1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include "compat.h" 42 #include "ctree.h" 43 #include "disk-io.h" 44 #include "transaction.h" 45 #include "btrfs_inode.h" 46 #include "ioctl.h" 47 #include "print-tree.h" 48 #include "volumes.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "compression.h" 53 #include "locking.h" 54 #include "free-space-cache.h" 55 #include "inode-map.h" 56 57 struct btrfs_iget_args { 58 u64 ino; 59 struct btrfs_root *root; 60 }; 61 62 static const struct inode_operations btrfs_dir_inode_operations; 63 static const struct inode_operations btrfs_symlink_inode_operations; 64 static const struct inode_operations btrfs_dir_ro_inode_operations; 65 static const struct inode_operations btrfs_special_inode_operations; 66 static const struct inode_operations btrfs_file_inode_operations; 67 static const struct address_space_operations btrfs_aops; 68 static const struct address_space_operations btrfs_symlink_aops; 69 static const struct file_operations btrfs_dir_file_operations; 70 static struct extent_io_ops btrfs_extent_io_ops; 71 72 static struct kmem_cache *btrfs_inode_cachep; 73 struct kmem_cache *btrfs_trans_handle_cachep; 74 struct kmem_cache *btrfs_transaction_cachep; 75 struct kmem_cache *btrfs_path_cachep; 76 struct kmem_cache *btrfs_free_space_cachep; 77 78 #define S_SHIFT 12 79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 87 }; 88 89 static int btrfs_setsize(struct inode *inode, loff_t newsize); 90 static int btrfs_truncate(struct inode *inode); 91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 92 static noinline int cow_file_range(struct inode *inode, 93 struct page *locked_page, 94 u64 start, u64 end, int *page_started, 95 unsigned long *nr_written, int unlock); 96 97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 98 struct inode *inode, struct inode *dir, 99 const struct qstr *qstr) 100 { 101 int err; 102 103 err = btrfs_init_acl(trans, inode, dir); 104 if (!err) 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 106 return err; 107 } 108 109 /* 110 * this does all the hard work for inserting an inline extent into 111 * the btree. The caller should have done a btrfs_drop_extents so that 112 * no overlapping inline items exist in the btree 113 */ 114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 115 struct btrfs_root *root, struct inode *inode, 116 u64 start, size_t size, size_t compressed_size, 117 int compress_type, 118 struct page **compressed_pages) 119 { 120 struct btrfs_key key; 121 struct btrfs_path *path; 122 struct extent_buffer *leaf; 123 struct page *page = NULL; 124 char *kaddr; 125 unsigned long ptr; 126 struct btrfs_file_extent_item *ei; 127 int err = 0; 128 int ret; 129 size_t cur_size = size; 130 size_t datasize; 131 unsigned long offset; 132 133 if (compressed_size && compressed_pages) 134 cur_size = compressed_size; 135 136 path = btrfs_alloc_path(); 137 if (!path) 138 return -ENOMEM; 139 140 path->leave_spinning = 1; 141 btrfs_set_trans_block_group(trans, inode); 142 143 key.objectid = btrfs_ino(inode); 144 key.offset = start; 145 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 146 datasize = btrfs_file_extent_calc_inline_size(cur_size); 147 148 inode_add_bytes(inode, size); 149 ret = btrfs_insert_empty_item(trans, root, path, &key, 150 datasize); 151 BUG_ON(ret); 152 if (ret) { 153 err = ret; 154 goto fail; 155 } 156 leaf = path->nodes[0]; 157 ei = btrfs_item_ptr(leaf, path->slots[0], 158 struct btrfs_file_extent_item); 159 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 160 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 161 btrfs_set_file_extent_encryption(leaf, ei, 0); 162 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 163 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 164 ptr = btrfs_file_extent_inline_start(ei); 165 166 if (compress_type != BTRFS_COMPRESS_NONE) { 167 struct page *cpage; 168 int i = 0; 169 while (compressed_size > 0) { 170 cpage = compressed_pages[i]; 171 cur_size = min_t(unsigned long, compressed_size, 172 PAGE_CACHE_SIZE); 173 174 kaddr = kmap_atomic(cpage, KM_USER0); 175 write_extent_buffer(leaf, kaddr, ptr, cur_size); 176 kunmap_atomic(kaddr, KM_USER0); 177 178 i++; 179 ptr += cur_size; 180 compressed_size -= cur_size; 181 } 182 btrfs_set_file_extent_compression(leaf, ei, 183 compress_type); 184 } else { 185 page = find_get_page(inode->i_mapping, 186 start >> PAGE_CACHE_SHIFT); 187 btrfs_set_file_extent_compression(leaf, ei, 0); 188 kaddr = kmap_atomic(page, KM_USER0); 189 offset = start & (PAGE_CACHE_SIZE - 1); 190 write_extent_buffer(leaf, kaddr + offset, ptr, size); 191 kunmap_atomic(kaddr, KM_USER0); 192 page_cache_release(page); 193 } 194 btrfs_mark_buffer_dirty(leaf); 195 btrfs_free_path(path); 196 197 /* 198 * we're an inline extent, so nobody can 199 * extend the file past i_size without locking 200 * a page we already have locked. 201 * 202 * We must do any isize and inode updates 203 * before we unlock the pages. Otherwise we 204 * could end up racing with unlink. 205 */ 206 BTRFS_I(inode)->disk_i_size = inode->i_size; 207 btrfs_update_inode(trans, root, inode); 208 209 return 0; 210 fail: 211 btrfs_free_path(path); 212 return err; 213 } 214 215 216 /* 217 * conditionally insert an inline extent into the file. This 218 * does the checks required to make sure the data is small enough 219 * to fit as an inline extent. 220 */ 221 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 222 struct btrfs_root *root, 223 struct inode *inode, u64 start, u64 end, 224 size_t compressed_size, int compress_type, 225 struct page **compressed_pages) 226 { 227 u64 isize = i_size_read(inode); 228 u64 actual_end = min(end + 1, isize); 229 u64 inline_len = actual_end - start; 230 u64 aligned_end = (end + root->sectorsize - 1) & 231 ~((u64)root->sectorsize - 1); 232 u64 hint_byte; 233 u64 data_len = inline_len; 234 int ret; 235 236 if (compressed_size) 237 data_len = compressed_size; 238 239 if (start > 0 || 240 actual_end >= PAGE_CACHE_SIZE || 241 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 242 (!compressed_size && 243 (actual_end & (root->sectorsize - 1)) == 0) || 244 end + 1 < isize || 245 data_len > root->fs_info->max_inline) { 246 return 1; 247 } 248 249 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 250 &hint_byte, 1); 251 BUG_ON(ret); 252 253 if (isize > actual_end) 254 inline_len = min_t(u64, isize, actual_end); 255 ret = insert_inline_extent(trans, root, inode, start, 256 inline_len, compressed_size, 257 compress_type, compressed_pages); 258 BUG_ON(ret); 259 btrfs_delalloc_release_metadata(inode, end + 1 - start); 260 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 261 return 0; 262 } 263 264 struct async_extent { 265 u64 start; 266 u64 ram_size; 267 u64 compressed_size; 268 struct page **pages; 269 unsigned long nr_pages; 270 int compress_type; 271 struct list_head list; 272 }; 273 274 struct async_cow { 275 struct inode *inode; 276 struct btrfs_root *root; 277 struct page *locked_page; 278 u64 start; 279 u64 end; 280 struct list_head extents; 281 struct btrfs_work work; 282 }; 283 284 static noinline int add_async_extent(struct async_cow *cow, 285 u64 start, u64 ram_size, 286 u64 compressed_size, 287 struct page **pages, 288 unsigned long nr_pages, 289 int compress_type) 290 { 291 struct async_extent *async_extent; 292 293 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 294 BUG_ON(!async_extent); 295 async_extent->start = start; 296 async_extent->ram_size = ram_size; 297 async_extent->compressed_size = compressed_size; 298 async_extent->pages = pages; 299 async_extent->nr_pages = nr_pages; 300 async_extent->compress_type = compress_type; 301 list_add_tail(&async_extent->list, &cow->extents); 302 return 0; 303 } 304 305 /* 306 * we create compressed extents in two phases. The first 307 * phase compresses a range of pages that have already been 308 * locked (both pages and state bits are locked). 309 * 310 * This is done inside an ordered work queue, and the compression 311 * is spread across many cpus. The actual IO submission is step 312 * two, and the ordered work queue takes care of making sure that 313 * happens in the same order things were put onto the queue by 314 * writepages and friends. 315 * 316 * If this code finds it can't get good compression, it puts an 317 * entry onto the work queue to write the uncompressed bytes. This 318 * makes sure that both compressed inodes and uncompressed inodes 319 * are written in the same order that pdflush sent them down. 320 */ 321 static noinline int compress_file_range(struct inode *inode, 322 struct page *locked_page, 323 u64 start, u64 end, 324 struct async_cow *async_cow, 325 int *num_added) 326 { 327 struct btrfs_root *root = BTRFS_I(inode)->root; 328 struct btrfs_trans_handle *trans; 329 u64 num_bytes; 330 u64 blocksize = root->sectorsize; 331 u64 actual_end; 332 u64 isize = i_size_read(inode); 333 int ret = 0; 334 struct page **pages = NULL; 335 unsigned long nr_pages; 336 unsigned long nr_pages_ret = 0; 337 unsigned long total_compressed = 0; 338 unsigned long total_in = 0; 339 unsigned long max_compressed = 128 * 1024; 340 unsigned long max_uncompressed = 128 * 1024; 341 int i; 342 int will_compress; 343 int compress_type = root->fs_info->compress_type; 344 345 /* if this is a small write inside eof, kick off a defragbot */ 346 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024) 347 btrfs_add_inode_defrag(NULL, inode); 348 349 actual_end = min_t(u64, isize, end + 1); 350 again: 351 will_compress = 0; 352 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 353 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 354 355 /* 356 * we don't want to send crud past the end of i_size through 357 * compression, that's just a waste of CPU time. So, if the 358 * end of the file is before the start of our current 359 * requested range of bytes, we bail out to the uncompressed 360 * cleanup code that can deal with all of this. 361 * 362 * It isn't really the fastest way to fix things, but this is a 363 * very uncommon corner. 364 */ 365 if (actual_end <= start) 366 goto cleanup_and_bail_uncompressed; 367 368 total_compressed = actual_end - start; 369 370 /* we want to make sure that amount of ram required to uncompress 371 * an extent is reasonable, so we limit the total size in ram 372 * of a compressed extent to 128k. This is a crucial number 373 * because it also controls how easily we can spread reads across 374 * cpus for decompression. 375 * 376 * We also want to make sure the amount of IO required to do 377 * a random read is reasonably small, so we limit the size of 378 * a compressed extent to 128k. 379 */ 380 total_compressed = min(total_compressed, max_uncompressed); 381 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 382 num_bytes = max(blocksize, num_bytes); 383 total_in = 0; 384 ret = 0; 385 386 /* 387 * we do compression for mount -o compress and when the 388 * inode has not been flagged as nocompress. This flag can 389 * change at any time if we discover bad compression ratios. 390 */ 391 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 392 (btrfs_test_opt(root, COMPRESS) || 393 (BTRFS_I(inode)->force_compress) || 394 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 395 WARN_ON(pages); 396 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 397 BUG_ON(!pages); 398 399 if (BTRFS_I(inode)->force_compress) 400 compress_type = BTRFS_I(inode)->force_compress; 401 402 ret = btrfs_compress_pages(compress_type, 403 inode->i_mapping, start, 404 total_compressed, pages, 405 nr_pages, &nr_pages_ret, 406 &total_in, 407 &total_compressed, 408 max_compressed); 409 410 if (!ret) { 411 unsigned long offset = total_compressed & 412 (PAGE_CACHE_SIZE - 1); 413 struct page *page = pages[nr_pages_ret - 1]; 414 char *kaddr; 415 416 /* zero the tail end of the last page, we might be 417 * sending it down to disk 418 */ 419 if (offset) { 420 kaddr = kmap_atomic(page, KM_USER0); 421 memset(kaddr + offset, 0, 422 PAGE_CACHE_SIZE - offset); 423 kunmap_atomic(kaddr, KM_USER0); 424 } 425 will_compress = 1; 426 } 427 } 428 if (start == 0) { 429 trans = btrfs_join_transaction(root, 1); 430 BUG_ON(IS_ERR(trans)); 431 btrfs_set_trans_block_group(trans, inode); 432 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 433 434 /* lets try to make an inline extent */ 435 if (ret || total_in < (actual_end - start)) { 436 /* we didn't compress the entire range, try 437 * to make an uncompressed inline extent. 438 */ 439 ret = cow_file_range_inline(trans, root, inode, 440 start, end, 0, 0, NULL); 441 } else { 442 /* try making a compressed inline extent */ 443 ret = cow_file_range_inline(trans, root, inode, 444 start, end, 445 total_compressed, 446 compress_type, pages); 447 } 448 if (ret == 0) { 449 /* 450 * inline extent creation worked, we don't need 451 * to create any more async work items. Unlock 452 * and free up our temp pages. 453 */ 454 extent_clear_unlock_delalloc(inode, 455 &BTRFS_I(inode)->io_tree, 456 start, end, NULL, 457 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 458 EXTENT_CLEAR_DELALLOC | 459 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 460 461 btrfs_end_transaction(trans, root); 462 goto free_pages_out; 463 } 464 btrfs_end_transaction(trans, root); 465 } 466 467 if (will_compress) { 468 /* 469 * we aren't doing an inline extent round the compressed size 470 * up to a block size boundary so the allocator does sane 471 * things 472 */ 473 total_compressed = (total_compressed + blocksize - 1) & 474 ~(blocksize - 1); 475 476 /* 477 * one last check to make sure the compression is really a 478 * win, compare the page count read with the blocks on disk 479 */ 480 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 481 ~(PAGE_CACHE_SIZE - 1); 482 if (total_compressed >= total_in) { 483 will_compress = 0; 484 } else { 485 num_bytes = total_in; 486 } 487 } 488 if (!will_compress && pages) { 489 /* 490 * the compression code ran but failed to make things smaller, 491 * free any pages it allocated and our page pointer array 492 */ 493 for (i = 0; i < nr_pages_ret; i++) { 494 WARN_ON(pages[i]->mapping); 495 page_cache_release(pages[i]); 496 } 497 kfree(pages); 498 pages = NULL; 499 total_compressed = 0; 500 nr_pages_ret = 0; 501 502 /* flag the file so we don't compress in the future */ 503 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 504 !(BTRFS_I(inode)->force_compress)) { 505 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 506 } 507 } 508 if (will_compress) { 509 *num_added += 1; 510 511 /* the async work queues will take care of doing actual 512 * allocation on disk for these compressed pages, 513 * and will submit them to the elevator. 514 */ 515 add_async_extent(async_cow, start, num_bytes, 516 total_compressed, pages, nr_pages_ret, 517 compress_type); 518 519 if (start + num_bytes < end) { 520 start += num_bytes; 521 pages = NULL; 522 cond_resched(); 523 goto again; 524 } 525 } else { 526 cleanup_and_bail_uncompressed: 527 /* 528 * No compression, but we still need to write the pages in 529 * the file we've been given so far. redirty the locked 530 * page if it corresponds to our extent and set things up 531 * for the async work queue to run cow_file_range to do 532 * the normal delalloc dance 533 */ 534 if (page_offset(locked_page) >= start && 535 page_offset(locked_page) <= end) { 536 __set_page_dirty_nobuffers(locked_page); 537 /* unlocked later on in the async handlers */ 538 } 539 add_async_extent(async_cow, start, end - start + 1, 540 0, NULL, 0, BTRFS_COMPRESS_NONE); 541 *num_added += 1; 542 } 543 544 out: 545 return 0; 546 547 free_pages_out: 548 for (i = 0; i < nr_pages_ret; i++) { 549 WARN_ON(pages[i]->mapping); 550 page_cache_release(pages[i]); 551 } 552 kfree(pages); 553 554 goto out; 555 } 556 557 /* 558 * phase two of compressed writeback. This is the ordered portion 559 * of the code, which only gets called in the order the work was 560 * queued. We walk all the async extents created by compress_file_range 561 * and send them down to the disk. 562 */ 563 static noinline int submit_compressed_extents(struct inode *inode, 564 struct async_cow *async_cow) 565 { 566 struct async_extent *async_extent; 567 u64 alloc_hint = 0; 568 struct btrfs_trans_handle *trans; 569 struct btrfs_key ins; 570 struct extent_map *em; 571 struct btrfs_root *root = BTRFS_I(inode)->root; 572 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 573 struct extent_io_tree *io_tree; 574 int ret = 0; 575 576 if (list_empty(&async_cow->extents)) 577 return 0; 578 579 580 while (!list_empty(&async_cow->extents)) { 581 async_extent = list_entry(async_cow->extents.next, 582 struct async_extent, list); 583 list_del(&async_extent->list); 584 585 io_tree = &BTRFS_I(inode)->io_tree; 586 587 retry: 588 /* did the compression code fall back to uncompressed IO? */ 589 if (!async_extent->pages) { 590 int page_started = 0; 591 unsigned long nr_written = 0; 592 593 lock_extent(io_tree, async_extent->start, 594 async_extent->start + 595 async_extent->ram_size - 1, GFP_NOFS); 596 597 /* allocate blocks */ 598 ret = cow_file_range(inode, async_cow->locked_page, 599 async_extent->start, 600 async_extent->start + 601 async_extent->ram_size - 1, 602 &page_started, &nr_written, 0); 603 604 /* 605 * if page_started, cow_file_range inserted an 606 * inline extent and took care of all the unlocking 607 * and IO for us. Otherwise, we need to submit 608 * all those pages down to the drive. 609 */ 610 if (!page_started && !ret) 611 extent_write_locked_range(io_tree, 612 inode, async_extent->start, 613 async_extent->start + 614 async_extent->ram_size - 1, 615 btrfs_get_extent, 616 WB_SYNC_ALL); 617 kfree(async_extent); 618 cond_resched(); 619 continue; 620 } 621 622 lock_extent(io_tree, async_extent->start, 623 async_extent->start + async_extent->ram_size - 1, 624 GFP_NOFS); 625 626 trans = btrfs_join_transaction(root, 1); 627 BUG_ON(IS_ERR(trans)); 628 ret = btrfs_reserve_extent(trans, root, 629 async_extent->compressed_size, 630 async_extent->compressed_size, 631 0, alloc_hint, 632 (u64)-1, &ins, 1); 633 btrfs_end_transaction(trans, root); 634 635 if (ret) { 636 int i; 637 for (i = 0; i < async_extent->nr_pages; i++) { 638 WARN_ON(async_extent->pages[i]->mapping); 639 page_cache_release(async_extent->pages[i]); 640 } 641 kfree(async_extent->pages); 642 async_extent->nr_pages = 0; 643 async_extent->pages = NULL; 644 unlock_extent(io_tree, async_extent->start, 645 async_extent->start + 646 async_extent->ram_size - 1, GFP_NOFS); 647 goto retry; 648 } 649 650 /* 651 * here we're doing allocation and writeback of the 652 * compressed pages 653 */ 654 btrfs_drop_extent_cache(inode, async_extent->start, 655 async_extent->start + 656 async_extent->ram_size - 1, 0); 657 658 em = alloc_extent_map(); 659 BUG_ON(!em); 660 em->start = async_extent->start; 661 em->len = async_extent->ram_size; 662 em->orig_start = em->start; 663 664 em->block_start = ins.objectid; 665 em->block_len = ins.offset; 666 em->bdev = root->fs_info->fs_devices->latest_bdev; 667 em->compress_type = async_extent->compress_type; 668 set_bit(EXTENT_FLAG_PINNED, &em->flags); 669 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 670 671 while (1) { 672 write_lock(&em_tree->lock); 673 ret = add_extent_mapping(em_tree, em); 674 write_unlock(&em_tree->lock); 675 if (ret != -EEXIST) { 676 free_extent_map(em); 677 break; 678 } 679 btrfs_drop_extent_cache(inode, async_extent->start, 680 async_extent->start + 681 async_extent->ram_size - 1, 0); 682 } 683 684 ret = btrfs_add_ordered_extent_compress(inode, 685 async_extent->start, 686 ins.objectid, 687 async_extent->ram_size, 688 ins.offset, 689 BTRFS_ORDERED_COMPRESSED, 690 async_extent->compress_type); 691 BUG_ON(ret); 692 693 /* 694 * clear dirty, set writeback and unlock the pages. 695 */ 696 extent_clear_unlock_delalloc(inode, 697 &BTRFS_I(inode)->io_tree, 698 async_extent->start, 699 async_extent->start + 700 async_extent->ram_size - 1, 701 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 702 EXTENT_CLEAR_UNLOCK | 703 EXTENT_CLEAR_DELALLOC | 704 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 705 706 ret = btrfs_submit_compressed_write(inode, 707 async_extent->start, 708 async_extent->ram_size, 709 ins.objectid, 710 ins.offset, async_extent->pages, 711 async_extent->nr_pages); 712 713 BUG_ON(ret); 714 alloc_hint = ins.objectid + ins.offset; 715 kfree(async_extent); 716 cond_resched(); 717 } 718 719 return 0; 720 } 721 722 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 723 u64 num_bytes) 724 { 725 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 726 struct extent_map *em; 727 u64 alloc_hint = 0; 728 729 read_lock(&em_tree->lock); 730 em = search_extent_mapping(em_tree, start, num_bytes); 731 if (em) { 732 /* 733 * if block start isn't an actual block number then find the 734 * first block in this inode and use that as a hint. If that 735 * block is also bogus then just don't worry about it. 736 */ 737 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 738 free_extent_map(em); 739 em = search_extent_mapping(em_tree, 0, 0); 740 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 741 alloc_hint = em->block_start; 742 if (em) 743 free_extent_map(em); 744 } else { 745 alloc_hint = em->block_start; 746 free_extent_map(em); 747 } 748 } 749 read_unlock(&em_tree->lock); 750 751 return alloc_hint; 752 } 753 754 static inline bool is_free_space_inode(struct btrfs_root *root, 755 struct inode *inode) 756 { 757 if (root == root->fs_info->tree_root || 758 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) 759 return true; 760 return false; 761 } 762 763 /* 764 * when extent_io.c finds a delayed allocation range in the file, 765 * the call backs end up in this code. The basic idea is to 766 * allocate extents on disk for the range, and create ordered data structs 767 * in ram to track those extents. 768 * 769 * locked_page is the page that writepage had locked already. We use 770 * it to make sure we don't do extra locks or unlocks. 771 * 772 * *page_started is set to one if we unlock locked_page and do everything 773 * required to start IO on it. It may be clean and already done with 774 * IO when we return. 775 */ 776 static noinline int cow_file_range(struct inode *inode, 777 struct page *locked_page, 778 u64 start, u64 end, int *page_started, 779 unsigned long *nr_written, 780 int unlock) 781 { 782 struct btrfs_root *root = BTRFS_I(inode)->root; 783 struct btrfs_trans_handle *trans; 784 u64 alloc_hint = 0; 785 u64 num_bytes; 786 unsigned long ram_size; 787 u64 disk_num_bytes; 788 u64 cur_alloc_size; 789 u64 blocksize = root->sectorsize; 790 struct btrfs_key ins; 791 struct extent_map *em; 792 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 793 int ret = 0; 794 795 BUG_ON(is_free_space_inode(root, inode)); 796 trans = btrfs_join_transaction(root, 1); 797 BUG_ON(IS_ERR(trans)); 798 btrfs_set_trans_block_group(trans, inode); 799 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 800 801 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 802 num_bytes = max(blocksize, num_bytes); 803 disk_num_bytes = num_bytes; 804 ret = 0; 805 806 /* if this is a small write inside eof, kick off defrag */ 807 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024) 808 btrfs_add_inode_defrag(trans, inode); 809 810 if (start == 0) { 811 /* lets try to make an inline extent */ 812 ret = cow_file_range_inline(trans, root, inode, 813 start, end, 0, 0, NULL); 814 if (ret == 0) { 815 extent_clear_unlock_delalloc(inode, 816 &BTRFS_I(inode)->io_tree, 817 start, end, NULL, 818 EXTENT_CLEAR_UNLOCK_PAGE | 819 EXTENT_CLEAR_UNLOCK | 820 EXTENT_CLEAR_DELALLOC | 821 EXTENT_CLEAR_DIRTY | 822 EXTENT_SET_WRITEBACK | 823 EXTENT_END_WRITEBACK); 824 825 *nr_written = *nr_written + 826 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 827 *page_started = 1; 828 ret = 0; 829 goto out; 830 } 831 } 832 833 BUG_ON(disk_num_bytes > 834 btrfs_super_total_bytes(&root->fs_info->super_copy)); 835 836 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 837 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 838 839 while (disk_num_bytes > 0) { 840 unsigned long op; 841 842 cur_alloc_size = disk_num_bytes; 843 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 844 root->sectorsize, 0, alloc_hint, 845 (u64)-1, &ins, 1); 846 BUG_ON(ret); 847 848 em = alloc_extent_map(); 849 BUG_ON(!em); 850 em->start = start; 851 em->orig_start = em->start; 852 ram_size = ins.offset; 853 em->len = ins.offset; 854 855 em->block_start = ins.objectid; 856 em->block_len = ins.offset; 857 em->bdev = root->fs_info->fs_devices->latest_bdev; 858 set_bit(EXTENT_FLAG_PINNED, &em->flags); 859 860 while (1) { 861 write_lock(&em_tree->lock); 862 ret = add_extent_mapping(em_tree, em); 863 write_unlock(&em_tree->lock); 864 if (ret != -EEXIST) { 865 free_extent_map(em); 866 break; 867 } 868 btrfs_drop_extent_cache(inode, start, 869 start + ram_size - 1, 0); 870 } 871 872 cur_alloc_size = ins.offset; 873 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 874 ram_size, cur_alloc_size, 0); 875 BUG_ON(ret); 876 877 if (root->root_key.objectid == 878 BTRFS_DATA_RELOC_TREE_OBJECTID) { 879 ret = btrfs_reloc_clone_csums(inode, start, 880 cur_alloc_size); 881 BUG_ON(ret); 882 } 883 884 if (disk_num_bytes < cur_alloc_size) 885 break; 886 887 /* we're not doing compressed IO, don't unlock the first 888 * page (which the caller expects to stay locked), don't 889 * clear any dirty bits and don't set any writeback bits 890 * 891 * Do set the Private2 bit so we know this page was properly 892 * setup for writepage 893 */ 894 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 895 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 896 EXTENT_SET_PRIVATE2; 897 898 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 899 start, start + ram_size - 1, 900 locked_page, op); 901 disk_num_bytes -= cur_alloc_size; 902 num_bytes -= cur_alloc_size; 903 alloc_hint = ins.objectid + ins.offset; 904 start += cur_alloc_size; 905 } 906 out: 907 ret = 0; 908 btrfs_end_transaction(trans, root); 909 910 return ret; 911 } 912 913 /* 914 * work queue call back to started compression on a file and pages 915 */ 916 static noinline void async_cow_start(struct btrfs_work *work) 917 { 918 struct async_cow *async_cow; 919 int num_added = 0; 920 async_cow = container_of(work, struct async_cow, work); 921 922 compress_file_range(async_cow->inode, async_cow->locked_page, 923 async_cow->start, async_cow->end, async_cow, 924 &num_added); 925 if (num_added == 0) 926 async_cow->inode = NULL; 927 } 928 929 /* 930 * work queue call back to submit previously compressed pages 931 */ 932 static noinline void async_cow_submit(struct btrfs_work *work) 933 { 934 struct async_cow *async_cow; 935 struct btrfs_root *root; 936 unsigned long nr_pages; 937 938 async_cow = container_of(work, struct async_cow, work); 939 940 root = async_cow->root; 941 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 942 PAGE_CACHE_SHIFT; 943 944 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 945 946 if (atomic_read(&root->fs_info->async_delalloc_pages) < 947 5 * 1042 * 1024 && 948 waitqueue_active(&root->fs_info->async_submit_wait)) 949 wake_up(&root->fs_info->async_submit_wait); 950 951 if (async_cow->inode) 952 submit_compressed_extents(async_cow->inode, async_cow); 953 } 954 955 static noinline void async_cow_free(struct btrfs_work *work) 956 { 957 struct async_cow *async_cow; 958 async_cow = container_of(work, struct async_cow, work); 959 kfree(async_cow); 960 } 961 962 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 963 u64 start, u64 end, int *page_started, 964 unsigned long *nr_written) 965 { 966 struct async_cow *async_cow; 967 struct btrfs_root *root = BTRFS_I(inode)->root; 968 unsigned long nr_pages; 969 u64 cur_end; 970 int limit = 10 * 1024 * 1042; 971 972 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 973 1, 0, NULL, GFP_NOFS); 974 while (start < end) { 975 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 976 BUG_ON(!async_cow); 977 async_cow->inode = inode; 978 async_cow->root = root; 979 async_cow->locked_page = locked_page; 980 async_cow->start = start; 981 982 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 983 cur_end = end; 984 else 985 cur_end = min(end, start + 512 * 1024 - 1); 986 987 async_cow->end = cur_end; 988 INIT_LIST_HEAD(&async_cow->extents); 989 990 async_cow->work.func = async_cow_start; 991 async_cow->work.ordered_func = async_cow_submit; 992 async_cow->work.ordered_free = async_cow_free; 993 async_cow->work.flags = 0; 994 995 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 996 PAGE_CACHE_SHIFT; 997 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 998 999 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1000 &async_cow->work); 1001 1002 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1003 wait_event(root->fs_info->async_submit_wait, 1004 (atomic_read(&root->fs_info->async_delalloc_pages) < 1005 limit)); 1006 } 1007 1008 while (atomic_read(&root->fs_info->async_submit_draining) && 1009 atomic_read(&root->fs_info->async_delalloc_pages)) { 1010 wait_event(root->fs_info->async_submit_wait, 1011 (atomic_read(&root->fs_info->async_delalloc_pages) == 1012 0)); 1013 } 1014 1015 *nr_written += nr_pages; 1016 start = cur_end + 1; 1017 } 1018 *page_started = 1; 1019 return 0; 1020 } 1021 1022 static noinline int csum_exist_in_range(struct btrfs_root *root, 1023 u64 bytenr, u64 num_bytes) 1024 { 1025 int ret; 1026 struct btrfs_ordered_sum *sums; 1027 LIST_HEAD(list); 1028 1029 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1030 bytenr + num_bytes - 1, &list, 0); 1031 if (ret == 0 && list_empty(&list)) 1032 return 0; 1033 1034 while (!list_empty(&list)) { 1035 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1036 list_del(&sums->list); 1037 kfree(sums); 1038 } 1039 return 1; 1040 } 1041 1042 /* 1043 * when nowcow writeback call back. This checks for snapshots or COW copies 1044 * of the extents that exist in the file, and COWs the file as required. 