num_bytes, 0,
3324 						btrfs_header_owner(leaf),
3325 						ino, extent_offset);
3326 			BUG_ON(ret);
3327 		}
3328 
3329 		if (found_type == BTRFS_INODE_ITEM_KEY)
3330 			break;
3331 
3332 		if (path->slots[0] == 0 ||
3333 		    path->slots[0] != pending_del_slot) {
3334 			if (root->ref_cows &&
3335 			    BTRFS_I(inode)->location.objectid !=
3336 						BTRFS_FREE_INO_OBJECTID) {
3337 				err = -EAGAIN;
3338 				goto out;
3339 			}
3340 			if (pending_del_nr) {
3341 				ret = btrfs_del_items(trans, root, path,
3342 						pending_del_slot,
3343 						pending_del_nr);
3344 				BUG_ON(ret);
3345 				pending_del_nr = 0;
3346 			}
3347 			btrfs_release_path(path);
3348 			goto search_again;
3349 		} else {
3350 			path->slots[0]--;
3351 		}
3352 	}
3353 out:
3354 	if (pending_del_nr) {
3355 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3356 				      pending_del_nr);
3357 		BUG_ON(ret);
3358 	}
3359 	btrfs_free_path(path);
3360 	return err;
3361 }
3362 
3363 /*
3364  * taken from block_truncate_page, but does cow as it zeros out
3365  * any bytes left in the last page in the file.
3366  */
3367 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3368 {
3369 	struct inode *inode = mapping->host;
3370 	struct btrfs_root *root = BTRFS_I(inode)->root;
3371 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3372 	struct btrfs_ordered_extent *ordered;
3373 	struct extent_state *cached_state = NULL;
3374 	char *kaddr;
3375 	u32 blocksize = root->sectorsize;
3376 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3377 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3378 	struct page *page;
3379 	int ret = 0;
3380 	u64 page_start;
3381 	u64 page_end;
3382 
3383 	if ((offset & (blocksize - 1)) == 0)
3384 		goto out;
3385 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3386 	if (ret)
3387 		goto out;
3388 
3389 	ret = -ENOMEM;
3390 again:
3391 	page = grab_cache_page(mapping, index);
3392 	if (!page) {
3393 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3394 		goto out;
3395 	}
3396 
3397 	page_start = page_offset(page);
3398 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3399 
3400 	if (!PageUptodate(page)) {
3401 		ret = btrfs_readpage(NULL, page);
3402 		lock_page(page);
3403 		if (page->mapping != mapping) {
3404 			unlock_page(page);
3405 			page_cache_release(page);
3406 			goto again;
3407 		}
3408 		if (!PageUptodate(page)) {
3409 			ret = -EIO;
3410 			goto out_unlock;
3411 		}
3412 	}
3413 	wait_on_page_writeback(page);
3414 
3415 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3416 			 GFP_NOFS);
3417 	set_page_extent_mapped(page);
3418 
3419 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3420 	if (ordered) {
3421 		unlock_extent_cached(io_tree, page_start, page_end,
3422 				     &cached_state, GFP_NOFS);
3423 		unlock_page(page);
3424 		page_cache_release(page);
3425 		btrfs_start_ordered_extent(inode, ordered, 1);
3426 		btrfs_put_ordered_extent(ordered);
3427 		goto again;
3428 	}
3429 
3430 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3431 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3432 			  0, 0, &cached_state, GFP_NOFS);
3433 
3434 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3435 					&cached_state);
3436 	if (ret) {
3437 		unlock_extent_cached(io_tree, page_start, page_end,
3438 				     &cached_state, GFP_NOFS);
3439 		goto out_unlock;
3440 	}
3441 
3442 	ret = 0;
3443 	if (offset != PAGE_CACHE_SIZE) {
3444 		kaddr = kmap(page);
3445 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3446 		flush_dcache_page(page);
3447 		kunmap(page);
3448 	}
3449 	ClearPageChecked(page);
3450 	set_page_dirty(page);
3451 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3452 			     GFP_NOFS);
3453 
3454 out_unlock:
3455 	if (ret)
3456 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3457 	unlock_page(page);
3458 	page_cache_release(page);
3459 out:
3460 	return ret;
3461 }
3462 
3463 /*
3464  * This function puts in dummy file extents for the area we're creating a hole
3465  * for.  So if we are truncating this file to a larger size we need to insert
3466  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3467  * the range between oldsize and size
3468  */
3469 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3470 {
3471 	struct btrfs_trans_handle *trans;
3472 	struct btrfs_root *root = BTRFS_I(inode)->root;
3473 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3474 	struct extent_map *em = NULL;
3475 	struct extent_state *cached_state = NULL;
3476 	u64 mask = root->sectorsize - 1;
3477 	u64 hole_start = (oldsize + mask) & ~mask;
3478 	u64 block_end = (size + mask) & ~mask;
3479 	u64 last_byte;
3480 	u64 cur_offset;
3481 	u64 hole_size;
3482 	int err = 0;
3483 
3484 	if (size <= hole_start)
3485 		return 0;
3486 
3487 	while (1) {
3488 		struct btrfs_ordered_extent *ordered;
3489 		btrfs_wait_ordered_range(inode, hole_start,
3490 					 block_end - hole_start);
3491 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3492 				 &cached_state, GFP_NOFS);
3493 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3494 		if (!ordered)
3495 			break;
3496 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3497 				     &cached_state, GFP_NOFS);
3498 		btrfs_put_ordered_extent(ordered);
3499 	}
3500 
3501 	cur_offset = hole_start;
3502 	while (1) {
3503 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3504 				block_end - cur_offset, 0);
3505 		BUG_ON(IS_ERR_OR_NULL(em));
3506 		last_byte = min(extent_map_end(em), block_end);
3507 		last_byte = (last_byte + mask) & ~mask;
3508 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3509 			u64 hint_byte = 0;
3510 			hole_size = last_byte - cur_offset;
3511 
3512 			trans = btrfs_start_transaction(root, 2);
3513 			if (IS_ERR(trans)) {
3514 				err = PTR_ERR(trans);
3515 				break;
3516 			}
3517 			btrfs_set_trans_block_group(trans, inode);
3518 
3519 			err = btrfs_drop_extents(trans, inode, cur_offset,
3520 						 cur_offset + hole_size,
3521 						 &hint_byte, 1);
3522 			if (err)
3523 				break;
3524 
3525 			err = btrfs_insert_file_extent(trans, root,
3526 					btrfs_ino(inode), cur_offset, 0,
3527 					0, hole_size, 0, hole_size,
3528 					0, 0, 0);
3529 			if (err)
3530 				break;
3531 
3532 			btrfs_drop_extent_cache(inode, hole_start,
3533 					last_byte - 1, 0);
3534 
3535 			btrfs_end_transaction(trans, root);
3536 		}
3537 		free_extent_map(em);
3538 		em = NULL;
3539 		cur_offset = last_byte;
3540 		if (cur_offset >= block_end)
3541 			break;
3542 	}
3543 
3544 	free_extent_map(em);
3545 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3546 			     GFP_NOFS);
3547 	return err;
3548 }
3549 
3550 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3551 {
3552 	loff_t oldsize = i_size_read(inode);
3553 	int ret;
3554 
3555 	if (newsize == oldsize)
3556 		return 0;
3557 
3558 	if (newsize > oldsize) {
3559 		i_size_write(inode, newsize);
3560 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3561 		truncate_pagecache(inode, oldsize, newsize);
3562 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3563 		if (ret) {
3564 			btrfs_setsize(inode, oldsize);
3565 			return ret;
3566 		}
3567 
3568 		mark_inode_dirty(inode);
3569 	} else {
3570 
3571 		/*
3572 		 * We're truncating a file that used to have good data down to
3573 		 * zero. Make sure it gets into the ordered flush list so that
3574 		 * any new writes get down to disk quickly.
3575 		 */
3576 		if (newsize == 0)
3577 			BTRFS_I(inode)->ordered_data_close = 1;
3578 
3579 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3580 		truncate_setsize(inode, newsize);
3581 		ret = btrfs_truncate(inode);
3582 	}
3583 
3584 	return ret;
3585 }
3586 
3587 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3588 {
3589 	struct inode *inode = dentry->d_inode;
3590 	struct btrfs_root *root = BTRFS_I(inode)->root;
3591 	int err;
3592 
3593 	if (btrfs_root_readonly(root))
3594 		return -EROFS;
3595 
3596 	err = inode_change_ok(inode, attr);
3597 	if (err)
3598 		return err;
3599 
3600 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3601 		err = btrfs_setsize(inode, attr->ia_size);
3602 		if (err)
3603 			return err;
3604 	}
3605 
3606 	if (attr->ia_valid) {
3607 		setattr_copy(inode, attr);
3608 		mark_inode_dirty(inode);
3609 
3610 		if (attr->ia_valid & ATTR_MODE)
3611 			err = btrfs_acl_chmod(inode);
3612 	}
3613 
3614 	return err;
3615 }
3616 
3617 void btrfs_evict_inode(struct inode *inode)
3618 {
3619 	struct btrfs_trans_handle *trans;
3620 	struct btrfs_root *root = BTRFS_I(inode)->root;
3621 	unsigned long nr;
3622 	int ret;
3623 
3624 	trace_btrfs_inode_evict(inode);
3625 
3626 	truncate_inode_pages(&inode->i_data, 0);
3627 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3628 			       is_free_space_inode(root, inode)))
3629 		goto no_delete;
3630 
3631 	if (is_bad_inode(inode)) {
3632 		btrfs_orphan_del(NULL, inode);
3633 		goto no_delete;
3634 	}
3635 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3636 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3637 
3638 	if (root->fs_info->log_root_recovering) {
3639 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3640 		goto no_delete;
3641 	}
3642 
3643 	if (inode->i_nlink > 0) {
3644 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3645 		goto no_delete;
3646 	}
3647 
3648 	btrfs_i_size_write(inode, 0);
3649 
3650 	while (1) {
3651 		trans = btrfs_start_transaction(root, 0);
3652 		BUG_ON(IS_ERR(trans));
3653 		btrfs_set_trans_block_group(trans, inode);
3654 		trans->block_rsv = root->orphan_block_rsv;
3655 
3656 		ret = btrfs_block_rsv_check(trans, root,
3657 					    root->orphan_block_rsv, 0, 5);
3658 		if (ret) {
3659 			BUG_ON(ret != -EAGAIN);
3660 			ret = btrfs_commit_transaction(trans, root);
3661 			BUG_ON(ret);
3662 			continue;
3663 		}
3664 
3665 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3666 		if (ret != -EAGAIN)
3667 			break;
3668 
3669 		nr = trans->blocks_used;
3670 		btrfs_end_transaction(trans, root);
3671 		trans = NULL;
3672 		btrfs_btree_balance_dirty(root, nr);
3673 
3674 	}
3675 
3676 	if (ret == 0) {
3677 		ret = btrfs_orphan_del(trans, inode);
3678 		BUG_ON(ret);
3679 	}
3680 
3681 	if (!(root == root->fs_info->tree_root ||
3682 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3683 		btrfs_return_ino(root, btrfs_ino(inode));
3684 
3685 	nr = trans->blocks_used;
3686 	btrfs_end_transaction(trans, root);
3687 	btrfs_btree_balance_dirty(root, nr);
3688 no_delete:
3689 	end_writeback(inode);
3690 	return;
3691 }
3692 
3693 /*
3694  * this returns the key found in the dir entry in the location pointer.
3695  * If no dir entries were found, location->objectid is 0.
3696  */
3697 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3698 			       struct btrfs_key *location)
3699 {
3700 	const char *name = dentry->d_name.name;
3701 	int namelen = dentry->d_name.len;
3702 	struct btrfs_dir_item *di;
3703 	struct btrfs_path *path;
3704 	struct btrfs_root *root = BTRFS_I(dir)->root;
3705 	int ret = 0;
3706 
3707 	path = btrfs_alloc_path();
3708 	BUG_ON(!path);
3709 
3710 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3711 				    namelen, 0);
3712 	if (IS_ERR(di))
3713 		ret = PTR_ERR(di);
3714 
3715 	if (IS_ERR_OR_NULL(di))
3716 		goto out_err;
3717 
3718 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3719 out:
3720 	btrfs_free_path(path);
3721 	return ret;
3722 out_err:
3723 	location->objectid = 0;
3724 	goto out;
3725 }
3726 
3727 /*
3728  * when we hit a tree root in a directory, the btrfs part of the inode
3729  * needs to be changed to reflect the root directory of the tree root.  This
3730  * is kind of like crossing a mount point.
3731  */
3732 static int fixup_tree_root_location(struct btrfs_root *root,
3733 				    struct inode *dir,
3734 				    struct dentry *dentry,
3735 				    struct btrfs_key *location,
3736 				    struct btrfs_root **sub_root)
3737 {
3738 	struct btrfs_path *path;
3739 	struct btrfs_root *new_root;
3740 	struct btrfs_root_ref *ref;
3741 	struct extent_buffer *leaf;
3742 	int ret;
3743 	int err = 0;
3744 
3745 	path = btrfs_alloc_path();
3746 	if (!path) {
3747 		err = -ENOMEM;
3748 		goto out;
3749 	}
3750 
3751 	err = -ENOENT;
3752 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3753 				  BTRFS_I(dir)->root->root_key.objectid,
3754 				  location->objectid);
3755 	if (ret) {
3756 		if (ret < 0)
3757 			err = ret;
3758 		goto out;
3759 	}
3760 
3761 	leaf = path->nodes[0];
3762 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3763 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3764 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3765 		goto out;
3766 
3767 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3768 				   (unsigned long)(ref + 1),
3769 				   dentry->d_name.len);
3770 	if (ret)
3771 		goto out;
3772 
3773 	btrfs_release_path(path);
3774 
3775 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3776 	if (IS_ERR(new_root)) {
3777 		err = PTR_ERR(new_root);
3778 		goto out;
3779 	}
3780 
3781 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3782 		err = -ENOENT;
3783 		goto out;
3784 	}
3785 
3786 	*sub_root = new_root;
3787 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3788 	location->type = BTRFS_INODE_ITEM_KEY;
3789 	location->offset = 0;
3790 	err = 0;
3791 out:
3792 	btrfs_free_path(path);
3793 	return err;
3794 }
3795 
3796 static void inode_tree_add(struct inode *inode)
3797 {
3798 	struct btrfs_root *root = BTRFS_I(inode)->root;
3799 	struct btrfs_inode *entry;
3800 	struct rb_node **p;
3801 	struct rb_node *parent;
3802 	u64 ino = btrfs_ino(inode);
3803 again:
3804 	p = &root->inode_tree.rb_node;
3805 	parent = NULL;
3806 
3807 	if (inode_unhashed(inode))
3808 		return;
3809 
3810 	spin_lock(&root->inode_lock);
3811 	while (*p) {
3812 		parent = *p;
3813 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3814 
3815 		if (ino < btrfs_ino(&entry->vfs_inode))
3816 			p = &parent->rb_left;
3817 		else if (ino > btrfs_ino(&entry->vfs_inode))
3818 			p = &parent->rb_right;
3819 		else {
3820 			WARN_ON(!(entry->vfs_inode.i_state &
3821 				  (I_WILL_FREE | I_FREEING)));
3822 			rb_erase(parent, &root->inode_tree);
3823 			RB_CLEAR_NODE(parent);
3824 			spin_unlock(&root->inode_lock);
3825 			goto again;
3826 		}
3827 	}
3828 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3829 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3830 	spin_unlock(&root->inode_lock);
3831 }
3832 
3833 static void inode_tree_del(struct inode *inode)
3834 {
3835 	struct btrfs_root *root = BTRFS_I(inode)->root;
3836 	int empty = 0;
3837 
3838 	spin_lock(&root->inode_lock);
3839 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3840 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3841 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3842 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3843 	}
3844 	spin_unlock(&root->inode_lock);
3845 
3846 	/*
3847 	 * Free space cache has inodes in the tree root, but the tree root has a
3848 	 * root_refs of 0, so this could end up dropping the tree root as a
3849 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3850 	 * make sure we don't drop it.
