1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/smp_lock.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/version.h> 38 #include <linux/xattr.h> 39 #include <linux/posix_acl.h> 40 #include <linux/falloc.h> 41 #include "compat.h" 42 #include "ctree.h" 43 #include "disk-io.h" 44 #include "transaction.h" 45 #include "btrfs_inode.h" 46 #include "ioctl.h" 47 #include "print-tree.h" 48 #include "volumes.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "ref-cache.h" 53 #include "compression.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 static struct inode_operations btrfs_dir_inode_operations; 61 static struct inode_operations btrfs_symlink_inode_operations; 62 static struct inode_operations btrfs_dir_ro_inode_operations; 63 static struct inode_operations btrfs_special_inode_operations; 64 static struct inode_operations btrfs_file_inode_operations; 65 static struct address_space_operations btrfs_aops; 66 static struct address_space_operations btrfs_symlink_aops; 67 static struct file_operations btrfs_dir_file_operations; 68 static struct extent_io_ops btrfs_extent_io_ops; 69 70 static struct kmem_cache *btrfs_inode_cachep; 71 struct kmem_cache *btrfs_trans_handle_cachep; 72 struct kmem_cache *btrfs_transaction_cachep; 73 struct kmem_cache *btrfs_bit_radix_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 76 #define S_SHIFT 12 77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static void btrfs_truncate(struct inode *inode); 88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 89 static noinline int cow_file_range(struct inode *inode, 90 struct page *locked_page, 91 u64 start, u64 end, int *page_started, 92 unsigned long *nr_written, int unlock); 93 94 /* 95 * a very lame attempt at stopping writes when the FS is 85% full. There 96 * are countless ways this is incorrect, but it is better than nothing. 97 */ 98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required, 99 int for_del) 100 { 101 u64 total; 102 u64 used; 103 u64 thresh; 104 int ret = 0; 105 106 spin_lock(&root->fs_info->delalloc_lock); 107 total = btrfs_super_total_bytes(&root->fs_info->super_copy); 108 used = btrfs_super_bytes_used(&root->fs_info->super_copy); 109 if (for_del) 110 thresh = total * 90; 111 else 112 thresh = total * 85; 113 114 do_div(thresh, 100); 115 116 if (used + root->fs_info->delalloc_bytes + num_required > thresh) 117 ret = -ENOSPC; 118 spin_unlock(&root->fs_info->delalloc_lock); 119 return ret; 120 } 121 122 /* 123 * this does all the hard work for inserting an inline extent into 124 * the btree. The caller should have done a btrfs_drop_extents so that 125 * no overlapping inline items exist in the btree 126 */ 127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 128 struct btrfs_root *root, struct inode *inode, 129 u64 start, size_t size, size_t compressed_size, 130 struct page **compressed_pages) 131 { 132 struct btrfs_key key; 133 struct btrfs_path *path; 134 struct extent_buffer *leaf; 135 struct page *page = NULL; 136 char *kaddr; 137 unsigned long ptr; 138 struct btrfs_file_extent_item *ei; 139 int err = 0; 140 int ret; 141 size_t cur_size = size; 142 size_t datasize; 143 unsigned long offset; 144 int use_compress = 0; 145 146 if (compressed_size && compressed_pages) { 147 use_compress = 1; 148 cur_size = compressed_size; 149 } 150 151 path = btrfs_alloc_path(); 152 if (!path) 153 return -ENOMEM; 154 155 btrfs_set_trans_block_group(trans, inode); 156 157 key.objectid = inode->i_ino; 158 key.offset = start; 159 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 160 inode_add_bytes(inode, size); 161 datasize = btrfs_file_extent_calc_inline_size(cur_size); 162 163 inode_add_bytes(inode, size); 164 ret = btrfs_insert_empty_item(trans, root, path, &key, 165 datasize); 166 BUG_ON(ret); 167 if (ret) { 168 err = ret; 169 goto fail; 170 } 171 leaf = path->nodes[0]; 172 ei = btrfs_item_ptr(leaf, path->slots[0], 173 struct btrfs_file_extent_item); 174 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 175 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 176 btrfs_set_file_extent_encryption(leaf, ei, 0); 177 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 178 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 179 ptr = btrfs_file_extent_inline_start(ei); 180 181 if (use_compress) { 182 struct page *cpage; 183 int i = 0; 184 while (compressed_size > 0) { 185 cpage = compressed_pages[i]; 186 cur_size = min_t(unsigned long, compressed_size, 187 PAGE_CACHE_SIZE); 188 189 kaddr = kmap(cpage); 190 write_extent_buffer(leaf, kaddr, ptr, cur_size); 191 kunmap(cpage); 192 193 i++; 194 ptr += cur_size; 195 compressed_size -= cur_size; 196 } 197 btrfs_set_file_extent_compression(leaf, ei, 198 BTRFS_COMPRESS_ZLIB); 199 } else { 200 page = find_get_page(inode->i_mapping, 201 start >> PAGE_CACHE_SHIFT); 202 btrfs_set_file_extent_compression(leaf, ei, 0); 203 kaddr = kmap_atomic(page, KM_USER0); 204 offset = start & (PAGE_CACHE_SIZE - 1); 205 write_extent_buffer(leaf, kaddr + offset, ptr, size); 206 kunmap_atomic(kaddr, KM_USER0); 207 page_cache_release(page); 208 } 209 btrfs_mark_buffer_dirty(leaf); 210 btrfs_free_path(path); 211 212 BTRFS_I(inode)->disk_i_size = inode->i_size; 213 btrfs_update_inode(trans, root, inode); 214 return 0; 215 fail: 216 btrfs_free_path(path); 217 return err; 218 } 219 220 221 /* 222 * conditionally insert an inline extent into the file. This 223 * does the checks required to make sure the data is small enough 224 * to fit as an inline extent. 225 */ 226 static int cow_file_range_inline(struct btrfs_trans_handle *trans, 227 struct btrfs_root *root, 228 struct inode *inode, u64 start, u64 end, 229 size_t compressed_size, 230 struct page **compressed_pages) 231 { 232 u64 isize = i_size_read(inode); 233 u64 actual_end = min(end + 1, isize); 234 u64 inline_len = actual_end - start; 235 u64 aligned_end = (end + root->sectorsize - 1) & 236 ~((u64)root->sectorsize - 1); 237 u64 hint_byte; 238 u64 data_len = inline_len; 239 int ret; 240 241 if (compressed_size) 242 data_len = compressed_size; 243 244 if (start > 0 || 245 actual_end >= PAGE_CACHE_SIZE || 246 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 247 (!compressed_size && 248 (actual_end & (root->sectorsize - 1)) == 0) || 249 end + 1 < isize || 250 data_len > root->fs_info->max_inline) { 251 return 1; 252 } 253 254 ret = btrfs_drop_extents(trans, root, inode, start, 255 aligned_end, start, &hint_byte); 256 BUG_ON(ret); 257 258 if (isize > actual_end) 259 inline_len = min_t(u64, isize, actual_end); 260 ret = insert_inline_extent(trans, root, inode, start, 261 inline_len, compressed_size, 262 compressed_pages); 263 BUG_ON(ret); 264 btrfs_drop_extent_cache(inode, start, aligned_end, 0); 265 return 0; 266 } 267 268 struct async_extent { 269 u64 start; 270 u64 ram_size; 271 u64 compressed_size; 272 struct page **pages; 273 unsigned long nr_pages; 274 struct list_head list; 275 }; 276 277 struct async_cow { 278 struct inode *inode; 279 struct btrfs_root *root; 280 struct page *locked_page; 281 u64 start; 282 u64 end; 283 struct list_head extents; 284 struct btrfs_work work; 285 }; 286 287 static noinline int add_async_extent(struct async_cow *cow, 288 u64 start, u64 ram_size, 289 u64 compressed_size, 290 struct page **pages, 291 unsigned long nr_pages) 292 { 293 struct async_extent *async_extent; 294 295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 296 async_extent->start = start; 297 async_extent->ram_size = ram_size; 298 async_extent->compressed_size = compressed_size; 299 async_extent->pages = pages; 300 async_extent->nr_pages = nr_pages; 301 list_add_tail(&async_extent->list, &cow->extents); 302 return 0; 303 } 304 305 /* 306 * we create compressed extents in two phases. The first 307 * phase compresses a range of pages that have already been 308 * locked (both pages and state bits are locked). 