1045 * 1046 * If no cow copies or snapshots exist, we write directly to the existing 1047 * blocks on disk 1048 */ 1049 static noinline int run_delalloc_nocow(struct inode *inode, 1050 struct page *locked_page, 1051 u64 start, u64 end, int *page_started, int force, 1052 unsigned long *nr_written) 1053 { 1054 struct btrfs_root *root = BTRFS_I(inode)->root; 1055 struct btrfs_trans_handle *trans; 1056 struct extent_buffer *leaf; 1057 struct btrfs_path *path; 1058 struct btrfs_file_extent_item *fi; 1059 struct btrfs_key found_key; 1060 u64 cow_start; 1061 u64 cur_offset; 1062 u64 extent_end; 1063 u64 extent_offset; 1064 u64 disk_bytenr; 1065 u64 num_bytes; 1066 int extent_type; 1067 int ret; 1068 int type; 1069 int nocow; 1070 int check_prev = 1; 1071 bool nolock; 1072 u64 ino = btrfs_ino(inode); 1073 1074 path = btrfs_alloc_path(); 1075 BUG_ON(!path); 1076 1077 nolock = is_free_space_inode(root, inode); 1078 1079 if (nolock) 1080 trans = btrfs_join_transaction_nolock(root, 1); 1081 else 1082 trans = btrfs_join_transaction(root, 1); 1083 BUG_ON(IS_ERR(trans)); 1084 1085 cow_start = (u64)-1; 1086 cur_offset = start; 1087 while (1) { 1088 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1089 cur_offset, 0); 1090 BUG_ON(ret < 0); 1091 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1092 leaf = path->nodes[0]; 1093 btrfs_item_key_to_cpu(leaf, &found_key, 1094 path->slots[0] - 1); 1095 if (found_key.objectid == ino && 1096 found_key.type == BTRFS_EXTENT_DATA_KEY) 1097 path->slots[0]--; 1098 } 1099 check_prev = 0; 1100 next_slot: 1101 leaf = path->nodes[0]; 1102 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1103 ret = btrfs_next_leaf(root, path); 1104 if (ret < 0) 1105 BUG_ON(1); 1106 if (ret > 0) 1107 break; 1108 leaf = path->nodes[0]; 1109 } 1110 1111 nocow = 0; 1112 disk_bytenr = 0; 1113 num_bytes = 0; 1114 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1115 1116 if (found_key.objectid > ino || 1117 found_key.type > BTRFS_EXTENT_DATA_KEY || 1118 found_key.offset > end) 1119 break; 1120 1121 if (found_key.offset > cur_offset) { 1122 extent_end = found_key.offset; 1123 extent_type = 0; 1124 goto out_check; 1125 } 1126 1127 fi = btrfs_item_ptr(leaf, path->slots[0], 1128 struct btrfs_file_extent_item); 1129 extent_type = btrfs_file_extent_type(leaf, fi); 1130 1131 if (extent_type == BTRFS_FILE_EXTENT_REG || 1132 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1133 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1134 extent_offset = btrfs_file_extent_offset(leaf, fi); 1135 extent_end = found_key.offset + 1136 btrfs_file_extent_num_bytes(leaf, fi); 1137 if (extent_end <= start) { 1138 path->slots[0]++; 1139 goto next_slot; 1140 } 1141 if (disk_bytenr == 0) 1142 goto out_check; 1143 if (btrfs_file_extent_compression(leaf, fi) || 1144 btrfs_file_extent_encryption(leaf, fi) || 1145 btrfs_file_extent_other_encoding(leaf, fi)) 1146 goto out_check; 1147 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1148 goto out_check; 1149 if (btrfs_extent_readonly(root, disk_bytenr)) 1150 goto out_check; 1151 if (btrfs_cross_ref_exist(trans, root, ino, 1152 found_key.offset - 1153 extent_offset, disk_bytenr)) 1154 goto out_check; 1155 disk_bytenr += extent_offset; 1156 disk_bytenr += cur_offset - found_key.offset; 1157 num_bytes = min(end + 1, extent_end) - cur_offset; 1158 /* 1159 * force cow if csum exists in the range. 1160 * this ensure that csum for a given extent are 1161 * either valid or do not exist. 1162 */ 1163 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1164 goto out_check; 1165 nocow = 1; 1166 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1167 extent_end = found_key.offset + 1168 btrfs_file_extent_inline_len(leaf, fi); 1169 extent_end = ALIGN(extent_end, root->sectorsize); 1170 } else { 1171 BUG_ON(1); 1172 } 1173 out_check: 1174 if (extent_end <= start) { 1175 path->slots[0]++; 1176 goto next_slot; 1177 } 1178 if (!nocow) { 1179 if (cow_start == (u64)-1) 1180 cow_start = cur_offset; 1181 cur_offset = extent_end; 1182 if (cur_offset > end) 1183 break; 1184 path->slots[0]++; 1185 goto next_slot; 1186 } 1187 1188 btrfs_release_path(path); 1189 if (cow_start != (u64)-1) { 1190 ret = cow_file_range(inode, locked_page, cow_start, 1191 found_key.offset - 1, page_started, 1192 nr_written, 1); 1193 BUG_ON(ret); 1194 cow_start = (u64)-1; 1195 } 1196 1197 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1198 struct extent_map *em; 1199 struct extent_map_tree *em_tree; 1200 em_tree = &BTRFS_I(inode)->extent_tree; 1201 em = alloc_extent_map(); 1202 BUG_ON(!em); 1203 em->start = cur_offset; 1204 em->orig_start = em->start; 1205 em->len = num_bytes; 1206 em->block_len = num_bytes; 1207 em->block_start = disk_bytenr; 1208 em->bdev = root->fs_info->fs_devices->latest_bdev; 1209 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1210 while (1) { 1211 write_lock(&em_tree->lock); 1212 ret = add_extent_mapping(em_tree, em); 1213 write_unlock(&em_tree->lock); 1214 if (ret != -EEXIST) { 1215 free_extent_map(em); 1216 break; 1217 } 1218 btrfs_drop_extent_cache(inode, em->start, 1219 em->start + em->len - 1, 0); 1220 } 1221 type = BTRFS_ORDERED_PREALLOC; 1222 } else { 1223 type = BTRFS_ORDERED_NOCOW; 1224 } 1225 1226 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1227 num_bytes, num_bytes, type); 1228 BUG_ON(ret); 1229 1230 if (root->root_key.objectid == 1231 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1232 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1233 num_bytes); 1234 BUG_ON(ret); 1235 } 1236 1237 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1238 cur_offset, cur_offset + num_bytes - 1, 1239 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1240 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1241 EXTENT_SET_PRIVATE2); 1242 cur_offset = extent_end; 1243 if (cur_offset > end) 1244 break; 1245 } 1246 btrfs_release_path(path); 1247 1248 if (cur_offset <= end && cow_start == (u64)-1) 1249 cow_start = cur_offset; 1250 if (cow_start != (u64)-1) { 1251 ret = cow_file_range(inode, locked_page, cow_start, end, 1252 page_started, nr_written, 1); 1253 BUG_ON(ret); 1254 } 1255 1256 if (nolock) { 1257 ret = btrfs_end_transaction_nolock(trans, root); 1258 BUG_ON(ret); 1259 } else { 1260 ret = btrfs_end_transaction(trans, root); 1261 BUG_ON(ret); 1262 } 1263 btrfs_free_path(path); 1264 return 0; 1265 } 1266 1267 /* 1268 * extent_io.c call back to do delayed allocation processing 1269 */ 1270 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1271 u64 start, u64 end, int *page_started, 1272 unsigned long *nr_written) 1273 { 1274 int ret; 1275 struct btrfs_root *root = BTRFS_I(inode)->root; 1276 1277 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1278 ret = run_delalloc_nocow(inode, locked_page, start, end, 1279 page_started, 1, nr_written); 1280 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1281 ret = run_delalloc_nocow(inode, locked_page, start, end, 1282 page_started, 0, nr_written); 1283 else if (!btrfs_test_opt(root, COMPRESS) && 1284 !(BTRFS_I(inode)->force_compress) && 1285 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) 1286 ret = cow_file_range(inode, locked_page, start, end, 1287 page_started, nr_written, 1); 1288 else 1289 ret = cow_file_range_async(inode, locked_page, start, end, 1290 page_started, nr_written); 1291 return ret; 1292 } 1293 1294 static int btrfs_split_extent_hook(struct inode *inode, 1295 struct extent_state *orig, u64 split) 1296 { 1297 /* not delalloc, ignore it */ 1298 if (!(orig->state & EXTENT_DELALLOC)) 1299 return 0; 1300 1301 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1302 return 0; 1303 } 1304 1305 /* 1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1307 * extents so we can keep track of new extents that are just merged onto old 1308 * extents, such as when we are doing sequential writes, so we can properly 1309 * account for the metadata space we'll need. 1310 */ 1311 static int btrfs_merge_extent_hook(struct inode *inode, 1312 struct extent_state *new, 1313 struct extent_state *other) 1314 { 1315 /* not delalloc, ignore it */ 1316 if (!(other->state & EXTENT_DELALLOC)) 1317 return 0; 1318 1319 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1320 return 0; 1321 } 1322 1323 /* 1324 * extent_io.c set_bit_hook, used to track delayed allocation 1325 * bytes in this file, and to maintain the list of inodes that 1326 * have pending delalloc work to be done. 1327 */ 1328 static int btrfs_set_bit_hook(struct inode *inode, 1329 struct extent_state *state, int *bits) 1330 { 1331 1332 /* 1333 * set_bit and clear bit hooks normally require _irqsave/restore 1334 * but in this case, we are only testing for the DELALLOC 1335 * bit, which is only set or cleared with irqs on 1336 */ 1337 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1338 struct btrfs_root *root = BTRFS_I(inode)->root; 1339 u64 len = state->end + 1 - state->start; 1340 bool do_list = !is_free_space_inode(root, inode); 1341 1342 if (*bits & EXTENT_FIRST_DELALLOC) 1343 *bits &= ~EXTENT_FIRST_DELALLOC; 1344 else 1345 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1346 1347 spin_lock(&root->fs_info->delalloc_lock); 1348 BTRFS_I(inode)->delalloc_bytes += len; 1349 root->fs_info->delalloc_bytes += len; 1350 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1351 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1352 &root->fs_info->delalloc_inodes); 1353 } 1354 spin_unlock(&root->fs_info->delalloc_lock); 1355 } 1356 return 0; 1357 } 1358 1359 /* 1360 * extent_io.c clear_bit_hook, see set_bit_hook for why 1361 */ 1362 static int btrfs_clear_bit_hook(struct inode *inode, 1363 struct extent_state *state, int *bits) 1364 { 1365 /* 1366 * set_bit and clear bit hooks normally require _irqsave/restore 1367 * but in this case, we are only testing for the DELALLOC 1368 * bit, which is only set or cleared with irqs on 1369 */ 1370 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1371 struct btrfs_root *root = BTRFS_I(inode)->root; 1372 u64 len = state->end + 1 - state->start; 1373 bool do_list = !is_free_space_inode(root, inode); 1374 1375 if (*bits & EXTENT_FIRST_DELALLOC) 1376 *bits &= ~EXTENT_FIRST_DELALLOC; 1377 else if (!(*bits & EXTENT_DO_ACCOUNTING)) 1378 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1379 1380 if (*bits & EXTENT_DO_ACCOUNTING) 1381 btrfs_delalloc_release_metadata(inode, len); 1382 1383 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1384 && do_list) 1385 btrfs_free_reserved_data_space(inode, len); 1386 1387 spin_lock(&root->fs_info->delalloc_lock); 1388 root->fs_info->delalloc_bytes -= len; 1389 BTRFS_I(inode)->delalloc_bytes -= len; 1390 1391 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1392 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1393 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1394 } 1395 spin_unlock(&root->fs_info->delalloc_lock); 1396 } 1397 return 0; 1398 } 1399 1400 /* 1401 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1402 * we don't create bios that span stripes or chunks 1403 */ 1404 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1405 size_t size, struct bio *bio, 1406 unsigned long bio_flags) 1407 { 1408 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1409 struct btrfs_mapping_tree *map_tree; 1410 u64 logical = (u64)bio->bi_sector << 9; 1411 u64 length = 0; 1412 u64 map_length; 1413 int ret; 1414 1415 if (bio_flags & EXTENT_BIO_COMPRESSED) 1416 return 0; 1417 1418 length = bio->bi_size; 1419 map_tree = &root->fs_info->mapping_tree; 1420 map_length = length; 1421 ret = btrfs_map_block(map_tree, READ, logical, 1422 &map_length, NULL, 0); 1423 1424 if (map_length < length + size) 1425 return 1; 1426 return ret; 1427 } 1428 1429 /* 1430 * in order to insert checksums into the metadata in large chunks, 1431 * we wait until bio submission time. All the pages in the bio are 1432 * checksummed and sums are attached onto the ordered extent record. 1433 * 1434 * At IO completion time the cums attached on the ordered extent record 1435 * are inserted into the btree 1436 */ 1437 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1438 struct bio *bio, int mirror_num, 1439 unsigned long bio_flags, 1440 u64 bio_offset) 1441 { 1442 struct btrfs_root *root = BTRFS_I(inode)->root; 1443 int ret = 0; 1444 1445 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1446 BUG_ON(ret); 1447 return 0; 1448 } 1449 1450 /* 1451 * in order to insert checksums into the metadata in large chunks, 1452 * we wait until bio submission time. All the pages in the bio are 1453 * checksummed and sums are attached onto the ordered extent record. 1454 * 1455 * At IO completion time the cums attached on the ordered extent record 1456 * are inserted into the btree 1457 */ 1458 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1459 int mirror_num, unsigned long bio_flags, 1460 u64 bio_offset) 1461 { 1462 struct btrfs_root *root = BTRFS_I(inode)->root; 1463 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1464 } 1465 1466 /* 1467 * extent_io.c submission hook. This does the right thing for csum calculation 1468 * on write, or reading the csums from the tree before a read 1469 */ 1470 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1471 int mirror_num, unsigned long bio_flags, 1472 u64 bio_offset) 1473 { 1474 struct btrfs_root *root = BTRFS_I(inode)->root; 1475 int ret = 0; 1476 int skip_sum; 1477 1478 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1479 1480 if (is_free_space_inode(root, inode)) 1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1482 else 1483 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1484 BUG_ON(ret); 1485 1486 if (!(rw & REQ_WRITE)) { 1487 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1488 return btrfs_submit_compressed_read(inode, bio, 1489 mirror_num, bio_flags); 1490 } else if (!skip_sum) { 1491 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1492 if (ret) 1493 return ret; 1494 } 1495 goto mapit; 1496 } else if (!skip_sum) { 1497 /* csum items have already been cloned */ 1498 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1499 goto mapit; 1500 /* we're doing a write, do the async checksumming */ 1501 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1502 inode, rw, bio, mirror_num, 1503 bio_flags, bio_offset, 1504 __btrfs_submit_bio_start, 1505 __btrfs_submit_bio_done); 1506 } 1507 1508 mapit: 1509 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1510 } 1511 1512 /* 1513 * given a list of ordered sums record them in the inode. This happens 1514 * at IO completion time based on sums calculated at bio submission time. 1515 */ 1516 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1517 struct inode *inode, u64 file_offset, 1518 struct list_head *list) 1519 { 1520 struct btrfs_ordered_sum *sum; 1521 1522 btrfs_set_trans_block_group(trans, inode); 1523 1524 list_for_each_entry(sum, list, list) { 1525 btrfs_csum_file_blocks(trans, 1526 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1527 } 1528 return 0; 1529 } 1530 1531 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1532 struct extent_state **cached_state) 1533 { 1534 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1535 WARN_ON(1); 1536 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1537 cached_state, GFP_NOFS); 1538 } 1539 1540 /* see btrfs_writepage_start_hook for details on why this is required */ 1541 struct btrfs_writepage_fixup { 1542 struct page *page; 1543 struct btrfs_work work; 1544 }; 1545 1546 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1547 { 1548 struct btrfs_writepage_fixup *fixup; 1549 struct btrfs_ordered_extent *ordered; 1550 struct extent_state *cached_state = NULL; 1551 struct page *page; 1552 struct inode *inode; 1553 u64 page_start; 1554 u64 page_end; 1555 1556 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1557 page = fixup->page; 1558 again: 1559 lock_page(page); 1560 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1561 ClearPageChecked(page); 1562 goto out_page; 1563 } 1564 1565 inode = page->mapping->host; 1566 page_start = page_offset(page); 1567 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1568 1569 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1570 &cached_state, GFP_NOFS); 1571 1572 /* already ordered? We're done */ 1573 if (PagePrivate2(page)) 1574 goto out; 1575 1576 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1577 if (ordered) { 1578 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1579 page_end, &cached_state, GFP_NOFS); 1580 unlock_page(page); 1581 btrfs_start_ordered_extent(inode, ordered, 1); 1582 goto again; 1583 } 1584 1585 BUG(); 1586 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1587 ClearPageChecked(page); 1588 out: 1589 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1590 &cached_state, GFP_NOFS); 1591 out_page: 1592 unlock_page(page); 1593 page_cache_release(page); 1594 kfree(fixup); 1595 } 1596 1597 /* 1598 * There are a few paths in the higher layers of the kernel that directly 1599 * set the page dirty bit without asking the filesystem if it is a 1600 * good idea. This causes problems because we want to make sure COW 1601 * properly happens and the data=ordered rules are followed. 1602 * 1603 * In our case any range that doesn't have the ORDERED bit set 1604 * hasn't been properly setup for IO. We kick off an async process 1605 * to fix it up. The async helper will wait for ordered extents, set 1606 * the delalloc bit and make it safe to write the page. 1607 */ 1608 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1609 { 1610 struct inode *inode = page->mapping->host; 1611 struct btrfs_writepage_fixup *fixup; 1612 struct btrfs_root *root = BTRFS_I(inode)->root; 1613 1614 /* this page is properly in the ordered list */ 1615 if (TestClearPagePrivate2(page)) 1616 return 0; 1617 1618 if (PageChecked(page)) 1619 return -EAGAIN; 1620 1621 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1622 if (!fixup) 1623 return -EAGAIN; 1624 1625 SetPageChecked(page); 1626 page_cache_get(page); 1627 fixup->work.func = btrfs_writepage_fixup_worker; 1628 fixup->page = page; 1629 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1630 return -EAGAIN; 1631 } 1632 1633 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1634 struct inode *inode, u64 file_pos, 1635 u64 disk_bytenr, u64 disk_num_bytes, 1636 u64 num_bytes, u64 ram_bytes, 1637 u8 compression, u8 encryption, 1638 u16 other_encoding, int extent_type) 1639 { 1640 struct btrfs_root *root = BTRFS_I(inode)->root; 1641 struct btrfs_file_extent_item *fi; 1642 struct btrfs_path *path; 1643 struct extent_buffer *leaf; 1644 struct btrfs_key ins; 1645 u64 hint; 1646 int ret; 1647 1648 path = btrfs_alloc_path(); 1649 BUG_ON(!path); 1650 1651 path->leave_spinning = 1; 1652 1653 /* 1654 * we may be replacing one extent in the tree with another. 1655 * The new extent is pinned in the extent map, and we don't want 1656 * to drop it from the cache until it is completely in the btree. 1657 * 1658 * So, tell btrfs_drop_extents to leave this extent in the cache. 1659 * the caller is expected to unpin it and allow it to be merged 1660 * with the others. 1661 */ 1662 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1663 &hint, 0); 1664 BUG_ON(ret); 1665 1666 ins.objectid = btrfs_ino(inode); 1667 ins.offset = file_pos; 1668 ins.type = BTRFS_EXTENT_DATA_KEY; 1669 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1670 BUG_ON(ret); 1671 leaf = path->nodes[0]; 1672 fi = btrfs_item_ptr(leaf, path->slots[0], 1673 struct btrfs_file_extent_item); 1674 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1675 btrfs_set_file_extent_type(leaf, fi, extent_type); 1676 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1677 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1678 btrfs_set_file_extent_offset(leaf, fi, 0); 1679 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1680 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1681 btrfs_set_file_extent_compression(leaf, fi, compression); 1682 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1683 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1684 1685 btrfs_unlock_up_safe(path, 1); 1686 btrfs_set_lock_blocking(leaf); 1687 1688 btrfs_mark_buffer_dirty(leaf); 1689 1690 inode_add_bytes(inode, num_bytes); 1691 1692 ins.objectid = disk_bytenr; 1693 ins.offset = disk_num_bytes; 1694 ins.type = BTRFS_EXTENT_ITEM_KEY; 1695 ret = btrfs_alloc_reserved_file_extent(trans, root, 1696 root->root_key.objectid, 1697 btrfs_ino(inode), file_pos, &ins); 1698 BUG_ON(ret); 1699 btrfs_free_path(path); 1700 1701 return 0; 1702 } 1703 1704 /* 1705 * helper function for btrfs_finish_ordered_io, this 1706 * just reads in some of the csum leaves to prime them into ram 1707 * before we start the transaction. It limits the amount of btree 1708 * reads required while inside the transaction. 1709 */ 1710 /* as ordered data IO finishes, this gets called so we can finish 1711 * an ordered extent if the range of bytes in the file it covers are 1712 * fully written. 1713 */ 1714 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1715 { 1716 struct btrfs_root *root = BTRFS_I(inode)->root; 1717 struct btrfs_trans_handle *trans = NULL; 1718 struct btrfs_ordered_extent *ordered_extent = NULL; 1719 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1720 struct extent_state *cached_state = NULL; 1721 int compress_type = 0; 1722 int ret; 1723 bool nolock; 1724 1725 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1726 end - start + 1); 1727 if (!ret) 1728 return 0; 1729 BUG_ON(!ordered_extent); 1730 1731 nolock = is_free_space_inode(root, inode); 1732 1733 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1734 BUG_ON(!list_empty(&ordered_extent->list)); 1735 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1736 if (!ret) { 1737 if (nolock) 1738 trans = btrfs_join_transaction_nolock(root, 1); 1739 else 1740 trans = btrfs_join_transaction(root, 1); 1741 BUG_ON(IS_ERR(trans)); 1742 btrfs_set_trans_block_group(trans, inode); 1743 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1744 ret = btrfs_update_inode(trans, root, inode); 1745 BUG_ON(ret); 1746 } 1747 goto out; 1748 } 1749 1750 lock_extent_bits(io_tree, ordered_extent->file_offset, 1751 ordered_extent->file_offset + ordered_extent->len - 1, 1752 0, &cached_state, GFP_NOFS); 1753 1754 if (nolock) 1755 trans = btrfs_join_transaction_nolock(root, 1); 1756 else 1757 trans = btrfs_join_transaction(root, 1); 1758 BUG_ON(IS_ERR(trans)); 1759 btrfs_set_trans_block_group(trans, inode); 1760 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1761 1762 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1763 compress_type = ordered_extent->compress_type; 1764 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1765 BUG_ON(compress_type); 1766 ret = btrfs_mark_extent_written(trans, inode, 1767 ordered_extent->file_offset, 1768 ordered_extent->file_offset + 1769 ordered_extent->len); 1770 BUG_ON(ret); 1771 } else { 1772 BUG_ON(root == root->fs_info->tree_root); 1773 ret = insert_reserved_file_extent(trans, inode, 1774 ordered_extent->file_offset, 1775 ordered_extent->start, 1776 ordered_extent->disk_len, 1777 ordered_extent->len, 1778 ordered_extent->len, 1779 compress_type, 0, 0, 1780 BTRFS_FILE_EXTENT_REG); 1781 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1782 ordered_extent->file_offset, 1783 ordered_extent->len); 1784 BUG_ON(ret); 1785 } 1786 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1787 ordered_extent->file_offset + 1788 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1789 1790 add_pending_csums(trans, inode, ordered_extent->file_offset, 1791 &ordered_extent->list); 1792 1793 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1794 if (!ret) { 1795 ret = btrfs_update_inode(trans, root, inode); 1796 BUG_ON(ret); 1797 } 1798 ret = 0; 1799 out: 1800 if (nolock) { 1801 if (trans) 1802 btrfs_end_transaction_nolock(trans, root); 1803 } else { 1804 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1805 if (trans) 1806 btrfs_end_transaction(trans, root); 1807 } 1808 1809 /* once for us */ 1810 btrfs_put_ordered_extent(ordered_extent); 1811 /* once for the tree */ 1812 btrfs_put_ordered_extent(ordered_extent); 1813 1814 return 0; 1815 } 1816 1817 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1818 struct extent_state *state, int uptodate) 1819 { 1820 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 1821 1822 ClearPagePrivate2(page); 1823 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1824 } 1825 1826 /* 1827 * When IO fails, either with EIO or csum verification fails, we 1828 * try other mirrors that might have a good copy of the data. This 1829 * io_failure_record is used to record state as we go through all the 1830 * mirrors. If another mirror has good data, the page is set up to date 1831 * and things continue. If a good mirror can't be found, the original 1832 * bio end_io callback is called to indicate things have failed. 