xref: /openbmc/linux/fs/btrfs/inode.c (revision 1b073ebb174d0c7109b438e0a5eb4495137803ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 
59 struct btrfs_iget_args {
60 	u64 ino;
61 	struct btrfs_root *root;
62 };
63 
64 struct btrfs_dio_data {
65 	ssize_t submitted;
66 	struct extent_changeset *data_reserved;
67 };
68 
69 struct btrfs_rename_ctx {
70 	/* Output field. Stores the index number of the old directory entry. */
71 	u64 index;
72 };
73 
74 static const struct inode_operations btrfs_dir_inode_operations;
75 static const struct inode_operations btrfs_symlink_inode_operations;
76 static const struct inode_operations btrfs_special_inode_operations;
77 static const struct inode_operations btrfs_file_inode_operations;
78 static const struct address_space_operations btrfs_aops;
79 static const struct file_operations btrfs_dir_file_operations;
80 
81 static struct kmem_cache *btrfs_inode_cachep;
82 struct kmem_cache *btrfs_trans_handle_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85 struct kmem_cache *btrfs_free_space_bitmap_cachep;
86 
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct btrfs_inode *inode,
91 				   struct page *locked_page,
92 				   u64 start, u64 end, int *page_started,
93 				   unsigned long *nr_written, int unlock);
94 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
95 				       u64 len, u64 orig_start, u64 block_start,
96 				       u64 block_len, u64 orig_block_len,
97 				       u64 ram_bytes, int compress_type,
98 				       int type);
99 
100 static void __endio_write_update_ordered(struct btrfs_inode *inode,
101 					 const u64 offset, const u64 bytes,
102 					 const bool uptodate);
103 
104 /*
105  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
106  *
107  * ilock_flags can have the following bit set:
108  *
109  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
110  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
111  *		     return -EAGAIN
112  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
113  */
114 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
115 {
116 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
117 		if (ilock_flags & BTRFS_ILOCK_TRY) {
118 			if (!inode_trylock_shared(inode))
119 				return -EAGAIN;
120 			else
121 				return 0;
122 		}
123 		inode_lock_shared(inode);
124 	} else {
125 		if (ilock_flags & BTRFS_ILOCK_TRY) {
126 			if (!inode_trylock(inode))
127 				return -EAGAIN;
128 			else
129 				return 0;
130 		}
131 		inode_lock(inode);
132 	}
133 	if (ilock_flags & BTRFS_ILOCK_MMAP)
134 		down_write(&BTRFS_I(inode)->i_mmap_lock);
135 	return 0;
136 }
137 
138 /*
139  * btrfs_inode_unlock - unock inode i_rwsem
140  *
141  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
142  * to decide whether the lock acquired is shared or exclusive.
143  */
144 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
145 {
146 	if (ilock_flags & BTRFS_ILOCK_MMAP)
147 		up_write(&BTRFS_I(inode)->i_mmap_lock);
148 	if (ilock_flags & BTRFS_ILOCK_SHARED)
149 		inode_unlock_shared(inode);
150 	else
151 		inode_unlock(inode);
152 }
153 
154 /*
155  * Cleanup all submitted ordered extents in specified range to handle errors
156  * from the btrfs_run_delalloc_range() callback.
157  *
158  * NOTE: caller must ensure that when an error happens, it can not call
159  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
160  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
161  * to be released, which we want to happen only when finishing the ordered
162  * extent (btrfs_finish_ordered_io()).
163  */
164 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
165 						 struct page *locked_page,
166 						 u64 offset, u64 bytes)
167 {
168 	unsigned long index = offset >> PAGE_SHIFT;
169 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
170 	u64 page_start = page_offset(locked_page);
171 	u64 page_end = page_start + PAGE_SIZE - 1;
172 
173 	struct page *page;
174 
175 	while (index <= end_index) {
176 		/*
177 		 * For locked page, we will call end_extent_writepage() on it
178 		 * in run_delalloc_range() for the error handling.  That
179 		 * end_extent_writepage() function will call
180 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
181 		 * run the ordered extent accounting.
182 		 *
183 		 * Here we can't just clear the Ordered bit, or
184 		 * btrfs_mark_ordered_io_finished() would skip the accounting
185 		 * for the page range, and the ordered extent will never finish.
186 		 */
187 		if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
188 			index++;
189 			continue;
190 		}
191 		page = find_get_page(inode->vfs_inode.i_mapping, index);
192 		index++;
193 		if (!page)
194 			continue;
195 
196 		/*
197 		 * Here we just clear all Ordered bits for every page in the
198 		 * range, then __endio_write_update_ordered() will handle
199 		 * the ordered extent accounting for the range.
200 		 */
201 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
202 					       offset, bytes);
203 		put_page(page);
204 	}
205 
206 	/* The locked page covers the full range, nothing needs to be done */
207 	if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
208 		return;
209 	/*
210 	 * In case this page belongs to the delalloc range being instantiated
211 	 * then skip it, since the first page of a range is going to be
212 	 * properly cleaned up by the caller of run_delalloc_range
213 	 */
214 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
215 		bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
216 		offset = page_offset(locked_page) + PAGE_SIZE;
217 	}
218 
219 	return __endio_write_update_ordered(inode, offset, bytes, false);
220 }
221 
222 static int btrfs_dirty_inode(struct inode *inode);
223 
224 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
225 				     struct inode *inode,  struct inode *dir,
226 				     const struct qstr *qstr)
227 {
228 	int err;
229 
230 	err = btrfs_init_acl(trans, inode, dir);
231 	if (!err)
232 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
233 	return err;
234 }
235 
236 /*
237  * this does all the hard work for inserting an inline extent into
238  * the btree.  The caller should have done a btrfs_drop_extents so that
239  * no overlapping inline items exist in the btree
240  */
241 static int insert_inline_extent(struct btrfs_trans_handle *trans,
242 				struct btrfs_path *path,
243 				struct btrfs_inode *inode, bool extent_inserted,
244 				size_t size, size_t compressed_size,
245 				int compress_type,
246 				struct page **compressed_pages,
247 				bool update_i_size)
248 {
249 	struct btrfs_root *root = inode->root;
250 	struct extent_buffer *leaf;
251 	struct page *page = NULL;
252 	char *kaddr;
253 	unsigned long ptr;
254 	struct btrfs_file_extent_item *ei;
255 	int ret;
256 	size_t cur_size = size;
257 	u64 i_size;
258 
259 	ASSERT((compressed_size > 0 && compressed_pages) ||
260 	       (compressed_size == 0 && !compressed_pages));
261 
262 	if (compressed_size && compressed_pages)
263 		cur_size = compressed_size;
264 
265 	if (!extent_inserted) {
266 		struct btrfs_key key;
267 		size_t datasize;
268 
269 		key.objectid = btrfs_ino(inode);
270 		key.offset = 0;
271 		key.type = BTRFS_EXTENT_DATA_KEY;
272 
273 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
274 		ret = btrfs_insert_empty_item(trans, root, path, &key,
275 					      datasize);
276 		if (ret)
277 			goto fail;
278 	}
279 	leaf = path->nodes[0];
280 	ei = btrfs_item_ptr(leaf, path->slots[0],
281 			    struct btrfs_file_extent_item);
282 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
283 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
284 	btrfs_set_file_extent_encryption(leaf, ei, 0);
285 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
286 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
287 	ptr = btrfs_file_extent_inline_start(ei);
288 
289 	if (compress_type != BTRFS_COMPRESS_NONE) {
290 		struct page *cpage;
291 		int i = 0;
292 		while (compressed_size > 0) {
293 			cpage = compressed_pages[i];
294 			cur_size = min_t(unsigned long, compressed_size,
295 				       PAGE_SIZE);
296 
297 			kaddr = kmap_atomic(cpage);
298 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
299 			kunmap_atomic(kaddr);
300 
301 			i++;
302 			ptr += cur_size;
303 			compressed_size -= cur_size;
304 		}
305 		btrfs_set_file_extent_compression(leaf, ei,
306 						  compress_type);
307 	} else {
308 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
309 		btrfs_set_file_extent_compression(leaf, ei, 0);
310 		kaddr = kmap_atomic(page);
311 		write_extent_buffer(leaf, kaddr, ptr, size);
312 		kunmap_atomic(kaddr);
313 		put_page(page);
314 	}
315 	btrfs_mark_buffer_dirty(leaf);
316 	btrfs_release_path(path);
317 
318 	/*
319 	 * We align size to sectorsize for inline extents just for simplicity
320 	 * sake.
321 	 */
322 	ret = btrfs_inode_set_file_extent_range(inode, 0,
323 					ALIGN(size, root->fs_info->sectorsize));
324 	if (ret)
325 		goto fail;
326 
327 	/*
328 	 * We're an inline extent, so nobody can extend the file past i_size
329 	 * without locking a page we already have locked.
330 	 *
331 	 * We must do any i_size and inode updates before we unlock the pages.
332 	 * Otherwise we could end up racing with unlink.
333 	 */
334 	i_size = i_size_read(&inode->vfs_inode);
335 	if (update_i_size && size > i_size) {
336 		i_size_write(&inode->vfs_inode, size);
337 		i_size = size;
338 	}
339 	inode->disk_i_size = i_size;
340 
341 fail:
342 	return ret;
343 }
344 
345 
346 /*
347  * conditionally insert an inline extent into the file.  This
348  * does the checks required to make sure the data is small enough
349  * to fit as an inline extent.
350  */
351 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
352 					  size_t compressed_size,
353 					  int compress_type,
354 					  struct page **compressed_pages,
355 					  bool update_i_size)
356 {
357 	struct btrfs_drop_extents_args drop_args = { 0 };
358 	struct btrfs_root *root = inode->root;
359 	struct btrfs_fs_info *fs_info = root->fs_info;
360 	struct btrfs_trans_handle *trans;
361 	u64 data_len = (compressed_size ?: size);
362 	int ret;
363 	struct btrfs_path *path;
364 
365 	/*
366 	 * We can create an inline extent if it ends at or beyond the current
367 	 * i_size, is no larger than a sector (decompressed), and the (possibly
368 	 * compressed) data fits in a leaf and the configured maximum inline
369 	 * size.
370 	 */
371 	if (size < i_size_read(&inode->vfs_inode) ||
372 	    size > fs_info->sectorsize ||
373 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
374 	    data_len > fs_info->max_inline)
375 		return 1;
376 
377 	path = btrfs_alloc_path();
378 	if (!path)
379 		return -ENOMEM;
380 
381 	trans = btrfs_join_transaction(root);
382 	if (IS_ERR(trans)) {
383 		btrfs_free_path(path);
384 		return PTR_ERR(trans);
385 	}
386 	trans->block_rsv = &inode->block_rsv;
387 
388 	drop_args.path = path;
389 	drop_args.start = 0;
390 	drop_args.end = fs_info->sectorsize;
391 	drop_args.drop_cache = true;
392 	drop_args.replace_extent = true;
393 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
394 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
395 	if (ret) {
396 		btrfs_abort_transaction(trans, ret);
397 		goto out;
398 	}
399 
400 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
401 				   size, compressed_size, compress_type,
402 				   compressed_pages, update_i_size);
403 	if (ret && ret != -ENOSPC) {
404 		btrfs_abort_transaction(trans, ret);
405 		goto out;
406 	} else if (ret == -ENOSPC) {
407 		ret = 1;
408 		goto out;
409 	}
410 
411 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
412 	ret = btrfs_update_inode(trans, root, inode);
413 	if (ret && ret != -ENOSPC) {
414 		btrfs_abort_transaction(trans, ret);
415 		goto out;
416 	} else if (ret == -ENOSPC) {
417 		ret = 1;
418 		goto out;
419 	}
420 
421 	btrfs_set_inode_full_sync(inode);
422 out:
423 	/*
424 	 * Don't forget to free the reserved space, as for inlined extent
425 	 * it won't count as data extent, free them directly here.
426 	 * And at reserve time, it's always aligned to page size, so
427 	 * just free one page here.
428 	 */
429 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
430 	btrfs_free_path(path);
431 	btrfs_end_transaction(trans);
432 	return ret;
433 }
434 
435 struct async_extent {
436 	u64 start;
437 	u64 ram_size;
438 	u64 compressed_size;
439 	struct page **pages;
440 	unsigned long nr_pages;
441 	int compress_type;
442 	struct list_head list;
443 };
444 
445 struct async_chunk {
446 	struct inode *inode;
447 	struct page *locked_page;
448 	u64 start;
449 	u64 end;
450 	unsigned int write_flags;
451 	struct list_head extents;
452 	struct cgroup_subsys_state *blkcg_css;
453 	struct btrfs_work work;
454 	struct async_cow *async_cow;
455 };
456 
457 struct async_cow {
458 	atomic_t num_chunks;
459 	struct async_chunk chunks[];
460 };
461 
462 static noinline int add_async_extent(struct async_chunk *cow,
463 				     u64 start, u64 ram_size,
464 				     u64 compressed_size,
465 				     struct page **pages,
466 				     unsigned long nr_pages,
467 				     int compress_type)
468 {
469 	struct async_extent *async_extent;
470 
471 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
472 	BUG_ON(!async_extent); /* -ENOMEM */
473 	async_extent->start = start;
474 	async_extent->ram_size = ram_size;
475 	async_extent->compressed_size = compressed_size;
476 	async_extent->pages = pages;
477 	async_extent->nr_pages = nr_pages;
478 	async_extent->compress_type = compress_type;
479 	list_add_tail(&async_extent->list, &cow->extents);
480 	return 0;
481 }
482 
483 /*
484  * Check if the inode has flags compatible with compression
485  */
486 static inline bool inode_can_compress(struct btrfs_inode *inode)
487 {
488 	if (inode->flags & BTRFS_INODE_NODATACOW ||
489 	    inode->flags & BTRFS_INODE_NODATASUM)
490 		return false;
491 	return true;
492 }
493 
494 /*
495  * Check if the inode needs to be submitted to compression, based on mount
496  * options, defragmentation, properties or heuristics.
497  */
498 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
499 				      u64 end)
500 {
501 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
502 
503 	if (!inode_can_compress(inode)) {
504 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
505 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
506 			btrfs_ino(inode));
507 		return 0;
508 	}
509 	/*
510 	 * Special check for subpage.
511 	 *
512 	 * We lock the full page then run each delalloc range in the page, thus
513 	 * for the following case, we will hit some subpage specific corner case:
514 	 *
515 	 * 0		32K		64K
516 	 * |	|///////|	|///////|
517 	 *		\- A		\- B
518 	 *
519 	 * In above case, both range A and range B will try to unlock the full
520 	 * page [0, 64K), causing the one finished later will have page
521 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
522 	 *
523 	 * So here we add an artificial limit that subpage compression can only
524 	 * if the range is fully page aligned.
525 	 *
526 	 * In theory we only need to ensure the first page is fully covered, but
527 	 * the tailing partial page will be locked until the full compression
528 	 * finishes, delaying the write of other range.
529 	 *
530 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
531 	 * first to prevent any submitted async extent to unlock the full page.
532 	 * By this, we can ensure for subpage case that only the last async_cow
533 	 * will unlock the full page.
534 	 */
535 	if (fs_info->sectorsize < PAGE_SIZE) {
536 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
537 		    !IS_ALIGNED(end + 1, PAGE_SIZE))
538 			return 0;
539 	}
540 
541 	/* force compress */
542 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
543 		return 1;
544 	/* defrag ioctl */
545 	if (inode->defrag_compress)
546 		return 1;
547 	/* bad compression ratios */
548 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
549 		return 0;
550 	if (btrfs_test_opt(fs_info, COMPRESS) ||
551 	    inode->flags & BTRFS_INODE_COMPRESS ||
552 	    inode->prop_compress)
553 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
554 	return 0;
555 }
556 
557 static inline void inode_should_defrag(struct btrfs_inode *inode,
558 		u64 start, u64 end, u64 num_bytes, u32 small_write)
559 {
560 	/* If this is a small write inside eof, kick off a defrag */
561 	if (num_bytes < small_write &&
562 	    (start > 0 || end + 1 < inode->disk_i_size))
563 		btrfs_add_inode_defrag(NULL, inode, small_write);
564 }
565 
566 /*
567  * we create compressed extents in two phases.  The first
568  * phase compresses a range of pages that have already been
569  * locked (both pages and state bits are locked).
570  *
571  * This is done inside an ordered work queue, and the compression
572  * is spread across many cpus.  The actual IO submission is step
573  * two, and the ordered work queue takes care of making sure that
574  * happens in the same order things were put onto the queue by
575  * writepages and friends.
576  *
577  * If this code finds it can't get good compression, it puts an
578  * entry onto the work queue to write the uncompressed bytes.  This
579  * makes sure that both compressed inodes and uncompressed inodes
580  * are written in the same order that the flusher thread sent them
581  * down.
582  */
583 static noinline int compress_file_range(struct async_chunk *async_chunk)
584 {
585 	struct inode *inode = async_chunk->inode;
586 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
587 	u64 blocksize = fs_info->sectorsize;
588 	u64 start = async_chunk->start;
589 	u64 end = async_chunk->end;
590 	u64 actual_end;
591 	u64 i_size;
592 	int ret = 0;
593 	struct page **pages = NULL;
594 	unsigned long nr_pages;
595 	unsigned long total_compressed = 0;
596 	unsigned long total_in = 0;
597 	int i;
598 	int will_compress;
599 	int compress_type = fs_info->compress_type;
600 	int compressed_extents = 0;
601 	int redirty = 0;
602 
603 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
604 			SZ_16K);
605 
606 	/*
607 	 * We need to save i_size before now because it could change in between
608 	 * us evaluating the size and assigning it.  This is because we lock and
609 	 * unlock the page in truncate and fallocate, and then modify the i_size
610 	 * later on.
611 	 *
612 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
613 	 * does that for us.
614 	 */
615 	barrier();
616 	i_size = i_size_read(inode);
617 	barrier();
618 	actual_end = min_t(u64, i_size, end + 1);
619 again:
620 	will_compress = 0;
621 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
622 	nr_pages = min_t(unsigned long, nr_pages,
623 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
624 
625 	/*
626 	 * we don't want to send crud past the end of i_size through
627 	 * compression, that's just a waste of CPU time.  So, if the
628 	 * end of the file is before the start of our current
629 	 * requested range of bytes, we bail out to the uncompressed
630 	 * cleanup code that can deal with all of this.
631 	 *
632 	 * It isn't really the fastest way to fix things, but this is a
633 	 * very uncommon corner.
634 	 */
635 	if (actual_end <= start)
636 		goto cleanup_and_bail_uncompressed;
637 
638 	total_compressed = actual_end - start;
639 
640 	/*
641 	 * Skip compression for a small file range(<=blocksize) that
642 	 * isn't an inline extent, since it doesn't save disk space at all.
643 	 */
644 	if (total_compressed <= blocksize &&
645 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
646 		goto cleanup_and_bail_uncompressed;
647 
648 	/*
649 	 * For subpage case, we require full page alignment for the sector
650 	 * aligned range.
651 	 * Thus we must also check against @actual_end, not just @end.
652 	 */
653 	if (blocksize < PAGE_SIZE) {
654 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
655 		    !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
656 			goto cleanup_and_bail_uncompressed;
657 	}
658 
659 	total_compressed = min_t(unsigned long, total_compressed,
660 			BTRFS_MAX_UNCOMPRESSED);
661 	total_in = 0;
662 	ret = 0;
663 
664 	/*
665 	 * we do compression for mount -o compress and when the
666 	 * inode has not been flagged as nocompress.  This flag can
667 	 * change at any time if we discover bad compression ratios.
668 	 */
669 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
670 		WARN_ON(pages);
671 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
672 		if (!pages) {
673 			/* just bail out to the uncompressed code */
674 			nr_pages = 0;
675 			goto cont;
676 		}
677 
678 		if (BTRFS_I(inode)->defrag_compress)
679 			compress_type = BTRFS_I(inode)->defrag_compress;
680 		else if (BTRFS_I(inode)->prop_compress)
681 			compress_type = BTRFS_I(inode)->prop_compress;
682 
683 		/*
684 		 * we need to call clear_page_dirty_for_io on each
685 		 * page in the range.  Otherwise applications with the file
686 		 * mmap'd can wander in and change the page contents while
687 		 * we are compressing them.
688 		 *
689 		 * If the compression fails for any reason, we set the pages
690 		 * dirty again later on.
691 		 *
692 		 * Note that the remaining part is redirtied, the start pointer
693 		 * has moved, the end is the original one.
694 		 */
695 		if (!redirty) {
696 			extent_range_clear_dirty_for_io(inode, start, end);
697 			redirty = 1;
698 		}
699 
700 		/* Compression level is applied here and only here */
701 		ret = btrfs_compress_pages(
702 			compress_type | (fs_info->compress_level << 4),
703 					   inode->i_mapping, start,
704 					   pages,
705 					   &nr_pages,
706 					   &total_in,
707 					   &total_compressed);
708 
709 		if (!ret) {
710 			unsigned long offset = offset_in_page(total_compressed);
711 			struct page *page = pages[nr_pages - 1];
712 
713 			/* zero the tail end of the last page, we might be
714 			 * sending it down to disk
715 			 */
716 			if (offset)
717 				memzero_page(page, offset, PAGE_SIZE - offset);
718 			will_compress = 1;
719 		}
720 	}
721 cont:
722 	/*
723 	 * Check cow_file_range() for why we don't even try to create inline
724 	 * extent for subpage case.
725 	 */
726 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
727 		/* lets try to make an inline extent */
728 		if (ret || total_in < actual_end) {
729 			/* we didn't compress the entire range, try
730 			 * to make an uncompressed inline extent.
731 			 */
732 			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
733 						    0, BTRFS_COMPRESS_NONE,
734 						    NULL, false);
735 		} else {
736 			/* try making a compressed inline extent */
737 			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
738 						    total_compressed,
739 						    compress_type, pages,
740 						    false);
741 		}
742 		if (ret <= 0) {
743 			unsigned long clear_flags = EXTENT_DELALLOC |
744 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
745 				EXTENT_DO_ACCOUNTING;
746 			unsigned long page_error_op;
747 
748 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
749 
750 			/*
751 			 * inline extent creation worked or returned error,
752 			 * we don't need to create any more async work items.
753 			 * Unlock and free up our temp pages.
754 			 *
755 			 * We use DO_ACCOUNTING here because we need the
756 			 * delalloc_release_metadata to be done _after_ we drop
757 			 * our outstanding extent for clearing delalloc for this
758 			 * range.
759 			 */
760 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
761 						     NULL,
762 						     clear_flags,
763 						     PAGE_UNLOCK |
764 						     PAGE_START_WRITEBACK |
765 						     page_error_op |
766 						     PAGE_END_WRITEBACK);
767 
768 			/*
769 			 * Ensure we only free the compressed pages if we have
770 			 * them allocated, as we can still reach here with
771 			 * inode_need_compress() == false.
772 			 */
773 			if (pages) {
774 				for (i = 0; i < nr_pages; i++) {
775 					WARN_ON(pages[i]->mapping);
776 					put_page(pages[i]);
777 				}
778 				kfree(pages);
779 			}
780 			return 0;
781 		}
782 	}
783 
784 	if (will_compress) {
785 		/*
786 		 * we aren't doing an inline extent round the compressed size
787 		 * up to a block size boundary so the allocator does sane
788 		 * things
789 		 */
790 		total_compressed = ALIGN(total_compressed, blocksize);
791 
792 		/*
793 		 * one last check to make sure the compression is really a
794 		 * win, compare the page count read with the blocks on disk,
795 		 * compression must free at least one sector size
796 		 */
797 		total_in = round_up(total_in, fs_info->sectorsize);
798 		if (total_compressed + blocksize <= total_in) {
799 			compressed_extents++;
800 
801 			/*
802 			 * The async work queues will take care of doing actual
803 			 * allocation on disk for these compressed pages, and
804 			 * will submit them to the elevator.
805 			 */
806 			add_async_extent(async_chunk, start, total_in,
807 					total_compressed, pages, nr_pages,
808 					compress_type);
809 
810 			if (start + total_in < end) {
811 				start += total_in;
812 				pages = NULL;
813 				cond_resched();
814 				goto again;
815 			}
816 			return compressed_extents;
817 		}
818 	}
819 	if (pages) {
820 		/*
821 		 * the compression code ran but failed to make things smaller,
822 		 * free any pages it allocated and our page pointer array
823 		 */
824 		for (i = 0; i < nr_pages; i++) {
825 			WARN_ON(pages[i]->mapping);
826 			put_page(pages[i]);
827 		}
828 		kfree(pages);
829 		pages = NULL;
830 		total_compressed = 0;
831 		nr_pages = 0;
832 
833 		/* flag the file so we don't compress in the future */
834 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
835 		    !(BTRFS_I(inode)->prop_compress)) {
836 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
837 		}
838 	}
839 cleanup_and_bail_uncompressed:
840 	/*
841 	 * No compression, but we still need to write the pages in the file
842 	 * we've been given so far.  redirty the locked page if it corresponds
843 	 * to our extent and set things up for the async work queue to run
844 	 * cow_file_range to do the normal delalloc dance.
845 	 */
846 	if (async_chunk->locked_page &&
847 	    (page_offset(async_chunk->locked_page) >= start &&
848 	     page_offset(async_chunk->locked_page)) <= end) {
849 		__set_page_dirty_nobuffers(async_chunk->locked_page);
850 		/* unlocked later on in the async handlers */
851 	}
852 
853 	if (redirty)
854 		extent_range_redirty_for_io(inode, start, end);
855 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
856 			 BTRFS_COMPRESS_NONE);
857 	compressed_extents++;
858 
859 	return compressed_extents;
860 }
861 
862 static void free_async_extent_pages(struct async_extent *async_extent)
863 {
864 	int i;
865 
866 	if (!async_extent->pages)
867 		return;
868 
869 	for (i = 0; i < async_extent->nr_pages; i++) {
870 		WARN_ON(async_extent->pages[i]->mapping);
871 		put_page(async_extent->pages[i]);
872 	}
873 	kfree(async_extent->pages);
874 	async_extent->nr_pages = 0;
875 	async_extent->pages = NULL;
876 }
877 
878 static int submit_uncompressed_range(struct btrfs_inode *inode,
879 				     struct async_extent *async_extent,
880 				     struct page *locked_page)
881 {
882 	u64 start = async_extent->start;
883 	u64 end = async_extent->start + async_extent->ram_size - 1;
884 	unsigned long nr_written = 0;
885 	int page_started = 0;
886 	int ret;
887 
888 	/*
889 	 * Call cow_file_range() to run the delalloc range directly, since we
890 	 * won't go to NOCOW or async path again.
891 	 *
892 	 * Also we call cow_file_range() with @unlock_page == 0, so that we
893 	 * can directly submit them without interruption.
894 	 */
895 	ret = cow_file_range(inode, locked_page, start, end, &page_started,
896 			     &nr_written, 0);
897 	/* Inline extent inserted, page gets unlocked and everything is done */
898 	if (page_started) {
899 		ret = 0;
900 		goto out;
901 	}
902 	if (ret < 0) {
903 		if (locked_page)
904 			unlock_page(locked_page);
905 		goto out;
906 	}
907 
908 	ret = extent_write_locked_range(&inode->vfs_inode, start, end);
909 	/* All pages will be unlocked, including @locked_page */
910 out:
911 	kfree(async_extent);
912 	return ret;
913 }
914 
915 static int submit_one_async_extent(struct btrfs_inode *inode,
916 				   struct async_chunk *async_chunk,
917 				   struct async_extent *async_extent,
918 				   u64 *alloc_hint)
919 {
920 	struct extent_io_tree *io_tree = &inode->io_tree;
921 	struct btrfs_root *root = inode->root;
922 	struct btrfs_fs_info *fs_info = root->fs_info;
923 	struct btrfs_key ins;
924 	struct page *locked_page = NULL;
925 	struct extent_map *em;
926 	int ret = 0;
927 	u64 start = async_extent->start;
928 	u64 end = async_extent->start + async_extent->ram_size - 1;
929 
930 	/*
931 	 * If async_chunk->locked_page is in the async_extent range, we need to
932 	 * handle it.
933 	 */
934 	if (async_chunk->locked_page) {
935 		u64 locked_page_start = page_offset(async_chunk->locked_page);
936 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
937 
938 		if (!(start >= locked_page_end || end <= locked_page_start))
939 			locked_page = async_chunk->locked_page;
940 	}
941 	lock_extent(io_tree, start, end);
942 
943 	/* We have fall back to uncompressed write */
944 	if (!async_extent->pages)
945 		return submit_uncompressed_range(inode, async_extent, locked_page);
946 
947 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
948 				   async_extent->compressed_size,
949 				   async_extent->compressed_size,
950 				   0, *alloc_hint, &ins, 1, 1);
951 	if (ret) {
952 		free_async_extent_pages(async_extent);
953 		/*
954 		 * Here we used to try again by going back to non-compressed
955 		 * path for ENOSPC.  But we can't reserve space even for
956 		 * compressed size, how could it work for uncompressed size
957 		 * which requires larger size?  So here we directly go error
958 		 * path.
959 		 */
960 		goto out_free;
961 	}
962 
963 	/* Here we're doing allocation and writeback of the compressed pages */
964 	em = create_io_em(inode, start,
965 			  async_extent->ram_size,	/* len */
966 			  start,			/* orig_start */
967 			  ins.objectid,			/* block_start */
968 			  ins.offset,			/* block_len */
969 			  ins.offset,			/* orig_block_len */
970 			  async_extent->ram_size,	/* ram_bytes */
971 			  async_extent->compress_type,
972 			  BTRFS_ORDERED_COMPRESSED);
973 	if (IS_ERR(em)) {
974 		ret = PTR_ERR(em);
975 		goto out_free_reserve;
976 	}
977 	free_extent_map(em);
978 
979 	ret = btrfs_add_ordered_extent(inode, start,		/* file_offset */
980 				       async_extent->ram_size,	/* num_bytes */
981 				       async_extent->ram_size,	/* ram_bytes */
982 				       ins.objectid,		/* disk_bytenr */
983 				       ins.offset,		/* disk_num_bytes */
984 				       0,			/* offset */
985 				       1 << BTRFS_ORDERED_COMPRESSED,
986 				       async_extent->compress_type);
987 	if (ret) {
988 		btrfs_drop_extent_cache(inode, start, end, 0);
989 		goto out_free_reserve;
990 	}
991 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
992 
993 	/* Clear dirty, set writeback and unlock the pages. */
994 	extent_clear_unlock_delalloc(inode, start, end,
995 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
996 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
997 	if (btrfs_submit_compressed_write(inode, start,	/* file_offset */
998 			    async_extent->ram_size,	/* num_bytes */
999 			    ins.objectid,		/* disk_bytenr */
1000 			    ins.offset,			/* compressed_len */
1001 			    async_extent->pages,	/* compressed_pages */
1002 			    async_extent->nr_pages,
1003 			    async_chunk->write_flags,
1004 			    async_chunk->blkcg_css, true)) {
1005 		const u64 start = async_extent->start;
1006 		const u64 end = start + async_extent->ram_size - 1;
1007 
1008 		btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1009 
1010 		extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1011 					     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1012 		free_async_extent_pages(async_extent);
1013 	}
1014 	*alloc_hint = ins.objectid + ins.offset;
1015 	kfree(async_extent);
1016 	return ret;
1017 
1018 out_free_reserve:
1019 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1020 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1021 out_free:
1022 	extent_clear_unlock_delalloc(inode, start, end,
1023 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1024 				     EXTENT_DELALLOC_NEW |
1025 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1026 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1027 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1028 	free_async_extent_pages(async_extent);
1029 	kfree(async_extent);
1030 	return ret;
1031 }
1032 
1033 /*
1034  * Phase two of compressed writeback.  This is the ordered portion of the code,
1035  * which only gets called in the order the work was queued.  We walk all the
1036  * async extents created by compress_file_range and send them down to the disk.
1037  */
1038 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1039 {
1040 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1041 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1042 	struct async_extent *async_extent;
1043 	u64 alloc_hint = 0;
1044 	int ret = 0;
1045 
1046 	while (!list_empty(&async_chunk->extents)) {
1047 		u64 extent_start;
1048 		u64 ram_size;
1049 
1050 		async_extent = list_entry(async_chunk->extents.next,
1051 					  struct async_extent, list);
1052 		list_del(&async_extent->list);
1053 		extent_start = async_extent->start;
1054 		ram_size = async_extent->ram_size;
1055 
1056 		ret = submit_one_async_extent(inode, async_chunk, async_extent,
1057 					      &alloc_hint);
1058 		btrfs_debug(fs_info,
1059 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1060 			    inode->root->root_key.objectid,
1061 			    btrfs_ino(inode), extent_start, ram_size, ret);
1062 	}
1063 }
1064 
1065 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1066 				      u64 num_bytes)
1067 {
1068 	struct extent_map_tree *em_tree = &inode->extent_tree;
1069 	struct extent_map *em;
1070 	u64 alloc_hint = 0;
1071 
1072 	read_lock(&em_tree->lock);
1073 	em = search_extent_mapping(em_tree, start, num_bytes);
1074 	if (em) {
1075 		/*
1076 		 * if block start isn't an actual block number then find the
1077 		 * first block in this inode and use that as a hint.  If that
1078 		 * block is also bogus then just don't worry about it.
1079 		 */
1080 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1081 			free_extent_map(em);
1082 			em = search_extent_mapping(em_tree, 0, 0);
1083 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1084 				alloc_hint = em->block_start;
1085 			if (em)
1086 				free_extent_map(em);
1087 		} else {
1088 			alloc_hint = em->block_start;
1089 			free_extent_map(em);
1090 		}
1091 	}
1092 	read_unlock(&em_tree->lock);
1093 
1094 	return alloc_hint;
1095 }
1096 
1097 /*
1098  * when extent_io.c finds a delayed allocation range in the file,
1099  * the call backs end up in this code.  The basic idea is to
1100  * allocate extents on disk for the range, and create ordered data structs
1101  * in ram to track those extents.
1102  *
1103  * locked_page is the page that writepage had locked already.  We use
1104  * it to make sure we don't do extra locks or unlocks.
1105  *
1106  * *page_started is set to one if we unlock locked_page and do everything
1107  * required to start IO on it.  It may be clean and already done with
1108  * IO when we return.
1109  */
1110 static noinline int cow_file_range(struct btrfs_inode *inode,
1111 				   struct page *locked_page,
1112 				   u64 start, u64 end, int *page_started,
1113 				   unsigned long *nr_written, int unlock)
1114 {
1115 	struct btrfs_root *root = inode->root;
1116 	struct btrfs_fs_info *fs_info = root->fs_info;
1117 	u64 alloc_hint = 0;
1118 	u64 num_bytes;
1119 	unsigned long ram_size;
1120 	u64 cur_alloc_size = 0;
1121 	u64 min_alloc_size;
1122 	u64 blocksize = fs_info->sectorsize;
1123 	struct btrfs_key ins;
1124 	struct extent_map *em;
1125 	unsigned clear_bits;
1126 	unsigned long page_ops;
1127 	bool extent_reserved = false;
1128 	int ret = 0;
1129 
1130 	if (btrfs_is_free_space_inode(inode)) {
1131 		ret = -EINVAL;
1132 		goto out_unlock;
1133 	}
1134 
1135 	num_bytes = ALIGN(end - start + 1, blocksize);
1136 	num_bytes = max(blocksize,  num_bytes);
1137 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1138 
1139 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1140 
1141 	/*
1142 	 * Due to the page size limit, for subpage we can only trigger the
1143 	 * writeback for the dirty sectors of page, that means data writeback
1144 	 * is doing more writeback than what we want.
1145 	 *
1146 	 * This is especially unexpected for some call sites like fallocate,
1147 	 * where we only increase i_size after everything is done.
1148 	 * This means we can trigger inline extent even if we didn't want to.
1149 	 * So here we skip inline extent creation completely.
1150 	 */
1151 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1152 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1153 				       end + 1);
1154 
1155 		/* lets try to make an inline extent */
1156 		ret = cow_file_range_inline(inode, actual_end, 0,
1157 					    BTRFS_COMPRESS_NONE, NULL, false);
1158 		if (ret == 0) {
1159 			/*
1160 			 * We use DO_ACCOUNTING here because we need the
1161 			 * delalloc_release_metadata to be run _after_ we drop
1162 			 * our outstanding extent for clearing delalloc for this
1163 			 * range.
1164 			 */
1165 			extent_clear_unlock_delalloc(inode, start, end,
1166 				     locked_page,
1167 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1168 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1169 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1170 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1171 			*nr_written = *nr_written +
1172 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1173 			*page_started = 1;
1174 			/*
1175 			 * locked_page is locked by the caller of
1176 			 * writepage_delalloc(), not locked by
1177 			 * __process_pages_contig().
1178 			 *
1179 			 * We can't let __process_pages_contig() to unlock it,
1180 			 * as it doesn't have any subpage::writers recorded.
1181 			 *
1182 			 * Here we manually unlock the page, since the caller
1183 			 * can't use page_started to determine if it's an
1184 			 * inline extent or a compressed extent.
1185 			 */
1186 			unlock_page(locked_page);
1187 			goto out;
1188 		} else if (ret < 0) {
1189 			goto out_unlock;
1190 		}
1191 	}
1192 
1193 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1194 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1195 
1196 	/*
1197 	 * Relocation relies on the relocated extents to have exactly the same
1198 	 * size as the original extents. Normally writeback for relocation data
1199 	 * extents follows a NOCOW path because relocation preallocates the
1200 	 * extents. However, due to an operation such as scrub turning a block
1201 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1202 	 * an extent allocated during COW has exactly the requested size and can
1203 	 * not be split into smaller extents, otherwise relocation breaks and
1204 	 * fails during the stage where it updates the bytenr of file extent
1205 	 * items.
1206 	 */
1207 	if (btrfs_is_data_reloc_root(root))
1208 		min_alloc_size = num_bytes;
1209 	else
1210 		min_alloc_size = fs_info->sectorsize;
1211 
1212 	while (num_bytes > 0) {
1213 		cur_alloc_size = num_bytes;
1214 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1215 					   min_alloc_size, 0, alloc_hint,
1216 					   &ins, 1, 1);
1217 		if (ret < 0)
1218 			goto out_unlock;
1219 		cur_alloc_size = ins.offset;
1220 		extent_reserved = true;
1221 
1222 		ram_size = ins.offset;
1223 		em = create_io_em(inode, start, ins.offset, /* len */
1224 				  start, /* orig_start */
1225 				  ins.objectid, /* block_start */
1226 				  ins.offset, /* block_len */
1227 				  ins.offset, /* orig_block_len */
1228 				  ram_size, /* ram_bytes */
1229 				  BTRFS_COMPRESS_NONE, /* compress_type */
1230 				  BTRFS_ORDERED_REGULAR /* type */);
1231 		if (IS_ERR(em)) {
1232 			ret = PTR_ERR(em);
1233 			goto out_reserve;
1234 		}
1235 		free_extent_map(em);
1236 
1237 		ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1238 					       ins.objectid, cur_alloc_size, 0,
1239 					       1 << BTRFS_ORDERED_REGULAR,
1240 					       BTRFS_COMPRESS_NONE);
1241 		if (ret)
1242 			goto out_drop_extent_cache;
1243 
1244 		if (btrfs_is_data_reloc_root(root)) {
1245 			ret = btrfs_reloc_clone_csums(inode, start,
1246 						      cur_alloc_size);
1247 			/*
1248 			 * Only drop cache here, and process as normal.
1249 			 *
1250 			 * We must not allow extent_clear_unlock_delalloc()
1251 			 * at out_unlock label to free meta of this ordered
1252 			 * extent, as its meta should be freed by
1253 			 * btrfs_finish_ordered_io().
1254 			 *
1255 			 * So we must continue until @start is increased to
1256 			 * skip current ordered extent.
1257 			 */
1258 			if (ret)
1259 				btrfs_drop_extent_cache(inode, start,
1260 						start + ram_size - 1, 0);
1261 		}
1262 
1263 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1264 
1265 		/*
1266 		 * We're not doing compressed IO, don't unlock the first page
1267 		 * (which the caller expects to stay locked), don't clear any
1268 		 * dirty bits and don't set any writeback bits
1269 		 *
1270 		 * Do set the Ordered (Private2) bit so we know this page was
1271 		 * properly setup for writepage.
1272 		 */
1273 		page_ops = unlock ? PAGE_UNLOCK : 0;
1274 		page_ops |= PAGE_SET_ORDERED;
1275 
1276 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1277 					     locked_page,
1278 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1279 					     page_ops);
1280 		if (num_bytes < cur_alloc_size)
1281 			num_bytes = 0;
1282 		else
1283 			num_bytes -= cur_alloc_size;
1284 		alloc_hint = ins.objectid + ins.offset;
1285 		start += cur_alloc_size;
1286 		extent_reserved = false;
1287 
1288 		/*
1289 		 * btrfs_reloc_clone_csums() error, since start is increased
1290 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1291 		 * free metadata of current ordered extent, we're OK to exit.
1292 		 */
1293 		if (ret)
1294 			goto out_unlock;
1295 	}
1296 out:
1297 	return ret;
1298 
1299 out_drop_extent_cache:
1300 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1301 out_reserve:
1302 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1303 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1304 out_unlock:
1305 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1306 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1307 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1308 	/*
1309 	 * If we reserved an extent for our delalloc range (or a subrange) and
1310 	 * failed to create the respective ordered extent, then it means that
1311 	 * when we reserved the extent we decremented the extent's size from
1312 	 * the data space_info's bytes_may_use counter and incremented the
1313 	 * space_info's bytes_reserved counter by the same amount. We must make
1314 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1315 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1316 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1317 	 */
1318 	if (extent_reserved) {
1319 		extent_clear_unlock_delalloc(inode, start,
1320 					     start + cur_alloc_size - 1,
1321 					     locked_page,
1322 					     clear_bits,
1323 					     page_ops);
1324 		start += cur_alloc_size;
1325 		if (start >= end)
1326 			goto out;
1327 	}
1328 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1329 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1330 				     page_ops);
1331 	goto out;
1332 }
1333 
1334 /*
1335  * work queue call back to started compression on a file and pages
1336  */
1337 static noinline void async_cow_start(struct btrfs_work *work)
1338 {
1339 	struct async_chunk *async_chunk;
1340 	int compressed_extents;
1341 
1342 	async_chunk = container_of(work, struct async_chunk, work);
1343 
1344 	compressed_extents = compress_file_range(async_chunk);
1345 	if (compressed_extents == 0) {
1346 		btrfs_add_delayed_iput(async_chunk->inode);
1347 		async_chunk->inode = NULL;
1348 	}
1349 }
1350 
1351 /*
1352  * work queue call back to submit previously compressed pages
1353  */
1354 static noinline void async_cow_submit(struct btrfs_work *work)
1355 {
1356 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1357 						     work);
1358 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1359 	unsigned long nr_pages;
1360 
1361 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1362 		PAGE_SHIFT;
1363 
1364 	/*
1365 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1366 	 * in which case we don't have anything to submit, yet we need to
1367 	 * always adjust ->async_delalloc_pages as its paired with the init
1368 	 * happening in cow_file_range_async
1369 	 */
1370 	if (async_chunk->inode)
1371 		submit_compressed_extents(async_chunk);
1372 
1373 	/* atomic_sub_return implies a barrier */
1374 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1375 	    5 * SZ_1M)
1376 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1377 }
1378 
1379 static noinline void async_cow_free(struct btrfs_work *work)
1380 {
1381 	struct async_chunk *async_chunk;
1382 	struct async_cow *async_cow;
1383 
1384 	async_chunk = container_of(work, struct async_chunk, work);
1385 	if (async_chunk->inode)
1386 		btrfs_add_delayed_iput(async_chunk->inode);
1387 	if (async_chunk->blkcg_css)
1388 		css_put(async_chunk->blkcg_css);
1389 
1390 	async_cow = async_chunk->async_cow;
1391 	if (atomic_dec_and_test(&async_cow->num_chunks))
1392 		kvfree(async_cow);
1393 }
1394 
1395 static int cow_file_range_async(struct btrfs_inode *inode,
1396 				struct writeback_control *wbc,
1397 				struct page *locked_page,
1398 				u64 start, u64 end, int *page_started,
1399 				unsigned long *nr_written)
1400 {
1401 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1402 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1403 	struct async_cow *ctx;
1404 	struct async_chunk *async_chunk;
1405 	unsigned long nr_pages;
1406 	u64 cur_end;
1407 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1408 	int i;
1409 	bool should_compress;
1410 	unsigned nofs_flag;
1411 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1412 
1413 	unlock_extent(&inode->io_tree, start, end);
1414 
1415 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1416 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1417 		num_chunks = 1;
1418 		should_compress = false;
1419 	} else {
1420 		should_compress = true;
1421 	}
1422 
1423 	nofs_flag = memalloc_nofs_save();
1424 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1425 	memalloc_nofs_restore(nofs_flag);
1426 
1427 	if (!ctx) {
1428 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1429 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1430 			EXTENT_DO_ACCOUNTING;
1431 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1432 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1433 
1434 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1435 					     clear_bits, page_ops);
1436 		return -ENOMEM;
1437 	}
1438 
1439 	async_chunk = ctx->chunks;
1440 	atomic_set(&ctx->num_chunks, num_chunks);
1441 
1442 	for (i = 0; i < num_chunks; i++) {
1443 		if (should_compress)
1444 			cur_end = min(end, start + SZ_512K - 1);
1445 		else
1446 			cur_end = end;
1447 
1448 		/*
1449 		 * igrab is called higher up in the call chain, take only the
1450 		 * lightweight reference for the callback lifetime
1451 		 */
1452 		ihold(&inode->vfs_inode);
1453 		async_chunk[i].async_cow = ctx;
1454 		async_chunk[i].inode = &inode->vfs_inode;
1455 		async_chunk[i].start = start;
1456 		async_chunk[i].end = cur_end;
1457 		async_chunk[i].write_flags = write_flags;
1458 		INIT_LIST_HEAD(&async_chunk[i].extents);
1459 
1460 		/*
1461 		 * The locked_page comes all the way from writepage and its
1462 		 * the original page we were actually given.  As we spread
1463 		 * this large delalloc region across multiple async_chunk
1464 		 * structs, only the first struct needs a pointer to locked_page
1465 		 *
1466 		 * This way we don't need racey decisions about who is supposed
1467 		 * to unlock it.