309 * 310 * This is done inside an ordered work queue, and the compression 311 * is spread across many cpus. The actual IO submission is step 312 * two, and the ordered work queue takes care of making sure that 313 * happens in the same order things were put onto the queue by 314 * writepages and friends. 315 * 316 * If this code finds it can't get good compression, it puts an 317 * entry onto the work queue to write the uncompressed bytes. This 318 * makes sure that both compressed inodes and uncompressed inodes 319 * are written in the same order that pdflush sent them down. 320 */ 321 static noinline int compress_file_range(struct inode *inode, 322 struct page *locked_page, 323 u64 start, u64 end, 324 struct async_cow *async_cow, 325 int *num_added) 326 { 327 struct btrfs_root *root = BTRFS_I(inode)->root; 328 struct btrfs_trans_handle *trans; 329 u64 num_bytes; 330 u64 orig_start; 331 u64 disk_num_bytes; 332 u64 blocksize = root->sectorsize; 333 u64 actual_end; 334 u64 isize = i_size_read(inode); 335 int ret = 0; 336 struct page **pages = NULL; 337 unsigned long nr_pages; 338 unsigned long nr_pages_ret = 0; 339 unsigned long total_compressed = 0; 340 unsigned long total_in = 0; 341 unsigned long max_compressed = 128 * 1024; 342 unsigned long max_uncompressed = 128 * 1024; 343 int i; 344 int will_compress; 345 346 orig_start = start; 347 348 actual_end = min_t(u64, isize, end + 1); 349 again: 350 will_compress = 0; 351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 353 354 total_compressed = actual_end - start; 355 356 /* we want to make sure that amount of ram required to uncompress 357 * an extent is reasonable, so we limit the total size in ram 358 * of a compressed extent to 128k. This is a crucial number 359 * because it also controls how easily we can spread reads across 360 * cpus for decompression. 361 * 362 * We also want to make sure the amount of IO required to do 363 * a random read is reasonably small, so we limit the size of 364 * a compressed extent to 128k. 365 */ 366 total_compressed = min(total_compressed, max_uncompressed); 367 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 368 num_bytes = max(blocksize, num_bytes); 369 disk_num_bytes = num_bytes; 370 total_in = 0; 371 ret = 0; 372 373 /* 374 * we do compression for mount -o compress and when the 375 * inode has not been flagged as nocompress. This flag can 376 * change at any time if we discover bad compression ratios. 377 */ 378 if (!btrfs_test_flag(inode, NOCOMPRESS) && 379 btrfs_test_opt(root, COMPRESS)) { 380 WARN_ON(pages); 381 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 382 383 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 384 total_compressed, pages, 385 nr_pages, &nr_pages_ret, 386 &total_in, 387 &total_compressed, 388 max_compressed); 389 390 if (!ret) { 391 unsigned long offset = total_compressed & 392 (PAGE_CACHE_SIZE - 1); 393 struct page *page = pages[nr_pages_ret - 1]; 394 char *kaddr; 395 396 /* zero the tail end of the last page, we might be 397 * sending it down to disk 398 */ 399 if (offset) { 400 kaddr = kmap_atomic(page, KM_USER0); 401 memset(kaddr + offset, 0, 402 PAGE_CACHE_SIZE - offset); 403 kunmap_atomic(kaddr, KM_USER0); 404 } 405 will_compress = 1; 406 } 407 } 408 if (start == 0) { 409 trans = btrfs_join_transaction(root, 1); 410 BUG_ON(!trans); 411 btrfs_set_trans_block_group(trans, inode); 412 413 /* lets try to make an inline extent */ 414 if (ret || total_in < (actual_end - start)) { 415 /* we didn't compress the entire range, try 416 * to make an uncompressed inline extent. 417 */ 418 ret = cow_file_range_inline(trans, root, inode, 419 start, end, 0, NULL); 420 } else { 421 /* try making a compressed inline extent */ 422 ret = cow_file_range_inline(trans, root, inode, 423 start, end, 424 total_compressed, pages); 425 } 426 btrfs_end_transaction(trans, root); 427 if (ret == 0) { 428 /* 429 * inline extent creation worked, we don't need 430 * to create any more async work items. Unlock 431 * and free up our temp pages. 432 */ 433 extent_clear_unlock_delalloc(inode, 434 &BTRFS_I(inode)->io_tree, 435 start, end, NULL, 1, 0, 436 0, 1, 1, 1); 437 ret = 0; 438 goto free_pages_out; 439 } 440 } 441 442 if (will_compress) { 443 /* 444 * we aren't doing an inline extent round the compressed size 445 * up to a block size boundary so the allocator does sane 446 * things 447 */ 448 total_compressed = (total_compressed + blocksize - 1) & 449 ~(blocksize - 1); 450 451 /* 452 * one last check to make sure the compression is really a 453 * win, compare the page count read with the blocks on disk 454 */ 455 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 456 ~(PAGE_CACHE_SIZE - 1); 457 if (total_compressed >= total_in) { 458 will_compress = 0; 459 } else { 460 disk_num_bytes = total_compressed; 461 num_bytes = total_in; 462 } 463 } 464 if (!will_compress && pages) { 465 /* 466 * the compression code ran but failed to make things smaller, 467 * free any pages it allocated and our page pointer array 468 */ 469 for (i = 0; i < nr_pages_ret; i++) { 470 WARN_ON(pages[i]->mapping); 471 page_cache_release(pages[i]); 472 } 473 kfree(pages); 474 pages = NULL; 475 total_compressed = 0; 476 nr_pages_ret = 0; 477 478 /* flag the file so we don't compress in the future */ 479 btrfs_set_flag(inode, NOCOMPRESS); 480 } 481 if (will_compress) { 482 *num_added += 1; 483 484 /* the async work queues will take care of doing actual 485 * allocation on disk for these compressed pages, 486 * and will submit them to the elevator. 