3851 	 */
3852 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3853 	    root != root->fs_info->tree_root) {
3854 		synchronize_srcu(&root->fs_info->subvol_srcu);
3855 		spin_lock(&root->inode_lock);
3856 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3857 		spin_unlock(&root->inode_lock);
3858 		if (empty)
3859 			btrfs_add_dead_root(root);
3860 	}
3861 }
3862 
3863 int btrfs_invalidate_inodes(struct btrfs_root *root)
3864 {
3865 	struct rb_node *node;
3866 	struct rb_node *prev;
3867 	struct btrfs_inode *entry;
3868 	struct inode *inode;
3869 	u64 objectid = 0;
3870 
3871 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3872 
3873 	spin_lock(&root->inode_lock);
3874 again:
3875 	node = root->inode_tree.rb_node;
3876 	prev = NULL;
3877 	while (node) {
3878 		prev = node;
3879 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3880 
3881 		if (objectid < btrfs_ino(&entry->vfs_inode))
3882 			node = node->rb_left;
3883 		else if (objectid > btrfs_ino(&entry->vfs_inode))
3884 			node = node->rb_right;
3885 		else
3886 			break;
3887 	}
3888 	if (!node) {
3889 		while (prev) {
3890 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3891 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3892 				node = prev;
3893 				break;
3894 			}
3895 			prev = rb_next(prev);
3896 		}
3897 	}
3898 	while (node) {
3899 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3900 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
3901 		inode = igrab(&entry->vfs_inode);
3902 		if (inode) {
3903 			spin_unlock(&root->inode_lock);
3904 			if (atomic_read(&inode->i_count) > 1)
3905 				d_prune_aliases(inode);
3906 			/*
3907 			 * btrfs_drop_inode will have it removed from
3908 			 * the inode cache when its usage count
3909 			 * hits zero.
3910 			 */
3911 			iput(inode);
3912 			cond_resched();
3913 			spin_lock(&root->inode_lock);
3914 			goto again;
3915 		}
3916 
3917 		if (cond_resched_lock(&root->inode_lock))
3918 			goto again;
3919 
3920 		node = rb_next(node);
3921 	}
3922 	spin_unlock(&root->inode_lock);
3923 	return 0;
3924 }
3925 
3926 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3927 {
3928 	struct btrfs_iget_args *args = p;
3929 	inode->i_ino = args->ino;
3930 	BTRFS_I(inode)->root = args->root;
3931 	btrfs_set_inode_space_info(args->root, inode);
3932 	return 0;
3933 }
3934 
3935 static int btrfs_find_actor(struct inode *inode, void *opaque)
3936 {
3937 	struct btrfs_iget_args *args = opaque;
3938 	return args->ino == btrfs_ino(inode) &&
3939 		args->root == BTRFS_I(inode)->root;
3940 }
3941 
3942 static struct inode *btrfs_iget_locked(struct super_block *s,
3943 				       u64 objectid,
3944 				       struct btrfs_root *root)
3945 {
3946 	struct inode *inode;
3947 	struct btrfs_iget_args args;
3948 	args.ino = objectid;
3949 	args.root = root;
3950 
3951 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3952 			     btrfs_init_locked_inode,
3953 			     (void *)&args);
3954 	return inode;
3955 }
3956 
3957 /* Get an inode object given its location and corresponding root.
3958  * Returns in *is_new if the inode was read from disk
3959  */
3960 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3961 			 struct btrfs_root *root, int *new)
3962 {
3963 	struct inode *inode;
3964 
3965 	inode = btrfs_iget_locked(s, location->objectid, root);
3966 	if (!inode)
3967 		return ERR_PTR(-ENOMEM);
3968 
3969 	if (inode->i_state & I_NEW) {
3970 		BTRFS_I(inode)->root = root;
3971 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3972 		btrfs_read_locked_inode(inode);
3973 		inode_tree_add(inode);
3974 		unlock_new_inode(inode);
3975 		if (new)
3976 			*new = 1;
3977 	}
3978 
3979 	return inode;
3980 }
3981 
3982 static struct inode *new_simple_dir(struct super_block *s,
3983 				    struct btrfs_key *key,
3984 				    struct btrfs_root *root)
3985 {
3986 	struct inode *inode = new_inode(s);
3987 
3988 	if (!inode)
3989 		return ERR_PTR(-ENOMEM);
3990 
3991 	BTRFS_I(inode)->root = root;
3992 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3993 	BTRFS_I(inode)->dummy_inode = 1;
3994 
3995 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3996 	inode->i_op = &simple_dir_inode_operations;
3997 	inode->i_fop = &simple_dir_operations;
3998 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3999 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4000 
4001 	return inode;
4002 }
4003 
4004 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4005 {
4006 	struct inode *inode;
4007 	struct btrfs_root *root = BTRFS_I(dir)->root;
4008 	struct btrfs_root *sub_root = root;
4009 	struct btrfs_key location;
4010 	int index;
4011 	int ret;
4012 
4013 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4014 		return ERR_PTR(-ENAMETOOLONG);
4015 
4016 	ret = btrfs_inode_by_name(dir, dentry, &location);
4017 
4018 	if (ret < 0)
4019 		return ERR_PTR(ret);
4020 
4021 	if (location.objectid == 0)
4022 		return NULL;
4023 
4024 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4025 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4026 		return inode;
4027 	}
4028 
4029 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4030 
4031 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4032 	ret = fixup_tree_root_location(root, dir, dentry,
4033 				       &location, &sub_root);
4034 	if (ret < 0) {
4035 		if (ret != -ENOENT)
4036 			inode = ERR_PTR(ret);
4037 		else
4038 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4039 	} else {
4040 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4041 	}
4042 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4043 
4044 	if (!IS_ERR(inode) && root != sub_root) {
4045 		down_read(&root->fs_info->cleanup_work_sem);
4046 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4047 			ret = btrfs_orphan_cleanup(sub_root);
4048 		up_read(&root->fs_info->cleanup_work_sem);
4049 		if (ret)
4050 			inode = ERR_PTR(ret);
4051 	}
4052 
4053 	return inode;
4054 }
4055 
4056 static int btrfs_dentry_delete(const struct dentry *dentry)
4057 {
4058 	struct btrfs_root *root;
4059 
4060 	if (!dentry->d_inode && !IS_ROOT(dentry))
4061 		dentry = dentry->d_parent;
4062 
4063 	if (dentry->d_inode) {
4064 		root = BTRFS_I(dentry->d_inode)->root;
4065 		if (btrfs_root_refs(&root->root_item) == 0)
4066 			return 1;
4067 	}
4068 	return 0;
4069 }
4070 
4071 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4072 				   struct nameidata *nd)
4073 {
4074 	struct inode *inode;
4075 
4076 	inode = btrfs_lookup_dentry(dir, dentry);
4077 	if (IS_ERR(inode))
4078 		return ERR_CAST(inode);
4079 
4080 	return d_splice_alias(inode, dentry);
4081 }
4082 
4083 unsigned char btrfs_filetype_table[] = {
4084 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4085 };
4086 
4087 static int btrfs_real_readdir(struct file *filp, void *dirent,
4088 			      filldir_t filldir)
4089 {
4090 	struct inode *inode = filp->f_dentry->d_inode;
4091 	struct btrfs_root *root = BTRFS_I(inode)->root;
4092 	struct btrfs_item *item;
4093 	struct btrfs_dir_item *di;
4094 	struct btrfs_key key;
4095 	struct btrfs_key found_key;
4096 	struct btrfs_path *path;
4097 	struct list_head ins_list;
4098 	struct list_head del_list;
4099 	int ret;
4100 	struct extent_buffer *leaf;
4101 	int slot;
4102 	unsigned char d_type;
4103 	int over = 0;
4104 	u32 di_cur;
4105 	u32 di_total;
4106 	u32 di_len;
4107 	int key_type = BTRFS_DIR_INDEX_KEY;
4108 	char tmp_name[32];
4109 	char *name_ptr;
4110 	int name_len;
4111 	int is_curr = 0;	/* filp->f_pos points to the current index? */
4112 
4113 	/* FIXME, use a real flag for deciding about the key type */
4114 	if (root->fs_info->tree_root == root)
4115 		key_type = BTRFS_DIR_ITEM_KEY;
4116 
4117 	/* special case for "." */
4118 	if (filp->f_pos == 0) {
4119 		over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
4120 		if (over)
4121 			return 0;
4122 		filp->f_pos = 1;
4123 	}
4124 	/* special case for .., just use the back ref */
4125 	if (filp->f_pos == 1) {
4126 		u64 pino = parent_ino(filp->f_path.dentry);
4127 		over = filldir(dirent, "..", 2,
4128 			       2, pino, DT_DIR);
4129 		if (over)
4130 			return 0;
4131 		filp->f_pos = 2;
4132 	}
4133 	path = btrfs_alloc_path();
4134 	if (!path)
4135 		return -ENOMEM;
4136 	path->reada = 2;
4137 
4138 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4139 		INIT_LIST_HEAD(&ins_list);
4140 		INIT_LIST_HEAD(&del_list);
4141 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4142 	}
4143 
4144 	btrfs_set_key_type(&key, key_type);
4145 	key.offset = filp->f_pos;
4146 	key.objectid = btrfs_ino(inode);
4147 
4148 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4149 	if (ret < 0)
4150 		goto err;
4151 
4152 	while (1) {
4153 		leaf = path->nodes[0];
4154 		slot = path->slots[0];
4155 		if (slot >= btrfs_header_nritems(leaf)) {
4156 			ret = btrfs_next_leaf(root, path);
4157 			if (ret < 0)
4158 				goto err;
4159 			else if (ret > 0)
4160 				break;
4161 			continue;
4162 		}
4163 
4164 		item = btrfs_item_nr(leaf, slot);
4165 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4166 
4167 		if (found_key.objectid != key.objectid)
4168 			break;
4169 		if (btrfs_key_type(&found_key) != key_type)
4170 			break;
4171 		if (found_key.offset < filp->f_pos)
4172 			goto next;
4173 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4174 		    btrfs_should_delete_dir_index(&del_list,
4175 						  found_key.offset))
4176 			goto next;
4177 
4178 		filp->f_pos = found_key.offset;
4179 		is_curr = 1;
4180 
4181 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4182 		di_cur = 0;
4183 		di_total = btrfs_item_size(leaf, item);
4184 
4185 		while (di_cur < di_total) {
4186 			struct btrfs_key location;
4187 
4188 			if (verify_dir_item(root, leaf, di))
4189 				break;
4190 
4191 			name_len = btrfs_dir_name_len(leaf, di);
4192 			if (name_len <= sizeof(tmp_name)) {
4193 				name_ptr = tmp_name;
4194 			} else {
4195 				name_ptr = kmalloc(name_len, GFP_NOFS);
4196 				if (!name_ptr) {
4197 					ret = -ENOMEM;
4198 					goto err;
4199 				}
4200 			}
4201 			read_extent_buffer(leaf, name_ptr,
4202 					   (unsigned long)(di + 1), name_len);
4203 
4204 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4205 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4206 
4207 			/* is this a reference to our own snapshot? If so
4208 			 * skip it
4209 			 */
4210 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4211 			    location.objectid == root->root_key.objectid) {
4212 				over = 0;
4213 				goto skip;
4214 			}
4215 			over = filldir(dirent, name_ptr, name_len,
4216 				       found_key.offset, location.objectid,
4217 				       d_type);
4218 
4219 skip:
4220 			if (name_ptr != tmp_name)
4221 				kfree(name_ptr);
4222 
4223 			if (over)
4224 				goto nopos;
4225 			di_len = btrfs_dir_name_len(leaf, di) +
4226 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4227 			di_cur += di_len;
4228 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4229 		}
4230 next:
4231 		path->slots[0]++;
4232 	}
4233 
4234 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4235 		if (is_curr)
4236 			filp->f_pos++;
4237 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4238 						      &ins_list);
4239 		if (ret)
4240 			goto nopos;
4241 	}
4242 
4243 	/* Reached end of directory/root. Bump pos past the last item. */
4244 	if (key_type == BTRFS_DIR_INDEX_KEY)
4245 		/*
4246 		 * 32-bit glibc will use getdents64, but then strtol -
4247 		 * so the last number we can serve is this.
4248 		 */
4249 		filp->f_pos = 0x7fffffff;
4250 	else
4251 		filp->f_pos++;
4252 nopos:
4253 	ret = 0;
4254 err:
4255 	if (key_type == BTRFS_DIR_INDEX_KEY)
4256 		btrfs_put_delayed_items(&ins_list, &del_list);
4257 	btrfs_free_path(path);
4258 	return ret;
4259 }
4260 
4261 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4262 {
4263 	struct btrfs_root *root = BTRFS_I(inode)->root;
4264 	struct btrfs_trans_handle *trans;
4265 	int ret = 0;
4266 	bool nolock = false;
4267 
4268 	if (BTRFS_I(inode)->dummy_inode)
4269 		return 0;
4270 
4271 	smp_mb();
4272 	if (root->fs_info->closing && is_free_space_inode(root, inode))
4273 		nolock = true;
4274 
4275 	if (wbc->sync_mode == WB_SYNC_ALL) {
4276 		if (nolock)
4277 			trans = btrfs_join_transaction_nolock(root, 1);
4278 		else
4279 			trans = btrfs_join_transaction(root, 1);
4280 		if (IS_ERR(trans))
4281 			return PTR_ERR(trans);
4282 		btrfs_set_trans_block_group(trans, inode);
4283 		if (nolock)
4284 			ret = btrfs_end_transaction_nolock(trans, root);
4285 		else
4286 			ret = btrfs_commit_transaction(trans, root);
4287 	}
4288 	return ret;
4289 }
4290 
4291 /*
4292  * This is somewhat expensive, updating the tree every time the
4293  * inode changes.  But, it is most likely to find the inode in cache.
4294  * FIXME, needs more benchmarking...there are no reasons other than performance
4295  * to keep or drop this code.
4296  */
4297 void btrfs_dirty_inode(struct inode *inode)
4298 {
4299 	struct btrfs_root *root = BTRFS_I(inode)->root;
4300 	struct btrfs_trans_handle *trans;
4301 	int ret;
4302 
4303 	if (BTRFS_I(inode)->dummy_inode)
4304 		return;
4305 
4306 	trans = btrfs_join_transaction(root, 1);
4307 	BUG_ON(IS_ERR(trans));
4308 	btrfs_set_trans_block_group(trans, inode);
4309 
4310 	ret = btrfs_update_inode(trans, root, inode);
4311 	if (ret && ret == -ENOSPC) {
4312 		/* whoops, lets try again with the full transaction */
4313 		btrfs_end_transaction(trans, root);
4314 		trans = btrfs_start_transaction(root, 1);
4315 		if (IS_ERR(trans)) {
4316 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4317 				       "dirty  inode %llu error %ld\n",
4318 				       (unsigned long long)btrfs_ino(inode),
4319 				       PTR_ERR(trans));
4320 			return;
4321 		}
4322 		btrfs_set_trans_block_group(trans, inode);
4323 
4324 		ret = btrfs_update_inode(trans, root, inode);
4325 		if (ret) {
4326 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4327 				       "dirty  inode %llu error %d\n",
4328 				       (unsigned long long)btrfs_ino(inode),
4329 				       ret);
4330 		}
4331 	}
4332 	btrfs_end_transaction(trans, root);
4333 	if (BTRFS_I(inode)->delayed_node)
4334 		btrfs_balance_delayed_items(root);
4335 }
4336 
4337 /*
4338  * find the highest existing sequence number in a directory
4339  * and then set the in-memory index_cnt variable to reflect
4340  * free sequence numbers
4341  */
4342 static int btrfs_set_inode_index_count(struct inode *inode)
4343 {
4344 	struct btrfs_root *root = BTRFS_I(inode)->root;
4345 	struct btrfs_key key, found_key;
4346 	struct btrfs_path *path;
4347 	struct extent_buffer *leaf;
4348 	int ret;
4349 
4350 	key.objectid = btrfs_ino(inode);
4351 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4352 	key.offset = (u64)-1;
4353 
4354 	path = btrfs_alloc_path();
4355 	if (!path)
4356 		return -ENOMEM;
4357 
4358 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4359 	if (ret < 0)
4360 		goto out;
4361 	/* FIXME: we should be able to handle this */
4362 	if (ret == 0)
4363 		goto out;
4364 	ret = 0;
4365 
4366 	/*
4367 	 * MAGIC NUMBER EXPLANATION:
4368 	 * since we search a directory based on f_pos we have to start at 2
4369 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4370 	 * else has to start at 2
4371 	 */
4372 	if (path->slots[0] == 0) {
4373 		BTRFS_I(inode)->index_cnt = 2;
4374 		goto out;
4375 	}
4376 
4377 	path->slots[0]--;
4378 
4379 	leaf = path->nodes[0];
4380 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4381 
4382 	if (found_key.objectid != btrfs_ino(inode) ||
4383 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4384 		BTRFS_I(inode)->index_cnt = 2;
4385 		goto out;
4386 	}
4387 
4388 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4389 out:
4390 	btrfs_free_path(path);
4391 	return ret;
4392 }
4393 
4394 /*
4395  * helper to find a free sequence number in a given directory.  This current
4396  * code is very simple, later versions will do smarter things in the btree
4397  */
4398 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4399 {
4400 	int ret = 0;
4401 
4402 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4403 		ret = btrfs_inode_delayed_dir_index_count(dir);
4404 		if (ret) {
4405 			ret = btrfs_set_inode_index_count(dir);
4406 			if (ret)
4407 				return ret;
4408 		}
4409 	}
4410 
4411 	*index = BTRFS_I(dir)->index_cnt;
4412 	BTRFS_I(dir)->index_cnt++;
4413 
4414 	return ret;
4415 }
4416 
4417 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4418 				     struct btrfs_root *root,
4419 				     struct inode *dir,
4420 				     const char *name, int name_len,
4421 				     u64 ref_objectid, u64 objectid,
4422 				     u64 alloc_hint, int mode, u64 *index)
4423 {
4424 	struct inode *inode;
4425 	struct btrfs_inode_item *inode_item;
4426 	struct btrfs_key *location;
4427 	struct btrfs_path *path;
4428 	struct btrfs_inode_ref *ref;
4429 	struct btrfs_key key[2];
4430 	u32 sizes[2];
4431 	unsigned long ptr;
4432 	int ret;
4433 	int owner;
4434 
4435 	path = btrfs_alloc_path();
4436 	BUG_ON(!path);
4437 
4438 	inode = new_inode(root->fs_info->sb);
4439 	if (!inode) {
4440 		btrfs_free_path(path);
4441 		return ERR_PTR(-ENOMEM);
4442 	}
4443 
4444 	/*
4445 	 * we have to initialize this early, so we can reclaim the inode
4446 	 * number if we fail afterwards in this function.