1468 		 */
1469 		if (locked_page) {
1470 			/*
1471 			 * Depending on the compressibility, the pages might or
1472 			 * might not go through async.  We want all of them to
1473 			 * be accounted against wbc once.  Let's do it here
1474 			 * before the paths diverge.  wbc accounting is used
1475 			 * only for foreign writeback detection and doesn't
1476 			 * need full accuracy.  Just account the whole thing
1477 			 * against the first page.
1478 			 */
1479 			wbc_account_cgroup_owner(wbc, locked_page,
1480 						 cur_end - start);
1481 			async_chunk[i].locked_page = locked_page;
1482 			locked_page = NULL;
1483 		} else {
1484 			async_chunk[i].locked_page = NULL;
1485 		}
1486 
1487 		if (blkcg_css != blkcg_root_css) {
1488 			css_get(blkcg_css);
1489 			async_chunk[i].blkcg_css = blkcg_css;
1490 		} else {
1491 			async_chunk[i].blkcg_css = NULL;
1492 		}
1493 
1494 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1495 				async_cow_submit, async_cow_free);
1496 
1497 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1498 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1499 
1500 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1501 
1502 		*nr_written += nr_pages;
1503 		start = cur_end + 1;
1504 	}
1505 	*page_started = 1;
1506 	return 0;
1507 }
1508 
1509 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1510 				       struct page *locked_page, u64 start,
1511 				       u64 end, int *page_started,
1512 				       unsigned long *nr_written)
1513 {
1514 	int ret;
1515 
1516 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1517 			     nr_written, 0);
1518 	if (ret)
1519 		return ret;
1520 
1521 	if (*page_started)
1522 		return 0;
1523 
1524 	__set_page_dirty_nobuffers(locked_page);
1525 	account_page_redirty(locked_page);
1526 	extent_write_locked_range(&inode->vfs_inode, start, end);
1527 	*page_started = 1;
1528 
1529 	return 0;
1530 }
1531 
1532 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1533 					u64 bytenr, u64 num_bytes)
1534 {
1535 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1536 	struct btrfs_ordered_sum *sums;
1537 	int ret;
1538 	LIST_HEAD(list);
1539 
1540 	ret = btrfs_lookup_csums_range(csum_root, bytenr,
1541 				       bytenr + num_bytes - 1, &list, 0);
1542 	if (ret == 0 && list_empty(&list))
1543 		return 0;
1544 
1545 	while (!list_empty(&list)) {
1546 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1547 		list_del(&sums->list);
1548 		kfree(sums);
1549 	}
1550 	if (ret < 0)
1551 		return ret;
1552 	return 1;
1553 }
1554 
1555 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1556 			   const u64 start, const u64 end,
1557 			   int *page_started, unsigned long *nr_written)
1558 {
1559 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1560 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1561 	const u64 range_bytes = end + 1 - start;
1562 	struct extent_io_tree *io_tree = &inode->io_tree;
1563 	u64 range_start = start;
1564 	u64 count;
1565 
1566 	/*
1567 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1568 	 * made we had not enough available data space and therefore we did not
1569 	 * reserve data space for it, since we though we could do NOCOW for the
1570 	 * respective file range (either there is prealloc extent or the inode
1571 	 * has the NOCOW bit set).
1572 	 *
1573 	 * However when we need to fallback to COW mode (because for example the
1574 	 * block group for the corresponding extent was turned to RO mode by a
1575 	 * scrub or relocation) we need to do the following:
1576 	 *
1577 	 * 1) We increment the bytes_may_use counter of the data space info.
1578 	 *    If COW succeeds, it allocates a new data extent and after doing
1579 	 *    that it decrements the space info's bytes_may_use counter and
1580 	 *    increments its bytes_reserved counter by the same amount (we do
1581 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1582 	 *    bytes_may_use counter to compensate (when space is reserved at
1583 	 *    buffered write time, the bytes_may_use counter is incremented);
1584 	 *
1585 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1586 	 *    that if the COW path fails for any reason, it decrements (through
1587 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1588 	 *    data space info, which we incremented in the step above.
1589 	 *
1590 	 * If we need to fallback to cow and the inode corresponds to a free
1591 	 * space cache inode or an inode of the data relocation tree, we must
1592 	 * also increment bytes_may_use of the data space_info for the same
1593 	 * reason. Space caches and relocated data extents always get a prealloc
1594 	 * extent for them, however scrub or balance may have set the block
1595 	 * group that contains that extent to RO mode and therefore force COW
1596 	 * when starting writeback.
1597 	 */
1598 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1599 				 EXTENT_NORESERVE, 0);
1600 	if (count > 0 || is_space_ino || is_reloc_ino) {
1601 		u64 bytes = count;
1602 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1603 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1604 
1605 		if (is_space_ino || is_reloc_ino)
1606 			bytes = range_bytes;
1607 
1608 		spin_lock(&sinfo->lock);
1609 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1610 		spin_unlock(&sinfo->lock);
1611 
1612 		if (count > 0)
1613 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1614 					 0, 0, NULL);
1615 	}
1616 
1617 	return cow_file_range(inode, locked_page, start, end, page_started,
1618 			      nr_written, 1);
1619 }
1620 
1621 /*
1622  * when nowcow writeback call back.  This checks for snapshots or COW copies
1623  * of the extents that exist in the file, and COWs the file as required.
1624  *
1625  * If no cow copies or snapshots exist, we write directly to the existing
1626  * blocks on disk
1627  */
1628 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1629 				       struct page *locked_page,
1630 				       const u64 start, const u64 end,
1631 				       int *page_started,
1632 				       unsigned long *nr_written)
1633 {
1634 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1635 	struct btrfs_root *root = inode->root;
1636 	struct btrfs_path *path;
1637 	u64 cow_start = (u64)-1;
1638 	u64 cur_offset = start;
1639 	int ret;
1640 	bool check_prev = true;
1641 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1642 	u64 ino = btrfs_ino(inode);
1643 	bool nocow = false;
1644 	u64 disk_bytenr = 0;
1645 	const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1646 
1647 	path = btrfs_alloc_path();
1648 	if (!path) {
1649 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1650 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1651 					     EXTENT_DO_ACCOUNTING |
1652 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1653 					     PAGE_START_WRITEBACK |
1654 					     PAGE_END_WRITEBACK);
1655 		return -ENOMEM;
1656 	}
1657 
1658 	while (1) {
1659 		struct btrfs_key found_key;
1660 		struct btrfs_file_extent_item *fi;
1661 		struct extent_buffer *leaf;
1662 		u64 extent_end;
1663 		u64 extent_offset;
1664 		u64 num_bytes = 0;
1665 		u64 disk_num_bytes;
1666 		u64 ram_bytes;
1667 		int extent_type;
1668 
1669 		nocow = false;
1670 
1671 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1672 					       cur_offset, 0);
1673 		if (ret < 0)
1674 			goto error;
1675 
1676 		/*
1677 		 * If there is no extent for our range when doing the initial
1678 		 * search, then go back to the previous slot as it will be the
1679 		 * one containing the search offset
1680 		 */
1681 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1682 			leaf = path->nodes[0];
1683 			btrfs_item_key_to_cpu(leaf, &found_key,
1684 					      path->slots[0] - 1);
1685 			if (found_key.objectid == ino &&
1686 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1687 				path->slots[0]--;
1688 		}
1689 		check_prev = false;
1690 next_slot:
1691 		/* Go to next leaf if we have exhausted the current one */
1692 		leaf = path->nodes[0];
1693 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1694 			ret = btrfs_next_leaf(root, path);
1695 			if (ret < 0) {
1696 				if (cow_start != (u64)-1)
1697 					cur_offset = cow_start;
1698 				goto error;
1699 			}
1700 			if (ret > 0)
1701 				break;
1702 			leaf = path->nodes[0];
1703 		}
1704 
1705 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1706 
1707 		/* Didn't find anything for our INO */
1708 		if (found_key.objectid > ino)
1709 			break;
1710 		/*
1711 		 * Keep searching until we find an EXTENT_ITEM or there are no
1712 		 * more extents for this inode
1713 		 */
1714 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1715 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1716 			path->slots[0]++;
1717 			goto next_slot;
1718 		}
1719 
1720 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1721 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1722 		    found_key.offset > end)
1723 			break;
1724 
1725 		/*
1726 		 * If the found extent starts after requested offset, then
1727 		 * adjust extent_end to be right before this extent begins
1728 		 */
1729 		if (found_key.offset > cur_offset) {
1730 			extent_end = found_key.offset;
1731 			extent_type = 0;
1732 			goto out_check;
1733 		}
1734 
1735 		/*
1736 		 * Found extent which begins before our range and potentially
1737 		 * intersect it
1738 		 */
1739 		fi = btrfs_item_ptr(leaf, path->slots[0],
1740 				    struct btrfs_file_extent_item);
1741 		extent_type = btrfs_file_extent_type(leaf, fi);
1742 
1743 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1744 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1745 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1746 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1747 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1748 			extent_end = found_key.offset +
1749 				btrfs_file_extent_num_bytes(leaf, fi);
1750 			disk_num_bytes =
1751 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1752 			/*
1753 			 * If the extent we got ends before our current offset,
1754 			 * skip to the next extent.
1755 			 */
1756 			if (extent_end <= cur_offset) {
1757 				path->slots[0]++;
1758 				goto next_slot;
1759 			}
1760 			/* Skip holes */
1761 			if (disk_bytenr == 0)
1762 				goto out_check;
1763 			/* Skip compressed/encrypted/encoded extents */
1764 			if (btrfs_file_extent_compression(leaf, fi) ||
1765 			    btrfs_file_extent_encryption(leaf, fi) ||
1766 			    btrfs_file_extent_other_encoding(leaf, fi))
1767 				goto out_check;
1768 			/*
1769 			 * If extent is created before the last volume's snapshot
1770 			 * this implies the extent is shared, hence we can't do
1771 			 * nocow. This is the same check as in
1772 			 * btrfs_cross_ref_exist but without calling
1773 			 * btrfs_search_slot.
1774 			 */
1775 			if (!freespace_inode &&
1776 			    btrfs_file_extent_generation(leaf, fi) <=
1777 			    btrfs_root_last_snapshot(&root->root_item))
1778 				goto out_check;
1779 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1780 				goto out_check;
1781 
1782 			/*
1783 			 * The following checks can be expensive, as they need to
1784 			 * take other locks and do btree or rbtree searches, so
1785 			 * release the path to avoid blocking other tasks for too
1786 			 * long.
1787 			 */
1788 			btrfs_release_path(path);
1789 
1790 			ret = btrfs_cross_ref_exist(root, ino,
1791 						    found_key.offset -
1792 						    extent_offset, disk_bytenr, false);
1793 			if (ret) {
1794 				/*
1795 				 * ret could be -EIO if the above fails to read
1796 				 * metadata.
1797 				 */
1798 				if (ret < 0) {
1799 					if (cow_start != (u64)-1)
1800 						cur_offset = cow_start;
1801 					goto error;
1802 				}
1803 
1804 				WARN_ON_ONCE(freespace_inode);
1805 				goto out_check;
1806 			}
1807 			disk_bytenr += extent_offset;
1808 			disk_bytenr += cur_offset - found_key.offset;
1809 			num_bytes = min(end + 1, extent_end) - cur_offset;
1810 			/*
1811 			 * If there are pending snapshots for this root, we
1812 			 * fall into common COW way
1813 			 */
1814 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1815 				goto out_check;
1816 			/*
1817 			 * force cow if csum exists in the range.
1818 			 * this ensure that csum for a given extent are
1819 			 * either valid or do not exist.
1820 			 */
1821 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1822 						  num_bytes);
1823 			if (ret) {
1824 				/*
1825 				 * ret could be -EIO if the above fails to read
1826 				 * metadata.
1827 				 */
1828 				if (ret < 0) {
1829 					if (cow_start != (u64)-1)
1830 						cur_offset = cow_start;
1831 					goto error;
1832 				}
1833 				WARN_ON_ONCE(freespace_inode);
1834 				goto out_check;
1835 			}
1836 			/* If the extent's block group is RO, we must COW */
1837 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1838 				goto out_check;
1839 			nocow = true;
1840 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1841 			extent_end = found_key.offset + ram_bytes;
1842 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1843 			/* Skip extents outside of our requested range */
1844 			if (extent_end <= start) {
1845 				path->slots[0]++;
1846 				goto next_slot;
1847 			}
1848 		} else {
1849 			/* If this triggers then we have a memory corruption */
1850 			BUG();
1851 		}
1852 out_check:
1853 		/*
1854 		 * If nocow is false then record the beginning of the range
1855 		 * that needs to be COWed
1856 		 */
1857 		if (!nocow) {
1858 			if (cow_start == (u64)-1)
1859 				cow_start = cur_offset;
1860 			cur_offset = extent_end;
1861 			if (cur_offset > end)
1862 				break;
1863 			if (!path->nodes[0])
1864 				continue;
1865 			path->slots[0]++;
1866 			goto next_slot;
1867 		}
1868 
1869 		/*
1870 		 * COW range from cow_start to found_key.offset - 1. As the key
1871 		 * will contain the beginning of the first extent that can be
1872 		 * NOCOW, following one which needs to be COW'ed
1873 		 */
1874 		if (cow_start != (u64)-1) {
1875 			ret = fallback_to_cow(inode, locked_page,
1876 					      cow_start, found_key.offset - 1,
1877 					      page_started, nr_written);
1878 			if (ret)
1879 				goto error;
1880 			cow_start = (u64)-1;
1881 		}
1882 
1883 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1884 			u64 orig_start = found_key.offset - extent_offset;
1885 			struct extent_map *em;
1886 
1887 			em = create_io_em(inode, cur_offset, num_bytes,
1888 					  orig_start,
1889 					  disk_bytenr, /* block_start */
1890 					  num_bytes, /* block_len */
1891 					  disk_num_bytes, /* orig_block_len */
1892 					  ram_bytes, BTRFS_COMPRESS_NONE,
1893 					  BTRFS_ORDERED_PREALLOC);
1894 			if (IS_ERR(em)) {
1895 				ret = PTR_ERR(em);
1896 				goto error;
1897 			}
1898 			free_extent_map(em);
1899 			ret = btrfs_add_ordered_extent(inode,
1900 					cur_offset, num_bytes, num_bytes,
1901 					disk_bytenr, num_bytes, 0,
1902 					1 << BTRFS_ORDERED_PREALLOC,
1903 					BTRFS_COMPRESS_NONE);
1904 			if (ret) {
1905 				btrfs_drop_extent_cache(inode, cur_offset,
1906 							cur_offset + num_bytes - 1,
1907 							0);
1908 				goto error;
1909 			}
1910 		} else {
1911 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1912 						       num_bytes, num_bytes,
1913 						       disk_bytenr, num_bytes,
1914 						       0,
1915 						       1 << BTRFS_ORDERED_NOCOW,
1916 						       BTRFS_COMPRESS_NONE);
1917 			if (ret)
1918 				goto error;
1919 		}
1920 
1921 		if (nocow)
1922 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1923 		nocow = false;
1924 
1925 		if (btrfs_is_data_reloc_root(root))
1926 			/*
1927 			 * Error handled later, as we must prevent
1928 			 * extent_clear_unlock_delalloc() in error handler
1929 			 * from freeing metadata of created ordered extent.
1930 			 */
1931 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1932 						      num_bytes);
1933 
1934 		extent_clear_unlock_delalloc(inode, cur_offset,
1935 					     cur_offset + num_bytes - 1,
1936 					     locked_page, EXTENT_LOCKED |
1937 					     EXTENT_DELALLOC |
1938 					     EXTENT_CLEAR_DATA_RESV,
1939 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
1940 
1941 		cur_offset = extent_end;
1942 
1943 		/*
1944 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1945 		 * handler, as metadata for created ordered extent will only
1946 		 * be freed by btrfs_finish_ordered_io().
1947 		 */
1948 		if (ret)
1949 			goto error;
1950 		if (cur_offset > end)
1951 			break;
1952 	}
1953 	btrfs_release_path(path);
1954 
1955 	if (cur_offset <= end && cow_start == (u64)-1)
1956 		cow_start = cur_offset;
1957 
1958 	if (cow_start != (u64)-1) {
1959 		cur_offset = end;
1960 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1961 				      page_started, nr_written);
1962 		if (ret)
1963 			goto error;
1964 	}
1965 
1966 error:
1967 	if (nocow)
1968 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1969 
1970 	if (ret && cur_offset < end)
1971 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1972 					     locked_page, EXTENT_LOCKED |
1973 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1974 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1975 					     PAGE_START_WRITEBACK |
1976 					     PAGE_END_WRITEBACK);
1977 	btrfs_free_path(path);
1978 	return ret;
1979 }
1980 
1981 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1982 {
1983 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1984 		if (inode->defrag_bytes &&
1985 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1986 				   0, NULL))
1987 			return false;
1988 		return true;
1989 	}
1990 	return false;
1991 }
1992 
1993 /*
1994  * Function to process delayed allocation (create CoW) for ranges which are
1995  * being touched for the first time.
1996  */
1997 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1998 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1999 		struct writeback_control *wbc)
2000 {
2001 	int ret;
2002 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2003 
2004 	/*
2005 	 * The range must cover part of the @locked_page, or the returned
2006 	 * @page_started can confuse the caller.
2007 	 */
2008 	ASSERT(!(end <= page_offset(locked_page) ||
2009 		 start >= page_offset(locked_page) + PAGE_SIZE));
2010 
2011 	if (should_nocow(inode, start, end)) {
2012 		/*
2013 		 * Normally on a zoned device we're only doing COW writes, but
2014 		 * in case of relocation on a zoned filesystem we have taken
2015 		 * precaution, that we're only writing sequentially. It's safe
2016 		 * to use run_delalloc_nocow() here, like for  regular
2017 		 * preallocated inodes.
2018 		 */
2019 		ASSERT(!zoned ||
2020 		       (zoned && btrfs_is_data_reloc_root(inode->root)));
2021 		ret = run_delalloc_nocow(inode, locked_page, start, end,
2022 					 page_started, nr_written);
2023 	} else if (!inode_can_compress(inode) ||
2024 		   !inode_need_compress(inode, start, end)) {
2025 		if (zoned)
2026 			ret = run_delalloc_zoned(inode, locked_page, start, end,
2027 						 page_started, nr_written);
2028 		else
2029 			ret = cow_file_range(inode, locked_page, start, end,
2030 					     page_started, nr_written, 1);
2031 	} else {
2032 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2033 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2034 					   page_started, nr_written);
2035 	}
2036 	ASSERT(ret <= 0);
2037 	if (ret)
2038 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2039 					      end - start + 1);
2040 	return ret;
2041 }
2042 
2043 void btrfs_split_delalloc_extent(struct inode *inode,
2044 				 struct extent_state *orig, u64 split)
2045 {
2046 	u64 size;
2047 
2048 	/* not delalloc, ignore it */
2049 	if (!(orig->state & EXTENT_DELALLOC))
2050 		return;
2051 
2052 	size = orig->end - orig->start + 1;
2053 	if (size > BTRFS_MAX_EXTENT_SIZE) {
2054 		u32 num_extents;
2055 		u64 new_size;
2056 
2057 		/*
2058 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2059 		 * applies here, just in reverse.
2060 		 */
2061 		new_size = orig->end - split + 1;
2062 		num_extents = count_max_extents(new_size);
2063 		new_size = split - orig->start;
2064 		num_extents += count_max_extents(new_size);
2065 		if (count_max_extents(size) >= num_extents)
2066 			return;
2067 	}
2068 
2069 	spin_lock(&BTRFS_I(inode)->lock);
2070 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2071 	spin_unlock(&BTRFS_I(inode)->lock);
2072 }
2073 
2074 /*
2075  * Handle merged delayed allocation extents so we can keep track of new extents
2076  * that are just merged onto old extents, such as when we are doing sequential
2077  * writes, so we can properly account for the metadata space we'll need.
2078  */
2079 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2080 				 struct extent_state *other)
2081 {
2082 	u64 new_size, old_size;
2083 	u32 num_extents;
2084 
2085 	/* not delalloc, ignore it */
2086 	if (!(other->state & EXTENT_DELALLOC))
2087 		return;
2088 
2089 	if (new->start > other->start)
2090 		new_size = new->end - other->start + 1;
2091 	else
2092 		new_size = other->end - new->start + 1;
2093 
2094 	/* we're not bigger than the max, unreserve the space and go */
2095 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2096 		spin_lock(&BTRFS_I(inode)->lock);
2097 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2098 		spin_unlock(&BTRFS_I(inode)->lock);
2099 		return;
2100 	}
2101 
2102 	/*
2103 	 * We have to add up either side to figure out how many extents were
2104 	 * accounted for before we merged into one big extent.  If the number of
2105 	 * extents we accounted for is <= the amount we need for the new range
2106 	 * then we can return, otherwise drop.  Think of it like this
2107 	 *
2108 	 * [ 4k][MAX_SIZE]
2109 	 *
2110 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2111 	 * need 2 outstanding extents, on one side we have 1 and the other side
2112 	 * we have 1 so they are == and we can return.  But in this case
2113 	 *
2114 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2115 	 *
2116 	 * Each range on their own accounts for 2 extents, but merged together
2117 	 * they are only 3 extents worth of accounting, so we need to drop in
2118 	 * this case.
2119 	 */
2120 	old_size = other->end - other->start + 1;
2121 	num_extents = count_max_extents(old_size);
2122 	old_size = new->end - new->start + 1;
2123 	num_extents += count_max_extents(old_size);
2124 	if (count_max_extents(new_size) >= num_extents)
2125 		return;
2126 
2127 	spin_lock(&BTRFS_I(inode)->lock);
2128 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2129 	spin_unlock(&BTRFS_I(inode)->lock);
2130 }
2131 
2132 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2133 				      struct inode *inode)
2134 {
2135 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2136 
2137 	spin_lock(&root->delalloc_lock);
2138 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2139 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2140 			      &root->delalloc_inodes);
2141 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2142 			&BTRFS_I(inode)->runtime_flags);
2143 		root->nr_delalloc_inodes++;
2144 		if (root->nr_delalloc_inodes == 1) {
2145 			spin_lock(&fs_info->delalloc_root_lock);
2146 			BUG_ON(!list_empty(&root->delalloc_root));
2147 			list_add_tail(&root->delalloc_root,
2148 				      &fs_info->delalloc_roots);
2149 			spin_unlock(&fs_info->delalloc_root_lock);
2150 		}
2151 	}
2152 	spin_unlock(&root->delalloc_lock);
2153 }
2154 
2155 
2156 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2157 				struct btrfs_inode *inode)
2158 {
2159 	struct btrfs_fs_info *fs_info = root->fs_info;
2160 
2161 	if (!list_empty(&inode->delalloc_inodes)) {
2162 		list_del_init(&inode->delalloc_inodes);
2163 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2164 			  &inode->runtime_flags);
2165 		root->nr_delalloc_inodes--;
2166 		if (!root->nr_delalloc_inodes) {
2167 			ASSERT(list_empty(&root->delalloc_inodes));
2168 			spin_lock(&fs_info->delalloc_root_lock);
2169 			BUG_ON(list_empty(&root->delalloc_root));
2170 			list_del_init(&root->delalloc_root);
2171 			spin_unlock(&fs_info->delalloc_root_lock);
2172 		}
2173 	}
2174 }
2175 
2176 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2177 				     struct btrfs_inode *inode)
2178 {
2179 	spin_lock(&root->delalloc_lock);
2180 	__btrfs_del_delalloc_inode(root, inode);
2181 	spin_unlock(&root->delalloc_lock);
2182 }
2183 
2184 /*
2185  * Properly track delayed allocation bytes in the inode and to maintain the
2186  * list of inodes that have pending delalloc work to be done.
2187  */
2188 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2189 			       unsigned *bits)
2190 {
2191 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192 
2193 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2194 		WARN_ON(1);
2195 	/*
2196 	 * set_bit and clear bit hooks normally require _irqsave/restore
2197 	 * but in this case, we are only testing for the DELALLOC
2198 	 * bit, which is only set or cleared with irqs on
2199 	 */
2200 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2201 		struct btrfs_root *root = BTRFS_I(inode)->root;
2202 		u64 len = state->end + 1 - state->start;
2203 		u32 num_extents = count_max_extents(len);
2204 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2205 
2206 		spin_lock(&BTRFS_I(inode)->lock);
2207 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2208 		spin_unlock(&BTRFS_I(inode)->lock);
2209 
2210 		/* For sanity tests */
2211 		if (btrfs_is_testing(fs_info))
2212 			return;
2213 
2214 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2215 					 fs_info->delalloc_batch);
2216 		spin_lock(&BTRFS_I(inode)->lock);
2217 		BTRFS_I(inode)->delalloc_bytes += len;
2218 		if (*bits & EXTENT_DEFRAG)
2219 			BTRFS_I(inode)->defrag_bytes += len;
2220 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2221 					 &BTRFS_I(inode)->runtime_flags))
2222 			btrfs_add_delalloc_inodes(root, inode);
2223 		spin_unlock(&BTRFS_I(inode)->lock);
2224 	}
2225 
2226 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2227 	    (*bits & EXTENT_DELALLOC_NEW)) {
2228 		spin_lock(&BTRFS_I(inode)->lock);
2229 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2230 			state->start;
2231 		spin_unlock(&BTRFS_I(inode)->lock);
2232 	}
2233 }
2234 
2235 /*
2236  * Once a range is no longer delalloc this function ensures that proper
2237  * accounting happens.
2238  */
2239 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2240 				 struct extent_state *state, unsigned *bits)
2241 {
2242 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2243 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2244 	u64 len = state->end + 1 - state->start;
2245 	u32 num_extents = count_max_extents(len);
2246 
2247 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2248 		spin_lock(&inode->lock);
2249 		inode->defrag_bytes -= len;
2250 		spin_unlock(&inode->lock);
2251 	}
2252 
2253 	/*
2254 	 * set_bit and clear bit hooks normally require _irqsave/restore
2255 	 * but in this case, we are only testing for the DELALLOC
2256 	 * bit, which is only set or cleared with irqs on
2257 	 */
2258 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2259 		struct btrfs_root *root = inode->root;
2260 		bool do_list = !btrfs_is_free_space_inode(inode);
2261 
2262 		spin_lock(&inode->lock);
2263 		btrfs_mod_outstanding_extents(inode, -num_extents);
2264 		spin_unlock(&inode->lock);
2265 
2266 		/*
2267 		 * We don't reserve metadata space for space cache inodes so we
2268 		 * don't need to call delalloc_release_metadata if there is an
2269 		 * error.
2270 		 */
2271 		if (*bits & EXTENT_CLEAR_META_RESV &&
2272 		    root != fs_info->tree_root)
2273 			btrfs_delalloc_release_metadata(inode, len, false);
2274 
2275 		/* For sanity tests. */
2276 		if (btrfs_is_testing(fs_info))
2277 			return;
2278 
2279 		if (!btrfs_is_data_reloc_root(root) &&
2280 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2281 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2282 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2283 
2284 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2285 					 fs_info->delalloc_batch);
2286 		spin_lock(&inode->lock);
2287 		inode->delalloc_bytes -= len;
2288 		if (do_list && inode->delalloc_bytes == 0 &&
2289 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2290 					&inode->runtime_flags))
2291 			btrfs_del_delalloc_inode(root, inode);
2292 		spin_unlock(&inode->lock);
2293 	}
2294 
2295 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2296 	    (*bits & EXTENT_DELALLOC_NEW)) {
2297 		spin_lock(&inode->lock);
2298 		ASSERT(inode->new_delalloc_bytes >= len);
2299 		inode->new_delalloc_bytes -= len;
2300 		if (*bits & EXTENT_ADD_INODE_BYTES)
2301 			inode_add_bytes(&inode->vfs_inode, len);
2302 		spin_unlock(&inode->lock);
2303 	}
2304 }
2305 
2306 /*
2307  * in order to insert checksums into the metadata in large chunks,
2308  * we wait until bio submission time.   All the pages in the bio are
2309  * checksummed and sums are attached onto the ordered extent record.
2310  *
2311  * At IO completion time the cums attached on the ordered extent record
2312  * are inserted into the btree
2313  */
2314 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2315 					   u64 dio_file_offset)
2316 {
2317 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2318 }
2319 
2320 /*
2321  * Split an extent_map at [start, start + len]
2322  *
2323  * This function is intended to be used only for extract_ordered_extent().
2324  */
2325 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2326 			  u64 pre, u64 post)
2327 {
2328 	struct extent_map_tree *em_tree = &inode->extent_tree;
2329 	struct extent_map *em;
2330 	struct extent_map *split_pre = NULL;
2331 	struct extent_map *split_mid = NULL;
2332 	struct extent_map *split_post = NULL;
2333 	int ret = 0;
2334 	unsigned long flags;
2335 
2336 	/* Sanity check */
2337 	if (pre == 0 && post == 0)
2338 		return 0;
2339 
2340 	split_pre = alloc_extent_map();
2341 	if (pre)
2342 		split_mid = alloc_extent_map();
2343 	if (post)
2344 		split_post = alloc_extent_map();
2345 	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2346 		ret = -ENOMEM;
2347 		goto out;
2348 	}
2349 
2350 	ASSERT(pre + post < len);
2351 
2352 	lock_extent(&inode->io_tree, start, start + len - 1);
2353 	write_lock(&em_tree->lock);
2354 	em = lookup_extent_mapping(em_tree, start, len);
2355 	if (!em) {
2356 		ret = -EIO;
2357 		goto out_unlock;
2358 	}
2359 
2360 	ASSERT(em->len == len);
2361 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2362 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2363 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2364 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2365 	ASSERT(!list_empty(&em->list));
2366 
2367 	flags = em->flags;
2368 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2369 
2370 	/* First, replace the em with a new extent_map starting from * em->start */
2371 	split_pre->start = em->start;
2372 	split_pre->len = (pre ? pre : em->len - post);
2373 	split_pre->orig_start = split_pre->start;
2374 	split_pre->block_start = em->block_start;
2375 	split_pre->block_len = split_pre->len;
2376 	split_pre->orig_block_len = split_pre->block_len;
2377 	split_pre->ram_bytes = split_pre->len;
2378 	split_pre->flags = flags;
2379 	split_pre->compress_type = em->compress_type;
2380 	split_pre->generation = em->generation;
2381 
2382 	replace_extent_mapping(em_tree, em, split_pre, 1);
2383 
2384 	/*
2385 	 * Now we only have an extent_map at:
2386 	 *     [em->start, em->start + pre] if pre != 0
2387 	 *     [em->start, em->start + em->len - post] if pre == 0
2388 	 */
2389 
2390 	if (pre) {
2391 		/* Insert the middle extent_map */
2392 		split_mid->start = em->start + pre;
2393 		split_mid->len = em->len - pre - post;
2394 		split_mid->orig_start = split_mid->start;
2395 		split_mid->block_start = em->block_start + pre;
2396 		split_mid->block_len = split_mid->len;
2397 		split_mid->orig_block_len = split_mid->block_len;
2398 		split_mid->ram_bytes = split_mid->len;
2399 		split_mid->flags = flags;
2400 		split_mid->compress_type = em->compress_type;
2401 		split_mid->generation = em->generation;
2402 		add_extent_mapping(em_tree, split_mid, 1);
2403 	}
2404 
2405 	if (post) {
2406 		split_post->start = em->start + em->len - post;
2407 		split_post->len = post;
2408 		split_post->orig_start = split_post->start;
2409 		split_post->block_start = em->block_start + em->len - post;
2410 		split_post->block_len = split_post->len;
2411 		split_post->orig_block_len = split_post->block_len;
2412 		split_post->ram_bytes = split_post->len;
2413 		split_post->flags = flags;
2414 		split_post->compress_type = em->compress_type;
2415 		split_post->generation = em->generation;
2416 		add_extent_mapping(em_tree, split_post, 1);
2417 	}
2418 
2419 	/* Once for us */
2420 	free_extent_map(em);
2421 	/* Once for the tree */
2422 	free_extent_map(em);
2423 
2424 out_unlock:
2425 	write_unlock(&em_tree->lock);
2426 	unlock_extent(&inode->io_tree, start, start + len - 1);
2427 out:
2428 	free_extent_map(split_pre);
2429 	free_extent_map(split_mid);
2430 	free_extent_map(split_post);
2431 
2432 	return ret;
2433 }
2434 
2435 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2436 					   struct bio *bio, loff_t file_offset)
2437 {
2438 	struct btrfs_ordered_extent *ordered;
2439 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2440 	u64 file_len;
2441 	u64 len = bio->bi_iter.bi_size;
2442 	u64 end = start + len;
2443 	u64 ordered_end;
2444 	u64 pre, post;
2445 	int ret = 0;
2446 
2447 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2448 	if (WARN_ON_ONCE(!ordered))
2449 		return BLK_STS_IOERR;
2450 
2451 	/* No need to split */
2452 	if (ordered->disk_num_bytes == len)
2453 		goto out;
2454 
2455 	/* We cannot split once end_bio'd ordered extent */
2456 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2457 		ret = -EINVAL;
2458 		goto out;
2459 	}
2460 
2461 	/* We cannot split a compressed ordered extent */
2462 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2463 		ret = -EINVAL;
2464 		goto out;
2465 	}
2466 
2467 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2468 	/* bio must be in one ordered extent */
2469 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2470 		ret = -EINVAL;
2471 		goto out;
2472 	}
2473 
2474 	/* Checksum list should be empty */
2475 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2476 		ret = -EINVAL;
2477 		goto out;
2478 	}
2479 
2480 	file_len = ordered->num_bytes;
2481 	pre = start - ordered->disk_bytenr;
2482 	post = ordered_end - end;
2483 
2484 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2485 	if (ret)
2486 		goto out;
2487 	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2488 
2489 out:
2490 	btrfs_put_ordered_extent(ordered);
2491 
2492 	return errno_to_blk_status(ret);
2493 }
2494 
2495 /*
2496  * extent_io.c submission hook. This does the right thing for csum calculation
2497  * on write, or reading the csums from the tree before a read.
2498  *
2499  * Rules about async/sync submit,
2500  * a) read:				sync submit
2501  *
2502  * b) write without checksum:		sync submit
2503  *
2504  * c) write with checksum:
2505  *    c-1) if bio is issued by fsync:	sync submit
2506  *         (sync_writers != 0)
2507  *
2508  *    c-2) if root is reloc root:	sync submit
2509  *         (only in case of buffered IO)
2510  *
2511  *    c-3) otherwise:			async submit
2512  */
2513 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2514 				   int mirror_num, unsigned long bio_flags)
2515 
2516 {
2517 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2518 	struct btrfs_root *root = BTRFS_I(inode)->root;
2519 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2520 	blk_status_t ret = 0;
2521 	int skip_sum;
2522 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2523 
2524 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2525 		test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2526 
2527 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2528 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2529 
2530 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2531 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2532 		loff_t file_offset = page_offset(page);
2533 
2534 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2535 		if (ret)
2536 			goto out;
2537 	}
2538 
2539 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2540 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2541 		if (ret)
2542 			goto out;
2543 
2544 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2545 			/*
2546 			 * btrfs_submit_compressed_read will handle completing
2547 			 * the bio if there were any errors, so just return
2548 			 * here.
2549 			 */
2550 			ret = btrfs_submit_compressed_read(inode, bio,
2551 							   mirror_num,
2552 							   bio_flags);
2553 			goto out_no_endio;
2554 		} else {
2555 			/*
2556 			 * Lookup bio sums does extra checks around whether we
2557 			 * need to csum or not, which is why we ignore skip_sum
2558 			 * here.
2559 			 */
2560 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2561 			if (ret)
2562 				goto out;
2563 		}
2564 		goto mapit;
2565 	} else if (async && !skip_sum) {
2566 		/* csum items have already been cloned */
2567 		if (btrfs_is_data_reloc_root(root))
2568 			goto mapit;
2569 		/* we're doing a write, do the async checksumming */
2570 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2571 					  0, btrfs_submit_bio_start);
2572 		goto out;
2573 	} else if (!skip_sum) {
2574 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2575 		if (ret)
2576 			goto out;
2577 	}
2578 
2579 mapit:
2580 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2581 
2582 out:
2583 	if (ret) {
2584 		bio->bi_status = ret;
2585 		bio_endio(bio);
2586 	}
2587 out_no_endio:
2588 	return ret;
2589 }
2590 
2591 /*
2592  * given a list of ordered sums record them in the inode.  This happens
2593  * at IO completion time based on sums calculated at bio submission time.
2594  */
2595 static int add_pending_csums(struct btrfs_trans_handle *trans,
2596 			     struct list_head *list)
2597 {
2598 	struct btrfs_ordered_sum *sum;
2599 	struct btrfs_root *csum_root = NULL;
2600 	int ret;
2601 
2602 	list_for_each_entry(sum, list, list) {
2603 		trans->adding_csums = true;
2604 		if (!csum_root)
2605 			csum_root = btrfs_csum_root(trans->fs_info,
2606 						    sum->bytenr);
2607 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2608 		trans->adding_csums = false;
2609 		if (ret)
2610 			return ret;
2611 	}
2612 	return 0;
2613 }
2614 
2615 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2616 					 const u64 start,
2617 					 const u64 len,
2618 					 struct extent_state **cached_state)
2619 {
2620 	u64 search_start = start;
2621 	const u64 end = start + len - 1;
2622 
2623 	while (search_start < end) {
2624 		const u64 search_len = end - search_start + 1;
2625 		struct extent_map *em;
2626 		u64 em_len;
2627 		int ret = 0;
2628 
2629 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2630 		if (IS_ERR(em))
2631 			return PTR_ERR(em);
2632 
2633 		if (em->block_start != EXTENT_MAP_HOLE)
2634 			goto next;
2635 
2636 		em_len = em->len;
2637 		if (em->start < search_start)
2638 			em_len -= search_start - em->start;
2639 		if (em_len > search_len)
2640 			em_len = search_len;
2641 
2642 		ret = set_extent_bit(&inode->io_tree, search_start,
2643 				     search_start + em_len - 1,
2644 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2645 				     GFP_NOFS, NULL);
2646 next:
2647 		search_start = extent_map_end(em);
2648 		free_extent_map(em);
2649 		if (ret)
2650 			return ret;
2651 	}
2652 	return 0;
2653 }
2654 
2655 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2656 			      unsigned int extra_bits,
2657 			      struct extent_state **cached_state)
2658 {
2659 	WARN_ON(PAGE_ALIGNED(end));
2660 
2661 	if (start >= i_size_read(&inode->vfs_inode) &&
2662 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2663 		/*
2664 		 * There can't be any extents following eof in this case so just
2665 		 * set the delalloc new bit for the range directly.
2666 		 */
2667 		extra_bits |= EXTENT_DELALLOC_NEW;
2668 	} else {
2669 		int ret;
2670 
2671 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2672 						    end + 1 - start,
2673 						    cached_state);
2674 		if (ret)
2675 			return ret;
2676 	}
2677 
2678 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2679 				   cached_state);
2680 }
2681 
2682 /* see btrfs_writepage_start_hook for details on why this is required */
2683 struct btrfs_writepage_fixup {
2684 	struct page *page;
2685 	struct inode *inode;
2686 	struct btrfs_work work;
2687 };
2688 
2689 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2690 {
2691 	struct btrfs_writepage_fixup *fixup;
2692 	struct btrfs_ordered_extent *ordered;
2693 	struct extent_state *cached_state = NULL;
2694 	struct extent_changeset *data_reserved = NULL;
2695 	struct page *page;
2696 	struct btrfs_inode *inode;
2697 	u64 page_start;
2698 	u64 page_end;
2699 	int ret = 0;
2700 	bool free_delalloc_space = true;
2701 
2702 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2703 	page = fixup->page;
2704 	inode = BTRFS_I(fixup->inode);
2705 	page_start = page_offset(page);
2706 	page_end = page_offset(page) + PAGE_SIZE - 1;
2707 
2708 	/*
2709 	 * This is similar to page_mkwrite, we need to reserve the space before
2710 	 * we take the page lock.
2711 	 */
2712 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2713 					   PAGE_SIZE);
2714 again:
2715 	lock_page(page);
2716 
2717 	/*
2718 	 * Before we queued this fixup, we took a reference on the page.
2719 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2720 	 * address space.
2721 	 */
2722 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2723 		/*
2724 		 * Unfortunately this is a little tricky, either
2725 		 *
2726 		 * 1) We got here and our page had already been dealt with and
2727 		 *    we reserved our space, thus ret == 0, so we need to just
2728 		 *    drop our space reservation and bail.  This can happen the
2729 		 *    first time we come into the fixup worker, or could happen
2730 		 *    while waiting for the ordered extent.
2731 		 * 2) Our page was already dealt with, but we happened to get an
2732 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2733 		 *    this case we obviously don't have anything to release, but
2734 		 *    because the page was already dealt with we don't want to
2735 		 *    mark the page with an error, so make sure we're resetting
2736 		 *    ret to 0.  This is why we have this check _before_ the ret
2737 		 *    check, because we do not want to have a surprise ENOSPC
2738 		 *    when the page was already properly dealt with.
2739 		 */
2740 		if (!ret) {
2741 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2742 			btrfs_delalloc_release_space(inode, data_reserved,
2743 						     page_start, PAGE_SIZE,
2744 						     true);
2745 		}
2746 		ret = 0;
2747 		goto out_page;
2748 	}
2749 
2750 	/*
2751 	 * We can't mess with the page state unless it is locked, so now that
2752 	 * it is locked bail if we failed to make our space reservation.
2753 	 */
2754 	if (ret)
2755 		goto out_page;
2756 
2757 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2758 
2759 	/* already ordered? We're done */
2760 	if (PageOrdered(page))
2761 		goto out_reserved;
2762 
2763 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2764 	if (ordered) {
2765 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2766 				     &cached_state);
2767 		unlock_page(page);
2768 		btrfs_start_ordered_extent(ordered, 1);
2769 		btrfs_put_ordered_extent(ordered);
2770 		goto again;
2771 	}
2772 
2773 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2774 					&cached_state);
2775 	if (ret)
2776 		goto out_reserved;
2777 
2778 	/*
2779 	 * Everything went as planned, we're now the owner of a dirty page with
2780 	 * delayed allocation bits set and space reserved for our COW
2781 	 * destination.
2782 	 *
2783 	 * The page was dirty when we started, nothing should have cleaned it.
2784 	 */
2785 	BUG_ON(!PageDirty(page));
2786 	free_delalloc_space = false;
2787 out_reserved:
2788 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2789 	if (free_delalloc_space)
2790 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2791 					     PAGE_SIZE, true);
2792 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2793 			     &cached_state);
2794 out_page:
2795 	if (ret) {
2796 		/*
2797 		 * We hit ENOSPC or other errors.  Update the mapping and page
2798 		 * to reflect the errors and clean the page.
2799 		 */
2800 		mapping_set_error(page->mapping, ret);
2801 		end_extent_writepage(page, ret, page_start, page_end);
2802 		clear_page_dirty_for_io(page);
2803 		SetPageError(page);
2804 	}
2805 	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2806 	unlock_page(page);
2807 	put_page(page);
2808 	kfree(fixup);
2809 	extent_changeset_free(data_reserved);
2810 	/*
2811 	 * As a precaution, do a delayed iput in case it would be the last iput
2812 	 * that could need flushing space. Recursing back to fixup worker would
2813 	 * deadlock.
2814 	 */
2815 	btrfs_add_delayed_iput(&inode->vfs_inode);
2816 }
2817 
2818 /*
2819  * There are a few paths in the higher layers of the kernel that directly
2820  * set the page dirty bit without asking the filesystem if it is a
2821  * good idea.  This causes problems because we want to make sure COW
2822  * properly happens and the data=ordered rules are followed.
2823  *
2824  * In our case any range that doesn't have the ORDERED bit set
2825  * hasn't been properly setup for IO.  We kick off an async process
2826  * to fix it up.  The async helper will wait for ordered extents, set
2827  * the delalloc bit and make it safe to write the page.
2828  */
2829 int btrfs_writepage_cow_fixup(struct page *page)
2830 {
2831 	struct inode *inode = page->mapping->host;
2832 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2833 	struct btrfs_writepage_fixup *fixup;
2834 
2835 	/* This page has ordered extent covering it already */
2836 	if (PageOrdered(page))
2837 		return 0;
2838 
2839 	/*
2840 	 * PageChecked is set below when we create a fixup worker for this page,
2841 	 * don't try to create another one if we're already PageChecked()
2842 	 *
2843 	 * The extent_io writepage code will redirty the page if we send back
2844 	 * EAGAIN.