487 */ 488 add_async_extent(async_cow, start, num_bytes, 489 total_compressed, pages, nr_pages_ret); 490 491 if (start + num_bytes < end && start + num_bytes < actual_end) { 492 start += num_bytes; 493 pages = NULL; 494 cond_resched(); 495 goto again; 496 } 497 } else { 498 /* 499 * No compression, but we still need to write the pages in 500 * the file we've been given so far. redirty the locked 501 * page if it corresponds to our extent and set things up 502 * for the async work queue to run cow_file_range to do 503 * the normal delalloc dance 504 */ 505 if (page_offset(locked_page) >= start && 506 page_offset(locked_page) <= end) { 507 __set_page_dirty_nobuffers(locked_page); 508 /* unlocked later on in the async handlers */ 509 } 510 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 511 *num_added += 1; 512 } 513 514 out: 515 return 0; 516 517 free_pages_out: 518 for (i = 0; i < nr_pages_ret; i++) { 519 WARN_ON(pages[i]->mapping); 520 page_cache_release(pages[i]); 521 } 522 kfree(pages); 523 524 goto out; 525 } 526 527 /* 528 * phase two of compressed writeback. This is the ordered portion 529 * of the code, which only gets called in the order the work was 530 * queued. We walk all the async extents created by compress_file_range 531 * and send them down to the disk. 532 */ 533 static noinline int submit_compressed_extents(struct inode *inode, 534 struct async_cow *async_cow) 535 { 536 struct async_extent *async_extent; 537 u64 alloc_hint = 0; 538 struct btrfs_trans_handle *trans; 539 struct btrfs_key ins; 540 struct extent_map *em; 541 struct btrfs_root *root = BTRFS_I(inode)->root; 542 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 543 struct extent_io_tree *io_tree; 544 int ret; 545 546 if (list_empty(&async_cow->extents)) 547 return 0; 548 549 trans = btrfs_join_transaction(root, 1); 550 551 while (!list_empty(&async_cow->extents)) { 552 async_extent = list_entry(async_cow->extents.next, 553 struct async_extent, list); 554 list_del(&async_extent->list); 555 556 io_tree = &BTRFS_I(inode)->io_tree; 557 558 /* did the compression code fall back to uncompressed IO? */ 559 if (!async_extent->pages) { 560 int page_started = 0; 561 unsigned long nr_written = 0; 562 563 lock_extent(io_tree, async_extent->start, 564 async_extent->start + 565 async_extent->ram_size - 1, GFP_NOFS); 566 567 /* allocate blocks */ 568 cow_file_range(inode, async_cow->locked_page, 569 async_extent->start, 570 async_extent->start + 571 async_extent->ram_size - 1, 572 &page_started, &nr_written, 0); 573 574 /* 575 * if page_started, cow_file_range inserted an 576 * inline extent and took care of all the unlocking 577 * and IO for us. Otherwise, we need to submit 578 * all those pages down to the drive. 579 */ 580 if (!page_started) 581 extent_write_locked_range(io_tree, 582 inode, async_extent->start, 583 async_extent->start + 584 async_extent->ram_size - 1, 585 btrfs_get_extent, 586 WB_SYNC_ALL); 587 kfree(async_extent); 588 cond_resched(); 589 continue; 590 } 591 592 lock_extent(io_tree, async_extent->start, 593 async_extent->start + async_extent->ram_size - 1, 594 GFP_NOFS); 595 /* 596 * here we're doing allocation and writeback of the 597 * compressed pages 598 */ 599 btrfs_drop_extent_cache(inode, async_extent->start, 600 async_extent->start + 601 async_extent->ram_size - 1, 0); 602 603 ret = btrfs_reserve_extent(trans, root, 604 async_extent->compressed_size, 605 async_extent->compressed_size, 606 0, alloc_hint, 607 (u64)-1, &ins, 1); 608 BUG_ON(ret); 609 em = alloc_extent_map(GFP_NOFS); 610 em->start = async_extent->start; 611 em->len = async_extent->ram_size; 612 em->orig_start = em->start; 613 614 em->block_start = ins.objectid; 615 em->block_len = ins.offset; 616 em->bdev = root->fs_info->fs_devices->latest_bdev; 617 set_bit(EXTENT_FLAG_PINNED, &em->flags); 618 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 619 620 while (1) { 621 spin_lock(&em_tree->lock); 622 ret = add_extent_mapping(em_tree, em); 623 spin_unlock(&em_tree->lock); 624 if (ret != -EEXIST) { 625 free_extent_map(em); 626 break; 627 } 628 btrfs_drop_extent_cache(inode, async_extent->start, 629 async_extent->start + 630 async_extent->ram_size - 1, 0); 631 } 632 633 ret = btrfs_add_ordered_extent(inode, async_extent->start, 634 ins.objectid, 635 async_extent->ram_size, 636 ins.offset, 637 BTRFS_ORDERED_COMPRESSED); 638 BUG_ON(ret); 639 640 btrfs_end_transaction(trans, root); 641 642 /* 643 * clear dirty, set writeback and unlock the pages. 644 */ 645 extent_clear_unlock_delalloc(inode, 646 &BTRFS_I(inode)->io_tree, 647 async_extent->start, 648 async_extent->start + 649 async_extent->ram_size - 1, 650 NULL, 1, 1, 0, 1, 1, 0); 651 652 ret = btrfs_submit_compressed_write(inode, 653 async_extent->start, 654 async_extent->ram_size, 655 ins.objectid, 656 ins.offset, async_extent->pages, 657 async_extent->nr_pages); 658 659 BUG_ON(ret); 660 trans = btrfs_join_transaction(root, 1); 661 alloc_hint = ins.objectid + ins.offset; 662 kfree(async_extent); 663 cond_resched(); 664 } 665 666 btrfs_end_transaction(trans, root); 667 return 0; 668 } 669 670 /* 671 * when extent_io.c finds a delayed allocation range in the file, 672 * the call backs end up in this code. The basic idea is to 673 * allocate extents on disk for the range, and create ordered data structs 674 * in ram to track those extents. 675 * 676 * locked_page is the page that writepage had locked already. We use 677 * it to make sure we don't do extra locks or unlocks. 678 * 679 * *page_started is set to one if we unlock locked_page and do everything 680 * required to start IO on it. It may be clean and already done with 681 * IO when we return. 682 */ 683 static noinline int cow_file_range(struct inode *inode, 684 struct page *locked_page, 685 u64 start, u64 end, int *page_started, 686 unsigned long *nr_written, 687 int unlock) 688 { 689 struct btrfs_root *root = BTRFS_I(inode)->root; 690 struct btrfs_trans_handle *trans; 691 u64 alloc_hint = 0; 692 u64 num_bytes; 693 unsigned long ram_size; 694 u64 disk_num_bytes; 695 u64 cur_alloc_size; 696 u64 blocksize = root->sectorsize; 697 u64 actual_end; 698 u64 isize = i_size_read(inode); 699 struct btrfs_key ins; 700 struct extent_map *em; 701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 702 int ret = 0; 703 704 trans = btrfs_join_transaction(root, 1); 705 BUG_ON(!trans); 706 btrfs_set_trans_block_group(trans, inode); 707 708 actual_end = min_t(u64, isize, end + 1); 709 710 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 711 num_bytes = max(blocksize, num_bytes); 712 disk_num_bytes = num_bytes; 713 ret = 0; 714 715 if (start == 0) { 716 /* lets try to make an inline extent */ 717 ret = cow_file_range_inline(trans, root, inode, 718 start, end, 0, NULL); 719 if (ret == 0) { 720 extent_clear_unlock_delalloc(inode, 721 &BTRFS_I(inode)->io_tree, 722 start, end, NULL, 1, 1, 723 1, 1, 1, 1); 724 *nr_written = *nr_written + 725 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 726 *page_started = 1; 727 ret = 0; 728 goto out; 729 } 730 } 731 732 BUG_ON(disk_num_bytes > 733 btrfs_super_total_bytes(&root->fs_info->super_copy)); 734 735 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 736 737 while (disk_num_bytes > 0) { 738 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 