4447 	 */
4448 	inode->i_ino = objectid;
4449 
4450 	if (dir) {
4451 		trace_btrfs_inode_request(dir);
4452 
4453 		ret = btrfs_set_inode_index(dir, index);
4454 		if (ret) {
4455 			btrfs_free_path(path);
4456 			iput(inode);
4457 			return ERR_PTR(ret);
4458 		}
4459 	}
4460 	/*
4461 	 * index_cnt is ignored for everything but a dir,
4462 	 * btrfs_get_inode_index_count has an explanation for the magic
4463 	 * number
4464 	 */
4465 	BTRFS_I(inode)->index_cnt = 2;
4466 	BTRFS_I(inode)->root = root;
4467 	BTRFS_I(inode)->generation = trans->transid;
4468 	inode->i_generation = BTRFS_I(inode)->generation;
4469 	btrfs_set_inode_space_info(root, inode);
4470 
4471 	if (mode & S_IFDIR)
4472 		owner = 0;
4473 	else
4474 		owner = 1;
4475 	BTRFS_I(inode)->block_group =
4476 			btrfs_find_block_group(root, 0, alloc_hint, owner);
4477 
4478 	key[0].objectid = objectid;
4479 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4480 	key[0].offset = 0;
4481 
4482 	key[1].objectid = objectid;
4483 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4484 	key[1].offset = ref_objectid;
4485 
4486 	sizes[0] = sizeof(struct btrfs_inode_item);
4487 	sizes[1] = name_len + sizeof(*ref);
4488 
4489 	path->leave_spinning = 1;
4490 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4491 	if (ret != 0)
4492 		goto fail;
4493 
4494 	inode_init_owner(inode, dir, mode);
4495 	inode_set_bytes(inode, 0);
4496 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4497 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4498 				  struct btrfs_inode_item);
4499 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4500 
4501 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4502 			     struct btrfs_inode_ref);
4503 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4504 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4505 	ptr = (unsigned long)(ref + 1);
4506 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4507 
4508 	btrfs_mark_buffer_dirty(path->nodes[0]);
4509 	btrfs_free_path(path);
4510 
4511 	location = &BTRFS_I(inode)->location;
4512 	location->objectid = objectid;
4513 	location->offset = 0;
4514 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4515 
4516 	btrfs_inherit_iflags(inode, dir);
4517 
4518 	if ((mode & S_IFREG)) {
4519 		if (btrfs_test_opt(root, NODATASUM))
4520 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4521 		if (btrfs_test_opt(root, NODATACOW) ||
4522 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4523 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4524 	}
4525 
4526 	insert_inode_hash(inode);
4527 	inode_tree_add(inode);
4528 
4529 	trace_btrfs_inode_new(inode);
4530 
4531 	return inode;
4532 fail:
4533 	if (dir)
4534 		BTRFS_I(dir)->index_cnt--;
4535 	btrfs_free_path(path);
4536 	iput(inode);
4537 	return ERR_PTR(ret);
4538 }
4539 
4540 static inline u8 btrfs_inode_type(struct inode *inode)
4541 {
4542 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4543 }
4544 
4545 /*
4546  * utility function to add 'inode' into 'parent_inode' with
4547  * a give name and a given sequence number.
4548  * if 'add_backref' is true, also insert a backref from the
4549  * inode to the parent directory.
4550  */
4551 int btrfs_add_link(struct btrfs_trans_handle *trans,
4552 		   struct inode *parent_inode, struct inode *inode,
4553 		   const char *name, int name_len, int add_backref, u64 index)
4554 {
4555 	int ret = 0;
4556 	struct btrfs_key key;
4557 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4558 	u64 ino = btrfs_ino(inode);
4559 	u64 parent_ino = btrfs_ino(parent_inode);
4560 
4561 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4562 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4563 	} else {
4564 		key.objectid = ino;
4565 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4566 		key.offset = 0;
4567 	}
4568 
4569 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4570 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4571 					 key.objectid, root->root_key.objectid,
4572 					 parent_ino, index, name, name_len);
4573 	} else if (add_backref) {
4574 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4575 					     parent_ino, index);
4576 	}
4577 
4578 	if (ret == 0) {
4579 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4580 					    parent_inode, &key,
4581 					    btrfs_inode_type(inode), index);
4582 		BUG_ON(ret);
4583 
4584 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4585 				   name_len * 2);
4586 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4587 		ret = btrfs_update_inode(trans, root, parent_inode);
4588 	}
4589 	return ret;
4590 }
4591 
4592 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4593 			    struct inode *dir, struct dentry *dentry,
4594 			    struct inode *inode, int backref, u64 index)
4595 {
4596 	int err = btrfs_add_link(trans, dir, inode,
4597 				 dentry->d_name.name, dentry->d_name.len,
4598 				 backref, index);
4599 	if (!err) {
4600 		d_instantiate(dentry, inode);
4601 		return 0;
4602 	}
4603 	if (err > 0)
4604 		err = -EEXIST;
4605 	return err;
4606 }
4607 
4608 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4609 			int mode, dev_t rdev)
4610 {
4611 	struct btrfs_trans_handle *trans;
4612 	struct btrfs_root *root = BTRFS_I(dir)->root;
4613 	struct inode *inode = NULL;
4614 	int err;
4615 	int drop_inode = 0;
4616 	u64 objectid;
4617 	unsigned long nr = 0;
4618 	u64 index = 0;
4619 
4620 	if (!new_valid_dev(rdev))
4621 		return -EINVAL;
4622 
4623 	/*
4624 	 * 2 for inode item and ref
4625 	 * 2 for dir items
4626 	 * 1 for xattr if selinux is on
4627 	 */
4628 	trans = btrfs_start_transaction(root, 5);
4629 	if (IS_ERR(trans))
4630 		return PTR_ERR(trans);
4631 
4632 	btrfs_set_trans_block_group(trans, dir);
4633 
4634 	err = btrfs_find_free_ino(root, &objectid);
4635 	if (err)
4636 		goto out_unlock;
4637 
4638 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4639 				dentry->d_name.len, btrfs_ino(dir), objectid,
4640 				BTRFS_I(dir)->block_group, mode, &index);
4641 	if (IS_ERR(inode)) {
4642 		err = PTR_ERR(inode);
4643 		goto out_unlock;
4644 	}
4645 
4646 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4647 	if (err) {
4648 		drop_inode = 1;
4649 		goto out_unlock;
4650 	}
4651 
4652 	btrfs_set_trans_block_group(trans, inode);
4653 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4654 	if (err)
4655 		drop_inode = 1;
4656 	else {
4657 		inode->i_op = &btrfs_special_inode_operations;
4658 		init_special_inode(inode, inode->i_mode, rdev);
4659 		btrfs_update_inode(trans, root, inode);
4660 	}
4661 	btrfs_update_inode_block_group(trans, inode);
4662 	btrfs_update_inode_block_group(trans, dir);
4663 out_unlock:
4664 	nr = trans->blocks_used;
4665 	btrfs_end_transaction_throttle(trans, root);
4666 	btrfs_btree_balance_dirty(root, nr);
4667 	if (drop_inode) {
4668 		inode_dec_link_count(inode);
4669 		iput(inode);
4670 	}
4671 	return err;
4672 }
4673 
4674 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4675 			int mode, struct nameidata *nd)
4676 {
4677 	struct btrfs_trans_handle *trans;
4678 	struct btrfs_root *root = BTRFS_I(dir)->root;
4679 	struct inode *inode = NULL;
4680 	int drop_inode = 0;
4681 	int err;
4682 	unsigned long nr = 0;
4683 	u64 objectid;
4684 	u64 index = 0;
4685 
4686 	/*
4687 	 * 2 for inode item and ref
4688 	 * 2 for dir items
4689 	 * 1 for xattr if selinux is on
4690 	 */
4691 	trans = btrfs_start_transaction(root, 5);
4692 	if (IS_ERR(trans))
4693 		return PTR_ERR(trans);
4694 
4695 	btrfs_set_trans_block_group(trans, dir);
4696 
4697 	err = btrfs_find_free_ino(root, &objectid);
4698 	if (err)
4699 		goto out_unlock;
4700 
4701 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4702 				dentry->d_name.len, btrfs_ino(dir), objectid,
4703 				BTRFS_I(dir)->block_group, mode, &index);
4704 	if (IS_ERR(inode)) {
4705 		err = PTR_ERR(inode);
4706 		goto out_unlock;
4707 	}
4708 
4709 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4710 	if (err) {
4711 		drop_inode = 1;
4712 		goto out_unlock;
4713 	}
4714 
4715 	btrfs_set_trans_block_group(trans, inode);
4716 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4717 	if (err)
4718 		drop_inode = 1;
4719 	else {
4720 		inode->i_mapping->a_ops = &btrfs_aops;
4721 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4722 		inode->i_fop = &btrfs_file_operations;
4723 		inode->i_op = &btrfs_file_inode_operations;
4724 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4725 	}
4726 	btrfs_update_inode_block_group(trans, inode);
4727 	btrfs_update_inode_block_group(trans, dir);
4728 out_unlock:
4729 	nr = trans->blocks_used;
4730 	btrfs_end_transaction_throttle(trans, root);
4731 	if (drop_inode) {
4732 		inode_dec_link_count(inode);
4733 		iput(inode);
4734 	}
4735 	btrfs_btree_balance_dirty(root, nr);
4736 	return err;
4737 }
4738 
4739 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4740 		      struct dentry *dentry)
4741 {
4742 	struct btrfs_trans_handle *trans;
4743 	struct btrfs_root *root = BTRFS_I(dir)->root;
4744 	struct inode *inode = old_dentry->d_inode;
4745 	u64 index;
4746 	unsigned long nr = 0;
4747 	int err;
4748 	int drop_inode = 0;
4749 
4750 	/* do not allow sys_link's with other subvols of the same device */
4751 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4752 		return -EXDEV;
4753 
4754 	if (inode->i_nlink == ~0U)
4755 		return -EMLINK;
4756 
4757 	err = btrfs_set_inode_index(dir, &index);
4758 	if (err)
4759 		goto fail;
4760 
4761 	/*
4762 	 * 2 items for inode and inode ref
4763 	 * 2 items for dir items
4764 	 * 1 item for parent inode
4765 	 */
4766 	trans = btrfs_start_transaction(root, 5);
4767 	if (IS_ERR(trans)) {
4768 		err = PTR_ERR(trans);
4769 		goto fail;
4770 	}
4771 
4772 	btrfs_inc_nlink(inode);
4773 	inode->i_ctime = CURRENT_TIME;
4774 
4775 	btrfs_set_trans_block_group(trans, dir);
4776 	ihold(inode);
4777 
4778 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4779 
4780 	if (err) {
4781 		drop_inode = 1;
4782 	} else {
4783 		struct dentry *parent = dget_parent(dentry);
4784 		btrfs_update_inode_block_group(trans, dir);
4785 		err = btrfs_update_inode(trans, root, inode);
4786 		BUG_ON(err);
4787 		btrfs_log_new_name(trans, inode, NULL, parent);
4788 		dput(parent);
4789 	}
4790 
4791 	nr = trans->blocks_used;
4792 	btrfs_end_transaction_throttle(trans, root);
4793 fail:
4794 	if (drop_inode) {
4795 		inode_dec_link_count(inode);
4796 		iput(inode);
4797 	}
4798 	btrfs_btree_balance_dirty(root, nr);
4799 	return err;
4800 }
4801 
4802 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4803 {
4804 	struct inode *inode = NULL;
4805 	struct btrfs_trans_handle *trans;
4806 	struct btrfs_root *root = BTRFS_I(dir)->root;
4807 	int err = 0;
4808 	int drop_on_err = 0;
4809 	u64 objectid = 0;
4810 	u64 index = 0;
4811 	unsigned long nr = 1;
4812 
4813 	/*
4814 	 * 2 items for inode and ref
4815 	 * 2 items for dir items
4816 	 * 1 for xattr if selinux is on
4817 	 */
4818 	trans = btrfs_start_transaction(root, 5);
4819 	if (IS_ERR(trans))
4820 		return PTR_ERR(trans);
4821 	btrfs_set_trans_block_group(trans, dir);
4822 
4823 	err = btrfs_find_free_ino(root, &objectid);
4824 	if (err)
4825 		goto out_fail;
4826 
4827 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4828 				dentry->d_name.len, btrfs_ino(dir), objectid,
4829 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4830 				&index);
4831 	if (IS_ERR(inode)) {
4832 		err = PTR_ERR(inode);
4833 		goto out_fail;
4834 	}
4835 
4836 	drop_on_err = 1;
4837 
4838 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4839 	if (err)
4840 		goto out_fail;
4841 
4842 	inode->i_op = &btrfs_dir_inode_operations;
4843 	inode->i_fop = &btrfs_dir_file_operations;
4844 	btrfs_set_trans_block_group(trans, inode);
4845 
4846 	btrfs_i_size_write(inode, 0);
4847 	err = btrfs_update_inode(trans, root, inode);
4848 	if (err)
4849 		goto out_fail;
4850 
4851 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4852 			     dentry->d_name.len, 0, index);
4853 	if (err)
4854 		goto out_fail;
4855 
4856 	d_instantiate(dentry, inode);
4857 	drop_on_err = 0;
4858 	btrfs_update_inode_block_group(trans, inode);
4859 	btrfs_update_inode_block_group(trans, dir);
4860 
4861 out_fail:
4862 	nr = trans->blocks_used;
4863 	btrfs_end_transaction_throttle(trans, root);
4864 	if (drop_on_err)
4865 		iput(inode);
4866 	btrfs_btree_balance_dirty(root, nr);
4867 	return err;
4868 }
4869 
4870 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4871  * and an extent that you want to insert, deal with overlap and insert
4872  * the new extent into the tree.