1833 */ 1834 struct io_failure_record { 1835 struct page *page; 1836 u64 start; 1837 u64 len; 1838 u64 logical; 1839 unsigned long bio_flags; 1840 int last_mirror; 1841 }; 1842 1843 static int btrfs_io_failed_hook(struct bio *failed_bio, 1844 struct page *page, u64 start, u64 end, 1845 struct extent_state *state) 1846 { 1847 struct io_failure_record *failrec = NULL; 1848 u64 private; 1849 struct extent_map *em; 1850 struct inode *inode = page->mapping->host; 1851 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1852 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1853 struct bio *bio; 1854 int num_copies; 1855 int ret; 1856 int rw; 1857 u64 logical; 1858 1859 ret = get_state_private(failure_tree, start, &private); 1860 if (ret) { 1861 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1862 if (!failrec) 1863 return -ENOMEM; 1864 failrec->start = start; 1865 failrec->len = end - start + 1; 1866 failrec->last_mirror = 0; 1867 failrec->bio_flags = 0; 1868 1869 read_lock(&em_tree->lock); 1870 em = lookup_extent_mapping(em_tree, start, failrec->len); 1871 if (em->start > start || em->start + em->len < start) { 1872 free_extent_map(em); 1873 em = NULL; 1874 } 1875 read_unlock(&em_tree->lock); 1876 1877 if (IS_ERR_OR_NULL(em)) { 1878 kfree(failrec); 1879 return -EIO; 1880 } 1881 logical = start - em->start; 1882 logical = em->block_start + logical; 1883 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1884 logical = em->block_start; 1885 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1886 extent_set_compress_type(&failrec->bio_flags, 1887 em->compress_type); 1888 } 1889 failrec->logical = logical; 1890 free_extent_map(em); 1891 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1892 EXTENT_DIRTY, GFP_NOFS); 1893 set_state_private(failure_tree, start, 1894 (u64)(unsigned long)failrec); 1895 } else { 1896 failrec = (struct io_failure_record *)(unsigned long)private; 1897 } 1898 num_copies = btrfs_num_copies( 1899 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1900 failrec->logical, failrec->len); 1901 failrec->last_mirror++; 1902 if (!state) { 1903 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1904 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1905 failrec->start, 1906 EXTENT_LOCKED); 1907 if (state && state->start != failrec->start) 1908 state = NULL; 1909 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1910 } 1911 if (!state || failrec->last_mirror > num_copies) { 1912 set_state_private(failure_tree, failrec->start, 0); 1913 clear_extent_bits(failure_tree, failrec->start, 1914 failrec->start + failrec->len - 1, 1915 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1916 kfree(failrec); 1917 return -EIO; 1918 } 1919 bio = bio_alloc(GFP_NOFS, 1); 1920 bio->bi_private = state; 1921 bio->bi_end_io = failed_bio->bi_end_io; 1922 bio->bi_sector = failrec->logical >> 9; 1923 bio->bi_bdev = failed_bio->bi_bdev; 1924 bio->bi_size = 0; 1925 1926 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1927 if (failed_bio->bi_rw & REQ_WRITE) 1928 rw = WRITE; 1929 else 1930 rw = READ; 1931 1932 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1933 failrec->last_mirror, 1934 failrec->bio_flags, 0); 1935 return ret; 1936 } 1937 1938 /* 1939 * each time an IO finishes, we do a fast check in the IO failure tree 1940 * to see if we need to process or clean up an io_failure_record 1941 */ 1942 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1943 { 1944 u64 private; 1945 u64 private_failure; 1946 struct io_failure_record *failure; 1947 int ret; 1948 1949 private = 0; 1950 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1951 (u64)-1, 1, EXTENT_DIRTY, 0)) { 1952 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1953 start, &private_failure); 1954 if (ret == 0) { 1955 failure = (struct io_failure_record *)(unsigned long) 1956 private_failure; 1957 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1958 failure->start, 0); 1959 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1960 failure->start, 1961 failure->start + failure->len - 1, 1962 EXTENT_DIRTY | EXTENT_LOCKED, 1963 GFP_NOFS); 1964 kfree(failure); 1965 } 1966 } 1967 return 0; 1968 } 1969 1970 /* 1971 * when reads are done, we need to check csums to verify the data is correct 1972 * if there's a match, we allow the bio to finish. If not, we go through 1973 * the io_failure_record routines to find good copies 1974 */ 1975 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1976 struct extent_state *state) 1977 { 1978 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1979 struct inode *inode = page->mapping->host; 1980 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1981 char *kaddr; 1982 u64 private = ~(u32)0; 1983 int ret; 1984 struct btrfs_root *root = BTRFS_I(inode)->root; 1985 u32 csum = ~(u32)0; 1986 1987 if (PageChecked(page)) { 1988 ClearPageChecked(page); 1989 goto good; 1990 } 1991 1992 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1993 return 0; 1994 1995 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1996 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1997 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1998 GFP_NOFS); 1999 return 0; 2000 } 2001 2002 if (state && state->start == start) { 2003 private = state->private; 2004 ret = 0; 2005 } else { 2006 ret = get_state_private(io_tree, start, &private); 2007 } 2008 kaddr = kmap_atomic(page, KM_USER0); 2009 if (ret) 2010 goto zeroit; 2011 2012 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2013 btrfs_csum_final(csum, (char *)&csum); 2014 if (csum != private) 2015 goto zeroit; 2016 2017 kunmap_atomic(kaddr, KM_USER0); 2018 good: 2019 /* if the io failure tree for this inode is non-empty, 2020 * check to see if we've recovered from a failed IO 2021 */ 2022 btrfs_clean_io_failures(inode, start); 2023 return 0; 2024 2025 zeroit: 2026 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2027 "private %llu\n", 2028 (unsigned long long)btrfs_ino(page->mapping->host), 2029 (unsigned long long)start, csum, 2030 (unsigned long long)private); 2031 memset(kaddr + offset, 1, end - start + 1); 2032 flush_dcache_page(page); 2033 kunmap_atomic(kaddr, KM_USER0); 2034 if (private == 0) 2035 return 0; 2036 return -EIO; 2037 } 2038 2039 struct delayed_iput { 2040 struct list_head list; 2041 struct inode *inode; 2042 }; 2043 2044 void btrfs_add_delayed_iput(struct inode *inode) 2045 { 2046 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2047 struct delayed_iput *delayed; 2048 2049 if (atomic_add_unless(&inode->i_count, -1, 1)) 2050 return; 2051 2052 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2053 delayed->inode = inode; 2054 2055 spin_lock(&fs_info->delayed_iput_lock); 2056 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2057 spin_unlock(&fs_info->delayed_iput_lock); 2058 } 2059 2060 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2061 { 2062 LIST_HEAD(list); 2063 struct btrfs_fs_info *fs_info = root->fs_info; 2064 struct delayed_iput *delayed; 2065 int empty; 2066 2067 spin_lock(&fs_info->delayed_iput_lock); 2068 empty = list_empty(&fs_info->delayed_iputs); 2069 spin_unlock(&fs_info->delayed_iput_lock); 2070 if (empty) 2071 return; 2072 2073 down_read(&root->fs_info->cleanup_work_sem); 2074 spin_lock(&fs_info->delayed_iput_lock); 2075 list_splice_init(&fs_info->delayed_iputs, &list); 2076 spin_unlock(&fs_info->delayed_iput_lock); 2077 2078 while (!list_empty(&list)) { 2079 delayed = list_entry(list.next, struct delayed_iput, list); 2080 list_del(&delayed->list); 2081 iput(delayed->inode); 2082 kfree(delayed); 2083 } 2084 up_read(&root->fs_info->cleanup_work_sem); 2085 } 2086 2087 /* 2088 * calculate extra metadata reservation when snapshotting a subvolume 2089 * contains orphan files. 2090 */ 2091 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2092 struct btrfs_pending_snapshot *pending, 2093 u64 *bytes_to_reserve) 2094 { 2095 struct btrfs_root *root; 2096 struct btrfs_block_rsv *block_rsv; 2097 u64 num_bytes; 2098 int index; 2099 2100 root = pending->root; 2101 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2102 return; 2103 2104 block_rsv = root->orphan_block_rsv; 2105 2106 /* orphan block reservation for the snapshot */ 2107 num_bytes = block_rsv->size; 2108 2109 /* 2110 * after the snapshot is created, COWing tree blocks may use more 2111 * space than it frees. So we should make sure there is enough 2112 * reserved space. 2113 */ 2114 index = trans->transid & 0x1; 2115 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2116 num_bytes += block_rsv->size - 2117 (block_rsv->reserved + block_rsv->freed[index]); 2118 } 2119 2120 *bytes_to_reserve += num_bytes; 2121 } 2122 2123 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2124 struct btrfs_pending_snapshot *pending) 2125 { 2126 struct btrfs_root *root = pending->root; 2127 struct btrfs_root *snap = pending->snap; 2128 struct btrfs_block_rsv *block_rsv; 2129 u64 num_bytes; 2130 int index; 2131 int ret; 2132 2133 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2134 return; 2135 2136 /* refill source subvolume's orphan block reservation */ 2137 block_rsv = root->orphan_block_rsv; 2138 index = trans->transid & 0x1; 2139 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2140 num_bytes = block_rsv->size - 2141 (block_rsv->reserved + block_rsv->freed[index]); 2142 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2143 root->orphan_block_rsv, 2144 num_bytes); 2145 BUG_ON(ret); 2146 } 2147 2148 /* setup orphan block reservation for the snapshot */ 2149 block_rsv = btrfs_alloc_block_rsv(snap); 2150 BUG_ON(!block_rsv); 2151 2152 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2153 snap->orphan_block_rsv = block_rsv; 2154 2155 num_bytes = root->orphan_block_rsv->size; 2156 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2157 block_rsv, num_bytes); 2158 BUG_ON(ret); 2159 2160 #if 0 2161 /* insert orphan item for the snapshot */ 2162 WARN_ON(!root->orphan_item_inserted); 2163 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2164 snap->root_key.objectid); 2165 BUG_ON(ret); 2166 snap->orphan_item_inserted = 1; 2167 #endif 2168 } 2169 2170 enum btrfs_orphan_cleanup_state { 2171 ORPHAN_CLEANUP_STARTED = 1, 2172 ORPHAN_CLEANUP_DONE = 2, 2173 }; 2174 2175 /* 2176 * This is called in transaction commmit time. If there are no orphan 2177 * files in the subvolume, it removes orphan item and frees block_rsv 2178 * structure. 2179 */ 2180 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2181 struct btrfs_root *root) 2182 { 2183 int ret; 2184 2185 if (!list_empty(&root->orphan_list) || 2186 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2187 return; 2188 2189 if (root->orphan_item_inserted && 2190 btrfs_root_refs(&root->root_item) > 0) { 2191 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2192 root->root_key.objectid); 2193 BUG_ON(ret); 2194 root->orphan_item_inserted = 0; 2195 } 2196 2197 if (root->orphan_block_rsv) { 2198 WARN_ON(root->orphan_block_rsv->size > 0); 2199 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2200 root->orphan_block_rsv = NULL; 2201 } 2202 } 2203 2204 /* 2205 * This creates an orphan entry for the given inode in case something goes 2206 * wrong in the middle of an unlink/truncate. 2207 * 2208 * NOTE: caller of this function should reserve 5 units of metadata for 2209 * this function. 2210 */ 2211 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2212 { 2213 struct btrfs_root *root = BTRFS_I(inode)->root; 2214 struct btrfs_block_rsv *block_rsv = NULL; 2215 int reserve = 0; 2216 int insert = 0; 2217 int ret; 2218 2219 if (!root->orphan_block_rsv) { 2220 block_rsv = btrfs_alloc_block_rsv(root); 2221 BUG_ON(!block_rsv); 2222 } 2223 2224 spin_lock(&root->orphan_lock); 2225 if (!root->orphan_block_rsv) { 2226 root->orphan_block_rsv = block_rsv; 2227 } else if (block_rsv) { 2228 btrfs_free_block_rsv(root, block_rsv); 2229 block_rsv = NULL; 2230 } 2231 2232 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2233 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2234 #if 0 2235 /* 2236 * For proper ENOSPC handling, we should do orphan 2237 * cleanup when mounting. But this introduces backward 2238 * compatibility issue. 2239 */ 2240 if (!xchg(&root->orphan_item_inserted, 1)) 2241 insert = 2; 2242 else 2243 insert = 1; 2244 #endif 2245 insert = 1; 2246 } 2247 2248 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2249 BTRFS_I(inode)->orphan_meta_reserved = 1; 2250 reserve = 1; 2251 } 2252 spin_unlock(&root->orphan_lock); 2253 2254 if (block_rsv) 2255 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2256 2257 /* grab metadata reservation from transaction handle */ 2258 if (reserve) { 2259 ret = btrfs_orphan_reserve_metadata(trans, inode); 2260 BUG_ON(ret); 2261 } 2262 2263 /* insert an orphan item to track this unlinked/truncated file */ 2264 if (insert >= 1) { 2265 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2266 BUG_ON(ret); 2267 } 2268 2269 /* insert an orphan item to track subvolume contains orphan files */ 2270 if (insert >= 2) { 2271 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2272 root->root_key.objectid); 2273 BUG_ON(ret); 2274 } 2275 return 0; 2276 } 2277 2278 /* 2279 * We have done the truncate/delete so we can go ahead and remove the orphan 2280 * item for this particular inode. 2281 */ 2282 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2283 { 2284 struct btrfs_root *root = BTRFS_I(inode)->root; 2285 int delete_item = 0; 2286 int release_rsv = 0; 2287 int ret = 0; 2288 2289 spin_lock(&root->orphan_lock); 2290 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2291 list_del_init(&BTRFS_I(inode)->i_orphan); 2292 delete_item = 1; 2293 } 2294 2295 if (BTRFS_I(inode)->orphan_meta_reserved) { 2296 BTRFS_I(inode)->orphan_meta_reserved = 0; 2297 release_rsv = 1; 2298 } 2299 spin_unlock(&root->orphan_lock); 2300 2301 if (trans && delete_item) { 2302 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2303 BUG_ON(ret); 2304 } 2305 2306 if (release_rsv) 2307 btrfs_orphan_release_metadata(inode); 2308 2309 return 0; 2310 } 2311 2312 /* 2313 * this cleans up any orphans that may be left on the list from the last use 2314 * of this root. 2315 */ 2316 int btrfs_orphan_cleanup(struct btrfs_root *root) 2317 { 2318 struct btrfs_path *path; 2319 struct extent_buffer *leaf; 2320 struct btrfs_key key, found_key; 2321 struct btrfs_trans_handle *trans; 2322 struct inode *inode; 2323 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2324 2325 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2326 return 0; 2327 2328 path = btrfs_alloc_path(); 2329 if (!path) { 2330 ret = -ENOMEM; 2331 goto out; 2332 } 2333 path->reada = -1; 2334 2335 key.objectid = BTRFS_ORPHAN_OBJECTID; 2336 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2337 key.offset = (u64)-1; 2338 2339 while (1) { 2340 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2341 if (ret < 0) 2342 goto out; 2343 2344 /* 2345 * if ret == 0 means we found what we were searching for, which 2346 * is weird, but possible, so only screw with path if we didn't 2347 * find the key and see if we have stuff that matches 2348 */ 2349 if (ret > 0) { 2350 ret = 0; 2351 if (path->slots[0] == 0) 2352 break; 2353 path->slots[0]--; 2354 } 2355 2356 /* pull out the item */ 2357 leaf = path->nodes[0]; 2358 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2359 2360 /* make sure the item matches what we want */ 2361 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2362 break; 2363 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2364 break; 2365 2366 /* release the path since we're done with it */ 2367 btrfs_release_path(path); 2368 2369 /* 2370 * this is where we are basically btrfs_lookup, without the 2371 * crossing root thing. we store the inode number in the 2372 * offset of the orphan item. 2373 */ 2374 found_key.objectid = found_key.offset; 2375 found_key.type = BTRFS_INODE_ITEM_KEY; 2376 found_key.offset = 0; 2377 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2378 if (IS_ERR(inode)) { 2379 ret = PTR_ERR(inode); 2380 goto out; 2381 } 2382 2383 /* 2384 * add this inode to the orphan list so btrfs_orphan_del does 2385 * the proper thing when we hit it 2386 */ 2387 spin_lock(&root->orphan_lock); 2388 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2389 spin_unlock(&root->orphan_lock); 2390 2391 /* 2392 * if this is a bad inode, means we actually succeeded in 2393 * removing the inode, but not the orphan record, which means 2394 * we need to manually delete the orphan since iput will just 2395 * do a destroy_inode 2396 */ 2397 if (is_bad_inode(inode)) { 2398 trans = btrfs_start_transaction(root, 0); 2399 if (IS_ERR(trans)) { 2400 ret = PTR_ERR(trans); 2401 goto out; 2402 } 2403 btrfs_orphan_del(trans, inode); 2404 btrfs_end_transaction(trans, root); 2405 iput(inode); 2406 continue; 2407 } 2408 2409 /* if we have links, this was a truncate, lets do that */ 2410 if (inode->i_nlink) { 2411 if (!S_ISREG(inode->i_mode)) { 2412 WARN_ON(1); 2413 iput(inode); 2414 continue; 2415 } 2416 nr_truncate++; 2417 ret = btrfs_truncate(inode); 2418 } else { 2419 nr_unlink++; 2420 } 2421 2422 /* this will do delete_inode and everything for us */ 2423 iput(inode); 2424 if (ret) 2425 goto out; 2426 } 2427 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2428 2429 if (root->orphan_block_rsv) 2430 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2431 (u64)-1); 2432 2433 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2434 trans = btrfs_join_transaction(root, 1); 2435 if (!IS_ERR(trans)) 2436 btrfs_end_transaction(trans, root); 2437 } 2438 2439 if (nr_unlink) 2440 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2441 if (nr_truncate) 2442 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2443 2444 out: 2445 if (ret) 2446 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2447 btrfs_free_path(path); 2448 return ret; 2449 } 2450 2451 /* 2452 * very simple check to peek ahead in the leaf looking for xattrs. If we 2453 * don't find any xattrs, we know there can't be any acls. 2454 * 2455 * slot is the slot the inode is in, objectid is the objectid of the inode 2456 */ 2457 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2458 int slot, u64 objectid) 2459 { 2460 u32 nritems = btrfs_header_nritems(leaf); 2461 struct btrfs_key found_key; 2462 int scanned = 0; 2463 2464 slot++; 2465 while (slot < nritems) { 2466 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2467 2468 /* we found a different objectid, there must not be acls */ 2469 if (found_key.objectid != objectid) 2470 return 0; 2471 2472 /* we found an xattr, assume we've got an acl */ 2473 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2474 return 1; 2475 2476 /* 2477 * we found a key greater than an xattr key, there can't 2478 * be any acls later on 2479 */ 2480 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2481 return 0; 2482 2483 slot++; 2484 scanned++; 2485 2486 /* 2487 * it goes inode, inode backrefs, xattrs, extents, 2488 * so if there are a ton of hard links to an inode there can 2489 * be a lot of backrefs. Don't waste time searching too hard, 2490 * this is just an optimization 2491 */ 2492 if (scanned >= 8) 2493 break; 2494 } 2495 /* we hit the end of the leaf before we found an xattr or 2496 * something larger than an xattr. We have to assume the inode 2497 * has acls 2498 */ 2499 return 1; 2500 } 2501 2502 /* 2503 * read an inode from the btree into the in-memory inode 2504 */ 2505 static void btrfs_read_locked_inode(struct inode *inode) 2506 { 2507 struct btrfs_path *path; 2508 struct extent_buffer *leaf; 2509 struct btrfs_inode_item *inode_item; 2510 struct btrfs_timespec *tspec; 2511 struct btrfs_root *root = BTRFS_I(inode)->root; 2512 struct btrfs_key location; 2513 int maybe_acls; 2514 u64 alloc_group_block; 2515 u32 rdev; 2516 int ret; 2517 2518 path = btrfs_alloc_path(); 2519 BUG_ON(!path); 2520 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2521 2522 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2523 if (ret) 2524 goto make_bad; 2525 2526 leaf = path->nodes[0]; 2527 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2528 struct btrfs_inode_item); 2529 2530 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2531 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2532 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2533 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2534 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2535 2536 tspec = btrfs_inode_atime(inode_item); 2537 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2538 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2539 2540 tspec = btrfs_inode_mtime(inode_item); 2541 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2542 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2543 2544 tspec = btrfs_inode_ctime(inode_item); 2545 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2546 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2547 2548 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2549 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2550 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2551 inode->i_generation = BTRFS_I(inode)->generation; 2552 inode->i_rdev = 0; 2553 rdev = btrfs_inode_rdev(leaf, inode_item); 2554 2555 BTRFS_I(inode)->index_cnt = (u64)-1; 2556 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2557 2558 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2559 2560 /* 2561 * try to precache a NULL acl entry for files that don't have 2562 * any xattrs or acls 2563 */ 2564 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2565 btrfs_ino(inode)); 2566 if (!maybe_acls) 2567 cache_no_acl(inode); 2568 2569 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2570 alloc_group_block, 0); 2571 btrfs_free_path(path); 2572 inode_item = NULL; 2573 2574 switch (inode->i_mode & S_IFMT) { 2575 case S_IFREG: 2576 inode->i_mapping->a_ops = &btrfs_aops; 2577 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2578 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2579 inode->i_fop = &btrfs_file_operations; 2580 inode->i_op = &btrfs_file_inode_operations; 2581 break; 2582 case S_IFDIR: 2583 inode->i_fop = &btrfs_dir_file_operations; 2584 if (root == root->fs_info->tree_root) 2585 inode->i_op = &btrfs_dir_ro_inode_operations; 2586 else 2587 inode->i_op = &btrfs_dir_inode_operations; 2588 break; 2589 case S_IFLNK: 2590 inode->i_op = &btrfs_symlink_inode_operations; 2591 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2592 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2593 break; 2594 default: 2595 inode->i_op = &btrfs_special_inode_operations; 2596 init_special_inode(inode, inode->i_mode, rdev); 2597 break; 2598 } 2599 2600 btrfs_update_iflags(inode); 2601 return; 2602 2603 make_bad: 2604 btrfs_free_path(path); 2605 make_bad_inode(inode); 2606 } 2607 2608 /* 2609 * given a leaf and an inode, copy the inode fields into the leaf 2610 */ 2611 static void fill_inode_item(struct btrfs_trans_handle *trans, 2612 struct extent_buffer *leaf, 2613 struct btrfs_inode_item *item, 2614 struct inode *inode) 2615 { 2616 if (!leaf->map_token) 2617 map_private_extent_buffer(leaf, (unsigned long)item, 2618 sizeof(struct btrfs_inode_item), 2619 &leaf->map_token, &leaf->kaddr, 2620 &leaf->map_start, &leaf->map_len, 2621 KM_USER1); 2622 2623 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2624 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2625 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2626 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2627 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2628 2629 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2630 inode->i_atime.tv_sec); 2631 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2632 inode->i_atime.tv_nsec); 2633 2634 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2635 inode->i_mtime.tv_sec); 2636 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2637 inode->i_mtime.tv_nsec); 2638 2639 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2640 inode->i_ctime.tv_sec); 2641 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2642 inode->i_ctime.tv_nsec); 2643 2644 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2645 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2646 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2647 btrfs_set_inode_transid(leaf, item, trans->transid); 2648 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2649 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2650 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2651 2652 if (leaf->map_token) { 2653 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 2654 leaf->map_token = NULL; 2655 } 2656 } 2657 2658 /* 2659 * copy everything in the in-memory inode into the btree. 2660 */ 2661 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2662 struct btrfs_root *root, struct inode *inode) 2663 { 2664 struct btrfs_inode_item *inode_item; 2665 struct btrfs_path *path; 2666 struct extent_buffer *leaf; 2667 int ret; 2668 2669 /* 2670 * If root is tree root, it means this inode is used to 2671 * store free space information. And these inodes are updated 2672 * when committing the transaction, so they needn't delaye to 2673 * be updated, or deadlock will occured. 