739 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 740 root->sectorsize, 0, alloc_hint, 741 (u64)-1, &ins, 1); 742 BUG_ON(ret); 743 744 em = alloc_extent_map(GFP_NOFS); 745 em->start = start; 746 em->orig_start = em->start; 747 748 ram_size = ins.offset; 749 em->len = ins.offset; 750 751 em->block_start = ins.objectid; 752 em->block_len = ins.offset; 753 em->bdev = root->fs_info->fs_devices->latest_bdev; 754 set_bit(EXTENT_FLAG_PINNED, &em->flags); 755 756 while (1) { 757 spin_lock(&em_tree->lock); 758 ret = add_extent_mapping(em_tree, em); 759 spin_unlock(&em_tree->lock); 760 if (ret != -EEXIST) { 761 free_extent_map(em); 762 break; 763 } 764 btrfs_drop_extent_cache(inode, start, 765 start + ram_size - 1, 0); 766 } 767 768 cur_alloc_size = ins.offset; 769 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 770 ram_size, cur_alloc_size, 0); 771 BUG_ON(ret); 772 773 if (root->root_key.objectid == 774 BTRFS_DATA_RELOC_TREE_OBJECTID) { 775 ret = btrfs_reloc_clone_csums(inode, start, 776 cur_alloc_size); 777 BUG_ON(ret); 778 } 779 780 if (disk_num_bytes < cur_alloc_size) 781 break; 782 783 /* we're not doing compressed IO, don't unlock the first 784 * page (which the caller expects to stay locked), don't 785 * clear any dirty bits and don't set any writeback bits 786 */ 787 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 788 start, start + ram_size - 1, 789 locked_page, unlock, 1, 790 1, 0, 0, 0); 791 disk_num_bytes -= cur_alloc_size; 792 num_bytes -= cur_alloc_size; 793 alloc_hint = ins.objectid + ins.offset; 794 start += cur_alloc_size; 795 } 796 out: 797 ret = 0; 798 btrfs_end_transaction(trans, root); 799 800 return ret; 801 } 802 803 /* 804 * work queue call back to started compression on a file and pages 805 */ 806 static noinline void async_cow_start(struct btrfs_work *work) 807 { 808 struct async_cow *async_cow; 809 int num_added = 0; 810 async_cow = container_of(work, struct async_cow, work); 811 812 compress_file_range(async_cow->inode, async_cow->locked_page, 813 async_cow->start, async_cow->end, async_cow, 814 &num_added); 815 if (num_added == 0) 816 async_cow->inode = NULL; 817 } 818 819 /* 820 * work queue call back to submit previously compressed pages 821 */ 822 static noinline void async_cow_submit(struct btrfs_work *work) 823 { 824 struct async_cow *async_cow; 825 struct btrfs_root *root; 826 unsigned long nr_pages; 827 828 async_cow = container_of(work, struct async_cow, work); 829 830 root = async_cow->root; 831 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 832 PAGE_CACHE_SHIFT; 833 834 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 835 836 if (atomic_read(&root->fs_info->async_delalloc_pages) < 837 5 * 1042 * 1024 && 838 waitqueue_active(&root->fs_info->async_submit_wait)) 839 wake_up(&root->fs_info->async_submit_wait); 840 841 if (async_cow->inode) 842 submit_compressed_extents(async_cow->inode, async_cow); 843 } 844 845 static noinline void async_cow_free(struct btrfs_work *work) 846 { 847 struct async_cow *async_cow; 848 async_cow = container_of(work, struct async_cow, work); 849 kfree(async_cow); 850 } 851 852 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 853 u64 start, u64 end, int *page_started, 854 unsigned long *nr_written) 855 { 856 struct async_cow *async_cow; 857 struct btrfs_root *root = BTRFS_I(inode)->root; 858 unsigned long nr_pages; 859 u64 cur_end; 860 int limit = 10 * 1024 * 1042; 861 862 if (!btrfs_test_opt(root, COMPRESS)) { 863 return cow_file_range(inode, locked_page, start, end, 864 page_started, nr_written, 1); 865 } 866 867 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | 868 EXTENT_DELALLOC, 1, 0, GFP_NOFS); 869 while (start < end) { 870 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 871 async_cow->inode = inode; 872 async_cow->root = root; 873 async_cow->locked_page = locked_page; 874 async_cow->start = start; 875 876 if (btrfs_test_flag(inode, NOCOMPRESS)) 877 cur_end = end; 878 else 879 cur_end = min(end, start + 512 * 1024 - 1); 880 881 async_cow->end = cur_end; 882 INIT_LIST_HEAD(&async_cow->extents); 883 884 async_cow->work.func = async_cow_start; 885 async_cow->work.ordered_func = async_cow_submit; 886 async_cow->work.ordered_free = async_cow_free; 887 async_cow->work.flags = 0; 888 889 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 890 PAGE_CACHE_SHIFT; 891 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 892 893 btrfs_queue_worker(&root->fs_info->delalloc_workers, 894 &async_cow->work); 895 896 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 897 wait_event(root->fs_info->async_submit_wait, 898 (atomic_read(&root->fs_info->async_delalloc_pages) < 899 limit)); 900 } 901 902 while (atomic_read(&root->fs_info->async_submit_draining) && 903 atomic_read(&root->fs_info->async_delalloc_pages)) { 904 wait_event(root->fs_info->async_submit_wait, 905 (atomic_read(&root->fs_info->async_delalloc_pages) == 906 0)); 907 } 908 909 *nr_written += nr_pages; 910 start = cur_end + 1; 911 } 912 *page_started = 1; 913 return 0; 914 } 915 916 static noinline int csum_exist_in_range(struct btrfs_root *root, 917 u64 bytenr, u64 num_bytes) 918 { 919 int ret; 920 struct btrfs_ordered_sum *sums; 921 LIST_HEAD(list); 922 923 ret = btrfs_lookup_csums_range(root, bytenr, bytenr + num_bytes - 1, 924 &list); 925 if (ret == 0 && list_empty(&list)) 926 return 0; 927 928 while (!list_empty(&list)) { 929 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 930 list_del(&sums->list); 931 kfree(sums); 932 } 933 return 1; 934 } 935 936 /* 937 * when nowcow writeback call back. This checks for snapshots or COW copies 938 * of the extents that exist in the file, and COWs the file as required. 939 * 940 * If no cow copies or snapshots exist, we write directly to the existing 941 * blocks on disk 942 */ 943 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page, 944 u64 start, u64 end, int *page_started, int force, 945 unsigned long *nr_written) 946 { 947 struct btrfs_root *root = BTRFS_I(inode)->root; 948 struct btrfs_trans_handle *trans; 949 struct extent_buffer *leaf; 950 struct btrfs_path *path; 951 struct btrfs_file_extent_item *fi; 952 struct btrfs_key found_key; 953 u64 cow_start; 954 u64 cur_offset; 955 u64 extent_end; 956 u64 disk_bytenr; 957 u64 num_bytes; 958 int extent_type; 959 int ret; 960 int type; 961 int nocow; 962 int check_prev = 1; 963 964 path = btrfs_alloc_path(); 965 BUG_ON(!path); 966 trans = btrfs_join_transaction(root, 1); 967 BUG_ON(!trans); 968 969 cow_start = (u64)-1; 970 cur_offset = start; 971 while (1) { 972 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 973 cur_offset, 0); 974 BUG_ON(ret < 0); 975 if (ret > 0 && path->slots[0] > 0 && check_prev) { 976 leaf = path->nodes[0]; 977 btrfs_item_key_to_cpu(leaf, &found_key, 978 path->slots[0] - 1); 979 if (found_key.objectid == inode->i_ino && 980 found_key.type == BTRFS_EXTENT_DATA_KEY) 