4873  */
4874 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4875 				struct extent_map *existing,
4876 				struct extent_map *em,
4877 				u64 map_start, u64 map_len)
4878 {
4879 	u64 start_diff;
4880 
4881 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4882 	start_diff = map_start - em->start;
4883 	em->start = map_start;
4884 	em->len = map_len;
4885 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4886 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4887 		em->block_start += start_diff;
4888 		em->block_len -= start_diff;
4889 	}
4890 	return add_extent_mapping(em_tree, em);
4891 }
4892 
4893 static noinline int uncompress_inline(struct btrfs_path *path,
4894 				      struct inode *inode, struct page *page,
4895 				      size_t pg_offset, u64 extent_offset,
4896 				      struct btrfs_file_extent_item *item)
4897 {
4898 	int ret;
4899 	struct extent_buffer *leaf = path->nodes[0];
4900 	char *tmp;
4901 	size_t max_size;
4902 	unsigned long inline_size;
4903 	unsigned long ptr;
4904 	int compress_type;
4905 
4906 	WARN_ON(pg_offset != 0);
4907 	compress_type = btrfs_file_extent_compression(leaf, item);
4908 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4909 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4910 					btrfs_item_nr(leaf, path->slots[0]));
4911 	tmp = kmalloc(inline_size, GFP_NOFS);
4912 	if (!tmp)
4913 		return -ENOMEM;
4914 	ptr = btrfs_file_extent_inline_start(item);
4915 
4916 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4917 
4918 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4919 	ret = btrfs_decompress(compress_type, tmp, page,
4920 			       extent_offset, inline_size, max_size);
4921 	if (ret) {
4922 		char *kaddr = kmap_atomic(page, KM_USER0);
4923 		unsigned long copy_size = min_t(u64,
4924 				  PAGE_CACHE_SIZE - pg_offset,
4925 				  max_size - extent_offset);
4926 		memset(kaddr + pg_offset, 0, copy_size);
4927 		kunmap_atomic(kaddr, KM_USER0);
4928 	}
4929 	kfree(tmp);
4930 	return 0;
4931 }
4932 
4933 /*
4934  * a bit scary, this does extent mapping from logical file offset to the disk.
4935  * the ugly parts come from merging extents from the disk with the in-ram
4936  * representation.  This gets more complex because of the data=ordered code,
4937  * where the in-ram extents might be locked pending data=ordered completion.
4938  *
4939  * This also copies inline extents directly into the page.
4940  */
4941 
4942 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4943 				    size_t pg_offset, u64 start, u64 len,
4944 				    int create)
4945 {
4946 	int ret;
4947 	int err = 0;
4948 	u64 bytenr;
4949 	u64 extent_start = 0;
4950 	u64 extent_end = 0;
4951 	u64 objectid = btrfs_ino(inode);
4952 	u32 found_type;
4953 	struct btrfs_path *path = NULL;
4954 	struct btrfs_root *root = BTRFS_I(inode)->root;
4955 	struct btrfs_file_extent_item *item;
4956 	struct extent_buffer *leaf;
4957 	struct btrfs_key found_key;
4958 	struct extent_map *em = NULL;
4959 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4960 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4961 	struct btrfs_trans_handle *trans = NULL;
4962 	int compress_type;
4963 
4964 again:
4965 	read_lock(&em_tree->lock);
4966 	em = lookup_extent_mapping(em_tree, start, len);
4967 	if (em)
4968 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4969 	read_unlock(&em_tree->lock);
4970 
4971 	if (em) {
4972 		if (em->start > start || em->start + em->len <= start)
4973 			free_extent_map(em);
4974 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4975 			free_extent_map(em);
4976 		else
4977 			goto out;
4978 	}
4979 	em = alloc_extent_map();
4980 	if (!em) {
4981 		err = -ENOMEM;
4982 		goto out;
4983 	}
4984 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4985 	em->start = EXTENT_MAP_HOLE;
4986 	em->orig_start = EXTENT_MAP_HOLE;
4987 	em->len = (u64)-1;
4988 	em->block_len = (u64)-1;
4989 
4990 	if (!path) {
4991 		path = btrfs_alloc_path();
4992 		BUG_ON(!path);
4993 	}
4994 
4995 	ret = btrfs_lookup_file_extent(trans, root, path,
4996 				       objectid, start, trans != NULL);
4997 	if (ret < 0) {
4998 		err = ret;
4999 		goto out;
5000 	}
5001 
5002 	if (ret != 0) {
5003 		if (path->slots[0] == 0)
5004 			goto not_found;
5005 		path->slots[0]--;
5006 	}
5007 
5008 	leaf = path->nodes[0];
5009 	item = btrfs_item_ptr(leaf, path->slots[0],
5010 			      struct btrfs_file_extent_item);
5011 	/* are we inside the extent that was found? */
5012 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5013 	found_type = btrfs_key_type(&found_key);
5014 	if (found_key.objectid != objectid ||
5015 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5016 		goto not_found;
5017 	}
5018 
5019 	found_type = btrfs_file_extent_type(leaf, item);
5020 	extent_start = found_key.offset;
5021 	compress_type = btrfs_file_extent_compression(leaf, item);
5022 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5023 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5024 		extent_end = extent_start +
5025 		       btrfs_file_extent_num_bytes(leaf, item);
5026 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5027 		size_t size;
5028 		size = btrfs_file_extent_inline_len(leaf, item);
5029 		extent_end = (extent_start + size + root->sectorsize - 1) &
5030 			~((u64)root->sectorsize - 1);
5031 	}
5032 
5033 	if (start >= extent_end) {
5034 		path->slots[0]++;
5035 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5036 			ret = btrfs_next_leaf(root, path);
5037 			if (ret < 0) {
5038 				err = ret;
5039 				goto out;
5040 			}
5041 			if (ret > 0)
5042 				goto not_found;
5043 			leaf = path->nodes[0];
5044 		}
5045 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5046 		if (found_key.objectid != objectid ||
5047 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5048 			goto not_found;
5049 		if (start + len <= found_key.offset)
5050 			goto not_found;
5051 		em->start = start;
5052 		em->len = found_key.offset - start;
5053 		goto not_found_em;
5054 	}
5055 
5056 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5057 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5058 		em->start = extent_start;
5059 		em->len = extent_end - extent_start;
5060 		em->orig_start = extent_start -
5061 				 btrfs_file_extent_offset(leaf, item);
5062 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5063 		if (bytenr == 0) {
5064 			em->block_start = EXTENT_MAP_HOLE;
5065 			goto insert;
5066 		}
5067 		if (compress_type != BTRFS_COMPRESS_NONE) {
5068 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5069 			em->compress_type = compress_type;
5070 			em->block_start = bytenr;
5071 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5072 									 item);
5073 		} else {
5074 			bytenr += btrfs_file_extent_offset(leaf, item);
5075 			em->block_start = bytenr;
5076 			em->block_len = em->len;
5077 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5078 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5079 		}
5080 		goto insert;
5081 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5082 		unsigned long ptr;
5083 		char *map;
5084 		size_t size;
5085 		size_t extent_offset;
5086 		size_t copy_size;
5087 
5088 		em->block_start = EXTENT_MAP_INLINE;
5089 		if (!page || create) {
5090 			em->start = extent_start;
5091 			em->len = extent_end - extent_start;
5092 			goto out;
5093 		}
5094 
5095 		size = btrfs_file_extent_inline_len(leaf, item);
5096 		extent_offset = page_offset(page) + pg_offset - extent_start;
5097 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5098 				size - extent_offset);
5099 		em->start = extent_start + extent_offset;
5100 		em->len = (copy_size + root->sectorsize - 1) &
5101 			~((u64)root->sectorsize - 1);
5102 		em->orig_start = EXTENT_MAP_INLINE;
5103 		if (compress_type) {
5104 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5105 			em->compress_type = compress_type;
5106 		}
5107 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5108 		if (create == 0 && !PageUptodate(page)) {
5109 			if (btrfs_file_extent_compression(leaf, item) !=
5110 			    BTRFS_COMPRESS_NONE) {
5111 				ret = uncompress_inline(path, inode, page,
5112 							pg_offset,
5113 							extent_offset, item);
5114 				BUG_ON(ret);
5115 			} else {
5116 				map = kmap(page);
5117 				read_extent_buffer(leaf, map + pg_offset, ptr,
5118 						   copy_size);
5119 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5120 					memset(map + pg_offset + copy_size, 0,
5121 					       PAGE_CACHE_SIZE - pg_offset -
5122 					       copy_size);
5123 				}
5124 				kunmap(page);
5125 			}
5126 			flush_dcache_page(page);
5127 		} else if (create && PageUptodate(page)) {
5128 			WARN_ON(1);
5129 			if (!trans) {
5130 				kunmap(page);
5131 				free_extent_map(em);
5132 				em = NULL;
5133 				btrfs_release_path(path);
5134 				trans = btrfs_join_transaction(root, 1);
5135 				if (IS_ERR(trans))
5136 					return ERR_CAST(trans);
5137 				goto again;
5138 			}
5139 			map = kmap(page);
5140 			write_extent_buffer(leaf, map + pg_offset, ptr,
5141 					    copy_size);
5142 			kunmap(page);
5143 			btrfs_mark_buffer_dirty(leaf);
5144 		}
5145 		set_extent_uptodate(io_tree, em->start,
5146 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5147 		goto insert;
5148 	} else {
5149 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5150 		WARN_ON(1);
5151 	}
5152 not_found:
5153 	em->start = start;
5154 	em->len = len;
5155 not_found_em:
5156 	em->block_start = EXTENT_MAP_HOLE;
5157 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5158 insert:
5159 	btrfs_release_path(path);
5160 	if (em->start > start || extent_map_end(em) <= start) {
5161 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5162 		       "[%llu %llu]\n", (unsigned long long)em->start,
5163 		       (unsigned long long)em->len,
5164 		       (unsigned long long)start,
5165 		       (unsigned long long)len);
5166 		err = -EIO;
5167 		goto out;
5168 	}
5169 
5170 	err = 0;
5171 	write_lock(&em_tree->lock);
5172 	ret = add_extent_mapping(em_tree, em);
5173 	/* it is possible that someone inserted the extent into the tree
5174 	 * while we had the lock dropped.  It is also possible that
5175 	 * an overlapping map exists in the tree
5176 	 */
5177 	if (ret == -EEXIST) {
5178 		struct extent_map *existing;
5179 
5180 		ret = 0;
5181 
5182 		existing = lookup_extent_mapping(em_tree, start, len);
5183 		if (existing && (existing->start > start ||
5184 		    existing->start + existing->len <= start)) {
5185 			free_extent_map(existing);
5186 			existing = NULL;
5187 		}
5188 		if (!existing) {
5189 			existing = lookup_extent_mapping(em_tree, em->start,
5190 							 em->len);
5191 			if (existing) {
5192 				err = merge_extent_mapping(em_tree, existing,
5193 							   em, start,
5194 							   root->sectorsize);
5195 				free_extent_map(existing);
5196 				if (err) {
5197 					free_extent_map(em);
5198 					em = NULL;
5199 				}
5200 			} else {
5201 				err = -EIO;
5202 				free_extent_map(em);
5203 				em = NULL;
5204 			}
5205 		} else {
5206 			free_extent_map(em);
5207 			em = existing;
5208 			err = 0;
5209 		}
5210 	}
5211 	write_unlock(&em_tree->lock);
5212 out:
5213 
5214 	trace_btrfs_get_extent(root, em);
5215 
5216 	if (path)
5217 		btrfs_free_path(path);
5218 	if (trans) {
5219 		ret = btrfs_end_transaction(trans, root);
5220 		if (!err)
5221 			err = ret;
5222 	}
5223 	if (err) {
5224 		free_extent_map(em);
5225 		return ERR_PTR(err);
5226 	}
5227 	return em;
5228 }
5229 
5230 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5231 					   size_t pg_offset, u64 start, u64 len,
5232 					   int create)
5233 {
5234 	struct extent_map *em;
5235 	struct extent_map *hole_em = NULL;
5236 	u64 range_start = start;
5237 	u64 end;
5238 	u64 found;
5239 	u64 found_end;
5240 	int err = 0;
5241 
5242 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5243 	if (IS_ERR(em))
5244 		return em;
5245 	if (em) {
5246 		/*
5247 		 * if our em maps to a hole, there might
5248 		 * actually be delalloc bytes behind it
5249 		 */
5250 		if (em->block_start != EXTENT_MAP_HOLE)
5251 			return em;
5252 		else
5253 			hole_em = em;
5254 	}
5255 
5256 	/* check to see if we've wrapped (len == -1 or similar) */
5257 	end = start + len;
5258 	if (end < start)
5259 		end = (u64)-1;
5260 	else
5261 		end -= 1;
5262 
5263 	em = NULL;
5264 
5265 	/* ok, we didn't find anything, lets look for delalloc */
5266 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5267 				 end, len, EXTENT_DELALLOC, 1);
5268 	found_end = range_start + found;
5269 	if (found_end < range_start)
5270 		found_end = (u64)-1;
5271 
5272 	/*
5273 	 * we didn't find anything useful, return
5274 	 * the original results from get_extent()
5275 	 */
5276 	if (range_start > end || found_end <= start) {
5277 		em = hole_em;
5278 		hole_em = NULL;
5279 		goto out;
5280 	}
5281 
5282 	/* adjust the range_start to make sure it doesn't
5283 	 * go backwards from the start they passed in
5284 	 */
5285 	range_start = max(start,range_start);
5286 	found = found_end - range_start;
5287 
5288 	if (found > 0) {
5289 		u64 hole_start = start;
5290 		u64 hole_len = len;
5291 
5292 		em = alloc_extent_map();
5293 		if (!em) {
5294 			err = -ENOMEM;
5295 			goto out;
5296 		}
5297 		/*
5298 		 * when btrfs_get_extent can't find anything it
5299 		 * returns one huge hole
5300 		 *
5301 		 * make sure what it found really fits our range, and
5302 		 * adjust to make sure it is based on the start from
5303 		 * the caller
5304 		 */
5305 		if (hole_em) {
5306 			u64 calc_end = extent_map_end(hole_em);
5307 
5308 			if (calc_end <= start || (hole_em->start > end)) {
5309 				free_extent_map(hole_em);
5310 				hole_em = NULL;
5311 			} else {
5312 				hole_start = max(hole_em->start, start);
5313 				hole_len = calc_end - hole_start;
5314 			}
5315 		}
5316 		em->bdev = NULL;
5317 		if (hole_em && range_start > hole_start) {
5318 			/* our hole starts before our delalloc, so we
5319 			 * have to return just the parts of the hole
5320 			 * that go until  the delalloc starts
5321 			 */
5322 			em->len = min(hole_len,
5323 				      range_start - hole_start);
5324 			em->start = hole_start;
5325 			em->orig_start = hole_start;
5326 			/*
5327 			 * don't adjust block start at all,
5328 			 * it is fixed at EXTENT_MAP_HOLE
5329 			 */
5330 			em->block_start = hole_em->block_start;
5331 			em->block_len = hole_len;
5332 		} else {
5333 			em->start = range_start;
5334 			em->len = found;
5335 			em->orig_start = range_start;
5336 			em->block_start = EXTENT_MAP_DELALLOC;
5337 			em->block_len = found;
5338 		}
5339 	} else if (hole_em) {
5340 		return hole_em;
5341 	}
5342 out:
5343 
5344 	free_extent_map(hole_em);
5345 	if (err) {
5346 		free_extent_map(em);
5347 		return ERR_PTR(err);
5348 	}
5349 	return em;
5350 }
5351 
5352 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5353 						  struct extent_map *em,
5354 						  u64 start, u64 len)
5355 {
5356 	struct btrfs_root *root = BTRFS_I(inode)->root;
5357 	struct btrfs_trans_handle *trans;
5358 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5359 	struct btrfs_key ins;
5360 	u64 alloc_hint;
5361 	int ret;
5362 	bool insert = false;
5363 
5364 	/*
5365 	 * Ok if the extent map we looked up is a hole and is for the exact
5366 	 * range we want, there is no reason to allocate a new one, however if
5367 	 * it is not right then we need to free this one and drop the cache for
5368 	 * our range.