2674 */ 2675 if (!is_free_space_inode(root, inode)) { 2676 ret = btrfs_delayed_update_inode(trans, root, inode); 2677 if (!ret) 2678 btrfs_set_inode_last_trans(trans, inode); 2679 return ret; 2680 } 2681 2682 path = btrfs_alloc_path(); 2683 if (!path) 2684 return -ENOMEM; 2685 2686 path->leave_spinning = 1; 2687 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2688 1); 2689 if (ret) { 2690 if (ret > 0) 2691 ret = -ENOENT; 2692 goto failed; 2693 } 2694 2695 btrfs_unlock_up_safe(path, 1); 2696 leaf = path->nodes[0]; 2697 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2698 struct btrfs_inode_item); 2699 2700 fill_inode_item(trans, leaf, inode_item, inode); 2701 btrfs_mark_buffer_dirty(leaf); 2702 btrfs_set_inode_last_trans(trans, inode); 2703 ret = 0; 2704 failed: 2705 btrfs_free_path(path); 2706 return ret; 2707 } 2708 2709 /* 2710 * unlink helper that gets used here in inode.c and in the tree logging 2711 * recovery code. It remove a link in a directory with a given name, and 2712 * also drops the back refs in the inode to the directory 2713 */ 2714 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2715 struct btrfs_root *root, 2716 struct inode *dir, struct inode *inode, 2717 const char *name, int name_len) 2718 { 2719 struct btrfs_path *path; 2720 int ret = 0; 2721 struct extent_buffer *leaf; 2722 struct btrfs_dir_item *di; 2723 struct btrfs_key key; 2724 u64 index; 2725 u64 ino = btrfs_ino(inode); 2726 u64 dir_ino = btrfs_ino(dir); 2727 2728 path = btrfs_alloc_path(); 2729 if (!path) { 2730 ret = -ENOMEM; 2731 goto out; 2732 } 2733 2734 path->leave_spinning = 1; 2735 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2736 name, name_len, -1); 2737 if (IS_ERR(di)) { 2738 ret = PTR_ERR(di); 2739 goto err; 2740 } 2741 if (!di) { 2742 ret = -ENOENT; 2743 goto err; 2744 } 2745 leaf = path->nodes[0]; 2746 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2747 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2748 if (ret) 2749 goto err; 2750 btrfs_release_path(path); 2751 2752 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2753 dir_ino, &index); 2754 if (ret) { 2755 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2756 "inode %llu parent %llu\n", name_len, name, 2757 (unsigned long long)ino, (unsigned long long)dir_ino); 2758 goto err; 2759 } 2760 2761 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2762 if (ret) 2763 goto err; 2764 2765 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2766 inode, dir_ino); 2767 BUG_ON(ret != 0 && ret != -ENOENT); 2768 2769 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2770 dir, index); 2771 if (ret == -ENOENT) 2772 ret = 0; 2773 err: 2774 btrfs_free_path(path); 2775 if (ret) 2776 goto out; 2777 2778 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2779 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2780 btrfs_update_inode(trans, root, dir); 2781 out: 2782 return ret; 2783 } 2784 2785 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2786 struct btrfs_root *root, 2787 struct inode *dir, struct inode *inode, 2788 const char *name, int name_len) 2789 { 2790 int ret; 2791 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2792 if (!ret) { 2793 btrfs_drop_nlink(inode); 2794 ret = btrfs_update_inode(trans, root, inode); 2795 } 2796 return ret; 2797 } 2798 2799 2800 /* helper to check if there is any shared block in the path */ 2801 static int check_path_shared(struct btrfs_root *root, 2802 struct btrfs_path *path) 2803 { 2804 struct extent_buffer *eb; 2805 int level; 2806 u64 refs = 1; 2807 2808 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2809 int ret; 2810 2811 if (!path->nodes[level]) 2812 break; 2813 eb = path->nodes[level]; 2814 if (!btrfs_block_can_be_shared(root, eb)) 2815 continue; 2816 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2817 &refs, NULL); 2818 if (refs > 1) 2819 return 1; 2820 } 2821 return 0; 2822 } 2823 2824 /* 2825 * helper to start transaction for unlink and rmdir. 2826 * 2827 * unlink and rmdir are special in btrfs, they do not always free space. 2828 * so in enospc case, we should make sure they will free space before 2829 * allowing them to use the global metadata reservation. 2830 */ 2831 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2832 struct dentry *dentry) 2833 { 2834 struct btrfs_trans_handle *trans; 2835 struct btrfs_root *root = BTRFS_I(dir)->root; 2836 struct btrfs_path *path; 2837 struct btrfs_inode_ref *ref; 2838 struct btrfs_dir_item *di; 2839 struct inode *inode = dentry->d_inode; 2840 u64 index; 2841 int check_link = 1; 2842 int err = -ENOSPC; 2843 int ret; 2844 u64 ino = btrfs_ino(inode); 2845 u64 dir_ino = btrfs_ino(dir); 2846 2847 trans = btrfs_start_transaction(root, 10); 2848 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2849 return trans; 2850 2851 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2852 return ERR_PTR(-ENOSPC); 2853 2854 /* check if there is someone else holds reference */ 2855 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2856 return ERR_PTR(-ENOSPC); 2857 2858 if (atomic_read(&inode->i_count) > 2) 2859 return ERR_PTR(-ENOSPC); 2860 2861 if (xchg(&root->fs_info->enospc_unlink, 1)) 2862 return ERR_PTR(-ENOSPC); 2863 2864 path = btrfs_alloc_path(); 2865 if (!path) { 2866 root->fs_info->enospc_unlink = 0; 2867 return ERR_PTR(-ENOMEM); 2868 } 2869 2870 trans = btrfs_start_transaction(root, 0); 2871 if (IS_ERR(trans)) { 2872 btrfs_free_path(path); 2873 root->fs_info->enospc_unlink = 0; 2874 return trans; 2875 } 2876 2877 path->skip_locking = 1; 2878 path->search_commit_root = 1; 2879 2880 ret = btrfs_lookup_inode(trans, root, path, 2881 &BTRFS_I(dir)->location, 0); 2882 if (ret < 0) { 2883 err = ret; 2884 goto out; 2885 } 2886 if (ret == 0) { 2887 if (check_path_shared(root, path)) 2888 goto out; 2889 } else { 2890 check_link = 0; 2891 } 2892 btrfs_release_path(path); 2893 2894 ret = btrfs_lookup_inode(trans, root, path, 2895 &BTRFS_I(inode)->location, 0); 2896 if (ret < 0) { 2897 err = ret; 2898 goto out; 2899 } 2900 if (ret == 0) { 2901 if (check_path_shared(root, path)) 2902 goto out; 2903 } else { 2904 check_link = 0; 2905 } 2906 btrfs_release_path(path); 2907 2908 if (ret == 0 && S_ISREG(inode->i_mode)) { 2909 ret = btrfs_lookup_file_extent(trans, root, path, 2910 ino, (u64)-1, 0); 2911 if (ret < 0) { 2912 err = ret; 2913 goto out; 2914 } 2915 BUG_ON(ret == 0); 2916 if (check_path_shared(root, path)) 2917 goto out; 2918 btrfs_release_path(path); 2919 } 2920 2921 if (!check_link) { 2922 err = 0; 2923 goto out; 2924 } 2925 2926 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2927 dentry->d_name.name, dentry->d_name.len, 0); 2928 if (IS_ERR(di)) { 2929 err = PTR_ERR(di); 2930 goto out; 2931 } 2932 if (di) { 2933 if (check_path_shared(root, path)) 2934 goto out; 2935 } else { 2936 err = 0; 2937 goto out; 2938 } 2939 btrfs_release_path(path); 2940 2941 ref = btrfs_lookup_inode_ref(trans, root, path, 2942 dentry->d_name.name, dentry->d_name.len, 2943 ino, dir_ino, 0); 2944 if (IS_ERR(ref)) { 2945 err = PTR_ERR(ref); 2946 goto out; 2947 } 2948 BUG_ON(!ref); 2949 if (check_path_shared(root, path)) 2950 goto out; 2951 index = btrfs_inode_ref_index(path->nodes[0], ref); 2952 btrfs_release_path(path); 2953 2954 /* 2955 * This is a commit root search, if we can lookup inode item and other 2956 * relative items in the commit root, it means the transaction of 2957 * dir/file creation has been committed, and the dir index item that we 2958 * delay to insert has also been inserted into the commit root. So 2959 * we needn't worry about the delayed insertion of the dir index item 2960 * here. 2961 */ 2962 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 2963 dentry->d_name.name, dentry->d_name.len, 0); 2964 if (IS_ERR(di)) { 2965 err = PTR_ERR(di); 2966 goto out; 2967 } 2968 BUG_ON(ret == -ENOENT); 2969 if (check_path_shared(root, path)) 2970 goto out; 2971 2972 err = 0; 2973 out: 2974 btrfs_free_path(path); 2975 if (err) { 2976 btrfs_end_transaction(trans, root); 2977 root->fs_info->enospc_unlink = 0; 2978 return ERR_PTR(err); 2979 } 2980 2981 trans->block_rsv = &root->fs_info->global_block_rsv; 2982 return trans; 2983 } 2984 2985 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2986 struct btrfs_root *root) 2987 { 2988 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2989 BUG_ON(!root->fs_info->enospc_unlink); 2990 root->fs_info->enospc_unlink = 0; 2991 } 2992 btrfs_end_transaction_throttle(trans, root); 2993 } 2994 2995 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2996 { 2997 struct btrfs_root *root = BTRFS_I(dir)->root; 2998 struct btrfs_trans_handle *trans; 2999 struct inode *inode = dentry->d_inode; 3000 int ret; 3001 unsigned long nr = 0; 3002 3003 trans = __unlink_start_trans(dir, dentry); 3004 if (IS_ERR(trans)) 3005 return PTR_ERR(trans); 3006 3007 btrfs_set_trans_block_group(trans, dir); 3008 3009 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3010 3011 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3012 dentry->d_name.name, dentry->d_name.len); 3013 BUG_ON(ret); 3014 3015 if (inode->i_nlink == 0) { 3016 ret = btrfs_orphan_add(trans, inode); 3017 BUG_ON(ret); 3018 } 3019 3020 nr = trans->blocks_used; 3021 __unlink_end_trans(trans, root); 3022 btrfs_btree_balance_dirty(root, nr); 3023 return ret; 3024 } 3025 3026 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3027 struct btrfs_root *root, 3028 struct inode *dir, u64 objectid, 3029 const char *name, int name_len) 3030 { 3031 struct btrfs_path *path; 3032 struct extent_buffer *leaf; 3033 struct btrfs_dir_item *di; 3034 struct btrfs_key key; 3035 u64 index; 3036 int ret; 3037 u64 dir_ino = btrfs_ino(dir); 3038 3039 path = btrfs_alloc_path(); 3040 if (!path) 3041 return -ENOMEM; 3042 3043 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3044 name, name_len, -1); 3045 BUG_ON(IS_ERR_OR_NULL(di)); 3046 3047 leaf = path->nodes[0]; 3048 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3049 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3050 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3051 BUG_ON(ret); 3052 btrfs_release_path(path); 3053 3054 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3055 objectid, root->root_key.objectid, 3056 dir_ino, &index, name, name_len); 3057 if (ret < 0) { 3058 BUG_ON(ret != -ENOENT); 3059 di = btrfs_search_dir_index_item(root, path, dir_ino, 3060 name, name_len); 3061 BUG_ON(IS_ERR_OR_NULL(di)); 3062 3063 leaf = path->nodes[0]; 3064 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3065 btrfs_release_path(path); 3066 index = key.offset; 3067 } 3068 btrfs_release_path(path); 3069 3070 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3071 BUG_ON(ret); 3072 3073 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3074 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3075 ret = btrfs_update_inode(trans, root, dir); 3076 BUG_ON(ret); 3077 3078 return 0; 3079 } 3080 3081 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3082 { 3083 struct inode *inode = dentry->d_inode; 3084 int err = 0; 3085 struct btrfs_root *root = BTRFS_I(dir)->root; 3086 struct btrfs_trans_handle *trans; 3087 unsigned long nr = 0; 3088 3089 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 3090 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3091 return -ENOTEMPTY; 3092 3093 trans = __unlink_start_trans(dir, dentry); 3094 if (IS_ERR(trans)) 3095 return PTR_ERR(trans); 3096 3097 btrfs_set_trans_block_group(trans, dir); 3098 3099 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3100 err = btrfs_unlink_subvol(trans, root, dir, 3101 BTRFS_I(inode)->location.objectid, 3102 dentry->d_name.name, 3103 dentry->d_name.len); 3104 goto out; 3105 } 3106 3107 err = btrfs_orphan_add(trans, inode); 3108 if (err) 3109 goto out; 3110 3111 /* now the directory is empty */ 3112 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3113 dentry->d_name.name, dentry->d_name.len); 3114 if (!err) 3115 btrfs_i_size_write(inode, 0); 3116 out: 3117 nr = trans->blocks_used; 3118 __unlink_end_trans(trans, root); 3119 btrfs_btree_balance_dirty(root, nr); 3120 3121 return err; 3122 } 3123 3124 /* 3125 * this can truncate away extent items, csum items and directory items. 3126 * It starts at a high offset and removes keys until it can't find 3127 * any higher than new_size 3128 * 3129 * csum items that cross the new i_size are truncated to the new size 3130 * as well. 3131 * 3132 * min_type is the minimum key type to truncate down to. If set to 0, this 3133 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3134 */ 3135 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3136 struct btrfs_root *root, 3137 struct inode *inode, 3138 u64 new_size, u32 min_type) 3139 { 3140 struct btrfs_path *path; 3141 struct extent_buffer *leaf; 3142 struct btrfs_file_extent_item *fi; 3143 struct btrfs_key key; 3144 struct btrfs_key found_key; 3145 u64 extent_start = 0; 3146 u64 extent_num_bytes = 0; 3147 u64 extent_offset = 0; 3148 u64 item_end = 0; 3149 u64 mask = root->sectorsize - 1; 3150 u32 found_type = (u8)-1; 3151 int found_extent; 3152 int del_item; 3153 int pending_del_nr = 0; 3154 int pending_del_slot = 0; 3155 int extent_type = -1; 3156 int encoding; 3157 int ret; 3158 int err = 0; 3159 u64 ino = btrfs_ino(inode); 3160 3161 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3162 3163 if (root->ref_cows || root == root->fs_info->tree_root) 3164 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3165 3166 /* 3167 * This function is also used to drop the items in the log tree before 3168 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3169 * it is used to drop the loged items. So we shouldn't kill the delayed 3170 * items. 3171 */ 3172 if (min_type == 0 && root == BTRFS_I(inode)->root) 3173 btrfs_kill_delayed_inode_items(inode); 3174 3175 path = btrfs_alloc_path(); 3176 BUG_ON(!path); 3177 path->reada = -1; 3178 3179 key.objectid = ino; 3180 key.offset = (u64)-1; 3181 key.type = (u8)-1; 3182 3183 search_again: 3184 path->leave_spinning = 1; 3185 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3186 if (ret < 0) { 3187 err = ret; 3188 goto out; 3189 } 3190 3191 if (ret > 0) { 3192 /* there are no items in the tree for us to truncate, we're 3193 * done 3194 */ 3195 if (path->slots[0] == 0) 3196 goto out; 3197 path->slots[0]--; 3198 } 3199 3200 while (1) { 3201 fi = NULL; 3202 leaf = path->nodes[0]; 3203 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3204 found_type = btrfs_key_type(&found_key); 3205 encoding = 0; 3206 3207 if (found_key.objectid != ino) 3208 break; 3209 3210 if (found_type < min_type) 3211 break; 3212 3213 item_end = found_key.offset; 3214 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3215 fi = btrfs_item_ptr(leaf, path->slots[0], 3216 struct btrfs_file_extent_item); 3217 extent_type = btrfs_file_extent_type(leaf, fi); 3218 encoding = btrfs_file_extent_compression(leaf, fi); 3219 encoding |= btrfs_file_extent_encryption(leaf, fi); 3220 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3221 3222 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3223 item_end += 3224 btrfs_file_extent_num_bytes(leaf, fi); 3225 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3226 item_end += btrfs_file_extent_inline_len(leaf, 3227 fi); 3228 } 3229 item_end--; 3230 } 3231 if (found_type > min_type) { 3232 del_item = 1; 3233 } else { 3234 if (item_end < new_size) 3235 break; 3236 if (found_key.offset >= new_size) 3237 del_item = 1; 3238 else 3239 del_item = 0; 3240 } 3241 found_extent = 0; 3242 /* FIXME, shrink the extent if the ref count is only 1 */ 3243 if (found_type != BTRFS_EXTENT_DATA_KEY) 3244 goto delete; 3245 3246 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3247 u64 num_dec; 3248 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3249 if (!del_item && !encoding) { 3250 u64 orig_num_bytes = 3251 btrfs_file_extent_num_bytes(leaf, fi); 3252 extent_num_bytes = new_size - 3253 found_key.offset + root->sectorsize - 1; 3254 extent_num_bytes = extent_num_bytes & 3255 ~((u64)root->sectorsize - 1); 3256 btrfs_set_file_extent_num_bytes(leaf, fi, 3257 extent_num_bytes); 3258 num_dec = (orig_num_bytes - 3259 extent_num_bytes); 3260 if (root->ref_cows && extent_start != 0) 3261 inode_sub_bytes(inode, num_dec); 3262 btrfs_mark_buffer_dirty(leaf); 3263 } else { 3264 extent_num_bytes = 3265 btrfs_file_extent_disk_num_bytes(leaf, 3266 fi); 3267 extent_offset = found_key.offset - 3268 btrfs_file_extent_offset(leaf, fi); 3269 3270 /* FIXME blocksize != 4096 */ 3271 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3272 if (extent_start != 0) { 3273 found_extent = 1; 3274 if (root->ref_cows) 3275 inode_sub_bytes(inode, num_dec); 3276 } 3277 } 3278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3279 /* 3280 * we can't truncate inline items that have had 3281 * special encodings 3282 */ 3283 if (!del_item && 3284 btrfs_file_extent_compression(leaf, fi) == 0 && 3285 btrfs_file_extent_encryption(leaf, fi) == 0 && 3286 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3287 u32 size = new_size - found_key.offset; 3288 3289 if (root->ref_cows) { 3290 inode_sub_bytes(inode, item_end + 1 - 3291 new_size); 3292 } 3293 size = 3294 btrfs_file_extent_calc_inline_size(size); 3295 ret = btrfs_truncate_item(trans, root, path, 3296 size, 1); 3297 } else if (root->ref_cows) { 3298 inode_sub_bytes(inode, item_end + 1 - 3299 found_key.offset); 3300 } 3301 } 3302 delete: 3303 if (del_item) { 3304 if (!pending_del_nr) { 3305 /* no pending yet, add ourselves */ 3306 pending_del_slot = path->slots[0]; 3307 pending_del_nr = 1; 3308 } else if (pending_del_nr && 3309 path->slots[0] + 1 == pending_del_slot) { 3310 /* hop on the pending chunk */ 3311 pending_del_nr++; 3312 pending_del_slot = path->slots[0]; 3313 } else { 3314 BUG(); 3315 } 3316 } else { 3317 break; 3318 } 3319 if (found_extent && (root->ref_cows || 3320 root == root->fs_info->tree_root)) { 3321 btrfs_set_path_blocking(path); 3322 ret = btrfs_free_extent(trans, root, extent_start, 3323 extent_num_bytes, 0, 3324 btrfs_header_owner(leaf), 3325 ino, extent_offset); 3326 BUG_ON(ret); 3327 } 3328 3329 if (found_type == BTRFS_INODE_ITEM_KEY) 3330 break; 3331 3332 if (path->slots[0] == 0 || 3333 path->slots[0] != pending_del_slot) { 3334 if (root->ref_cows && 3335 BTRFS_I(inode)->location.objectid != 3336 BTRFS_FREE_INO_OBJECTID) { 3337 err = -EAGAIN; 3338 goto out; 3339 } 3340 if (pending_del_nr) { 3341 ret = btrfs_del_items(trans, root, path, 3342 pending_del_slot, 3343 pending_del_nr); 3344 BUG_ON(ret); 3345 pending_del_nr = 0; 3346 } 3347 btrfs_release_path(path); 3348 goto search_again; 3349 } else { 3350 path->slots[0]--; 3351 } 3352 } 3353 out: 3354 if (pending_del_nr) { 3355 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3356 pending_del_nr); 3357 BUG_ON(ret); 3358 } 3359 btrfs_free_path(path); 3360 return err; 3361 } 3362 3363 /* 3364 * taken from block_truncate_page, but does cow as it zeros out 3365 * any bytes left in the last page in the file. 3366 */ 3367 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3368 { 3369 struct inode *inode = mapping->host; 3370 struct btrfs_root *root = BTRFS_I(inode)->root; 3371 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3372 struct btrfs_ordered_extent *ordered; 3373 struct extent_state *cached_state = NULL; 3374 char *kaddr; 3375 u32 blocksize = root->sectorsize; 3376 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3377 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3378 struct page *page; 3379 int ret = 0; 3380 u64 page_start; 3381 u64 page_end; 3382 3383 if ((offset & (blocksize - 1)) == 0) 3384 goto out; 3385 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3386 if (ret) 3387 goto out; 3388 3389 ret = -ENOMEM; 3390 again: 3391 page = grab_cache_page(mapping, index); 3392 if (!page) { 3393 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3394 goto out; 3395 } 3396 3397 page_start = page_offset(page); 3398 page_end = page_start + PAGE_CACHE_SIZE - 1; 3399 3400 if (!PageUptodate(page)) { 3401 ret = btrfs_readpage(NULL, page); 3402 lock_page(page); 3403 if (page->mapping != mapping) { 3404 unlock_page(page); 3405 page_cache_release(page); 3406 goto again; 3407 } 3408 if (!PageUptodate(page)) { 3409 ret = -EIO; 3410 goto out_unlock; 3411 } 3412 } 3413 wait_on_page_writeback(page); 3414 3415 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3416 GFP_NOFS); 3417 set_page_extent_mapped(page); 3418 3419 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3420 if (ordered) { 3421 unlock_extent_cached(io_tree, page_start, page_end, 3422 &cached_state, GFP_NOFS); 3423 unlock_page(page); 3424 page_cache_release(page); 3425 btrfs_start_ordered_extent(inode, ordered, 1); 3426 btrfs_put_ordered_extent(ordered); 3427 goto again; 3428 } 3429 3430 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3431 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3432 0, 0, &cached_state, GFP_NOFS); 3433 3434 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3435 &cached_state); 3436 if (ret) { 3437 unlock_extent_cached(io_tree, page_start, page_end, 3438 &cached_state, GFP_NOFS); 3439 goto out_unlock; 3440 } 3441 3442 ret = 0; 3443 if (offset != PAGE_CACHE_SIZE) { 3444 kaddr = kmap(page); 3445 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3446 flush_dcache_page(page); 3447 kunmap(page); 3448 } 3449 ClearPageChecked(page); 3450 set_page_dirty(page); 3451 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3452 GFP_NOFS); 3453 3454 out_unlock: 3455 if (ret) 3456 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3457 unlock_page(page); 3458 page_cache_release(page); 3459 out: 3460 return ret; 3461 } 3462 3463 /* 3464 * This function puts in dummy file extents for the area we're creating a hole 3465 * for. So if we are truncating this file to a larger size we need to insert 3466 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3467 * the range between oldsize and size 3468 */ 3469 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3470 { 3471 struct btrfs_trans_handle *trans; 3472 struct btrfs_root *root = BTRFS_I(inode)->root; 3473 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3474 struct extent_map *em = NULL; 3475 struct extent_state *cached_state = NULL; 3476 u64 mask = root->sectorsize - 1; 3477 u64 hole_start = (oldsize + mask) & ~mask; 3478 u64 block_end = (size + mask) & ~mask; 3479 u64 last_byte; 3480 u64 cur_offset; 3481 u64 hole_size; 3482 int err = 0; 3483 3484 if (size <= hole_start) 3485 return 0; 3486 3487 while (1) { 3488 struct btrfs_ordered_extent *ordered; 3489 btrfs_wait_ordered_range(inode, hole_start, 3490 block_end - hole_start); 3491 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3492 &cached_state, GFP_NOFS); 3493 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3494 if (!ordered) 3495 break; 3496 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3497 &cached_state, GFP_NOFS); 3498 btrfs_put_ordered_extent(ordered); 3499 } 3500 3501 cur_offset = hole_start; 3502 while (1) { 3503 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3504 block_end - cur_offset, 0); 3505 BUG_ON(IS_ERR_OR_NULL(em)); 3506 last_byte = min(extent_map_end(em), block_end); 3507 last_byte = (last_byte + mask) & ~mask; 3508 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3509 u64 hint_byte = 0; 3510 hole_size = last_byte - cur_offset; 3511 3512 trans = btrfs_start_transaction(root, 2); 3513 if (IS_ERR(trans)) { 3514 err = PTR_ERR(trans); 3515 break; 3516 } 3517 btrfs_set_trans_block_group(trans, inode); 3518 3519 err = btrfs_drop_extents(trans, inode, cur_offset, 3520 cur_offset + hole_size, 3521 &hint_byte, 1); 3522 if (err) 3523 break; 3524 3525 err = btrfs_insert_file_extent(trans, root, 3526 btrfs_ino(inode), cur_offset, 0, 3527 0, hole_size, 0, hole_size, 3528 0, 0, 0); 3529 if (err) 3530 break; 3531 3532 btrfs_drop_extent_cache(inode, hole_start, 3533 last_byte - 1, 0); 3534 3535 btrfs_end_transaction(trans, root); 3536 } 3537 free_extent_map(em); 3538 em = NULL; 3539 cur_offset = last_byte; 3540 if (cur_offset >= block_end) 3541 break; 3542 } 3543 3544 free_extent_map(em); 3545 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3546 GFP_NOFS); 3547 return err; 3548 } 3549 3550 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3551 { 3552 loff_t oldsize = i_size_read(inode); 3553 int ret; 3554 3555 if (newsize == oldsize) 3556 return 0; 3557 3558 if (newsize > oldsize) { 3559 i_size_write(inode, newsize); 3560 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3561 truncate_pagecache(inode, oldsize, newsize); 3562 ret = btrfs_cont_expand(inode, oldsize, newsize); 3563 if (ret) { 3564 btrfs_setsize(inode, oldsize); 3565 return ret; 3566 } 3567 3568 mark_inode_dirty(inode); 3569 } else { 3570 3571 /* 3572 * We're truncating a file that used to have good data down to 3573 * zero. Make sure it gets into the ordered flush list so that 3574 * any new writes get down to disk quickly. 3575 */ 3576 if (newsize == 0) 3577 BTRFS_I(inode)->ordered_data_close = 1; 3578 3579 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3580 truncate_setsize(inode, newsize); 3581 ret = btrfs_truncate(inode); 3582 } 3583 3584 return ret; 3585 } 3586 3587 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3588 { 3589 struct inode *inode = dentry->d_inode; 3590 struct btrfs_root *root = BTRFS_I(inode)->root; 3591 int err; 3592 3593 if (btrfs_root_readonly(root)) 3594 return -EROFS; 3595 3596 err = inode_change_ok(inode, attr); 3597 if (err) 3598 return err; 3599 3600 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3601 err = btrfs_setsize(inode, attr->ia_size); 3602 if (err) 3603 return err; 3604 } 3605 3606 if (attr->ia_valid) { 3607 setattr_copy(inode, attr); 3608 mark_inode_dirty(inode); 3609 3610 if (attr->ia_valid & ATTR_MODE) 3611 err = btrfs_acl_chmod(inode); 3612 } 3613 3614 return err; 3615 } 3616 3617 void btrfs_evict_inode(struct inode *inode) 3618 { 3619 struct btrfs_trans_handle *trans; 3620 struct btrfs_root *root = BTRFS_I(inode)->root; 3621 unsigned long nr; 3622 int ret; 3623 3624 trace_btrfs_inode_evict(inode); 3625 3626 truncate_inode_pages(&inode->i_data, 0); 3627 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3628 is_free_space_inode(root, inode))) 3629 goto no_delete; 3630 3631 if (is_bad_inode(inode)) { 3632 btrfs_orphan_del(NULL, inode); 3633 goto no_delete; 3634 } 3635 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3636 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3637 3638 if (root->fs_info->log_root_recovering) { 3639 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3640 goto no_delete; 3641 } 3642 3643 if (inode->i_nlink > 0) { 3644 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3645 goto no_delete; 3646 } 3647 3648 btrfs_i_size_write(inode, 0); 3649 3650 while (1) { 3651 trans = btrfs_start_transaction(root, 0); 3652 BUG_ON(IS_ERR(trans)); 3653 btrfs_set_trans_block_group(trans, inode); 3654 trans->block_rsv = root->orphan_block_rsv; 3655 3656 ret = btrfs_block_rsv_check(trans, root, 3657 root->orphan_block_rsv, 0, 5); 3658 if (ret) { 3659 BUG_ON(ret != -EAGAIN); 3660 ret = btrfs_commit_transaction(trans, root); 3661 BUG_ON(ret); 3662 continue; 3663 } 3664 3665 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3666 if (ret != -EAGAIN) 3667 break; 3668 3669 nr = trans->blocks_used; 3670 btrfs_end_transaction(trans, root); 3671 trans = NULL; 3672 btrfs_btree_balance_dirty(root, nr); 3673 3674 } 3675 3676 if (ret == 0) { 3677 ret = btrfs_orphan_del(trans, inode); 3678 BUG_ON(ret); 3679 } 3680 3681 if (!(root == root->fs_info->tree_root || 3682 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3683 btrfs_return_ino(root, btrfs_ino(inode)); 3684 3685 nr = trans->blocks_used; 3686 btrfs_end_transaction(trans, root); 3687 btrfs_btree_balance_dirty(root, nr); 3688 no_delete: 3689 end_writeback(inode); 3690 return; 3691 } 3692 3693 /* 3694 * this returns the key found in the dir entry in the location pointer. 3695 * If no dir entries were found, location->objectid is 0. 3696 */ 3697 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3698 struct btrfs_key *location) 3699 { 3700 const char *name = dentry->d_name.name; 3701 int namelen = dentry->d_name.len; 3702 struct btrfs_dir_item *di; 3703 struct btrfs_path *path; 3704 struct btrfs_root *root = BTRFS_I(dir)->root; 3705 int ret = 0; 3706 3707 path = btrfs_alloc_path(); 3708 BUG_ON(!path); 3709 3710 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3711 namelen, 0); 3712 if (IS_ERR(di)) 3713 ret = PTR_ERR(di); 3714 3715 if (IS_ERR_OR_NULL(di)) 3716 goto out_err; 3717 3718 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3719 out: 3720 btrfs_free_path(path); 3721 return ret; 3722 out_err: 3723 location->objectid = 0; 3724 goto out; 3725 } 3726 3727 /* 3728 * when we hit a tree root in a directory, the btrfs part of the inode 3729 * needs to be changed to reflect the root directory of the tree root. This 3730 * is kind of like crossing a mount point. 