2845 	 */
2846 	if (PageChecked(page))
2847 		return -EAGAIN;
2848 
2849 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2850 	if (!fixup)
2851 		return -EAGAIN;
2852 
2853 	/*
2854 	 * We are already holding a reference to this inode from
2855 	 * write_cache_pages.  We need to hold it because the space reservation
2856 	 * takes place outside of the page lock, and we can't trust
2857 	 * page->mapping outside of the page lock.
2858 	 */
2859 	ihold(inode);
2860 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2861 	get_page(page);
2862 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2863 	fixup->page = page;
2864 	fixup->inode = inode;
2865 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2866 
2867 	return -EAGAIN;
2868 }
2869 
2870 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2871 				       struct btrfs_inode *inode, u64 file_pos,
2872 				       struct btrfs_file_extent_item *stack_fi,
2873 				       const bool update_inode_bytes,
2874 				       u64 qgroup_reserved)
2875 {
2876 	struct btrfs_root *root = inode->root;
2877 	const u64 sectorsize = root->fs_info->sectorsize;
2878 	struct btrfs_path *path;
2879 	struct extent_buffer *leaf;
2880 	struct btrfs_key ins;
2881 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2882 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2883 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2884 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2885 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2886 	struct btrfs_drop_extents_args drop_args = { 0 };
2887 	int ret;
2888 
2889 	path = btrfs_alloc_path();
2890 	if (!path)
2891 		return -ENOMEM;
2892 
2893 	/*
2894 	 * we may be replacing one extent in the tree with another.
2895 	 * The new extent is pinned in the extent map, and we don't want
2896 	 * to drop it from the cache until it is completely in the btree.
2897 	 *
2898 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2899 	 * the caller is expected to unpin it and allow it to be merged
2900 	 * with the others.
2901 	 */
2902 	drop_args.path = path;
2903 	drop_args.start = file_pos;
2904 	drop_args.end = file_pos + num_bytes;
2905 	drop_args.replace_extent = true;
2906 	drop_args.extent_item_size = sizeof(*stack_fi);
2907 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2908 	if (ret)
2909 		goto out;
2910 
2911 	if (!drop_args.extent_inserted) {
2912 		ins.objectid = btrfs_ino(inode);
2913 		ins.offset = file_pos;
2914 		ins.type = BTRFS_EXTENT_DATA_KEY;
2915 
2916 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2917 					      sizeof(*stack_fi));
2918 		if (ret)
2919 			goto out;
2920 	}
2921 	leaf = path->nodes[0];
2922 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2923 	write_extent_buffer(leaf, stack_fi,
2924 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2925 			sizeof(struct btrfs_file_extent_item));
2926 
2927 	btrfs_mark_buffer_dirty(leaf);
2928 	btrfs_release_path(path);
2929 
2930 	/*
2931 	 * If we dropped an inline extent here, we know the range where it is
2932 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2933 	 * number of bytes only for that range containing the inline extent.
2934 	 * The remaining of the range will be processed when clearning the
2935 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2936 	 */
2937 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2938 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2939 
2940 		inline_size = drop_args.bytes_found - inline_size;
2941 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2942 		drop_args.bytes_found -= inline_size;
2943 		num_bytes -= sectorsize;
2944 	}
2945 
2946 	if (update_inode_bytes)
2947 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2948 
2949 	ins.objectid = disk_bytenr;
2950 	ins.offset = disk_num_bytes;
2951 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2952 
2953 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2954 	if (ret)
2955 		goto out;
2956 
2957 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2958 					       file_pos - offset,
2959 					       qgroup_reserved, &ins);
2960 out:
2961 	btrfs_free_path(path);
2962 
2963 	return ret;
2964 }
2965 
2966 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2967 					 u64 start, u64 len)
2968 {
2969 	struct btrfs_block_group *cache;
2970 
2971 	cache = btrfs_lookup_block_group(fs_info, start);
2972 	ASSERT(cache);
2973 
2974 	spin_lock(&cache->lock);
2975 	cache->delalloc_bytes -= len;
2976 	spin_unlock(&cache->lock);
2977 
2978 	btrfs_put_block_group(cache);
2979 }
2980 
2981 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2982 					     struct btrfs_ordered_extent *oe)
2983 {
2984 	struct btrfs_file_extent_item stack_fi;
2985 	bool update_inode_bytes;
2986 	u64 num_bytes = oe->num_bytes;
2987 	u64 ram_bytes = oe->ram_bytes;
2988 
2989 	memset(&stack_fi, 0, sizeof(stack_fi));
2990 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2991 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2992 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2993 						   oe->disk_num_bytes);
2994 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2995 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2996 		num_bytes = ram_bytes = oe->truncated_len;
2997 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2998 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2999 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3000 	/* Encryption and other encoding is reserved and all 0 */
3001 
3002 	/*
3003 	 * For delalloc, when completing an ordered extent we update the inode's
3004 	 * bytes when clearing the range in the inode's io tree, so pass false
3005 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3006 	 * except if the ordered extent was truncated.
3007 	 */
3008 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3009 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3010 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3011 
3012 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3013 					   oe->file_offset, &stack_fi,
3014 					   update_inode_bytes, oe->qgroup_rsv);
3015 }
3016 
3017 /*
3018  * As ordered data IO finishes, this gets called so we can finish
3019  * an ordered extent if the range of bytes in the file it covers are
3020  * fully written.
3021  */
3022 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3023 {
3024 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3025 	struct btrfs_root *root = inode->root;
3026 	struct btrfs_fs_info *fs_info = root->fs_info;
3027 	struct btrfs_trans_handle *trans = NULL;
3028 	struct extent_io_tree *io_tree = &inode->io_tree;
3029 	struct extent_state *cached_state = NULL;
3030 	u64 start, end;
3031 	int compress_type = 0;
3032 	int ret = 0;
3033 	u64 logical_len = ordered_extent->num_bytes;
3034 	bool freespace_inode;
3035 	bool truncated = false;
3036 	bool clear_reserved_extent = true;
3037 	unsigned int clear_bits = EXTENT_DEFRAG;
3038 
3039 	start = ordered_extent->file_offset;
3040 	end = start + ordered_extent->num_bytes - 1;
3041 
3042 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3043 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3044 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3045 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3046 		clear_bits |= EXTENT_DELALLOC_NEW;
3047 
3048 	freespace_inode = btrfs_is_free_space_inode(inode);
3049 
3050 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3051 		ret = -EIO;
3052 		goto out;
3053 	}
3054 
3055 	/* A valid bdev implies a write on a sequential zone */
3056 	if (ordered_extent->bdev) {
3057 		btrfs_rewrite_logical_zoned(ordered_extent);
3058 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3059 					ordered_extent->disk_num_bytes);
3060 	}
3061 
3062 	btrfs_free_io_failure_record(inode, start, end);
3063 
3064 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3065 		truncated = true;
3066 		logical_len = ordered_extent->truncated_len;
3067 		/* Truncated the entire extent, don't bother adding */
3068 		if (!logical_len)
3069 			goto out;
3070 	}
3071 
3072 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3073 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3074 
3075 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3076 		if (freespace_inode)
3077 			trans = btrfs_join_transaction_spacecache(root);
3078 		else
3079 			trans = btrfs_join_transaction(root);
3080 		if (IS_ERR(trans)) {
3081 			ret = PTR_ERR(trans);
3082 			trans = NULL;
3083 			goto out;
3084 		}
3085 		trans->block_rsv = &inode->block_rsv;
3086 		ret = btrfs_update_inode_fallback(trans, root, inode);
3087 		if (ret) /* -ENOMEM or corruption */
3088 			btrfs_abort_transaction(trans, ret);
3089 		goto out;
3090 	}
3091 
3092 	clear_bits |= EXTENT_LOCKED;
3093 	lock_extent_bits(io_tree, start, end, &cached_state);
3094 
3095 	if (freespace_inode)
3096 		trans = btrfs_join_transaction_spacecache(root);
3097 	else
3098 		trans = btrfs_join_transaction(root);
3099 	if (IS_ERR(trans)) {
3100 		ret = PTR_ERR(trans);
3101 		trans = NULL;
3102 		goto out;
3103 	}
3104 
3105 	trans->block_rsv = &inode->block_rsv;
3106 
3107 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3108 		compress_type = ordered_extent->compress_type;
3109 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3110 		BUG_ON(compress_type);
3111 		ret = btrfs_mark_extent_written(trans, inode,
3112 						ordered_extent->file_offset,
3113 						ordered_extent->file_offset +
3114 						logical_len);
3115 	} else {
3116 		BUG_ON(root == fs_info->tree_root);
3117 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3118 		if (!ret) {
3119 			clear_reserved_extent = false;
3120 			btrfs_release_delalloc_bytes(fs_info,
3121 						ordered_extent->disk_bytenr,
3122 						ordered_extent->disk_num_bytes);
3123 		}
3124 	}
3125 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3126 			   ordered_extent->num_bytes, trans->transid);
3127 	if (ret < 0) {
3128 		btrfs_abort_transaction(trans, ret);
3129 		goto out;
3130 	}
3131 
3132 	ret = add_pending_csums(trans, &ordered_extent->list);
3133 	if (ret) {
3134 		btrfs_abort_transaction(trans, ret);
3135 		goto out;
3136 	}
3137 
3138 	/*
3139 	 * If this is a new delalloc range, clear its new delalloc flag to
3140 	 * update the inode's number of bytes. This needs to be done first
3141 	 * before updating the inode item.
3142 	 */
3143 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3144 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3145 		clear_extent_bit(&inode->io_tree, start, end,
3146 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3147 				 0, 0, &cached_state);
3148 
3149 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3150 	ret = btrfs_update_inode_fallback(trans, root, inode);
3151 	if (ret) { /* -ENOMEM or corruption */
3152 		btrfs_abort_transaction(trans, ret);
3153 		goto out;
3154 	}
3155 	ret = 0;
3156 out:
3157 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3158 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3159 			 &cached_state);
3160 
3161 	if (trans)
3162 		btrfs_end_transaction(trans);
3163 
3164 	if (ret || truncated) {
3165 		u64 unwritten_start = start;
3166 
3167 		/*
3168 		 * If we failed to finish this ordered extent for any reason we
3169 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3170 		 * extent, and mark the inode with the error if it wasn't
3171 		 * already set.  Any error during writeback would have already
3172 		 * set the mapping error, so we need to set it if we're the ones
3173 		 * marking this ordered extent as failed.
3174 		 */
3175 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3176 					     &ordered_extent->flags))
3177 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3178 
3179 		if (truncated)
3180 			unwritten_start += logical_len;
3181 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3182 
3183 		/* Drop the cache for the part of the extent we didn't write. */
3184 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3185 
3186 		/*
3187 		 * If the ordered extent had an IOERR or something else went
3188 		 * wrong we need to return the space for this ordered extent
3189 		 * back to the allocator.  We only free the extent in the
3190 		 * truncated case if we didn't write out the extent at all.
3191 		 *
3192 		 * If we made it past insert_reserved_file_extent before we
3193 		 * errored out then we don't need to do this as the accounting
3194 		 * has already been done.
3195 		 */
3196 		if ((ret || !logical_len) &&
3197 		    clear_reserved_extent &&
3198 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3199 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3200 			/*
3201 			 * Discard the range before returning it back to the
3202 			 * free space pool
3203 			 */
3204 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3205 				btrfs_discard_extent(fs_info,
3206 						ordered_extent->disk_bytenr,
3207 						ordered_extent->disk_num_bytes,
3208 						NULL);
3209 			btrfs_free_reserved_extent(fs_info,
3210 					ordered_extent->disk_bytenr,
3211 					ordered_extent->disk_num_bytes, 1);
3212 		}
3213 	}
3214 
3215 	/*
3216 	 * This needs to be done to make sure anybody waiting knows we are done
3217 	 * updating everything for this ordered extent.
3218 	 */
3219 	btrfs_remove_ordered_extent(inode, ordered_extent);
3220 
3221 	/* once for us */
3222 	btrfs_put_ordered_extent(ordered_extent);
3223 	/* once for the tree */
3224 	btrfs_put_ordered_extent(ordered_extent);
3225 
3226 	return ret;
3227 }
3228 
3229 static void finish_ordered_fn(struct btrfs_work *work)
3230 {
3231 	struct btrfs_ordered_extent *ordered_extent;
3232 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3233 	btrfs_finish_ordered_io(ordered_extent);
3234 }
3235 
3236 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3237 					  struct page *page, u64 start,
3238 					  u64 end, bool uptodate)
3239 {
3240 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3241 
3242 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3243 				       finish_ordered_fn, uptodate);
3244 }
3245 
3246 /*
3247  * check_data_csum - verify checksum of one sector of uncompressed data
3248  * @inode:	inode
3249  * @io_bio:	btrfs_io_bio which contains the csum
3250  * @bio_offset:	offset to the beginning of the bio (in bytes)
3251  * @page:	page where is the data to be verified
3252  * @pgoff:	offset inside the page
3253  * @start:	logical offset in the file
3254  *
3255  * The length of such check is always one sector size.
3256  */
3257 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3258 			   u32 bio_offset, struct page *page, u32 pgoff,
3259 			   u64 start)
3260 {
3261 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3262 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3263 	char *kaddr;
3264 	u32 len = fs_info->sectorsize;
3265 	const u32 csum_size = fs_info->csum_size;
3266 	unsigned int offset_sectors;
3267 	u8 *csum_expected;
3268 	u8 csum[BTRFS_CSUM_SIZE];
3269 
3270 	ASSERT(pgoff + len <= PAGE_SIZE);
3271 
3272 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3273 	csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
3274 
3275 	kaddr = kmap_atomic(page);
3276 	shash->tfm = fs_info->csum_shash;
3277 
3278 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3279 
3280 	if (memcmp(csum, csum_expected, csum_size))
3281 		goto zeroit;
3282 
3283 	kunmap_atomic(kaddr);
3284 	return 0;
3285 zeroit:
3286 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3287 				    bbio->mirror_num);
3288 	if (bbio->device)
3289 		btrfs_dev_stat_inc_and_print(bbio->device,
3290 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3291 	memset(kaddr + pgoff, 1, len);
3292 	flush_dcache_page(page);
3293 	kunmap_atomic(kaddr);
3294 	return -EIO;
3295 }
3296 
3297 /*
3298  * When reads are done, we need to check csums to verify the data is correct.
3299  * if there's a match, we allow the bio to finish.  If not, the code in
3300  * extent_io.c will try to find good copies for us.
3301  *
3302  * @bio_offset:	offset to the beginning of the bio (in bytes)
3303  * @start:	file offset of the range start
3304  * @end:	file offset of the range end (inclusive)
3305  *
3306  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3307  * csum match.
3308  */
3309 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3310 				    u32 bio_offset, struct page *page,
3311 				    u64 start, u64 end)
3312 {
3313 	struct inode *inode = page->mapping->host;
3314 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3315 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3316 	struct btrfs_root *root = BTRFS_I(inode)->root;
3317 	const u32 sectorsize = root->fs_info->sectorsize;
3318 	u32 pg_off;
3319 	unsigned int result = 0;
3320 
3321 	if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
3322 		btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
3323 		return 0;
3324 	}
3325 
3326 	/*
3327 	 * This only happens for NODATASUM or compressed read.
3328 	 * Normally this should be covered by above check for compressed read
3329 	 * or the next check for NODATASUM.  Just do a quicker exit here.
3330 	 */
3331 	if (bbio->csum == NULL)
3332 		return 0;
3333 
3334 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3335 		return 0;
3336 
3337 	if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3338 		return 0;
3339 
3340 	ASSERT(page_offset(page) <= start &&
3341 	       end <= page_offset(page) + PAGE_SIZE - 1);
3342 	for (pg_off = offset_in_page(start);
3343 	     pg_off < offset_in_page(end);
3344 	     pg_off += sectorsize, bio_offset += sectorsize) {
3345 		u64 file_offset = pg_off + page_offset(page);
3346 		int ret;
3347 
3348 		if (btrfs_is_data_reloc_root(root) &&
3349 		    test_range_bit(io_tree, file_offset,
3350 				   file_offset + sectorsize - 1,
3351 				   EXTENT_NODATASUM, 1, NULL)) {
3352 			/* Skip the range without csum for data reloc inode */
3353 			clear_extent_bits(io_tree, file_offset,
3354 					  file_offset + sectorsize - 1,
3355 					  EXTENT_NODATASUM);
3356 			continue;
3357 		}
3358 		ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
3359 				      page_offset(page) + pg_off);
3360 		if (ret < 0) {
3361 			const int nr_bit = (pg_off - offset_in_page(start)) >>
3362 				     root->fs_info->sectorsize_bits;
3363 
3364 			result |= (1U << nr_bit);
3365 		}
3366 	}
3367 	return result;
3368 }
3369 
3370 /*
3371  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3372  *
3373  * @inode: The inode we want to perform iput on
3374  *
3375  * This function uses the generic vfs_inode::i_count to track whether we should
3376  * just decrement it (in case it's > 1) or if this is the last iput then link
3377  * the inode to the delayed iput machinery. Delayed iputs are processed at
3378  * transaction commit time/superblock commit/cleaner kthread.
3379  */
3380 void btrfs_add_delayed_iput(struct inode *inode)
3381 {
3382 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3383 	struct btrfs_inode *binode = BTRFS_I(inode);
3384 
3385 	if (atomic_add_unless(&inode->i_count, -1, 1))
3386 		return;
3387 
3388 	atomic_inc(&fs_info->nr_delayed_iputs);
3389 	spin_lock(&fs_info->delayed_iput_lock);
3390 	ASSERT(list_empty(&binode->delayed_iput));
3391 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3392 	spin_unlock(&fs_info->delayed_iput_lock);
3393 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3394 		wake_up_process(fs_info->cleaner_kthread);
3395 }
3396 
3397 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3398 				    struct btrfs_inode *inode)
3399 {
3400 	list_del_init(&inode->delayed_iput);
3401 	spin_unlock(&fs_info->delayed_iput_lock);
3402 	iput(&inode->vfs_inode);
3403 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3404 		wake_up(&fs_info->delayed_iputs_wait);
3405 	spin_lock(&fs_info->delayed_iput_lock);
3406 }
3407 
3408 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3409 				   struct btrfs_inode *inode)
3410 {
3411 	if (!list_empty(&inode->delayed_iput)) {
3412 		spin_lock(&fs_info->delayed_iput_lock);
3413 		if (!list_empty(&inode->delayed_iput))
3414 			run_delayed_iput_locked(fs_info, inode);
3415 		spin_unlock(&fs_info->delayed_iput_lock);
3416 	}
3417 }
3418 
3419 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3420 {
3421 
3422 	spin_lock(&fs_info->delayed_iput_lock);
3423 	while (!list_empty(&fs_info->delayed_iputs)) {
3424 		struct btrfs_inode *inode;
3425 
3426 		inode = list_first_entry(&fs_info->delayed_iputs,
3427 				struct btrfs_inode, delayed_iput);
3428 		run_delayed_iput_locked(fs_info, inode);
3429 		cond_resched_lock(&fs_info->delayed_iput_lock);
3430 	}
3431 	spin_unlock(&fs_info->delayed_iput_lock);
3432 }
3433 
3434 /**
3435  * Wait for flushing all delayed iputs
3436  *
3437  * @fs_info:  the filesystem
3438  *
3439  * This will wait on any delayed iputs that are currently running with KILLABLE
3440  * set.  Once they are all done running we will return, unless we are killed in
3441  * which case we return EINTR. This helps in user operations like fallocate etc
3442  * that might get blocked on the iputs.
3443  *
3444  * Return EINTR if we were killed, 0 if nothing's pending
3445  */
3446 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3447 {
3448 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3449 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3450 	if (ret)
3451 		return -EINTR;
3452 	return 0;
3453 }
3454 
3455 /*
3456  * This creates an orphan entry for the given inode in case something goes wrong
3457  * in the middle of an unlink.
3458  */
3459 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3460 		     struct btrfs_inode *inode)
3461 {
3462 	int ret;
3463 
3464 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3465 	if (ret && ret != -EEXIST) {
3466 		btrfs_abort_transaction(trans, ret);
3467 		return ret;
3468 	}
3469 
3470 	return 0;
3471 }
3472 
3473 /*
3474  * We have done the delete so we can go ahead and remove the orphan item for
3475  * this particular inode.
3476  */
3477 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3478 			    struct btrfs_inode *inode)
3479 {
3480 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3481 }
3482 
3483 /*
3484  * this cleans up any orphans that may be left on the list from the last use
3485  * of this root.
3486  */
3487 int btrfs_orphan_cleanup(struct btrfs_root *root)
3488 {
3489 	struct btrfs_fs_info *fs_info = root->fs_info;
3490 	struct btrfs_path *path;
3491 	struct extent_buffer *leaf;
3492 	struct btrfs_key key, found_key;
3493 	struct btrfs_trans_handle *trans;
3494 	struct inode *inode;
3495 	u64 last_objectid = 0;
3496 	int ret = 0, nr_unlink = 0;
3497 
3498 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3499 		return 0;
3500 
3501 	path = btrfs_alloc_path();
3502 	if (!path) {
3503 		ret = -ENOMEM;
3504 		goto out;
3505 	}
3506 	path->reada = READA_BACK;
3507 
3508 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3509 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3510 	key.offset = (u64)-1;
3511 
3512 	while (1) {
3513 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3514 		if (ret < 0)
3515 			goto out;
3516 
3517 		/*
3518 		 * if ret == 0 means we found what we were searching for, which
3519 		 * is weird, but possible, so only screw with path if we didn't
3520 		 * find the key and see if we have stuff that matches
3521 		 */
3522 		if (ret > 0) {
3523 			ret = 0;
3524 			if (path->slots[0] == 0)
3525 				break;
3526 			path->slots[0]--;
3527 		}
3528 
3529 		/* pull out the item */
3530 		leaf = path->nodes[0];
3531 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3532 
3533 		/* make sure the item matches what we want */
3534 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3535 			break;
3536 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3537 			break;
3538 
3539 		/* release the path since we're done with it */
3540 		btrfs_release_path(path);
3541 
3542 		/*
3543 		 * this is where we are basically btrfs_lookup, without the
3544 		 * crossing root thing.  we store the inode number in the
3545 		 * offset of the orphan item.
3546 		 */
3547 
3548 		if (found_key.offset == last_objectid) {
3549 			btrfs_err(fs_info,
3550 				  "Error removing orphan entry, stopping orphan cleanup");
3551 			ret = -EINVAL;
3552 			goto out;
3553 		}
3554 
3555 		last_objectid = found_key.offset;
3556 
3557 		found_key.objectid = found_key.offset;
3558 		found_key.type = BTRFS_INODE_ITEM_KEY;
3559 		found_key.offset = 0;
3560 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3561 		ret = PTR_ERR_OR_ZERO(inode);
3562 		if (ret && ret != -ENOENT)
3563 			goto out;
3564 
3565 		if (ret == -ENOENT && root == fs_info->tree_root) {
3566 			struct btrfs_root *dead_root;
3567 			int is_dead_root = 0;
3568 
3569 			/*
3570 			 * This is an orphan in the tree root. Currently these
3571 			 * could come from 2 sources:
3572 			 *  a) a root (snapshot/subvolume) deletion in progress
3573 			 *  b) a free space cache inode
3574 			 * We need to distinguish those two, as the orphan item
3575 			 * for a root must not get deleted before the deletion
3576 			 * of the snapshot/subvolume's tree completes.
3577 			 *
3578 			 * btrfs_find_orphan_roots() ran before us, which has
3579 			 * found all deleted roots and loaded them into
3580 			 * fs_info->fs_roots_radix. So here we can find if an
3581 			 * orphan item corresponds to a deleted root by looking
3582 			 * up the root from that radix tree.
3583 			 */
3584 
3585 			spin_lock(&fs_info->fs_roots_radix_lock);
3586 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3587 							 (unsigned long)found_key.objectid);
3588 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3589 				is_dead_root = 1;
3590 			spin_unlock(&fs_info->fs_roots_radix_lock);
3591 
3592 			if (is_dead_root) {
3593 				/* prevent this orphan from being found again */
3594 				key.offset = found_key.objectid - 1;
3595 				continue;
3596 			}
3597 
3598 		}
3599 
3600 		/*
3601 		 * If we have an inode with links, there are a couple of
3602 		 * possibilities:
3603 		 *
3604 		 * 1. We were halfway through creating fsverity metadata for the
3605 		 * file. In that case, the orphan item represents incomplete
3606 		 * fsverity metadata which must be cleaned up with
3607 		 * btrfs_drop_verity_items and deleting the orphan item.
3608 
3609 		 * 2. Old kernels (before v3.12) used to create an
3610 		 * orphan item for truncate indicating that there were possibly
3611 		 * extent items past i_size that needed to be deleted. In v3.12,
3612 		 * truncate was changed to update i_size in sync with the extent
3613 		 * items, but the (useless) orphan item was still created. Since
3614 		 * v4.18, we don't create the orphan item for truncate at all.
3615 		 *
3616 		 * So, this item could mean that we need to do a truncate, but
3617 		 * only if this filesystem was last used on a pre-v3.12 kernel
3618 		 * and was not cleanly unmounted. The odds of that are quite
3619 		 * slim, and it's a pain to do the truncate now, so just delete
3620 		 * the orphan item.
3621 		 *
3622 		 * It's also possible that this orphan item was supposed to be
3623 		 * deleted but wasn't. The inode number may have been reused,
3624 		 * but either way, we can delete the orphan item.
3625 		 */
3626 		if (ret == -ENOENT || inode->i_nlink) {
3627 			if (!ret) {
3628 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3629 				iput(inode);
3630 				if (ret)
3631 					goto out;
3632 			}
3633 			trans = btrfs_start_transaction(root, 1);
3634 			if (IS_ERR(trans)) {
3635 				ret = PTR_ERR(trans);
3636 				goto out;
3637 			}
3638 			btrfs_debug(fs_info, "auto deleting %Lu",
3639 				    found_key.objectid);
3640 			ret = btrfs_del_orphan_item(trans, root,
3641 						    found_key.objectid);
3642 			btrfs_end_transaction(trans);
3643 			if (ret)
3644 				goto out;
3645 			continue;
3646 		}
3647 
3648 		nr_unlink++;
3649 
3650 		/* this will do delete_inode and everything for us */
3651 		iput(inode);
3652 	}
3653 	/* release the path since we're done with it */
3654 	btrfs_release_path(path);
3655 
3656 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3657 		trans = btrfs_join_transaction(root);
3658 		if (!IS_ERR(trans))
3659 			btrfs_end_transaction(trans);
3660 	}
3661 
3662 	if (nr_unlink)
3663 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3664 
3665 out:
3666 	if (ret)
3667 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3668 	btrfs_free_path(path);
3669 	return ret;
3670 }
3671 
3672 /*
3673  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3674  * don't find any xattrs, we know there can't be any acls.
3675  *
3676  * slot is the slot the inode is in, objectid is the objectid of the inode
3677  */
3678 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3679 					  int slot, u64 objectid,
3680 					  int *first_xattr_slot)
3681 {
3682 	u32 nritems = btrfs_header_nritems(leaf);
3683 	struct btrfs_key found_key;
3684 	static u64 xattr_access = 0;
3685 	static u64 xattr_default = 0;
3686 	int scanned = 0;
3687 
3688 	if (!xattr_access) {
3689 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3690 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3691 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3692 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3693 	}
3694 
3695 	slot++;
3696 	*first_xattr_slot = -1;
3697 	while (slot < nritems) {
3698 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3699 
3700 		/* we found a different objectid, there must not be acls */
3701 		if (found_key.objectid != objectid)
3702 			return 0;
3703 
3704 		/* we found an xattr, assume we've got an acl */
3705 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3706 			if (*first_xattr_slot == -1)
3707 				*first_xattr_slot = slot;
3708 			if (found_key.offset == xattr_access ||
3709 			    found_key.offset == xattr_default)
3710 				return 1;
3711 		}
3712 
3713 		/*
3714 		 * we found a key greater than an xattr key, there can't
3715 		 * be any acls later on
3716 		 */
3717 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3718 			return 0;
3719 
3720 		slot++;
3721 		scanned++;
3722 
3723 		/*
3724 		 * it goes inode, inode backrefs, xattrs, extents,
3725 		 * so if there are a ton of hard links to an inode there can
3726 		 * be a lot of backrefs.  Don't waste time searching too hard,
3727 		 * this is just an optimization
3728 		 */
3729 		if (scanned >= 8)
3730 			break;
3731 	}
3732 	/* we hit the end of the leaf before we found an xattr or
3733 	 * something larger than an xattr.  We have to assume the inode
3734 	 * has acls
3735 	 */
3736 	if (*first_xattr_slot == -1)
3737 		*first_xattr_slot = slot;
3738 	return 1;
3739 }
3740 
3741 /*
3742  * read an inode from the btree into the in-memory inode
3743  */
3744 static int btrfs_read_locked_inode(struct inode *inode,
3745 				   struct btrfs_path *in_path)
3746 {
3747 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3748 	struct btrfs_path *path = in_path;
3749 	struct extent_buffer *leaf;
3750 	struct btrfs_inode_item *inode_item;
3751 	struct btrfs_root *root = BTRFS_I(inode)->root;
3752 	struct btrfs_key location;
3753 	unsigned long ptr;
3754 	int maybe_acls;
3755 	u32 rdev;
3756 	int ret;
3757 	bool filled = false;
3758 	int first_xattr_slot;
3759 
3760 	ret = btrfs_fill_inode(inode, &rdev);
3761 	if (!ret)
3762 		filled = true;
3763 
3764 	if (!path) {
3765 		path = btrfs_alloc_path();
3766 		if (!path)
3767 			return -ENOMEM;
3768 	}
3769 
3770 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3771 
3772 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3773 	if (ret) {
3774 		if (path != in_path)
3775 			btrfs_free_path(path);
3776 		return ret;
3777 	}
3778 
3779 	leaf = path->nodes[0];
3780 
3781 	if (filled)
3782 		goto cache_index;
3783 
3784 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3785 				    struct btrfs_inode_item);
3786 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3787 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3788 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3789 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3790 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3791 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3792 			round_up(i_size_read(inode), fs_info->sectorsize));
3793 
3794 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3795 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3796 
3797 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3798 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3799 
3800 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3801 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3802 
3803 	BTRFS_I(inode)->i_otime.tv_sec =
3804 		btrfs_timespec_sec(leaf, &inode_item->otime);
3805 	BTRFS_I(inode)->i_otime.tv_nsec =
3806 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3807 
3808 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3809 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3810 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3811 
3812 	inode_set_iversion_queried(inode,
3813 				   btrfs_inode_sequence(leaf, inode_item));
3814 	inode->i_generation = BTRFS_I(inode)->generation;
3815 	inode->i_rdev = 0;
3816 	rdev = btrfs_inode_rdev(leaf, inode_item);
3817 
3818 	BTRFS_I(inode)->index_cnt = (u64)-1;
3819 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3820 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3821 
3822 cache_index:
3823 	/*
3824 	 * If we were modified in the current generation and evicted from memory
3825 	 * and then re-read we need to do a full sync since we don't have any
3826 	 * idea about which extents were modified before we were evicted from
3827 	 * cache.
3828 	 *
3829 	 * This is required for both inode re-read from disk and delayed inode
3830 	 * in delayed_nodes_tree.
3831 	 */
3832 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3833 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3834 			&BTRFS_I(inode)->runtime_flags);
3835 
3836 	/*
3837 	 * We don't persist the id of the transaction where an unlink operation
3838 	 * against the inode was last made. So here we assume the inode might
3839 	 * have been evicted, and therefore the exact value of last_unlink_trans
3840 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3841 	 * between the inode and its parent if the inode is fsync'ed and the log
3842 	 * replayed. For example, in the scenario:
3843 	 *
3844 	 * touch mydir/foo
3845 	 * ln mydir/foo mydir/bar
3846 	 * sync
3847 	 * unlink mydir/bar
3848 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3849 	 * xfs_io -c fsync mydir/foo
3850 	 * <power failure>
3851 	 * mount fs, triggers fsync log replay
3852 	 *
3853 	 * We must make sure that when we fsync our inode foo we also log its
3854 	 * parent inode, otherwise after log replay the parent still has the
3855 	 * dentry with the "bar" name but our inode foo has a link count of 1
3856 	 * and doesn't have an inode ref with the name "bar" anymore.
3857 	 *
3858 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3859 	 * but it guarantees correctness at the expense of occasional full
3860 	 * transaction commits on fsync if our inode is a directory, or if our
3861 	 * inode is not a directory, logging its parent unnecessarily.
3862 	 */
3863 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3864 
3865 	/*
3866 	 * Same logic as for last_unlink_trans. We don't persist the generation
3867 	 * of the last transaction where this inode was used for a reflink
3868 	 * operation, so after eviction and reloading the inode we must be
3869 	 * pessimistic and assume the last transaction that modified the inode.
3870 	 */
3871 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3872 
3873 	path->slots[0]++;
3874 	if (inode->i_nlink != 1 ||
3875 	    path->slots[0] >= btrfs_header_nritems(leaf))
3876 		goto cache_acl;
3877 
3878 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3879 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3880 		goto cache_acl;
3881 
3882 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3883 	if (location.type == BTRFS_INODE_REF_KEY) {
3884 		struct btrfs_inode_ref *ref;
3885 
3886 		ref = (struct btrfs_inode_ref *)ptr;
3887 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3888 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3889 		struct btrfs_inode_extref *extref;
3890 
3891 		extref = (struct btrfs_inode_extref *)ptr;
3892 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3893 								     extref);
3894 	}
3895 cache_acl:
3896 	/*
3897 	 * try to precache a NULL acl entry for files that don't have
3898 	 * any xattrs or acls
3899 	 */
3900 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3901 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3902 	if (first_xattr_slot != -1) {
3903 		path->slots[0] = first_xattr_slot;
3904 		ret = btrfs_load_inode_props(inode, path);
3905 		if (ret)
3906 			btrfs_err(fs_info,
3907 				  "error loading props for ino %llu (root %llu): %d",
3908 				  btrfs_ino(BTRFS_I(inode)),
3909 				  root->root_key.objectid, ret);
3910 	}
3911 	if (path != in_path)
3912 		btrfs_free_path(path);
3913 
3914 	if (!maybe_acls)
3915 		cache_no_acl(inode);
3916 
3917 	switch (inode->i_mode & S_IFMT) {
3918 	case S_IFREG:
3919 		inode->i_mapping->a_ops = &btrfs_aops;
3920 		inode->i_fop = &btrfs_file_operations;
3921 		inode->i_op = &btrfs_file_inode_operations;
3922 		break;
3923 	case S_IFDIR:
3924 		inode->i_fop = &btrfs_dir_file_operations;
3925 		inode->i_op = &btrfs_dir_inode_operations;
3926 		break;
3927 	case S_IFLNK:
3928 		inode->i_op = &btrfs_symlink_inode_operations;
3929 		inode_nohighmem(inode);
3930 		inode->i_mapping->a_ops = &btrfs_aops;
3931 		break;
3932 	default:
3933 		inode->i_op = &btrfs_special_inode_operations;
3934 		init_special_inode(inode, inode->i_mode, rdev);
3935 		break;
3936 	}
3937 
3938 	btrfs_sync_inode_flags_to_i_flags(inode);
3939 	return 0;
3940 }
3941 
3942 /*
3943  * given a leaf and an inode, copy the inode fields into the leaf
3944  */
3945 static void fill_inode_item(struct btrfs_trans_handle *trans,
3946 			    struct extent_buffer *leaf,
3947 			    struct btrfs_inode_item *item,
3948 			    struct inode *inode)
3949 {
3950 	struct btrfs_map_token token;
3951 	u64 flags;
3952 
3953 	btrfs_init_map_token(&token, leaf);
3954 
3955 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3956 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3957 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3958 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3959 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3960 
3961 	btrfs_set_token_timespec_sec(&token, &item->atime,
3962 				     inode->i_atime.tv_sec);
3963 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3964 				      inode->i_atime.tv_nsec);
3965 
3966 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3967 				     inode->i_mtime.tv_sec);
3968 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3969 				      inode->i_mtime.tv_nsec);
3970 
3971 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3972 				     inode->i_ctime.tv_sec);
3973 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3974 				      inode->i_ctime.tv_nsec);
3975 
3976 	btrfs_set_token_timespec_sec(&token, &item->otime,
3977 				     BTRFS_I(inode)->i_otime.tv_sec);
3978 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3979 				      BTRFS_I(inode)->i_otime.tv_nsec);
3980 
3981 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3982 	btrfs_set_token_inode_generation(&token, item,
3983 					 BTRFS_I(inode)->generation);
3984 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3985 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3986 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3987 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3988 					  BTRFS_I(inode)->ro_flags);
3989 	btrfs_set_token_inode_flags(&token, item, flags);
3990 	btrfs_set_token_inode_block_group(&token, item, 0);
3991 }
3992 
3993 /*
3994  * copy everything in the in-memory inode into the btree.
3995  */
3996 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3997 				struct btrfs_root *root,
3998 				struct btrfs_inode *inode)
3999 {
4000 	struct btrfs_inode_item *inode_item;
4001 	struct btrfs_path *path;
4002 	struct extent_buffer *leaf;
4003 	int ret;
4004 
4005 	path = btrfs_alloc_path();
4006 	if (!path)
4007 		return -ENOMEM;
4008 
4009 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4010 	if (ret) {
4011 		if (ret > 0)
4012 			ret = -ENOENT;
4013 		goto failed;
4014 	}
4015 
4016 	leaf = path->nodes[0];
4017 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4018 				    struct btrfs_inode_item);
4019 
4020 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4021 	btrfs_mark_buffer_dirty(leaf);
4022 	btrfs_set_inode_last_trans(trans, inode);
4023 	ret = 0;
4024 failed:
4025 	btrfs_free_path(path);
4026 	return ret;
4027 }
4028 
4029 /*
4030  * copy everything in the in-memory inode into the btree.
4031  */
4032 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4033 				struct btrfs_root *root,
4034 				struct btrfs_inode *inode)
4035 {
4036 	struct btrfs_fs_info *fs_info = root->fs_info;
4037 	int ret;
4038 
4039 	/*
4040 	 * If the inode is a free space inode, we can deadlock during commit
4041 	 * if we put it into the delayed code.
4042 	 *
4043 	 * The data relocation inode should also be directly updated
4044 	 * without delay
4045 	 */
4046 	if (!btrfs_is_free_space_inode(inode)
4047 	    && !btrfs_is_data_reloc_root(root)
4048 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4049 		btrfs_update_root_times(trans, root);
4050 
4051 		ret = btrfs_delayed_update_inode(trans, root, inode);
4052 		if (!ret)
4053 			btrfs_set_inode_last_trans(trans, inode);
4054 		return ret;
4055 	}
4056 
4057 	return btrfs_update_inode_item(trans, root, inode);
4058 }
4059 
4060 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4061 				struct btrfs_root *root, struct btrfs_inode *inode)
4062 {
4063 	int ret;
4064 
4065 	ret = btrfs_update_inode(trans, root, inode);
4066 	if (ret == -ENOSPC)
4067 		return btrfs_update_inode_item(trans, root, inode);
4068 	return ret;
4069 }
4070 
4071 /*
4072  * unlink helper that gets used here in inode.c and in the tree logging
4073  * recovery code.  It remove a link in a directory with a given name, and
4074  * also drops the back refs in the inode to the directory
4075  */
4076 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4077 				struct btrfs_inode *dir,
4078 				struct btrfs_inode *inode,
4079 				const char *name, int name_len,
4080 				struct btrfs_rename_ctx *rename_ctx)
4081 {
4082 	struct btrfs_root *root = dir->root;
4083 	struct btrfs_fs_info *fs_info = root->fs_info;
4084 	struct btrfs_path *path;
4085 	int ret = 0;
4086 	struct btrfs_dir_item *di;
4087 	u64 index;
4088 	u64 ino = btrfs_ino(inode);
4089 	u64 dir_ino = btrfs_ino(dir);
4090 
4091 	path = btrfs_alloc_path();
4092 	if (!path) {
4093 		ret = -ENOMEM;
4094 		goto out;
4095 	}
4096 
4097 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4098 				    name, name_len, -1);
4099 	if (IS_ERR_OR_NULL(di)) {
4100 		ret = di ? PTR_ERR(di) : -ENOENT;
4101 		goto err;
4102 	}
4103 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4104 	if (ret)
4105 		goto err;
4106 	btrfs_release_path(path);
4107 
4108 	/*
4109 	 * If we don't have dir index, we have to get it by looking up
4110 	 * the inode ref, since we get the inode ref, remove it directly,
4111 	 * it is unnecessary to do delayed deletion.
4112 	 *
4113 	 * But if we have dir index, needn't search inode ref to get it.
4114 	 * Since the inode ref is close to the inode item, it is better
4115 	 * that we delay to delete it, and just do this deletion when
4116 	 * we update the inode item.
4117 	 */
4118 	if (inode->dir_index) {
4119 		ret = btrfs_delayed_delete_inode_ref(inode);
4120 		if (!ret) {
4121 			index = inode->dir_index;
4122 			goto skip_backref;
4123 		}
4124 	}
4125 
4126 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4127 				  dir_ino, &index);
4128 	if (ret) {
4129 		btrfs_info(fs_info,
4130 			"failed to delete reference to %.*s, inode %llu parent %llu",
4131 			name_len, name, ino, dir_ino);
4132 		btrfs_abort_transaction(trans, ret);
4133 		goto err;
4134 	}
4135 skip_backref:
4136 	if (rename_ctx)
4137 		rename_ctx->index = index;
4138 
4139 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4140 	if (ret) {
4141 		btrfs_abort_transaction(trans, ret);
4142 		goto err;
4143 	}
4144 
4145 	/*
4146 	 * If we are in a rename context, we don't need to update anything in the
4147 	 * log. That will be done later during the rename by btrfs_log_new_name().
4148 	 * Besides that, doing it here would only cause extra unncessary btree
4149 	 * operations on the log tree, increasing latency for applications.
4150 	 */
4151 	if (!rename_ctx) {
4152 		btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4153 					   dir_ino);
4154 		btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4155 					     index);
4156 	}
4157 
4158 	/*
4159 	 * If we have a pending delayed iput we could end up with the final iput
4160 	 * being run in btrfs-cleaner context.  If we have enough of these built
4161 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4162 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4163 	 * the inode we can run the delayed iput here without any issues as the
4164 	 * final iput won't be done until after we drop the ref we're currently
4165 	 * holding.
4166 	 */
4167 	btrfs_run_delayed_iput(fs_info, inode);
4168 err:
4169 	btrfs_free_path(path);
4170 	if (ret)
4171 		goto out;
4172 
4173 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4174 	inode_inc_iversion(&inode->vfs_inode);
4175 	inode_inc_iversion(&dir->vfs_inode);
4176 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4177 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4178 	ret = btrfs_update_inode(trans, root, dir);
4179 out:
4180 	return ret;
4181 }
4182 
4183 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4184 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4185 		       const char *name, int name_len)
4186 {
4187 	int ret;
4188 	ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
4189 	if (!ret) {
4190 		drop_nlink(&inode->vfs_inode);
4191 		ret = btrfs_update_inode(trans, inode->root, inode);
4192 	}
4193 	return ret;
4194 }
4195 
4196 /*
4197  * helper to start transaction for unlink and rmdir.
4198  *
4199  * unlink and rmdir are special in btrfs, they do not always free space, so
4200  * if we cannot make our reservations the normal way try and see if there is
4201  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4202  * allow the unlink to occur.
4203  */
4204 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4205 {
4206 	struct btrfs_root *root = BTRFS_I(dir)->root;
4207 
4208 	/*
4209 	 * 1 for the possible orphan item
4210 	 * 1 for the dir item
4211 	 * 1 for the dir index
4212 	 * 1 for the inode ref
4213 	 * 1 for the inode
4214 	 */
4215 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
4216 }
4217 
4218 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4219 {
4220 	struct btrfs_trans_handle *trans;
4221 	struct inode *inode = d_inode(dentry);
4222 	int ret;
4223 
4224 	trans = __unlink_start_trans(dir);
4225 	if (IS_ERR(trans))
4226 		return PTR_ERR(trans);
4227 
4228 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4229 			0);
4230 
4231 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4232 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4233 			dentry->d_name.len);
4234 	if (ret)
4235 		goto out;
4236 
4237 	if (inode->i_nlink == 0) {
4238 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4239 		if (ret)
4240 			goto out;
4241 	}
4242 
4243 out:
4244 	btrfs_end_transaction(trans);
4245 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4246 	return ret;
4247 }
4248 
4249 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4250 			       struct inode *dir, struct dentry *dentry)
4251 {
4252 	struct btrfs_root *root = BTRFS_I(dir)->root;
4253 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4254 	struct btrfs_path *path;
4255 	struct extent_buffer *leaf;
4256 	struct btrfs_dir_item *di;
4257 	struct btrfs_key key;
4258 	const char *name = dentry->d_name.name;
4259 	int name_len = dentry->d_name.len;
4260 	u64 index;
4261 	int ret;
4262 	u64 objectid;
4263 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4264 
4265 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4266 		objectid = inode->root->root_key.objectid;
4267 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4268 		objectid = inode->location.objectid;
4269 	} else {
4270 		WARN_ON(1);
4271 		return -EINVAL;
4272 	}
4273 
4274 	path = btrfs_alloc_path();
4275 	if (!path)
4276 		return -ENOMEM;
4277 
4278 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4279 				   name, name_len, -1);
4280 	if (IS_ERR_OR_NULL(di)) {
4281 		ret = di ? PTR_ERR(di) : -ENOENT;
4282 		goto out;
4283 	}
4284 
4285 	leaf = path->nodes[0];
4286 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4287 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4288 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4289 	if (ret) {
4290 		btrfs_abort_transaction(trans, ret);
4291 		goto out;
4292 	}
4293 	btrfs_release_path(path);
4294 
4295 	/*
4296 	 * This is a placeholder inode for a subvolume we didn't have a
4297 	 * reference to at the time of the snapshot creation.  In the meantime
4298 	 * we could have renamed the real subvol link into our snapshot, so
4299 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4300 	 * Instead simply lookup the dir_index_item for this entry so we can
4301 	 * remove it.  Otherwise we know we have a ref to the root and we can
4302 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4303 	 */
4304 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4305 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4306 						 name, name_len);
4307 		if (IS_ERR_OR_NULL(di)) {
4308 			if (!di)
4309 				ret = -ENOENT;
4310 			else
4311 				ret = PTR_ERR(di);
4312 			btrfs_abort_transaction(trans, ret);
4313 			goto out;
4314 		}
4315 
4316 		leaf = path->nodes[0];
4317 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4318 		index = key.offset;
4319 		btrfs_release_path(path);
4320 	} else {
4321 		ret = btrfs_del_root_ref(trans, objectid,
4322 					 root->root_key.objectid, dir_ino,
4323 					 &index, name, name_len);
4324 		if (ret) {
4325 			btrfs_abort_transaction(trans, ret);
4326 			goto out;
4327 		}
4328 	}
4329 
4330 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4331 	if (ret) {
4332 		btrfs_abort_transaction(trans, ret);
4333 		goto out;
4334 	}
4335 
4336 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4337 	inode_inc_iversion(dir);
4338 	dir->i_mtime = dir->i_ctime = current_time(dir);
4339 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4340 	if (ret)
4341 		btrfs_abort_transaction(trans, ret);
4342 out:
4343 	btrfs_free_path(path);
4344 	return ret;
4345 }
4346 
4347 /*
4348  * Helper to check if the subvolume references other subvolumes or if it's
4349  * default.