5369 	 */
5370 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5371 	    em->len != len) {
5372 		free_extent_map(em);
5373 		em = NULL;
5374 		insert = true;
5375 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5376 	}
5377 
5378 	trans = btrfs_join_transaction(root, 0);
5379 	if (IS_ERR(trans))
5380 		return ERR_CAST(trans);
5381 
5382 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5383 		btrfs_add_inode_defrag(trans, inode);
5384 
5385 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5386 
5387 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5388 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5389 				   alloc_hint, (u64)-1, &ins, 1);
5390 	if (ret) {
5391 		em = ERR_PTR(ret);
5392 		goto out;
5393 	}
5394 
5395 	if (!em) {
5396 		em = alloc_extent_map();
5397 		if (!em) {
5398 			em = ERR_PTR(-ENOMEM);
5399 			goto out;
5400 		}
5401 	}
5402 
5403 	em->start = start;
5404 	em->orig_start = em->start;
5405 	em->len = ins.offset;
5406 
5407 	em->block_start = ins.objectid;
5408 	em->block_len = ins.offset;
5409 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5410 
5411 	/*
5412 	 * We need to do this because if we're using the original em we searched
5413 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5414 	 */
5415 	em->flags = 0;
5416 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5417 
5418 	while (insert) {
5419 		write_lock(&em_tree->lock);
5420 		ret = add_extent_mapping(em_tree, em);
5421 		write_unlock(&em_tree->lock);
5422 		if (ret != -EEXIST)
5423 			break;
5424 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5425 	}
5426 
5427 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5428 					   ins.offset, ins.offset, 0);
5429 	if (ret) {
5430 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5431 		em = ERR_PTR(ret);
5432 	}
5433 out:
5434 	btrfs_end_transaction(trans, root);
5435 	return em;
5436 }
5437 
5438 /*
5439  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5440  * block must be cow'd
5441  */
5442 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5443 				      struct inode *inode, u64 offset, u64 len)
5444 {
5445 	struct btrfs_path *path;
5446 	int ret;
5447 	struct extent_buffer *leaf;
5448 	struct btrfs_root *root = BTRFS_I(inode)->root;
5449 	struct btrfs_file_extent_item *fi;
5450 	struct btrfs_key key;
5451 	u64 disk_bytenr;
5452 	u64 backref_offset;
5453 	u64 extent_end;
5454 	u64 num_bytes;
5455 	int slot;
5456 	int found_type;
5457 
5458 	path = btrfs_alloc_path();
5459 	if (!path)
5460 		return -ENOMEM;
5461 
5462 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5463 				       offset, 0);
5464 	if (ret < 0)
5465 		goto out;
5466 
5467 	slot = path->slots[0];
5468 	if (ret == 1) {
5469 		if (slot == 0) {
5470 			/* can't find the item, must cow */
5471 			ret = 0;
5472 			goto out;
5473 		}
5474 		slot--;
5475 	}
5476 	ret = 0;
5477 	leaf = path->nodes[0];
5478 	btrfs_item_key_to_cpu(leaf, &key, slot);
5479 	if (key.objectid != btrfs_ino(inode) ||
5480 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5481 		/* not our file or wrong item type, must cow */
5482 		goto out;
5483 	}
5484 
5485 	if (key.offset > offset) {
5486 		/* Wrong offset, must cow */
5487 		goto out;
5488 	}
5489 
5490 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5491 	found_type = btrfs_file_extent_type(leaf, fi);
5492 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5493 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5494 		/* not a regular extent, must cow */
5495 		goto out;
5496 	}
5497 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5498 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5499 
5500 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5501 	if (extent_end < offset + len) {
5502 		/* extent doesn't include our full range, must cow */
5503 		goto out;
5504 	}
5505 
5506 	if (btrfs_extent_readonly(root, disk_bytenr))
5507 		goto out;
5508 
5509 	/*
5510 	 * look for other files referencing this extent, if we
5511 	 * find any we must cow
5512 	 */
5513 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5514 				  key.offset - backref_offset, disk_bytenr))
5515 		goto out;
5516 
5517 	/*
5518 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5519 	 * in this extent we are about to write.  If there
5520 	 * are any csums in that range we have to cow in order
5521 	 * to keep the csums correct
5522 	 */
5523 	disk_bytenr += backref_offset;
5524 	disk_bytenr += offset - key.offset;
5525 	num_bytes = min(offset + len, extent_end) - offset;
5526 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5527 				goto out;
5528 	/*
5529 	 * all of the above have passed, it is safe to overwrite this extent
5530 	 * without cow
5531 	 */
5532 	ret = 1;
5533 out:
5534 	btrfs_free_path(path);
5535 	return ret;
5536 }
5537 
5538 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5539 				   struct buffer_head *bh_result, int create)
5540 {
5541 	struct extent_map *em;
5542 	struct btrfs_root *root = BTRFS_I(inode)->root;
5543 	u64 start = iblock << inode->i_blkbits;
5544 	u64 len = bh_result->b_size;
5545 	struct btrfs_trans_handle *trans;
5546 
5547 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5548 	if (IS_ERR(em))
5549 		return PTR_ERR(em);
5550 
5551 	/*
5552 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5553 	 * io.  INLINE is special, and we could probably kludge it in here, but
5554 	 * it's still buffered so for safety lets just fall back to the generic
5555 	 * buffered path.
5556 	 *
5557 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5558 	 * decompress it, so there will be buffering required no matter what we
5559 	 * do, so go ahead and fallback to buffered.
5560 	 *
5561 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5562 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5563 	 * the generic code.
5564 	 */
5565 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5566 	    em->block_start == EXTENT_MAP_INLINE) {
5567 		free_extent_map(em);
5568 		return -ENOTBLK;
5569 	}
5570 
5571 	/* Just a good old fashioned hole, return */
5572 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5573 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5574 		free_extent_map(em);
5575 		/* DIO will do one hole at a time, so just unlock a sector */
5576 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5577 			      start + root->sectorsize - 1, GFP_NOFS);
5578 		return 0;
5579 	}
5580 
5581 	/*
5582 	 * We don't allocate a new extent in the following cases
5583 	 *
5584 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5585 	 * existing extent.
5586 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5587 	 * just use the extent.
5588 	 *
5589 	 */
5590 	if (!create) {
5591 		len = em->len - (start - em->start);
5592 		goto map;
5593 	}
5594 
5595 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5596 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5597 	     em->block_start != EXTENT_MAP_HOLE)) {
5598 		int type;
5599 		int ret;
5600 		u64 block_start;
5601 
5602 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5603 			type = BTRFS_ORDERED_PREALLOC;
5604 		else
5605 			type = BTRFS_ORDERED_NOCOW;
5606 		len = min(len, em->len - (start - em->start));
5607 		block_start = em->block_start + (start - em->start);
5608 
5609 		/*
5610 		 * we're not going to log anything, but we do need
5611 		 * to make sure the current transaction stays open
5612 		 * while we look for nocow cross refs
5613 		 */
5614 		trans = btrfs_join_transaction(root, 0);
5615 		if (IS_ERR(trans))
5616 			goto must_cow;
5617 
5618 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5619 			ret = btrfs_add_ordered_extent_dio(inode, start,
5620 					   block_start, len, len, type);
5621 			btrfs_end_transaction(trans, root);
5622 			if (ret) {
5623 				free_extent_map(em);
5624 				return ret;
5625 			}
5626 			goto unlock;
5627 		}
5628 		btrfs_end_transaction(trans, root);
5629 	}
5630 must_cow:
5631 	/*
5632 	 * this will cow the extent, reset the len in case we changed
5633 	 * it above
5634 	 */
5635 	len = bh_result->b_size;
5636 	em = btrfs_new_extent_direct(inode, em, start, len);
5637 	if (IS_ERR(em))
5638 		return PTR_ERR(em);
5639 	len = min(len, em->len - (start - em->start));
5640 unlock:
5641 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5642 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5643 			  0, NULL, GFP_NOFS);
5644 map:
5645 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5646 		inode->i_blkbits;
5647 	bh_result->b_size = len;
5648 	bh_result->b_bdev = em->bdev;
5649 	set_buffer_mapped(bh_result);
5650 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5651 		set_buffer_new(bh_result);
5652 
5653 	free_extent_map(em);
5654 
5655 	return 0;
5656 }
5657 
5658 struct btrfs_dio_private {
5659 	struct inode *inode;
5660 	u64 logical_offset;
5661 	u64 disk_bytenr;
5662 	u64 bytes;
5663 	u32 *csums;
5664 	void *private;
5665 
5666 	/* number of bios pending for this dio */
5667 	atomic_t pending_bios;
5668 
5669 	/* IO errors */
5670 	int errors;
5671 
5672 	struct bio *orig_bio;
5673 };
5674 
5675 static void btrfs_endio_direct_read(struct bio *bio, int err)
5676 {
5677 	struct btrfs_dio_private *dip = bio->bi_private;
5678 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5679 	struct bio_vec *bvec = bio->bi_io_vec;
5680 	struct inode *inode = dip->inode;
5681 	struct btrfs_root *root = BTRFS_I(inode)->root;
5682 	u64 start;
5683 	u32 *private = dip->csums;
5684 
5685 	start = dip->logical_offset;
5686 	do {
5687 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5688 			struct page *page = bvec->bv_page;
5689 			char *kaddr;
5690 			u32 csum = ~(u32)0;
5691 			unsigned long flags;
5692 
5693 			local_irq_save(flags);
5694 			kaddr = kmap_atomic(page, KM_IRQ0);
5695 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5696 					       csum, bvec->bv_len);
5697 			btrfs_csum_final(csum, (char *)&csum);
5698 			kunmap_atomic(kaddr, KM_IRQ0);
5699 			local_irq_restore(flags);
5700 
5701 			flush_dcache_page(bvec->bv_page);
5702 			if (csum != *private) {
5703 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5704 				      " %llu csum %u private %u\n",
5705 				      (unsigned long long)btrfs_ino(inode),
5706 				      (unsigned long long)start,
5707 				      csum, *private);
5708 				err = -EIO;
5709 			}
5710 		}
5711 
5712 		start += bvec->bv_len;
5713 		private++;
5714 		bvec++;
5715 	} while (bvec <= bvec_end);
5716 
5717 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5718 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5719 	bio->bi_private = dip->private;
5720 
5721 	kfree(dip->csums);
5722 	kfree(dip);
5723 
5724 	/* If we had a csum failure make sure to clear the uptodate flag */
5725 	if (err)
5726 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5727 	dio_end_io(bio, err);
5728 }
5729 
5730 static void btrfs_endio_direct_write(struct bio *bio, int err)
5731 {
5732 	struct btrfs_dio_private *dip = bio->bi_private;
5733 	struct inode *inode = dip->inode;
5734 	struct btrfs_root *root = BTRFS_I(inode)->root;
5735 	struct btrfs_trans_handle *trans;
5736 	struct btrfs_ordered_extent *ordered = NULL;
5737 	struct extent_state *cached_state = NULL;
5738 	u64 ordered_offset = dip->logical_offset;
5739 	u64 ordered_bytes = dip->bytes;
5740 	int ret;
5741 
5742 	if (err)
5743 		goto out_done;
5744 again:
5745 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5746 						   &ordered_offset,
5747 						   ordered_bytes);
5748 	if (!ret)
5749 		goto out_test;
5750 
5751 	BUG_ON(!ordered);
5752 
5753 	trans = btrfs_join_transaction(root, 1);
5754 	if (IS_ERR(trans)) {
5755 		err = -ENOMEM;
5756 		goto out;
5757 	}
5758 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5759 
5760 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5761 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5762 		if (!ret)
5763 			ret = btrfs_update_inode(trans, root, inode);
5764 		err = ret;
5765 		goto out;
5766 	}
5767 
5768 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5769 			 ordered->file_offset + ordered->len - 1, 0,
5770 			 &cached_state, GFP_NOFS);
5771 
5772 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5773 		ret = btrfs_mark_extent_written(trans, inode,
5774 						ordered->file_offset,
5775 						ordered->file_offset +
5776 						ordered->len);
5777 		if (ret) {
5778 			err = ret;
5779 			goto out_unlock;
5780 		}
5781 	} else {
5782 		ret = insert_reserved_file_extent(trans, inode,
5783 						  ordered->file_offset,
5784 						  ordered->start,
5785 						  ordered->disk_len,
5786 						  ordered->len,
5787 						  ordered->len,
5788 						  0, 0, 0,
5789 						  BTRFS_FILE_EXTENT_REG);
5790 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5791 				   ordered->file_offset, ordered->len);
5792 		if (ret) {
5793 			err = ret;
5794 			WARN_ON(1);
5795 			goto out_unlock;
5796 		}
5797 	}
5798 
5799 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5800 	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5801 	if (!ret)
5802 		btrfs_update_inode(trans, root, inode);
5803 	ret = 0;
5804 out_unlock:
5805 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5806 			     ordered->file_offset + ordered->len - 1,
5807 			     &cached_state, GFP_NOFS);
5808 out:
5809 	btrfs_delalloc_release_metadata(inode, ordered->len);
5810 	btrfs_end_transaction(trans, root);
5811 	ordered_offset = ordered->file_offset + ordered->len;
5812 	btrfs_put_ordered_extent(ordered);
5813 	btrfs_put_ordered_extent(ordered);
5814 
5815 out_test:
5816 	/*
5817 	 * our bio might span multiple ordered extents.  If we haven't
5818 	 * completed the accounting for the whole dio, go back and try again
5819 	 */
5820 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5821 		ordered_bytes = dip->logical_offset + dip->bytes -
5822 			ordered_offset;
5823 		goto again;
5824 	}
5825 out_done:
5826 	bio->bi_private = dip->private;
5827 
5828 	kfree(dip->csums);
5829 	kfree(dip);
5830 
5831 	/* If we had an error make sure to clear the uptodate flag */
5832 	if (err)
5833 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5834 	dio_end_io(bio, err);
5835 }
5836 
5837 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5838 				    struct bio *bio, int mirror_num,
5839 				    unsigned long bio_flags, u64 offset)
5840 {
5841 	int ret;
5842 	struct btrfs_root *root = BTRFS_I(inode)->root;
5843 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5844 	BUG_ON(ret);
5845 	return 0;
5846 }
5847 
5848 static void btrfs_end_dio_bio(struct bio *bio, int err)
5849 {
5850 	struct btrfs_dio_private *dip = bio->bi_private;
5851 
5852 	if (err) {
5853 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5854 		      "sector %#Lx len %u err no %d\n",
5855 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5856 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5857 		dip->errors = 1;
5858 
5859 		/*
5860 		 * before atomic variable goto zero, we must make sure
5861 		 * dip->errors is perceived to be set.
5862 		 */
5863 		smp_mb__before_atomic_dec();
5864 	}
5865 
5866 	/* if there are more bios still pending for this dio, just exit */
5867 	if (!atomic_dec_and_test(&dip->pending_bios))
5868 		goto out;
5869 
5870 	if (dip->errors)
5871 		bio_io_error(dip->orig_bio);
5872 	else {
5873 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5874 		bio_endio(dip->orig_bio, 0);
5875 	}
5876 out:
5877 	bio_put(bio);
5878 }
5879 
5880 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5881 				       u64 first_sector, gfp_t gfp_flags)
5882 {
5883 	int nr_vecs = bio_get_nr_vecs(bdev);
5884 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5885 }
5886 
5887 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5888 					 int rw, u64 file_offset, int skip_sum,
5889 					 u32 *csums, int async_submit)
5890 {
5891 	int write = rw & REQ_WRITE;
5892 	struct btrfs_root *root = BTRFS_I(inode)->root;
5893 	int ret;
5894 
5895 	bio_get(bio);
5896 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5897 	if (ret)
5898 		goto err;
5899 
5900 	if (skip_sum)
5901 		goto map;
5902 
5903 	if (write && async_submit) {
5904 		ret = btrfs_wq_submit_bio(root->fs_info,
5905 				   inode, rw, bio, 0, 0,
5906 				   file_offset,
5907 				   __btrfs_submit_bio_start_direct_io,
5908 				   __btrfs_submit_bio_done);
5909 		goto err;
5910 	} else if (write) {
5911 		/*
5912 		 * If we aren't doing async submit, calculate the csum of the
5913 		 * bio now.