3731 */ 3732 static int fixup_tree_root_location(struct btrfs_root *root, 3733 struct inode *dir, 3734 struct dentry *dentry, 3735 struct btrfs_key *location, 3736 struct btrfs_root **sub_root) 3737 { 3738 struct btrfs_path *path; 3739 struct btrfs_root *new_root; 3740 struct btrfs_root_ref *ref; 3741 struct extent_buffer *leaf; 3742 int ret; 3743 int err = 0; 3744 3745 path = btrfs_alloc_path(); 3746 if (!path) { 3747 err = -ENOMEM; 3748 goto out; 3749 } 3750 3751 err = -ENOENT; 3752 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3753 BTRFS_I(dir)->root->root_key.objectid, 3754 location->objectid); 3755 if (ret) { 3756 if (ret < 0) 3757 err = ret; 3758 goto out; 3759 } 3760 3761 leaf = path->nodes[0]; 3762 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3763 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3764 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3765 goto out; 3766 3767 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3768 (unsigned long)(ref + 1), 3769 dentry->d_name.len); 3770 if (ret) 3771 goto out; 3772 3773 btrfs_release_path(path); 3774 3775 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3776 if (IS_ERR(new_root)) { 3777 err = PTR_ERR(new_root); 3778 goto out; 3779 } 3780 3781 if (btrfs_root_refs(&new_root->root_item) == 0) { 3782 err = -ENOENT; 3783 goto out; 3784 } 3785 3786 *sub_root = new_root; 3787 location->objectid = btrfs_root_dirid(&new_root->root_item); 3788 location->type = BTRFS_INODE_ITEM_KEY; 3789 location->offset = 0; 3790 err = 0; 3791 out: 3792 btrfs_free_path(path); 3793 return err; 3794 } 3795 3796 static void inode_tree_add(struct inode *inode) 3797 { 3798 struct btrfs_root *root = BTRFS_I(inode)->root; 3799 struct btrfs_inode *entry; 3800 struct rb_node **p; 3801 struct rb_node *parent; 3802 u64 ino = btrfs_ino(inode); 3803 again: 3804 p = &root->inode_tree.rb_node; 3805 parent = NULL; 3806 3807 if (inode_unhashed(inode)) 3808 return; 3809 3810 spin_lock(&root->inode_lock); 3811 while (*p) { 3812 parent = *p; 3813 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3814 3815 if (ino < btrfs_ino(&entry->vfs_inode)) 3816 p = &parent->rb_left; 3817 else if (ino > btrfs_ino(&entry->vfs_inode)) 3818 p = &parent->rb_right; 3819 else { 3820 WARN_ON(!(entry->vfs_inode.i_state & 3821 (I_WILL_FREE | I_FREEING))); 3822 rb_erase(parent, &root->inode_tree); 3823 RB_CLEAR_NODE(parent); 3824 spin_unlock(&root->inode_lock); 3825 goto again; 3826 } 3827 } 3828 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3829 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3830 spin_unlock(&root->inode_lock); 3831 } 3832 3833 static void inode_tree_del(struct inode *inode) 3834 { 3835 struct btrfs_root *root = BTRFS_I(inode)->root; 3836 int empty = 0; 3837 3838 spin_lock(&root->inode_lock); 3839 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3840 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3841 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3842 empty = RB_EMPTY_ROOT(&root->inode_tree); 3843 } 3844 spin_unlock(&root->inode_lock); 3845 3846 /* 3847 * Free space cache has inodes in the tree root, but the tree root has a 3848 * root_refs of 0, so this could end up dropping the tree root as a 3849 * snapshot, so we need the extra !root->fs_info->tree_root check to 3850 * make sure we don't drop it. 3851 */ 3852 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3853 root != root->fs_info->tree_root) { 3854 synchronize_srcu(&root->fs_info->subvol_srcu); 3855 spin_lock(&root->inode_lock); 3856 empty = RB_EMPTY_ROOT(&root->inode_tree); 3857 spin_unlock(&root->inode_lock); 3858 if (empty) 3859 btrfs_add_dead_root(root); 3860 } 3861 } 3862 3863 int btrfs_invalidate_inodes(struct btrfs_root *root) 3864 { 3865 struct rb_node *node; 3866 struct rb_node *prev; 3867 struct btrfs_inode *entry; 3868 struct inode *inode; 3869 u64 objectid = 0; 3870 3871 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3872 3873 spin_lock(&root->inode_lock); 3874 again: 3875 node = root->inode_tree.rb_node; 3876 prev = NULL; 3877 while (node) { 3878 prev = node; 3879 entry = rb_entry(node, struct btrfs_inode, rb_node); 3880 3881 if (objectid < btrfs_ino(&entry->vfs_inode)) 3882 node = node->rb_left; 3883 else if (objectid > btrfs_ino(&entry->vfs_inode)) 3884 node = node->rb_right; 3885 else 3886 break; 3887 } 3888 if (!node) { 3889 while (prev) { 3890 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3891 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 3892 node = prev; 3893 break; 3894 } 3895 prev = rb_next(prev); 3896 } 3897 } 3898 while (node) { 3899 entry = rb_entry(node, struct btrfs_inode, rb_node); 3900 objectid = btrfs_ino(&entry->vfs_inode) + 1; 3901 inode = igrab(&entry->vfs_inode); 3902 if (inode) { 3903 spin_unlock(&root->inode_lock); 3904 if (atomic_read(&inode->i_count) > 1) 3905 d_prune_aliases(inode); 3906 /* 3907 * btrfs_drop_inode will have it removed from 3908 * the inode cache when its usage count 3909 * hits zero. 3910 */ 3911 iput(inode); 3912 cond_resched(); 3913 spin_lock(&root->inode_lock); 3914 goto again; 3915 } 3916 3917 if (cond_resched_lock(&root->inode_lock)) 3918 goto again; 3919 3920 node = rb_next(node); 3921 } 3922 spin_unlock(&root->inode_lock); 3923 return 0; 3924 } 3925 3926 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3927 { 3928 struct btrfs_iget_args *args = p; 3929 inode->i_ino = args->ino; 3930 BTRFS_I(inode)->root = args->root; 3931 btrfs_set_inode_space_info(args->root, inode); 3932 return 0; 3933 } 3934 3935 static int btrfs_find_actor(struct inode *inode, void *opaque) 3936 { 3937 struct btrfs_iget_args *args = opaque; 3938 return args->ino == btrfs_ino(inode) && 3939 args->root == BTRFS_I(inode)->root; 3940 } 3941 3942 static struct inode *btrfs_iget_locked(struct super_block *s, 3943 u64 objectid, 3944 struct btrfs_root *root) 3945 { 3946 struct inode *inode; 3947 struct btrfs_iget_args args; 3948 args.ino = objectid; 3949 args.root = root; 3950 3951 inode = iget5_locked(s, objectid, btrfs_find_actor, 3952 btrfs_init_locked_inode, 3953 (void *)&args); 3954 return inode; 3955 } 3956 3957 /* Get an inode object given its location and corresponding root. 3958 * Returns in *is_new if the inode was read from disk 3959 */ 3960 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3961 struct btrfs_root *root, int *new) 3962 { 3963 struct inode *inode; 3964 3965 inode = btrfs_iget_locked(s, location->objectid, root); 3966 if (!inode) 3967 return ERR_PTR(-ENOMEM); 3968 3969 if (inode->i_state & I_NEW) { 3970 BTRFS_I(inode)->root = root; 3971 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3972 btrfs_read_locked_inode(inode); 3973 inode_tree_add(inode); 3974 unlock_new_inode(inode); 3975 if (new) 3976 *new = 1; 3977 } 3978 3979 return inode; 3980 } 3981 3982 static struct inode *new_simple_dir(struct super_block *s, 3983 struct btrfs_key *key, 3984 struct btrfs_root *root) 3985 { 3986 struct inode *inode = new_inode(s); 3987 3988 if (!inode) 3989 return ERR_PTR(-ENOMEM); 3990 3991 BTRFS_I(inode)->root = root; 3992 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3993 BTRFS_I(inode)->dummy_inode = 1; 3994 3995 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3996 inode->i_op = &simple_dir_inode_operations; 3997 inode->i_fop = &simple_dir_operations; 3998 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 3999 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4000 4001 return inode; 4002 } 4003 4004 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4005 { 4006 struct inode *inode; 4007 struct btrfs_root *root = BTRFS_I(dir)->root; 4008 struct btrfs_root *sub_root = root; 4009 struct btrfs_key location; 4010 int index; 4011 int ret; 4012 4013 if (dentry->d_name.len > BTRFS_NAME_LEN) 4014 return ERR_PTR(-ENAMETOOLONG); 4015 4016 ret = btrfs_inode_by_name(dir, dentry, &location); 4017 4018 if (ret < 0) 4019 return ERR_PTR(ret); 4020 4021 if (location.objectid == 0) 4022 return NULL; 4023 4024 if (location.type == BTRFS_INODE_ITEM_KEY) { 4025 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4026 return inode; 4027 } 4028 4029 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4030 4031 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4032 ret = fixup_tree_root_location(root, dir, dentry, 4033 &location, &sub_root); 4034 if (ret < 0) { 4035 if (ret != -ENOENT) 4036 inode = ERR_PTR(ret); 4037 else 4038 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4039 } else { 4040 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4041 } 4042 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4043 4044 if (!IS_ERR(inode) && root != sub_root) { 4045 down_read(&root->fs_info->cleanup_work_sem); 4046 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4047 ret = btrfs_orphan_cleanup(sub_root); 4048 up_read(&root->fs_info->cleanup_work_sem); 4049 if (ret) 4050 inode = ERR_PTR(ret); 4051 } 4052 4053 return inode; 4054 } 4055 4056 static int btrfs_dentry_delete(const struct dentry *dentry) 4057 { 4058 struct btrfs_root *root; 4059 4060 if (!dentry->d_inode && !IS_ROOT(dentry)) 4061 dentry = dentry->d_parent; 4062 4063 if (dentry->d_inode) { 4064 root = BTRFS_I(dentry->d_inode)->root; 4065 if (btrfs_root_refs(&root->root_item) == 0) 4066 return 1; 4067 } 4068 return 0; 4069 } 4070 4071 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4072 struct nameidata *nd) 4073 { 4074 struct inode *inode; 4075 4076 inode = btrfs_lookup_dentry(dir, dentry); 4077 if (IS_ERR(inode)) 4078 return ERR_CAST(inode); 4079 4080 return d_splice_alias(inode, dentry); 4081 } 4082 4083 unsigned char btrfs_filetype_table[] = { 4084 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4085 }; 4086 4087 static int btrfs_real_readdir(struct file *filp, void *dirent, 4088 filldir_t filldir) 4089 { 4090 struct inode *inode = filp->f_dentry->d_inode; 4091 struct btrfs_root *root = BTRFS_I(inode)->root; 4092 struct btrfs_item *item; 4093 struct btrfs_dir_item *di; 4094 struct btrfs_key key; 4095 struct btrfs_key found_key; 4096 struct btrfs_path *path; 4097 struct list_head ins_list; 4098 struct list_head del_list; 4099 int ret; 4100 struct extent_buffer *leaf; 4101 int slot; 4102 unsigned char d_type; 4103 int over = 0; 4104 u32 di_cur; 4105 u32 di_total; 4106 u32 di_len; 4107 int key_type = BTRFS_DIR_INDEX_KEY; 4108 char tmp_name[32]; 4109 char *name_ptr; 4110 int name_len; 4111 int is_curr = 0; /* filp->f_pos points to the current index? */ 4112 4113 /* FIXME, use a real flag for deciding about the key type */ 4114 if (root->fs_info->tree_root == root) 4115 key_type = BTRFS_DIR_ITEM_KEY; 4116 4117 /* special case for "." */ 4118 if (filp->f_pos == 0) { 4119 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR); 4120 if (over) 4121 return 0; 4122 filp->f_pos = 1; 4123 } 4124 /* special case for .., just use the back ref */ 4125 if (filp->f_pos == 1) { 4126 u64 pino = parent_ino(filp->f_path.dentry); 4127 over = filldir(dirent, "..", 2, 4128 2, pino, DT_DIR); 4129 if (over) 4130 return 0; 4131 filp->f_pos = 2; 4132 } 4133 path = btrfs_alloc_path(); 4134 if (!path) 4135 return -ENOMEM; 4136 path->reada = 2; 4137 4138 if (key_type == BTRFS_DIR_INDEX_KEY) { 4139 INIT_LIST_HEAD(&ins_list); 4140 INIT_LIST_HEAD(&del_list); 4141 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4142 } 4143 4144 btrfs_set_key_type(&key, key_type); 4145 key.offset = filp->f_pos; 4146 key.objectid = btrfs_ino(inode); 4147 4148 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4149 if (ret < 0) 4150 goto err; 4151 4152 while (1) { 4153 leaf = path->nodes[0]; 4154 slot = path->slots[0]; 4155 if (slot >= btrfs_header_nritems(leaf)) { 4156 ret = btrfs_next_leaf(root, path); 4157 if (ret < 0) 4158 goto err; 4159 else if (ret > 0) 4160 break; 4161 continue; 4162 } 4163 4164 item = btrfs_item_nr(leaf, slot); 4165 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4166 4167 if (found_key.objectid != key.objectid) 4168 break; 4169 if (btrfs_key_type(&found_key) != key_type) 4170 break; 4171 if (found_key.offset < filp->f_pos) 4172 goto next; 4173 if (key_type == BTRFS_DIR_INDEX_KEY && 4174 btrfs_should_delete_dir_index(&del_list, 4175 found_key.offset)) 4176 goto next; 4177 4178 filp->f_pos = found_key.offset; 4179 is_curr = 1; 4180 4181 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4182 di_cur = 0; 4183 di_total = btrfs_item_size(leaf, item); 4184 4185 while (di_cur < di_total) { 4186 struct btrfs_key location; 4187 4188 if (verify_dir_item(root, leaf, di)) 4189 break; 4190 4191 name_len = btrfs_dir_name_len(leaf, di); 4192 if (name_len <= sizeof(tmp_name)) { 4193 name_ptr = tmp_name; 4194 } else { 4195 name_ptr = kmalloc(name_len, GFP_NOFS); 4196 if (!name_ptr) { 4197 ret = -ENOMEM; 4198 goto err; 4199 } 4200 } 4201 read_extent_buffer(leaf, name_ptr, 4202 (unsigned long)(di + 1), name_len); 4203 4204 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4205 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4206 4207 /* is this a reference to our own snapshot? If so 4208 * skip it 4209 */ 4210 if (location.type == BTRFS_ROOT_ITEM_KEY && 4211 location.objectid == root->root_key.objectid) { 4212 over = 0; 4213 goto skip; 4214 } 4215 over = filldir(dirent, name_ptr, name_len, 4216 found_key.offset, location.objectid, 4217 d_type); 4218 4219 skip: 4220 if (name_ptr != tmp_name) 4221 kfree(name_ptr); 4222 4223 if (over) 4224 goto nopos; 4225 di_len = btrfs_dir_name_len(leaf, di) + 4226 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4227 di_cur += di_len; 4228 di = (struct btrfs_dir_item *)((char *)di + di_len); 4229 } 4230 next: 4231 path->slots[0]++; 4232 } 4233 4234 if (key_type == BTRFS_DIR_INDEX_KEY) { 4235 if (is_curr) 4236 filp->f_pos++; 4237 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4238 &ins_list); 4239 if (ret) 4240 goto nopos; 4241 } 4242 4243 /* Reached end of directory/root. Bump pos past the last item. */ 4244 if (key_type == BTRFS_DIR_INDEX_KEY) 4245 /* 4246 * 32-bit glibc will use getdents64, but then strtol - 4247 * so the last number we can serve is this. 4248 */ 4249 filp->f_pos = 0x7fffffff; 4250 else 4251 filp->f_pos++; 4252 nopos: 4253 ret = 0; 4254 err: 4255 if (key_type == BTRFS_DIR_INDEX_KEY) 4256 btrfs_put_delayed_items(&ins_list, &del_list); 4257 btrfs_free_path(path); 4258 return ret; 4259 } 4260 4261 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4262 { 4263 struct btrfs_root *root = BTRFS_I(inode)->root; 4264 struct btrfs_trans_handle *trans; 4265 int ret = 0; 4266 bool nolock = false; 4267 4268 if (BTRFS_I(inode)->dummy_inode) 4269 return 0; 4270 4271 smp_mb(); 4272 if (root->fs_info->closing && is_free_space_inode(root, inode)) 4273 nolock = true; 4274 4275 if (wbc->sync_mode == WB_SYNC_ALL) { 4276 if (nolock) 4277 trans = btrfs_join_transaction_nolock(root, 1); 4278 else 4279 trans = btrfs_join_transaction(root, 1); 4280 if (IS_ERR(trans)) 4281 return PTR_ERR(trans); 4282 btrfs_set_trans_block_group(trans, inode); 4283 if (nolock) 4284 ret = btrfs_end_transaction_nolock(trans, root); 4285 else 4286 ret = btrfs_commit_transaction(trans, root); 4287 } 4288 return ret; 4289 } 4290 4291 /* 4292 * This is somewhat expensive, updating the tree every time the 4293 * inode changes. But, it is most likely to find the inode in cache. 4294 * FIXME, needs more benchmarking...there are no reasons other than performance 4295 * to keep or drop this code. 4296 */ 4297 void btrfs_dirty_inode(struct inode *inode) 4298 { 4299 struct btrfs_root *root = BTRFS_I(inode)->root; 4300 struct btrfs_trans_handle *trans; 4301 int ret; 4302 4303 if (BTRFS_I(inode)->dummy_inode) 4304 return; 4305 4306 trans = btrfs_join_transaction(root, 1); 4307 BUG_ON(IS_ERR(trans)); 4308 btrfs_set_trans_block_group(trans, inode); 4309 4310 ret = btrfs_update_inode(trans, root, inode); 4311 if (ret && ret == -ENOSPC) { 4312 /* whoops, lets try again with the full transaction */ 4313 btrfs_end_transaction(trans, root); 4314 trans = btrfs_start_transaction(root, 1); 4315 if (IS_ERR(trans)) { 4316 printk_ratelimited(KERN_ERR "btrfs: fail to " 4317 "dirty inode %llu error %ld\n", 4318 (unsigned long long)btrfs_ino(inode), 4319 PTR_ERR(trans)); 4320 return; 4321 } 4322 btrfs_set_trans_block_group(trans, inode); 4323 4324 ret = btrfs_update_inode(trans, root, inode); 4325 if (ret) { 4326 printk_ratelimited(KERN_ERR "btrfs: fail to " 4327 "dirty inode %llu error %d\n", 4328 (unsigned long long)btrfs_ino(inode), 4329 ret); 4330 } 4331 } 4332 btrfs_end_transaction(trans, root); 4333 if (BTRFS_I(inode)->delayed_node) 4334 btrfs_balance_delayed_items(root); 4335 } 4336 4337 /* 4338 * find the highest existing sequence number in a directory 4339 * and then set the in-memory index_cnt variable to reflect 4340 * free sequence numbers 4341 */ 4342 static int btrfs_set_inode_index_count(struct inode *inode) 4343 { 4344 struct btrfs_root *root = BTRFS_I(inode)->root; 4345 struct btrfs_key key, found_key; 4346 struct btrfs_path *path; 4347 struct extent_buffer *leaf; 4348 int ret; 4349 4350 key.objectid = btrfs_ino(inode); 4351 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4352 key.offset = (u64)-1; 4353 4354 path = btrfs_alloc_path(); 4355 if (!path) 4356 return -ENOMEM; 4357 4358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4359 if (ret < 0) 4360 goto out; 4361 /* FIXME: we should be able to handle this */ 4362 if (ret == 0) 4363 goto out; 4364 ret = 0; 4365 4366 /* 4367 * MAGIC NUMBER EXPLANATION: 4368 * since we search a directory based on f_pos we have to start at 2 4369 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4370 * else has to start at 2 4371 */ 4372 if (path->slots[0] == 0) { 4373 BTRFS_I(inode)->index_cnt = 2; 4374 goto out; 4375 } 4376 4377 path->slots[0]--; 4378 4379 leaf = path->nodes[0]; 4380 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4381 4382 if (found_key.objectid != btrfs_ino(inode) || 4383 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4384 BTRFS_I(inode)->index_cnt = 2; 4385 goto out; 4386 } 4387 4388 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4389 out: 4390 btrfs_free_path(path); 4391 return ret; 4392 } 4393 4394 /* 4395 * helper to find a free sequence number in a given directory. This current 4396 * code is very simple, later versions will do smarter things in the btree 4397 */ 4398 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4399 { 4400 int ret = 0; 4401 4402 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4403 ret = btrfs_inode_delayed_dir_index_count(dir); 4404 if (ret) { 4405 ret = btrfs_set_inode_index_count(dir); 4406 if (ret) 4407 return ret; 4408 } 4409 } 4410 4411 *index = BTRFS_I(dir)->index_cnt; 4412 BTRFS_I(dir)->index_cnt++; 4413 4414 return ret; 4415 } 4416 4417 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4418 struct btrfs_root *root, 4419 struct inode *dir, 4420 const char *name, int name_len, 4421 u64 ref_objectid, u64 objectid, 4422 u64 alloc_hint, int mode, u64 *index) 4423 { 4424 struct inode *inode; 4425 struct btrfs_inode_item *inode_item; 4426 struct btrfs_key *location; 4427 struct btrfs_path *path; 4428 struct btrfs_inode_ref *ref; 4429 struct btrfs_key key[2]; 4430 u32 sizes[2]; 4431 unsigned long ptr; 4432 int ret; 4433 int owner; 4434 4435 path = btrfs_alloc_path(); 4436 BUG_ON(!path); 4437 4438 inode = new_inode(root->fs_info->sb); 4439 if (!inode) { 4440 btrfs_free_path(path); 4441 return ERR_PTR(-ENOMEM); 4442 } 4443 4444 /* 4445 * we have to initialize this early, so we can reclaim the inode 4446 * number if we fail afterwards in this function. 4447 */ 4448 inode->i_ino = objectid; 4449 4450 if (dir) { 4451 trace_btrfs_inode_request(dir); 4452 4453 ret = btrfs_set_inode_index(dir, index); 4454 if (ret) { 4455 btrfs_free_path(path); 4456 iput(inode); 4457 return ERR_PTR(ret); 4458 } 4459 } 4460 /* 4461 * index_cnt is ignored for everything but a dir, 4462 * btrfs_get_inode_index_count has an explanation for the magic 4463 * number 4464 */ 4465 BTRFS_I(inode)->index_cnt = 2; 4466 BTRFS_I(inode)->root = root; 4467 BTRFS_I(inode)->generation = trans->transid; 4468 inode->i_generation = BTRFS_I(inode)->generation; 4469 btrfs_set_inode_space_info(root, inode); 4470 4471 if (mode & S_IFDIR) 4472 owner = 0; 4473 else 4474 owner = 1; 4475 BTRFS_I(inode)->block_group = 4476 btrfs_find_block_group(root, 0, alloc_hint, owner); 4477 4478 key[0].objectid = objectid; 4479 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4480 key[0].offset = 0; 4481 4482 key[1].objectid = objectid; 4483 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4484 key[1].offset = ref_objectid; 4485 4486 sizes[0] = sizeof(struct btrfs_inode_item); 4487 sizes[1] = name_len + sizeof(*ref); 4488 4489 path->leave_spinning = 1; 4490 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4491 if (ret != 0) 4492 goto fail; 4493 4494 inode_init_owner(inode, dir, mode); 4495 inode_set_bytes(inode, 0); 4496 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4497 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4498 struct btrfs_inode_item); 4499 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4500 4501 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4502 struct btrfs_inode_ref); 4503 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4504 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4505 ptr = (unsigned long)(ref + 1); 4506 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4507 4508 btrfs_mark_buffer_dirty(path->nodes[0]); 4509 btrfs_free_path(path); 4510 4511 location = &BTRFS_I(inode)->location; 4512 location->objectid = objectid; 4513 location->offset = 0; 4514 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4515 4516 btrfs_inherit_iflags(inode, dir); 4517 4518 if ((mode & S_IFREG)) { 4519 if (btrfs_test_opt(root, NODATASUM)) 4520 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4521 if (btrfs_test_opt(root, NODATACOW) || 4522 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4523 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4524 } 4525 4526 insert_inode_hash(inode); 4527 inode_tree_add(inode); 4528 4529 trace_btrfs_inode_new(inode); 4530 4531 return inode; 4532 fail: 4533 if (dir) 4534 BTRFS_I(dir)->index_cnt--; 4535 btrfs_free_path(path); 4536 iput(inode); 4537 return ERR_PTR(ret); 4538 } 4539 4540 static inline u8 btrfs_inode_type(struct inode *inode) 4541 { 4542 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4543 } 4544 4545 /* 4546 * utility function to add 'inode' into 'parent_inode' with 4547 * a give name and a given sequence number. 4548 * if 'add_backref' is true, also insert a backref from the 4549 * inode to the parent directory. 4550 */ 4551 int btrfs_add_link(struct btrfs_trans_handle *trans, 4552 struct inode *parent_inode, struct inode *inode, 4553 const char *name, int name_len, int add_backref, u64 index) 4554 { 4555 int ret = 0; 4556 struct btrfs_key key; 4557 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4558 u64 ino = btrfs_ino(inode); 4559 u64 parent_ino = btrfs_ino(parent_inode); 4560 4561 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4562 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4563 } else { 4564 key.objectid = ino; 4565 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4566 key.offset = 0; 4567 } 4568 4569 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4570 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4571 key.objectid, root->root_key.objectid, 4572 parent_ino, index, name, name_len); 4573 } else if (add_backref) { 4574 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4575 parent_ino, index); 4576 } 4577 4578 if (ret == 0) { 4579 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4580 parent_inode, &key, 4581 btrfs_inode_type(inode), index); 4582 BUG_ON(ret); 4583 4584 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4585 name_len * 2); 4586 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4587 ret = btrfs_update_inode(trans, root, parent_inode); 4588 } 4589 return ret; 4590 } 4591 4592 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4593 struct inode *dir, struct dentry *dentry, 4594 struct inode *inode, int backref, u64 index) 4595 { 4596 int err = btrfs_add_link(trans, dir, inode, 4597 dentry->d_name.name, dentry->d_name.len, 4598 backref, index); 4599 if (!err) { 4600 d_instantiate(dentry, inode); 4601 return 0; 4602 } 4603 if (err > 0) 4604 err = -EEXIST; 4605 return err; 4606 } 4607 4608 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4609 int mode, dev_t rdev) 4610 { 4611 struct btrfs_trans_handle *trans; 4612 struct btrfs_root *root = BTRFS_I(dir)->root; 4613 struct inode *inode = NULL; 4614 int err; 4615 int drop_inode = 0; 4616 u64 objectid; 4617 unsigned long nr = 0; 4618 u64 index = 0; 4619 4620 if (!new_valid_dev(rdev)) 4621 return -EINVAL; 4622 4623 /* 4624 * 2 for inode item and ref 4625 * 2 for dir items 4626 * 1 for xattr if selinux is on 4627 */ 4628 trans = btrfs_start_transaction(root, 5); 4629 if (IS_ERR(trans)) 4630 return PTR_ERR(trans); 4631 4632 btrfs_set_trans_block_group(trans, dir); 4633 4634 err = btrfs_find_free_ino(root, &objectid); 4635 if (err) 4636 goto out_unlock; 4637 4638 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4639 dentry->d_name.len, btrfs_ino(dir), objectid, 4640 BTRFS_I(dir)->block_group, mode, &index); 4641 if (IS_ERR(inode)) { 4642 err = PTR_ERR(inode); 4643 goto out_unlock; 4644 } 4645 4646 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4647 if (err) { 4648 drop_inode = 1; 4649 goto out_unlock; 4650 } 4651 4652 btrfs_set_trans_block_group(trans, inode); 4653 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4654 if (err) 4655 drop_inode = 1; 4656 else { 4657 inode->i_op = &btrfs_special_inode_operations; 4658 init_special_inode(inode, inode->i_mode, rdev); 4659 btrfs_update_inode(trans, root, inode); 4660 } 4661 btrfs_update_inode_block_group(trans, inode); 4662 btrfs_update_inode_block_group(trans, dir); 4663 out_unlock: 4664 nr = trans->blocks_used; 4665 btrfs_end_transaction_throttle(trans, root); 4666 btrfs_btree_balance_dirty(root, nr); 4667 if (drop_inode) { 4668 inode_dec_link_count(inode); 4669 iput(inode); 4670 } 4671 return err; 4672 } 4673 4674 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4675 int mode, struct nameidata *nd) 4676 { 4677 struct btrfs_trans_handle *trans; 4678 struct btrfs_root *root = BTRFS_I(dir)->root; 4679 struct inode *inode = NULL; 4680 int drop_inode = 0; 4681 int err; 4682 unsigned long nr = 0; 4683 u64 objectid; 4684 u64 index = 0; 4685 4686 /* 4687 * 2 for inode item and ref 4688 * 2 for dir items 4689 * 1 for xattr if selinux is on 4690 */ 4691 trans = btrfs_start_transaction(root, 5); 4692 if (IS_ERR(trans)) 4693 return PTR_ERR(trans); 4694 4695 btrfs_set_trans_block_group(trans, dir); 4696 4697 err = btrfs_find_free_ino(root, &objectid); 4698 if (err) 4699 goto out_unlock; 4700 4701 