981 path->slots[0]--; 982 } 983 check_prev = 0; 984 next_slot: 985 leaf = path->nodes[0]; 986 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 987 ret = btrfs_next_leaf(root, path); 988 if (ret < 0) 989 BUG_ON(1); 990 if (ret > 0) 991 break; 992 leaf = path->nodes[0]; 993 } 994 995 nocow = 0; 996 disk_bytenr = 0; 997 num_bytes = 0; 998 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 999 1000 if (found_key.objectid > inode->i_ino || 1001 found_key.type > BTRFS_EXTENT_DATA_KEY || 1002 found_key.offset > end) 1003 break; 1004 1005 if (found_key.offset > cur_offset) { 1006 extent_end = found_key.offset; 1007 goto out_check; 1008 } 1009 1010 fi = btrfs_item_ptr(leaf, path->slots[0], 1011 struct btrfs_file_extent_item); 1012 extent_type = btrfs_file_extent_type(leaf, fi); 1013 1014 if (extent_type == BTRFS_FILE_EXTENT_REG || 1015 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1016 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1017 extent_end = found_key.offset + 1018 btrfs_file_extent_num_bytes(leaf, fi); 1019 if (extent_end <= start) { 1020 path->slots[0]++; 1021 goto next_slot; 1022 } 1023 if (disk_bytenr == 0) 1024 goto out_check; 1025 if (btrfs_file_extent_compression(leaf, fi) || 1026 btrfs_file_extent_encryption(leaf, fi) || 1027 btrfs_file_extent_other_encoding(leaf, fi)) 1028 goto out_check; 1029 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1030 goto out_check; 1031 if (btrfs_extent_readonly(root, disk_bytenr)) 1032 goto out_check; 1033 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1034 disk_bytenr)) 1035 goto out_check; 1036 disk_bytenr += btrfs_file_extent_offset(leaf, fi); 1037 disk_bytenr += cur_offset - found_key.offset; 1038 num_bytes = min(end + 1, extent_end) - cur_offset; 1039 /* 1040 * force cow if csum exists in the range. 1041 * this ensure that csum for a given extent are 1042 * either valid or do not exist. 1043 */ 1044 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1045 goto out_check; 1046 nocow = 1; 1047 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1048 extent_end = found_key.offset + 1049 btrfs_file_extent_inline_len(leaf, fi); 1050 extent_end = ALIGN(extent_end, root->sectorsize); 1051 } else { 1052 BUG_ON(1); 1053 } 1054 out_check: 1055 if (extent_end <= start) { 1056 path->slots[0]++; 1057 goto next_slot; 1058 } 1059 if (!nocow) { 1060 if (cow_start == (u64)-1) 1061 cow_start = cur_offset; 1062 cur_offset = extent_end; 1063 if (cur_offset > end) 1064 break; 1065 path->slots[0]++; 1066 goto next_slot; 1067 } 1068 1069 btrfs_release_path(root, path); 1070 if (cow_start != (u64)-1) { 1071 ret = cow_file_range(inode, locked_page, cow_start, 1072 found_key.offset - 1, page_started, 1073 nr_written, 1); 1074 BUG_ON(ret); 1075 cow_start = (u64)-1; 1076 } 1077 1078 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1079 struct extent_map *em; 1080 struct extent_map_tree *em_tree; 1081 em_tree = &BTRFS_I(inode)->extent_tree; 1082 em = alloc_extent_map(GFP_NOFS); 1083 em->start = cur_offset; 1084 em->orig_start = em->start; 1085 em->len = num_bytes; 1086 em->block_len = num_bytes; 1087 em->block_start = disk_bytenr; 1088 em->bdev = root->fs_info->fs_devices->latest_bdev; 1089 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1090 while (1) { 1091 spin_lock(&em_tree->lock); 1092 ret = add_extent_mapping(em_tree, em); 1093 spin_unlock(&em_tree->lock); 1094 if (ret != -EEXIST) { 1095 free_extent_map(em); 1096 break; 1097 } 1098 btrfs_drop_extent_cache(inode, em->start, 1099 em->start + em->len - 1, 0); 1100 } 1101 type = BTRFS_ORDERED_PREALLOC; 1102 } else { 1103 type = BTRFS_ORDERED_NOCOW; 1104 } 1105 1106 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1107 num_bytes, num_bytes, type); 1108 BUG_ON(ret); 1109 1110 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1111 cur_offset, cur_offset + num_bytes - 1, 1112 locked_page, 1, 1, 1, 0, 0, 0); 1113 cur_offset = extent_end; 1114 if (cur_offset > end) 1115 break; 1116 } 1117 btrfs_release_path(root, path); 1118 1119 if (cur_offset <= end && cow_start == (u64)-1) 1120 cow_start = cur_offset; 1121 if (cow_start != (u64)-1) { 1122 ret = cow_file_range(inode, locked_page, cow_start, end, 1123 page_started, nr_written, 1); 1124 BUG_ON(ret); 1125 } 1126 1127 ret = btrfs_end_transaction(trans, root); 1128 BUG_ON(ret); 1129 btrfs_free_path(path); 1130 return 0; 1131 } 1132 1133 /* 1134 * extent_io.c call back to do delayed allocation processing 1135 */ 1136 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1137 u64 start, u64 end, int *page_started, 1138 unsigned long *nr_written) 1139 { 1140 int ret; 1141 1142 if (btrfs_test_flag(inode, NODATACOW)) 1143 ret = run_delalloc_nocow(inode, locked_page, start, end, 1144 page_started, 1, nr_written); 1145 else if (btrfs_test_flag(inode, PREALLOC)) 1146 ret = run_delalloc_nocow(inode, locked_page, start, end, 1147 page_started, 0, nr_written); 1148 else 1149 ret = cow_file_range_async(inode, locked_page, start, end, 1150 page_started, nr_written); 1151 1152 return ret; 1153 } 1154 1155 /* 1156 * extent_io.c set_bit_hook, used to track delayed allocation 1157 * bytes in this file, and to maintain the list of inodes that 1158 * have pending delalloc work to be done. 1159 */ 1160 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1161 unsigned long old, unsigned long bits) 1162 { 1163 /* 1164 * set_bit and clear bit hooks normally require _irqsave/restore 1165 * but in this case, we are only testeing for the DELALLOC 1166 * bit, which is only set or cleared with irqs on 1167 */ 1168 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1169 struct btrfs_root *root = BTRFS_I(inode)->root; 1170 spin_lock(&root->fs_info->delalloc_lock); 1171 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1172 root->fs_info->delalloc_bytes += end - start + 1; 1173 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1174 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1175 &root->fs_info->delalloc_inodes); 1176 } 1177 spin_unlock(&root->fs_info->delalloc_lock); 1178 } 1179 return 0; 1180 } 1181 1182 /* 1183 * extent_io.c clear_bit_hook, see set_bit_hook for why 1184 */ 1185 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, 1186 unsigned long old, unsigned long bits) 1187 { 1188 /* 1189 * set_bit and clear bit hooks normally require _irqsave/restore 1190 * but in this case, we are only testeing for the DELALLOC 1191 * bit, which is only set or cleared with irqs on 1192 */ 1193 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1194 struct btrfs_root *root = BTRFS_I(inode)->root; 1195 1196 spin_lock(&root->fs_info->delalloc_lock); 1197 if (end - start + 1 > root->fs_info->delalloc_bytes) { 1198 printk(KERN_INFO "btrfs warning: delalloc account " 1199 "%llu %llu\n", 1200 (unsigned long long)end - start + 1, 1201 (unsigned long long) 1202 root->fs_info->delalloc_bytes); 1203 root->fs_info->delalloc_bytes = 0; 1204 BTRFS_I(inode)->delalloc_bytes = 0; 1205 } else { 1206 root->fs_info->delalloc_bytes -= end - start + 1; 1207 BTRFS_I(inode)->delalloc_bytes -= end - start + 1; 1208 } 1209 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1210 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1211 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1212 } 1213 spin_unlock(&root->fs_info->delalloc_lock); 1214 } 1215 return 0; 1216 } 1217 1218 /* 1219 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1220 * we don't create bios that span stripes or chunks 1221 */ 1222 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1223 size_t size, struct bio *bio, 1224 unsigned long bio_flags) 1225 { 1226 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1227 struct btrfs_mapping_tree *map_tree; 1228 u64 logical = (u64)bio->bi_sector << 9; 1229 u64 length = 0; 1230 u64 map_length; 1231 int ret; 1232 1233 if (bio_flags & EXTENT_BIO_COMPRESSED) 1234 return 0; 1235 1236 length = bio->bi_size; 1237 map_tree = &root->fs_info->mapping_tree; 1238 map_length = length; 1239 ret = btrfs_map_block(map_tree, READ, logical, 1240 &map_length, NULL, 0); 1241 1242 if (map_length < length + size) 1243 return 1; 1244 return 0; 1245 } 1246 1247 /* 1248 * in order to insert checksums into the metadata in large chunks, 1249 * we wait until bio submission time. All the pages in the bio are 1250 * checksummed and sums are attached onto the ordered extent record. 1251 * 1252 * At IO completion time the cums attached on the ordered extent record 1253 * are inserted into the btree 1254 */ 1255 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1256 struct bio *bio, int mirror_num, 1257 unsigned long bio_flags) 1258 { 1259 struct btrfs_root *root = BTRFS_I(inode)->root; 1260 int ret = 0; 1261 1262 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1263 BUG_ON(ret); 1264 return 0; 1265 } 1266 1267 /* 1268 * in order to insert checksums into the metadata in large chunks, 1269 * we wait until bio submission time. All the pages in the bio are 1270 * checksummed and sums are attached onto the ordered extent record. 1271 * 1272 * At IO completion time the cums attached on the ordered extent record 1273 * are inserted into the btree 1274 */ 1275 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1276 int mirror_num, unsigned long bio_flags) 1277 { 1278 struct btrfs_root *root = BTRFS_I(inode)->root; 1279 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1280 } 1281 1282 /* 1283 * extent_io.c submission hook. This does the right thing for csum calculation 1284 * on write, or reading the csums from the tree before a read 1285 */ 1286 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1287 int mirror_num, unsigned long bio_flags) 1288 { 1289 struct btrfs_root *root = BTRFS_I(inode)->root; 1290 int ret = 0; 1291 int skip_sum; 1292 1293 skip_sum = btrfs_test_flag(inode, NODATASUM); 1294 1295 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1296 BUG_ON(ret); 1297 1298 if (!(rw & (1 << BIO_RW))) { 1299 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1300 return btrfs_submit_compressed_read(inode, bio, 1301 mirror_num, bio_flags); 1302 } else if (!skip_sum) 1303 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1304 goto mapit; 1305 } else if (!skip_sum) { 1306 /* csum items have already been cloned */ 1307 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1308 goto mapit; 1309 /* we're doing a write, do the async checksumming */ 1310 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1311 inode, rw, bio, mirror_num, 1312 bio_flags, __btrfs_submit_bio_start, 1313 __btrfs_submit_bio_done); 1314 } 1315 1316 mapit: 1317 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1318 } 1319 1320 /* 1321 * given a list of ordered sums record them in the inode. This happens 1322 * at IO completion time based on sums calculated at bio submission time. 1323 */ 1324 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1325 struct inode *inode, u64 file_offset, 1326 struct list_head *list) 1327 { 1328 struct list_head *cur; 1329 struct btrfs_ordered_sum *sum; 1330 1331 btrfs_set_trans_block_group(trans, inode); 1332 list_for_each(cur, list) { 1333 sum = list_entry(cur, struct btrfs_ordered_sum, list); 1334 btrfs_csum_file_blocks(trans, 1335 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1336 } 1337 return 0; 1338 } 1339 1340 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1341 { 1342 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1343 WARN_ON(1); 1344 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1345 GFP_NOFS); 1346 } 1347 1348 /* see btrfs_writepage_start_hook for details on why this is required */ 1349 struct btrfs_writepage_fixup { 1350 struct page *page; 1351 struct btrfs_work work; 1352 }; 1353 1354 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1355 { 1356 struct btrfs_writepage_fixup *fixup; 1357 struct btrfs_ordered_extent *ordered; 1358 struct page *page; 1359 struct inode *inode; 1360 u64 page_start; 1361 u64 page_end; 1362 1363 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1364 page = fixup->page; 1365 again: 1366 lock_page(page); 1367 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1368 ClearPageChecked(page); 1369 goto out_page; 1370 } 1371 1372 inode = page->mapping->host; 1373 page_start = page_offset(page); 1374 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1375 1376 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1377 1378 /* already ordered? We're done */ 1379 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 1380 EXTENT_ORDERED, 0)) { 1381 goto out; 1382 } 1383 1384 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1385 if (ordered) { 1386 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1387 page_end, GFP_NOFS); 1388 unlock_page(page); 1389 btrfs_start_ordered_extent(inode, ordered, 1); 1390 goto again; 1391 } 1392 1393 btrfs_set_extent_delalloc(inode, page_start, page_end); 1394 ClearPageChecked(page); 1395 out: 1396 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1397 out_page: 1398 unlock_page(page); 1399 page_cache_release(page); 1400 } 1401 1402 /* 1403 * There are a few paths in the higher layers of the kernel that directly 1404 * set the page dirty bit without asking the filesystem if it is a 1405 * good idea. This causes problems because we want to make sure COW 1406 * properly happens and the data=ordered rules are followed. 