5914 		 */
5915 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5916 		if (ret)
5917 			goto err;
5918 	} else if (!skip_sum) {
5919 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5920 					  file_offset, csums);
5921 		if (ret)
5922 			goto err;
5923 	}
5924 
5925 map:
5926 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5927 err:
5928 	bio_put(bio);
5929 	return ret;
5930 }
5931 
5932 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5933 				    int skip_sum)
5934 {
5935 	struct inode *inode = dip->inode;
5936 	struct btrfs_root *root = BTRFS_I(inode)->root;
5937 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5938 	struct bio *bio;
5939 	struct bio *orig_bio = dip->orig_bio;
5940 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5941 	u64 start_sector = orig_bio->bi_sector;
5942 	u64 file_offset = dip->logical_offset;
5943 	u64 submit_len = 0;
5944 	u64 map_length;
5945 	int nr_pages = 0;
5946 	u32 *csums = dip->csums;
5947 	int ret = 0;
5948 	int async_submit = 0;
5949 	int write = rw & REQ_WRITE;
5950 
5951 	map_length = orig_bio->bi_size;
5952 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5953 			      &map_length, NULL, 0);
5954 	if (ret) {
5955 		bio_put(orig_bio);
5956 		return -EIO;
5957 	}
5958 
5959 	if (map_length >= orig_bio->bi_size) {
5960 		bio = orig_bio;
5961 		goto submit;
5962 	}
5963 
5964 	async_submit = 1;
5965 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5966 	if (!bio)
5967 		return -ENOMEM;
5968 	bio->bi_private = dip;
5969 	bio->bi_end_io = btrfs_end_dio_bio;
5970 	atomic_inc(&dip->pending_bios);
5971 
5972 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5973 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5974 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5975 				 bvec->bv_offset) < bvec->bv_len)) {
5976 			/*
5977 			 * inc the count before we submit the bio so
5978 			 * we know the end IO handler won't happen before
5979 			 * we inc the count. Otherwise, the dip might get freed
5980 			 * before we're done setting it up
5981 			 */
5982 			atomic_inc(&dip->pending_bios);
5983 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5984 						     file_offset, skip_sum,
5985 						     csums, async_submit);
5986 			if (ret) {
5987 				bio_put(bio);
5988 				atomic_dec(&dip->pending_bios);
5989 				goto out_err;
5990 			}
5991 
5992 			/* Write's use the ordered csums */
5993 			if (!write && !skip_sum)
5994 				csums = csums + nr_pages;
5995 			start_sector += submit_len >> 9;
5996 			file_offset += submit_len;
5997 
5998 			submit_len = 0;
5999 			nr_pages = 0;
6000 
6001 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6002 						  start_sector, GFP_NOFS);
6003 			if (!bio)
6004 				goto out_err;
6005 			bio->bi_private = dip;
6006 			bio->bi_end_io = btrfs_end_dio_bio;
6007 
6008 			map_length = orig_bio->bi_size;
6009 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6010 					      &map_length, NULL, 0);
6011 			if (ret) {
6012 				bio_put(bio);
6013 				goto out_err;
6014 			}
6015 		} else {
6016 			submit_len += bvec->bv_len;
6017 			nr_pages ++;
6018 			bvec++;
6019 		}
6020 	}
6021 
6022 submit:
6023 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6024 				     csums, async_submit);
6025 	if (!ret)
6026 		return 0;
6027 
6028 	bio_put(bio);
6029 out_err:
6030 	dip->errors = 1;
6031 	/*
6032 	 * before atomic variable goto zero, we must
6033 	 * make sure dip->errors is perceived to be set.
6034 	 */
6035 	smp_mb__before_atomic_dec();
6036 	if (atomic_dec_and_test(&dip->pending_bios))
6037 		bio_io_error(dip->orig_bio);
6038 
6039 	/* bio_end_io() will handle error, so we needn't return it */
6040 	return 0;
6041 }
6042 
6043 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6044 				loff_t file_offset)
6045 {
6046 	struct btrfs_root *root = BTRFS_I(inode)->root;
6047 	struct btrfs_dio_private *dip;
6048 	struct bio_vec *bvec = bio->bi_io_vec;
6049 	int skip_sum;
6050 	int write = rw & REQ_WRITE;
6051 	int ret = 0;
6052 
6053 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6054 
6055 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6056 	if (!dip) {
6057 		ret = -ENOMEM;
6058 		goto free_ordered;
6059 	}
6060 	dip->csums = NULL;
6061 
6062 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
6063 	if (!write && !skip_sum) {
6064 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6065 		if (!dip->csums) {
6066 			kfree(dip);
6067 			ret = -ENOMEM;
6068 			goto free_ordered;
6069 		}
6070 	}
6071 
6072 	dip->private = bio->bi_private;
6073 	dip->inode = inode;
6074 	dip->logical_offset = file_offset;
6075 
6076 	dip->bytes = 0;
6077 	do {
6078 		dip->bytes += bvec->bv_len;
6079 		bvec++;
6080 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6081 
6082 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6083 	bio->bi_private = dip;
6084 	dip->errors = 0;
6085 	dip->orig_bio = bio;
6086 	atomic_set(&dip->pending_bios, 0);
6087 
6088 	if (write)
6089 		bio->bi_end_io = btrfs_endio_direct_write;
6090 	else
6091 		bio->bi_end_io = btrfs_endio_direct_read;
6092 
6093 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6094 	if (!ret)
6095 		return;
6096 free_ordered:
6097 	/*
6098 	 * If this is a write, we need to clean up the reserved space and kill
6099 	 * the ordered extent.
6100 	 */
6101 	if (write) {
6102 		struct btrfs_ordered_extent *ordered;
6103 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6104 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6105 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6106 			btrfs_free_reserved_extent(root, ordered->start,
6107 						   ordered->disk_len);
6108 		btrfs_put_ordered_extent(ordered);
6109 		btrfs_put_ordered_extent(ordered);
6110 	}
6111 	bio_endio(bio, ret);
6112 }
6113 
6114 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6115 			const struct iovec *iov, loff_t offset,
6116 			unsigned long nr_segs)
6117 {
6118 	int seg;
6119 	int i;
6120 	size_t size;
6121 	unsigned long addr;
6122 	unsigned blocksize_mask = root->sectorsize - 1;
6123 	ssize_t retval = -EINVAL;
6124 	loff_t end = offset;
6125 
6126 	if (offset & blocksize_mask)
6127 		goto out;
6128 
6129 	/* Check the memory alignment.  Blocks cannot straddle pages */
6130 	for (seg = 0; seg < nr_segs; seg++) {
6131 		addr = (unsigned long)iov[seg].iov_base;
6132 		size = iov[seg].iov_len;
6133 		end += size;
6134 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6135 			goto out;
6136 
6137 		/* If this is a write we don't need to check anymore */
6138 		if (rw & WRITE)
6139 			continue;
6140 
6141 		/*
6142 		 * Check to make sure we don't have duplicate iov_base's in this
6143 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6144 		 * when reading back.
6145 		 */
6146 		for (i = seg + 1; i < nr_segs; i++) {
6147 			if (iov[seg].iov_base == iov[i].iov_base)
6148 				goto out;
6149 		}
6150 	}
6151 	retval = 0;
6152 out:
6153 	return retval;
6154 }
6155 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6156 			const struct iovec *iov, loff_t offset,
6157 			unsigned long nr_segs)
6158 {
6159 	struct file *file = iocb->ki_filp;
6160 	struct inode *inode = file->f_mapping->host;
6161 	struct btrfs_ordered_extent *ordered;
6162 	struct extent_state *cached_state = NULL;
6163 	u64 lockstart, lockend;
6164 	ssize_t ret;
6165 	int writing = rw & WRITE;
6166 	int write_bits = 0;
6167 	size_t count = iov_length(iov, nr_segs);
6168 
6169 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6170 			    offset, nr_segs)) {
6171 		return 0;
6172 	}
6173 
6174 	lockstart = offset;
6175 	lockend = offset + count - 1;
6176 
6177 	if (writing) {
6178 		ret = btrfs_delalloc_reserve_space(inode, count);
6179 		if (ret)
6180 			goto out;
6181 	}
6182 
6183 	while (1) {
6184 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6185 				 0, &cached_state, GFP_NOFS);
6186 		/*
6187 		 * We're concerned with the entire range that we're going to be
6188 		 * doing DIO to, so we need to make sure theres no ordered
6189 		 * extents in this range.
6190 		 */
6191 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6192 						     lockend - lockstart + 1);
6193 		if (!ordered)
6194 			break;
6195 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6196 				     &cached_state, GFP_NOFS);
6197 		btrfs_start_ordered_extent(inode, ordered, 1);
6198 		btrfs_put_ordered_extent(ordered);
6199 		cond_resched();
6200 	}
6201 
6202 	/*
6203 	 * we don't use btrfs_set_extent_delalloc because we don't want
6204 	 * the dirty or uptodate bits
6205 	 */
6206 	if (writing) {
6207 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6208 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6209 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6210 				     GFP_NOFS);
6211 		if (ret) {
6212 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6213 					 lockend, EXTENT_LOCKED | write_bits,
6214 					 1, 0, &cached_state, GFP_NOFS);
6215 			goto out;
6216 		}
6217 	}
6218 
6219 	free_extent_state(cached_state);
6220 	cached_state = NULL;
6221 
6222 	ret = __blockdev_direct_IO(rw, iocb, inode,
6223 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6224 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6225 		   btrfs_submit_direct, 0);
6226 
6227 	if (ret < 0 && ret != -EIOCBQUEUED) {
6228 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6229 			      offset + iov_length(iov, nr_segs) - 1,
6230 			      EXTENT_LOCKED | write_bits, 1, 0,
6231 			      &cached_state, GFP_NOFS);
6232 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6233 		/*
6234 		 * We're falling back to buffered, unlock the section we didn't
6235 		 * do IO on.
6236 		 */
6237 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6238 			      offset + iov_length(iov, nr_segs) - 1,
6239 			      EXTENT_LOCKED | write_bits, 1, 0,
6240 			      &cached_state, GFP_NOFS);
6241 	}
6242 out:
6243 	free_extent_state(cached_state);
6244 	return ret;
6245 }
6246 
6247 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6248 		__u64 start, __u64 len)
6249 {
6250 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6251 }
6252 
6253 int btrfs_readpage(struct file *file, struct page *page)
6254 {
6255 	struct extent_io_tree *tree;
6256 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6257 	return extent_read_full_page(tree, page, btrfs_get_extent);
6258 }
6259 
6260 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6261 {
6262 	struct extent_io_tree *tree;
6263 
6264 
6265 	if (current->flags & PF_MEMALLOC) {
6266 		redirty_page_for_writepage(wbc, page);
6267 		unlock_page(page);
6268 		return 0;
6269 	}
6270 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6271 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6272 }
6273 
6274 int btrfs_writepages(struct address_space *mapping,
6275 		     struct writeback_control *wbc)
6276 {
6277 	struct extent_io_tree *tree;
6278 
6279 	tree = &BTRFS_I(mapping->host)->io_tree;
6280 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6281 }
6282 
6283 static int
6284 btrfs_readpages(struct file *file, struct address_space *mapping,
6285 		struct list_head *pages, unsigned nr_pages)
6286 {
6287 	struct extent_io_tree *tree;
6288 	tree = &BTRFS_I(mapping->host)->io_tree;
6289 	return extent_readpages(tree, mapping, pages, nr_pages,
6290 				btrfs_get_extent);
6291 }
6292 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6293 {
6294 	struct extent_io_tree *tree;
6295 	struct extent_map_tree *map;
6296 	int ret;
6297 
6298 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6299 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6300 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6301 	if (ret == 1) {
6302 		ClearPagePrivate(page);
6303 		set_page_private(page, 0);
6304 		page_cache_release(page);
6305 	}
6306 	return ret;
6307 }
6308 
6309 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6310 {
6311 	if (PageWriteback(page) || PageDirty(page))
6312 		return 0;
6313 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6314 }
6315 
6316 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6317 {
6318 	struct extent_io_tree *tree;
6319 	struct btrfs_ordered_extent *ordered;
6320 	struct extent_state *cached_state = NULL;
6321 	u64 page_start = page_offset(page);
6322 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6323 
6324 
6325 	/*
6326 	 * we have the page locked, so new writeback can't start,
6327 	 * and the dirty bit won't be cleared while we are here.
6328 	 *
6329 	 * Wait for IO on this page so that we can safely clear
6330 	 * the PagePrivate2 bit and do ordered accounting
6331 	 */
6332 	wait_on_page_writeback(page);
6333 
6334 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6335 	if (offset) {
6336 		btrfs_releasepage(page, GFP_NOFS);
6337 		return;
6338 	}
6339 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6340 			 GFP_NOFS);
6341 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6342 					   page_offset(page));
6343 	if (ordered) {
6344 		/*
6345 		 * IO on this page will never be started, so we need
6346 		 * to account for any ordered extents now
6347 		 */
6348 		clear_extent_bit(tree, page_start, page_end,
6349 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6350 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6351 				 &cached_state, GFP_NOFS);
6352 		/*
6353 		 * whoever cleared the private bit is responsible
6354 		 * for the finish_ordered_io
6355 		 */
6356 		if (TestClearPagePrivate2(page)) {
6357 			btrfs_finish_ordered_io(page->mapping->host,
6358 						page_start, page_end);
6359 		}
6360 		btrfs_put_ordered_extent(ordered);
6361 		cached_state = NULL;
6362 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6363 				 GFP_NOFS);
6364 	}
6365 	clear_extent_bit(tree, page_start, page_end,
6366 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6367 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6368 	__btrfs_releasepage(page, GFP_NOFS);
6369 
6370 	ClearPageChecked(page);
6371 	if (PagePrivate(page)) {
6372 		ClearPagePrivate(page);
6373 		set_page_private(page, 0);
6374 		page_cache_release(page);
6375 	}
6376 }
6377 
6378 /*
6379  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6380  * called from a page fault handler when a page is first dirtied. Hence we must
6381  * be careful to check for EOF conditions here. We set the page up correctly
6382  * for a written page which means we get ENOSPC checking when writing into
6383  * holes and correct delalloc and unwritten extent mapping on filesystems that
6384  * support these features.
6385  *
6386  * We are not allowed to take the i_mutex here so we have to play games to
6387  * protect against truncate races as the page could now be beyond EOF.  Because
6388  * vmtruncate() writes the inode size before removing pages, once we have the
6389  * page lock we can determine safely if the page is beyond EOF. If it is not
6390  * beyond EOF, then the page is guaranteed safe against truncation until we
6391  * unlock the page.
6392  */
6393 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6394 {
6395 	struct page *page = vmf->page;
6396 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6397 	struct btrfs_root *root = BTRFS_I(inode)->root;
6398 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6399 	struct btrfs_ordered_extent *ordered;
6400 	struct extent_state *cached_state = NULL;
6401 	char *kaddr;
6402 	unsigned long zero_start;
6403 	loff_t size;
6404 	int ret;
6405 	u64 page_start;
6406 	u64 page_end;
6407 
6408 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6409 	if (ret) {
6410 		if (ret == -ENOMEM)
6411 			ret = VM_FAULT_OOM;
6412 		else /* -ENOSPC, -EIO, etc */
6413 			ret = VM_FAULT_SIGBUS;
6414 		goto out;
6415 	}
6416 
6417 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6418 again:
6419 	lock_page(page);
6420 	size = i_size_read(inode);
6421 	page_start = page_offset(page);
6422 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6423 
6424 	if ((page->mapping != inode->i_mapping) ||
6425 	    (page_start >= size)) {
6426 		/* page got truncated out from underneath us */
6427 		goto out_unlock;
6428 	}
6429 	wait_on_page_writeback(page);
6430 
6431 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6432 			 GFP_NOFS);
6433 	set_page_extent_mapped(page);
6434 
6435 	/*
6436 	 * we can't set the delalloc bits if there are pending ordered
6437 	 * extents.  Drop our locks and wait for them to finish
6438 	 */
6439 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6440 	if (ordered) {
6441 		unlock_extent_cached(io_tree, page_start, page_end,
6442 				     &cached_state, GFP_NOFS);
6443 		unlock_page(page);
6444 		btrfs_start_ordered_extent(inode, ordered, 1);
6445 		btrfs_put_ordered_extent(ordered);
6446 		goto again;
6447 	}
6448 
6449 	/*
6450 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6451 	 * if it was already dirty, so for space accounting reasons we need to
6452 	 * clear any delalloc bits for the range we are fixing to save.  There
6453 	 * is probably a better way to do this, but for now keep consistent with
6454 	 * prepare_pages in the normal write path.