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4702 dentry->d_name.len, btrfs_ino(dir), objectid, 4703 BTRFS_I(dir)->block_group, mode, &index); 4704 if (IS_ERR(inode)) { 4705 err = PTR_ERR(inode); 4706 goto out_unlock; 4707 } 4708 4709 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4710 if (err) { 4711 drop_inode = 1; 4712 goto out_unlock; 4713 } 4714 4715 btrfs_set_trans_block_group(trans, inode); 4716 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4717 if (err) 4718 drop_inode = 1; 4719 else { 4720 inode->i_mapping->a_ops = &btrfs_aops; 4721 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4722 inode->i_fop = &btrfs_file_operations; 4723 inode->i_op = &btrfs_file_inode_operations; 4724 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4725 } 4726 btrfs_update_inode_block_group(trans, inode); 4727 btrfs_update_inode_block_group(trans, dir); 4728 out_unlock: 4729 nr = trans->blocks_used; 4730 btrfs_end_transaction_throttle(trans, root); 4731 if (drop_inode) { 4732 inode_dec_link_count(inode); 4733 iput(inode); 4734 } 4735 btrfs_btree_balance_dirty(root, nr); 4736 return err; 4737 } 4738 4739 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4740 struct dentry *dentry) 4741 { 4742 struct btrfs_trans_handle *trans; 4743 struct btrfs_root *root = BTRFS_I(dir)->root; 4744 struct inode *inode = old_dentry->d_inode; 4745 u64 index; 4746 unsigned long nr = 0; 4747 int err; 4748 int drop_inode = 0; 4749 4750 /* do not allow sys_link's with other subvols of the same device */ 4751 if (root->objectid != BTRFS_I(inode)->root->objectid) 4752 return -EXDEV; 4753 4754 if (inode->i_nlink == ~0U) 4755 return -EMLINK; 4756 4757 err = btrfs_set_inode_index(dir, &index); 4758 if (err) 4759 goto fail; 4760 4761 /* 4762 * 2 items for inode and inode ref 4763 * 2 items for dir items 4764 * 1 item for parent inode 4765 */ 4766 trans = btrfs_start_transaction(root, 5); 4767 if (IS_ERR(trans)) { 4768 err = PTR_ERR(trans); 4769 goto fail; 4770 } 4771 4772 btrfs_inc_nlink(inode); 4773 inode->i_ctime = CURRENT_TIME; 4774 4775 btrfs_set_trans_block_group(trans, dir); 4776 ihold(inode); 4777 4778 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4779 4780 if (err) { 4781 drop_inode = 1; 4782 } else { 4783 struct dentry *parent = dget_parent(dentry); 4784 btrfs_update_inode_block_group(trans, dir); 4785 err = btrfs_update_inode(trans, root, inode); 4786 BUG_ON(err); 4787 btrfs_log_new_name(trans, inode, NULL, parent); 4788 dput(parent); 4789 } 4790 4791 nr = trans->blocks_used; 4792 btrfs_end_transaction_throttle(trans, root); 4793 fail: 4794 if (drop_inode) { 4795 inode_dec_link_count(inode); 4796 iput(inode); 4797 } 4798 btrfs_btree_balance_dirty(root, nr); 4799 return err; 4800 } 4801 4802 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4803 { 4804 struct inode *inode = NULL; 4805 struct btrfs_trans_handle *trans; 4806 struct btrfs_root *root = BTRFS_I(dir)->root; 4807 int err = 0; 4808 int drop_on_err = 0; 4809 u64 objectid = 0; 4810 u64 index = 0; 4811 unsigned long nr = 1; 4812 4813 /* 4814 * 2 items for inode and ref 4815 * 2 items for dir items 4816 * 1 for xattr if selinux is on 4817 */ 4818 trans = btrfs_start_transaction(root, 5); 4819 if (IS_ERR(trans)) 4820 return PTR_ERR(trans); 4821 btrfs_set_trans_block_group(trans, dir); 4822 4823 err = btrfs_find_free_ino(root, &objectid); 4824 if (err) 4825 goto out_fail; 4826 4827 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4828 dentry->d_name.len, btrfs_ino(dir), objectid, 4829 BTRFS_I(dir)->block_group, S_IFDIR | mode, 4830 &index); 4831 if (IS_ERR(inode)) { 4832 err = PTR_ERR(inode); 4833 goto out_fail; 4834 } 4835 4836 drop_on_err = 1; 4837 4838 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4839 if (err) 4840 goto out_fail; 4841 4842 inode->i_op = &btrfs_dir_inode_operations; 4843 inode->i_fop = &btrfs_dir_file_operations; 4844 btrfs_set_trans_block_group(trans, inode); 4845 4846 btrfs_i_size_write(inode, 0); 4847 err = btrfs_update_inode(trans, root, inode); 4848 if (err) 4849 goto out_fail; 4850 4851 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4852 dentry->d_name.len, 0, index); 4853 if (err) 4854 goto out_fail; 4855 4856 d_instantiate(dentry, inode); 4857 drop_on_err = 0; 4858 btrfs_update_inode_block_group(trans, inode); 4859 btrfs_update_inode_block_group(trans, dir); 4860 4861 out_fail: 4862 nr = trans->blocks_used; 4863 btrfs_end_transaction_throttle(trans, root); 4864 if (drop_on_err) 4865 iput(inode); 4866 btrfs_btree_balance_dirty(root, nr); 4867 return err; 4868 } 4869 4870 /* helper for btfs_get_extent. Given an existing extent in the tree, 4871 * and an extent that you want to insert, deal with overlap and insert 4872 * the new extent into the tree. 4873 */ 4874 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4875 struct extent_map *existing, 4876 struct extent_map *em, 4877 u64 map_start, u64 map_len) 4878 { 4879 u64 start_diff; 4880 4881 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4882 start_diff = map_start - em->start; 4883 em->start = map_start; 4884 em->len = map_len; 4885 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4886 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4887 em->block_start += start_diff; 4888 em->block_len -= start_diff; 4889 } 4890 return add_extent_mapping(em_tree, em); 4891 } 4892 4893 static noinline int uncompress_inline(struct btrfs_path *path, 4894 struct inode *inode, struct page *page, 4895 size_t pg_offset, u64 extent_offset, 4896 struct btrfs_file_extent_item *item) 4897 { 4898 int ret; 4899 struct extent_buffer *leaf = path->nodes[0]; 4900 char *tmp; 4901 size_t max_size; 4902 unsigned long inline_size; 4903 unsigned long ptr; 4904 int compress_type; 4905 4906 WARN_ON(pg_offset != 0); 4907 compress_type = btrfs_file_extent_compression(leaf, item); 4908 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4909 inline_size = btrfs_file_extent_inline_item_len(leaf, 4910 btrfs_item_nr(leaf, path->slots[0])); 4911 tmp = kmalloc(inline_size, GFP_NOFS); 4912 if (!tmp) 4913 return -ENOMEM; 4914 ptr = btrfs_file_extent_inline_start(item); 4915 4916 read_extent_buffer(leaf, tmp, ptr, inline_size); 4917 4918 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4919 ret = btrfs_decompress(compress_type, tmp, page, 4920 extent_offset, inline_size, max_size); 4921 if (ret) { 4922 char *kaddr = kmap_atomic(page, KM_USER0); 4923 unsigned long copy_size = min_t(u64, 4924 PAGE_CACHE_SIZE - pg_offset, 4925 max_size - extent_offset); 4926 memset(kaddr + pg_offset, 0, copy_size); 4927 kunmap_atomic(kaddr, KM_USER0); 4928 } 4929 kfree(tmp); 4930 return 0; 4931 } 4932 4933 /* 4934 * a bit scary, this does extent mapping from logical file offset to the disk. 4935 * the ugly parts come from merging extents from the disk with the in-ram 4936 * representation. This gets more complex because of the data=ordered code, 4937 * where the in-ram extents might be locked pending data=ordered completion. 4938 * 4939 * This also copies inline extents directly into the page. 4940 */ 4941 4942 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4943 size_t pg_offset, u64 start, u64 len, 4944 int create) 4945 { 4946 int ret; 4947 int err = 0; 4948 u64 bytenr; 4949 u64 extent_start = 0; 4950 u64 extent_end = 0; 4951 u64 objectid = btrfs_ino(inode); 4952 u32 found_type; 4953 struct btrfs_path *path = NULL; 4954 struct btrfs_root *root = BTRFS_I(inode)->root; 4955 struct btrfs_file_extent_item *item; 4956 struct extent_buffer *leaf; 4957 struct btrfs_key found_key; 4958 struct extent_map *em = NULL; 4959 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4960 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4961 struct btrfs_trans_handle *trans = NULL; 4962 int compress_type; 4963 4964 again: 4965 read_lock(&em_tree->lock); 4966 em = lookup_extent_mapping(em_tree, start, len); 4967 if (em) 4968 em->bdev = root->fs_info->fs_devices->latest_bdev; 4969 read_unlock(&em_tree->lock); 4970 4971 if (em) { 4972 if (em->start > start || em->start + em->len <= start) 4973 free_extent_map(em); 4974 else if (em->block_start == EXTENT_MAP_INLINE && page) 4975 free_extent_map(em); 4976 else 4977 goto out; 4978 } 4979 em = alloc_extent_map(); 4980 if (!em) { 4981 err = -ENOMEM; 4982 goto out; 4983 } 4984 em->bdev = root->fs_info->fs_devices->latest_bdev; 4985 em->start = EXTENT_MAP_HOLE; 4986 em->orig_start = EXTENT_MAP_HOLE; 4987 em->len = (u64)-1; 4988 em->block_len = (u64)-1; 4989 4990 if (!path) { 4991 path = btrfs_alloc_path(); 4992 BUG_ON(!path); 4993 } 4994 4995 ret = btrfs_lookup_file_extent(trans, root, path, 4996 objectid, start, trans != NULL); 4997 if (ret < 0) { 4998 err = ret; 4999 goto out; 5000 } 5001 5002 if (ret != 0) { 5003 if (path->slots[0] == 0) 5004 goto not_found; 5005 path->slots[0]--; 5006 } 5007 5008 leaf = path->nodes[0]; 5009 item = btrfs_item_ptr(leaf, path->slots[0], 5010 struct btrfs_file_extent_item); 5011 /* are we inside the extent that was found? */ 5012 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5013 found_type = btrfs_key_type(&found_key); 5014 if (found_key.objectid != objectid || 5015 found_type != BTRFS_EXTENT_DATA_KEY) { 5016 goto not_found; 5017 } 5018 5019 found_type = btrfs_file_extent_type(leaf, item); 5020 extent_start = found_key.offset; 5021 compress_type = btrfs_file_extent_compression(leaf, item); 5022 if (found_type == BTRFS_FILE_EXTENT_REG || 5023 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5024 extent_end = extent_start + 5025 btrfs_file_extent_num_bytes(leaf, item); 5026 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5027 size_t size; 5028 size = btrfs_file_extent_inline_len(leaf, item); 5029 extent_end = (extent_start + size + root->sectorsize - 1) & 5030 ~((u64)root->sectorsize - 1); 5031 } 5032 5033 if (start >= extent_end) { 5034 path->slots[0]++; 5035 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5036 ret = btrfs_next_leaf(root, path); 5037 if (ret < 0) { 5038 err = ret; 5039 goto out; 5040 } 5041 if (ret > 0) 5042 goto not_found; 5043 leaf = path->nodes[0]; 5044 } 5045 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5046 if (found_key.objectid != objectid || 5047 found_key.type != BTRFS_EXTENT_DATA_KEY) 5048 goto not_found; 5049 if (start + len <= found_key.offset) 5050 goto not_found; 5051 em->start = start; 5052 em->len = found_key.offset - start; 5053 goto not_found_em; 5054 } 5055 5056 if (found_type == BTRFS_FILE_EXTENT_REG || 5057 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5058 em->start = extent_start; 5059 em->len = extent_end - extent_start; 5060 em->orig_start = extent_start - 5061 btrfs_file_extent_offset(leaf, item); 5062 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5063 if (bytenr == 0) { 5064 em->block_start = EXTENT_MAP_HOLE; 5065 goto insert; 5066 } 5067 if (compress_type != BTRFS_COMPRESS_NONE) { 5068 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5069 em->compress_type = compress_type; 5070 em->block_start = bytenr; 5071 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5072 item); 5073 } else { 5074 bytenr += btrfs_file_extent_offset(leaf, item); 5075 em->block_start = bytenr; 5076 em->block_len = em->len; 5077 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5078 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5079 } 5080 goto insert; 5081 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5082 unsigned long ptr; 5083 char *map; 5084 size_t size; 5085 size_t extent_offset; 5086 size_t copy_size; 5087 5088 em->block_start = EXTENT_MAP_INLINE; 5089 if (!page || create) { 5090 em->start = extent_start; 5091 em->len = extent_end - extent_start; 5092 goto out; 5093 } 5094 5095 size = btrfs_file_extent_inline_len(leaf, item); 5096 extent_offset = page_offset(page) + pg_offset - extent_start; 5097 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5098 size - extent_offset); 5099 em->start = extent_start + extent_offset; 5100 em->len = (copy_size + root->sectorsize - 1) & 5101 ~((u64)root->sectorsize - 1); 5102 em->orig_start = EXTENT_MAP_INLINE; 5103 if (compress_type) { 5104 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5105 em->compress_type = compress_type; 5106 } 5107 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5108 if (create == 0 && !PageUptodate(page)) { 5109 if (btrfs_file_extent_compression(leaf, item) != 5110 BTRFS_COMPRESS_NONE) { 5111 ret = uncompress_inline(path, inode, page, 5112 pg_offset, 5113 extent_offset, item); 5114 BUG_ON(ret); 5115 } else { 5116 map = kmap(page); 5117 read_extent_buffer(leaf, map + pg_offset, ptr, 5118 copy_size); 5119 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5120 memset(map + pg_offset + copy_size, 0, 5121 PAGE_CACHE_SIZE - pg_offset - 5122 copy_size); 5123 } 5124 kunmap(page); 5125 } 5126 flush_dcache_page(page); 5127 } else if (create && PageUptodate(page)) { 5128 WARN_ON(1); 5129 if (!trans) { 5130 kunmap(page); 5131 free_extent_map(em); 5132 em = NULL; 5133 btrfs_release_path(path); 5134 trans = btrfs_join_transaction(root, 1); 5135 if (IS_ERR(trans)) 5136 return ERR_CAST(trans); 5137 goto again; 5138 } 5139 map = kmap(page); 5140 write_extent_buffer(leaf, map + pg_offset, ptr, 5141 copy_size); 5142 kunmap(page); 5143 btrfs_mark_buffer_dirty(leaf); 5144 } 5145 set_extent_uptodate(io_tree, em->start, 5146 extent_map_end(em) - 1, NULL, GFP_NOFS); 5147 goto insert; 5148 } else { 5149 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5150 WARN_ON(1); 5151 } 5152 not_found: 5153 em->start = start; 5154 em->len = len; 5155 not_found_em: 5156 em->block_start = EXTENT_MAP_HOLE; 5157 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5158 insert: 5159 btrfs_release_path(path); 5160 if (em->start > start || extent_map_end(em) <= start) { 5161 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5162 "[%llu %llu]\n", (unsigned long long)em->start, 5163 (unsigned long long)em->len, 5164 (unsigned long long)start, 5165 (unsigned long long)len); 5166 err = -EIO; 5167 goto out; 5168 } 5169 5170 err = 0; 5171 write_lock(&em_tree->lock); 5172 ret = add_extent_mapping(em_tree, em); 5173 /* it is possible that someone inserted the extent into the tree 5174 * while we had the lock dropped. It is also possible that 5175 * an overlapping map exists in the tree 5176 */ 5177 if (ret == -EEXIST) { 5178 struct extent_map *existing; 5179 5180 ret = 0; 5181 5182 existing = lookup_extent_mapping(em_tree, start, len); 5183 if (existing && (existing->start > start || 5184 existing->start + existing->len <= start)) { 5185 free_extent_map(existing); 5186 existing = NULL; 5187 } 5188 if (!existing) { 5189 existing = lookup_extent_mapping(em_tree, em->start, 5190 em->len); 5191 if (existing) { 5192 err = merge_extent_mapping(em_tree, existing, 5193 em, start, 5194 root->sectorsize); 5195 free_extent_map(existing); 5196 if (err) { 5197 free_extent_map(em); 5198 em = NULL; 5199 } 5200 } else { 5201 err = -EIO; 5202 free_extent_map(em); 5203 em = NULL; 5204 } 5205 } else { 5206 free_extent_map(em); 5207 em = existing; 5208 err = 0; 5209 } 5210 } 5211 write_unlock(&em_tree->lock); 5212 out: 5213 5214 trace_btrfs_get_extent(root, em); 5215 5216 if (path) 5217 btrfs_free_path(path); 5218 if (trans) { 5219 ret = btrfs_end_transaction(trans, root); 5220 if (!err) 5221 err = ret; 5222 } 5223 if (err) { 5224 free_extent_map(em); 5225 return ERR_PTR(err); 5226 } 5227 return em; 5228 } 5229 5230 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5231 size_t pg_offset, u64 start, u64 len, 5232 int create) 5233 { 5234 struct extent_map *em; 5235 struct extent_map *hole_em = NULL; 5236 u64 range_start = start; 5237 u64 end; 5238 u64 found; 5239 u64 found_end; 5240 int err = 0; 5241 5242 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5243 if (IS_ERR(em)) 5244 return em; 5245 if (em) { 5246 /* 5247 * if our em maps to a hole, there might 5248 * actually be delalloc bytes behind it 5249 */ 5250 if (em->block_start != EXTENT_MAP_HOLE) 5251 return em; 5252 else 5253 hole_em = em; 5254 } 5255 5256 /* check to see if we've wrapped (len == -1 or similar) */ 5257 end = start + len; 5258 if (end < start) 5259 end = (u64)-1; 5260 else 5261 end -= 1; 5262 5263 em = NULL; 5264 5265 /* ok, we didn't find anything, lets look for delalloc */ 5266 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5267 end, len, EXTENT_DELALLOC, 1); 5268 found_end = range_start + found; 5269 if (found_end < range_start) 5270 found_end = (u64)-1; 5271 5272 /* 5273 * we didn't find anything useful, return 5274 * the original results from get_extent() 5275 */ 5276 if (range_start > end || found_end <= start) { 5277 em = hole_em; 5278 hole_em = NULL; 5279 goto out; 5280 } 5281 5282 /* adjust the range_start to make sure it doesn't 5283 * go backwards from the start they passed in 5284 */ 5285 range_start = max(start,range_start); 5286 found = found_end - range_start; 5287 5288 if (found > 0) { 5289 u64 hole_start = start; 5290 u64 hole_len = len; 5291 5292 em = alloc_extent_map(); 5293 if (!em) { 5294 err = -ENOMEM; 5295 goto out; 5296 } 5297 /* 5298 * when btrfs_get_extent can't find anything it 5299 * returns one huge hole 5300 * 5301 * make sure what it found really fits our range, and 5302 * adjust to make sure it is based on the start from 5303 * the caller 5304 */ 5305 if (hole_em) { 5306 u64 calc_end = extent_map_end(hole_em); 5307 5308 if (calc_end <= start || (hole_em->start > end)) { 5309 free_extent_map(hole_em); 5310 hole_em = NULL; 5311 } else { 5312 hole_start = max(hole_em->start, start); 5313 hole_len = calc_end - hole_start; 5314 } 5315 } 5316 em->bdev = NULL; 5317 if (hole_em && range_start > hole_start) { 5318 /* our hole starts before our delalloc, so we 5319 * have to return just the parts of the hole 5320 * that go until the delalloc starts 5321 */ 5322 em->len = min(hole_len, 5323 range_start - hole_start); 5324 em->start = hole_start; 5325 em->orig_start = hole_start; 5326 /* 5327 * don't adjust block start at all, 5328 * it is fixed at EXTENT_MAP_HOLE 5329 */ 5330 em->block_start = hole_em->block_start; 5331 em->block_len = hole_len; 5332 } else { 5333 em->start = range_start; 5334 em->len = found; 5335 em->orig_start = range_start; 5336 em->block_start = EXTENT_MAP_DELALLOC; 5337 em->block_len = found; 5338 } 5339 } else if (hole_em) { 5340 return hole_em; 5341 } 5342 out: 5343 5344 free_extent_map(hole_em); 5345 if (err) { 5346 free_extent_map(em); 5347 return ERR_PTR(err); 5348 } 5349 return em; 5350 } 5351 5352 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5353 struct extent_map *em, 5354 u64 start, u64 len) 5355 { 5356 struct btrfs_root *root = BTRFS_I(inode)->root; 5357 struct btrfs_trans_handle *trans; 5358 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5359 struct btrfs_key ins; 5360 u64 alloc_hint; 5361 int ret; 5362 bool insert = false; 5363 5364 /* 5365 * Ok if the extent map we looked up is a hole and is for the exact 5366 * range we want, there is no reason to allocate a new one, however if 5367 * it is not right then we need to free this one and drop the cache for 5368 * our range. 5369 */ 5370 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5371 em->len != len) { 5372 free_extent_map(em); 5373 em = NULL; 5374 insert = true; 5375 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5376 } 5377 5378 trans = btrfs_join_transaction(root, 0); 5379 if (IS_ERR(trans)) 5380 return ERR_CAST(trans); 5381 5382 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5383 btrfs_add_inode_defrag(trans, inode); 5384 5385 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5386 5387 alloc_hint = get_extent_allocation_hint(inode, start, len); 5388 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5389 alloc_hint, (u64)-1, &ins, 1); 5390 if (ret) { 5391 em = ERR_PTR(ret); 5392 goto out; 5393 } 5394 5395 if (!em) { 5396 em = alloc_extent_map(); 5397 if (!em) { 5398 em = ERR_PTR(-ENOMEM); 5399 goto out; 5400 } 5401 } 5402 5403 em->start = start; 5404 em->orig_start = em->start; 5405 em->len = ins.offset; 5406 5407 em->block_start = ins.objectid; 5408 em->block_len = ins.offset; 5409 em->bdev = root->fs_info->fs_devices->latest_bdev; 5410 5411 /* 5412 * We need to do this because if we're using the original em we searched 5413 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5414 */ 5415 em->flags = 0; 5416 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5417 5418 while (insert) { 5419 write_lock(&em_tree->lock); 5420 ret = add_extent_mapping(em_tree, em); 5421 write_unlock(&em_tree->lock); 5422 if (ret != -EEXIST) 5423 break; 5424 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5425 } 5426 5427 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5428 ins.offset, ins.offset, 0); 5429 if (ret) { 5430 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5431 em = ERR_PTR(ret); 5432 } 5433 out: 5434 btrfs_end_transaction(trans, root); 5435 return em; 5436 } 5437 5438 /* 5439 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5440 * block must be cow'd 5441 */ 5442 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5443 struct inode *inode, u64 offset, u64 len) 5444 { 5445 struct btrfs_path *path; 5446 int ret; 5447 struct extent_buffer *leaf; 5448 struct btrfs_root *root = BTRFS_I(inode)->root; 5449 struct btrfs_file_extent_item *fi; 5450 struct btrfs_key key; 5451 u64 disk_bytenr; 5452 u64 backref_offset; 5453 u64 extent_end; 5454 u64 num_bytes; 5455 int slot; 5456 int found_type; 5457 5458 path = btrfs_alloc_path(); 5459 if (!path) 5460 return -ENOMEM; 5461 5462 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5463 offset, 0); 5464 if (ret < 0) 5465 goto out; 5466 5467 slot = path->slots[0]; 5468 if (ret == 1) { 5469 if (slot == 0) { 5470 /* can't find the item, must cow */ 5471 ret = 0; 5472 goto out; 5473 } 5474 slot--; 5475 } 5476 ret = 0; 5477 leaf = path->nodes[0]; 5478 btrfs_item_key_to_cpu(leaf, &key, slot); 5479 if (key.objectid != btrfs_ino(inode) || 5480 key.type != BTRFS_EXTENT_DATA_KEY) { 5481 /* not our file or wrong item type, must cow */ 5482 goto out; 5483 } 5484 5485 if (key.offset > offset) { 5486 /* Wrong offset, must cow */ 5487 goto out; 5488 } 5489 5490 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5491 found_type = btrfs_file_extent_type(leaf, fi); 5492 if (found_type != BTRFS_FILE_EXTENT_REG && 5493 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5494 /* not a regular extent, must cow */ 5495 goto out; 5496 } 5497 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5498 backref_offset = btrfs_file_extent_offset(leaf, fi); 5499 5500 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5501 if (extent_end < offset + len) { 5502 /* extent doesn't include our full range, must cow */ 5503 goto out; 5504 } 5505 5506 if (btrfs_extent_readonly(root, disk_bytenr)) 5507 goto out; 5508 5509 /* 5510 * look for other files referencing this extent, if we 5511 * find any we must cow 5512 */ 5513 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5514 key.offset - backref_offset, disk_bytenr)) 5515 goto out; 5516 5517 /* 5518 * adjust disk_bytenr and num_bytes to cover just the bytes 5519 * in this extent we are about to write. If there 5520 * are any csums in that range we have to cow in order 5521 * to keep the csums correct 5522 */ 5523 disk_bytenr += backref_offset; 5524 disk_bytenr += offset - key.offset; 5525 num_bytes = min(offset + len, extent_end) - offset; 5526 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5527 goto out; 5528 /* 5529 * all of the above have passed, it is safe to overwrite this extent 5530 * without cow 5531 */ 5532 ret = 1; 5533 out: 5534 btrfs_free_path(path); 5535 return ret; 5536 } 5537 5538 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5539 struct buffer_head *bh_result, int create) 5540 { 5541 struct extent_map *em; 5542 struct btrfs_root *root = BTRFS_I(inode)->root; 5543 u64 start = iblock << inode->i_blkbits; 5544 u64 len = bh_result->b_size; 5545 struct btrfs_trans_handle *trans; 5546 5547 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5548 if (IS_ERR(em)) 5549 return PTR_ERR(em); 5550 5551 /* 5552 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5553 * io. INLINE is special, and we could probably kludge it in here, but 5554 * it's still buffered so for safety lets just fall back to the generic 5555 * buffered path. 5556 * 5557 * For COMPRESSED we _have_ to read the entire extent in so we can 5558 * decompress it, so there will be buffering required no matter what we 5559 * do, so go ahead and fallback to buffered. 5560 * 5561 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5562 * to buffered IO. Don't blame me, this is the price we pay for using 5563 * the generic code. 5564 */ 5565 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5566 em->block_start == EXTENT_MAP_INLINE) { 5567 free_extent_map(em); 5568 return -ENOTBLK; 5569 } 5570 5571 /* Just a good old fashioned hole, return */ 5572 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5573 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5574 free_extent_map(em); 5575 /* DIO will do one hole at a time, so just unlock a sector */ 5576 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5577 start + root->sectorsize - 1, GFP_NOFS); 5578 return 0; 5579 } 5580 5581 /* 5582 * We don't allocate a new extent in the following cases 5583 * 5584 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5585 * existing extent. 5586 * 2) The extent is marked as PREALLOC. We're good to go here and can 5587 * just use the extent. 