4350  */
4351 static noinline int may_destroy_subvol(struct btrfs_root *root)
4352 {
4353 	struct btrfs_fs_info *fs_info = root->fs_info;
4354 	struct btrfs_path *path;
4355 	struct btrfs_dir_item *di;
4356 	struct btrfs_key key;
4357 	u64 dir_id;
4358 	int ret;
4359 
4360 	path = btrfs_alloc_path();
4361 	if (!path)
4362 		return -ENOMEM;
4363 
4364 	/* Make sure this root isn't set as the default subvol */
4365 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4366 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4367 				   dir_id, "default", 7, 0);
4368 	if (di && !IS_ERR(di)) {
4369 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4370 		if (key.objectid == root->root_key.objectid) {
4371 			ret = -EPERM;
4372 			btrfs_err(fs_info,
4373 				  "deleting default subvolume %llu is not allowed",
4374 				  key.objectid);
4375 			goto out;
4376 		}
4377 		btrfs_release_path(path);
4378 	}
4379 
4380 	key.objectid = root->root_key.objectid;
4381 	key.type = BTRFS_ROOT_REF_KEY;
4382 	key.offset = (u64)-1;
4383 
4384 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4385 	if (ret < 0)
4386 		goto out;
4387 	BUG_ON(ret == 0);
4388 
4389 	ret = 0;
4390 	if (path->slots[0] > 0) {
4391 		path->slots[0]--;
4392 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4393 		if (key.objectid == root->root_key.objectid &&
4394 		    key.type == BTRFS_ROOT_REF_KEY)
4395 			ret = -ENOTEMPTY;
4396 	}
4397 out:
4398 	btrfs_free_path(path);
4399 	return ret;
4400 }
4401 
4402 /* Delete all dentries for inodes belonging to the root */
4403 static void btrfs_prune_dentries(struct btrfs_root *root)
4404 {
4405 	struct btrfs_fs_info *fs_info = root->fs_info;
4406 	struct rb_node *node;
4407 	struct rb_node *prev;
4408 	struct btrfs_inode *entry;
4409 	struct inode *inode;
4410 	u64 objectid = 0;
4411 
4412 	if (!BTRFS_FS_ERROR(fs_info))
4413 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4414 
4415 	spin_lock(&root->inode_lock);
4416 again:
4417 	node = root->inode_tree.rb_node;
4418 	prev = NULL;
4419 	while (node) {
4420 		prev = node;
4421 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4422 
4423 		if (objectid < btrfs_ino(entry))
4424 			node = node->rb_left;
4425 		else if (objectid > btrfs_ino(entry))
4426 			node = node->rb_right;
4427 		else
4428 			break;
4429 	}
4430 	if (!node) {
4431 		while (prev) {
4432 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4433 			if (objectid <= btrfs_ino(entry)) {
4434 				node = prev;
4435 				break;
4436 			}
4437 			prev = rb_next(prev);
4438 		}
4439 	}
4440 	while (node) {
4441 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4442 		objectid = btrfs_ino(entry) + 1;
4443 		inode = igrab(&entry->vfs_inode);
4444 		if (inode) {
4445 			spin_unlock(&root->inode_lock);
4446 			if (atomic_read(&inode->i_count) > 1)
4447 				d_prune_aliases(inode);
4448 			/*
4449 			 * btrfs_drop_inode will have it removed from the inode
4450 			 * cache when its usage count hits zero.
4451 			 */
4452 			iput(inode);
4453 			cond_resched();
4454 			spin_lock(&root->inode_lock);
4455 			goto again;
4456 		}
4457 
4458 		if (cond_resched_lock(&root->inode_lock))
4459 			goto again;
4460 
4461 		node = rb_next(node);
4462 	}
4463 	spin_unlock(&root->inode_lock);
4464 }
4465 
4466 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4467 {
4468 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4469 	struct btrfs_root *root = BTRFS_I(dir)->root;
4470 	struct inode *inode = d_inode(dentry);
4471 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4472 	struct btrfs_trans_handle *trans;
4473 	struct btrfs_block_rsv block_rsv;
4474 	u64 root_flags;
4475 	int ret;
4476 
4477 	/*
4478 	 * Don't allow to delete a subvolume with send in progress. This is
4479 	 * inside the inode lock so the error handling that has to drop the bit
4480 	 * again is not run concurrently.
4481 	 */
4482 	spin_lock(&dest->root_item_lock);
4483 	if (dest->send_in_progress) {
4484 		spin_unlock(&dest->root_item_lock);
4485 		btrfs_warn(fs_info,
4486 			   "attempt to delete subvolume %llu during send",
4487 			   dest->root_key.objectid);
4488 		return -EPERM;
4489 	}
4490 	if (atomic_read(&dest->nr_swapfiles)) {
4491 		spin_unlock(&dest->root_item_lock);
4492 		btrfs_warn(fs_info,
4493 			   "attempt to delete subvolume %llu with active swapfile",
4494 			   root->root_key.objectid);
4495 		return -EPERM;
4496 	}
4497 	root_flags = btrfs_root_flags(&dest->root_item);
4498 	btrfs_set_root_flags(&dest->root_item,
4499 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4500 	spin_unlock(&dest->root_item_lock);
4501 
4502 	down_write(&fs_info->subvol_sem);
4503 
4504 	ret = may_destroy_subvol(dest);
4505 	if (ret)
4506 		goto out_up_write;
4507 
4508 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4509 	/*
4510 	 * One for dir inode,
4511 	 * two for dir entries,
4512 	 * two for root ref/backref.
4513 	 */
4514 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4515 	if (ret)
4516 		goto out_up_write;
4517 
4518 	trans = btrfs_start_transaction(root, 0);
4519 	if (IS_ERR(trans)) {
4520 		ret = PTR_ERR(trans);
4521 		goto out_release;
4522 	}
4523 	trans->block_rsv = &block_rsv;
4524 	trans->bytes_reserved = block_rsv.size;
4525 
4526 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4527 
4528 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4529 	if (ret) {
4530 		btrfs_abort_transaction(trans, ret);
4531 		goto out_end_trans;
4532 	}
4533 
4534 	ret = btrfs_record_root_in_trans(trans, dest);
4535 	if (ret) {
4536 		btrfs_abort_transaction(trans, ret);
4537 		goto out_end_trans;
4538 	}
4539 
4540 	memset(&dest->root_item.drop_progress, 0,
4541 		sizeof(dest->root_item.drop_progress));
4542 	btrfs_set_root_drop_level(&dest->root_item, 0);
4543 	btrfs_set_root_refs(&dest->root_item, 0);
4544 
4545 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4546 		ret = btrfs_insert_orphan_item(trans,
4547 					fs_info->tree_root,
4548 					dest->root_key.objectid);
4549 		if (ret) {
4550 			btrfs_abort_transaction(trans, ret);
4551 			goto out_end_trans;
4552 		}
4553 	}
4554 
4555 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4556 				  BTRFS_UUID_KEY_SUBVOL,
4557 				  dest->root_key.objectid);
4558 	if (ret && ret != -ENOENT) {
4559 		btrfs_abort_transaction(trans, ret);
4560 		goto out_end_trans;
4561 	}
4562 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4563 		ret = btrfs_uuid_tree_remove(trans,
4564 					  dest->root_item.received_uuid,
4565 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4566 					  dest->root_key.objectid);
4567 		if (ret && ret != -ENOENT) {
4568 			btrfs_abort_transaction(trans, ret);
4569 			goto out_end_trans;
4570 		}
4571 	}
4572 
4573 	free_anon_bdev(dest->anon_dev);
4574 	dest->anon_dev = 0;
4575 out_end_trans:
4576 	trans->block_rsv = NULL;
4577 	trans->bytes_reserved = 0;
4578 	ret = btrfs_end_transaction(trans);
4579 	inode->i_flags |= S_DEAD;
4580 out_release:
4581 	btrfs_subvolume_release_metadata(root, &block_rsv);
4582 out_up_write:
4583 	up_write(&fs_info->subvol_sem);
4584 	if (ret) {
4585 		spin_lock(&dest->root_item_lock);
4586 		root_flags = btrfs_root_flags(&dest->root_item);
4587 		btrfs_set_root_flags(&dest->root_item,
4588 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4589 		spin_unlock(&dest->root_item_lock);
4590 	} else {
4591 		d_invalidate(dentry);
4592 		btrfs_prune_dentries(dest);
4593 		ASSERT(dest->send_in_progress == 0);
4594 	}
4595 
4596 	return ret;
4597 }
4598 
4599 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4600 {
4601 	struct inode *inode = d_inode(dentry);
4602 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4603 	int err = 0;
4604 	struct btrfs_trans_handle *trans;
4605 	u64 last_unlink_trans;
4606 
4607 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4608 		return -ENOTEMPTY;
4609 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4610 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4611 			btrfs_err(fs_info,
4612 			"extent tree v2 doesn't support snapshot deletion yet");
4613 			return -EOPNOTSUPP;
4614 		}
4615 		return btrfs_delete_subvolume(dir, dentry);
4616 	}
4617 
4618 	trans = __unlink_start_trans(dir);
4619 	if (IS_ERR(trans))
4620 		return PTR_ERR(trans);
4621 
4622 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4623 		err = btrfs_unlink_subvol(trans, dir, dentry);
4624 		goto out;
4625 	}
4626 
4627 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4628 	if (err)
4629 		goto out;
4630 
4631 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4632 
4633 	/* now the directory is empty */
4634 	err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4635 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4636 			dentry->d_name.len);
4637 	if (!err) {
4638 		btrfs_i_size_write(BTRFS_I(inode), 0);
4639 		/*
4640 		 * Propagate the last_unlink_trans value of the deleted dir to
4641 		 * its parent directory. This is to prevent an unrecoverable
4642 		 * log tree in the case we do something like this:
4643 		 * 1) create dir foo
4644 		 * 2) create snapshot under dir foo
4645 		 * 3) delete the snapshot
4646 		 * 4) rmdir foo
4647 		 * 5) mkdir foo
4648 		 * 6) fsync foo or some file inside foo
4649 		 */
4650 		if (last_unlink_trans >= trans->transid)
4651 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4652 	}
4653 out:
4654 	btrfs_end_transaction(trans);
4655 	btrfs_btree_balance_dirty(fs_info);
4656 
4657 	return err;
4658 }
4659 
4660 /*
4661  * btrfs_truncate_block - read, zero a chunk and write a block
4662  * @inode - inode that we're zeroing
4663  * @from - the offset to start zeroing
4664  * @len - the length to zero, 0 to zero the entire range respective to the
4665  *	offset
4666  * @front - zero up to the offset instead of from the offset on
4667  *
4668  * This will find the block for the "from" offset and cow the block and zero the
4669  * part we want to zero.  This is used with truncate and hole punching.
4670  */
4671 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4672 			 int front)
4673 {
4674 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4675 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4676 	struct extent_io_tree *io_tree = &inode->io_tree;
4677 	struct btrfs_ordered_extent *ordered;
4678 	struct extent_state *cached_state = NULL;
4679 	struct extent_changeset *data_reserved = NULL;
4680 	bool only_release_metadata = false;
4681 	u32 blocksize = fs_info->sectorsize;
4682 	pgoff_t index = from >> PAGE_SHIFT;
4683 	unsigned offset = from & (blocksize - 1);
4684 	struct page *page;
4685 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4686 	size_t write_bytes = blocksize;
4687 	int ret = 0;
4688 	u64 block_start;
4689 	u64 block_end;
4690 
4691 	if (IS_ALIGNED(offset, blocksize) &&
4692 	    (!len || IS_ALIGNED(len, blocksize)))
4693 		goto out;
4694 
4695 	block_start = round_down(from, blocksize);
4696 	block_end = block_start + blocksize - 1;
4697 
4698 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4699 					  blocksize);
4700 	if (ret < 0) {
4701 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4702 			/* For nocow case, no need to reserve data space */
4703 			only_release_metadata = true;
4704 		} else {
4705 			goto out;
4706 		}
4707 	}
4708 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize);
4709 	if (ret < 0) {
4710 		if (!only_release_metadata)
4711 			btrfs_free_reserved_data_space(inode, data_reserved,
4712 						       block_start, blocksize);
4713 		goto out;
4714 	}
4715 again:
4716 	page = find_or_create_page(mapping, index, mask);
4717 	if (!page) {
4718 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4719 					     blocksize, true);
4720 		btrfs_delalloc_release_extents(inode, blocksize);
4721 		ret = -ENOMEM;
4722 		goto out;
4723 	}
4724 	ret = set_page_extent_mapped(page);
4725 	if (ret < 0)
4726 		goto out_unlock;
4727 
4728 	if (!PageUptodate(page)) {
4729 		ret = btrfs_readpage(NULL, page);
4730 		lock_page(page);
4731 		if (page->mapping != mapping) {
4732 			unlock_page(page);
4733 			put_page(page);
4734 			goto again;
4735 		}
4736 		if (!PageUptodate(page)) {
4737 			ret = -EIO;
4738 			goto out_unlock;
4739 		}
4740 	}
4741 	wait_on_page_writeback(page);
4742 
4743 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4744 
4745 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4746 	if (ordered) {
4747 		unlock_extent_cached(io_tree, block_start, block_end,
4748 				     &cached_state);
4749 		unlock_page(page);
4750 		put_page(page);
4751 		btrfs_start_ordered_extent(ordered, 1);
4752 		btrfs_put_ordered_extent(ordered);
4753 		goto again;
4754 	}
4755 
4756 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4757 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4758 			 0, 0, &cached_state);
4759 
4760 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4761 					&cached_state);
4762 	if (ret) {
4763 		unlock_extent_cached(io_tree, block_start, block_end,
4764 				     &cached_state);
4765 		goto out_unlock;
4766 	}
4767 
4768 	if (offset != blocksize) {
4769 		if (!len)
4770 			len = blocksize - offset;
4771 		if (front)
4772 			memzero_page(page, (block_start - page_offset(page)),
4773 				     offset);
4774 		else
4775 			memzero_page(page, (block_start - page_offset(page)) + offset,
4776 				     len);
4777 		flush_dcache_page(page);
4778 	}
4779 	btrfs_page_clear_checked(fs_info, page, block_start,
4780 				 block_end + 1 - block_start);
4781 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4782 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4783 
4784 	if (only_release_metadata)
4785 		set_extent_bit(&inode->io_tree, block_start, block_end,
4786 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4787 
4788 out_unlock:
4789 	if (ret) {
4790 		if (only_release_metadata)
4791 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4792 		else
4793 			btrfs_delalloc_release_space(inode, data_reserved,
4794 					block_start, blocksize, true);
4795 	}
4796 	btrfs_delalloc_release_extents(inode, blocksize);
4797 	unlock_page(page);
4798 	put_page(page);
4799 out:
4800 	if (only_release_metadata)
4801 		btrfs_check_nocow_unlock(inode);
4802 	extent_changeset_free(data_reserved);
4803 	return ret;
4804 }
4805 
4806 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4807 			     u64 offset, u64 len)
4808 {
4809 	struct btrfs_fs_info *fs_info = root->fs_info;
4810 	struct btrfs_trans_handle *trans;
4811 	struct btrfs_drop_extents_args drop_args = { 0 };
4812 	int ret;
4813 
4814 	/*
4815 	 * If NO_HOLES is enabled, we don't need to do anything.
4816 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4817 	 * or btrfs_update_inode() will be called, which guarantee that the next
4818 	 * fsync will know this inode was changed and needs to be logged.
4819 	 */
4820 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4821 		return 0;
4822 
4823 	/*
4824 	 * 1 - for the one we're dropping
4825 	 * 1 - for the one we're adding
4826 	 * 1 - for updating the inode.
4827 	 */
4828 	trans = btrfs_start_transaction(root, 3);
4829 	if (IS_ERR(trans))
4830 		return PTR_ERR(trans);
4831 
4832 	drop_args.start = offset;
4833 	drop_args.end = offset + len;
4834 	drop_args.drop_cache = true;
4835 
4836 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4837 	if (ret) {
4838 		btrfs_abort_transaction(trans, ret);
4839 		btrfs_end_transaction(trans);
4840 		return ret;
4841 	}
4842 
4843 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4844 			offset, 0, 0, len, 0, len, 0, 0, 0);
4845 	if (ret) {
4846 		btrfs_abort_transaction(trans, ret);
4847 	} else {
4848 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4849 		btrfs_update_inode(trans, root, inode);
4850 	}
4851 	btrfs_end_transaction(trans);
4852 	return ret;
4853 }
4854 
4855 /*
4856  * This function puts in dummy file extents for the area we're creating a hole
4857  * for.  So if we are truncating this file to a larger size we need to insert
4858  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4859  * the range between oldsize and size
4860  */
4861 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4862 {
4863 	struct btrfs_root *root = inode->root;
4864 	struct btrfs_fs_info *fs_info = root->fs_info;
4865 	struct extent_io_tree *io_tree = &inode->io_tree;
4866 	struct extent_map *em = NULL;
4867 	struct extent_state *cached_state = NULL;
4868 	struct extent_map_tree *em_tree = &inode->extent_tree;
4869 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4870 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4871 	u64 last_byte;
4872 	u64 cur_offset;
4873 	u64 hole_size;
4874 	int err = 0;
4875 
4876 	/*
4877 	 * If our size started in the middle of a block we need to zero out the
4878 	 * rest of the block before we expand the i_size, otherwise we could
4879 	 * expose stale data.
4880 	 */
4881 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4882 	if (err)
4883 		return err;
4884 
4885 	if (size <= hole_start)
4886 		return 0;
4887 
4888 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4889 					   &cached_state);
4890 	cur_offset = hole_start;
4891 	while (1) {
4892 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4893 				      block_end - cur_offset);
4894 		if (IS_ERR(em)) {
4895 			err = PTR_ERR(em);
4896 			em = NULL;
4897 			break;
4898 		}
4899 		last_byte = min(extent_map_end(em), block_end);
4900 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4901 		hole_size = last_byte - cur_offset;
4902 
4903 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4904 			struct extent_map *hole_em;
4905 
4906 			err = maybe_insert_hole(root, inode, cur_offset,
4907 						hole_size);
4908 			if (err)
4909 				break;
4910 
4911 			err = btrfs_inode_set_file_extent_range(inode,
4912 							cur_offset, hole_size);
4913 			if (err)
4914 				break;
4915 
4916 			btrfs_drop_extent_cache(inode, cur_offset,
4917 						cur_offset + hole_size - 1, 0);
4918 			hole_em = alloc_extent_map();
4919 			if (!hole_em) {
4920 				btrfs_set_inode_full_sync(inode);
4921 				goto next;
4922 			}
4923 			hole_em->start = cur_offset;
4924 			hole_em->len = hole_size;
4925 			hole_em->orig_start = cur_offset;
4926 
4927 			hole_em->block_start = EXTENT_MAP_HOLE;
4928 			hole_em->block_len = 0;
4929 			hole_em->orig_block_len = 0;
4930 			hole_em->ram_bytes = hole_size;
4931 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4932 			hole_em->generation = fs_info->generation;
4933 
4934 			while (1) {
4935 				write_lock(&em_tree->lock);
4936 				err = add_extent_mapping(em_tree, hole_em, 1);
4937 				write_unlock(&em_tree->lock);
4938 				if (err != -EEXIST)
4939 					break;
4940 				btrfs_drop_extent_cache(inode, cur_offset,
4941 							cur_offset +
4942 							hole_size - 1, 0);
4943 			}
4944 			free_extent_map(hole_em);
4945 		} else {
4946 			err = btrfs_inode_set_file_extent_range(inode,
4947 							cur_offset, hole_size);
4948 			if (err)
4949 				break;
4950 		}
4951 next:
4952 		free_extent_map(em);
4953 		em = NULL;
4954 		cur_offset = last_byte;
4955 		if (cur_offset >= block_end)
4956 			break;
4957 	}
4958 	free_extent_map(em);
4959 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4960 	return err;
4961 }
4962 
4963 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4964 {
4965 	struct btrfs_root *root = BTRFS_I(inode)->root;
4966 	struct btrfs_trans_handle *trans;
4967 	loff_t oldsize = i_size_read(inode);
4968 	loff_t newsize = attr->ia_size;
4969 	int mask = attr->ia_valid;
4970 	int ret;
4971 
4972 	/*
4973 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4974 	 * special case where we need to update the times despite not having
4975 	 * these flags set.  For all other operations the VFS set these flags
4976 	 * explicitly if it wants a timestamp update.
4977 	 */
4978 	if (newsize != oldsize) {
4979 		inode_inc_iversion(inode);
4980 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4981 			inode->i_ctime = inode->i_mtime =
4982 				current_time(inode);
4983 	}
4984 
4985 	if (newsize > oldsize) {
4986 		/*
4987 		 * Don't do an expanding truncate while snapshotting is ongoing.
4988 		 * This is to ensure the snapshot captures a fully consistent
4989 		 * state of this file - if the snapshot captures this expanding
4990 		 * truncation, it must capture all writes that happened before
4991 		 * this truncation.
4992 		 */
4993 		btrfs_drew_write_lock(&root->snapshot_lock);
4994 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4995 		if (ret) {
4996 			btrfs_drew_write_unlock(&root->snapshot_lock);
4997 			return ret;
4998 		}
4999 
5000 		trans = btrfs_start_transaction(root, 1);
5001 		if (IS_ERR(trans)) {
5002 			btrfs_drew_write_unlock(&root->snapshot_lock);
5003 			return PTR_ERR(trans);
5004 		}
5005 
5006 		i_size_write(inode, newsize);
5007 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5008 		pagecache_isize_extended(inode, oldsize, newsize);
5009 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5010 		btrfs_drew_write_unlock(&root->snapshot_lock);
5011 		btrfs_end_transaction(trans);
5012 	} else {
5013 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5014 
5015 		if (btrfs_is_zoned(fs_info)) {
5016 			ret = btrfs_wait_ordered_range(inode,
5017 					ALIGN(newsize, fs_info->sectorsize),
5018 					(u64)-1);
5019 			if (ret)
5020 				return ret;
5021 		}
5022 
5023 		/*
5024 		 * We're truncating a file that used to have good data down to
5025 		 * zero. Make sure any new writes to the file get on disk
5026 		 * on close.
5027 		 */
5028 		if (newsize == 0)
5029 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5030 				&BTRFS_I(inode)->runtime_flags);
5031 
5032 		truncate_setsize(inode, newsize);
5033 
5034 		inode_dio_wait(inode);
5035 
5036 		ret = btrfs_truncate(inode, newsize == oldsize);
5037 		if (ret && inode->i_nlink) {
5038 			int err;
5039 
5040 			/*
5041 			 * Truncate failed, so fix up the in-memory size. We
5042 			 * adjusted disk_i_size down as we removed extents, so
5043 			 * wait for disk_i_size to be stable and then update the
5044 			 * in-memory size to match.
5045 			 */
5046 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5047 			if (err)
5048 				return err;
5049 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5050 		}
5051 	}
5052 
5053 	return ret;
5054 }
5055 
5056 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5057 			 struct iattr *attr)
5058 {
5059 	struct inode *inode = d_inode(dentry);
5060 	struct btrfs_root *root = BTRFS_I(inode)->root;
5061 	int err;
5062 
5063 	if (btrfs_root_readonly(root))
5064 		return -EROFS;
5065 
5066 	err = setattr_prepare(mnt_userns, dentry, attr);
5067 	if (err)
5068 		return err;
5069 
5070 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5071 		err = btrfs_setsize(inode, attr);
5072 		if (err)
5073 			return err;
5074 	}
5075 
5076 	if (attr->ia_valid) {
5077 		setattr_copy(mnt_userns, inode, attr);
5078 		inode_inc_iversion(inode);
5079 		err = btrfs_dirty_inode(inode);
5080 
5081 		if (!err && attr->ia_valid & ATTR_MODE)
5082 			err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5083 	}
5084 
5085 	return err;
5086 }
5087 
5088 /*
5089  * While truncating the inode pages during eviction, we get the VFS
5090  * calling btrfs_invalidate_folio() against each folio of the inode. This
5091  * is slow because the calls to btrfs_invalidate_folio() result in a
5092  * huge amount of calls to lock_extent_bits() and clear_extent_bit(),
5093  * which keep merging and splitting extent_state structures over and over,
5094  * wasting lots of time.
5095  *
5096  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5097  * skip all those expensive operations on a per folio basis and do only
5098  * the ordered io finishing, while we release here the extent_map and
5099  * extent_state structures, without the excessive merging and splitting.
5100  */
5101 static void evict_inode_truncate_pages(struct inode *inode)
5102 {
5103 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5104 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5105 	struct rb_node *node;
5106 
5107 	ASSERT(inode->i_state & I_FREEING);
5108 	truncate_inode_pages_final(&inode->i_data);
5109 
5110 	write_lock(&map_tree->lock);
5111 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5112 		struct extent_map *em;
5113 
5114 		node = rb_first_cached(&map_tree->map);
5115 		em = rb_entry(node, struct extent_map, rb_node);
5116 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5117 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5118 		remove_extent_mapping(map_tree, em);
5119 		free_extent_map(em);
5120 		if (need_resched()) {
5121 			write_unlock(&map_tree->lock);
5122 			cond_resched();
5123 			write_lock(&map_tree->lock);
5124 		}
5125 	}
5126 	write_unlock(&map_tree->lock);
5127 
5128 	/*
5129 	 * Keep looping until we have no more ranges in the io tree.
5130 	 * We can have ongoing bios started by readahead that have
5131 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5132 	 * still in progress (unlocked the pages in the bio but did not yet
5133 	 * unlocked the ranges in the io tree). Therefore this means some
5134 	 * ranges can still be locked and eviction started because before
5135 	 * submitting those bios, which are executed by a separate task (work
5136 	 * queue kthread), inode references (inode->i_count) were not taken
5137 	 * (which would be dropped in the end io callback of each bio).
5138 	 * Therefore here we effectively end up waiting for those bios and
5139 	 * anyone else holding locked ranges without having bumped the inode's
5140 	 * reference count - if we don't do it, when they access the inode's
5141 	 * io_tree to unlock a range it may be too late, leading to an
5142 	 * use-after-free issue.
5143 	 */
5144 	spin_lock(&io_tree->lock);
5145 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5146 		struct extent_state *state;
5147 		struct extent_state *cached_state = NULL;
5148 		u64 start;
5149 		u64 end;
5150 		unsigned state_flags;
5151 
5152 		node = rb_first(&io_tree->state);
5153 		state = rb_entry(node, struct extent_state, rb_node);
5154 		start = state->start;
5155 		end = state->end;
5156 		state_flags = state->state;
5157 		spin_unlock(&io_tree->lock);
5158 
5159 		lock_extent_bits(io_tree, start, end, &cached_state);
5160 
5161 		/*
5162 		 * If still has DELALLOC flag, the extent didn't reach disk,
5163 		 * and its reserved space won't be freed by delayed_ref.
5164 		 * So we need to free its reserved space here.
5165 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5166 		 *
5167 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5168 		 */
5169 		if (state_flags & EXTENT_DELALLOC)
5170 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5171 					       end - start + 1);
5172 
5173 		clear_extent_bit(io_tree, start, end,
5174 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5175 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5176 				 &cached_state);
5177 
5178 		cond_resched();
5179 		spin_lock(&io_tree->lock);
5180 	}
5181 	spin_unlock(&io_tree->lock);
5182 }
5183 
5184 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5185 							struct btrfs_block_rsv *rsv)
5186 {
5187 	struct btrfs_fs_info *fs_info = root->fs_info;
5188 	struct btrfs_trans_handle *trans;
5189 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5190 	int ret;
5191 
5192 	/*
5193 	 * Eviction should be taking place at some place safe because of our
5194 	 * delayed iputs.  However the normal flushing code will run delayed
5195 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5196 	 *
5197 	 * We reserve the delayed_refs_extra here again because we can't use
5198 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5199 	 * above.  We reserve our extra bit here because we generate a ton of
5200 	 * delayed refs activity by truncating.
5201 	 *
5202 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5203 	 * if we fail to make this reservation we can re-try without the
5204 	 * delayed_refs_extra so we can make some forward progress.
5205 	 */
5206 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5207 				     BTRFS_RESERVE_FLUSH_EVICT);
5208 	if (ret) {
5209 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5210 					     BTRFS_RESERVE_FLUSH_EVICT);
5211 		if (ret) {
5212 			btrfs_warn(fs_info,
5213 				   "could not allocate space for delete; will truncate on mount");
5214 			return ERR_PTR(-ENOSPC);
5215 		}
5216 		delayed_refs_extra = 0;
5217 	}
5218 
5219 	trans = btrfs_join_transaction(root);
5220 	if (IS_ERR(trans))
5221 		return trans;
5222 
5223 	if (delayed_refs_extra) {
5224 		trans->block_rsv = &fs_info->trans_block_rsv;
5225 		trans->bytes_reserved = delayed_refs_extra;
5226 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5227 					delayed_refs_extra, 1);
5228 	}
5229 	return trans;
5230 }
5231 
5232 void btrfs_evict_inode(struct inode *inode)
5233 {
5234 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5235 	struct btrfs_trans_handle *trans;
5236 	struct btrfs_root *root = BTRFS_I(inode)->root;
5237 	struct btrfs_block_rsv *rsv;
5238 	int ret;
5239 
5240 	trace_btrfs_inode_evict(inode);
5241 
5242 	if (!root) {
5243 		fsverity_cleanup_inode(inode);
5244 		clear_inode(inode);
5245 		return;
5246 	}
5247 
5248 	evict_inode_truncate_pages(inode);
5249 
5250 	if (inode->i_nlink &&
5251 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5252 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5253 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5254 		goto no_delete;
5255 
5256 	if (is_bad_inode(inode))
5257 		goto no_delete;
5258 
5259 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5260 
5261 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5262 		goto no_delete;
5263 
5264 	if (inode->i_nlink > 0) {
5265 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5266 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5267 		goto no_delete;
5268 	}
5269 
5270 	/*
5271 	 * This makes sure the inode item in tree is uptodate and the space for
5272 	 * the inode update is released.
5273 	 */
5274 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5275 	if (ret)
5276 		goto no_delete;
5277 
5278 	/*
5279 	 * This drops any pending insert or delete operations we have for this
5280 	 * inode.  We could have a delayed dir index deletion queued up, but
5281 	 * we're removing the inode completely so that'll be taken care of in
5282 	 * the truncate.
5283 	 */
5284 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5285 
5286 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5287 	if (!rsv)
5288 		goto no_delete;
5289 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5290 	rsv->failfast = 1;
5291 
5292 	btrfs_i_size_write(BTRFS_I(inode), 0);
5293 
5294 	while (1) {
5295 		struct btrfs_truncate_control control = {
5296 			.inode = BTRFS_I(inode),
5297 			.ino = btrfs_ino(BTRFS_I(inode)),
5298 			.new_size = 0,
5299 			.min_type = 0,
5300 		};
5301 
5302 		trans = evict_refill_and_join(root, rsv);
5303 		if (IS_ERR(trans))
5304 			goto free_rsv;
5305 
5306 		trans->block_rsv = rsv;
5307 
5308 		ret = btrfs_truncate_inode_items(trans, root, &control);
5309 		trans->block_rsv = &fs_info->trans_block_rsv;
5310 		btrfs_end_transaction(trans);
5311 		btrfs_btree_balance_dirty(fs_info);
5312 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5313 			goto free_rsv;
5314 		else if (!ret)
5315 			break;
5316 	}
5317 
5318 	/*
5319 	 * Errors here aren't a big deal, it just means we leave orphan items in
5320 	 * the tree. They will be cleaned up on the next mount. If the inode
5321 	 * number gets reused, cleanup deletes the orphan item without doing
5322 	 * anything, and unlink reuses the existing orphan item.
5323 	 *
5324 	 * If it turns out that we are dropping too many of these, we might want
5325 	 * to add a mechanism for retrying these after a commit.
5326 	 */
5327 	trans = evict_refill_and_join(root, rsv);
5328 	if (!IS_ERR(trans)) {
5329 		trans->block_rsv = rsv;
5330 		btrfs_orphan_del(trans, BTRFS_I(inode));
5331 		trans->block_rsv = &fs_info->trans_block_rsv;
5332 		btrfs_end_transaction(trans);
5333 	}
5334 
5335 free_rsv:
5336 	btrfs_free_block_rsv(fs_info, rsv);
5337 no_delete:
5338 	/*
5339 	 * If we didn't successfully delete, the orphan item will still be in
5340 	 * the tree and we'll retry on the next mount. Again, we might also want
5341 	 * to retry these periodically in the future.
5342 	 */
5343 	btrfs_remove_delayed_node(BTRFS_I(inode));
5344 	fsverity_cleanup_inode(inode);
5345 	clear_inode(inode);
5346 }
5347 
5348 /*
5349  * Return the key found in the dir entry in the location pointer, fill @type
5350  * with BTRFS_FT_*, and return 0.
5351  *
5352  * If no dir entries were found, returns -ENOENT.
5353  * If found a corrupted location in dir entry, returns -EUCLEAN.
5354  */
5355 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5356 			       struct btrfs_key *location, u8 *type)
5357 {
5358 	const char *name = dentry->d_name.name;
5359 	int namelen = dentry->d_name.len;
5360 	struct btrfs_dir_item *di;
5361 	struct btrfs_path *path;
5362 	struct btrfs_root *root = BTRFS_I(dir)->root;
5363 	int ret = 0;
5364 
5365 	path = btrfs_alloc_path();
5366 	if (!path)
5367 		return -ENOMEM;
5368 
5369 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5370 			name, namelen, 0);
5371 	if (IS_ERR_OR_NULL(di)) {
5372 		ret = di ? PTR_ERR(di) : -ENOENT;
5373 		goto out;
5374 	}
5375 
5376 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5377 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5378 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5379 		ret = -EUCLEAN;
5380 		btrfs_warn(root->fs_info,
5381 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5382 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5383 			   location->objectid, location->type, location->offset);
5384 	}
5385 	if (!ret)
5386 		*type = btrfs_dir_type(path->nodes[0], di);
5387 out:
5388 	btrfs_free_path(path);
5389 	return ret;
5390 }
5391 
5392 /*
5393  * when we hit a tree root in a directory, the btrfs part of the inode
5394  * needs to be changed to reflect the root directory of the tree root.  This
5395  * is kind of like crossing a mount point.
5396  */
5397 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5398 				    struct inode *dir,
5399 				    struct dentry *dentry,
5400 				    struct btrfs_key *location,
5401 				    struct btrfs_root **sub_root)
5402 {
5403 	struct btrfs_path *path;
5404 	struct btrfs_root *new_root;
5405 	struct btrfs_root_ref *ref;
5406 	struct extent_buffer *leaf;
5407 	struct btrfs_key key;
5408 	int ret;
5409 	int err = 0;
5410 
5411 	path = btrfs_alloc_path();
5412 	if (!path) {
5413 		err = -ENOMEM;
5414 		goto out;
5415 	}
5416 
5417 	err = -ENOENT;
5418 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5419 	key.type = BTRFS_ROOT_REF_KEY;
5420 	key.offset = location->objectid;
5421 
5422 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5423 	if (ret) {
5424 		if (ret < 0)
5425 			err = ret;
5426 		goto out;
5427 	}
5428 
5429 	leaf = path->nodes[0];
5430 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5431 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5432 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5433 		goto out;
5434 
5435 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5436 				   (unsigned long)(ref + 1),
5437 				   dentry->d_name.len);
5438 	if (ret)
5439 		goto out;
5440 
5441 	btrfs_release_path(path);
5442 
5443 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5444 	if (IS_ERR(new_root)) {
5445 		err = PTR_ERR(new_root);
5446 		goto out;
5447 	}
5448 
5449 	*sub_root = new_root;
5450 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5451 	location->type = BTRFS_INODE_ITEM_KEY;
5452 	location->offset = 0;
5453 	err = 0;
5454 out:
5455 	btrfs_free_path(path);
5456 	return err;
5457 }
5458 
5459 static void inode_tree_add(struct inode *inode)
5460 {
5461 	struct btrfs_root *root = BTRFS_I(inode)->root;
5462 	struct btrfs_inode *entry;
5463 	struct rb_node **p;
5464 	struct rb_node *parent;
5465 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5466 	u64 ino = btrfs_ino(BTRFS_I(inode));
5467 
5468 	if (inode_unhashed(inode))
5469 		return;
5470 	parent = NULL;
5471 	spin_lock(&root->inode_lock);
5472 	p = &root->inode_tree.rb_node;
5473 	while (*p) {
5474 		parent = *p;
5475 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5476 
5477 		if (ino < btrfs_ino(entry))
5478 			p = &parent->rb_left;
5479 		else if (ino > btrfs_ino(entry))
5480 			p = &parent->rb_right;
5481 		else {
5482 			WARN_ON(!(entry->vfs_inode.i_state &
5483 				  (I_WILL_FREE | I_FREEING)));
5484 			rb_replace_node(parent, new, &root->inode_tree);
5485 			RB_CLEAR_NODE(parent);
5486 			spin_unlock(&root->inode_lock);
5487 			return;
5488 		}
5489 	}
5490 	rb_link_node(new, parent, p);
5491 	rb_insert_color(new, &root->inode_tree);
5492 	spin_unlock(&root->inode_lock);
5493 }
5494 
5495 static void inode_tree_del(struct btrfs_inode *inode)
5496 {
5497 	struct btrfs_root *root = inode->root;
5498 	int empty = 0;
5499 
5500 	spin_lock(&root->inode_lock);
5501 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5502 		rb_erase(&inode->rb_node, &root->inode_tree);
5503 		RB_CLEAR_NODE(&inode->rb_node);
5504 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5505 	}
5506 	spin_unlock(&root->inode_lock);
5507 
5508 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5509 		spin_lock(&root->inode_lock);
5510 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5511 		spin_unlock(&root->inode_lock);
5512 		if (empty)
5513 			btrfs_add_dead_root(root);
5514 	}
5515 }
5516 
5517 
5518 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5519 {
5520 	struct btrfs_iget_args *args = p;
5521 
5522 	inode->i_ino = args->ino;
5523 	BTRFS_I(inode)->location.objectid = args->ino;
5524 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5525 	BTRFS_I(inode)->location.offset = 0;
5526 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5527 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5528 	return 0;
5529 }
5530 
5531 static int btrfs_find_actor(struct inode *inode, void *opaque)
5532 {
5533 	struct btrfs_iget_args *args = opaque;
5534 
5535 	return args->ino == BTRFS_I(inode)->location.objectid &&
5536 		args->root == BTRFS_I(inode)->root;
5537 }
5538 
5539 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5540 				       struct btrfs_root *root)
5541 {
5542 	struct inode *inode;
5543 	struct btrfs_iget_args args;
5544 	unsigned long hashval = btrfs_inode_hash(ino, root);
5545 
5546 	args.ino = ino;
5547 	args.root = root;
5548 
5549 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5550 			     btrfs_init_locked_inode,
5551 			     (void *)&args);
5552 	return inode;
5553 }
5554 
5555 /*
5556  * Get an inode object given its inode number and corresponding root.
5557  * Path can be preallocated to prevent recursing back to iget through
5558  * allocator. NULL is also valid but may require an additional allocation
5559  * later.
5560  */
5561 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5562 			      struct btrfs_root *root, struct btrfs_path *path)
5563 {
5564 	struct inode *inode;
5565 
5566 	inode = btrfs_iget_locked(s, ino, root);
5567 	if (!inode)
5568 		return ERR_PTR(-ENOMEM);
5569 
5570 	if (inode->i_state & I_NEW) {
5571 		int ret;
5572 
5573 		ret = btrfs_read_locked_inode(inode, path);
5574 		if (!ret) {
5575 			inode_tree_add(inode);
5576 			unlock_new_inode(inode);
5577 		} else {
5578 			iget_failed(inode);
5579 			/*
5580 			 * ret > 0 can come from btrfs_search_slot called by
5581 			 * btrfs_read_locked_inode, this means the inode item
5582 			 * was not found.
5583 			 */
5584 			if (ret > 0)
5585 				ret = -ENOENT;
5586 			inode = ERR_PTR(ret);
5587 		}
5588 	}
5589 
5590 	return inode;
5591 }
5592 
5593 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5594 {
5595 	return btrfs_iget_path(s, ino, root, NULL);
5596 }
5597 
5598 static struct inode *new_simple_dir(struct super_block *s,
5599 				    struct btrfs_key *key,
5600 				    struct btrfs_root *root)
5601 {
5602 	struct inode *inode = new_inode(s);
5603 
5604 	if (!inode)
5605 		return ERR_PTR(-ENOMEM);
5606 
5607 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5608 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5609 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5610 
5611 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5612 	/*
5613 	 * We only need lookup, the rest is read-only and there's no inode
5614 	 * associated with the dentry
5615 	 */
5616 	inode->i_op = &simple_dir_inode_operations;
5617 	inode->i_opflags &= ~IOP_XATTR;
5618 	inode->i_fop = &simple_dir_operations;
5619 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5620 	inode->i_mtime = current_time(inode);
5621 	inode->i_atime = inode->i_mtime;
5622 	inode->i_ctime = inode->i_mtime;
5623 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5624 
5625 	return inode;
5626 }
5627 
5628 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5629 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5630 static_assert(BTRFS_FT_DIR == FT_DIR);
5631 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5632 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5633 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5634 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5635 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5636 
5637 static inline u8 btrfs_inode_type(struct inode *inode)
5638 {
5639 	return fs_umode_to_ftype(inode->i_mode);
5640 }
5641 
5642 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5643 {
5644 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5645 	struct inode *inode;
5646 	struct btrfs_root *root = BTRFS_I(dir)->root;
5647 	struct btrfs_root *sub_root = root;
5648 	struct btrfs_key location;
5649 	u8 di_type = 0;
5650 	int ret = 0;
5651 
5652 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5653 		return ERR_PTR(-ENAMETOOLONG);
5654 
5655 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5656 	if (ret < 0)
5657 		return ERR_PTR(ret);
5658 
5659 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5660 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5661 		if (IS_ERR(inode))
5662 			return inode;
5663 
5664 		/* Do extra check against inode mode with di_type */
5665 		if (btrfs_inode_type(inode) != di_type) {
5666 			btrfs_crit(fs_info,
5667 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5668 				  inode->i_mode, btrfs_inode_type(inode),
5669 				  di_type);
5670 			iput(inode);
5671 			return ERR_PTR(-EUCLEAN);
5672 		}
5673 		return inode;
5674 	}
5675 
5676 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5677 				       &location, &sub_root);
5678 	if (ret < 0) {
5679 		if (ret != -ENOENT)
5680 			inode = ERR_PTR(ret);
5681 		else
5682 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5683 	} else {
5684 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5685 	}
5686 	if (root != sub_root)
5687 		btrfs_put_root(sub_root);
5688 
5689 	if (!IS_ERR(inode) && root != sub_root) {
5690 		down_read(&fs_info->cleanup_work_sem);
5691 		if (!sb_rdonly(inode->i_sb))
5692 			ret = btrfs_orphan_cleanup(sub_root);
5693 		up_read(&fs_info->cleanup_work_sem);
5694 		if (ret) {
5695 			iput(inode);
5696 			inode = ERR_PTR(ret);
5697 		}
5698 	}
5699 
5700 	return inode;
5701 }
5702 
5703 static int btrfs_dentry_delete(const struct dentry *dentry)
5704 {
5705 	struct btrfs_root *root;
5706 	struct inode *inode = d_inode(dentry);
5707 
5708 	if (!inode && !IS_ROOT(dentry))
5709 		inode = d_inode(dentry->d_parent);
5710 
5711 	if (inode) {
5712 		root = BTRFS_I(inode)->root;
5713 		if (btrfs_root_refs(&root->root_item) == 0)
5714 			return 1;
5715 
5716 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5717 			return 1;
5718 	}
5719 	return 0;
5720 }
5721 
5722 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5723 				   unsigned int flags)
5724 {
5725 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5726 
5727 	if (inode == ERR_PTR(-ENOENT))
5728 		inode = NULL;
5729 	return d_splice_alias(inode, dentry);
5730 }
5731 
5732 /*
5733  * All this infrastructure exists because dir_emit can fault, and we are holding
5734  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5735  * our information into that, and then dir_emit from the buffer.  This is
5736  * similar to what NFS does, only we don't keep the buffer around in pagecache
5737  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5738  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5739  * tree lock.