6455 	 */
6456 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6457 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6458 			  0, 0, &cached_state, GFP_NOFS);
6459 
6460 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6461 					&cached_state);
6462 	if (ret) {
6463 		unlock_extent_cached(io_tree, page_start, page_end,
6464 				     &cached_state, GFP_NOFS);
6465 		ret = VM_FAULT_SIGBUS;
6466 		goto out_unlock;
6467 	}
6468 	ret = 0;
6469 
6470 	/* page is wholly or partially inside EOF */
6471 	if (page_start + PAGE_CACHE_SIZE > size)
6472 		zero_start = size & ~PAGE_CACHE_MASK;
6473 	else
6474 		zero_start = PAGE_CACHE_SIZE;
6475 
6476 	if (zero_start != PAGE_CACHE_SIZE) {
6477 		kaddr = kmap(page);
6478 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6479 		flush_dcache_page(page);
6480 		kunmap(page);
6481 	}
6482 	ClearPageChecked(page);
6483 	set_page_dirty(page);
6484 	SetPageUptodate(page);
6485 
6486 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6487 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6488 
6489 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6490 
6491 out_unlock:
6492 	if (!ret)
6493 		return VM_FAULT_LOCKED;
6494 	unlock_page(page);
6495 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6496 out:
6497 	return ret;
6498 }
6499 
6500 static int btrfs_truncate(struct inode *inode)
6501 {
6502 	struct btrfs_root *root = BTRFS_I(inode)->root;
6503 	int ret;
6504 	int err = 0;
6505 	struct btrfs_trans_handle *trans;
6506 	unsigned long nr;
6507 	u64 mask = root->sectorsize - 1;
6508 
6509 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6510 	if (ret)
6511 		return ret;
6512 
6513 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6514 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6515 
6516 	trans = btrfs_start_transaction(root, 5);
6517 	if (IS_ERR(trans))
6518 		return PTR_ERR(trans);
6519 
6520 	btrfs_set_trans_block_group(trans, inode);
6521 
6522 	ret = btrfs_orphan_add(trans, inode);
6523 	if (ret) {
6524 		btrfs_end_transaction(trans, root);
6525 		return ret;
6526 	}
6527 
6528 	nr = trans->blocks_used;
6529 	btrfs_end_transaction(trans, root);
6530 	btrfs_btree_balance_dirty(root, nr);
6531 
6532 	/* Now start a transaction for the truncate */
6533 	trans = btrfs_start_transaction(root, 0);
6534 	if (IS_ERR(trans))
6535 		return PTR_ERR(trans);
6536 	btrfs_set_trans_block_group(trans, inode);
6537 	trans->block_rsv = root->orphan_block_rsv;
6538 
6539 	/*
6540 	 * setattr is responsible for setting the ordered_data_close flag,
6541 	 * but that is only tested during the last file release.  That
6542 	 * could happen well after the next commit, leaving a great big
6543 	 * window where new writes may get lost if someone chooses to write
6544 	 * to this file after truncating to zero
6545 	 *
6546 	 * The inode doesn't have any dirty data here, and so if we commit
6547 	 * this is a noop.  If someone immediately starts writing to the inode
6548 	 * it is very likely we'll catch some of their writes in this
6549 	 * transaction, and the commit will find this file on the ordered
6550 	 * data list with good things to send down.
6551 	 *
6552 	 * This is a best effort solution, there is still a window where
6553 	 * using truncate to replace the contents of the file will
6554 	 * end up with a zero length file after a crash.
6555 	 */
6556 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6557 		btrfs_add_ordered_operation(trans, root, inode);
6558 
6559 	while (1) {
6560 		if (!trans) {
6561 			trans = btrfs_start_transaction(root, 0);
6562 			if (IS_ERR(trans))
6563 				return PTR_ERR(trans);
6564 			btrfs_set_trans_block_group(trans, inode);
6565 			trans->block_rsv = root->orphan_block_rsv;
6566 		}
6567 
6568 		ret = btrfs_block_rsv_check(trans, root,
6569 					    root->orphan_block_rsv, 0, 5);
6570 		if (ret == -EAGAIN) {
6571 			ret = btrfs_commit_transaction(trans, root);
6572 			if (ret)
6573 				return ret;
6574 			trans = NULL;
6575 			continue;
6576 		} else if (ret) {
6577 			err = ret;
6578 			break;
6579 		}
6580 
6581 		ret = btrfs_truncate_inode_items(trans, root, inode,
6582 						 inode->i_size,
6583 						 BTRFS_EXTENT_DATA_KEY);
6584 		if (ret != -EAGAIN) {
6585 			err = ret;
6586 			break;
6587 		}
6588 
6589 		ret = btrfs_update_inode(trans, root, inode);
6590 		if (ret) {
6591 			err = ret;
6592 			break;
6593 		}
6594 
6595 		nr = trans->blocks_used;
6596 		btrfs_end_transaction(trans, root);
6597 		trans = NULL;
6598 		btrfs_btree_balance_dirty(root, nr);
6599 	}
6600 
6601 	if (ret == 0 && inode->i_nlink > 0) {
6602 		ret = btrfs_orphan_del(trans, inode);
6603 		if (ret)
6604 			err = ret;
6605 	} else if (ret && inode->i_nlink > 0) {
6606 		/*
6607 		 * Failed to do the truncate, remove us from the in memory
6608 		 * orphan list.
6609 		 */
6610 		ret = btrfs_orphan_del(NULL, inode);
6611 	}
6612 
6613 	ret = btrfs_update_inode(trans, root, inode);
6614 	if (ret && !err)
6615 		err = ret;
6616 
6617 	nr = trans->blocks_used;
6618 	ret = btrfs_end_transaction_throttle(trans, root);
6619 	if (ret && !err)
6620 		err = ret;
6621 	btrfs_btree_balance_dirty(root, nr);
6622 
6623 	return err;
6624 }
6625 
6626 /*
6627  * create a new subvolume directory/inode (helper for the ioctl).
6628  */
6629 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6630 			     struct btrfs_root *new_root,
6631 			     u64 new_dirid, u64 alloc_hint)
6632 {
6633 	struct inode *inode;
6634 	int err;
6635 	u64 index = 0;
6636 
6637 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6638 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6639 	if (IS_ERR(inode))
6640 		return PTR_ERR(inode);
6641 	inode->i_op = &btrfs_dir_inode_operations;
6642 	inode->i_fop = &btrfs_dir_file_operations;
6643 
6644 	inode->i_nlink = 1;
6645 	btrfs_i_size_write(inode, 0);
6646 
6647 	err = btrfs_update_inode(trans, new_root, inode);
6648 	BUG_ON(err);
6649 
6650 	iput(inode);
6651 	return 0;
6652 }
6653 
6654 /* helper function for file defrag and space balancing.  This
6655  * forces readahead on a given range of bytes in an inode
6656  */
6657 unsigned long btrfs_force_ra(struct address_space *mapping,
6658 			      struct file_ra_state *ra, struct file *file,
6659 			      pgoff_t offset, pgoff_t last_index)
6660 {
6661 	pgoff_t req_size = last_index - offset + 1;
6662 
6663 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6664 	return offset + req_size;
6665 }
6666 
6667 struct inode *btrfs_alloc_inode(struct super_block *sb)
6668 {
6669 	struct btrfs_inode *ei;
6670 	struct inode *inode;
6671 
6672 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6673 	if (!ei)
6674 		return NULL;
6675 
6676 	ei->root = NULL;
6677 	ei->space_info = NULL;
6678 	ei->generation = 0;
6679 	ei->sequence = 0;
6680 	ei->last_trans = 0;
6681 	ei->last_sub_trans = 0;
6682 	ei->logged_trans = 0;
6683 	ei->delalloc_bytes = 0;
6684 	ei->reserved_bytes = 0;
6685 	ei->disk_i_size = 0;
6686 	ei->flags = 0;
6687 	ei->index_cnt = (u64)-1;
6688 	ei->last_unlink_trans = 0;
6689 
6690 	atomic_set(&ei->outstanding_extents, 0);
6691 	atomic_set(&ei->reserved_extents, 0);
6692 
6693 	ei->ordered_data_close = 0;
6694 	ei->orphan_meta_reserved = 0;
6695 	ei->dummy_inode = 0;
6696 	ei->in_defrag = 0;
6697 	ei->force_compress = BTRFS_COMPRESS_NONE;
6698 
6699 	ei->delayed_node = NULL;
6700 
6701 	inode = &ei->vfs_inode;
6702 	extent_map_tree_init(&ei->extent_tree);
6703 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6704 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6705 	mutex_init(&ei->log_mutex);
6706 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6707 	INIT_LIST_HEAD(&ei->i_orphan);
6708 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6709 	INIT_LIST_HEAD(&ei->ordered_operations);
6710 	RB_CLEAR_NODE(&ei->rb_node);
6711 
6712 	return inode;
6713 }
6714 
6715 static void btrfs_i_callback(struct rcu_head *head)
6716 {
6717 	struct inode *inode = container_of(head, struct inode, i_rcu);
6718 	INIT_LIST_HEAD(&inode->i_dentry);
6719 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6720 }
6721 
6722 void btrfs_destroy_inode(struct inode *inode)
6723 {
6724 	struct btrfs_ordered_extent *ordered;
6725 	struct btrfs_root *root = BTRFS_I(inode)->root;
6726 
6727 	WARN_ON(!list_empty(&inode->i_dentry));
6728 	WARN_ON(inode->i_data.nrpages);
6729 	WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6730 	WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6731 
6732 	/*
6733 	 * This can happen where we create an inode, but somebody else also
6734 	 * created the same inode and we need to destroy the one we already
6735 	 * created.
6736 	 */
6737 	if (!root)
6738 		goto free;
6739 
6740 	/*
6741 	 * Make sure we're properly removed from the ordered operation
6742 	 * lists.
6743 	 */
6744 	smp_mb();
6745 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6746 		spin_lock(&root->fs_info->ordered_extent_lock);
6747 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6748 		spin_unlock(&root->fs_info->ordered_extent_lock);
6749 	}
6750 
6751 	if (root == root->fs_info->tree_root) {
6752 		struct btrfs_block_group_cache *block_group;
6753 
6754 		block_group = btrfs_lookup_block_group(root->fs_info,
6755 						BTRFS_I(inode)->block_group);
6756 		if (block_group && block_group->inode == inode) {
6757 			spin_lock(&block_group->lock);
6758 			block_group->inode = NULL;
6759 			spin_unlock(&block_group->lock);
6760 			btrfs_put_block_group(block_group);
6761 		} else if (block_group) {
6762 			btrfs_put_block_group(block_group);
6763 		}
6764 	}
6765 
6766 	spin_lock(&root->orphan_lock);
6767 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6768 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6769 		       (unsigned long long)btrfs_ino(inode));
6770 		list_del_init(&BTRFS_I(inode)->i_orphan);
6771 	}
6772 	spin_unlock(&root->orphan_lock);
6773 
6774 	while (1) {
6775 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6776 		if (!ordered)
6777 			break;
6778 		else {
6779 			printk(KERN_ERR "btrfs found ordered "
6780 			       "extent %llu %llu on inode cleanup\n",
6781 			       (unsigned long long)ordered->file_offset,
6782 			       (unsigned long long)ordered->len);
6783 			btrfs_remove_ordered_extent(inode, ordered);
6784 			btrfs_put_ordered_extent(ordered);
6785 			btrfs_put_ordered_extent(ordered);
6786 		}
6787 	}
6788 	inode_tree_del(inode);
6789 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6790 free:
6791 	btrfs_remove_delayed_node(inode);
6792 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6793 }
6794 
6795 int btrfs_drop_inode(struct inode *inode)
6796 {
6797 	struct btrfs_root *root = BTRFS_I(inode)->root;
6798 
6799 	if (btrfs_root_refs(&root->root_item) == 0 &&
6800 	    !is_free_space_inode(root, inode))
6801 		return 1;
6802 	else
6803 		return generic_drop_inode(inode);
6804 }
6805 
6806 static void init_once(void *foo)
6807 {
6808 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6809 
6810 	inode_init_once(&ei->vfs_inode);
6811 }
6812 
6813 void btrfs_destroy_cachep(void)
6814 {
6815 	if (btrfs_inode_cachep)
6816 		kmem_cache_destroy(btrfs_inode_cachep);
6817 	if (btrfs_trans_handle_cachep)
6818 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6819 	if (btrfs_transaction_cachep)
6820 		kmem_cache_destroy(btrfs_transaction_cachep);
6821 	if (btrfs_path_cachep)
6822 		kmem_cache_destroy(btrfs_path_cachep);
6823 	if (btrfs_free_space_cachep)
6824 		kmem_cache_destroy(btrfs_free_space_cachep);
6825 }
6826 
6827 int btrfs_init_cachep(void)
6828 {
6829 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6830 			sizeof(struct btrfs_inode), 0,
6831 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6832 	if (!btrfs_inode_cachep)
6833 		goto fail;
6834 
6835 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6836 			sizeof(struct btrfs_trans_handle), 0,
6837 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6838 	if (!btrfs_trans_handle_cachep)
6839 		goto fail;
6840 
6841 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6842 			sizeof(struct btrfs_transaction), 0,
6843 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6844 	if (!btrfs_transaction_cachep)
6845 		goto fail;
6846 
6847 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6848 			sizeof(struct btrfs_path), 0,
6849 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6850 	if (!btrfs_path_cachep)
6851 		goto fail;
6852 
6853 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6854 			sizeof(struct btrfs_free_space), 0,
6855 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6856 	if (!btrfs_free_space_cachep)
6857 		goto fail;
6858 
6859 	return 0;
6860 fail:
6861 	btrfs_destroy_cachep();
6862 	return -ENOMEM;
6863 }
6864 
6865 static int btrfs_getattr(struct vfsmount *mnt,
6866 			 struct dentry *dentry, struct kstat *stat)
6867 {
6868 	struct inode *inode = dentry->d_inode;
6869 	generic_fillattr(inode, stat);
6870 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6871 	stat->blksize = PAGE_CACHE_SIZE;
6872 	stat->blocks = (inode_get_bytes(inode) +
6873 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6874 	return 0;
6875 }
6876 
6877 /*
6878  * If a file is moved, it will inherit the cow and compression flags of the new
6879  * directory.
6880  */
6881 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6882 {
6883 	struct btrfs_inode *b_dir = BTRFS_I(dir);
6884 	struct btrfs_inode *b_inode = BTRFS_I(inode);
6885 
6886 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
6887 		b_inode->flags |= BTRFS_INODE_NODATACOW;
6888 	else
6889 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6890 
6891 	if (b_dir->flags & BTRFS_INODE_COMPRESS)
6892 		b_inode->flags |= BTRFS_INODE_COMPRESS;
6893 	else
6894 		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6895 }
6896 
6897 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6898 			   struct inode *new_dir, struct dentry *new_dentry)
6899 {
6900 	struct btrfs_trans_handle *trans;
6901 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6902 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6903 	struct inode *new_inode = new_dentry->d_inode;
6904 	struct inode *old_inode = old_dentry->d_inode;
6905 	struct timespec ctime = CURRENT_TIME;
6906 	u64 index = 0;
6907 	u64 root_objectid;
6908 	int ret;
6909 	u64 old_ino = btrfs_ino(old_inode);
6910 
6911 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6912 		return -EPERM;
6913 
6914 	/* we only allow rename subvolume link between subvolumes */
6915 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6916 		return -EXDEV;
6917 
6918 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6919 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6920 		return -ENOTEMPTY;
6921 
6922 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6923 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6924 		return -ENOTEMPTY;
6925 	/*
6926 	 * we're using rename to replace one file with another.
6927 	 * and the replacement file is large.  Start IO on it now so
6928 	 * we don't add too much work to the end of the transaction
6929 	 */
6930 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6931 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6932 		filemap_flush(old_inode->i_mapping);
6933 
6934 	/* close the racy window with snapshot create/destroy ioctl */
6935 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6936 		down_read(&root->fs_info->subvol_sem);
6937 	/*
6938 	 * We want to reserve the absolute worst case amount of items.  So if
6939 	 * both inodes are subvols and we need to unlink them then that would
6940 	 * require 4 item modifications, but if they are both normal inodes it
6941 	 * would require 5 item modifications, so we'll assume their normal
6942 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6943 	 * should cover the worst case number of items we'll modify.
6944 	 */
6945 	trans = btrfs_start_transaction(root, 20);
6946 	if (IS_ERR(trans)) {
6947                 ret = PTR_ERR(trans);
6948                 goto out_notrans;
6949         }
6950 
6951 	btrfs_set_trans_block_group(trans, new_dir);
6952 
6953 	if (dest != root)
6954 		btrfs_record_root_in_trans(trans, dest);
6955 
6956 	ret = btrfs_set_inode_index(new_dir, &index);
6957 	if (ret)
6958 		goto out_fail;
6959 
6960 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6961 		/* force full log commit if subvolume involved. */
6962 		root->fs_info->last_trans_log_full_commit = trans->transid;
6963 	} else {
6964 		ret = btrfs_insert_inode_ref(trans, dest,
6965 					     new_dentry->d_name.name,
6966 					     new_dentry->d_name.len,
6967 					     old_ino,
6968 					     btrfs_ino(new_dir), index);
6969 		if (ret)
6970 			goto out_fail;
6971 		/*
6972 		 * this is an ugly little race, but the rename is required
6973 		 * to make sure that if we crash, the inode is either at the
6974 		 * old name or the new one.  pinning the log transaction lets
6975 		 * us make sure we don't allow a log commit to come in after
6976 		 * we unlink the name but before we add the new name back in.
6977 		 */
6978 		btrfs_pin_log_trans(root);
6979 	}
6980 	/*
6981 	 * make sure the inode gets flushed if it is replacing
6982 	 * something.