5588 * 5589 */ 5590 if (!create) { 5591 len = em->len - (start - em->start); 5592 goto map; 5593 } 5594 5595 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5596 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5597 em->block_start != EXTENT_MAP_HOLE)) { 5598 int type; 5599 int ret; 5600 u64 block_start; 5601 5602 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5603 type = BTRFS_ORDERED_PREALLOC; 5604 else 5605 type = BTRFS_ORDERED_NOCOW; 5606 len = min(len, em->len - (start - em->start)); 5607 block_start = em->block_start + (start - em->start); 5608 5609 /* 5610 * we're not going to log anything, but we do need 5611 * to make sure the current transaction stays open 5612 * while we look for nocow cross refs 5613 */ 5614 trans = btrfs_join_transaction(root, 0); 5615 if (IS_ERR(trans)) 5616 goto must_cow; 5617 5618 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5619 ret = btrfs_add_ordered_extent_dio(inode, start, 5620 block_start, len, len, type); 5621 btrfs_end_transaction(trans, root); 5622 if (ret) { 5623 free_extent_map(em); 5624 return ret; 5625 } 5626 goto unlock; 5627 } 5628 btrfs_end_transaction(trans, root); 5629 } 5630 must_cow: 5631 /* 5632 * this will cow the extent, reset the len in case we changed 5633 * it above 5634 */ 5635 len = bh_result->b_size; 5636 em = btrfs_new_extent_direct(inode, em, start, len); 5637 if (IS_ERR(em)) 5638 return PTR_ERR(em); 5639 len = min(len, em->len - (start - em->start)); 5640 unlock: 5641 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5642 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5643 0, NULL, GFP_NOFS); 5644 map: 5645 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5646 inode->i_blkbits; 5647 bh_result->b_size = len; 5648 bh_result->b_bdev = em->bdev; 5649 set_buffer_mapped(bh_result); 5650 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5651 set_buffer_new(bh_result); 5652 5653 free_extent_map(em); 5654 5655 return 0; 5656 } 5657 5658 struct btrfs_dio_private { 5659 struct inode *inode; 5660 u64 logical_offset; 5661 u64 disk_bytenr; 5662 u64 bytes; 5663 u32 *csums; 5664 void *private; 5665 5666 /* number of bios pending for this dio */ 5667 atomic_t pending_bios; 5668 5669 /* IO errors */ 5670 int errors; 5671 5672 struct bio *orig_bio; 5673 }; 5674 5675 static void btrfs_endio_direct_read(struct bio *bio, int err) 5676 { 5677 struct btrfs_dio_private *dip = bio->bi_private; 5678 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5679 struct bio_vec *bvec = bio->bi_io_vec; 5680 struct inode *inode = dip->inode; 5681 struct btrfs_root *root = BTRFS_I(inode)->root; 5682 u64 start; 5683 u32 *private = dip->csums; 5684 5685 start = dip->logical_offset; 5686 do { 5687 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5688 struct page *page = bvec->bv_page; 5689 char *kaddr; 5690 u32 csum = ~(u32)0; 5691 unsigned long flags; 5692 5693 local_irq_save(flags); 5694 kaddr = kmap_atomic(page, KM_IRQ0); 5695 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5696 csum, bvec->bv_len); 5697 btrfs_csum_final(csum, (char *)&csum); 5698 kunmap_atomic(kaddr, KM_IRQ0); 5699 local_irq_restore(flags); 5700 5701 flush_dcache_page(bvec->bv_page); 5702 if (csum != *private) { 5703 printk(KERN_ERR "btrfs csum failed ino %llu off" 5704 " %llu csum %u private %u\n", 5705 (unsigned long long)btrfs_ino(inode), 5706 (unsigned long long)start, 5707 csum, *private); 5708 err = -EIO; 5709 } 5710 } 5711 5712 start += bvec->bv_len; 5713 private++; 5714 bvec++; 5715 } while (bvec <= bvec_end); 5716 5717 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5718 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5719 bio->bi_private = dip->private; 5720 5721 kfree(dip->csums); 5722 kfree(dip); 5723 5724 /* If we had a csum failure make sure to clear the uptodate flag */ 5725 if (err) 5726 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5727 dio_end_io(bio, err); 5728 } 5729 5730 static void btrfs_endio_direct_write(struct bio *bio, int err) 5731 { 5732 struct btrfs_dio_private *dip = bio->bi_private; 5733 struct inode *inode = dip->inode; 5734 struct btrfs_root *root = BTRFS_I(inode)->root; 5735 struct btrfs_trans_handle *trans; 5736 struct btrfs_ordered_extent *ordered = NULL; 5737 struct extent_state *cached_state = NULL; 5738 u64 ordered_offset = dip->logical_offset; 5739 u64 ordered_bytes = dip->bytes; 5740 int ret; 5741 5742 if (err) 5743 goto out_done; 5744 again: 5745 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5746 &ordered_offset, 5747 ordered_bytes); 5748 if (!ret) 5749 goto out_test; 5750 5751 BUG_ON(!ordered); 5752 5753 trans = btrfs_join_transaction(root, 1); 5754 if (IS_ERR(trans)) { 5755 err = -ENOMEM; 5756 goto out; 5757 } 5758 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5759 5760 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5761 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5762 if (!ret) 5763 ret = btrfs_update_inode(trans, root, inode); 5764 err = ret; 5765 goto out; 5766 } 5767 5768 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5769 ordered->file_offset + ordered->len - 1, 0, 5770 &cached_state, GFP_NOFS); 5771 5772 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5773 ret = btrfs_mark_extent_written(trans, inode, 5774 ordered->file_offset, 5775 ordered->file_offset + 5776 ordered->len); 5777 if (ret) { 5778 err = ret; 5779 goto out_unlock; 5780 } 5781 } else { 5782 ret = insert_reserved_file_extent(trans, inode, 5783 ordered->file_offset, 5784 ordered->start, 5785 ordered->disk_len, 5786 ordered->len, 5787 ordered->len, 5788 0, 0, 0, 5789 BTRFS_FILE_EXTENT_REG); 5790 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5791 ordered->file_offset, ordered->len); 5792 if (ret) { 5793 err = ret; 5794 WARN_ON(1); 5795 goto out_unlock; 5796 } 5797 } 5798 5799 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5800 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5801 if (!ret) 5802 btrfs_update_inode(trans, root, inode); 5803 ret = 0; 5804 out_unlock: 5805 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5806 ordered->file_offset + ordered->len - 1, 5807 &cached_state, GFP_NOFS); 5808 out: 5809 btrfs_delalloc_release_metadata(inode, ordered->len); 5810 btrfs_end_transaction(trans, root); 5811 ordered_offset = ordered->file_offset + ordered->len; 5812 btrfs_put_ordered_extent(ordered); 5813 btrfs_put_ordered_extent(ordered); 5814 5815 out_test: 5816 /* 5817 * our bio might span multiple ordered extents. If we haven't 5818 * completed the accounting for the whole dio, go back and try again 5819 */ 5820 if (ordered_offset < dip->logical_offset + dip->bytes) { 5821 ordered_bytes = dip->logical_offset + dip->bytes - 5822 ordered_offset; 5823 goto again; 5824 } 5825 out_done: 5826 bio->bi_private = dip->private; 5827 5828 kfree(dip->csums); 5829 kfree(dip); 5830 5831 /* If we had an error make sure to clear the uptodate flag */ 5832 if (err) 5833 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5834 dio_end_io(bio, err); 5835 } 5836 5837 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5838 struct bio *bio, int mirror_num, 5839 unsigned long bio_flags, u64 offset) 5840 { 5841 int ret; 5842 struct btrfs_root *root = BTRFS_I(inode)->root; 5843 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5844 BUG_ON(ret); 5845 return 0; 5846 } 5847 5848 static void btrfs_end_dio_bio(struct bio *bio, int err) 5849 { 5850 struct btrfs_dio_private *dip = bio->bi_private; 5851 5852 if (err) { 5853 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 5854 "sector %#Lx len %u err no %d\n", 5855 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 5856 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5857 dip->errors = 1; 5858 5859 /* 5860 * before atomic variable goto zero, we must make sure 5861 * dip->errors is perceived to be set. 5862 */ 5863 smp_mb__before_atomic_dec(); 5864 } 5865 5866 /* if there are more bios still pending for this dio, just exit */ 5867 if (!atomic_dec_and_test(&dip->pending_bios)) 5868 goto out; 5869 5870 if (dip->errors) 5871 bio_io_error(dip->orig_bio); 5872 else { 5873 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5874 bio_endio(dip->orig_bio, 0); 5875 } 5876 out: 5877 bio_put(bio); 5878 } 5879 5880 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5881 u64 first_sector, gfp_t gfp_flags) 5882 { 5883 int nr_vecs = bio_get_nr_vecs(bdev); 5884 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5885 } 5886 5887 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5888 int rw, u64 file_offset, int skip_sum, 5889 u32 *csums, int async_submit) 5890 { 5891 int write = rw & REQ_WRITE; 5892 struct btrfs_root *root = BTRFS_I(inode)->root; 5893 int ret; 5894 5895 bio_get(bio); 5896 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5897 if (ret) 5898 goto err; 5899 5900 if (skip_sum) 5901 goto map; 5902 5903 if (write && async_submit) { 5904 ret = btrfs_wq_submit_bio(root->fs_info, 5905 inode, rw, bio, 0, 0, 5906 file_offset, 5907 __btrfs_submit_bio_start_direct_io, 5908 __btrfs_submit_bio_done); 5909 goto err; 5910 } else if (write) { 5911 /* 5912 * If we aren't doing async submit, calculate the csum of the 5913 * bio now. 5914 */ 5915 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 5916 if (ret) 5917 goto err; 5918 } else if (!skip_sum) { 5919 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, 5920 file_offset, csums); 5921 if (ret) 5922 goto err; 5923 } 5924 5925 map: 5926 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 5927 err: 5928 bio_put(bio); 5929 return ret; 5930 } 5931 5932 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5933 int skip_sum) 5934 { 5935 struct inode *inode = dip->inode; 5936 struct btrfs_root *root = BTRFS_I(inode)->root; 5937 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5938 struct bio *bio; 5939 struct bio *orig_bio = dip->orig_bio; 5940 struct bio_vec *bvec = orig_bio->bi_io_vec; 5941 u64 start_sector = orig_bio->bi_sector; 5942 u64 file_offset = dip->logical_offset; 5943 u64 submit_len = 0; 5944 u64 map_length; 5945 int nr_pages = 0; 5946 u32 *csums = dip->csums; 5947 int ret = 0; 5948 int async_submit = 0; 5949 int write = rw & REQ_WRITE; 5950 5951 map_length = orig_bio->bi_size; 5952 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5953 &map_length, NULL, 0); 5954 if (ret) { 5955 bio_put(orig_bio); 5956 return -EIO; 5957 } 5958 5959 if (map_length >= orig_bio->bi_size) { 5960 bio = orig_bio; 5961 goto submit; 5962 } 5963 5964 async_submit = 1; 5965 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5966 if (!bio) 5967 return -ENOMEM; 5968 bio->bi_private = dip; 5969 bio->bi_end_io = btrfs_end_dio_bio; 5970 atomic_inc(&dip->pending_bios); 5971 5972 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5973 if (unlikely(map_length < submit_len + bvec->bv_len || 5974 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5975 bvec->bv_offset) < bvec->bv_len)) { 5976 /* 5977 * inc the count before we submit the bio so 5978 * we know the end IO handler won't happen before 5979 * we inc the count. Otherwise, the dip might get freed 5980 * before we're done setting it up 5981 */ 5982 atomic_inc(&dip->pending_bios); 5983 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5984 file_offset, skip_sum, 5985 csums, async_submit); 5986 if (ret) { 5987 bio_put(bio); 5988 atomic_dec(&dip->pending_bios); 5989 goto out_err; 5990 } 5991 5992 /* Write's use the ordered csums */ 5993 if (!write && !skip_sum) 5994 csums = csums + nr_pages; 5995 start_sector += submit_len >> 9; 5996 file_offset += submit_len; 5997 5998 submit_len = 0; 5999 nr_pages = 0; 6000 6001 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6002 start_sector, GFP_NOFS); 6003 if (!bio) 6004 goto out_err; 6005 bio->bi_private = dip; 6006 bio->bi_end_io = btrfs_end_dio_bio; 6007 6008 map_length = orig_bio->bi_size; 6009 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6010 &map_length, NULL, 0); 6011 if (ret) { 6012 bio_put(bio); 6013 goto out_err; 6014 } 6015 } else { 6016 submit_len += bvec->bv_len; 6017 nr_pages ++; 6018 bvec++; 6019 } 6020 } 6021 6022 submit: 6023 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6024 csums, async_submit); 6025 if (!ret) 6026 return 0; 6027 6028 bio_put(bio); 6029 out_err: 6030 dip->errors = 1; 6031 /* 6032 * before atomic variable goto zero, we must 6033 * make sure dip->errors is perceived to be set. 6034 */ 6035 smp_mb__before_atomic_dec(); 6036 if (atomic_dec_and_test(&dip->pending_bios)) 6037 bio_io_error(dip->orig_bio); 6038 6039 /* bio_end_io() will handle error, so we needn't return it */ 6040 return 0; 6041 } 6042 6043 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6044 loff_t file_offset) 6045 { 6046 struct btrfs_root *root = BTRFS_I(inode)->root; 6047 struct btrfs_dio_private *dip; 6048 struct bio_vec *bvec = bio->bi_io_vec; 6049 int skip_sum; 6050 int write = rw & REQ_WRITE; 6051 int ret = 0; 6052 6053 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6054 6055 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6056 if (!dip) { 6057 ret = -ENOMEM; 6058 goto free_ordered; 6059 } 6060 dip->csums = NULL; 6061 6062 /* Write's use the ordered csum stuff, so we don't need dip->csums */ 6063 if (!write && !skip_sum) { 6064 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6065 if (!dip->csums) { 6066 kfree(dip); 6067 ret = -ENOMEM; 6068 goto free_ordered; 6069 } 6070 } 6071 6072 dip->private = bio->bi_private; 6073 dip->inode = inode; 6074 dip->logical_offset = file_offset; 6075 6076 dip->bytes = 0; 6077 do { 6078 dip->bytes += bvec->bv_len; 6079 bvec++; 6080 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6081 6082 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6083 bio->bi_private = dip; 6084 dip->errors = 0; 6085 dip->orig_bio = bio; 6086 atomic_set(&dip->pending_bios, 0); 6087 6088 if (write) 6089 bio->bi_end_io = btrfs_endio_direct_write; 6090 else 6091 bio->bi_end_io = btrfs_endio_direct_read; 6092 6093 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6094 if (!ret) 6095 return; 6096 free_ordered: 6097 /* 6098 * If this is a write, we need to clean up the reserved space and kill 6099 * the ordered extent. 6100 */ 6101 if (write) { 6102 struct btrfs_ordered_extent *ordered; 6103 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6104 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6105 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6106 btrfs_free_reserved_extent(root, ordered->start, 6107 ordered->disk_len); 6108 btrfs_put_ordered_extent(ordered); 6109 btrfs_put_ordered_extent(ordered); 6110 } 6111 bio_endio(bio, ret); 6112 } 6113 6114 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6115 const struct iovec *iov, loff_t offset, 6116 unsigned long nr_segs) 6117 { 6118 int seg; 6119 int i; 6120 size_t size; 6121 unsigned long addr; 6122 unsigned blocksize_mask = root->sectorsize - 1; 6123 ssize_t retval = -EINVAL; 6124 loff_t end = offset; 6125 6126 if (offset & blocksize_mask) 6127 goto out; 6128 6129 /* Check the memory alignment. Blocks cannot straddle pages */ 6130 for (seg = 0; seg < nr_segs; seg++) { 6131 addr = (unsigned long)iov[seg].iov_base; 6132 size = iov[seg].iov_len; 6133 end += size; 6134 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6135 goto out; 6136 6137 /* If this is a write we don't need to check anymore */ 6138 if (rw & WRITE) 6139 continue; 6140 6141 /* 6142 * Check to make sure we don't have duplicate iov_base's in this 6143 * iovec, if so return EINVAL, otherwise we'll get csum errors 6144 * when reading back. 6145 */ 6146 for (i = seg + 1; i < nr_segs; i++) { 6147 if (iov[seg].iov_base == iov[i].iov_base) 6148 goto out; 6149 } 6150 } 6151 retval = 0; 6152 out: 6153 return retval; 6154 } 6155 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6156 const struct iovec *iov, loff_t offset, 6157 unsigned long nr_segs) 6158 { 6159 struct file *file = iocb->ki_filp; 6160 struct inode *inode = file->f_mapping->host; 6161 struct btrfs_ordered_extent *ordered; 6162 struct extent_state *cached_state = NULL; 6163 u64 lockstart, lockend; 6164 ssize_t ret; 6165 int writing = rw & WRITE; 6166 int write_bits = 0; 6167 size_t count = iov_length(iov, nr_segs); 6168 6169 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6170 offset, nr_segs)) { 6171 return 0; 6172 } 6173 6174 lockstart = offset; 6175 lockend = offset + count - 1; 6176 6177 if (writing) { 6178 ret = btrfs_delalloc_reserve_space(inode, count); 6179 if (ret) 6180 goto out; 6181 } 6182 6183 while (1) { 6184 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6185 0, &cached_state, GFP_NOFS); 6186 /* 6187 * We're concerned with the entire range that we're going to be 6188 * doing DIO to, so we need to make sure theres no ordered 6189 * extents in this range. 6190 */ 6191 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6192 lockend - lockstart + 1); 6193 if (!ordered) 6194 break; 6195 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6196 &cached_state, GFP_NOFS); 6197 btrfs_start_ordered_extent(inode, ordered, 1); 6198 btrfs_put_ordered_extent(ordered); 6199 cond_resched(); 6200 } 6201 6202 /* 6203 * we don't use btrfs_set_extent_delalloc because we don't want 6204 * the dirty or uptodate bits 6205 */ 6206 if (writing) { 6207 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6208 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6209 EXTENT_DELALLOC, 0, NULL, &cached_state, 6210 GFP_NOFS); 6211 if (ret) { 6212 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6213 lockend, EXTENT_LOCKED | write_bits, 6214 1, 0, &cached_state, GFP_NOFS); 6215 goto out; 6216 } 6217 } 6218 6219 free_extent_state(cached_state); 6220 cached_state = NULL; 6221 6222 ret = __blockdev_direct_IO(rw, iocb, inode, 6223 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6224 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6225 btrfs_submit_direct, 0); 6226 6227 if (ret < 0 && ret != -EIOCBQUEUED) { 6228 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6229 offset + iov_length(iov, nr_segs) - 1, 6230 EXTENT_LOCKED | write_bits, 1, 0, 6231 &cached_state, GFP_NOFS); 6232 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6233 /* 6234 * We're falling back to buffered, unlock the section we didn't 6235 * do IO on. 6236 */ 6237 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6238 offset + iov_length(iov, nr_segs) - 1, 6239 EXTENT_LOCKED | write_bits, 1, 0, 6240 &cached_state, GFP_NOFS); 6241 } 6242 out: 6243 free_extent_state(cached_state); 6244 return ret; 6245 } 6246 6247 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6248 __u64 start, __u64 len) 6249 { 6250 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6251 } 6252 6253 int btrfs_readpage(struct file *file, struct page *page) 6254 { 6255 struct extent_io_tree *tree; 6256 tree = &BTRFS_I(page->mapping->host)->io_tree; 6257 return extent_read_full_page(tree, page, btrfs_get_extent); 6258 } 6259 6260 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6261 { 6262 struct extent_io_tree *tree; 6263 6264 6265 if (current->flags & PF_MEMALLOC) { 6266 redirty_page_for_writepage(wbc, page); 6267 unlock_page(page); 6268 return 0; 6269 } 6270 tree = &BTRFS_I(page->mapping->host)->io_tree; 6271 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6272 } 6273 6274 int btrfs_writepages(struct address_space *mapping, 6275 struct writeback_control *wbc) 6276 { 6277 struct extent_io_tree *tree; 6278 6279 tree = &BTRFS_I(mapping->host)->io_tree; 6280 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6281 } 6282 6283 static int 6284 btrfs_readpages(struct file *file, struct address_space *mapping, 6285 struct list_head *pages, unsigned nr_pages) 6286 { 6287 struct extent_io_tree *tree; 6288 tree = &BTRFS_I(mapping->host)->io_tree; 6289 return extent_readpages(tree, mapping, pages, nr_pages, 6290 btrfs_get_extent); 6291 } 6292 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6293 { 6294 struct extent_io_tree *tree; 6295 struct extent_map_tree *map; 6296 int ret; 6297 6298 tree = &BTRFS_I(page->mapping->host)->io_tree; 6299 map = &BTRFS_I(page->mapping->host)->extent_tree; 6300 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6301 if (ret == 1) { 6302 ClearPagePrivate(page); 6303 set_page_private(page, 0); 6304 page_cache_release(page); 6305 } 6306 return ret; 6307 } 6308 6309 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6310 { 6311 if (PageWriteback(page) || PageDirty(page)) 6312 return 0; 6313 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6314 } 6315 6316 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6317 { 6318 struct extent_io_tree *tree; 6319 struct btrfs_ordered_extent *ordered; 6320 struct extent_state *cached_state = NULL; 6321 u64 page_start = page_offset(page); 6322 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6323 6324 6325 /* 6326 * we have the page locked, so new writeback can't start, 6327 * and the dirty bit won't be cleared while we are here. 6328 * 6329 * Wait for IO on this page so that we can safely clear 6330 * the PagePrivate2 bit and do ordered accounting 6331 */ 6332 wait_on_page_writeback(page); 6333 6334 tree = &BTRFS_I(page->mapping->host)->io_tree; 6335 if (offset) { 6336 btrfs_releasepage(page, GFP_NOFS); 6337 return; 6338 } 6339 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6340 GFP_NOFS); 6341 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6342 page_offset(page)); 6343 if (ordered) { 6344 /* 6345 * IO on this page will never be started, so we need 6346 * to account for any ordered extents now 6347 */ 6348 clear_extent_bit(tree, page_start, page_end, 6349 EXTENT_DIRTY | EXTENT_DELALLOC | 6350 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6351 &cached_state, GFP_NOFS); 6352 /* 6353 * whoever cleared the private bit is responsible 6354 * for the finish_ordered_io 6355 */ 6356 if (TestClearPagePrivate2(page)) { 6357 btrfs_finish_ordered_io(page->mapping->host, 6358 page_start, page_end); 6359 } 6360 btrfs_put_ordered_extent(ordered); 6361 cached_state = NULL; 6362 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6363 GFP_NOFS); 6364 } 6365 clear_extent_bit(tree, page_start, page_end, 6366 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6367 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6368 __btrfs_releasepage(page, GFP_NOFS); 6369 6370 ClearPageChecked(page); 6371 if (PagePrivate(page)) { 6372 ClearPagePrivate(page); 6373 set_page_private(page, 0); 6374 page_cache_release(page); 6375 } 6376 } 6377 6378 /* 6379 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6380 * called from a page fault handler when a page is first dirtied. Hence we must 6381 * be careful to check for EOF conditions here. We set the page up correctly 6382 * for a written page which means we get ENOSPC checking when writing into 6383 * holes and correct delalloc and unwritten extent mapping on filesystems that 6384 * support these features. 6385 * 6386 * We are not allowed to take the i_mutex here so we have to play games to 6387 * protect against truncate races as the page could now be beyond EOF. Because 6388 * vmtruncate() writes the inode size before removing pages, once we have the 6389 * page lock we can determine safely if the page is beyond EOF. If it is not 6390 * beyond EOF, then the page is guaranteed safe against truncation until we 6391 * unlock the page. 6392 */ 6393 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6394 { 6395 struct page *page = vmf->page; 6396 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6397 struct btrfs_root *root = BTRFS_I(inode)->root; 6398 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6399 struct btrfs_ordered_extent *ordered; 6400 struct extent_state *cached_state = NULL; 6401 char *kaddr; 6402 unsigned long zero_start; 6403 loff_t size; 6404 int ret; 6405 u64 page_start; 6406 u64 page_end; 6407 6408 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6409 if (ret) { 6410 if (ret == -ENOMEM) 6411 ret = VM_FAULT_OOM; 6412 else /* -ENOSPC, -EIO, etc */ 6413 ret = VM_FAULT_SIGBUS; 6414 goto out; 6415 } 6416 6417 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6418 again: 6419 lock_page(page); 6420 size = i_size_read(inode); 6421 page_start = page_offset(page); 6422 page_end = page_start + PAGE_CACHE_SIZE - 1; 6423 6424 if ((page->mapping != inode->i_mapping) || 6425 (page_start >= size)) { 6426 /* page got truncated out from underneath us */ 6427 goto out_unlock; 6428 } 6429 wait_on_page_writeback(page); 6430 6431 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6432 GFP_NOFS); 6433 set_page_extent_mapped(page); 6434 6435 /* 6436 * we can't set the delalloc bits if there are pending ordered 6437 * extents. Drop our locks and wait for them to finish 6438 */ 6439 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6440 if (ordered) { 6441 unlock_extent_cached(io_tree, page_start, page_end, 6442 &cached_state, GFP_NOFS); 6443 unlock_page(page); 6444 btrfs_start_ordered_extent(inode, ordered, 1); 6445 btrfs_put_ordered_extent(ordered); 6446 goto again; 6447 } 6448 6449 /* 6450 * XXX - page_mkwrite gets called every time the page is dirtied, even 6451 * if it was already dirty, so for space accounting reasons we need to 6452 * clear any delalloc bits for the range we are fixing to save. There 6453 * is probably a better way to do this, but for now keep consistent with 6454 * prepare_pages in the normal write path. 6455 */ 6456 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6457 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6458 0, 0, &cached_state, GFP_NOFS); 6459 6460 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6461 &cached_state); 6462 if (ret) { 6463 unlock_extent_cached(io_tree, page_start, page_end, 6464 &cached_state, GFP_NOFS); 6465 ret = VM_FAULT_SIGBUS; 6466 goto out_unlock; 6467 } 6468 ret = 0; 6469 6470 /* page is wholly or partially inside EOF */ 6471 if (page_start + PAGE_CACHE_SIZE > size) 6472 zero_start = size & ~PAGE_CACHE_MASK; 6473 else 6474 zero_start = PAGE_CACHE_SIZE; 6475 6476 if (zero_start != PAGE_CACHE_SIZE) { 6477 kaddr = kmap(page); 6478 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6479 flush_dcache_page(page); 6480 kunmap(page); 6481 } 6482 ClearPageChecked(page); 6483 set_page_dirty(page); 6484 SetPageUptodate(page); 6485 6486 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6487 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6488 6489 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6490 6491 out_unlock: 6492 if (!ret) 6493 return VM_FAULT_LOCKED; 6494 unlock_page(page); 6495 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6496 out: 6497 return ret; 6498 } 6499 6500 static int btrfs_truncate(struct inode *inode) 6501 { 6502 struct btrfs_root *root = BTRFS_I(inode)->root; 6503 int ret; 6504 int err = 0; 6505 struct btrfs_trans_handle *trans; 6506 unsigned long nr; 6507 u64 mask = root->sectorsize - 1; 6508 6509 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6510 if (ret) 6511 return ret; 6512 6513 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6514 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6515 6516 trans = btrfs_start_transaction(root, 5); 6517 if (IS_ERR(trans)) 6518 return PTR_ERR(trans); 6519 6520 btrfs_set_trans_block_group(trans, inode); 6521 6522 ret = btrfs_orphan_add(trans, inode); 6523 if (ret) { 6524 btrfs_end_transaction(trans, root); 6525 return ret; 6526 } 6527 6528 nr = trans->blocks_used; 6529 btrfs_end_transaction(trans, root); 6530 btrfs_btree_balance_dirty(root, nr); 6531 6532 /* Now start a transaction for the truncate */ 6533 trans = btrfs_start_transaction(root, 0); 6534 if (IS_ERR(trans)) 6535 return PTR_ERR(trans); 6536 btrfs_set_trans_block_group(trans, inode); 6537 trans->block_rsv = root->orphan_block_rsv; 6538 6539 /* 6540 * setattr is responsible for setting the ordered_data_close flag, 6541 * but that is only tested during the last file release. That 6542 * could happen well after the next commit, leaving a great big 6543 * window where new writes may get lost if someone chooses to write 6544 * to this file after truncating to zero 6545 * 6546 * The inode doesn't have any dirty data here, and so if we commit 6547 * this is a noop. If someone immediately starts writing to the inode 6548 * it is very likely we'll catch some of their writes in this 6549 * transaction, and the commit will find this file on the ordered 6550 * data list with good things to send down. 6551 * 6552 * This is a best effort solution, there is still a window where 6553 * using truncate to replace the contents of the file will 6554 * end up with a zero length file after a crash. 