5740  */
5741 static int btrfs_opendir(struct inode *inode, struct file *file)
5742 {
5743 	struct btrfs_file_private *private;
5744 
5745 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5746 	if (!private)
5747 		return -ENOMEM;
5748 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5749 	if (!private->filldir_buf) {
5750 		kfree(private);
5751 		return -ENOMEM;
5752 	}
5753 	file->private_data = private;
5754 	return 0;
5755 }
5756 
5757 struct dir_entry {
5758 	u64 ino;
5759 	u64 offset;
5760 	unsigned type;
5761 	int name_len;
5762 };
5763 
5764 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5765 {
5766 	while (entries--) {
5767 		struct dir_entry *entry = addr;
5768 		char *name = (char *)(entry + 1);
5769 
5770 		ctx->pos = get_unaligned(&entry->offset);
5771 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5772 					 get_unaligned(&entry->ino),
5773 					 get_unaligned(&entry->type)))
5774 			return 1;
5775 		addr += sizeof(struct dir_entry) +
5776 			get_unaligned(&entry->name_len);
5777 		ctx->pos++;
5778 	}
5779 	return 0;
5780 }
5781 
5782 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5783 {
5784 	struct inode *inode = file_inode(file);
5785 	struct btrfs_root *root = BTRFS_I(inode)->root;
5786 	struct btrfs_file_private *private = file->private_data;
5787 	struct btrfs_dir_item *di;
5788 	struct btrfs_key key;
5789 	struct btrfs_key found_key;
5790 	struct btrfs_path *path;
5791 	void *addr;
5792 	struct list_head ins_list;
5793 	struct list_head del_list;
5794 	int ret;
5795 	struct extent_buffer *leaf;
5796 	int slot;
5797 	char *name_ptr;
5798 	int name_len;
5799 	int entries = 0;
5800 	int total_len = 0;
5801 	bool put = false;
5802 	struct btrfs_key location;
5803 
5804 	if (!dir_emit_dots(file, ctx))
5805 		return 0;
5806 
5807 	path = btrfs_alloc_path();
5808 	if (!path)
5809 		return -ENOMEM;
5810 
5811 	addr = private->filldir_buf;
5812 	path->reada = READA_FORWARD;
5813 
5814 	INIT_LIST_HEAD(&ins_list);
5815 	INIT_LIST_HEAD(&del_list);
5816 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5817 
5818 again:
5819 	key.type = BTRFS_DIR_INDEX_KEY;
5820 	key.offset = ctx->pos;
5821 	key.objectid = btrfs_ino(BTRFS_I(inode));
5822 
5823 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5824 	if (ret < 0)
5825 		goto err;
5826 
5827 	while (1) {
5828 		struct dir_entry *entry;
5829 
5830 		leaf = path->nodes[0];
5831 		slot = path->slots[0];
5832 		if (slot >= btrfs_header_nritems(leaf)) {
5833 			ret = btrfs_next_leaf(root, path);
5834 			if (ret < 0)
5835 				goto err;
5836 			else if (ret > 0)
5837 				break;
5838 			continue;
5839 		}
5840 
5841 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5842 
5843 		if (found_key.objectid != key.objectid)
5844 			break;
5845 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5846 			break;
5847 		if (found_key.offset < ctx->pos)
5848 			goto next;
5849 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5850 			goto next;
5851 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5852 		name_len = btrfs_dir_name_len(leaf, di);
5853 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5854 		    PAGE_SIZE) {
5855 			btrfs_release_path(path);
5856 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5857 			if (ret)
5858 				goto nopos;
5859 			addr = private->filldir_buf;
5860 			entries = 0;
5861 			total_len = 0;
5862 			goto again;
5863 		}
5864 
5865 		entry = addr;
5866 		put_unaligned(name_len, &entry->name_len);
5867 		name_ptr = (char *)(entry + 1);
5868 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5869 				   name_len);
5870 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5871 				&entry->type);
5872 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5873 		put_unaligned(location.objectid, &entry->ino);
5874 		put_unaligned(found_key.offset, &entry->offset);
5875 		entries++;
5876 		addr += sizeof(struct dir_entry) + name_len;
5877 		total_len += sizeof(struct dir_entry) + name_len;
5878 next:
5879 		path->slots[0]++;
5880 	}
5881 	btrfs_release_path(path);
5882 
5883 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5884 	if (ret)
5885 		goto nopos;
5886 
5887 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5888 	if (ret)
5889 		goto nopos;
5890 
5891 	/*
5892 	 * Stop new entries from being returned after we return the last
5893 	 * entry.
5894 	 *
5895 	 * New directory entries are assigned a strictly increasing
5896 	 * offset.  This means that new entries created during readdir
5897 	 * are *guaranteed* to be seen in the future by that readdir.
5898 	 * This has broken buggy programs which operate on names as
5899 	 * they're returned by readdir.  Until we re-use freed offsets
5900 	 * we have this hack to stop new entries from being returned
5901 	 * under the assumption that they'll never reach this huge
5902 	 * offset.
5903 	 *
5904 	 * This is being careful not to overflow 32bit loff_t unless the
5905 	 * last entry requires it because doing so has broken 32bit apps
5906 	 * in the past.
5907 	 */
5908 	if (ctx->pos >= INT_MAX)
5909 		ctx->pos = LLONG_MAX;
5910 	else
5911 		ctx->pos = INT_MAX;
5912 nopos:
5913 	ret = 0;
5914 err:
5915 	if (put)
5916 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5917 	btrfs_free_path(path);
5918 	return ret;
5919 }
5920 
5921 /*
5922  * This is somewhat expensive, updating the tree every time the
5923  * inode changes.  But, it is most likely to find the inode in cache.
5924  * FIXME, needs more benchmarking...there are no reasons other than performance
5925  * to keep or drop this code.
5926  */
5927 static int btrfs_dirty_inode(struct inode *inode)
5928 {
5929 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5930 	struct btrfs_root *root = BTRFS_I(inode)->root;
5931 	struct btrfs_trans_handle *trans;
5932 	int ret;
5933 
5934 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5935 		return 0;
5936 
5937 	trans = btrfs_join_transaction(root);
5938 	if (IS_ERR(trans))
5939 		return PTR_ERR(trans);
5940 
5941 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5942 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5943 		/* whoops, lets try again with the full transaction */
5944 		btrfs_end_transaction(trans);
5945 		trans = btrfs_start_transaction(root, 1);
5946 		if (IS_ERR(trans))
5947 			return PTR_ERR(trans);
5948 
5949 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5950 	}
5951 	btrfs_end_transaction(trans);
5952 	if (BTRFS_I(inode)->delayed_node)
5953 		btrfs_balance_delayed_items(fs_info);
5954 
5955 	return ret;
5956 }
5957 
5958 /*
5959  * This is a copy of file_update_time.  We need this so we can return error on
5960  * ENOSPC for updating the inode in the case of file write and mmap writes.
5961  */
5962 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5963 			     int flags)
5964 {
5965 	struct btrfs_root *root = BTRFS_I(inode)->root;
5966 	bool dirty = flags & ~S_VERSION;
5967 
5968 	if (btrfs_root_readonly(root))
5969 		return -EROFS;
5970 
5971 	if (flags & S_VERSION)
5972 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5973 	if (flags & S_CTIME)
5974 		inode->i_ctime = *now;
5975 	if (flags & S_MTIME)
5976 		inode->i_mtime = *now;
5977 	if (flags & S_ATIME)
5978 		inode->i_atime = *now;
5979 	return dirty ? btrfs_dirty_inode(inode) : 0;
5980 }
5981 
5982 /*
5983  * find the highest existing sequence number in a directory
5984  * and then set the in-memory index_cnt variable to reflect
5985  * free sequence numbers
5986  */
5987 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5988 {
5989 	struct btrfs_root *root = inode->root;
5990 	struct btrfs_key key, found_key;
5991 	struct btrfs_path *path;
5992 	struct extent_buffer *leaf;
5993 	int ret;
5994 
5995 	key.objectid = btrfs_ino(inode);
5996 	key.type = BTRFS_DIR_INDEX_KEY;
5997 	key.offset = (u64)-1;
5998 
5999 	path = btrfs_alloc_path();
6000 	if (!path)
6001 		return -ENOMEM;
6002 
6003 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6004 	if (ret < 0)
6005 		goto out;
6006 	/* FIXME: we should be able to handle this */
6007 	if (ret == 0)
6008 		goto out;
6009 	ret = 0;
6010 
6011 	if (path->slots[0] == 0) {
6012 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6013 		goto out;
6014 	}
6015 
6016 	path->slots[0]--;
6017 
6018 	leaf = path->nodes[0];
6019 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6020 
6021 	if (found_key.objectid != btrfs_ino(inode) ||
6022 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6023 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6024 		goto out;
6025 	}
6026 
6027 	inode->index_cnt = found_key.offset + 1;
6028 out:
6029 	btrfs_free_path(path);
6030 	return ret;
6031 }
6032 
6033 /*
6034  * helper to find a free sequence number in a given directory.  This current
6035  * code is very simple, later versions will do smarter things in the btree
6036  */
6037 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6038 {
6039 	int ret = 0;
6040 
6041 	if (dir->index_cnt == (u64)-1) {
6042 		ret = btrfs_inode_delayed_dir_index_count(dir);
6043 		if (ret) {
6044 			ret = btrfs_set_inode_index_count(dir);
6045 			if (ret)
6046 				return ret;
6047 		}
6048 	}
6049 
6050 	*index = dir->index_cnt;
6051 	dir->index_cnt++;
6052 
6053 	return ret;
6054 }
6055 
6056 static int btrfs_insert_inode_locked(struct inode *inode)
6057 {
6058 	struct btrfs_iget_args args;
6059 
6060 	args.ino = BTRFS_I(inode)->location.objectid;
6061 	args.root = BTRFS_I(inode)->root;
6062 
6063 	return insert_inode_locked4(inode,
6064 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6065 		   btrfs_find_actor, &args);
6066 }
6067 
6068 /*
6069  * Inherit flags from the parent inode.
6070  *
6071  * Currently only the compression flags and the cow flags are inherited.
6072  */
6073 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6074 {
6075 	unsigned int flags;
6076 
6077 	if (!dir)
6078 		return;
6079 
6080 	flags = BTRFS_I(dir)->flags;
6081 
6082 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6083 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6084 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6085 	} else if (flags & BTRFS_INODE_COMPRESS) {
6086 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6087 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6088 	}
6089 
6090 	if (flags & BTRFS_INODE_NODATACOW) {
6091 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6092 		if (S_ISREG(inode->i_mode))
6093 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6094 	}
6095 
6096 	btrfs_sync_inode_flags_to_i_flags(inode);
6097 }
6098 
6099 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6100 				     struct btrfs_root *root,
6101 				     struct user_namespace *mnt_userns,
6102 				     struct inode *dir,
6103 				     const char *name, int name_len,
6104 				     u64 ref_objectid, u64 objectid,
6105 				     umode_t mode, u64 *index)
6106 {
6107 	struct btrfs_fs_info *fs_info = root->fs_info;
6108 	struct inode *inode;
6109 	struct btrfs_inode_item *inode_item;
6110 	struct btrfs_key *location;
6111 	struct btrfs_path *path;
6112 	struct btrfs_inode_ref *ref;
6113 	struct btrfs_key key[2];
6114 	u32 sizes[2];
6115 	struct btrfs_item_batch batch;
6116 	unsigned long ptr;
6117 	unsigned int nofs_flag;
6118 	int ret;
6119 
6120 	path = btrfs_alloc_path();
6121 	if (!path)
6122 		return ERR_PTR(-ENOMEM);
6123 
6124 	nofs_flag = memalloc_nofs_save();
6125 	inode = new_inode(fs_info->sb);
6126 	memalloc_nofs_restore(nofs_flag);
6127 	if (!inode) {
6128 		btrfs_free_path(path);
6129 		return ERR_PTR(-ENOMEM);
6130 	}
6131 
6132 	/*
6133 	 * O_TMPFILE, set link count to 0, so that after this point,
6134 	 * we fill in an inode item with the correct link count.
6135 	 */
6136 	if (!name)
6137 		set_nlink(inode, 0);
6138 
6139 	/*
6140 	 * we have to initialize this early, so we can reclaim the inode
6141 	 * number if we fail afterwards in this function.
6142 	 */
6143 	inode->i_ino = objectid;
6144 
6145 	if (dir && name) {
6146 		trace_btrfs_inode_request(dir);
6147 
6148 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6149 		if (ret) {
6150 			btrfs_free_path(path);
6151 			iput(inode);
6152 			return ERR_PTR(ret);
6153 		}
6154 	} else if (dir) {
6155 		*index = 0;
6156 	}
6157 	/*
6158 	 * index_cnt is ignored for everything but a dir,
6159 	 * btrfs_set_inode_index_count has an explanation for the magic
6160 	 * number
6161 	 */
6162 	BTRFS_I(inode)->index_cnt = 2;
6163 	BTRFS_I(inode)->dir_index = *index;
6164 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6165 	BTRFS_I(inode)->generation = trans->transid;
6166 	inode->i_generation = BTRFS_I(inode)->generation;
6167 
6168 	/*
6169 	 * We could have gotten an inode number from somebody who was fsynced
6170 	 * and then removed in this same transaction, so let's just set full
6171 	 * sync since it will be a full sync anyway and this will blow away the
6172 	 * old info in the log.
6173 	 */
6174 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6175 
6176 	key[0].objectid = objectid;
6177 	key[0].type = BTRFS_INODE_ITEM_KEY;
6178 	key[0].offset = 0;
6179 
6180 	sizes[0] = sizeof(struct btrfs_inode_item);
6181 
6182 	if (name) {
6183 		/*
6184 		 * Start new inodes with an inode_ref. This is slightly more
6185 		 * efficient for small numbers of hard links since they will
6186 		 * be packed into one item. Extended refs will kick in if we
6187 		 * add more hard links than can fit in the ref item.
6188 		 */
6189 		key[1].objectid = objectid;
6190 		key[1].type = BTRFS_INODE_REF_KEY;
6191 		key[1].offset = ref_objectid;
6192 
6193 		sizes[1] = name_len + sizeof(*ref);
6194 	}
6195 
6196 	location = &BTRFS_I(inode)->location;
6197 	location->objectid = objectid;
6198 	location->offset = 0;
6199 	location->type = BTRFS_INODE_ITEM_KEY;
6200 
6201 	ret = btrfs_insert_inode_locked(inode);
6202 	if (ret < 0) {
6203 		iput(inode);
6204 		goto fail;
6205 	}
6206 
6207 	batch.keys = &key[0];
6208 	batch.data_sizes = &sizes[0];
6209 	batch.total_data_size = sizes[0] + (name ? sizes[1] : 0);
6210 	batch.nr = name ? 2 : 1;
6211 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6212 	if (ret != 0)
6213 		goto fail_unlock;
6214 
6215 	inode_init_owner(mnt_userns, inode, dir, mode);
6216 	inode_set_bytes(inode, 0);
6217 
6218 	inode->i_mtime = current_time(inode);
6219 	inode->i_atime = inode->i_mtime;
6220 	inode->i_ctime = inode->i_mtime;
6221 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6222 
6223 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6224 				  struct btrfs_inode_item);
6225 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6226 			     sizeof(*inode_item));
6227 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6228 
6229 	if (name) {
6230 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6231 				     struct btrfs_inode_ref);
6232 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6233 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6234 		ptr = (unsigned long)(ref + 1);
6235 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6236 	}
6237 
6238 	btrfs_mark_buffer_dirty(path->nodes[0]);
6239 	btrfs_free_path(path);
6240 
6241 	btrfs_inherit_iflags(inode, dir);
6242 
6243 	if (S_ISREG(mode)) {
6244 		if (btrfs_test_opt(fs_info, NODATASUM))
6245 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6246 		if (btrfs_test_opt(fs_info, NODATACOW))
6247 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6248 				BTRFS_INODE_NODATASUM;
6249 	}
6250 
6251 	inode_tree_add(inode);
6252 
6253 	trace_btrfs_inode_new(inode);
6254 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6255 
6256 	btrfs_update_root_times(trans, root);
6257 
6258 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6259 	if (ret)
6260 		btrfs_err(fs_info,
6261 			  "error inheriting props for ino %llu (root %llu): %d",
6262 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6263 
6264 	return inode;
6265 
6266 fail_unlock:
6267 	discard_new_inode(inode);
6268 fail:
6269 	if (dir && name)
6270 		BTRFS_I(dir)->index_cnt--;
6271 	btrfs_free_path(path);
6272 	return ERR_PTR(ret);
6273 }
6274 
6275 /*
6276  * utility function to add 'inode' into 'parent_inode' with
6277  * a give name and a given sequence number.
6278  * if 'add_backref' is true, also insert a backref from the
6279  * inode to the parent directory.
6280  */
6281 int btrfs_add_link(struct btrfs_trans_handle *trans,
6282 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6283 		   const char *name, int name_len, int add_backref, u64 index)
6284 {
6285 	int ret = 0;
6286 	struct btrfs_key key;
6287 	struct btrfs_root *root = parent_inode->root;
6288 	u64 ino = btrfs_ino(inode);
6289 	u64 parent_ino = btrfs_ino(parent_inode);
6290 
6291 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6292 		memcpy(&key, &inode->root->root_key, sizeof(key));
6293 	} else {
6294 		key.objectid = ino;
6295 		key.type = BTRFS_INODE_ITEM_KEY;
6296 		key.offset = 0;
6297 	}
6298 
6299 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6300 		ret = btrfs_add_root_ref(trans, key.objectid,
6301 					 root->root_key.objectid, parent_ino,
6302 					 index, name, name_len);
6303 	} else if (add_backref) {
6304 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6305 					     parent_ino, index);
6306 	}
6307 
6308 	/* Nothing to clean up yet */
6309 	if (ret)
6310 		return ret;
6311 
6312 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6313 				    btrfs_inode_type(&inode->vfs_inode), index);
6314 	if (ret == -EEXIST || ret == -EOVERFLOW)
6315 		goto fail_dir_item;
6316 	else if (ret) {
6317 		btrfs_abort_transaction(trans, ret);
6318 		return ret;
6319 	}
6320 
6321 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6322 			   name_len * 2);
6323 	inode_inc_iversion(&parent_inode->vfs_inode);
6324 	/*
6325 	 * If we are replaying a log tree, we do not want to update the mtime
6326 	 * and ctime of the parent directory with the current time, since the
6327 	 * log replay procedure is responsible for setting them to their correct
6328 	 * values (the ones it had when the fsync was done).
6329 	 */
6330 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6331 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6332 
6333 		parent_inode->vfs_inode.i_mtime = now;
6334 		parent_inode->vfs_inode.i_ctime = now;
6335 	}
6336 	ret = btrfs_update_inode(trans, root, parent_inode);
6337 	if (ret)
6338 		btrfs_abort_transaction(trans, ret);
6339 	return ret;
6340 
6341 fail_dir_item:
6342 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6343 		u64 local_index;
6344 		int err;
6345 		err = btrfs_del_root_ref(trans, key.objectid,
6346 					 root->root_key.objectid, parent_ino,
6347 					 &local_index, name, name_len);
6348 		if (err)
6349 			btrfs_abort_transaction(trans, err);
6350 	} else if (add_backref) {
6351 		u64 local_index;
6352 		int err;
6353 
6354 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6355 					  ino, parent_ino, &local_index);
6356 		if (err)
6357 			btrfs_abort_transaction(trans, err);
6358 	}
6359 
6360 	/* Return the original error code */
6361 	return ret;
6362 }
6363 
6364 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6365 			    struct btrfs_inode *dir, struct dentry *dentry,
6366 			    struct btrfs_inode *inode, int backref, u64 index)
6367 {
6368 	int err = btrfs_add_link(trans, dir, inode,
6369 				 dentry->d_name.name, dentry->d_name.len,
6370 				 backref, index);
6371 	if (err > 0)
6372 		err = -EEXIST;
6373 	return err;
6374 }
6375 
6376 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6377 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6378 {
6379 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6380 	struct btrfs_trans_handle *trans;
6381 	struct btrfs_root *root = BTRFS_I(dir)->root;
6382 	struct inode *inode = NULL;
6383 	int err;
6384 	u64 objectid;
6385 	u64 index = 0;
6386 
6387 	/*
6388 	 * 2 for inode item and ref
6389 	 * 2 for dir items
6390 	 * 1 for xattr if selinux is on
6391 	 */
6392 	trans = btrfs_start_transaction(root, 5);
6393 	if (IS_ERR(trans))
6394 		return PTR_ERR(trans);
6395 
6396 	err = btrfs_get_free_objectid(root, &objectid);
6397 	if (err)
6398 		goto out_unlock;
6399 
6400 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6401 			dentry->d_name.name, dentry->d_name.len,
6402 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6403 	if (IS_ERR(inode)) {
6404 		err = PTR_ERR(inode);
6405 		inode = NULL;
6406 		goto out_unlock;
6407 	}
6408 
6409 	/*
6410 	* If the active LSM wants to access the inode during
6411 	* d_instantiate it needs these. Smack checks to see
6412 	* if the filesystem supports xattrs by looking at the
6413 	* ops vector.
6414 	*/
6415 	inode->i_op = &btrfs_special_inode_operations;
6416 	init_special_inode(inode, inode->i_mode, rdev);
6417 
6418 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6419 	if (err)
6420 		goto out_unlock;
6421 
6422 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6423 			0, index);
6424 	if (err)
6425 		goto out_unlock;
6426 
6427 	btrfs_update_inode(trans, root, BTRFS_I(inode));
6428 	d_instantiate_new(dentry, inode);
6429 
6430 out_unlock:
6431 	btrfs_end_transaction(trans);
6432 	btrfs_btree_balance_dirty(fs_info);
6433 	if (err && inode) {
6434 		inode_dec_link_count(inode);
6435 		discard_new_inode(inode);
6436 	}
6437 	return err;
6438 }
6439 
6440 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6441 			struct dentry *dentry, umode_t mode, bool excl)
6442 {
6443 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6444 	struct btrfs_trans_handle *trans;
6445 	struct btrfs_root *root = BTRFS_I(dir)->root;
6446 	struct inode *inode = NULL;
6447 	int err;
6448 	u64 objectid;
6449 	u64 index = 0;
6450 
6451 	/*
6452 	 * 2 for inode item and ref
6453 	 * 2 for dir items
6454 	 * 1 for xattr if selinux is on
6455 	 */
6456 	trans = btrfs_start_transaction(root, 5);
6457 	if (IS_ERR(trans))
6458 		return PTR_ERR(trans);
6459 
6460 	err = btrfs_get_free_objectid(root, &objectid);
6461 	if (err)
6462 		goto out_unlock;
6463 
6464 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6465 			dentry->d_name.name, dentry->d_name.len,
6466 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6467 	if (IS_ERR(inode)) {
6468 		err = PTR_ERR(inode);
6469 		inode = NULL;
6470 		goto out_unlock;
6471 	}
6472 	/*
6473 	* If the active LSM wants to access the inode during
6474 	* d_instantiate it needs these. Smack checks to see
6475 	* if the filesystem supports xattrs by looking at the
6476 	* ops vector.
6477 	*/
6478 	inode->i_fop = &btrfs_file_operations;
6479 	inode->i_op = &btrfs_file_inode_operations;
6480 	inode->i_mapping->a_ops = &btrfs_aops;
6481 
6482 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6483 	if (err)
6484 		goto out_unlock;
6485 
6486 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6487 	if (err)
6488 		goto out_unlock;
6489 
6490 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6491 			0, index);
6492 	if (err)
6493 		goto out_unlock;
6494 
6495 	d_instantiate_new(dentry, inode);
6496 
6497 out_unlock:
6498 	btrfs_end_transaction(trans);
6499 	if (err && inode) {
6500 		inode_dec_link_count(inode);
6501 		discard_new_inode(inode);
6502 	}
6503 	btrfs_btree_balance_dirty(fs_info);
6504 	return err;
6505 }
6506 
6507 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6508 		      struct dentry *dentry)
6509 {
6510 	struct btrfs_trans_handle *trans = NULL;
6511 	struct btrfs_root *root = BTRFS_I(dir)->root;
6512 	struct inode *inode = d_inode(old_dentry);
6513 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6514 	u64 index;
6515 	int err;
6516 	int drop_inode = 0;
6517 
6518 	/* do not allow sys_link's with other subvols of the same device */
6519 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6520 		return -EXDEV;
6521 
6522 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6523 		return -EMLINK;
6524 
6525 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6526 	if (err)
6527 		goto fail;
6528 
6529 	/*
6530 	 * 2 items for inode and inode ref
6531 	 * 2 items for dir items
6532 	 * 1 item for parent inode
6533 	 * 1 item for orphan item deletion if O_TMPFILE
6534 	 */
6535 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6536 	if (IS_ERR(trans)) {
6537 		err = PTR_ERR(trans);
6538 		trans = NULL;
6539 		goto fail;
6540 	}
6541 
6542 	/* There are several dir indexes for this inode, clear the cache. */
6543 	BTRFS_I(inode)->dir_index = 0ULL;
6544 	inc_nlink(inode);
6545 	inode_inc_iversion(inode);
6546 	inode->i_ctime = current_time(inode);
6547 	ihold(inode);
6548 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6549 
6550 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6551 			1, index);
6552 
6553 	if (err) {
6554 		drop_inode = 1;
6555 	} else {
6556 		struct dentry *parent = dentry->d_parent;
6557 
6558 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6559 		if (err)
6560 			goto fail;
6561 		if (inode->i_nlink == 1) {
6562 			/*
6563 			 * If new hard link count is 1, it's a file created
6564 			 * with open(2) O_TMPFILE flag.
6565 			 */
6566 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6567 			if (err)
6568 				goto fail;
6569 		}
6570 		d_instantiate(dentry, inode);
6571 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6572 	}
6573 
6574 fail:
6575 	if (trans)
6576 		btrfs_end_transaction(trans);
6577 	if (drop_inode) {
6578 		inode_dec_link_count(inode);
6579 		iput(inode);
6580 	}
6581 	btrfs_btree_balance_dirty(fs_info);
6582 	return err;
6583 }
6584 
6585 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6586 		       struct dentry *dentry, umode_t mode)
6587 {
6588 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6589 	struct inode *inode = NULL;
6590 	struct btrfs_trans_handle *trans;
6591 	struct btrfs_root *root = BTRFS_I(dir)->root;
6592 	int err = 0;
6593 	u64 objectid = 0;
6594 	u64 index = 0;
6595 
6596 	/*
6597 	 * 2 items for inode and ref
6598 	 * 2 items for dir items
6599 	 * 1 for xattr if selinux is on
6600 	 */
6601 	trans = btrfs_start_transaction(root, 5);
6602 	if (IS_ERR(trans))
6603 		return PTR_ERR(trans);
6604 
6605 	err = btrfs_get_free_objectid(root, &objectid);
6606 	if (err)
6607 		goto out_fail;
6608 
6609 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6610 			dentry->d_name.name, dentry->d_name.len,
6611 			btrfs_ino(BTRFS_I(dir)), objectid,
6612 			S_IFDIR | mode, &index);
6613 	if (IS_ERR(inode)) {
6614 		err = PTR_ERR(inode);
6615 		inode = NULL;
6616 		goto out_fail;
6617 	}
6618 
6619 	/* these must be set before we unlock the inode */
6620 	inode->i_op = &btrfs_dir_inode_operations;
6621 	inode->i_fop = &btrfs_dir_file_operations;
6622 
6623 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6624 	if (err)
6625 		goto out_fail;
6626 
6627 	btrfs_i_size_write(BTRFS_I(inode), 0);
6628 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6629 	if (err)
6630 		goto out_fail;
6631 
6632 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6633 			dentry->d_name.name,
6634 			dentry->d_name.len, 0, index);
6635 	if (err)
6636 		goto out_fail;
6637 
6638 	d_instantiate_new(dentry, inode);
6639 
6640 out_fail:
6641 	btrfs_end_transaction(trans);
6642 	if (err && inode) {
6643 		inode_dec_link_count(inode);
6644 		discard_new_inode(inode);
6645 	}
6646 	btrfs_btree_balance_dirty(fs_info);
6647 	return err;
6648 }
6649 
6650 static noinline int uncompress_inline(struct btrfs_path *path,
6651 				      struct page *page,
6652 				      size_t pg_offset, u64 extent_offset,
6653 				      struct btrfs_file_extent_item *item)
6654 {
6655 	int ret;
6656 	struct extent_buffer *leaf = path->nodes[0];
6657 	char *tmp;
6658 	size_t max_size;
6659 	unsigned long inline_size;
6660 	unsigned long ptr;
6661 	int compress_type;
6662 
6663 	WARN_ON(pg_offset != 0);
6664 	compress_type = btrfs_file_extent_compression(leaf, item);
6665 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6666 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6667 	tmp = kmalloc(inline_size, GFP_NOFS);
6668 	if (!tmp)
6669 		return -ENOMEM;
6670 	ptr = btrfs_file_extent_inline_start(item);
6671 
6672 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6673 
6674 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6675 	ret = btrfs_decompress(compress_type, tmp, page,
6676 			       extent_offset, inline_size, max_size);
6677 
6678 	/*
6679 	 * decompression code contains a memset to fill in any space between the end
6680 	 * of the uncompressed data and the end of max_size in case the decompressed
6681 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6682 	 * the end of an inline extent and the beginning of the next block, so we
6683 	 * cover that region here.
6684 	 */
6685 
6686 	if (max_size + pg_offset < PAGE_SIZE)
6687 		memzero_page(page,  pg_offset + max_size,
6688 			     PAGE_SIZE - max_size - pg_offset);
6689 	kfree(tmp);
6690 	return ret;
6691 }
6692 
6693 /**
6694  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6695  * @inode:	file to search in
6696  * @page:	page to read extent data into if the extent is inline
6697  * @pg_offset:	offset into @page to copy to
6698  * @start:	file offset
6699  * @len:	length of range starting at @start
6700  *
6701  * This returns the first &struct extent_map which overlaps with the given
6702  * range, reading it from the B-tree and caching it if necessary. Note that
6703  * there may be more extents which overlap the given range after the returned
6704  * extent_map.
6705  *
6706  * If @page is not NULL and the extent is inline, this also reads the extent
6707  * data directly into the page and marks the extent up to date in the io_tree.
6708  *
6709  * Return: ERR_PTR on error, non-NULL extent_map on success.
6710  */
6711 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6712 				    struct page *page, size_t pg_offset,
6713 				    u64 start, u64 len)
6714 {
6715 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6716 	int ret = 0;
6717 	u64 extent_start = 0;
6718 	u64 extent_end = 0;
6719 	u64 objectid = btrfs_ino(inode);
6720 	int extent_type = -1;
6721 	struct btrfs_path *path = NULL;
6722 	struct btrfs_root *root = inode->root;
6723 	struct btrfs_file_extent_item *item;
6724 	struct extent_buffer *leaf;
6725 	struct btrfs_key found_key;
6726 	struct extent_map *em = NULL;
6727 	struct extent_map_tree *em_tree = &inode->extent_tree;
6728 	struct extent_io_tree *io_tree = &inode->io_tree;
6729 
6730 	read_lock(&em_tree->lock);
6731 	em = lookup_extent_mapping(em_tree, start, len);
6732 	read_unlock(&em_tree->lock);
6733 
6734 	if (em) {
6735 		if (em->start > start || em->start + em->len <= start)
6736 			free_extent_map(em);
6737 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6738 			free_extent_map(em);
6739 		else
6740 			goto out;
6741 	}
6742 	em = alloc_extent_map();
6743 	if (!em) {
6744 		ret = -ENOMEM;
6745 		goto out;
6746 	}
6747 	em->start = EXTENT_MAP_HOLE;
6748 	em->orig_start = EXTENT_MAP_HOLE;
6749 	em->len = (u64)-1;
6750 	em->block_len = (u64)-1;
6751 
6752 	path = btrfs_alloc_path();
6753 	if (!path) {
6754 		ret = -ENOMEM;
6755 		goto out;
6756 	}
6757 
6758 	/* Chances are we'll be called again, so go ahead and do readahead */
6759 	path->reada = READA_FORWARD;
6760 
6761 	/*
6762 	 * The same explanation in load_free_space_cache applies here as well,
6763 	 * we only read when we're loading the free space cache, and at that
6764 	 * point the commit_root has everything we need.
6765 	 */
6766 	if (btrfs_is_free_space_inode(inode)) {
6767 		path->search_commit_root = 1;
6768 		path->skip_locking = 1;
6769 	}
6770 
6771 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6772 	if (ret < 0) {
6773 		goto out;
6774 	} else if (ret > 0) {
6775 		if (path->slots[0] == 0)
6776 			goto not_found;
6777 		path->slots[0]--;
6778 		ret = 0;
6779 	}
6780 
6781 	leaf = path->nodes[0];
6782 	item = btrfs_item_ptr(leaf, path->slots[0],
6783 			      struct btrfs_file_extent_item);
6784 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6785 	if (found_key.objectid != objectid ||
6786 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6787 		/*
6788 		 * If we backup past the first extent we want to move forward
6789 		 * and see if there is an extent in front of us, otherwise we'll
6790 		 * say there is a hole for our whole search range which can
6791 		 * cause problems.
6792 		 */
6793 		extent_end = start;
6794 		goto next;
6795 	}
6796 
6797 	extent_type = btrfs_file_extent_type(leaf, item);
6798 	extent_start = found_key.offset;
6799 	extent_end = btrfs_file_extent_end(path);
6800 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6801 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6802 		/* Only regular file could have regular/prealloc extent */
6803 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6804 			ret = -EUCLEAN;
6805 			btrfs_crit(fs_info,
6806 		"regular/prealloc extent found for non-regular inode %llu",
6807 				   btrfs_ino(inode));
6808 			goto out;
6809 		}
6810 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6811 						       extent_start);
6812 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6813 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6814 						      path->slots[0],
6815 						      extent_start);
6816 	}
6817 next:
6818 	if (start >= extent_end) {
6819 		path->slots[0]++;
6820 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6821 			ret = btrfs_next_leaf(root, path);
6822 			if (ret < 0)
6823 				goto out;
6824 			else if (ret > 0)
6825 				goto not_found;
6826 
6827 			leaf = path->nodes[0];
6828 		}
6829 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6830 		if (found_key.objectid != objectid ||
6831 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6832 			goto not_found;
6833 		if (start + len <= found_key.offset)
6834 			goto not_found;
6835 		if (start > found_key.offset)
6836 			goto next;
6837 
6838 		/* New extent overlaps with existing one */
6839 		em->start = start;
6840 		em->orig_start = start;
6841 		em->len = found_key.offset - start;
6842 		em->block_start = EXTENT_MAP_HOLE;
6843 		goto insert;
6844 	}
6845 
6846 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6847 
6848 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6849 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6850 		goto insert;
6851 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6852 		unsigned long ptr;
6853 		char *map;
6854 		size_t size;
6855 		size_t extent_offset;
6856 		size_t copy_size;
6857 
6858 		if (!page)
6859 			goto out;
6860 
6861 		size = btrfs_file_extent_ram_bytes(leaf, item);
6862 		extent_offset = page_offset(page) + pg_offset - extent_start;
6863 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6864 				  size - extent_offset);
6865 		em->start = extent_start + extent_offset;
6866 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6867 		em->orig_block_len = em->len;
6868 		em->orig_start = em->start;
6869 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6870 
6871 		if (!PageUptodate(page)) {
6872 			if (btrfs_file_extent_compression(leaf, item) !=
6873 			    BTRFS_COMPRESS_NONE) {
6874 				ret = uncompress_inline(path, page, pg_offset,
6875 							extent_offset, item);
6876 				if (ret)
6877 					goto out;
6878 			} else {
6879 				map = kmap_local_page(page);
6880 				read_extent_buffer(leaf, map + pg_offset, ptr,
6881 						   copy_size);
6882 				if (pg_offset + copy_size < PAGE_SIZE) {
6883 					memset(map + pg_offset + copy_size, 0,
6884 					       PAGE_SIZE - pg_offset -
6885 					       copy_size);
6886 				}
6887 				kunmap_local(map);
6888 			}
6889 			flush_dcache_page(page);
6890 		}
6891 		set_extent_uptodate(io_tree, em->start,
6892 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6893 		goto insert;
6894 	}
6895 not_found:
6896 	em->start = start;
6897 	em->orig_start = start;
6898 	em->len = len;
6899 	em->block_start = EXTENT_MAP_HOLE;
6900 insert:
6901 	ret = 0;
6902 	btrfs_release_path(path);
6903 	if (em->start > start || extent_map_end(em) <= start) {
6904 		btrfs_err(fs_info,
6905 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6906 			  em->start, em->len, start, len);
6907 		ret = -EIO;
6908 		goto out;
6909 	}
6910 
6911 	write_lock(&em_tree->lock);
6912 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6913 	write_unlock(&em_tree->lock);
6914 out:
6915 	btrfs_free_path(path);
6916 
6917 	trace_btrfs_get_extent(root, inode, em);
6918 
6919 	if (ret) {
6920 		free_extent_map(em);
6921 		return ERR_PTR(ret);
6922 	}
6923 	return em;
6924 }
6925 
6926 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6927 					   u64 start, u64 len)
6928 {
6929 	struct extent_map *em;
6930 	struct extent_map *hole_em = NULL;
6931 	u64 delalloc_start = start;
6932 	u64 end;
6933 	u64 delalloc_len;
6934 	u64 delalloc_end;
6935 	int err = 0;
6936 
6937 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6938 	if (IS_ERR(em))
6939 		return em;
6940 	/*
6941 	 * If our em maps to:
6942 	 * - a hole or
6943 	 * - a pre-alloc extent,
6944 	 * there might actually be delalloc bytes behind it.
6945 	 */
6946 	if (em->block_start != EXTENT_MAP_HOLE &&
6947 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6948 		return em;
6949 	else
6950 		hole_em = em;
6951 
6952 	/* check to see if we've wrapped (len == -1 or similar) */
6953 	end = start + len;
6954 	if (end < start)
6955 		end = (u64)-1;
6956 	else
6957 		end -= 1;
6958 
6959 	em = NULL;
6960 
6961 	/* ok, we didn't find anything, lets look for delalloc */
6962 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6963 				 end, len, EXTENT_DELALLOC, 1);
6964 	delalloc_end = delalloc_start + delalloc_len;
6965 	if (delalloc_end < delalloc_start)
6966 		delalloc_end = (u64)-1;
6967 
6968 	/*
6969 	 * We didn't find anything useful, return the original results from
6970 	 * get_extent()
6971 	 */
6972 	if (delalloc_start > end || delalloc_end <= start) {
6973 		em = hole_em;
6974 		hole_em = NULL;
6975 		goto out;
6976 	}
6977 
6978 	/*
6979 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
6980 	 * the start they passed in
6981 	 */
6982 	delalloc_start = max(start, delalloc_start);
6983 	delalloc_len = delalloc_end - delalloc_start;
6984 
6985 	if (delalloc_len > 0) {
6986 		u64 hole_start;
6987 		u64 hole_len;
6988 		const u64 hole_end = extent_map_end(hole_em);
6989 
6990 		em = alloc_extent_map();
6991 		if (!em) {
6992 			err = -ENOMEM;
6993 			goto out;
6994 		}
6995 
6996 		ASSERT(hole_em);
6997 		/*
6998 		 * When btrfs_get_extent can't find anything it returns one
6999 		 * huge hole
7000 		 *
7001 		 * Make sure what it found really fits our range, and adjust to
7002 		 * make sure it is based on the start from the caller
7003 		 */
7004 		if (hole_end <= start || hole_em->start > end) {
7005 		       free_extent_map(hole_em);
7006 		       hole_em = NULL;
7007 		} else {
7008 		       hole_start = max(hole_em->start, start);
7009 		       hole_len = hole_end - hole_start;
7010 		}
7011 
7012 		if (hole_em && delalloc_start > hole_start) {
7013 			/*
7014 			 * Our hole starts before our delalloc, so we have to
7015 			 * return just the parts of the hole that go until the
7016 			 * delalloc starts
7017 			 */
7018 			em->len = min(hole_len, delalloc_start - hole_start);
7019 			em->start = hole_start;
7020 			em->orig_start = hole_start;
7021 			/*
7022 			 * Don't adjust block start at all, it is fixed at
7023 			 * EXTENT_MAP_HOLE
7024 			 */
7025 			em->block_start = hole_em->block_start;
7026 			em->block_len = hole_len;
7027 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7028 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7029 		} else {
7030 			/*
7031 			 * Hole is out of passed range or it starts after
7032 			 * delalloc range
7033 			 */
7034 			em->start = delalloc_start;
7035 			em->len = delalloc_len;
7036 			em->orig_start = delalloc_start;
7037 			em->block_start = EXTENT_MAP_DELALLOC;
7038 			em->block_len = delalloc_len;
7039 		}
7040 	} else {
7041 		return hole_em;
7042 	}
7043 out:
7044 
7045 	free_extent_map(hole_em);
7046 	if (err) {
7047 		free_extent_map(em);
7048 		return ERR_PTR(err);
7049 	}
7050 	return em;
7051 }
7052 
7053 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7054 						  const u64 start,
7055 						  const u64 len,
7056 						  const u64 orig_start,
7057 						  const u64 block_start,
7058 						  const u64 block_len,
7059 						  const u64 orig_block_len,
7060 						  const u64 ram_bytes,
7061 						  const int type)
7062 {
7063 	struct extent_map *em = NULL;
7064 	int ret;
7065 
7066 	if (type != BTRFS_ORDERED_NOCOW) {
7067 		em = create_io_em(inode, start, len, orig_start, block_start,
7068 				  block_len, orig_block_len, ram_bytes,
7069 				  BTRFS_COMPRESS_NONE, /* compress_type */
7070 				  type);
7071 		if (IS_ERR(em))
7072 			goto out;
7073 	}
7074 	ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7075 				       block_len, 0,
7076 				       (1 << type) |
7077 				       (1 << BTRFS_ORDERED_DIRECT),
7078 				       BTRFS_COMPRESS_NONE);
7079 	if (ret) {
7080 		if (em) {
7081 			free_extent_map(em);
7082 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7083 		}
7084 		em = ERR_PTR(ret);
7085 	}
7086  out:
7087 
7088 	return em;
7089 }
7090 
7091 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7092 						  u64 start, u64 len)
7093 {
7094 	struct btrfs_root *root = inode->root;
7095 	struct btrfs_fs_info *fs_info = root->fs_info;
7096 	struct extent_map *em;
7097 	struct btrfs_key ins;
7098 	u64 alloc_hint;
7099 	int ret;
7100 
7101 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7102 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7103 				   0, alloc_hint, &ins, 1, 1);
7104 	if (ret)
7105 		return ERR_PTR(ret);
7106 
7107 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7108 				     ins.objectid, ins.offset, ins.offset,
7109 				     ins.offset, BTRFS_ORDERED_REGULAR);
7110 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7111 	if (IS_ERR(em))
7112 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7113 					   1);
7114 
7115 	return em;
7116 }
7117 
7118 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7119 {
7120 	struct btrfs_block_group *block_group;
7121 	bool readonly = false;
7122 
7123 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7124 	if (!block_group || block_group->ro)
7125 		readonly = true;
7126 	if (block_group)
7127 		btrfs_put_block_group(block_group);
7128 	return readonly;
7129 }
7130 
7131 /*
7132  * Check if we can do nocow write into the range [@offset, @offset + @len)
7133  *
7134  * @offset:	File offset
7135  * @len:	The length to write, will be updated to the nocow writeable
7136  *		range
7137  * @orig_start:	(optional) Return the original file offset of the file extent
7138  * @orig_len:	(optional) Return the original on-disk length of the file extent
7139  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7140  * @strict:	if true, omit optimizations that might force us into unnecessary
7141  *		cow. e.g., don't trust generation number.
7142  *
7143  * Return:
7144  * >0	and update @len if we can do nocow write
7145  *  0	if we can't do nocow write
7146  * <0	if error happened
7147  *
7148  * NOTE: This only checks the file extents, caller is responsible to wait for
7149  *	 any ordered extents.