6983 	 */
6984 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
6985 		btrfs_add_ordered_operation(trans, root, old_inode);
6986 
6987 	old_dir->i_ctime = old_dir->i_mtime = ctime;
6988 	new_dir->i_ctime = new_dir->i_mtime = ctime;
6989 	old_inode->i_ctime = ctime;
6990 
6991 	if (old_dentry->d_parent != new_dentry->d_parent)
6992 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6993 
6994 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6995 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6996 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6997 					old_dentry->d_name.name,
6998 					old_dentry->d_name.len);
6999 	} else {
7000 		ret = __btrfs_unlink_inode(trans, root, old_dir,
7001 					old_dentry->d_inode,
7002 					old_dentry->d_name.name,
7003 					old_dentry->d_name.len);
7004 		if (!ret)
7005 			ret = btrfs_update_inode(trans, root, old_inode);
7006 	}
7007 	BUG_ON(ret);
7008 
7009 	if (new_inode) {
7010 		new_inode->i_ctime = CURRENT_TIME;
7011 		if (unlikely(btrfs_ino(new_inode) ==
7012 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7013 			root_objectid = BTRFS_I(new_inode)->location.objectid;
7014 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
7015 						root_objectid,
7016 						new_dentry->d_name.name,
7017 						new_dentry->d_name.len);
7018 			BUG_ON(new_inode->i_nlink == 0);
7019 		} else {
7020 			ret = btrfs_unlink_inode(trans, dest, new_dir,
7021 						 new_dentry->d_inode,
7022 						 new_dentry->d_name.name,
7023 						 new_dentry->d_name.len);
7024 		}
7025 		BUG_ON(ret);
7026 		if (new_inode->i_nlink == 0) {
7027 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7028 			BUG_ON(ret);
7029 		}
7030 	}
7031 
7032 	fixup_inode_flags(new_dir, old_inode);
7033 
7034 	ret = btrfs_add_link(trans, new_dir, old_inode,
7035 			     new_dentry->d_name.name,
7036 			     new_dentry->d_name.len, 0, index);
7037 	BUG_ON(ret);
7038 
7039 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7040 		struct dentry *parent = dget_parent(new_dentry);
7041 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
7042 		dput(parent);
7043 		btrfs_end_log_trans(root);
7044 	}
7045 out_fail:
7046 	btrfs_end_transaction_throttle(trans, root);
7047 out_notrans:
7048 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7049 		up_read(&root->fs_info->subvol_sem);
7050 
7051 	return ret;
7052 }
7053 
7054 /*
7055  * some fairly slow code that needs optimization. This walks the list
7056  * of all the inodes with pending delalloc and forces them to disk.
7057  */
7058 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7059 {
7060 	struct list_head *head = &root->fs_info->delalloc_inodes;
7061 	struct btrfs_inode *binode;
7062 	struct inode *inode;
7063 
7064 	if (root->fs_info->sb->s_flags & MS_RDONLY)
7065 		return -EROFS;
7066 
7067 	spin_lock(&root->fs_info->delalloc_lock);
7068 	while (!list_empty(head)) {
7069 		binode = list_entry(head->next, struct btrfs_inode,
7070 				    delalloc_inodes);
7071 		inode = igrab(&binode->vfs_inode);
7072 		if (!inode)
7073 			list_del_init(&binode->delalloc_inodes);
7074 		spin_unlock(&root->fs_info->delalloc_lock);
7075 		if (inode) {
7076 			filemap_flush(inode->i_mapping);
7077 			if (delay_iput)
7078 				btrfs_add_delayed_iput(inode);
7079 			else
7080 				iput(inode);
7081 		}
7082 		cond_resched();
7083 		spin_lock(&root->fs_info->delalloc_lock);
7084 	}
7085 	spin_unlock(&root->fs_info->delalloc_lock);
7086 
7087 	/* the filemap_flush will queue IO into the worker threads, but
7088 	 * we have to make sure the IO is actually started and that
7089 	 * ordered extents get created before we return
7090 	 */
7091 	atomic_inc(&root->fs_info->async_submit_draining);
7092 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7093 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7094 		wait_event(root->fs_info->async_submit_wait,
7095 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7096 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7097 	}
7098 	atomic_dec(&root->fs_info->async_submit_draining);
7099 	return 0;
7100 }
7101 
7102 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7103 			 const char *symname)
7104 {
7105 	struct btrfs_trans_handle *trans;
7106 	struct btrfs_root *root = BTRFS_I(dir)->root;
7107 	struct btrfs_path *path;
7108 	struct btrfs_key key;
7109 	struct inode *inode = NULL;
7110 	int err;
7111 	int drop_inode = 0;
7112 	u64 objectid;
7113 	u64 index = 0 ;
7114 	int name_len;
7115 	int datasize;
7116 	unsigned long ptr;
7117 	struct btrfs_file_extent_item *ei;
7118 	struct extent_buffer *leaf;
7119 	unsigned long nr = 0;
7120 
7121 	name_len = strlen(symname) + 1;
7122 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7123 		return -ENAMETOOLONG;
7124 
7125 	/*
7126 	 * 2 items for inode item and ref
7127 	 * 2 items for dir items
7128 	 * 1 item for xattr if selinux is on
7129 	 */
7130 	trans = btrfs_start_transaction(root, 5);
7131 	if (IS_ERR(trans))
7132 		return PTR_ERR(trans);
7133 
7134 	btrfs_set_trans_block_group(trans, dir);
7135 
7136 	err = btrfs_find_free_ino(root, &objectid);
7137 	if (err)
7138 		goto out_unlock;
7139 
7140 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7141 				dentry->d_name.len, btrfs_ino(dir), objectid,
7142 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7143 				&index);
7144 	if (IS_ERR(inode)) {
7145 		err = PTR_ERR(inode);
7146 		goto out_unlock;
7147 	}
7148 
7149 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7150 	if (err) {
7151 		drop_inode = 1;
7152 		goto out_unlock;
7153 	}
7154 
7155 	btrfs_set_trans_block_group(trans, inode);
7156 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7157 	if (err)
7158 		drop_inode = 1;
7159 	else {
7160 		inode->i_mapping->a_ops = &btrfs_aops;
7161 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7162 		inode->i_fop = &btrfs_file_operations;
7163 		inode->i_op = &btrfs_file_inode_operations;
7164 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7165 	}
7166 	btrfs_update_inode_block_group(trans, inode);
7167 	btrfs_update_inode_block_group(trans, dir);
7168 	if (drop_inode)
7169 		goto out_unlock;
7170 
7171 	path = btrfs_alloc_path();
7172 	BUG_ON(!path);
7173 	key.objectid = btrfs_ino(inode);
7174 	key.offset = 0;
7175 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7176 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7177 	err = btrfs_insert_empty_item(trans, root, path, &key,
7178 				      datasize);
7179 	if (err) {
7180 		drop_inode = 1;
7181 		btrfs_free_path(path);
7182 		goto out_unlock;
7183 	}
7184 	leaf = path->nodes[0];
7185 	ei = btrfs_item_ptr(leaf, path->slots[0],
7186 			    struct btrfs_file_extent_item);
7187 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7188 	btrfs_set_file_extent_type(leaf, ei,
7189 				   BTRFS_FILE_EXTENT_INLINE);
7190 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7191 	btrfs_set_file_extent_compression(leaf, ei, 0);
7192 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7193 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7194 
7195 	ptr = btrfs_file_extent_inline_start(ei);
7196 	write_extent_buffer(leaf, symname, ptr, name_len);
7197 	btrfs_mark_buffer_dirty(leaf);
7198 	btrfs_free_path(path);
7199 
7200 	inode->i_op = &btrfs_symlink_inode_operations;
7201 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7202 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7203 	inode_set_bytes(inode, name_len);
7204 	btrfs_i_size_write(inode, name_len - 1);
7205 	err = btrfs_update_inode(trans, root, inode);
7206 	if (err)
7207 		drop_inode = 1;
7208 
7209 out_unlock:
7210 	nr = trans->blocks_used;
7211 	btrfs_end_transaction_throttle(trans, root);
7212 	if (drop_inode) {
7213 		inode_dec_link_count(inode);
7214 		iput(inode);
7215 	}
7216 	btrfs_btree_balance_dirty(root, nr);
7217 	return err;
7218 }
7219 
7220 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7221 				       u64 start, u64 num_bytes, u64 min_size,
7222 				       loff_t actual_len, u64 *alloc_hint,
7223 				       struct btrfs_trans_handle *trans)
7224 {
7225 	struct btrfs_root *root = BTRFS_I(inode)->root;
7226 	struct btrfs_key ins;
7227 	u64 cur_offset = start;
7228 	u64 i_size;
7229 	int ret = 0;
7230 	bool own_trans = true;
7231 
7232 	if (trans)
7233 		own_trans = false;
7234 	while (num_bytes > 0) {
7235 		if (own_trans) {
7236 			trans = btrfs_start_transaction(root, 3);
7237 			if (IS_ERR(trans)) {
7238 				ret = PTR_ERR(trans);
7239 				break;
7240 			}
7241 		}
7242 
7243 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7244 					   0, *alloc_hint, (u64)-1, &ins, 1);
7245 		if (ret) {
7246 			if (own_trans)
7247 				btrfs_end_transaction(trans, root);
7248 			break;
7249 		}
7250 
7251 		ret = insert_reserved_file_extent(trans, inode,
7252 						  cur_offset, ins.objectid,
7253 						  ins.offset, ins.offset,
7254 						  ins.offset, 0, 0, 0,
7255 						  BTRFS_FILE_EXTENT_PREALLOC);
7256 		BUG_ON(ret);
7257 		btrfs_drop_extent_cache(inode, cur_offset,
7258 					cur_offset + ins.offset -1, 0);
7259 
7260 		num_bytes -= ins.offset;
7261 		cur_offset += ins.offset;
7262 		*alloc_hint = ins.objectid + ins.offset;
7263 
7264 		inode->i_ctime = CURRENT_TIME;
7265 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7266 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7267 		    (actual_len > inode->i_size) &&
7268 		    (cur_offset > inode->i_size)) {
7269 			if (cur_offset > actual_len)
7270 				i_size = actual_len;
7271 			else
7272 				i_size = cur_offset;
7273 			i_size_write(inode, i_size);
7274 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7275 		}
7276 
7277 		ret = btrfs_update_inode(trans, root, inode);
7278 		BUG_ON(ret);
7279 
7280 		if (own_trans)
7281 			btrfs_end_transaction(trans, root);
7282 	}
7283 	return ret;
7284 }
7285 
7286 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7287 			      u64 start, u64 num_bytes, u64 min_size,
7288 			      loff_t actual_len, u64 *alloc_hint)
7289 {
7290 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7291 					   min_size, actual_len, alloc_hint,
7292 					   NULL);
7293 }
7294 
7295 int btrfs_prealloc_file_range_trans(struct inode *inode,
7296 				    struct btrfs_trans_handle *trans, int mode,
7297 				    u64 start, u64 num_bytes, u64 min_size,
7298 				    loff_t actual_len, u64 *alloc_hint)
7299 {
7300 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7301 					   min_size, actual_len, alloc_hint, trans);
7302 }
7303 
7304 static int btrfs_set_page_dirty(struct page *page)
7305 {
7306 	return __set_page_dirty_nobuffers(page);
7307 }
7308 
7309 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7310 {
7311 	struct btrfs_root *root = BTRFS_I(inode)->root;
7312 
7313 	if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7314 		return -EROFS;
7315 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7316 		return -EACCES;
7317 	return generic_permission(inode, mask, flags, btrfs_check_acl);
7318 }
7319 
7320 static const struct inode_operations btrfs_dir_inode_operations = {
7321 	.getattr	= btrfs_getattr,
7322 	.lookup		= btrfs_lookup,
7323 	.create		= btrfs_create,
7324 	.unlink		= btrfs_unlink,
7325 	.link		= btrfs_link,
7326 	.mkdir		= btrfs_mkdir,
7327 	.rmdir		= btrfs_rmdir,
7328 	.rename		= btrfs_rename,
7329 	.symlink	= btrfs_symlink,
7330 	.setattr	= btrfs_setattr,
7331 	.mknod		= btrfs_mknod,
7332 	.setxattr	= btrfs_setxattr,
7333 	.getxattr	= btrfs_getxattr,
7334 	.listxattr	= btrfs_listxattr,
7335 	.removexattr	= btrfs_removexattr,
7336 	.permission	= btrfs_permission,
7337 };
7338 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7339 	.lookup		= btrfs_lookup,
7340 	.permission	= btrfs_permission,
7341 };
7342 
7343 static const struct file_operations btrfs_dir_file_operations = {
7344 	.llseek		= generic_file_llseek,
7345 	.read		= generic_read_dir,
7346 	.readdir	= btrfs_real_readdir,
7347 	.unlocked_ioctl	= btrfs_ioctl,
7348 #ifdef CONFIG_COMPAT
7349 	.compat_ioctl	= btrfs_ioctl,
7350 #endif
7351 	.release        = btrfs_release_file,
7352 	.fsync		= btrfs_sync_file,
7353 };
7354 
7355 static struct extent_io_ops btrfs_extent_io_ops = {
7356 	.fill_delalloc = run_delalloc_range,
7357 	.submit_bio_hook = btrfs_submit_bio_hook,
7358 	.merge_bio_hook = btrfs_merge_bio_hook,
7359 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7360 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7361 	.writepage_start_hook = btrfs_writepage_start_hook,
7362 	.readpage_io_failed_hook = btrfs_io_failed_hook,
7363 	.set_bit_hook = btrfs_set_bit_hook,
7364 	.clear_bit_hook = btrfs_clear_bit_hook,
7365 	.merge_extent_hook = btrfs_merge_extent_hook,
7366 	.split_extent_hook = btrfs_split_extent_hook,
7367 };
7368 
7369 /*
7370  * btrfs doesn't support the bmap operation because swapfiles
7371  * use bmap to make a mapping of extents in the file.  They assume
7372  * these extents won't change over the life of the file and they
7373  * use the bmap result to do IO directly to the drive.
7374  *
7375  * the btrfs bmap call would return logical addresses that aren't
7376  * suitable for IO and they also will change frequently as COW
7377  * operations happen.  So, swapfile + btrfs == corruption.
7378  *
7379  * For now we're avoiding this by dropping bmap.
7380  */
7381 static const struct address_space_operations btrfs_aops = {
7382 	.readpage	= btrfs_readpage,
7383 	.writepage	= btrfs_writepage,
7384 	.writepages	= btrfs_writepages,
7385 	.readpages	= btrfs_readpages,
7386 	.direct_IO	= btrfs_direct_IO,
7387 	.invalidatepage = btrfs_invalidatepage,
7388 	.releasepage	= btrfs_releasepage,
7389 	.set_page_dirty	= btrfs_set_page_dirty,
7390 	.error_remove_page = generic_error_remove_page,
7391 };
7392 
7393 static const struct address_space_operations btrfs_symlink_aops = {
7394 	.readpage	= btrfs_readpage,
7395 	.writepage	= btrfs_writepage,
7396 	.invalidatepage = btrfs_invalidatepage,
7397 	.releasepage	= btrfs_releasepage,
7398 };
7399 
7400 static const struct inode_operations btrfs_file_inode_operations = {
7401 	.getattr	= btrfs_getattr,
7402 	.setattr	= btrfs_setattr,
7403 	.setxattr	= btrfs_setxattr,
7404 	.getxattr	= btrfs_getxattr,
7405 	.listxattr      = btrfs_listxattr,
7406 	.removexattr	= btrfs_removexattr,
7407 	.permission	= btrfs_permission,
7408 	.fiemap		= btrfs_fiemap,
7409 };
7410 static const struct inode_operations btrfs_special_inode_operations = {
7411 	.getattr	= btrfs_getattr,
7412 	.setattr	= btrfs_setattr,
7413 	.permission	= btrfs_permission,
7414 	.setxattr	= btrfs_setxattr,
7415 	.getxattr	= btrfs_getxattr,
7416 	.listxattr	= btrfs_listxattr,
7417 	.removexattr	= btrfs_removexattr,
7418 };
7419 static const struct inode_operations btrfs_symlink_inode_operations = {
7420 	.readlink	= generic_readlink,
7421 	.follow_link	= page_follow_link_light,
7422 	.put_link	= page_put_link,
7423 	.getattr	= btrfs_getattr,
7424 	.permission	= btrfs_permission,
7425 	.setxattr	= btrfs_setxattr,
7426 	.getxattr	= btrfs_getxattr,
7427 	.listxattr	= btrfs_listxattr,
7428 	.removexattr	= btrfs_removexattr,
7429 };
7430 
7431 const struct dentry_operations btrfs_dentry_operations = {
7432 	.d_delete	= btrfs_dentry_delete,
7433 };
7434