6555 */ 6556 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6557 btrfs_add_ordered_operation(trans, root, inode); 6558 6559 while (1) { 6560 if (!trans) { 6561 trans = btrfs_start_transaction(root, 0); 6562 if (IS_ERR(trans)) 6563 return PTR_ERR(trans); 6564 btrfs_set_trans_block_group(trans, inode); 6565 trans->block_rsv = root->orphan_block_rsv; 6566 } 6567 6568 ret = btrfs_block_rsv_check(trans, root, 6569 root->orphan_block_rsv, 0, 5); 6570 if (ret == -EAGAIN) { 6571 ret = btrfs_commit_transaction(trans, root); 6572 if (ret) 6573 return ret; 6574 trans = NULL; 6575 continue; 6576 } else if (ret) { 6577 err = ret; 6578 break; 6579 } 6580 6581 ret = btrfs_truncate_inode_items(trans, root, inode, 6582 inode->i_size, 6583 BTRFS_EXTENT_DATA_KEY); 6584 if (ret != -EAGAIN) { 6585 err = ret; 6586 break; 6587 } 6588 6589 ret = btrfs_update_inode(trans, root, inode); 6590 if (ret) { 6591 err = ret; 6592 break; 6593 } 6594 6595 nr = trans->blocks_used; 6596 btrfs_end_transaction(trans, root); 6597 trans = NULL; 6598 btrfs_btree_balance_dirty(root, nr); 6599 } 6600 6601 if (ret == 0 && inode->i_nlink > 0) { 6602 ret = btrfs_orphan_del(trans, inode); 6603 if (ret) 6604 err = ret; 6605 } else if (ret && inode->i_nlink > 0) { 6606 /* 6607 * Failed to do the truncate, remove us from the in memory 6608 * orphan list. 6609 */ 6610 ret = btrfs_orphan_del(NULL, inode); 6611 } 6612 6613 ret = btrfs_update_inode(trans, root, inode); 6614 if (ret && !err) 6615 err = ret; 6616 6617 nr = trans->blocks_used; 6618 ret = btrfs_end_transaction_throttle(trans, root); 6619 if (ret && !err) 6620 err = ret; 6621 btrfs_btree_balance_dirty(root, nr); 6622 6623 return err; 6624 } 6625 6626 /* 6627 * create a new subvolume directory/inode (helper for the ioctl). 6628 */ 6629 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6630 struct btrfs_root *new_root, 6631 u64 new_dirid, u64 alloc_hint) 6632 { 6633 struct inode *inode; 6634 int err; 6635 u64 index = 0; 6636 6637 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6638 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 6639 if (IS_ERR(inode)) 6640 return PTR_ERR(inode); 6641 inode->i_op = &btrfs_dir_inode_operations; 6642 inode->i_fop = &btrfs_dir_file_operations; 6643 6644 inode->i_nlink = 1; 6645 btrfs_i_size_write(inode, 0); 6646 6647 err = btrfs_update_inode(trans, new_root, inode); 6648 BUG_ON(err); 6649 6650 iput(inode); 6651 return 0; 6652 } 6653 6654 /* helper function for file defrag and space balancing. This 6655 * forces readahead on a given range of bytes in an inode 6656 */ 6657 unsigned long btrfs_force_ra(struct address_space *mapping, 6658 struct file_ra_state *ra, struct file *file, 6659 pgoff_t offset, pgoff_t last_index) 6660 { 6661 pgoff_t req_size = last_index - offset + 1; 6662 6663 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 6664 return offset + req_size; 6665 } 6666 6667 struct inode *btrfs_alloc_inode(struct super_block *sb) 6668 { 6669 struct btrfs_inode *ei; 6670 struct inode *inode; 6671 6672 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6673 if (!ei) 6674 return NULL; 6675 6676 ei->root = NULL; 6677 ei->space_info = NULL; 6678 ei->generation = 0; 6679 ei->sequence = 0; 6680 ei->last_trans = 0; 6681 ei->last_sub_trans = 0; 6682 ei->logged_trans = 0; 6683 ei->delalloc_bytes = 0; 6684 ei->reserved_bytes = 0; 6685 ei->disk_i_size = 0; 6686 ei->flags = 0; 6687 ei->index_cnt = (u64)-1; 6688 ei->last_unlink_trans = 0; 6689 6690 atomic_set(&ei->outstanding_extents, 0); 6691 atomic_set(&ei->reserved_extents, 0); 6692 6693 ei->ordered_data_close = 0; 6694 ei->orphan_meta_reserved = 0; 6695 ei->dummy_inode = 0; 6696 ei->in_defrag = 0; 6697 ei->force_compress = BTRFS_COMPRESS_NONE; 6698 6699 ei->delayed_node = NULL; 6700 6701 inode = &ei->vfs_inode; 6702 extent_map_tree_init(&ei->extent_tree); 6703 extent_io_tree_init(&ei->io_tree, &inode->i_data); 6704 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 6705 mutex_init(&ei->log_mutex); 6706 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6707 INIT_LIST_HEAD(&ei->i_orphan); 6708 INIT_LIST_HEAD(&ei->delalloc_inodes); 6709 INIT_LIST_HEAD(&ei->ordered_operations); 6710 RB_CLEAR_NODE(&ei->rb_node); 6711 6712 return inode; 6713 } 6714 6715 static void btrfs_i_callback(struct rcu_head *head) 6716 { 6717 struct inode *inode = container_of(head, struct inode, i_rcu); 6718 INIT_LIST_HEAD(&inode->i_dentry); 6719 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6720 } 6721 6722 void btrfs_destroy_inode(struct inode *inode) 6723 { 6724 struct btrfs_ordered_extent *ordered; 6725 struct btrfs_root *root = BTRFS_I(inode)->root; 6726 6727 WARN_ON(!list_empty(&inode->i_dentry)); 6728 WARN_ON(inode->i_data.nrpages); 6729 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents)); 6730 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents)); 6731 6732 /* 6733 * This can happen where we create an inode, but somebody else also 6734 * created the same inode and we need to destroy the one we already 6735 * created. 6736 */ 6737 if (!root) 6738 goto free; 6739 6740 /* 6741 * Make sure we're properly removed from the ordered operation 6742 * lists. 6743 */ 6744 smp_mb(); 6745 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6746 spin_lock(&root->fs_info->ordered_extent_lock); 6747 list_del_init(&BTRFS_I(inode)->ordered_operations); 6748 spin_unlock(&root->fs_info->ordered_extent_lock); 6749 } 6750 6751 if (root == root->fs_info->tree_root) { 6752 struct btrfs_block_group_cache *block_group; 6753 6754 block_group = btrfs_lookup_block_group(root->fs_info, 6755 BTRFS_I(inode)->block_group); 6756 if (block_group && block_group->inode == inode) { 6757 spin_lock(&block_group->lock); 6758 block_group->inode = NULL; 6759 spin_unlock(&block_group->lock); 6760 btrfs_put_block_group(block_group); 6761 } else if (block_group) { 6762 btrfs_put_block_group(block_group); 6763 } 6764 } 6765 6766 spin_lock(&root->orphan_lock); 6767 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6768 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 6769 (unsigned long long)btrfs_ino(inode)); 6770 list_del_init(&BTRFS_I(inode)->i_orphan); 6771 } 6772 spin_unlock(&root->orphan_lock); 6773 6774 while (1) { 6775 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6776 if (!ordered) 6777 break; 6778 else { 6779 printk(KERN_ERR "btrfs found ordered " 6780 "extent %llu %llu on inode cleanup\n", 6781 (unsigned long long)ordered->file_offset, 6782 (unsigned long long)ordered->len); 6783 btrfs_remove_ordered_extent(inode, ordered); 6784 btrfs_put_ordered_extent(ordered); 6785 btrfs_put_ordered_extent(ordered); 6786 } 6787 } 6788 inode_tree_del(inode); 6789 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6790 free: 6791 btrfs_remove_delayed_node(inode); 6792 call_rcu(&inode->i_rcu, btrfs_i_callback); 6793 } 6794 6795 int btrfs_drop_inode(struct inode *inode) 6796 { 6797 struct btrfs_root *root = BTRFS_I(inode)->root; 6798 6799 if (btrfs_root_refs(&root->root_item) == 0 && 6800 !is_free_space_inode(root, inode)) 6801 return 1; 6802 else 6803 return generic_drop_inode(inode); 6804 } 6805 6806 static void init_once(void *foo) 6807 { 6808 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6809 6810 inode_init_once(&ei->vfs_inode); 6811 } 6812 6813 void btrfs_destroy_cachep(void) 6814 { 6815 if (btrfs_inode_cachep) 6816 kmem_cache_destroy(btrfs_inode_cachep); 6817 if (btrfs_trans_handle_cachep) 6818 kmem_cache_destroy(btrfs_trans_handle_cachep); 6819 if (btrfs_transaction_cachep) 6820 kmem_cache_destroy(btrfs_transaction_cachep); 6821 if (btrfs_path_cachep) 6822 kmem_cache_destroy(btrfs_path_cachep); 6823 if (btrfs_free_space_cachep) 6824 kmem_cache_destroy(btrfs_free_space_cachep); 6825 } 6826 6827 int btrfs_init_cachep(void) 6828 { 6829 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6830 sizeof(struct btrfs_inode), 0, 6831 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6832 if (!btrfs_inode_cachep) 6833 goto fail; 6834 6835 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6836 sizeof(struct btrfs_trans_handle), 0, 6837 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6838 if (!btrfs_trans_handle_cachep) 6839 goto fail; 6840 6841 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6842 sizeof(struct btrfs_transaction), 0, 6843 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6844 if (!btrfs_transaction_cachep) 6845 goto fail; 6846 6847 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6848 sizeof(struct btrfs_path), 0, 6849 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6850 if (!btrfs_path_cachep) 6851 goto fail; 6852 6853 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache", 6854 sizeof(struct btrfs_free_space), 0, 6855 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6856 if (!btrfs_free_space_cachep) 6857 goto fail; 6858 6859 return 0; 6860 fail: 6861 btrfs_destroy_cachep(); 6862 return -ENOMEM; 6863 } 6864 6865 static int btrfs_getattr(struct vfsmount *mnt, 6866 struct dentry *dentry, struct kstat *stat) 6867 { 6868 struct inode *inode = dentry->d_inode; 6869 generic_fillattr(inode, stat); 6870 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 6871 stat->blksize = PAGE_CACHE_SIZE; 6872 stat->blocks = (inode_get_bytes(inode) + 6873 BTRFS_I(inode)->delalloc_bytes) >> 9; 6874 return 0; 6875 } 6876 6877 /* 6878 * If a file is moved, it will inherit the cow and compression flags of the new 6879 * directory. 6880 */ 6881 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 6882 { 6883 struct btrfs_inode *b_dir = BTRFS_I(dir); 6884 struct btrfs_inode *b_inode = BTRFS_I(inode); 6885 6886 if (b_dir->flags & BTRFS_INODE_NODATACOW) 6887 b_inode->flags |= BTRFS_INODE_NODATACOW; 6888 else 6889 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 6890 6891 if (b_dir->flags & BTRFS_INODE_COMPRESS) 6892 b_inode->flags |= BTRFS_INODE_COMPRESS; 6893 else 6894 b_inode->flags &= ~BTRFS_INODE_COMPRESS; 6895 } 6896 6897 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6898 struct inode *new_dir, struct dentry *new_dentry) 6899 { 6900 struct btrfs_trans_handle *trans; 6901 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6902 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6903 struct inode *new_inode = new_dentry->d_inode; 6904 struct inode *old_inode = old_dentry->d_inode; 6905 struct timespec ctime = CURRENT_TIME; 6906 u64 index = 0; 6907 u64 root_objectid; 6908 int ret; 6909 u64 old_ino = btrfs_ino(old_inode); 6910 6911 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6912 return -EPERM; 6913 6914 /* we only allow rename subvolume link between subvolumes */ 6915 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6916 return -EXDEV; 6917 6918 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6919 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 6920 return -ENOTEMPTY; 6921 6922 if (S_ISDIR(old_inode->i_mode) && new_inode && 6923 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6924 return -ENOTEMPTY; 6925 /* 6926 * we're using rename to replace one file with another. 6927 * and the replacement file is large. Start IO on it now so 6928 * we don't add too much work to the end of the transaction 6929 */ 6930 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6931 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6932 filemap_flush(old_inode->i_mapping); 6933 6934 /* close the racy window with snapshot create/destroy ioctl */ 6935 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 6936 down_read(&root->fs_info->subvol_sem); 6937 /* 6938 * We want to reserve the absolute worst case amount of items. So if 6939 * both inodes are subvols and we need to unlink them then that would 6940 * require 4 item modifications, but if they are both normal inodes it 6941 * would require 5 item modifications, so we'll assume their normal 6942 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6943 * should cover the worst case number of items we'll modify. 6944 */ 6945 trans = btrfs_start_transaction(root, 20); 6946 if (IS_ERR(trans)) { 6947 ret = PTR_ERR(trans); 6948 goto out_notrans; 6949 } 6950 6951 btrfs_set_trans_block_group(trans, new_dir); 6952 6953 if (dest != root) 6954 btrfs_record_root_in_trans(trans, dest); 6955 6956 ret = btrfs_set_inode_index(new_dir, &index); 6957 if (ret) 6958 goto out_fail; 6959 6960 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6961 /* force full log commit if subvolume involved. */ 6962 root->fs_info->last_trans_log_full_commit = trans->transid; 6963 } else { 6964 ret = btrfs_insert_inode_ref(trans, dest, 6965 new_dentry->d_name.name, 6966 new_dentry->d_name.len, 6967 old_ino, 6968 btrfs_ino(new_dir), index); 6969 if (ret) 6970 goto out_fail; 6971 /* 6972 * this is an ugly little race, but the rename is required 6973 * to make sure that if we crash, the inode is either at the 6974 * old name or the new one. pinning the log transaction lets 6975 * us make sure we don't allow a log commit to come in after 6976 * we unlink the name but before we add the new name back in. 6977 */ 6978 btrfs_pin_log_trans(root); 6979 } 6980 /* 6981 * make sure the inode gets flushed if it is replacing 6982 * something. 6983 */ 6984 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 6985 btrfs_add_ordered_operation(trans, root, old_inode); 6986 6987 old_dir->i_ctime = old_dir->i_mtime = ctime; 6988 new_dir->i_ctime = new_dir->i_mtime = ctime; 6989 old_inode->i_ctime = ctime; 6990 6991 if (old_dentry->d_parent != new_dentry->d_parent) 6992 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 6993 6994 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6995 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 6996 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 6997 old_dentry->d_name.name, 6998 old_dentry->d_name.len); 6999 } else { 7000 ret = __btrfs_unlink_inode(trans, root, old_dir, 7001 old_dentry->d_inode, 7002 old_dentry->d_name.name, 7003 old_dentry->d_name.len); 7004 if (!ret) 7005 ret = btrfs_update_inode(trans, root, old_inode); 7006 } 7007 BUG_ON(ret); 7008 7009 if (new_inode) { 7010 new_inode->i_ctime = CURRENT_TIME; 7011 if (unlikely(btrfs_ino(new_inode) == 7012 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7013 root_objectid = BTRFS_I(new_inode)->location.objectid; 7014 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7015 root_objectid, 7016 new_dentry->d_name.name, 7017 new_dentry->d_name.len); 7018 BUG_ON(new_inode->i_nlink == 0); 7019 } else { 7020 ret = btrfs_unlink_inode(trans, dest, new_dir, 7021 new_dentry->d_inode, 7022 new_dentry->d_name.name, 7023 new_dentry->d_name.len); 7024 } 7025 BUG_ON(ret); 7026 if (new_inode->i_nlink == 0) { 7027 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7028 BUG_ON(ret); 7029 } 7030 } 7031 7032 fixup_inode_flags(new_dir, old_inode); 7033 7034 ret = btrfs_add_link(trans, new_dir, old_inode, 7035 new_dentry->d_name.name, 7036 new_dentry->d_name.len, 0, index); 7037 BUG_ON(ret); 7038 7039 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7040 struct dentry *parent = dget_parent(new_dentry); 7041 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7042 dput(parent); 7043 btrfs_end_log_trans(root); 7044 } 7045 out_fail: 7046 btrfs_end_transaction_throttle(trans, root); 7047 out_notrans: 7048 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7049 up_read(&root->fs_info->subvol_sem); 7050 7051 return ret; 7052 } 7053 7054 /* 7055 * some fairly slow code that needs optimization. This walks the list 7056 * of all the inodes with pending delalloc and forces them to disk. 7057 */ 7058 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7059 { 7060 struct list_head *head = &root->fs_info->delalloc_inodes; 7061 struct btrfs_inode *binode; 7062 struct inode *inode; 7063 7064 if (root->fs_info->sb->s_flags & MS_RDONLY) 7065 return -EROFS; 7066 7067 spin_lock(&root->fs_info->delalloc_lock); 7068 while (!list_empty(head)) { 7069 binode = list_entry(head->next, struct btrfs_inode, 7070 delalloc_inodes); 7071 inode = igrab(&binode->vfs_inode); 7072 if (!inode) 7073 list_del_init(&binode->delalloc_inodes); 7074 spin_unlock(&root->fs_info->delalloc_lock); 7075 if (inode) { 7076 filemap_flush(inode->i_mapping); 7077 if (delay_iput) 7078 btrfs_add_delayed_iput(inode); 7079 else 7080 iput(inode); 7081 } 7082 cond_resched(); 7083 spin_lock(&root->fs_info->delalloc_lock); 7084 } 7085 spin_unlock(&root->fs_info->delalloc_lock); 7086 7087 /* the filemap_flush will queue IO into the worker threads, but 7088 * we have to make sure the IO is actually started and that 7089 * ordered extents get created before we return 7090 */ 7091 atomic_inc(&root->fs_info->async_submit_draining); 7092 while (atomic_read(&root->fs_info->nr_async_submits) || 7093 atomic_read(&root->fs_info->async_delalloc_pages)) { 7094 wait_event(root->fs_info->async_submit_wait, 7095 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7096 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7097 } 7098 atomic_dec(&root->fs_info->async_submit_draining); 7099 return 0; 7100 } 7101 7102 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7103 const char *symname) 7104 { 7105 struct btrfs_trans_handle *trans; 7106 struct btrfs_root *root = BTRFS_I(dir)->root; 7107 struct btrfs_path *path; 7108 struct btrfs_key key; 7109 struct inode *inode = NULL; 7110 int err; 7111 int drop_inode = 0; 7112 u64 objectid; 7113 u64 index = 0 ; 7114 int name_len; 7115 int datasize; 7116 unsigned long ptr; 7117 struct btrfs_file_extent_item *ei; 7118 struct extent_buffer *leaf; 7119 unsigned long nr = 0; 7120 7121 name_len = strlen(symname) + 1; 7122 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7123 return -ENAMETOOLONG; 7124 7125 /* 7126 * 2 items for inode item and ref 7127 * 2 items for dir items 7128 * 1 item for xattr if selinux is on 7129 */ 7130 trans = btrfs_start_transaction(root, 5); 7131 if (IS_ERR(trans)) 7132 return PTR_ERR(trans); 7133 7134 btrfs_set_trans_block_group(trans, dir); 7135 7136 err = btrfs_find_free_ino(root, &objectid); 7137 if (err) 7138 goto out_unlock; 7139 7140 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7141 dentry->d_name.len, btrfs_ino(dir), objectid, 7142 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 7143 &index); 7144 if (IS_ERR(inode)) { 7145 err = PTR_ERR(inode); 7146 goto out_unlock; 7147 } 7148 7149 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7150 if (err) { 7151 drop_inode = 1; 7152 goto out_unlock; 7153 } 7154 7155 btrfs_set_trans_block_group(trans, inode); 7156 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7157 if (err) 7158 drop_inode = 1; 7159 else { 7160 inode->i_mapping->a_ops = &btrfs_aops; 7161 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7162 inode->i_fop = &btrfs_file_operations; 7163 inode->i_op = &btrfs_file_inode_operations; 7164 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7165 } 7166 btrfs_update_inode_block_group(trans, inode); 7167 btrfs_update_inode_block_group(trans, dir); 7168 if (drop_inode) 7169 goto out_unlock; 7170 7171 path = btrfs_alloc_path(); 7172 BUG_ON(!path); 7173 key.objectid = btrfs_ino(inode); 7174 key.offset = 0; 7175 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7176 datasize = btrfs_file_extent_calc_inline_size(name_len); 7177 err = btrfs_insert_empty_item(trans, root, path, &key, 7178 datasize); 7179 if (err) { 7180 drop_inode = 1; 7181 btrfs_free_path(path); 7182 goto out_unlock; 7183 } 7184 leaf = path->nodes[0]; 7185 ei = btrfs_item_ptr(leaf, path->slots[0], 7186 struct btrfs_file_extent_item); 7187 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7188 btrfs_set_file_extent_type(leaf, ei, 7189 BTRFS_FILE_EXTENT_INLINE); 7190 btrfs_set_file_extent_encryption(leaf, ei, 0); 7191 btrfs_set_file_extent_compression(leaf, ei, 0); 7192 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7193 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7194 7195 ptr = btrfs_file_extent_inline_start(ei); 7196 write_extent_buffer(leaf, symname, ptr, name_len); 7197 btrfs_mark_buffer_dirty(leaf); 7198 btrfs_free_path(path); 7199 7200 inode->i_op = &btrfs_symlink_inode_operations; 7201 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7202 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7203 inode_set_bytes(inode, name_len); 7204 btrfs_i_size_write(inode, name_len - 1); 7205 err = btrfs_update_inode(trans, root, inode); 7206 if (err) 7207 drop_inode = 1; 7208 7209 out_unlock: 7210 nr = trans->blocks_used; 7211 btrfs_end_transaction_throttle(trans, root); 7212 if (drop_inode) { 7213 inode_dec_link_count(inode); 7214 iput(inode); 7215 } 7216 btrfs_btree_balance_dirty(root, nr); 7217 return err; 7218 } 7219 7220 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7221 u64 start, u64 num_bytes, u64 min_size, 7222 loff_t actual_len, u64 *alloc_hint, 7223 struct btrfs_trans_handle *trans) 7224 { 7225 struct btrfs_root *root = BTRFS_I(inode)->root; 7226 struct btrfs_key ins; 7227 u64 cur_offset = start; 7228 u64 i_size; 7229 int ret = 0; 7230 bool own_trans = true; 7231 7232 if (trans) 7233 own_trans = false; 7234 while (num_bytes > 0) { 7235 if (own_trans) { 7236 trans = btrfs_start_transaction(root, 3); 7237 if (IS_ERR(trans)) { 7238 ret = PTR_ERR(trans); 7239 break; 7240 } 7241 } 7242 7243 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7244 0, *alloc_hint, (u64)-1, &ins, 1); 7245 if (ret) { 7246 if (own_trans) 7247 btrfs_end_transaction(trans, root); 7248 break; 7249 } 7250 7251 ret = insert_reserved_file_extent(trans, inode, 7252 cur_offset, ins.objectid, 7253 ins.offset, ins.offset, 7254 ins.offset, 0, 0, 0, 7255 BTRFS_FILE_EXTENT_PREALLOC); 7256 BUG_ON(ret); 7257 btrfs_drop_extent_cache(inode, cur_offset, 7258 cur_offset + ins.offset -1, 0); 7259 7260 num_bytes -= ins.offset; 7261 cur_offset += ins.offset; 7262 *alloc_hint = ins.objectid + ins.offset; 7263 7264 inode->i_ctime = CURRENT_TIME; 7265 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7266 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7267 (actual_len > inode->i_size) && 7268 (cur_offset > inode->i_size)) { 7269 if (cur_offset > actual_len) 7270 i_size = actual_len; 7271 else 7272 i_size = cur_offset; 7273 i_size_write(inode, i_size); 7274 btrfs_ordered_update_i_size(inode, i_size, NULL); 7275 } 7276 7277 ret = btrfs_update_inode(trans, root, inode); 7278 BUG_ON(ret); 7279 7280 if (own_trans) 7281 btrfs_end_transaction(trans, root); 7282 } 7283 return ret; 7284 } 7285 7286 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7287 u64 start, u64 num_bytes, u64 min_size, 7288 loff_t actual_len, u64 *alloc_hint) 7289 { 7290 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7291 min_size, actual_len, alloc_hint, 7292 NULL); 7293 } 7294 7295 int btrfs_prealloc_file_range_trans(struct inode *inode, 7296 struct btrfs_trans_handle *trans, int mode, 7297 u64 start, u64 num_bytes, u64 min_size, 7298 loff_t actual_len, u64 *alloc_hint) 7299 { 7300 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7301 min_size, actual_len, alloc_hint, trans); 7302 } 7303 7304 static int btrfs_set_page_dirty(struct page *page) 7305 { 7306 return __set_page_dirty_nobuffers(page); 7307 } 7308 7309 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags) 7310 { 7311 struct btrfs_root *root = BTRFS_I(inode)->root; 7312 7313 if (btrfs_root_readonly(root) && (mask & MAY_WRITE)) 7314 return -EROFS; 7315 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 7316 return -EACCES; 7317 return generic_permission(inode, mask, flags, btrfs_check_acl); 7318 } 7319 7320 static const struct inode_operations btrfs_dir_inode_operations = { 7321 .getattr = btrfs_getattr, 7322 .lookup = btrfs_lookup, 7323 .create = btrfs_create, 7324 .unlink = btrfs_unlink, 7325 .link = btrfs_link, 7326 .mkdir = btrfs_mkdir, 7327 .rmdir = btrfs_rmdir, 7328 .rename = btrfs_rename, 7329 .symlink = btrfs_symlink, 7330 .setattr = btrfs_setattr, 7331 .mknod = btrfs_mknod, 7332 .setxattr = btrfs_setxattr, 7333 .getxattr = btrfs_getxattr, 7334 .listxattr = btrfs_listxattr, 7335 .removexattr = btrfs_removexattr, 7336 .permission = btrfs_permission, 7337 }; 7338 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7339 .lookup = btrfs_lookup, 7340 .permission = btrfs_permission, 7341 }; 7342 7343 static const struct file_operations btrfs_dir_file_operations = { 7344 .llseek = generic_file_llseek, 7345 .read = generic_read_dir, 7346 .readdir = btrfs_real_readdir, 7347 .unlocked_ioctl = btrfs_ioctl, 7348 #ifdef CONFIG_COMPAT 7349 .compat_ioctl = btrfs_ioctl, 7350 #endif 7351 .release = btrfs_release_file, 7352 .fsync = btrfs_sync_file, 7353 }; 7354 7355 static struct extent_io_ops btrfs_extent_io_ops = { 7356 .fill_delalloc = run_delalloc_range, 7357 .submit_bio_hook = btrfs_submit_bio_hook, 7358 .merge_bio_hook = btrfs_merge_bio_hook, 7359 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7360 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7361 .writepage_start_hook = btrfs_writepage_start_hook, 7362 .readpage_io_failed_hook = btrfs_io_failed_hook, 7363 .set_bit_hook = btrfs_set_bit_hook, 7364 .clear_bit_hook = btrfs_clear_bit_hook, 7365 .merge_extent_hook = btrfs_merge_extent_hook, 7366 .split_extent_hook = btrfs_split_extent_hook, 7367 }; 7368 7369 /* 7370 * btrfs doesn't support the bmap operation because swapfiles 7371 * use bmap to make a mapping of extents in the file. They assume 7372 * these extents won't change over the life of the file and they 7373 * use the bmap result to do IO directly to the drive. 7374 * 7375 * the btrfs bmap call would return logical addresses that aren't 7376 * suitable for IO and they also will change frequently as COW 7377 * operations happen. So, swapfile + btrfs == corruption. 7378 * 7379 * For now we're avoiding this by dropping bmap. 7380 */ 7381 static const struct address_space_operations btrfs_aops = { 7382 .readpage = btrfs_readpage, 7383 .writepage = btrfs_writepage, 7384 .writepages = btrfs_writepages, 7385 .readpages = btrfs_readpages, 7386 .direct_IO = btrfs_direct_IO, 7387 .invalidatepage = btrfs_invalidatepage, 7388 .releasepage = btrfs_releasepage, 7389 .set_page_dirty = btrfs_set_page_dirty, 7390 .error_remove_page = generic_error_remove_page, 7391 }; 7392 7393 static const struct address_space_operations btrfs_symlink_aops = { 7394 .readpage = btrfs_readpage, 7395 .writepage = btrfs_writepage, 7396 .invalidatepage = btrfs_invalidatepage, 7397 .releasepage = btrfs_releasepage, 7398 }; 7399 7400 static const struct inode_operations btrfs_file_inode_operations = { 7401 .getattr = btrfs_getattr, 7402 .setattr = btrfs_setattr, 7403 .setxattr = btrfs_setxattr, 7404 .getxattr = btrfs_getxattr, 7405 .listxattr = btrfs_listxattr, 7406 .removexattr = btrfs_removexattr, 7407 .permission = btrfs_permission, 7408 .fiemap = btrfs_fiemap, 7409 }; 7410 static const struct inode_operations btrfs_special_inode_operations = { 7411 .getattr = btrfs_getattr, 7412 .setattr = btrfs_setattr, 7413 .permission = btrfs_permission, 7414 .setxattr = btrfs_setxattr, 7415 .getxattr = btrfs_getxattr, 7416 .listxattr = btrfs_listxattr, 7417 .removexattr = btrfs_removexattr, 7418 }; 7419 static const struct inode_operations btrfs_symlink_inode_operations = { 7420 .readlink = generic_readlink, 7421 .follow_link = page_follow_link_light, 7422 .put_link = page_put_link, 7423 .getattr = btrfs_getattr, 7424 .permission = btrfs_permission, 7425 .setxattr = btrfs_setxattr, 7426 .getxattr = btrfs_getxattr, 7427 .listxattr = btrfs_listxattr, 7428 .removexattr = btrfs_removexattr, 7429 }; 7430 7431 const struct dentry_operations btrfs_dentry_operations = { 7432 .d_delete = btrfs_dentry_delete, 7433 }; 7434