7150  */
7151 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7152 			      u64 *orig_start, u64 *orig_block_len,
7153 			      u64 *ram_bytes, bool strict)
7154 {
7155 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7156 	struct btrfs_path *path;
7157 	int ret;
7158 	struct extent_buffer *leaf;
7159 	struct btrfs_root *root = BTRFS_I(inode)->root;
7160 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7161 	struct btrfs_file_extent_item *fi;
7162 	struct btrfs_key key;
7163 	u64 disk_bytenr;
7164 	u64 backref_offset;
7165 	u64 extent_end;
7166 	u64 num_bytes;
7167 	int slot;
7168 	int found_type;
7169 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7170 
7171 	path = btrfs_alloc_path();
7172 	if (!path)
7173 		return -ENOMEM;
7174 
7175 	ret = btrfs_lookup_file_extent(NULL, root, path,
7176 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7177 	if (ret < 0)
7178 		goto out;
7179 
7180 	slot = path->slots[0];
7181 	if (ret == 1) {
7182 		if (slot == 0) {
7183 			/* can't find the item, must cow */
7184 			ret = 0;
7185 			goto out;
7186 		}
7187 		slot--;
7188 	}
7189 	ret = 0;
7190 	leaf = path->nodes[0];
7191 	btrfs_item_key_to_cpu(leaf, &key, slot);
7192 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7193 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7194 		/* not our file or wrong item type, must cow */
7195 		goto out;
7196 	}
7197 
7198 	if (key.offset > offset) {
7199 		/* Wrong offset, must cow */
7200 		goto out;
7201 	}
7202 
7203 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7204 	found_type = btrfs_file_extent_type(leaf, fi);
7205 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7206 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7207 		/* not a regular extent, must cow */
7208 		goto out;
7209 	}
7210 
7211 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7212 		goto out;
7213 
7214 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7215 	if (extent_end <= offset)
7216 		goto out;
7217 
7218 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7219 	if (disk_bytenr == 0)
7220 		goto out;
7221 
7222 	if (btrfs_file_extent_compression(leaf, fi) ||
7223 	    btrfs_file_extent_encryption(leaf, fi) ||
7224 	    btrfs_file_extent_other_encoding(leaf, fi))
7225 		goto out;
7226 
7227 	/*
7228 	 * Do the same check as in btrfs_cross_ref_exist but without the
7229 	 * unnecessary search.
7230 	 */
7231 	if (!strict &&
7232 	    (btrfs_file_extent_generation(leaf, fi) <=
7233 	     btrfs_root_last_snapshot(&root->root_item)))
7234 		goto out;
7235 
7236 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7237 
7238 	if (orig_start) {
7239 		*orig_start = key.offset - backref_offset;
7240 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7241 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7242 	}
7243 
7244 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7245 		goto out;
7246 
7247 	num_bytes = min(offset + *len, extent_end) - offset;
7248 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7249 		u64 range_end;
7250 
7251 		range_end = round_up(offset + num_bytes,
7252 				     root->fs_info->sectorsize) - 1;
7253 		ret = test_range_bit(io_tree, offset, range_end,
7254 				     EXTENT_DELALLOC, 0, NULL);
7255 		if (ret) {
7256 			ret = -EAGAIN;
7257 			goto out;
7258 		}
7259 	}
7260 
7261 	btrfs_release_path(path);
7262 
7263 	/*
7264 	 * look for other files referencing this extent, if we
7265 	 * find any we must cow
7266 	 */
7267 
7268 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7269 				    key.offset - backref_offset, disk_bytenr,
7270 				    strict);
7271 	if (ret) {
7272 		ret = 0;
7273 		goto out;
7274 	}
7275 
7276 	/*
7277 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7278 	 * in this extent we are about to write.  If there
7279 	 * are any csums in that range we have to cow in order
7280 	 * to keep the csums correct
7281 	 */
7282 	disk_bytenr += backref_offset;
7283 	disk_bytenr += offset - key.offset;
7284 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7285 		goto out;
7286 	/*
7287 	 * all of the above have passed, it is safe to overwrite this extent
7288 	 * without cow
7289 	 */
7290 	*len = num_bytes;
7291 	ret = 1;
7292 out:
7293 	btrfs_free_path(path);
7294 	return ret;
7295 }
7296 
7297 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7298 			      struct extent_state **cached_state, bool writing)
7299 {
7300 	struct btrfs_ordered_extent *ordered;
7301 	int ret = 0;
7302 
7303 	while (1) {
7304 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7305 				 cached_state);
7306 		/*
7307 		 * We're concerned with the entire range that we're going to be
7308 		 * doing DIO to, so we need to make sure there's no ordered
7309 		 * extents in this range.
7310 		 */
7311 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7312 						     lockend - lockstart + 1);
7313 
7314 		/*
7315 		 * We need to make sure there are no buffered pages in this
7316 		 * range either, we could have raced between the invalidate in
7317 		 * generic_file_direct_write and locking the extent.  The
7318 		 * invalidate needs to happen so that reads after a write do not
7319 		 * get stale data.
7320 		 */
7321 		if (!ordered &&
7322 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7323 							 lockstart, lockend)))
7324 			break;
7325 
7326 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7327 				     cached_state);
7328 
7329 		if (ordered) {
7330 			/*
7331 			 * If we are doing a DIO read and the ordered extent we
7332 			 * found is for a buffered write, we can not wait for it
7333 			 * to complete and retry, because if we do so we can
7334 			 * deadlock with concurrent buffered writes on page
7335 			 * locks. This happens only if our DIO read covers more
7336 			 * than one extent map, if at this point has already
7337 			 * created an ordered extent for a previous extent map
7338 			 * and locked its range in the inode's io tree, and a
7339 			 * concurrent write against that previous extent map's
7340 			 * range and this range started (we unlock the ranges
7341 			 * in the io tree only when the bios complete and
7342 			 * buffered writes always lock pages before attempting
7343 			 * to lock range in the io tree).
7344 			 */
7345 			if (writing ||
7346 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7347 				btrfs_start_ordered_extent(ordered, 1);
7348 			else
7349 				ret = -ENOTBLK;
7350 			btrfs_put_ordered_extent(ordered);
7351 		} else {
7352 			/*
7353 			 * We could trigger writeback for this range (and wait
7354 			 * for it to complete) and then invalidate the pages for
7355 			 * this range (through invalidate_inode_pages2_range()),
7356 			 * but that can lead us to a deadlock with a concurrent
7357 			 * call to readahead (a buffered read or a defrag call
7358 			 * triggered a readahead) on a page lock due to an
7359 			 * ordered dio extent we created before but did not have
7360 			 * yet a corresponding bio submitted (whence it can not
7361 			 * complete), which makes readahead wait for that
7362 			 * ordered extent to complete while holding a lock on
7363 			 * that page.
7364 			 */
7365 			ret = -ENOTBLK;
7366 		}
7367 
7368 		if (ret)
7369 			break;
7370 
7371 		cond_resched();
7372 	}
7373 
7374 	return ret;
7375 }
7376 
7377 /* The callers of this must take lock_extent() */
7378 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7379 				       u64 len, u64 orig_start, u64 block_start,
7380 				       u64 block_len, u64 orig_block_len,
7381 				       u64 ram_bytes, int compress_type,
7382 				       int type)
7383 {
7384 	struct extent_map_tree *em_tree;
7385 	struct extent_map *em;
7386 	int ret;
7387 
7388 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7389 	       type == BTRFS_ORDERED_COMPRESSED ||
7390 	       type == BTRFS_ORDERED_NOCOW ||
7391 	       type == BTRFS_ORDERED_REGULAR);
7392 
7393 	em_tree = &inode->extent_tree;
7394 	em = alloc_extent_map();
7395 	if (!em)
7396 		return ERR_PTR(-ENOMEM);
7397 
7398 	em->start = start;
7399 	em->orig_start = orig_start;
7400 	em->len = len;
7401 	em->block_len = block_len;
7402 	em->block_start = block_start;
7403 	em->orig_block_len = orig_block_len;
7404 	em->ram_bytes = ram_bytes;
7405 	em->generation = -1;
7406 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7407 	if (type == BTRFS_ORDERED_PREALLOC) {
7408 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7409 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7410 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7411 		em->compress_type = compress_type;
7412 	}
7413 
7414 	do {
7415 		btrfs_drop_extent_cache(inode, em->start,
7416 					em->start + em->len - 1, 0);
7417 		write_lock(&em_tree->lock);
7418 		ret = add_extent_mapping(em_tree, em, 1);
7419 		write_unlock(&em_tree->lock);
7420 		/*
7421 		 * The caller has taken lock_extent(), who could race with us
7422 		 * to add em?
7423 		 */
7424 	} while (ret == -EEXIST);
7425 
7426 	if (ret) {
7427 		free_extent_map(em);
7428 		return ERR_PTR(ret);
7429 	}
7430 
7431 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7432 	return em;
7433 }
7434 
7435 
7436 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7437 					 struct inode *inode,
7438 					 struct btrfs_dio_data *dio_data,
7439 					 u64 start, u64 len)
7440 {
7441 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7442 	struct extent_map *em = *map;
7443 	int type;
7444 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7445 	bool can_nocow = false;
7446 	bool space_reserved = false;
7447 	int ret = 0;
7448 
7449 	/*
7450 	 * We don't allocate a new extent in the following cases
7451 	 *
7452 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7453 	 * existing extent.
7454 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7455 	 * just use the extent.
7456 	 *
7457 	 */
7458 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7459 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7460 	     em->block_start != EXTENT_MAP_HOLE)) {
7461 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7462 			type = BTRFS_ORDERED_PREALLOC;
7463 		else
7464 			type = BTRFS_ORDERED_NOCOW;
7465 		len = min(len, em->len - (start - em->start));
7466 		block_start = em->block_start + (start - em->start);
7467 
7468 		if (can_nocow_extent(inode, start, &len, &orig_start,
7469 				     &orig_block_len, &ram_bytes, false) == 1 &&
7470 		    btrfs_inc_nocow_writers(fs_info, block_start))
7471 			can_nocow = true;
7472 	}
7473 
7474 	if (can_nocow) {
7475 		struct extent_map *em2;
7476 
7477 		/* We can NOCOW, so only need to reserve metadata space. */
7478 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len);
7479 		if (ret < 0) {
7480 			/* Our caller expects us to free the input extent map. */
7481 			free_extent_map(em);
7482 			*map = NULL;
7483 			btrfs_dec_nocow_writers(fs_info, block_start);
7484 			goto out;
7485 		}
7486 		space_reserved = true;
7487 
7488 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7489 					      orig_start, block_start,
7490 					      len, orig_block_len,
7491 					      ram_bytes, type);
7492 		btrfs_dec_nocow_writers(fs_info, block_start);
7493 		if (type == BTRFS_ORDERED_PREALLOC) {
7494 			free_extent_map(em);
7495 			*map = em = em2;
7496 		}
7497 
7498 		if (IS_ERR(em2)) {
7499 			ret = PTR_ERR(em2);
7500 			goto out;
7501 		}
7502 	} else {
7503 		const u64 prev_len = len;
7504 
7505 		/* Our caller expects us to free the input extent map. */
7506 		free_extent_map(em);
7507 		*map = NULL;
7508 
7509 		/* We have to COW, so need to reserve metadata and data space. */
7510 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7511 						   &dio_data->data_reserved,
7512 						   start, len);
7513 		if (ret < 0)
7514 			goto out;
7515 		space_reserved = true;
7516 
7517 		em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7518 		if (IS_ERR(em)) {
7519 			ret = PTR_ERR(em);
7520 			goto out;
7521 		}
7522 		*map = em;
7523 		len = min(len, em->len - (start - em->start));
7524 		if (len < prev_len)
7525 			btrfs_delalloc_release_space(BTRFS_I(inode),
7526 						     dio_data->data_reserved,
7527 						     start + len, prev_len - len,
7528 						     true);
7529 	}
7530 
7531 	/*
7532 	 * We have created our ordered extent, so we can now release our reservation
7533 	 * for an outstanding extent.
7534 	 */
7535 	btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7536 
7537 	/*
7538 	 * Need to update the i_size under the extent lock so buffered
7539 	 * readers will get the updated i_size when we unlock.
7540 	 */
7541 	if (start + len > i_size_read(inode))
7542 		i_size_write(inode, start + len);
7543 out:
7544 	if (ret && space_reserved) {
7545 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7546 		if (can_nocow) {
7547 			btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7548 		} else {
7549 			btrfs_delalloc_release_space(BTRFS_I(inode),
7550 						     dio_data->data_reserved,
7551 						     start, len, true);
7552 			extent_changeset_free(dio_data->data_reserved);
7553 			dio_data->data_reserved = NULL;
7554 		}
7555 	}
7556 	return ret;
7557 }
7558 
7559 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7560 		loff_t length, unsigned int flags, struct iomap *iomap,
7561 		struct iomap *srcmap)
7562 {
7563 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7564 	struct extent_map *em;
7565 	struct extent_state *cached_state = NULL;
7566 	struct btrfs_dio_data *dio_data = NULL;
7567 	u64 lockstart, lockend;
7568 	const bool write = !!(flags & IOMAP_WRITE);
7569 	int ret = 0;
7570 	u64 len = length;
7571 	bool unlock_extents = false;
7572 
7573 	if (!write)
7574 		len = min_t(u64, len, fs_info->sectorsize);
7575 
7576 	lockstart = start;
7577 	lockend = start + len - 1;
7578 
7579 	/*
7580 	 * The generic stuff only does filemap_write_and_wait_range, which
7581 	 * isn't enough if we've written compressed pages to this area, so we
7582 	 * need to flush the dirty pages again to make absolutely sure that any
7583 	 * outstanding dirty pages are on disk.
7584 	 */
7585 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7586 		     &BTRFS_I(inode)->runtime_flags)) {
7587 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7588 					       start + length - 1);
7589 		if (ret)
7590 			return ret;
7591 	}
7592 
7593 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7594 	if (!dio_data)
7595 		return -ENOMEM;
7596 
7597 	iomap->private = dio_data;
7598 
7599 
7600 	/*
7601 	 * If this errors out it's because we couldn't invalidate pagecache for
7602 	 * this range and we need to fallback to buffered.
7603 	 */
7604 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7605 		ret = -ENOTBLK;
7606 		goto err;
7607 	}
7608 
7609 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7610 	if (IS_ERR(em)) {
7611 		ret = PTR_ERR(em);
7612 		goto unlock_err;
7613 	}
7614 
7615 	/*
7616 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7617 	 * io.  INLINE is special, and we could probably kludge it in here, but
7618 	 * it's still buffered so for safety lets just fall back to the generic
7619 	 * buffered path.
7620 	 *
7621 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7622 	 * decompress it, so there will be buffering required no matter what we
7623 	 * do, so go ahead and fallback to buffered.
7624 	 *
7625 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7626 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7627 	 * the generic code.
7628 	 */
7629 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7630 	    em->block_start == EXTENT_MAP_INLINE) {
7631 		free_extent_map(em);
7632 		ret = -ENOTBLK;
7633 		goto unlock_err;
7634 	}
7635 
7636 	len = min(len, em->len - (start - em->start));
7637 
7638 	/*
7639 	 * If we have a NOWAIT request and the range contains multiple extents
7640 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7641 	 * caller fallback to a context where it can do a blocking (without
7642 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7643 	 * success to the caller, which is not optimal for writes and for reads
7644 	 * it can result in unexpected behaviour for an application.
7645 	 *
7646 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7647 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7648 	 * asked for, resulting in an unexpected, and incorrect, short read.
7649 	 * That is, the caller asked to read N bytes and we return less than that,
7650 	 * which is wrong unless we are crossing EOF. This happens if we get a
7651 	 * page fault error when trying to fault in pages for the buffer that is
7652 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7653 	 * have previously submitted bios for other extents in the range, in
7654 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7655 	 * those bios have completed by the time we get the page fault error,
7656 	 * which we return back to our caller - we should only return EIOCBQUEUED
7657 	 * after we have submitted bios for all the extents in the range.
7658 	 */
7659 	if ((flags & IOMAP_NOWAIT) && len < length) {
7660 		free_extent_map(em);
7661 		ret = -EAGAIN;
7662 		goto unlock_err;
7663 	}
7664 
7665 	if (write) {
7666 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7667 						    start, len);
7668 		if (ret < 0)
7669 			goto unlock_err;
7670 		unlock_extents = true;
7671 		/* Recalc len in case the new em is smaller than requested */
7672 		len = min(len, em->len - (start - em->start));
7673 	} else {
7674 		/*
7675 		 * We need to unlock only the end area that we aren't using.
7676 		 * The rest is going to be unlocked by the endio routine.
7677 		 */
7678 		lockstart = start + len;
7679 		if (lockstart < lockend)
7680 			unlock_extents = true;
7681 	}
7682 
7683 	if (unlock_extents)
7684 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7685 				     lockstart, lockend, &cached_state);
7686 	else
7687 		free_extent_state(cached_state);
7688 
7689 	/*
7690 	 * Translate extent map information to iomap.
7691 	 * We trim the extents (and move the addr) even though iomap code does
7692 	 * that, since we have locked only the parts we are performing I/O in.
7693 	 */
7694 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7695 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7696 		iomap->addr = IOMAP_NULL_ADDR;
7697 		iomap->type = IOMAP_HOLE;
7698 	} else {
7699 		iomap->addr = em->block_start + (start - em->start);
7700 		iomap->type = IOMAP_MAPPED;
7701 	}
7702 	iomap->offset = start;
7703 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7704 	iomap->length = len;
7705 
7706 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7707 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7708 
7709 	free_extent_map(em);
7710 
7711 	return 0;
7712 
7713 unlock_err:
7714 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7715 			     &cached_state);
7716 err:
7717 	kfree(dio_data);
7718 
7719 	return ret;
7720 }
7721 
7722 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7723 		ssize_t written, unsigned int flags, struct iomap *iomap)
7724 {
7725 	int ret = 0;
7726 	struct btrfs_dio_data *dio_data = iomap->private;
7727 	size_t submitted = dio_data->submitted;
7728 	const bool write = !!(flags & IOMAP_WRITE);
7729 
7730 	if (!write && (iomap->type == IOMAP_HOLE)) {
7731 		/* If reading from a hole, unlock and return */
7732 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7733 		goto out;
7734 	}
7735 
7736 	if (submitted < length) {
7737 		pos += submitted;
7738 		length -= submitted;
7739 		if (write)
7740 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7741 					length, false);
7742 		else
7743 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7744 				      pos + length - 1);
7745 		ret = -ENOTBLK;
7746 	}
7747 
7748 	if (write)
7749 		extent_changeset_free(dio_data->data_reserved);
7750 out:
7751 	kfree(dio_data);
7752 	iomap->private = NULL;
7753 
7754 	return ret;
7755 }
7756 
7757 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7758 {
7759 	/*
7760 	 * This implies a barrier so that stores to dio_bio->bi_status before
7761 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7762 	 */
7763 	if (!refcount_dec_and_test(&dip->refs))
7764 		return;
7765 
7766 	if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7767 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7768 					     dip->file_offset,
7769 					     dip->bytes,
7770 					     !dip->dio_bio->bi_status);
7771 	} else {
7772 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7773 			      dip->file_offset,
7774 			      dip->file_offset + dip->bytes - 1);
7775 	}
7776 
7777 	bio_endio(dip->dio_bio);
7778 	kfree(dip);
7779 }
7780 
7781 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7782 					  int mirror_num,
7783 					  unsigned long bio_flags)
7784 {
7785 	struct btrfs_dio_private *dip = bio->bi_private;
7786 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7787 	blk_status_t ret;
7788 
7789 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7790 
7791 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7792 	if (ret)
7793 		return ret;
7794 
7795 	refcount_inc(&dip->refs);
7796 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7797 	if (ret)
7798 		refcount_dec(&dip->refs);
7799 	return ret;
7800 }
7801 
7802 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7803 					     struct btrfs_bio *bbio,
7804 					     const bool uptodate)
7805 {
7806 	struct inode *inode = dip->inode;
7807 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7808 	const u32 sectorsize = fs_info->sectorsize;
7809 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7810 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7811 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7812 	struct bio_vec bvec;
7813 	struct bvec_iter iter;
7814 	const u64 orig_file_offset = dip->file_offset;
7815 	u64 start = orig_file_offset;
7816 	u32 bio_offset = 0;
7817 	blk_status_t err = BLK_STS_OK;
7818 
7819 	__bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
7820 		unsigned int i, nr_sectors, pgoff;
7821 
7822 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7823 		pgoff = bvec.bv_offset;
7824 		for (i = 0; i < nr_sectors; i++) {
7825 			ASSERT(pgoff < PAGE_SIZE);
7826 			if (uptodate &&
7827 			    (!csum || !check_data_csum(inode, bbio,
7828 						       bio_offset, bvec.bv_page,
7829 						       pgoff, start))) {
7830 				clean_io_failure(fs_info, failure_tree, io_tree,
7831 						 start, bvec.bv_page,
7832 						 btrfs_ino(BTRFS_I(inode)),
7833 						 pgoff);
7834 			} else {
7835 				int ret;
7836 
7837 				ASSERT((start - orig_file_offset) < UINT_MAX);
7838 				ret = btrfs_repair_one_sector(inode,
7839 						&bbio->bio,
7840 						start - orig_file_offset,
7841 						bvec.bv_page, pgoff,
7842 						start, bbio->mirror_num,
7843 						submit_dio_repair_bio);
7844 				if (ret)
7845 					err = errno_to_blk_status(ret);
7846 			}
7847 			start += sectorsize;
7848 			ASSERT(bio_offset + sectorsize > bio_offset);
7849 			bio_offset += sectorsize;
7850 			pgoff += sectorsize;
7851 		}
7852 	}
7853 	return err;
7854 }
7855 
7856 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7857 					 const u64 offset, const u64 bytes,
7858 					 const bool uptodate)
7859 {
7860 	btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
7861 				       finish_ordered_fn, uptodate);
7862 }
7863 
7864 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7865 						     struct bio *bio,
7866 						     u64 dio_file_offset)
7867 {
7868 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
7869 }
7870 
7871 static void btrfs_end_dio_bio(struct bio *bio)
7872 {
7873 	struct btrfs_dio_private *dip = bio->bi_private;
7874 	blk_status_t err = bio->bi_status;
7875 
7876 	if (err)
7877 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7878 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7879 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7880 			   bio->bi_opf, bio->bi_iter.bi_sector,
7881 			   bio->bi_iter.bi_size, err);
7882 
7883 	if (bio_op(bio) == REQ_OP_READ)
7884 		err = btrfs_check_read_dio_bio(dip, btrfs_bio(bio), !err);
7885 
7886 	if (err)
7887 		dip->dio_bio->bi_status = err;
7888 
7889 	btrfs_record_physical_zoned(dip->inode, dip->file_offset, bio);
7890 
7891 	bio_put(bio);
7892 	btrfs_dio_private_put(dip);
7893 }
7894 
7895 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7896 		struct inode *inode, u64 file_offset, int async_submit)
7897 {
7898 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7899 	struct btrfs_dio_private *dip = bio->bi_private;
7900 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
7901 	blk_status_t ret;
7902 
7903 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7904 	if (async_submit)
7905 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7906 
7907 	if (!write) {
7908 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7909 		if (ret)
7910 			goto err;
7911 	}
7912 
7913 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7914 		goto map;
7915 
7916 	if (write && async_submit) {
7917 		ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
7918 					  btrfs_submit_bio_start_direct_io);
7919 		goto err;
7920 	} else if (write) {
7921 		/*
7922 		 * If we aren't doing async submit, calculate the csum of the
7923 		 * bio now.
7924 		 */
7925 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
7926 		if (ret)
7927 			goto err;
7928 	} else {
7929 		u64 csum_offset;
7930 
7931 		csum_offset = file_offset - dip->file_offset;
7932 		csum_offset >>= fs_info->sectorsize_bits;
7933 		csum_offset *= fs_info->csum_size;
7934 		btrfs_bio(bio)->csum = dip->csums + csum_offset;
7935 	}
7936 map:
7937 	ret = btrfs_map_bio(fs_info, bio, 0);
7938 err:
7939 	return ret;
7940 }
7941 
7942 /*
7943  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7944  * or ordered extents whether or not we submit any bios.
7945  */
7946 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7947 							  struct inode *inode,
7948 							  loff_t file_offset)
7949 {
7950 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
7951 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7952 	size_t dip_size;
7953 	struct btrfs_dio_private *dip;
7954 
7955 	dip_size = sizeof(*dip);
7956 	if (!write && csum) {
7957 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7958 		size_t nblocks;
7959 
7960 		nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
7961 		dip_size += fs_info->csum_size * nblocks;
7962 	}
7963 
7964 	dip = kzalloc(dip_size, GFP_NOFS);
7965 	if (!dip)
7966 		return NULL;
7967 
7968 	dip->inode = inode;
7969 	dip->file_offset = file_offset;
7970 	dip->bytes = dio_bio->bi_iter.bi_size;
7971 	dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
7972 	dip->dio_bio = dio_bio;
7973 	refcount_set(&dip->refs, 1);
7974 	return dip;
7975 }
7976 
7977 static void btrfs_submit_direct(const struct iomap_iter *iter,
7978 		struct bio *dio_bio, loff_t file_offset)
7979 {
7980 	struct inode *inode = iter->inode;
7981 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
7982 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7983 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7984 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
7985 	struct btrfs_dio_private *dip;
7986 	struct bio *bio;
7987 	u64 start_sector;
7988 	int async_submit = 0;
7989 	u64 submit_len;
7990 	u64 clone_offset = 0;
7991 	u64 clone_len;
7992 	u64 logical;
7993 	int ret;
7994 	blk_status_t status;
7995 	struct btrfs_io_geometry geom;
7996 	struct btrfs_dio_data *dio_data = iter->iomap.private;
7997 	struct extent_map *em = NULL;
7998 
7999 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8000 	if (!dip) {
8001 		if (!write) {
8002 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8003 				file_offset + dio_bio->bi_iter.bi_size - 1);
8004 		}
8005 		dio_bio->bi_status = BLK_STS_RESOURCE;
8006 		bio_endio(dio_bio);
8007 		return;
8008 	}
8009 
8010 	if (!write) {
8011 		/*
8012 		 * Load the csums up front to reduce csum tree searches and
8013 		 * contention when submitting bios.
8014 		 *
8015 		 * If we have csums disabled this will do nothing.
8016 		 */
8017 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8018 		if (status != BLK_STS_OK)
8019 			goto out_err;
8020 	}
8021 
8022 	start_sector = dio_bio->bi_iter.bi_sector;
8023 	submit_len = dio_bio->bi_iter.bi_size;
8024 
8025 	do {
8026 		logical = start_sector << 9;
8027 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8028 		if (IS_ERR(em)) {
8029 			status = errno_to_blk_status(PTR_ERR(em));
8030 			em = NULL;
8031 			goto out_err_em;
8032 		}
8033 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8034 					    logical, &geom);
8035 		if (ret) {
8036 			status = errno_to_blk_status(ret);
8037 			goto out_err_em;
8038 		}
8039 
8040 		clone_len = min(submit_len, geom.len);
8041 		ASSERT(clone_len <= UINT_MAX);
8042 
8043 		/*
8044 		 * This will never fail as it's passing GPF_NOFS and
8045 		 * the allocation is backed by btrfs_bioset.
8046 		 */
8047 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8048 		bio->bi_private = dip;
8049 		bio->bi_end_io = btrfs_end_dio_bio;
8050 
8051 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8052 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8053 							file_offset);
8054 			if (status) {
8055 				bio_put(bio);
8056 				goto out_err;
8057 			}
8058 		}
8059 
8060 		ASSERT(submit_len >= clone_len);
8061 		submit_len -= clone_len;
8062 
8063 		/*
8064 		 * Increase the count before we submit the bio so we know
8065 		 * the end IO handler won't happen before we increase the
8066 		 * count. Otherwise, the dip might get freed before we're
8067 		 * done setting it up.
8068 		 *
8069 		 * We transfer the initial reference to the last bio, so we
8070 		 * don't need to increment the reference count for the last one.
8071 		 */
8072 		if (submit_len > 0) {
8073 			refcount_inc(&dip->refs);
8074 			/*
8075 			 * If we are submitting more than one bio, submit them
8076 			 * all asynchronously. The exception is RAID 5 or 6, as
8077 			 * asynchronous checksums make it difficult to collect
8078 			 * full stripe writes.
8079 			 */
8080 			if (!raid56)
8081 				async_submit = 1;
8082 		}
8083 
8084 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8085 						async_submit);
8086 		if (status) {
8087 			bio_put(bio);
8088 			if (submit_len > 0)
8089 				refcount_dec(&dip->refs);
8090 			goto out_err_em;
8091 		}
8092 
8093 		dio_data->submitted += clone_len;
8094 		clone_offset += clone_len;
8095 		start_sector += clone_len >> 9;
8096 		file_offset += clone_len;
8097 
8098 		free_extent_map(em);
8099 	} while (submit_len > 0);
8100 	return;
8101 
8102 out_err_em:
8103 	free_extent_map(em);
8104 out_err:
8105 	dip->dio_bio->bi_status = status;
8106 	btrfs_dio_private_put(dip);
8107 }
8108 
8109 const struct iomap_ops btrfs_dio_iomap_ops = {
8110 	.iomap_begin            = btrfs_dio_iomap_begin,
8111 	.iomap_end              = btrfs_dio_iomap_end,
8112 };
8113 
8114 const struct iomap_dio_ops btrfs_dio_ops = {
8115 	.submit_io		= btrfs_submit_direct,
8116 };
8117 
8118 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8119 			u64 start, u64 len)
8120 {
8121 	int	ret;
8122 
8123 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8124 	if (ret)
8125 		return ret;
8126 
8127 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8128 }
8129 
8130 int btrfs_readpage(struct file *file, struct page *page)
8131 {
8132 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8133 	u64 start = page_offset(page);
8134 	u64 end = start + PAGE_SIZE - 1;
8135 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
8136 	int ret;
8137 
8138 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8139 
8140 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
8141 	if (bio_ctrl.bio) {
8142 		int ret2;
8143 
8144 		ret2 = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
8145 		if (ret == 0)
8146 			ret = ret2;
8147 	}
8148 	return ret;
8149 }
8150 
8151 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8152 {
8153 	struct inode *inode = page->mapping->host;
8154 	int ret;
8155 
8156 	if (current->flags & PF_MEMALLOC) {
8157 		redirty_page_for_writepage(wbc, page);
8158 		unlock_page(page);
8159 		return 0;
8160 	}
8161 
8162 	/*
8163 	 * If we are under memory pressure we will call this directly from the
8164 	 * VM, we need to make sure we have the inode referenced for the ordered
8165 	 * extent.  If not just return like we didn't do anything.
8166 	 */
8167 	if (!igrab(inode)) {
8168 		redirty_page_for_writepage(wbc, page);
8169 		return AOP_WRITEPAGE_ACTIVATE;
8170 	}
8171 	ret = extent_write_full_page(page, wbc);
8172 	btrfs_add_delayed_iput(inode);
8173 	return ret;
8174 }
8175 
8176 static int btrfs_writepages(struct address_space *mapping,
8177 			    struct writeback_control *wbc)
8178 {
8179 	return extent_writepages(mapping, wbc);
8180 }
8181 
8182 static void btrfs_readahead(struct readahead_control *rac)
8183 {
8184 	extent_readahead(rac);
8185 }
8186 
8187 /*
8188  * For releasepage() and invalidate_folio() we have a race window where
8189  * folio_end_writeback() is called but the subpage spinlock is not yet released.
8190  * If we continue to release/invalidate the page, we could cause use-after-free
8191  * for subpage spinlock.  So this function is to spin and wait for subpage
8192  * spinlock.
8193  */
8194 static void wait_subpage_spinlock(struct page *page)
8195 {
8196 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8197 	struct btrfs_subpage *subpage;
8198 
8199 	if (fs_info->sectorsize == PAGE_SIZE)
8200 		return;
8201 
8202 	ASSERT(PagePrivate(page) && page->private);
8203 	subpage = (struct btrfs_subpage *)page->private;
8204 
8205 	/*
8206 	 * This may look insane as we just acquire the spinlock and release it,
8207 	 * without doing anything.  But we just want to make sure no one is
8208 	 * still holding the subpage spinlock.
8209 	 * And since the page is not dirty nor writeback, and we have page
8210 	 * locked, the only possible way to hold a spinlock is from the endio
8211 	 * function to clear page writeback.
8212 	 *
8213 	 * Here we just acquire the spinlock so that all existing callers
8214 	 * should exit and we're safe to release/invalidate the page.
8215 	 */
8216 	spin_lock_irq(&subpage->lock);
8217 	spin_unlock_irq(&subpage->lock);
8218 }
8219 
8220 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8221 {
8222 	int ret = try_release_extent_mapping(page, gfp_flags);
8223 
8224 	if (ret == 1) {
8225 		wait_subpage_spinlock(page);
8226 		clear_page_extent_mapped(page);
8227 	}
8228 	return ret;
8229 }
8230 
8231 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8232 {
8233 	if (PageWriteback(page) || PageDirty(page))
8234 		return 0;
8235 	return __btrfs_releasepage(page, gfp_flags);
8236 }
8237 
8238 #ifdef CONFIG_MIGRATION
8239 static int btrfs_migratepage(struct address_space *mapping,
8240 			     struct page *newpage, struct page *page,
8241 			     enum migrate_mode mode)
8242 {
8243 	int ret;
8244 
8245 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8246 	if (ret != MIGRATEPAGE_SUCCESS)
8247 		return ret;
8248 
8249 	if (page_has_private(page))
8250 		attach_page_private(newpage, detach_page_private(page));
8251 
8252 	if (PageOrdered(page)) {
8253 		ClearPageOrdered(page);
8254 		SetPageOrdered(newpage);
8255 	}
8256 
8257 	if (mode != MIGRATE_SYNC_NO_COPY)
8258 		migrate_page_copy(newpage, page);
8259 	else
8260 		migrate_page_states(newpage, page);
8261 	return MIGRATEPAGE_SUCCESS;
8262 }
8263 #endif
8264 
8265 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8266 				 size_t length)
8267 {
8268 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8269 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8270 	struct extent_io_tree *tree = &inode->io_tree;
8271 	struct extent_state *cached_state = NULL;
8272 	u64 page_start = folio_pos(folio);
8273 	u64 page_end = page_start + folio_size(folio) - 1;
8274 	u64 cur;
8275 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8276 
8277 	/*
8278 	 * We have folio locked so no new ordered extent can be created on this
8279 	 * page, nor bio can be submitted for this folio.
8280 	 *
8281 	 * But already submitted bio can still be finished on this folio.
8282 	 * Furthermore, endio function won't skip folio which has Ordered
8283 	 * (Private2) already cleared, so it's possible for endio and
8284 	 * invalidate_folio to do the same ordered extent accounting twice
8285 	 * on one folio.
8286 	 *
8287 	 * So here we wait for any submitted bios to finish, so that we won't
8288 	 * do double ordered extent accounting on the same folio.
8289 	 */
8290 	folio_wait_writeback(folio);
8291 	wait_subpage_spinlock(&folio->page);
8292 
8293 	/*
8294 	 * For subpage case, we have call sites like
8295 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8296 	 * sectorsize.
8297 	 * If the range doesn't cover the full folio, we don't need to and
8298 	 * shouldn't clear page extent mapped, as folio->private can still
8299 	 * record subpage dirty bits for other part of the range.
8300 	 *
8301 	 * For cases that invalidate the full folio even the range doesn't
8302 	 * cover the full folio, like invalidating the last folio, we're
8303 	 * still safe to wait for ordered extent to finish.
8304 	 */
8305 	if (!(offset == 0 && length == folio_size(folio))) {
8306 		btrfs_releasepage(&folio->page, GFP_NOFS);
8307 		return;
8308 	}
8309 
8310 	if (!inode_evicting)
8311 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8312 
8313 	cur = page_start;
8314 	while (cur < page_end) {
8315 		struct btrfs_ordered_extent *ordered;
8316 		bool delete_states;
8317 		u64 range_end;
8318 		u32 range_len;
8319 
8320 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8321 							   page_end + 1 - cur);
8322 		if (!ordered) {
8323 			range_end = page_end;
8324 			/*
8325 			 * No ordered extent covering this range, we are safe
8326 			 * to delete all extent states in the range.
8327 			 */
8328 			delete_states = true;
8329 			goto next;
8330 		}
8331 		if (ordered->file_offset > cur) {
8332 			/*
8333 			 * There is a range between [cur, oe->file_offset) not
8334 			 * covered by any ordered extent.
8335 			 * We are safe to delete all extent states, and handle
8336 			 * the ordered extent in the next iteration.
8337 			 */
8338 			range_end = ordered->file_offset - 1;
8339 			delete_states = true;
8340 			goto next;
8341 		}
8342 
8343 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8344 				page_end);
8345 		ASSERT(range_end + 1 - cur < U32_MAX);
8346 		range_len = range_end + 1 - cur;
8347 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8348 			/*
8349 			 * If Ordered (Private2) is cleared, it means endio has
8350 			 * already been executed for the range.
8351 			 * We can't delete the extent states as
8352 			 * btrfs_finish_ordered_io() may still use some of them.
8353 			 */
8354 			delete_states = false;
8355 			goto next;
8356 		}
8357 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8358 
8359 		/*
8360 		 * IO on this page will never be started, so we need to account
8361 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8362 		 * here, must leave that up for the ordered extent completion.
8363 		 *
8364 		 * This will also unlock the range for incoming
8365 		 * btrfs_finish_ordered_io().
8366 		 */
8367 		if (!inode_evicting)
8368 			clear_extent_bit(tree, cur, range_end,
8369 					 EXTENT_DELALLOC |
8370 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8371 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8372 
8373 		spin_lock_irq(&inode->ordered_tree.lock);
8374 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8375 		ordered->truncated_len = min(ordered->truncated_len,
8376 					     cur - ordered->file_offset);
8377 		spin_unlock_irq(&inode->ordered_tree.lock);
8378 
8379 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8380 						   cur, range_end + 1 - cur)) {
8381 			btrfs_finish_ordered_io(ordered);
8382 			/*
8383 			 * The ordered extent has finished, now we're again
8384 			 * safe to delete all extent states of the range.
8385 			 */
8386 			delete_states = true;
8387 		} else {
8388 			/*
8389 			 * btrfs_finish_ordered_io() will get executed by endio
8390 			 * of other pages, thus we can't delete extent states
8391 			 * anymore
8392 			 */
8393 			delete_states = false;
8394 		}
8395 next:
8396 		if (ordered)
8397 			btrfs_put_ordered_extent(ordered);
8398 		/*
8399 		 * Qgroup reserved space handler
8400 		 * Sector(s) here will be either:
8401 		 *
8402 		 * 1) Already written to disk or bio already finished
8403 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8404 		 *    Qgroup will be handled by its qgroup_record then.
8405 		 *    btrfs_qgroup_free_data() call will do nothing here.
8406 		 *
8407 		 * 2) Not written to disk yet
8408 		 *    Then btrfs_qgroup_free_data() call will clear the
8409 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8410 		 *    reserved data space.
8411 		 *    Since the IO will never happen for this page.
8412 		 */
8413 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8414 		if (!inode_evicting) {
8415 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8416 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8417 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8418 				 delete_states, &cached_state);
8419 		}
8420 		cur = range_end + 1;
8421 	}
8422 	/*
8423 	 * We have iterated through all ordered extents of the page, the page
8424 	 * should not have Ordered (Private2) anymore, or the above iteration
8425 	 * did something wrong.
8426 	 */
8427 	ASSERT(!folio_test_ordered(folio));
8428 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8429 	if (!inode_evicting)
8430 		__btrfs_releasepage(&folio->page, GFP_NOFS);
8431 	clear_page_extent_mapped(&folio->page);
8432 }
8433 
8434 /*
8435  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8436  * called from a page fault handler when a page is first dirtied. Hence we must
8437  * be careful to check for EOF conditions here. We set the page up correctly
8438  * for a written page which means we get ENOSPC checking when writing into
8439  * holes and correct delalloc and unwritten extent mapping on filesystems that
8440  * support these features.
8441  *
8442  * We are not allowed to take the i_mutex here so we have to play games to
8443  * protect against truncate races as the page could now be beyond EOF.  Because
8444  * truncate_setsize() writes the inode size before removing pages, once we have
8445  * the page lock we can determine safely if the page is beyond EOF. If it is not
8446  * beyond EOF, then the page is guaranteed safe against truncation until we
8447  * unlock the page.
8448  */
8449 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8450 {
8451 	struct page *page = vmf->page;
8452 	struct inode *inode = file_inode(vmf->vma->vm_file);
8453 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8454 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8455 	struct btrfs_ordered_extent *ordered;
8456 	struct extent_state *cached_state = NULL;
8457 	struct extent_changeset *data_reserved = NULL;
8458 	unsigned long zero_start;
8459 	loff_t size;
8460 	vm_fault_t ret;
8461 	int ret2;
8462 	int reserved = 0;
8463 	u64 reserved_space;
8464 	u64 page_start;
8465 	u64 page_end;
8466 	u64 end;
8467 
8468 	reserved_space = PAGE_SIZE;
8469 
8470 	sb_start_pagefault(inode->i_sb);
8471 	page_start = page_offset(page);
8472 	page_end = page_start + PAGE_SIZE - 1;
8473 	end = page_end;
8474 
8475 	/*
8476 	 * Reserving delalloc space after obtaining the page lock can lead to
8477 	 * deadlock. For example, if a dirty page is locked by this function
8478 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8479 	 * dirty page write out, then the btrfs_writepage() function could
8480 	 * end up waiting indefinitely to get a lock on the page currently
8481 	 * being processed by btrfs_page_mkwrite() function.
8482 	 */
8483 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8484 					    page_start, reserved_space);
8485 	if (!ret2) {
8486 		ret2 = file_update_time(vmf->vma->vm_file);
8487 		reserved = 1;
8488 	}
8489 	if (ret2) {
8490 		ret = vmf_error(ret2);
8491 		if (reserved)
8492 			goto out;
8493 		goto out_noreserve;
8494 	}
8495 
8496 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8497 again:
8498 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8499 	lock_page(page);
8500 	size = i_size_read(inode);
8501 
8502 	if ((page->mapping != inode->i_mapping) ||
8503 	    (page_start >= size)) {
8504 		/* page got truncated out from underneath us */
8505 		goto out_unlock;
8506 	}
8507 	wait_on_page_writeback(page);
8508 
8509 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8510 	ret2 = set_page_extent_mapped(page);
8511 	if (ret2 < 0) {
8512 		ret = vmf_error(ret2);
8513 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8514 		goto out_unlock;
8515 	}
8516 
8517 	/*
8518 	 * we can't set the delalloc bits if there are pending ordered
8519 	 * extents.  Drop our locks and wait for them to finish
8520 	 */
8521 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8522 			PAGE_SIZE);
8523 	if (ordered) {
8524 		unlock_extent_cached(io_tree, page_start, page_end,
8525 				     &cached_state);
8526 		unlock_page(page);
8527 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8528 		btrfs_start_ordered_extent(ordered, 1);
8529 		btrfs_put_ordered_extent(ordered);
8530 		goto again;
8531 	}
8532 
8533 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8534 		reserved_space = round_up(size - page_start,
8535 					  fs_info->sectorsize);
8536 		if (reserved_space < PAGE_SIZE) {
8537 			end = page_start + reserved_space - 1;
8538 			btrfs_delalloc_release_space(BTRFS_I(inode),
8539 					data_reserved, page_start,
8540 					PAGE_SIZE - reserved_space, true);
8541 		}
8542 	}
8543 
8544 	/*
8545 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8546 	 * faulted in, but write(2) could also dirty a page and set delalloc
8547 	 * bits, thus in this case for space account reason, we still need to
8548 	 * clear any delalloc bits within this page range since we have to
8549 	 * reserve data&meta space before lock_page() (see above comments).
8550 	 */
8551 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8552 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8553 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8554 
8555 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8556 					&cached_state);
8557 	if (ret2) {
8558 		unlock_extent_cached(io_tree, page_start, page_end,
8559 				     &cached_state);
8560 		ret = VM_FAULT_SIGBUS;
8561 		goto out_unlock;
8562 	}
8563 
8564 	/* page is wholly or partially inside EOF */
8565 	if (page_start + PAGE_SIZE > size)
8566 		zero_start = offset_in_page(size);
8567 	else
8568 		zero_start = PAGE_SIZE;
8569 
8570 	if (zero_start != PAGE_SIZE) {
8571 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8572 		flush_dcache_page(page);
8573 	}
8574 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8575 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8576 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8577 
8578 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8579 
8580 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8581 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8582 
8583 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8584 	sb_end_pagefault(inode->i_sb);
8585 	extent_changeset_free(data_reserved);
8586 	return VM_FAULT_LOCKED;
8587 
8588 out_unlock:
8589 	unlock_page(page);
8590 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8591 out:
8592 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8593 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8594 				     reserved_space, (ret != 0));
8595 out_noreserve:
8596 	sb_end_pagefault(inode->i_sb);
8597 	extent_changeset_free(data_reserved);
8598 	return ret;
8599 }
8600 
8601 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8602 {
8603 	struct btrfs_truncate_control control = {
8604 		.inode = BTRFS_I(inode),
8605 		.ino = btrfs_ino(BTRFS_I(inode)),
8606 		.min_type = BTRFS_EXTENT_DATA_KEY,
8607 		.clear_extent_range = true,
8608 	};
8609 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8610 	struct btrfs_root *root = BTRFS_I(inode)->root;
8611 	struct btrfs_block_rsv *rsv;
8612 	int ret;
8613 	struct btrfs_trans_handle *trans;
8614 	u64 mask = fs_info->sectorsize - 1;
8615 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8616 
8617 	if (!skip_writeback) {
8618 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8619 					       (u64)-1);
8620 		if (ret)
8621 			return ret;
8622 	}
8623 
8624 	/*
8625 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8626 	 * things going on here:
8627 	 *
8628 	 * 1) We need to reserve space to update our inode.
8629 	 *
8630 	 * 2) We need to have something to cache all the space that is going to
8631 	 * be free'd up by the truncate operation, but also have some slack
8632 	 * space reserved in case it uses space during the truncate (thank you
8633 	 * very much snapshotting).
8634 	 *
8635 	 * And we need these to be separate.  The fact is we can use a lot of
8636 	 * space doing the truncate, and we have no earthly idea how much space
8637 	 * we will use, so we need the truncate reservation to be separate so it
8638 	 * doesn't end up using space reserved for updating the inode.  We also
8639 	 * need to be able to stop the transaction and start a new one, which
8640 	 * means we need to be able to update the inode several times, and we
8641 	 * have no idea of knowing how many times that will be, so we can't just
8642 	 * reserve 1 item for the entirety of the operation, so that has to be
8643 	 * done separately as well.
8644 	 *
8645 	 * So that leaves us with
8646 	 *
8647 	 * 1) rsv - for the truncate reservation, which we will steal from the
8648 	 * transaction reservation.
8649 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8650 	 * updating the inode.
8651 	 */
8652 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8653 	if (!rsv)
8654 		return -ENOMEM;
8655 	rsv->size = min_size;
8656 	rsv->failfast = 1;
8657 
8658 	/*
8659 	 * 1 for the truncate slack space
8660 	 * 1 for updating the inode.
8661 	 */
8662 	trans = btrfs_start_transaction(root, 2);
8663 	if (IS_ERR(trans)) {
8664 		ret = PTR_ERR(trans);
8665 		goto out;
8666 	}
8667 
8668 	/* Migrate the slack space for the truncate to our reserve */
8669 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8670 				      min_size, false);
8671 	BUG_ON(ret);
8672 
8673 	trans->block_rsv = rsv;
8674 
8675 	while (1) {
8676 		struct extent_state *cached_state = NULL;
8677 		const u64 new_size = inode->i_size;
8678 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8679 
8680 		control.new_size = new_size;
8681 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8682 				 &cached_state);
8683 		/*
8684 		 * We want to drop from the next block forward in case this new
8685 		 * size is not block aligned since we will be keeping the last
8686 		 * block of the extent just the way it is.
8687 		 */
8688 		btrfs_drop_extent_cache(BTRFS_I(inode),
8689 					ALIGN(new_size, fs_info->sectorsize),
8690 					(u64)-1, 0);
8691 
8692 		ret = btrfs_truncate_inode_items(trans, root, &control);
8693 
8694 		inode_sub_bytes(inode, control.sub_bytes);
8695 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8696 
8697 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8698 				     (u64)-1, &cached_state);
8699 
8700 		trans->block_rsv = &fs_info->trans_block_rsv;
8701 		if (ret != -ENOSPC && ret != -EAGAIN)
8702 			break;
8703 
8704 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8705 		if (ret)
8706 			break;
8707 
8708 		btrfs_end_transaction(trans);
8709 		btrfs_btree_balance_dirty(fs_info);
8710 
8711 		trans = btrfs_start_transaction(root, 2);
8712 		if (IS_ERR(trans)) {
8713 			ret = PTR_ERR(trans);
8714 			trans = NULL;
8715 			break;
8716 		}
8717 
8718 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8719 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8720 					      rsv, min_size, false);
8721 		BUG_ON(ret);	/* shouldn't happen */
8722 		trans->block_rsv = rsv;
8723 	}
8724 
8725 	/*
8726 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8727 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8728 	 * know we've truncated everything except the last little bit, and can
8729 	 * do btrfs_truncate_block and then update the disk_i_size.
8730 	 */
8731 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8732 		btrfs_end_transaction(trans);
8733 		btrfs_btree_balance_dirty(fs_info);
8734 
8735 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8736 		if (ret)
8737 			goto out;
8738 		trans = btrfs_start_transaction(root, 1);
8739 		if (IS_ERR(trans)) {
8740 			ret = PTR_ERR(trans);
8741 			goto out;
8742 		}
8743 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8744 	}
8745 
8746 	if (trans) {
8747 		int ret2;
8748 
8749 		trans->block_rsv = &fs_info->trans_block_rsv;
8750 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8751 		if (ret2 && !ret)
8752 			ret = ret2;
8753 
8754 		ret2 = btrfs_end_transaction(trans);
8755 		if (ret2 && !ret)
8756 			ret = ret2;
8757 		btrfs_btree_balance_dirty(fs_info);
8758 	}
8759 out:
8760 	btrfs_free_block_rsv(fs_info, rsv);
8761 	/*
8762 	 * So if we truncate and then write and fsync we normally would just
8763 	 * write the extents that changed, which is a problem if we need to
8764 	 * first truncate that entire inode.  So set this flag so we write out
8765 	 * all of the extents in the inode to the sync log so we're completely
8766 	 * safe.
8767 	 *
8768 	 * If no extents were dropped or trimmed we don't need to force the next
8769 	 * fsync to truncate all the inode's items from the log and re-log them
8770 	 * all. This means the truncate operation did not change the file size,
8771 	 * or changed it to a smaller size but there was only an implicit hole
8772 	 * between the old i_size and the new i_size, and there were no prealloc
8773 	 * extents beyond i_size to drop.
8774 	 */
8775 	if (control.extents_found > 0)
8776 		btrfs_set_inode_full_sync(BTRFS_I(inode));
8777 
8778 	return ret;
8779 }
8780 
8781 /*
8782  * create a new subvolume directory/inode (helper for the ioctl).
8783  */
8784 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8785 			     struct btrfs_root *new_root,
8786 			     struct btrfs_root *parent_root,
8787 			     struct user_namespace *mnt_userns)
8788 {
8789 	struct inode *inode;
8790 	int err;
8791 	u64 index = 0;
8792 	u64 ino;
8793 
8794 	err = btrfs_get_free_objectid(new_root, &ino);
8795 	if (err < 0)
8796 		return err;
8797 
8798 	inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2,
8799 				ino, ino,
8800 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8801 				&index);
8802 	if (IS_ERR(inode))
8803 		return PTR_ERR(inode);
8804 	inode->i_op = &btrfs_dir_inode_operations;
8805 	inode->i_fop = &btrfs_dir_file_operations;
8806 
8807 	set_nlink(inode, 1);
8808 	btrfs_i_size_write(BTRFS_I(inode), 0);
8809 	unlock_new_inode(inode);
8810 
8811 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8812 	if (err)
8813 		btrfs_err(new_root->fs_info,
8814 			  "error inheriting subvolume %llu properties: %d",
8815 			  new_root->root_key.objectid, err);
8816 
8817 	err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8818 
8819 	iput(inode);
8820 	return err;
8821 }
8822 
8823 struct inode *btrfs_alloc_inode(struct super_block *sb)
8824 {
8825 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8826 	struct btrfs_inode *ei;
8827 	struct inode *inode;
8828 
8829 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8830 	if (!ei)
8831 		return NULL;
8832 
8833 	ei->root = NULL;
8834 	ei->generation = 0;
8835 	ei->last_trans = 0;
8836 	ei->last_sub_trans = 0;
8837 	ei->logged_trans = 0;
8838 	ei->delalloc_bytes = 0;
8839 	ei->new_delalloc_bytes = 0;
8840 	ei->defrag_bytes = 0;
8841 	ei->disk_i_size = 0;
8842 	ei->flags = 0;
8843 	ei->ro_flags = 0;
8844 	ei->csum_bytes = 0;
8845 	ei->index_cnt = (u64)-1;
8846 	ei->dir_index = 0;
8847 	ei->last_unlink_trans = 0;
8848 	ei->last_reflink_trans = 0;
8849 	ei->last_log_commit = 0;
8850 
8851 	spin_lock_init(&ei->lock);
8852 	ei->outstanding_extents = 0;
8853 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8854 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8855 					      BTRFS_BLOCK_RSV_DELALLOC);
8856 	ei->runtime_flags = 0;
8857 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8858 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8859 
8860 	ei->delayed_node = NULL;
8861 
8862 	ei->i_otime.tv_sec = 0;
8863 	ei->i_otime.tv_nsec = 0;
8864 
8865 	inode = &ei->vfs_inode;
8866 	extent_map_tree_init(&ei->extent_tree);
8867 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8868 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8869 			    IO_TREE_INODE_IO_FAILURE, inode);
8870 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8871 			    IO_TREE_INODE_FILE_EXTENT, inode);
8872 	ei->io_tree.track_uptodate = true;
8873 	ei->io_failure_tree.track_uptodate = true;
8874 	atomic_set(&ei->sync_writers, 0);
8875 	mutex_init(&ei->log_mutex);
8876 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8877 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8878 	INIT_LIST_HEAD(&ei->delayed_iput);
8879 	RB_CLEAR_NODE(&ei->rb_node);
8880 	init_rwsem(&ei->i_mmap_lock);
8881 
8882 	return inode;
8883 }
8884 
8885 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8886 void btrfs_test_destroy_inode(struct inode *inode)
8887 {
8888 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8889 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8890 }
8891 #endif
8892 
8893 void btrfs_free_inode(struct inode *inode)
8894 {
8895 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8896 }
8897 
8898 void btrfs_destroy_inode(struct inode *vfs_inode)
8899 {
8900 	struct btrfs_ordered_extent *ordered;
8901 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8902 	struct btrfs_root *root = inode->root;
8903 
8904 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8905 	WARN_ON(vfs_inode->i_data.nrpages);
8906 	WARN_ON(inode->block_rsv.reserved);
8907 	WARN_ON(inode->block_rsv.size);
8908 	WARN_ON(inode->outstanding_extents);
8909 	if (!S_ISDIR(vfs_inode->i_mode)) {
8910 		WARN_ON(inode->delalloc_bytes);
8911 		WARN_ON(inode->new_delalloc_bytes);
8912 	}
8913 	WARN_ON(inode->csum_bytes);
8914 	WARN_ON(inode->defrag_bytes);
8915 
8916 	/*
8917 	 * This can happen where we create an inode, but somebody else also
8918 	 * created the same inode and we need to destroy the one we already
8919 	 * created.
8920 	 */
8921 	if (!root)
8922 		return;
8923 
8924 	while (1) {
8925 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8926 		if (!ordered)
8927 			break;
8928 		else {
8929 			btrfs_err(root->fs_info,
8930 				  "found ordered extent %llu %llu on inode cleanup",
8931 				  ordered->file_offset, ordered->num_bytes);
8932 			btrfs_remove_ordered_extent(inode, ordered);
8933 			btrfs_put_ordered_extent(ordered);
8934 			btrfs_put_ordered_extent(ordered);
8935 		}
8936 	}
8937 	btrfs_qgroup_check_reserved_leak(inode);
8938 	inode_tree_del(inode);
8939 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8940 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8941 	btrfs_put_root(inode->root);
8942 }
8943 
8944 int btrfs_drop_inode(struct inode *inode)
8945 {
8946 	struct btrfs_root *root = BTRFS_I(inode)->root;
8947 
8948 	if (root == NULL)
8949 		return 1;
8950 
8951 	/* the snap/subvol tree is on deleting */
8952 	if (btrfs_root_refs(&root->root_item) == 0)
8953 		return 1;
8954 	else
8955 		return generic_drop_inode(inode);
8956 }
8957 
8958 static void init_once(void *foo)
8959 {
8960 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8961 
8962 	inode_init_once(&ei->vfs_inode);
8963 }
8964 
8965 void __cold btrfs_destroy_cachep(void)
8966 {
8967 	/*
8968 	 * Make sure all delayed rcu free inodes are flushed before we
8969 	 * destroy cache.
8970 	 */
8971 	rcu_barrier();
8972 	kmem_cache_destroy(btrfs_inode_cachep);
8973 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8974 	kmem_cache_destroy(btrfs_path_cachep);
8975 	kmem_cache_destroy(btrfs_free_space_cachep);
8976 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8977 }
8978 
8979 int __init btrfs_init_cachep(void)
8980 {
8981 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8982 			sizeof(struct btrfs_inode), 0,
8983 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8984 			init_once);
8985 	if (!btrfs_inode_cachep)
8986 		goto fail;
8987 
8988 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8989 			sizeof(struct btrfs_trans_handle), 0,
8990 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8991 	if (!btrfs_trans_handle_cachep)
8992 		goto fail;
8993 
8994 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8995 			sizeof(struct btrfs_path), 0,
8996 			SLAB_MEM_SPREAD, NULL);
8997 	if (!btrfs_path_cachep)
8998 		goto fail;
8999 
9000 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9001 			sizeof(struct btrfs_free_space), 0,
9002 			SLAB_MEM_SPREAD, NULL);
9003 	if (!btrfs_free_space_cachep)
9004 		goto fail;
9005 
9006 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9007 							PAGE_SIZE, PAGE_SIZE,
9008 							SLAB_MEM_SPREAD, NULL);
9009 	if (!btrfs_free_space_bitmap_cachep)
9010 		goto fail;
9011 
9012 	return 0;
9013 fail:
9014 	btrfs_destroy_cachep();
9015 	return -ENOMEM;
9016 }
9017 
9018 static int btrfs_getattr(struct user_namespace *mnt_userns,
9019 			 const struct path *path, struct kstat *stat,
9020 			 u32 request_mask, unsigned int flags)
9021 {
9022 	u64 delalloc_bytes;
9023 	u64 inode_bytes;
9024 	struct inode *inode = d_inode(path->dentry);
9025 	u32 blocksize = inode->i_sb->s_blocksize;
9026 	u32 bi_flags = BTRFS_I(inode)->flags;
9027 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9028 
9029 	stat->result_mask |= STATX_BTIME;
9030 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9031 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9032 	if (bi_flags & BTRFS_INODE_APPEND)
9033 		stat->attributes |= STATX_ATTR_APPEND;
9034 	if (bi_flags & BTRFS_INODE_COMPRESS)
9035 		stat->attributes |= STATX_ATTR_COMPRESSED;
9036 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9037 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9038 	if (bi_flags & BTRFS_INODE_NODUMP)
9039 		stat->attributes |= STATX_ATTR_NODUMP;
9040 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9041 		stat->attributes |= STATX_ATTR_VERITY;
9042 
9043 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9044 				  STATX_ATTR_COMPRESSED |
9045 				  STATX_ATTR_IMMUTABLE |
9046 				  STATX_ATTR_NODUMP);
9047 
9048 	generic_fillattr(mnt_userns, inode, stat);
9049 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9050 
9051 	spin_lock(&BTRFS_I(inode)->lock);
9052 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9053 	inode_bytes = inode_get_bytes(inode);
9054 	spin_unlock(&BTRFS_I(inode)->lock);
9055 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9056 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9057 	return 0;
9058 }
9059 
9060 static int btrfs_rename_exchange(struct inode *old_dir,
9061 			      struct dentry *old_dentry,
9062 			      struct inode *new_dir,
9063 			      struct dentry *new_dentry)
9064 {
9065 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9066 	struct btrfs_trans_handle *trans;
9067 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9068 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9069 	struct inode *new_inode = new_dentry->d_inode;
9070 	struct inode *old_inode = old_dentry->d_inode;
9071 	struct timespec64 ctime = current_time(old_inode);
9072 	struct btrfs_rename_ctx old_rename_ctx;
9073 	struct btrfs_rename_ctx new_rename_ctx;
9074 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9075 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9076 	u64 old_idx = 0;
9077 	u64 new_idx = 0;
9078 	int ret;
9079 	int ret2;
9080 	bool need_abort = false;
9081 
9082 	/*
9083 	 * For non-subvolumes allow exchange only within one subvolume, in the
9084 	 * same inode namespace. Two subvolumes (represented as directory) can
9085 	 * be exchanged as they're a logical link and have a fixed inode number.
9086 	 */
9087 	if (root != dest &&
9088 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9089 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9090 		return -EXDEV;
9091 
9092 	/* close the race window with snapshot create/destroy ioctl */
9093 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9094 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9095 		down_read(&fs_info->subvol_sem);
9096 
9097 	/*
9098 	 * We want to reserve the absolute worst case amount of items.  So if
9099 	 * both inodes are subvols and we need to unlink them then that would
9100 	 * require 4 item modifications, but if they are both normal inodes it
9101 	 * would require 5 item modifications, so we'll assume their normal
9102 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9103 	 * should cover the worst case number of items we'll modify.
9104 	 */
9105 	trans = btrfs_start_transaction(root, 12);
9106 	if (IS_ERR(trans)) {
9107 		ret = PTR_ERR(trans);
9108 		goto out_notrans;
9109 	}
9110 
9111 	if (dest != root) {
9112 		ret = btrfs_record_root_in_trans(trans, dest);
9113 		if (ret)
9114 			goto out_fail;
9115 	}
9116 
9117 	/*
9118 	 * We need to find a free sequence number both in the source and
9119 	 * in the destination directory for the exchange.
9120 	 */
9121 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9122 	if (ret)
9123 		goto out_fail;
9124 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9125 	if (ret)
9126 		goto out_fail;
9127 
9128 	BTRFS_I(old_inode)->dir_index = 0ULL;
9129 	BTRFS_I(new_inode)->dir_index = 0ULL;
9130 
9131 	/* Reference for the source. */
9132 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9133 		/* force full log commit if subvolume involved. */
9134 		btrfs_set_log_full_commit(trans);
9135 	} else {
9136 		ret = btrfs_insert_inode_ref(trans, dest,
9137 					     new_dentry->d_name.name,
9138 					     new_dentry->d_name.len,
9139 					     old_ino,
9140 					     btrfs_ino(BTRFS_I(new_dir)),
9141 					     old_idx);
9142 		if (ret)
9143 			goto out_fail;
9144 		need_abort = true;
9145 	}
9146 
9147 	/* And now for the dest. */
9148 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9149 		/* force full log commit if subvolume involved. */
9150 		btrfs_set_log_full_commit(trans);
9151 	} else {
9152 		ret = btrfs_insert_inode_ref(trans, root,
9153 					     old_dentry->d_name.name,
9154 					     old_dentry->d_name.len,
9155 					     new_ino,
9156 					     btrfs_ino(BTRFS_I(old_dir)),
9157 					     new_idx);
9158 		if (ret) {
9159 			if (need_abort)
9160 				btrfs_abort_transaction(trans, ret);
9161 			goto out_fail;
9162 		}
9163 	}
9164 
9165 	/* Update inode version and ctime/mtime. */
9166 	inode_inc_iversion(old_dir);
9167 	inode_inc_iversion(new_dir);
9168 	inode_inc_iversion(old_inode);
9169 	inode_inc_iversion(new_inode);
9170 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9171 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9172 	old_inode->i_ctime = ctime;
9173 	new_inode->i_ctime = ctime;
9174 
9175 	if (old_dentry->d_parent != new_dentry->d_parent) {
9176 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9177 				BTRFS_I(old_inode), 1);
9178 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9179 				BTRFS_I(new_inode), 1);
9180 	}
9181 
9182 	/* src is a subvolume */
9183 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9184 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9185 	} else { /* src is an inode */
9186 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9187 					   BTRFS_I(old_dentry->d_inode),
9188 					   old_dentry->d_name.name,
9189 					   old_dentry->d_name.len,
9190 					   &old_rename_ctx);
9191 		if (!ret)
9192 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9193 	}
9194 	if (ret) {
9195 		btrfs_abort_transaction(trans, ret);
9196 		goto out_fail;
9197 	}
9198 
9199 	/* dest is a subvolume */
9200 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9201 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9202 	} else { /* dest is an inode */
9203 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9204 					   BTRFS_I(new_dentry->d_inode),
9205 					   new_dentry->d_name.name,
9206 					   new_dentry->d_name.len,
9207 					   &new_rename_ctx);
9208 		if (!ret)
9209 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9210 	}
9211 	if (ret) {
9212 		btrfs_abort_transaction(trans, ret);
9213 		goto out_fail;
9214 	}
9215 
9216 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9217 			     new_dentry->d_name.name,
9218 			     new_dentry->d_name.len, 0, old_idx);
9219 	if (ret) {
9220 		btrfs_abort_transaction(trans, ret);
9221 		goto out_fail;
9222 	}
9223 
9224 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9225 			     old_dentry->d_name.name,
9226 			     old_dentry->d_name.len, 0, new_idx);
9227 	if (ret) {
9228 		btrfs_abort_transaction(trans, ret);
9229 		goto out_fail;
9230 	}
9231 
9232 	if (old_inode->i_nlink == 1)
9233 		BTRFS_I(old_inode)->dir_index = old_idx;
9234 	if (new_inode->i_nlink == 1)
9235 		BTRFS_I(new_inode)->dir_index = new_idx;
9236 
9237 	/*
9238 	 * Now pin the logs of the roots. We do it to ensure that no other task
9239 	 * can sync the logs while we are in progress with the rename, because
9240 	 * that could result in an inconsistency in case any of the inodes that
9241 	 * are part of this rename operation were logged before.
9242 	 */
9243 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9244 		btrfs_pin_log_trans(root);
9245 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9246 		btrfs_pin_log_trans(dest);
9247 
9248 	/* Do the log updates for all inodes. */
9249 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9250 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9251 				   old_rename_ctx.index, new_dentry->d_parent);
9252 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9253 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9254 				   new_rename_ctx.index, old_dentry->d_parent);
9255 
9256 	/* Now unpin the logs. */
9257 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9258 		btrfs_end_log_trans(root);
9259 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9260 		btrfs_end_log_trans(dest);
9261 out_fail:
9262 	ret2 = btrfs_end_transaction(trans);
9263 	ret = ret ? ret : ret2;
9264 out_notrans:
9265 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9266 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9267 		up_read(&fs_info->subvol_sem);
9268 
9269 	return ret;
9270 }
9271 
9272 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9273 				     struct btrfs_root *root,
9274 				     struct user_namespace *mnt_userns,
9275 				     struct inode *dir,
9276 				     struct dentry *dentry)
9277 {
9278 	int ret;
9279 	struct inode *inode;
9280 	u64 objectid;
9281 	u64 index;
9282 
9283 	ret = btrfs_get_free_objectid(root, &objectid);
9284 	if (ret)
9285 		return ret;
9286 
9287 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9288 				dentry->d_name.name,
9289 				dentry->d_name.len,
9290 				btrfs_ino(BTRFS_I(dir)),
9291 				objectid,
9292 				S_IFCHR | WHITEOUT_MODE,
9293 				&index);
9294 
9295 	if (IS_ERR(inode)) {
9296 		ret = PTR_ERR(inode);
9297 		return ret;
9298 	}
9299 
9300 	inode->i_op = &btrfs_special_inode_operations;
9301 	init_special_inode(inode, inode->i_mode,
9302 		WHITEOUT_DEV);
9303 
9304 	ret = btrfs_init_inode_security(trans, inode, dir,
9305 				&dentry->d_name);
9306 	if (ret)
9307 		goto out;
9308 
9309 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9310 				BTRFS_I(inode), 0, index);
9311 	if (ret)
9312 		goto out;
9313 
9314 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9315 out:
9316 	unlock_new_inode(inode);
9317 	if (ret)
9318 		inode_dec_link_count(inode);
9319 	iput(inode);
9320 
9321 	return ret;
9322 }
9323 
9324 static int btrfs_rename(struct user_namespace *mnt_userns,
9325 			struct inode *old_dir, struct dentry *old_dentry,
9326 			struct inode *new_dir, struct dentry *new_dentry,
9327 			unsigned int flags)
9328 {
9329 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9330 	struct btrfs_trans_handle *trans;
9331 	unsigned int trans_num_items;
9332 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9333 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9334 	struct inode *new_inode = d_inode(new_dentry);
9335 	struct inode *old_inode = d_inode(old_dentry);
9336 	struct btrfs_rename_ctx rename_ctx;
9337 	u64 index = 0;
9338 	int ret;
9339 	int ret2;
9340 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9341 
9342 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9343 		return -EPERM;
9344 
9345 	/* we only allow rename subvolume link between subvolumes */
9346 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9347 		return -EXDEV;
9348 
9349 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9350 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9351 		return -ENOTEMPTY;
9352 
9353 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9354 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9355 		return -ENOTEMPTY;
9356 
9357 
9358 	/* check for collisions, even if the  name isn't there */
9359 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9360 			     new_dentry->d_name.name,
9361 			     new_dentry->d_name.len);
9362 
9363 	if (ret) {
9364 		if (ret == -EEXIST) {
9365 			/* we shouldn't get
9366 			 * eexist without a new_inode */
9367 			if (WARN_ON(!new_inode)) {
9368 				return ret;
9369 			}
9370 		} else {
9371 			/* maybe -EOVERFLOW */
9372 			return ret;
9373 		}
9374 	}
9375 	ret = 0;
9376 
9377 	/*
9378 	 * we're using rename to replace one file with another.  Start IO on it
9379 	 * now so  we don't add too much work to the end of the transaction
9380 	 */
9381 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9382 		filemap_flush(old_inode->i_mapping);
9383 
9384 	/* close the racy window with snapshot create/destroy ioctl */
9385 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9386 		down_read(&fs_info->subvol_sem);
9387 	/*
9388 	 * We want to reserve the absolute worst case amount of items.  So if
9389 	 * both inodes are subvols and we need to unlink them then that would
9390 	 * require 4 item modifications, but if they are both normal inodes it
9391 	 * would require 5 item modifications, so we'll assume they are normal
9392 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9393 	 * should cover the worst case number of items we'll modify.
9394 	 * If our rename has the whiteout flag, we need more 5 units for the
9395 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9396 	 * when selinux is enabled).
9397 	 */
9398 	trans_num_items = 11;
9399 	if (flags & RENAME_WHITEOUT)
9400 		trans_num_items += 5;
9401 	trans = btrfs_start_transaction(root, trans_num_items);
9402 	if (IS_ERR(trans)) {
9403 		ret = PTR_ERR(trans);
9404 		goto out_notrans;
9405 	}
9406 
9407 	if (dest != root) {
9408 		ret = btrfs_record_root_in_trans(trans, dest);
9409 		if (ret)
9410 			goto out_fail;
9411 	}
9412 
9413 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9414 	if (ret)
9415 		goto out_fail;
9416 
9417 	BTRFS_I(old_inode)->dir_index = 0ULL;
9418 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9419 		/* force full log commit if subvolume involved. */
9420 		btrfs_set_log_full_commit(trans);
9421 	} else {
9422 		ret = btrfs_insert_inode_ref(trans, dest,
9423 					     new_dentry->d_name.name,
9424 					     new_dentry->d_name.len,
9425 					     old_ino,
9426 					     btrfs_ino(BTRFS_I(new_dir)), index);
9427 		if (ret)
9428 			goto out_fail;
9429 	}
9430 
9431 	inode_inc_iversion(old_dir);
9432 	inode_inc_iversion(new_dir);
9433 	inode_inc_iversion(old_inode);
9434 	old_dir->i_ctime = old_dir->i_mtime =
9435 	new_dir->i_ctime = new_dir->i_mtime =
9436 	old_inode->i_ctime = current_time(old_dir);
9437 
9438 	if (old_dentry->d_parent != new_dentry->d_parent)
9439 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9440 				BTRFS_I(old_inode), 1);
9441 
9442 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9443 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9444 	} else {
9445 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9446 					BTRFS_I(d_inode(old_dentry)),
9447 					old_dentry->d_name.name,
9448 					old_dentry->d_name.len,
9449 					&rename_ctx);
9450 		if (!ret)
9451 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9452 	}
9453 	if (ret) {
9454 		btrfs_abort_transaction(trans, ret);
9455 		goto out_fail;
9456 	}
9457 
9458 	if (new_inode) {
9459 		inode_inc_iversion(new_inode);
9460 		new_inode->i_ctime = current_time(new_inode);
9461 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9462 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9463 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9464 			BUG_ON(new_inode->i_nlink == 0);
9465 		} else {
9466 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9467 						 BTRFS_I(d_inode(new_dentry)),
9468 						 new_dentry->d_name.name,
9469 						 new_dentry->d_name.len);
9470 		}
9471 		if (!ret && new_inode->i_nlink == 0)
9472 			ret = btrfs_orphan_add(trans,
9473 					BTRFS_I(d_inode(new_dentry)));
9474 		if (ret) {
9475 			btrfs_abort_transaction(trans, ret);
9476 			goto out_fail;
9477 		}
9478 	}
9479 
9480 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9481 			     new_dentry->d_name.name,
9482 			     new_dentry->d_name.len, 0, index);
9483 	if (ret) {
9484 		btrfs_abort_transaction(trans, ret);
9485 		goto out_fail;
9486 	}
9487 
9488 	if (old_inode->i_nlink == 1)
9489 		BTRFS_I(old_inode)->dir_index = index;
9490 
9491 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9492 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9493 				   rename_ctx.index, new_dentry->d_parent);
9494 
9495 	if (flags & RENAME_WHITEOUT) {
9496 		ret = btrfs_whiteout_for_rename(trans, root, mnt_userns,
9497 						old_dir, old_dentry);
9498 
9499 		if (ret) {
9500 			btrfs_abort_transaction(trans, ret);
9501 			goto out_fail;
9502 		}
9503 	}
9504 out_fail:
9505 	ret2 = btrfs_end_transaction(trans);
9506 	ret = ret ? ret : ret2;
9507 out_notrans:
9508 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9509 		up_read(&fs_info->subvol_sem);
9510 
9511 	return ret;
9512 }
9513 
9514 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9515 			 struct dentry *old_dentry, struct inode *new_dir,
9516 			 struct dentry *new_dentry, unsigned int flags)
9517 {
9518 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9519 		return -EINVAL;
9520 
9521 	if (flags & RENAME_EXCHANGE)
9522 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9523 					  new_dentry);
9524 
9525 	return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9526 			    new_dentry, flags);
9527 }
9528 
9529 struct btrfs_delalloc_work {
9530 	struct inode *inode;
9531 	struct completion completion;
9532 	struct list_head list;
9533 	struct btrfs_work work;
9534 };
9535 
9536 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9537 {
9538 	struct btrfs_delalloc_work *delalloc_work;
9539 	struct inode *inode;
9540 
9541 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9542 				     work);
9543 	inode = delalloc_work->inode;
9544 	filemap_flush(inode->i_mapping);
9545 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9546 				&BTRFS_I(inode)->runtime_flags))
9547 		filemap_flush(inode->i_mapping);
9548 
9549 	iput(inode);
9550 	complete(&delalloc_work->completion);
9551 }
9552 
9553 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9554 {
9555 	struct btrfs_delalloc_work *work;
9556 
9557 	work = kmalloc(sizeof(*work), GFP_NOFS);
9558 	if (!work)
9559 		return NULL;
9560 
9561 	init_completion(&work->completion);
9562 	INIT_LIST_HEAD(&work->list);
9563 	work->inode = inode;
9564 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9565 
9566 	return work;
9567 }
9568 
9569 /*
9570  * some fairly slow code that needs optimization. This walks the list
9571  * of all the inodes with pending delalloc and forces them to disk.
9572  */
9573 static int start_delalloc_inodes(struct btrfs_root *root,
9574 				 struct writeback_control *wbc, bool snapshot,
9575 				 bool in_reclaim_context)
9576 {
9577 	struct btrfs_inode *binode;
9578 	struct inode *inode;
9579 	struct btrfs_delalloc_work *work, *next;
9580 	struct list_head works;
9581 	struct list_head splice;
9582 	int ret = 0;
9583 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9584 
9585 	INIT_LIST_HEAD(&works);
9586 	INIT_LIST_HEAD(&splice);
9587 
9588 	mutex_lock(&root->delalloc_mutex);
9589 	spin_lock(&root->delalloc_lock);
9590 	list_splice_init(&root->delalloc_inodes, &splice);
9591 	while (!list_empty(&splice)) {
9592 		binode = list_entry(splice.next, struct btrfs_inode,
9593 				    delalloc_inodes);
9594 
9595 		list_move_tail(&binode->delalloc_inodes,
9596 			       &root->delalloc_inodes);
9597 
9598 		if (in_reclaim_context &&
9599 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9600 			continue;
9601 
9602 		inode = igrab(&binode->vfs_inode);
9603 		if (!inode) {
9604 			cond_resched_lock(&root->delalloc_lock);
9605 			continue;
9606 		}
9607 		spin_unlock(&root->delalloc_lock);
9608 
9609 		if (snapshot)
9610 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9611 				&binode->runtime_flags);
9612 		if (full_flush) {
9613 			work = btrfs_alloc_delalloc_work(inode);
9614 			if (!work) {
9615 				iput(inode);
9616 				ret = -ENOMEM;
9617 				goto out;
9618 			}
9619 			list_add_tail(&work->list, &works);
9620 			btrfs_queue_work(root->fs_info->flush_workers,
9621 					 &work->work);
9622 		} else {
9623 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9624 			btrfs_add_delayed_iput(inode);
9625 			if (ret || wbc->nr_to_write <= 0)
9626 				goto out;
9627 		}
9628 		cond_resched();
9629 		spin_lock(&root->delalloc_lock);
9630 	}
9631 	spin_unlock(&root->delalloc_lock);
9632 
9633 out:
9634 	list_for_each_entry_safe(work, next, &works, list) {
9635 		list_del_init(&work->list);
9636 		wait_for_completion(&work->completion);
9637 		kfree(work);
9638 	}
9639 
9640 	if (!list_empty(&splice)) {
9641 		spin_lock(&root->delalloc_lock);
9642 		list_splice_tail(&splice, &root->delalloc_inodes);
9643 		spin_unlock(&root->delalloc_lock);
9644 	}
9645 	mutex_unlock(&root->delalloc_mutex);
9646 	return ret;
9647 }
9648 
9649 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9650 {
9651 	struct writeback_control wbc = {
9652 		.nr_to_write = LONG_MAX,
9653 		.sync_mode = WB_SYNC_NONE,
9654 		.range_start = 0,
9655 		.range_end = LLONG_MAX,
9656 	};
9657 	struct btrfs_fs_info *fs_info = root->fs_info;
9658 
9659 	if (BTRFS_FS_ERROR(fs_info))
9660 		return -EROFS;
9661 
9662 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9663 }
9664 
9665 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9666 			       bool in_reclaim_context)
9667 {
9668 	struct writeback_control wbc = {
9669 		.nr_to_write = nr,
9670 		.sync_mode = WB_SYNC_NONE,
9671 		.range_start = 0,
9672 		.range_end = LLONG_MAX,
9673 	};
9674 	struct btrfs_root *root;
9675 	struct list_head splice;
9676 	int ret;
9677 
9678 	if (BTRFS_FS_ERROR(fs_info))
9679 		return -EROFS;
9680 
9681 	INIT_LIST_HEAD(&splice);
9682 
9683 	mutex_lock(&fs_info->delalloc_root_mutex);
9684 	spin_lock(&fs_info->delalloc_root_lock);
9685 	list_splice_init(&fs_info->delalloc_roots, &splice);
9686 	while (!list_empty(&splice)) {
9687 		/*
9688 		 * Reset nr_to_write here so we know that we're doing a full
9689 		 * flush.
9690 		 */
9691 		if (nr == LONG_MAX)
9692 			wbc.nr_to_write = LONG_MAX;
9693 
9694 		root = list_first_entry(&splice, struct btrfs_root,
9695 					delalloc_root);
9696 		root = btrfs_grab_root(root);
9697 		BUG_ON(!root);
9698 		list_move_tail(&root->delalloc_root,
9699 			       &fs_info->delalloc_roots);
9700 		spin_unlock(&fs_info->delalloc_root_lock);
9701 
9702 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9703 		btrfs_put_root(root);
9704 		if (ret < 0 || wbc.nr_to_write <= 0)
9705 			goto out;
9706 		spin_lock(&fs_info->delalloc_root_lock);
9707 	}
9708 	spin_unlock(&fs_info->delalloc_root_lock);
9709 
9710 	ret = 0;
9711 out:
9712 	if (!list_empty(&splice)) {
9713 		spin_lock(&fs_info->delalloc_root_lock);
9714 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9715 		spin_unlock(&fs_info->delalloc_root_lock);
9716 	}
9717 	mutex_unlock(&fs_info->delalloc_root_mutex);
9718 	return ret;
9719 }
9720 
9721 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9722 			 struct dentry *dentry, const char *symname)
9723 {
9724 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9725 	struct btrfs_trans_handle *trans;
9726 	struct btrfs_root *root = BTRFS_I(dir)->root;
9727 	struct btrfs_path *path;
9728 	struct btrfs_key key;
9729 	struct inode *inode = NULL;
9730 	int err;
9731 	u64 objectid;
9732 	u64 index = 0;
9733 	int name_len;
9734 	int datasize;
9735 	unsigned long ptr;
9736 	struct btrfs_file_extent_item *ei;
9737 	struct extent_buffer *leaf;
9738 
9739 	name_len = strlen(symname);
9740 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9741 		return -ENAMETOOLONG;
9742 
9743 	/*
9744 	 * 2 items for inode item and ref
9745 	 * 2 items for dir items
9746 	 * 1 item for updating parent inode item
9747 	 * 1 item for the inline extent item
9748 	 * 1 item for xattr if selinux is on
9749 	 */
9750 	trans = btrfs_start_transaction(root, 7);
9751 	if (IS_ERR(trans))
9752 		return PTR_ERR(trans);
9753 
9754 	err = btrfs_get_free_objectid(root, &objectid);
9755 	if (err)
9756 		goto out_unlock;
9757 
9758 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9759 				dentry->d_name.name, dentry->d_name.len,
9760 				btrfs_ino(BTRFS_I(dir)), objectid,
9761 				S_IFLNK | S_IRWXUGO, &index);
9762 	if (IS_ERR(inode)) {
9763 		err = PTR_ERR(inode);
9764 		inode = NULL;
9765 		goto out_unlock;
9766 	}
9767 
9768 	/*
9769 	* If the active LSM wants to access the inode during
9770 	* d_instantiate it needs these. Smack checks to see
9771 	* if the filesystem supports xattrs by looking at the
9772 	* ops vector.
9773 	*/
9774 	inode->i_fop = &btrfs_file_operations;
9775 	inode->i_op = &btrfs_file_inode_operations;
9776 	inode->i_mapping->a_ops = &btrfs_aops;
9777 
9778 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9779 	if (err)
9780 		goto out_unlock;
9781 
9782 	path = btrfs_alloc_path();
9783 	if (!path) {
9784 		err = -ENOMEM;
9785 		goto out_unlock;
9786 	}
9787 	key.objectid = btrfs_ino(BTRFS_I(inode));
9788 	key.offset = 0;
9789 	key.type = BTRFS_EXTENT_DATA_KEY;
9790 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9791 	err = btrfs_insert_empty_item(trans, root, path, &key,
9792 				      datasize);
9793 	if (err) {
9794 		btrfs_free_path(path);
9795 		goto out_unlock;
9796 	}
9797 	leaf = path->nodes[0];
9798 	ei = btrfs_item_ptr(leaf, path->slots[0],
9799 			    struct btrfs_file_extent_item);
9800 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9801 	btrfs_set_file_extent_type(leaf, ei,
9802 				   BTRFS_FILE_EXTENT_INLINE);
9803 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9804 	btrfs_set_file_extent_compression(leaf, ei, 0);
9805 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9806 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9807 
9808 	ptr = btrfs_file_extent_inline_start(ei);
9809 	write_extent_buffer(leaf, symname, ptr, name_len);
9810 	btrfs_mark_buffer_dirty(leaf);
9811 	btrfs_free_path(path);
9812 
9813 	inode->i_op = &btrfs_symlink_inode_operations;
9814 	inode_nohighmem(inode);
9815 	inode_set_bytes(inode, name_len);
9816 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9817 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9818 	/*
9819 	 * Last step, add directory indexes for our symlink inode. This is the
9820 	 * last step to avoid extra cleanup of these indexes if an error happens
9821 	 * elsewhere above.
9822 	 */
9823 	if (!err)
9824 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9825 				BTRFS_I(inode), 0, index);
9826 	if (err)
9827 		goto out_unlock;
9828 
9829 	d_instantiate_new(dentry, inode);
9830 
9831 out_unlock:
9832 	btrfs_end_transaction(trans);
9833 	if (err && inode) {
9834 		inode_dec_link_count(inode);
9835 		discard_new_inode(inode);
9836 	}
9837 	btrfs_btree_balance_dirty(fs_info);
9838 	return err;
9839 }
9840 
9841 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9842 				       struct btrfs_trans_handle *trans_in,
9843 				       struct btrfs_inode *inode,
9844 				       struct btrfs_key *ins,
9845 				       u64 file_offset)
9846 {
9847 	struct btrfs_file_extent_item stack_fi;
9848 	struct btrfs_replace_extent_info extent_info;
9849 	struct btrfs_trans_handle *trans = trans_in;
9850 	struct btrfs_path *path;
9851 	u64 start = ins->objectid;
9852 	u64 len = ins->offset;
9853 	int qgroup_released;
9854 	int ret;
9855 
9856 	memset(&stack_fi, 0, sizeof(stack_fi));
9857 
9858 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9859 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9860 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9861 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9862 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9863 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9864 	/* Encryption and other encoding is reserved and all 0 */
9865 
9866 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9867 	if (qgroup_released < 0)
9868 		return ERR_PTR(qgroup_released);
9869 
9870 	if (trans) {
9871 		ret = insert_reserved_file_extent(trans, inode,
9872 						  file_offset, &stack_fi,
9873 						  true, qgroup_released);
9874 		if (ret)
9875 			goto free_qgroup;
9876 		return trans;
9877 	}
9878 
9879 	extent_info.disk_offset = start;
9880 	extent_info.disk_len = len;
9881 	extent_info.data_offset = 0;
9882 	extent_info.data_len = len;
9883 	extent_info.file_offset = file_offset;
9884 	extent_info.extent_buf = (char *)&stack_fi;
9885 	extent_info.is_new_extent = true;
9886 	extent_info.qgroup_reserved = qgroup_released;
9887 	extent_info.insertions = 0;
9888 
9889 	path = btrfs_alloc_path();
9890 	if (!path) {
9891 		ret = -ENOMEM;
9892 		goto free_qgroup;
9893 	}
9894 
9895 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9896 				     file_offset + len - 1, &extent_info,
9897 				     &trans);
9898 	btrfs_free_path(path);
9899 	if (ret)
9900 		goto free_qgroup;
9901 	return trans;
9902 
9903 free_qgroup:
9904 	/*
9905 	 * We have released qgroup data range at the beginning of the function,
9906 	 * and normally qgroup_released bytes will be freed when committing
9907 	 * transaction.
9908 	 * But if we error out early, we have to free what we have released
9909 	 * or we leak qgroup data reservation.
9910 	 */
9911 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9912 			inode->root->root_key.objectid, qgroup_released,
9913 			BTRFS_QGROUP_RSV_DATA);
9914 	return ERR_PTR(ret);
9915 }
9916 
9917 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9918 				       u64 start, u64 num_bytes, u64 min_size,
9919 				       loff_t actual_len, u64 *alloc_hint,
9920 				       struct btrfs_trans_handle *trans)
9921 {
9922 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9923 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9924 	struct extent_map *em;
9925 	struct btrfs_root *root = BTRFS_I(inode)->root;
9926 	struct btrfs_key ins;
9927 	u64 cur_offset = start;
9928 	u64 clear_offset = start;
9929 	u64 i_size;
9930 	u64 cur_bytes;
9931 	u64 last_alloc = (u64)-1;
9932 	int ret = 0;
9933 	bool own_trans = true;
9934 	u64 end = start + num_bytes - 1;
9935 
9936 	if (trans)
9937 		own_trans = false;
9938 	while (num_bytes > 0) {
9939 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9940 		cur_bytes = max(cur_bytes, min_size);
9941 		/*
9942 		 * If we are severely fragmented we could end up with really
9943 		 * small allocations, so if the allocator is returning small
9944 		 * chunks lets make its job easier by only searching for those
9945 		 * sized chunks.
9946 		 */
9947 		cur_bytes = min(cur_bytes, last_alloc);
9948 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9949 				min_size, 0, *alloc_hint, &ins, 1, 0);
9950 		if (ret)
9951 			break;
9952 
9953 		/*
9954 		 * We've reserved this space, and thus converted it from
9955 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9956 		 * from here on out we will only need to clear our reservation
9957 		 * for the remaining unreserved area, so advance our
9958 		 * clear_offset by our extent size.
9959 		 */
9960 		clear_offset += ins.offset;
9961 
9962 		last_alloc = ins.offset;
9963 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9964 						    &ins, cur_offset);
9965 		/*
9966 		 * Now that we inserted the prealloc extent we can finally
9967 		 * decrement the number of reservations in the block group.
9968 		 * If we did it before, we could race with relocation and have
9969 		 * relocation miss the reserved extent, making it fail later.
9970 		 */
9971 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9972 		if (IS_ERR(trans)) {
9973 			ret = PTR_ERR(trans);
9974 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9975 						   ins.offset, 0);
9976 			break;
9977 		}
9978 
9979 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9980 					cur_offset + ins.offset -1, 0);
9981 
9982 		em = alloc_extent_map();
9983 		if (!em) {
9984 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9985 			goto next;
9986 		}
9987 
9988 		em->start = cur_offset;
9989 		em->orig_start = cur_offset;
9990 		em->len = ins.offset;
9991 		em->block_start = ins.objectid;
9992 		em->block_len = ins.offset;
9993 		em->orig_block_len = ins.offset;
9994 		em->ram_bytes = ins.offset;
9995 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9996 		em->generation = trans->transid;
9997 
9998 		while (1) {
9999 			write_lock(&em_tree->lock);
10000 			ret = add_extent_mapping(em_tree, em, 1);
10001 			write_unlock(&em_tree->lock);
10002 			if (ret != -EEXIST)
10003 				break;
10004 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10005 						cur_offset + ins.offset - 1,
10006 						0);
10007 		}
10008 		free_extent_map(em);
10009 next:
10010 		num_bytes -= ins.offset;
10011 		cur_offset += ins.offset;
10012 		*alloc_hint = ins.objectid + ins.offset;
10013 
10014 		inode_inc_iversion(inode);
10015 		inode->i_ctime = current_time(inode);
10016 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10017 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10018 		    (actual_len > inode->i_size) &&
10019 		    (cur_offset > inode->i_size)) {
10020 			if (cur_offset > actual_len)
10021 				i_size = actual_len;
10022 			else
10023 				i_size = cur_offset;
10024 			i_size_write(inode, i_size);
10025 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10026 		}
10027 
10028 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10029 
10030 		if (ret) {
10031 			btrfs_abort_transaction(trans, ret);
10032 			if (own_trans)
10033 				btrfs_end_transaction(trans);
10034 			break;
10035 		}
10036 
10037 		if (own_trans) {
10038 			btrfs_end_transaction(trans);
10039 			trans = NULL;
10040 		}
10041 	}
10042 	if (clear_offset < end)
10043 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10044 			end - clear_offset + 1);
10045 	return ret;
10046 }
10047 
10048 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10049 			      u64 start, u64 num_bytes, u64 min_size,
10050 			      loff_t actual_len, u64 *alloc_hint)
10051 {
10052 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10053 					   min_size, actual_len, alloc_hint,
10054 					   NULL);
10055 }
10056 
10057 int btrfs_prealloc_file_range_trans(struct inode *inode,
10058 				    struct btrfs_trans_handle *trans, int mode,
10059 				    u64 start, u64 num_bytes, u64 min_size,
10060 				    loff_t actual_len, u64 *alloc_hint)
10061 {
10062 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10063 					   min_size, actual_len, alloc_hint, trans);
10064 }
10065 
10066 static int btrfs_permission(struct user_namespace *mnt_userns,
10067 			    struct inode *inode, int mask)
10068 {
10069 	struct btrfs_root *root = BTRFS_I(inode)->root;
10070 	umode_t mode = inode->i_mode;
10071 
10072 	if (mask & MAY_WRITE &&
10073 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10074 		if (btrfs_root_readonly(root))
10075 			return -EROFS;
10076 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10077 			return -EACCES;
10078 	}
10079 	return generic_permission(mnt_userns, inode, mask);
10080 }
10081 
10082 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10083 			 struct dentry *dentry, umode_t mode)
10084 {
10085 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10086 	struct btrfs_trans_handle *trans;
10087 	struct btrfs_root *root = BTRFS_I(dir)->root;
10088 	struct inode *inode = NULL;
10089 	u64 objectid;
10090 	u64 index;
10091 	int ret = 0;
10092 
10093 	/*
10094 	 * 5 units required for adding orphan entry
10095 	 */
10096 	trans = btrfs_start_transaction(root, 5);
10097 	if (IS_ERR(trans))
10098 		return PTR_ERR(trans);
10099 
10100 	ret = btrfs_get_free_objectid(root, &objectid);
10101 	if (ret)
10102 		goto out;
10103 
10104 	inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0,
10105 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10106 	if (IS_ERR(inode)) {
10107 		ret = PTR_ERR(inode);
10108 		inode = NULL;
10109 		goto out;
10110 	}
10111 
10112 	inode->i_fop = &btrfs_file_operations;
10113 	inode->i_op = &btrfs_file_inode_operations;
10114 
10115 	inode->i_mapping->a_ops = &btrfs_aops;
10116 
10117 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10118 	if (ret)
10119 		goto out;
10120 
10121 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10122 	if (ret)
10123 		goto out;
10124 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10125 	if (ret)
10126 		goto out;
10127 
10128 	/*
10129 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10130 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10131 	 * through:
10132 	 *
10133 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10134 	 */
10135 	set_nlink(inode, 1);
10136 	d_tmpfile(dentry, inode);
10137 	unlock_new_inode(inode);
10138 	mark_inode_dirty(inode);
10139 out:
10140 	btrfs_end_transaction(trans);
10141 	if (ret && inode)
10142 		discard_new_inode(inode);
10143 	btrfs_btree_balance_dirty(fs_info);
10144 	return ret;
10145 }
10146 
10147 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10148 {
10149 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10150 	unsigned long index = start >> PAGE_SHIFT;
10151 	unsigned long end_index = end >> PAGE_SHIFT;
10152 	struct page *page;
10153 	u32 len;
10154 
10155 	ASSERT(end + 1 - start <= U32_MAX);
10156 	len = end + 1 - start;
10157 	while (index <= end_index) {
10158 		page = find_get_page(inode->vfs_inode.i_mapping, index);
10159 		ASSERT(page); /* Pages should be in the extent_io_tree */
10160 
10161 		btrfs_page_set_writeback(fs_info, page, start, len);
10162 		put_page(page);
10163 		index++;
10164 	}
10165 }
10166 
10167 static int btrfs_encoded_io_compression_from_extent(
10168 				struct btrfs_fs_info *fs_info,
10169 				int compress_type)
10170 {
10171 	switch (compress_type) {
10172 	case BTRFS_COMPRESS_NONE:
10173 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10174 	case BTRFS_COMPRESS_ZLIB:
10175 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10176 	case BTRFS_COMPRESS_LZO:
10177 		/*
10178 		 * The LZO format depends on the sector size. 64K is the maximum
10179 		 * sector size that we support.
10180 		 */
10181 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10182 			return -EINVAL;
10183 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10184 		       (fs_info->sectorsize_bits - 12);
10185 	case BTRFS_COMPRESS_ZSTD:
10186 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10187 	default:
10188 		return -EUCLEAN;
10189 	}
10190 }
10191 
10192 static ssize_t btrfs_encoded_read_inline(
10193 				struct kiocb *iocb,
10194 				struct iov_iter *iter, u64 start,
10195 				u64 lockend,
10196 				struct extent_state **cached_state,
10197 				u64 extent_start, size_t count,
10198 				struct btrfs_ioctl_encoded_io_args *encoded,
10199 				bool *unlocked)
10200 {
10201 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10202 	struct btrfs_root *root = inode->root;
10203 	struct btrfs_fs_info *fs_info = root->fs_info;
10204 	struct extent_io_tree *io_tree = &inode->io_tree;
10205 	struct btrfs_path *path;
10206 	struct extent_buffer *leaf;
10207 	struct btrfs_file_extent_item *item;
10208 	u64 ram_bytes;
10209 	unsigned long ptr;
10210 	void *tmp;
10211 	ssize_t ret;
10212 
10213 	path = btrfs_alloc_path();
10214 	if (!path) {
10215 		ret = -ENOMEM;
10216 		goto out;
10217 	}
10218 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10219 				       extent_start, 0);
10220 	if (ret) {
10221 		if (ret > 0) {
10222 			/* The extent item disappeared? */
10223 			ret = -EIO;
10224 		}
10225 		goto out;
10226 	}
10227 	leaf = path->nodes[0];
10228 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10229 
10230 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10231 	ptr = btrfs_file_extent_inline_start(item);
10232 
10233 	encoded->len = min_t(u64, extent_start + ram_bytes,
10234 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10235 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
10236 				 btrfs_file_extent_compression(leaf, item));
10237 	if (ret < 0)
10238 		goto out;
10239 	encoded->compression = ret;
10240 	if (encoded->compression) {
10241 		size_t inline_size;
10242 
10243 		inline_size = btrfs_file_extent_inline_item_len(leaf,
10244 								path->slots[0]);
10245 		if (inline_size > count) {
10246 			ret = -ENOBUFS;
10247 			goto out;
10248 		}
10249 		count = inline_size;
10250 		encoded->unencoded_len = ram_bytes;
10251 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
10252 	} else {
10253 		count = min_t(u64, count, encoded->len);
10254 		encoded->len = count;
10255 		encoded->unencoded_len = count;
10256 		ptr += iocb->ki_pos - extent_start;
10257 	}
10258 
10259 	tmp = kmalloc(count, GFP_NOFS);
10260 	if (!tmp) {
10261 		ret = -ENOMEM;
10262 		goto out;
10263 	}
10264 	read_extent_buffer(leaf, tmp, ptr, count);
10265 	btrfs_release_path(path);
10266 	unlock_extent_cached(io_tree, start, lockend, cached_state);
10267 	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10268 	*unlocked = true;
10269 
10270 	ret = copy_to_iter(tmp, count, iter);
10271 	if (ret != count)
10272 		ret = -EFAULT;
10273 	kfree(tmp);
10274 out:
10275 	btrfs_free_path(path);
10276 	return ret;
10277 }
10278 
10279 struct btrfs_encoded_read_private {
10280 	struct btrfs_inode *inode;
10281 	u64 file_offset;
10282 	wait_queue_head_t wait;
10283 	atomic_t pending;
10284 	blk_status_t status;
10285 	bool skip_csum;
10286 };
10287 
10288 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10289 					    struct bio *bio, int mirror_num)
10290 {
10291 	struct btrfs_encoded_read_private *priv = bio->bi_private;
10292 	struct btrfs_bio *bbio = btrfs_bio(bio);
10293 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10294 	blk_status_t ret;
10295 
10296 	if (!priv->skip_csum) {
10297 		ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10298 		if (ret)
10299 			return ret;
10300 	}
10301 
10302 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
10303 	if (ret) {
10304 		btrfs_bio_free_csum(bbio);
10305 		return ret;
10306 	}
10307 
10308 	atomic_inc(&priv->pending);
10309 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
10310 	if (ret) {
10311 		atomic_dec(&priv->pending);
10312 		btrfs_bio_free_csum(bbio);
10313 	}
10314 	return ret;
10315 }
10316 
10317 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10318 {
10319 	const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10320 	struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
10321 	struct btrfs_inode *inode = priv->inode;
10322 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10323 	u32 sectorsize = fs_info->sectorsize;
10324 	struct bio_vec *bvec;
10325 	struct bvec_iter_all iter_all;
10326 	u64 start = priv->file_offset;
10327 	u32 bio_offset = 0;
10328 
10329 	if (priv->skip_csum || !uptodate)
10330 		return bbio->bio.bi_status;
10331 
10332 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10333 		unsigned int i, nr_sectors, pgoff;
10334 
10335 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10336 		pgoff = bvec->bv_offset;
10337 		for (i = 0; i < nr_sectors; i++) {
10338 			ASSERT(pgoff < PAGE_SIZE);
10339 			if (check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10340 					    bvec->bv_page, pgoff, start))
10341 				return BLK_STS_IOERR;
10342 			start += sectorsize;
10343 			bio_offset += sectorsize;
10344 			pgoff += sectorsize;
10345 		}
10346 	}
10347 	return BLK_STS_OK;
10348 }
10349 
10350 static void btrfs_encoded_read_endio(struct bio *bio)
10351 {
10352 	struct btrfs_encoded_read_private *priv = bio->bi_private;
10353 	struct btrfs_bio *bbio = btrfs_bio(bio);
10354 	blk_status_t status;
10355 
10356 	status = btrfs_encoded_read_verify_csum(bbio);
10357 	if (status) {
10358 		/*
10359 		 * The memory barrier implied by the atomic_dec_return() here
10360 		 * pairs with the memory barrier implied by the
10361 		 * atomic_dec_return() or io_wait_event() in
10362 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10363 		 * write is observed before the load of status in
10364 		 * btrfs_encoded_read_regular_fill_pages().
10365 		 */
10366 		WRITE_ONCE(priv->status, status);
10367 	}
10368 	if (!atomic_dec_return(&priv->pending))
10369 		wake_up(&priv->wait);
10370 	btrfs_bio_free_csum(bbio);
10371 	bio_put(bio);
10372 }
10373 
10374 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10375 						 u64 file_offset,
10376 						 u64 disk_bytenr,
10377 						 u64 disk_io_size,
10378 						 struct page **pages)
10379 {
10380 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10381 	struct btrfs_encoded_read_private priv = {
10382 		.inode = inode,
10383 		.file_offset = file_offset,
10384 		.pending = ATOMIC_INIT(1),
10385 		.skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10386 	};
10387 	unsigned long i = 0;
10388 	u64 cur = 0;
10389 	int ret;
10390 
10391 	init_waitqueue_head(&priv.wait);
10392 	/*
10393 	 * Submit bios for the extent, splitting due to bio or stripe limits as
10394 	 * necessary.
10395 	 */
10396 	while (cur < disk_io_size) {
10397 		struct extent_map *em;
10398 		struct btrfs_io_geometry geom;
10399 		struct bio *bio = NULL;
10400 		u64 remaining;
10401 
10402 		em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10403 					 disk_io_size - cur);
10404 		if (IS_ERR(em)) {
10405 			ret = PTR_ERR(em);
10406 		} else {
10407 			ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10408 						    disk_bytenr + cur, &geom);
10409 			free_extent_map(em);
10410 		}
10411 		if (ret) {
10412 			WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10413 			break;
10414 		}
10415 		remaining = min(geom.len, disk_io_size - cur);
10416 		while (bio || remaining) {
10417 			size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10418 
10419 			if (!bio) {
10420 				bio = btrfs_bio_alloc(BIO_MAX_VECS);
10421 				bio->bi_iter.bi_sector =
10422 					(disk_bytenr + cur) >> SECTOR_SHIFT;
10423 				bio->bi_end_io = btrfs_encoded_read_endio;
10424 				bio->bi_private = &priv;
10425 				bio->bi_opf = REQ_OP_READ;
10426 			}
10427 
10428 			if (!bytes ||
10429 			    bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10430 				blk_status_t status;
10431 
10432 				status = submit_encoded_read_bio(inode, bio, 0);
10433 				if (status) {
10434 					WRITE_ONCE(priv.status, status);
10435 					bio_put(bio);
10436 					goto out;
10437 				}
10438 				bio = NULL;
10439 				continue;
10440 			}
10441 
10442 			i++;
10443 			cur += bytes;
10444 			remaining -= bytes;
10445 		}
10446 	}
10447 
10448 out:
10449 	if (atomic_dec_return(&priv.pending))
10450 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10451 	/* See btrfs_encoded_read_endio() for ordering. */
10452 	return blk_status_to_errno(READ_ONCE(priv.status));
10453 }
10454 
10455 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10456 					  struct iov_iter *iter,
10457 					  u64 start, u64 lockend,
10458 					  struct extent_state **cached_state,
10459 					  u64 disk_bytenr, u64 disk_io_size,
10460 					  size_t count, bool compressed,
10461 					  bool *unlocked)
10462 {
10463 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10464 	struct extent_io_tree *io_tree = &inode->io_tree;
10465 	struct page **pages;
10466 	unsigned long nr_pages, i;
10467 	u64 cur;
10468 	size_t page_offset;
10469 	ssize_t ret;
10470 
10471 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10472 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10473 	if (!pages)
10474 		return -ENOMEM;
10475 	for (i = 0; i < nr_pages; i++) {
10476 		pages[i] = alloc_page(GFP_NOFS);
10477 		if (!pages[i]) {
10478 			ret = -ENOMEM;
10479 			goto out;
10480 		}
10481 	}
10482 
10483 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10484 						    disk_io_size, pages);
10485 	if (ret)
10486 		goto out;
10487 
10488 	unlock_extent_cached(io_tree, start, lockend, cached_state);
10489 	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10490 	*unlocked = true;
10491 
10492 	if (compressed) {
10493 		i = 0;
10494 		page_offset = 0;
10495 	} else {
10496 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10497 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10498 	}
10499 	cur = 0;
10500 	while (cur < count) {
10501 		size_t bytes = min_t(size_t, count - cur,
10502 				     PAGE_SIZE - page_offset);
10503 
10504 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10505 				      iter) != bytes) {
10506 			ret = -EFAULT;
10507 			goto out;
10508 		}
10509 		i++;
10510 		cur += bytes;
10511 		page_offset = 0;
10512 	}
10513 	ret = count;
10514 out:
10515 	for (i = 0; i < nr_pages; i++) {
10516 		if (pages[i])
10517 			__free_page(pages[i]);
10518 	}
10519 	kfree(pages);
10520 	return ret;
10521 }
10522 
10523 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10524 			   struct btrfs_ioctl_encoded_io_args *encoded)
10525 {
10526 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10527 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10528 	struct extent_io_tree *io_tree = &inode->io_tree;
10529 	ssize_t ret;
10530 	size_t count = iov_iter_count(iter);
10531 	u64 start, lockend, disk_bytenr, disk_io_size;
10532 	struct extent_state *cached_state = NULL;
10533 	struct extent_map *em;
10534 	bool unlocked = false;
10535 
10536 	file_accessed(iocb->ki_filp);
10537 
10538 	btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10539 
10540 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10541 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10542 		return 0;
10543 	}
10544 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10545 	/*
10546 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10547 	 * it's compressed we know that it won't be longer than this.
10548 	 */
10549 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10550 
10551 	for (;;) {
10552 		struct btrfs_ordered_extent *ordered;
10553 
10554 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10555 					       lockend - start + 1);
10556 		if (ret)
10557 			goto out_unlock_inode;
10558 		lock_extent_bits(io_tree, start, lockend, &cached_state);
10559 		ordered = btrfs_lookup_ordered_range(inode, start,
10560 						     lockend - start + 1);
10561 		if (!ordered)
10562 			break;
10563 		btrfs_put_ordered_extent(ordered);
10564 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10565 		cond_resched();
10566 	}
10567 
10568 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10569 	if (IS_ERR(em)) {
10570 		ret = PTR_ERR(em);
10571 		goto out_unlock_extent;
10572 	}
10573 
10574 	if (em->block_start == EXTENT_MAP_INLINE) {
10575 		u64 extent_start = em->start;
10576 
10577 		/*
10578 		 * For inline extents we get everything we need out of the
10579 		 * extent item.
10580 		 */
10581 		free_extent_map(em);
10582 		em = NULL;
10583 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10584 						&cached_state, extent_start,
10585 						count, encoded, &unlocked);
10586 		goto out;
10587 	}
10588 
10589 	/*
10590 	 * We only want to return up to EOF even if the extent extends beyond
10591 	 * that.
10592 	 */
10593 	encoded->len = min_t(u64, extent_map_end(em),
10594 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10595 	if (em->block_start == EXTENT_MAP_HOLE ||
10596 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10597 		disk_bytenr = EXTENT_MAP_HOLE;
10598 		count = min_t(u64, count, encoded->len);
10599 		encoded->len = count;
10600 		encoded->unencoded_len = count;
10601 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10602 		disk_bytenr = em->block_start;
10603 		/*
10604 		 * Bail if the buffer isn't large enough to return the whole
10605 		 * compressed extent.
10606 		 */
10607 		if (em->block_len > count) {
10608 			ret = -ENOBUFS;
10609 			goto out_em;
10610 		}
10611 		disk_io_size = count = em->block_len;
10612 		encoded->unencoded_len = em->ram_bytes;
10613 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10614 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10615 							     em->compress_type);
10616 		if (ret < 0)
10617 			goto out_em;
10618 		encoded->compression = ret;
10619 	} else {
10620 		disk_bytenr = em->block_start + (start - em->start);
10621 		if (encoded->len > count)
10622 			encoded->len = count;
10623 		/*
10624 		 * Don't read beyond what we locked. This also limits the page
10625 		 * allocations that we'll do.
10626 		 */
10627 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10628 		count = start + disk_io_size - iocb->ki_pos;
10629 		encoded->len = count;
10630 		encoded->unencoded_len = count;
10631 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10632 	}
10633 	free_extent_map(em);
10634 	em = NULL;
10635 
10636 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10637 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10638 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10639 		unlocked = true;
10640 		ret = iov_iter_zero(count, iter);
10641 		if (ret != count)
10642 			ret = -EFAULT;
10643 	} else {
10644 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10645 						 &cached_state, disk_bytenr,
10646 						 disk_io_size, count,
10647 						 encoded->compression,
10648 						 &unlocked);
10649 	}
10650 
10651 out:
10652 	if (ret >= 0)
10653 		iocb->ki_pos += encoded->len;
10654 out_em:
10655 	free_extent_map(em);
10656 out_unlock_extent:
10657 	if (!unlocked)
10658 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10659 out_unlock_inode:
10660 	if (!unlocked)
10661 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10662 	return ret;
10663 }
10664 
10665 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10666 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10667 {
10668 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10669 	struct btrfs_root *root = inode->root;
10670 	struct btrfs_fs_info *fs_info = root->fs_info;
10671 	struct extent_io_tree *io_tree = &inode->io_tree;
10672 	struct extent_changeset *data_reserved = NULL;
10673 	struct extent_state *cached_state = NULL;
10674 	int compression;
10675 	size_t orig_count;
10676 	u64 start, end;
10677 	u64 num_bytes, ram_bytes, disk_num_bytes;
10678 	unsigned long nr_pages, i;
10679 	struct page **pages;
10680 	struct btrfs_key ins;
10681 	bool extent_reserved = false;
10682 	struct extent_map *em;
10683 	ssize_t ret;
10684 
10685 	switch (encoded->compression) {
10686 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10687 		compression = BTRFS_COMPRESS_ZLIB;
10688 		break;
10689 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10690 		compression = BTRFS_COMPRESS_ZSTD;
10691 		break;
10692 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10693 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10694 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10695 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10696 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10697 		/* The sector size must match for LZO. */
10698 		if (encoded->compression -
10699 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10700 		    fs_info->sectorsize_bits)
10701 			return -EINVAL;
10702 		compression = BTRFS_COMPRESS_LZO;
10703 		break;
10704 	default:
10705 		return -EINVAL;
10706 	}
10707 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10708 		return -EINVAL;
10709 
10710 	orig_count = iov_iter_count(from);
10711 
10712 	/* The extent size must be sane. */
10713 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10714 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10715 		return -EINVAL;
10716 
10717 	/*
10718 	 * The compressed data must be smaller than the decompressed data.
10719 	 *
10720 	 * It's of course possible for data to compress to larger or the same
10721 	 * size, but the buffered I/O path falls back to no compression for such
10722 	 * data, and we don't want to break any assumptions by creating these
10723 	 * extents.
10724 	 *
10725 	 * Note that this is less strict than the current check we have that the
10726 	 * compressed data must be at least one sector smaller than the
10727 	 * decompressed data. We only want to enforce the weaker requirement
10728 	 * from old kernels that it is at least one byte smaller.
10729 	 */
10730 	if (orig_count >= encoded->unencoded_len)
10731 		return -EINVAL;
10732 
10733 	/* The extent must start on a sector boundary. */
10734 	start = iocb->ki_pos;
10735 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10736 		return -EINVAL;
10737 
10738 	/*
10739 	 * The extent must end on a sector boundary. However, we allow a write
10740 	 * which ends at or extends i_size to have an unaligned length; we round
10741 	 * up the extent size and set i_size to the unaligned end.
10742 	 */
10743 	if (start + encoded->len < inode->vfs_inode.i_size &&
10744 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10745 		return -EINVAL;
10746 
10747 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10748 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10749 		return -EINVAL;
10750 
10751 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10752 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10753 	end = start + num_bytes - 1;
10754 
10755 	/*
10756 	 * If the extent cannot be inline, the compressed data on disk must be
10757 	 * sector-aligned. For convenience, we extend it with zeroes if it
10758 	 * isn't.
10759 	 */
10760 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10761 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10762 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10763 	if (!pages)
10764 		return -ENOMEM;
10765 	for (i = 0; i < nr_pages; i++) {
10766 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10767 		char *kaddr;
10768 
10769 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10770 		if (!pages[i]) {
10771 			ret = -ENOMEM;
10772 			goto out_pages;
10773 		}
10774 		kaddr = kmap(pages[i]);
10775 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10776 			kunmap(pages[i]);
10777 			ret = -EFAULT;
10778 			goto out_pages;
10779 		}
10780 		if (bytes < PAGE_SIZE)
10781 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10782 		kunmap(pages[i]);
10783 	}
10784 
10785 	for (;;) {
10786 		struct btrfs_ordered_extent *ordered;
10787 
10788 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10789 		if (ret)
10790 			goto out_pages;
10791 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10792 						    start >> PAGE_SHIFT,
10793 						    end >> PAGE_SHIFT);
10794 		if (ret)
10795 			goto out_pages;
10796 		lock_extent_bits(io_tree, start, end, &cached_state);
10797 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10798 		if (!ordered &&
10799 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10800 			break;
10801 		if (ordered)
10802 			btrfs_put_ordered_extent(ordered);
10803 		unlock_extent_cached(io_tree, start, end, &cached_state);
10804 		cond_resched();
10805 	}
10806 
10807 	/*
10808 	 * We don't use the higher-level delalloc space functions because our
10809 	 * num_bytes and disk_num_bytes are different.
10810 	 */
10811 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10812 	if (ret)
10813 		goto out_unlock;
10814 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10815 	if (ret)
10816 		goto out_free_data_space;
10817 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes);
10818 	if (ret)
10819 		goto out_qgroup_free_data;
10820 
10821 	/* Try an inline extent first. */
10822 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10823 	    encoded->unencoded_offset == 0) {
10824 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10825 					    compression, pages, true);
10826 		if (ret <= 0) {
10827 			if (ret == 0)
10828 				ret = orig_count;
10829 			goto out_delalloc_release;
10830 		}
10831 	}
10832 
10833 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10834 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10835 	if (ret)
10836 		goto out_delalloc_release;
10837 	extent_reserved = true;
10838 
10839 	em = create_io_em(inode, start, num_bytes,
10840 			  start - encoded->unencoded_offset, ins.objectid,
10841 			  ins.offset, ins.offset, ram_bytes, compression,
10842 			  BTRFS_ORDERED_COMPRESSED);
10843 	if (IS_ERR(em)) {
10844 		ret = PTR_ERR(em);
10845 		goto out_free_reserved;
10846 	}
10847 	free_extent_map(em);
10848 
10849 	ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10850 				       ins.objectid, ins.offset,
10851 				       encoded->unencoded_offset,
10852 				       (1 << BTRFS_ORDERED_ENCODED) |
10853 				       (1 << BTRFS_ORDERED_COMPRESSED),
10854 				       compression);
10855 	if (ret) {
10856 		btrfs_drop_extent_cache(inode, start, end, 0);
10857 		goto out_free_reserved;
10858 	}
10859 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10860 
10861 	if (start + encoded->len > inode->vfs_inode.i_size)
10862 		i_size_write(&inode->vfs_inode, start + encoded->len);
10863 
10864 	unlock_extent_cached(io_tree, start, end, &cached_state);
10865 
10866 	btrfs_delalloc_release_extents(inode, num_bytes);
10867 
10868 	if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10869 					  ins.offset, pages, nr_pages, 0, NULL,
10870 					  false)) {
10871 		btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10872 		ret = -EIO;
10873 		goto out_pages;
10874 	}
10875 	ret = orig_count;
10876 	goto out;
10877 
10878 out_free_reserved:
10879 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10880 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10881 out_delalloc_release:
10882 	btrfs_delalloc_release_extents(inode, num_bytes);
10883 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10884 out_qgroup_free_data:
10885 	if (ret < 0)
10886 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10887 out_free_data_space:
10888 	/*
10889 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10890 	 * bytes_may_use.
10891 	 */
10892 	if (!extent_reserved)
10893 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10894 out_unlock:
10895 	unlock_extent_cached(io_tree, start, end, &cached_state);
10896 out_pages:
10897 	for (i = 0; i < nr_pages; i++) {
10898 		if (pages[i])
10899 			__free_page(pages[i]);
10900 	}
10901 	kvfree(pages);
10902 out:
10903 	if (ret >= 0)
10904 		iocb->ki_pos += encoded->len;
10905 	return ret;
10906 }
10907 
10908 #ifdef CONFIG_SWAP
10909 /*
10910  * Add an entry indicating a block group or device which is pinned by a
10911  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10912  * negative errno on failure.
10913  */
10914 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10915 				  bool is_block_group)
10916 {
10917 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10918 	struct btrfs_swapfile_pin *sp, *entry;
10919 	struct rb_node **p;
10920 	struct rb_node *parent = NULL;
10921 
10922 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10923 	if (!sp)
10924 		return -ENOMEM;
10925 	sp->ptr = ptr;
10926 	sp->inode = inode;
10927 	sp->is_block_group = is_block_group;
10928 	sp->bg_extent_count = 1;
10929 
10930 	spin_lock(&fs_info->swapfile_pins_lock);
10931 	p = &fs_info->swapfile_pins.rb_node;
10932 	while (*p) {
10933 		parent = *p;
10934 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10935 		if (sp->ptr < entry->ptr ||
10936 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10937 			p = &(*p)->rb_left;
10938 		} else if (sp->ptr > entry->ptr ||
10939 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10940 			p = &(*p)->rb_right;
10941 		} else {
10942 			if (is_block_group)
10943 				entry->bg_extent_count++;
10944 			spin_unlock(&fs_info->swapfile_pins_lock);
10945 			kfree(sp);
10946 			return 1;
10947 		}
10948 	}
10949 	rb_link_node(&sp->node, parent, p);
10950 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10951 	spin_unlock(&fs_info->swapfile_pins_lock);
10952 	return 0;
10953 }
10954 
10955 /* Free all of the entries pinned by this swapfile. */
10956 static void btrfs_free_swapfile_pins(struct inode *inode)
10957 {
10958 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10959 	struct btrfs_swapfile_pin *sp;
10960 	struct rb_node *node, *next;
10961 
10962 	spin_lock(&fs_info->swapfile_pins_lock);
10963 	node = rb_first(&fs_info->swapfile_pins);
10964 	while (node) {
10965 		next = rb_next(node);
10966 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10967 		if (sp->inode == inode) {
10968 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10969 			if (sp->is_block_group) {
10970 				btrfs_dec_block_group_swap_extents(sp->ptr,
10971 							   sp->bg_extent_count);
10972 				btrfs_put_block_group(sp->ptr);
10973 			}
10974 			kfree(sp);
10975 		}
10976 		node = next;
10977 	}
10978 	spin_unlock(&fs_info->swapfile_pins_lock);
10979 }
10980 
10981 struct btrfs_swap_info {
10982 	u64 start;
10983 	u64 block_start;
10984 	u64 block_len;
10985 	u64 lowest_ppage;
10986 	u64 highest_ppage;
10987 	unsigned long nr_pages;
10988 	int nr_extents;
10989 };
10990 
10991 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10992 				 struct btrfs_swap_info *bsi)
10993 {
10994 	unsigned long nr_pages;
10995 	unsigned long max_pages;
10996 	u64 first_ppage, first_ppage_reported, next_ppage;
10997 	int ret;
10998 
10999 	/*
11000 	 * Our swapfile may have had its size extended after the swap header was
11001 	 * written. In that case activating the swapfile should not go beyond
11002 	 * the max size set in the swap header.
11003 	 */
11004 	if (bsi->nr_pages >= sis->max)
11005 		return 0;
11006 
11007 	max_pages = sis->max - bsi->nr_pages;
11008 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
11009 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
11010 				PAGE_SIZE) >> PAGE_SHIFT;
11011 
11012 	if (first_ppage >= next_ppage)
11013 		return 0;
11014 	nr_pages = next_ppage - first_ppage;
11015 	nr_pages = min(nr_pages, max_pages);
11016 
11017 	first_ppage_reported = first_ppage;
11018 	if (bsi->start == 0)
11019 		first_ppage_reported++;
11020 	if (bsi->lowest_ppage > first_ppage_reported)
11021 		bsi->lowest_ppage = first_ppage_reported;
11022 	if (bsi->highest_ppage < (next_ppage - 1))
11023 		bsi->highest_ppage = next_ppage - 1;
11024 
11025 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11026 	if (ret < 0)
11027 		return ret;
11028 	bsi->nr_extents += ret;
11029 	bsi->nr_pages += nr_pages;
11030 	return 0;
11031 }
11032 
11033 static void btrfs_swap_deactivate(struct file *file)
11034 {
11035 	struct inode *inode = file_inode(file);
11036 
11037 	btrfs_free_swapfile_pins(inode);
11038 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11039 }
11040 
11041 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11042 			       sector_t *span)
11043 {
11044 	struct inode *inode = file_inode(file);
11045 	struct btrfs_root *root = BTRFS_I(inode)->root;
11046 	struct btrfs_fs_info *fs_info = root->fs_info;
11047 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11048 	struct extent_state *cached_state = NULL;
11049 	struct extent_map *em = NULL;
11050 	struct btrfs_device *device = NULL;
11051 	struct btrfs_swap_info bsi = {
11052 		.lowest_ppage = (sector_t)-1ULL,
11053 	};
11054 	int ret = 0;
11055 	u64 isize;
11056 	u64 start;
11057 
11058 	/*
11059 	 * If the swap file was just created, make sure delalloc is done. If the
11060 	 * file changes again after this, the user is doing something stupid and
11061 	 * we don't really care.
11062 	 */
11063 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11064 	if (ret)
11065 		return ret;
11066 
11067 	/*
11068 	 * The inode is locked, so these flags won't change after we check them.
11069 	 */
11070 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11071 		btrfs_warn(fs_info, "swapfile must not be compressed");
11072 		return -EINVAL;
11073 	}
11074 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11075 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11076 		return -EINVAL;
11077 	}
11078 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11079 		btrfs_warn(fs_info, "swapfile must not be checksummed");
11080 		return -EINVAL;
11081 	}
11082 
11083 	/*
11084 	 * Balance or device remove/replace/resize can move stuff around from
11085 	 * under us. The exclop protection makes sure they aren't running/won't
11086 	 * run concurrently while we are mapping the swap extents, and
11087 	 * fs_info->swapfile_pins prevents them from running while the swap
11088 	 * file is active and moving the extents. Note that this also prevents
11089 	 * a concurrent device add which isn't actually necessary, but it's not
11090 	 * really worth the trouble to allow it.
11091 	 */
11092 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11093 		btrfs_warn(fs_info,
11094 	   "cannot activate swapfile while exclusive operation is running");
11095 		return -EBUSY;
11096 	}
11097 
11098 	/*
11099 	 * Prevent snapshot creation while we are activating the swap file.
11100 	 * We do not want to race with snapshot creation. If snapshot creation
11101 	 * already started before we bumped nr_swapfiles from 0 to 1 and
11102 	 * completes before the first write into the swap file after it is
11103 	 * activated, than that write would fallback to COW.
11104 	 */
11105 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11106 		btrfs_exclop_finish(fs_info);
11107 		btrfs_warn(fs_info,
11108 	   "cannot activate swapfile because snapshot creation is in progress");
11109 		return -EINVAL;
11110 	}
11111 	/*
11112 	 * Snapshots can create extents which require COW even if NODATACOW is
11113 	 * set. We use this counter to prevent snapshots. We must increment it
11114 	 * before walking the extents because we don't want a concurrent
11115 	 * snapshot to run after we've already checked the extents.
11116 	 *
11117 	 * It is possible that subvolume is marked for deletion but still not
11118 	 * removed yet. To prevent this race, we check the root status before
11119 	 * activating the swapfile.
11120 	 */
11121 	spin_lock(&root->root_item_lock);
11122 	if (btrfs_root_dead(root)) {
11123 		spin_unlock(&root->root_item_lock);
11124 
11125 		btrfs_exclop_finish(fs_info);
11126 		btrfs_warn(fs_info,
11127 		"cannot activate swapfile because subvolume %llu is being deleted",
11128 			root->root_key.objectid);
11129 		return -EPERM;
11130 	}
11131 	atomic_inc(&root->nr_swapfiles);
11132 	spin_unlock(&root->root_item_lock);
11133 
11134 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11135 
11136 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
11137 	start = 0;
11138 	while (start < isize) {
11139 		u64 logical_block_start, physical_block_start;
11140 		struct btrfs_block_group *bg;
11141 		u64 len = isize - start;
11142 
11143 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11144 		if (IS_ERR(em)) {
11145 			ret = PTR_ERR(em);
11146 			goto out;
11147 		}
11148 
11149 		if (em->block_start == EXTENT_MAP_HOLE) {
11150 			btrfs_warn(fs_info, "swapfile must not have holes");
11151 			ret = -EINVAL;
11152 			goto out;
11153 		}
11154 		if (em->block_start == EXTENT_MAP_INLINE) {
11155 			/*
11156 			 * It's unlikely we'll ever actually find ourselves
11157 			 * here, as a file small enough to fit inline won't be
11158 			 * big enough to store more than the swap header, but in
11159 			 * case something changes in the future, let's catch it
11160 			 * here rather than later.
11161 			 */
11162 			btrfs_warn(fs_info, "swapfile must not be inline");
11163 			ret = -EINVAL;
11164 			goto out;
11165 		}
11166 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11167 			btrfs_warn(fs_info, "swapfile must not be compressed");
11168 			ret = -EINVAL;
11169 			goto out;
11170 		}
11171 
11172 		logical_block_start = em->block_start + (start - em->start);
11173 		len = min(len, em->len - (start - em->start));
11174 		free_extent_map(em);
11175 		em = NULL;
11176 
11177 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11178 		if (ret < 0) {
11179 			goto out;
11180 		} else if (ret) {
11181 			ret = 0;
11182 		} else {
11183 			btrfs_warn(fs_info,
11184 				   "swapfile must not be copy-on-write");
11185 			ret = -EINVAL;
11186 			goto out;
11187 		}
11188 
11189 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11190 		if (IS_ERR(em)) {
11191 			ret = PTR_ERR(em);
11192 			goto out;
11193 		}
11194 
11195 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11196 			btrfs_warn(fs_info,
11197 				   "swapfile must have single data profile");
11198 			ret = -EINVAL;
11199 			goto out;
11200 		}
11201 
11202 		if (device == NULL) {
11203 			device = em->map_lookup->stripes[0].dev;
11204 			ret = btrfs_add_swapfile_pin(inode, device, false);
11205 			if (ret == 1)
11206 				ret = 0;
11207 			else if (ret)
11208 				goto out;
11209 		} else if (device != em->map_lookup->stripes[0].dev) {
11210 			btrfs_warn(fs_info, "swapfile must be on one device");
11211 			ret = -EINVAL;
11212 			goto out;
11213 		}
11214 
11215 		physical_block_start = (em->map_lookup->stripes[0].physical +
11216 					(logical_block_start - em->start));
11217 		len = min(len, em->len - (logical_block_start - em->start));
11218 		free_extent_map(em);
11219 		em = NULL;
11220 
11221 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11222 		if (!bg) {
11223 			btrfs_warn(fs_info,
11224 			   "could not find block group containing swapfile");
11225 			ret = -EINVAL;
11226 			goto out;
11227 		}
11228 
11229 		if (!btrfs_inc_block_group_swap_extents(bg)) {
11230 			btrfs_warn(fs_info,
11231 			   "block group for swapfile at %llu is read-only%s",
11232 			   bg->start,
11233 			   atomic_read(&fs_info->scrubs_running) ?
11234 				       " (scrub running)" : "");
11235 			btrfs_put_block_group(bg);
11236 			ret = -EINVAL;
11237 			goto out;
11238 		}
11239 
11240 		ret = btrfs_add_swapfile_pin(inode, bg, true);
11241 		if (ret) {
11242 			btrfs_put_block_group(bg);
11243 			if (ret == 1)
11244 				ret = 0;
11245 			else
11246 				goto out;
11247 		}
11248 
11249 		if (bsi.block_len &&
11250 		    bsi.block_start + bsi.block_len == physical_block_start) {
11251 			bsi.block_len += len;
11252 		} else {
11253 			if (bsi.block_len) {
11254 				ret = btrfs_add_swap_extent(sis, &bsi);
11255 				if (ret)
11256 					goto out;
11257 			}
11258 			bsi.start = start;
11259 			bsi.block_start = physical_block_start;
11260 			bsi.block_len = len;
11261 		}
11262 
11263 		start += len;
11264 	}
11265 
11266 	if (bsi.block_len)
11267 		ret = btrfs_add_swap_extent(sis, &bsi);
11268 
11269 out:
11270 	if (!IS_ERR_OR_NULL(em))
11271 		free_extent_map(em);
11272 
11273 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11274 
11275 	if (ret)
11276 		btrfs_swap_deactivate(file);
11277 
11278 	btrfs_drew_write_unlock(&root->snapshot_lock);
11279 
11280 	btrfs_exclop_finish(fs_info);
11281 
11282 	if (ret)
11283 		return ret;
11284 
11285 	if (device)
11286 		sis->bdev = device->bdev;
11287 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11288 	sis->max = bsi.nr_pages;
11289 	sis->pages = bsi.nr_pages - 1;
11290 	sis->highest_bit = bsi.nr_pages - 1;
11291 	return bsi.nr_extents;
11292 }
11293 #else
11294 static void btrfs_swap_deactivate(struct file *file)
11295 {
11296 }
11297 
11298 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11299 			       sector_t *span)
11300 {
11301 	return -EOPNOTSUPP;
11302 }
11303 #endif
11304 
11305 /*
11306  * Update the number of bytes used in the VFS' inode. When we replace extents in
11307  * a range (clone, dedupe, fallocate's zero range), we must update the number of
11308  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11309  * always get a correct value.
11310  */
11311 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11312 			      const u64 add_bytes,
11313 			      const u64 del_bytes)
11314 {
11315 	if (add_bytes == del_bytes)
11316 		return;
11317 
11318 	spin_lock(&inode->lock);
11319 	if (del_bytes > 0)
11320 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
11321 	if (add_bytes > 0)
11322 		inode_add_bytes(&inode->vfs_inode, add_bytes);
11323 	spin_unlock(&inode->lock);
11324 }
11325 
11326 static const struct inode_operations btrfs_dir_inode_operations = {
11327 	.getattr	= btrfs_getattr,
11328 	.lookup		= btrfs_lookup,
11329 	.create		= btrfs_create,
11330 	.unlink		= btrfs_unlink,
11331 	.link		= btrfs_link,
11332 	.mkdir		= btrfs_mkdir,
11333 	.rmdir		= btrfs_rmdir,
11334 	.rename		= btrfs_rename2,
11335 	.symlink	= btrfs_symlink,
11336 	.setattr	= btrfs_setattr,
11337 	.mknod		= btrfs_mknod,
11338 	.listxattr	= btrfs_listxattr,
11339 	.permission	= btrfs_permission,
11340 	.get_acl	= btrfs_get_acl,
11341 	.set_acl	= btrfs_set_acl,
11342 	.update_time	= btrfs_update_time,
11343 	.tmpfile        = btrfs_tmpfile,
11344 	.fileattr_get	= btrfs_fileattr_get,
11345 	.fileattr_set	= btrfs_fileattr_set,
11346 };
11347 
11348 static const struct file_operations btrfs_dir_file_operations = {
11349 	.llseek		= generic_file_llseek,
11350 	.read		= generic_read_dir,
11351 	.iterate_shared	= btrfs_real_readdir,
11352 	.open		= btrfs_opendir,
11353 	.unlocked_ioctl	= btrfs_ioctl,
11354 #ifdef CONFIG_COMPAT
11355 	.compat_ioctl	= btrfs_compat_ioctl,
11356 #endif
11357 	.release        = btrfs_release_file,
11358 	.fsync		= btrfs_sync_file,
11359 };
11360 
11361 /*
11362  * btrfs doesn't support the bmap operation because swapfiles
11363  * use bmap to make a mapping of extents in the file.  They assume
11364  * these extents won't change over the life of the file and they
11365  * use the bmap result to do IO directly to the drive.
11366  *
11367  * the btrfs bmap call would return logical addresses that aren't
11368  * suitable for IO and they also will change frequently as COW
11369  * operations happen.  So, swapfile + btrfs == corruption.
11370  *
11371  * For now we're avoiding this by dropping bmap.
11372  */
11373 static const struct address_space_operations btrfs_aops = {
11374 	.readpage	= btrfs_readpage,
11375 	.writepage	= btrfs_writepage,
11376 	.writepages	= btrfs_writepages,
11377 	.readahead	= btrfs_readahead,
11378 	.direct_IO	= noop_direct_IO,
11379 	.invalidate_folio = btrfs_invalidate_folio,
11380 	.releasepage	= btrfs_releasepage,
11381 #ifdef CONFIG_MIGRATION
11382 	.migratepage	= btrfs_migratepage,
11383 #endif
11384 	.dirty_folio	= filemap_dirty_folio,
11385 	.error_remove_page = generic_error_remove_page,
11386 	.swap_activate	= btrfs_swap_activate,
11387 	.swap_deactivate = btrfs_swap_deactivate,
11388 };
11389 
11390 static const struct inode_operations btrfs_file_inode_operations = {
11391 	.getattr	= btrfs_getattr,
11392 	.setattr	= btrfs_setattr,
11393 	.listxattr      = btrfs_listxattr,
11394 	.permission	= btrfs_permission,
11395 	.fiemap		= btrfs_fiemap,
11396 	.get_acl	= btrfs_get_acl,
11397 	.set_acl	= btrfs_set_acl,
11398 	.update_time	= btrfs_update_time,
11399 	.fileattr_get	= btrfs_fileattr_get,
11400 	.fileattr_set	= btrfs_fileattr_set,
11401 };
11402 static const struct inode_operations btrfs_special_inode_operations = {
11403 	.getattr	= btrfs_getattr,
11404 	.setattr	= btrfs_setattr,
11405 	.permission	= btrfs_permission,
11406 	.listxattr	= btrfs_listxattr,
11407 	.get_acl	= btrfs_get_acl,
11408 	.set_acl	= btrfs_set_acl,
11409 	.update_time	= btrfs_update_time,
11410 };
11411 static const struct inode_operations btrfs_symlink_inode_operations = {
11412 	.get_link	= page_get_link,
11413 	.getattr	= btrfs_getattr,
11414 	.setattr	= btrfs_setattr,
11415 	.permission	= btrfs_permission,
11416 	.listxattr	= btrfs_listxattr,
11417 	.update_time	= btrfs_update_time,
11418 };
11419 
11420 const struct dentry_operations btrfs_dentry_operations = {
11421 	.d_delete	= btrfs_dentry_delete,
11422 };
11423