1407 * 1408 * In our case any range that doesn't have the ORDERED bit set 1409 * hasn't been properly setup for IO. We kick off an async process 1410 * to fix it up. The async helper will wait for ordered extents, set 1411 * the delalloc bit and make it safe to write the page. 1412 */ 1413 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1414 { 1415 struct inode *inode = page->mapping->host; 1416 struct btrfs_writepage_fixup *fixup; 1417 struct btrfs_root *root = BTRFS_I(inode)->root; 1418 int ret; 1419 1420 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1421 EXTENT_ORDERED, 0); 1422 if (ret) 1423 return 0; 1424 1425 if (PageChecked(page)) 1426 return -EAGAIN; 1427 1428 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1429 if (!fixup) 1430 return -EAGAIN; 1431 1432 SetPageChecked(page); 1433 page_cache_get(page); 1434 fixup->work.func = btrfs_writepage_fixup_worker; 1435 fixup->page = page; 1436 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1437 return -EAGAIN; 1438 } 1439 1440 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1441 struct inode *inode, u64 file_pos, 1442 u64 disk_bytenr, u64 disk_num_bytes, 1443 u64 num_bytes, u64 ram_bytes, 1444 u8 compression, u8 encryption, 1445 u16 other_encoding, int extent_type) 1446 { 1447 struct btrfs_root *root = BTRFS_I(inode)->root; 1448 struct btrfs_file_extent_item *fi; 1449 struct btrfs_path *path; 1450 struct extent_buffer *leaf; 1451 struct btrfs_key ins; 1452 u64 hint; 1453 int ret; 1454 1455 path = btrfs_alloc_path(); 1456 BUG_ON(!path); 1457 1458 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1459 file_pos + num_bytes, file_pos, &hint); 1460 BUG_ON(ret); 1461 1462 ins.objectid = inode->i_ino; 1463 ins.offset = file_pos; 1464 ins.type = BTRFS_EXTENT_DATA_KEY; 1465 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1466 BUG_ON(ret); 1467 leaf = path->nodes[0]; 1468 fi = btrfs_item_ptr(leaf, path->slots[0], 1469 struct btrfs_file_extent_item); 1470 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1471 btrfs_set_file_extent_type(leaf, fi, extent_type); 1472 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1473 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1474 btrfs_set_file_extent_offset(leaf, fi, 0); 1475 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1476 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1477 btrfs_set_file_extent_compression(leaf, fi, compression); 1478 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1479 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1480 btrfs_mark_buffer_dirty(leaf); 1481 1482 inode_add_bytes(inode, num_bytes); 1483 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); 1484 1485 ins.objectid = disk_bytenr; 1486 ins.offset = disk_num_bytes; 1487 ins.type = BTRFS_EXTENT_ITEM_KEY; 1488 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start, 1489 root->root_key.objectid, 1490 trans->transid, inode->i_ino, &ins); 1491 BUG_ON(ret); 1492 1493 btrfs_free_path(path); 1494 return 0; 1495 } 1496 1497 /* as ordered data IO finishes, this gets called so we can finish 1498 * an ordered extent if the range of bytes in the file it covers are 1499 * fully written. 1500 */ 1501 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1502 { 1503 struct btrfs_root *root = BTRFS_I(inode)->root; 1504 struct btrfs_trans_handle *trans; 1505 struct btrfs_ordered_extent *ordered_extent; 1506 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1507 int compressed = 0; 1508 int ret; 1509 1510 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1511 if (!ret) 1512 return 0; 1513 1514 trans = btrfs_join_transaction(root, 1); 1515 1516 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1517 BUG_ON(!ordered_extent); 1518 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) 1519 goto nocow; 1520 1521 lock_extent(io_tree, ordered_extent->file_offset, 1522 ordered_extent->file_offset + ordered_extent->len - 1, 1523 GFP_NOFS); 1524 1525 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1526 compressed = 1; 1527 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1528 BUG_ON(compressed); 1529 ret = btrfs_mark_extent_written(trans, root, inode, 1530 ordered_extent->file_offset, 1531 ordered_extent->file_offset + 1532 ordered_extent->len); 1533 BUG_ON(ret); 1534 } else { 1535 ret = insert_reserved_file_extent(trans, inode, 1536 ordered_extent->file_offset, 1537 ordered_extent->start, 1538 ordered_extent->disk_len, 1539 ordered_extent->len, 1540 ordered_extent->len, 1541 compressed, 0, 0, 1542 BTRFS_FILE_EXTENT_REG); 1543 BUG_ON(ret); 1544 } 1545 unlock_extent(io_tree, ordered_extent->file_offset, 1546 ordered_extent->file_offset + ordered_extent->len - 1, 1547 GFP_NOFS); 1548 nocow: 1549 add_pending_csums(trans, inode, ordered_extent->file_offset, 1550 &ordered_extent->list); 1551 1552 mutex_lock(&BTRFS_I(inode)->extent_mutex); 1553 btrfs_ordered_update_i_size(inode, ordered_extent); 1554 btrfs_update_inode(trans, root, inode); 1555 btrfs_remove_ordered_extent(inode, ordered_extent); 1556 mutex_unlock(&BTRFS_I(inode)->extent_mutex); 1557 1558 /* once for us */ 1559 btrfs_put_ordered_extent(ordered_extent); 1560 /* once for the tree */ 1561 btrfs_put_ordered_extent(ordered_extent); 1562 1563 btrfs_end_transaction(trans, root); 1564 return 0; 1565 } 1566 1567 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1568 struct extent_state *state, int uptodate) 1569 { 1570 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1571 } 1572 1573 /* 1574 * When IO fails, either with EIO or csum verification fails, we 1575 * try other mirrors that might have a good copy of the data. This 1576 * io_failure_record is used to record state as we go through all the 1577 * mirrors. If another mirror has good data, the page is set up to date 1578 * and things continue. If a good mirror can't be found, the original 1579 * bio end_io callback is called to indicate things have failed. 1580 */ 1581 struct io_failure_record { 1582 struct page *page; 1583 u64 start; 1584 u64 len; 1585 u64 logical; 1586 unsigned long bio_flags; 1587 int last_mirror; 1588 }; 1589 1590 static int btrfs_io_failed_hook(struct bio *failed_bio, 1591 struct page *page, u64 start, u64 end, 1592 struct extent_state *state) 1593 { 1594 struct io_failure_record *failrec = NULL; 1595 u64 private; 1596 struct extent_map *em; 1597 struct inode *inode = page->mapping->host; 1598 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1599 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1600 struct bio *bio; 1601 int num_copies; 1602 int ret; 1603 int rw; 1604 u64 logical; 1605 1606 ret = get_state_private(failure_tree, start, &private); 1607 if (ret) { 1608 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1609 if (!failrec) 1610 return -ENOMEM; 1611 failrec->start = start; 1612 failrec->len = end - start + 1; 1613 failrec->last_mirror = 0; 1614 failrec->bio_flags = 0; 1615 1616 spin_lock(&em_tree->lock); 1617 em = lookup_extent_mapping(em_tree, start, failrec->len); 1618 if (em->start > start || em->start + em->len < start) { 1619 free_extent_map(em); 1620 em = NULL; 1621 } 1622 spin_unlock(&em_tree->lock); 1623 1624 if (!em || IS_ERR(em)) { 1625 kfree(failrec); 1626 return -EIO; 1627 } 1628 logical = start - em->start; 1629 logical = em->block_start + logical; 1630 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1631 logical = em->block_start; 1632 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1633 } 1634 failrec->logical = logical; 1635 free_extent_map(em); 1636 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1637 EXTENT_DIRTY, GFP_NOFS); 1638 set_state_private(failure_tree, start, 1639 (u64)(unsigned long)failrec); 1640 } else { 1641 failrec = (struct io_failure_record *)(unsigned long)private; 1642 } 1643 num_copies = btrfs_num_copies( 1644 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1645 failrec->logical, failrec->len); 1646 failrec->last_mirror++; 1647 if (!state) { 1648 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1649 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1650 failrec->start, 1651 EXTENT_LOCKED); 1652 if (state && state->start != failrec->start) 1653 state = NULL; 1654 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1655 } 1656 if (!state || failrec->last_mirror > num_copies) { 1657 set_state_private(failure_tree, failrec->start, 0); 1658 clear_extent_bits(failure_tree, failrec->start, 1659 failrec->start + failrec->len - 1, 1660 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1661 kfree(failrec); 1662 return -EIO; 1663 } 1664 bio = bio_alloc(GFP_NOFS, 1); 1665 bio->bi_private = state; 1666 bio->bi_end_io = failed_bio->bi_end_io; 1667 bio->bi_sector = failrec->logical >> 9; 1668 bio->bi_bdev = failed_bio->bi_bdev; 1669 bio->bi_size = 0; 1670 1671 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1672 if (failed_bio->bi_rw & (1 << BIO_RW)) 1673 rw = WRITE; 1674 else 1675 rw = READ; 1676 1677 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1678 failrec->last_mirror, 1679 failrec->bio_flags); 1680 return 0; 1681 } 1682 1683 /* 1684 * each time an IO finishes, we do a fast check in the IO failure tree 1685 * to see if we need to process or clean up an io_failure_record 1686 */ 1687 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1688 { 1689 u64 private; 1690 u64 private_failure; 1691 struct io_failure_record *failure; 1692 int ret; 1693 1694 private = 0; 1695 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1696 (u64)-1, 1, EXTENT_DIRTY)) { 1697 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1698 start, &private_failure); 1699 if (ret == 0) { 1700 failure = (struct io_failure_record *)(unsigned long) 1701 private_failure; 1702 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1703 failure->start, 0); 1704 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1705 failure->start, 1706 failure->start + failure->len - 1, 1707 EXTENT_DIRTY | EXTENT_LOCKED, 1708 GFP_NOFS); 1709 kfree(failure); 1710 } 1711 } 1712 return 0; 1713 } 1714 1715 /* 1716 * when reads are done, we need to check csums to verify the data is correct 1717 * if there's a match, we allow the bio to finish. If not, we go through 1718 * the io_failure_record routines to find good copies 1719 */ 1720 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1721 struct extent_state *state) 1722 { 1723 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1724 struct inode *inode = page->mapping->host; 1725 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1726 char *kaddr; 1727 u64 private = ~(u32)0; 1728 int ret; 1729 struct btrfs_root *root = BTRFS_I(inode)->root; 1730 u32 csum = ~(u32)0; 1731 unsigned long flags; 1732 1733 if (PageChecked(page)) { 1734 ClearPageChecked(page); 1735 goto good; 1736 } 1737 if (btrfs_test_flag(inode, NODATASUM)) 1738 return 0; 1739 1740 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1741 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { 1742 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1743 GFP_NOFS); 1744 return 0; 1745 } 1746 1747 if (state && state->start == start) { 1748 private = state->private; 1749 ret = 0; 1750 } else { 1751 ret = get_state_private(io_tree, start, &private); 1752 } 1753 local_irq_save(flags); 1754 kaddr = kmap_atomic(page, KM_IRQ0); 1755 if (ret) 1756 goto zeroit; 1757 1758 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1759 btrfs_csum_final(csum, (char *)&csum); 1760 if (csum != private) 1761 goto zeroit; 1762 1763 kunmap_atomic(kaddr, KM_IRQ0); 1764 local_irq_restore(flags); 1765 good: 1766 /* if the io failure tree for this inode is non-empty, 1767 * check to see if we've recovered from a failed IO 1768 */ 1769 btrfs_clean_io_failures(inode, start); 1770 return 0; 1771 1772 zeroit: 1773 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1774 "private %llu\n", page->mapping->host->i_ino, 1775 (unsigned long long)start, csum, 1776 (unsigned long long)private); 1777 memset(kaddr + offset, 1, end - start + 1); 1778 flush_dcache_page(page); 1779 kunmap_atomic(kaddr, KM_IRQ0); 1780 local_irq_restore(flags); 1781 if (private == 0) 1782 return 0; 1783 return -EIO; 1784 } 1785 1786 /* 1787 * This creates an orphan entry for the given inode in case something goes 1788 * wrong in the middle of an unlink/truncate. 1789 */ 1790 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1791 { 1792 struct btrfs_root *root = BTRFS_I(inode)->root; 1793 int ret = 0; 1794 1795 spin_lock(&root->list_lock); 1796 1797 /* already on the orphan list, we're good */ 1798 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 1799 spin_unlock(&root->list_lock); 1800 return 0; 1801 } 1802 1803 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1804 1805 spin_unlock(&root->list_lock); 1806 1807 /* 1808 * insert an orphan item to track this unlinked/truncated file 1809 */ 1810 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 1811 1812 return ret; 1813 } 1814 1815 /* 1816 * We have done the truncate/delete so we can go ahead and remove the orphan 1817 * item for this particular inode. 1818 */ 1819 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 1820 { 1821 struct btrfs_root *root = BTRFS_I(inode)->root; 1822 int ret = 0; 1823 1824 spin_lock(&root->list_lock); 1825 1826 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 1827 spin_unlock(&root->list_lock); 1828 return 0; 1829 } 1830 1831 list_del_init(&BTRFS_I(inode)->i_orphan); 1832 if (!trans) { 1833 spin_unlock(&root->list_lock); 1834 return 0; 1835 } 1836 1837 spin_unlock(&root->list_lock); 1838 1839 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 1840 1841 return ret; 1842 } 1843 1844 /* 1845 * this cleans up any orphans that may be left on the list from the last use 1846 * of this root. 1847 */ 1848 void btrfs_orphan_cleanup(struct btrfs_root *root) 1849 { 1850 struct btrfs_path *path; 1851 struct extent_buffer *leaf; 1852 struct btrfs_item *item; 1853 struct btrfs_key key, found_key; 1854 struct btrfs_trans_handle *trans; 1855 struct inode *inode; 1856 int ret = 0, nr_unlink = 0, nr_truncate = 0; 1857 1858 path = btrfs_alloc_path(); 1859 if (!path) 1860 return; 1861 path->reada = -1; 1862 1863 key.objectid = BTRFS_ORPHAN_OBJECTID; 1864 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1865 key.offset = (u64)-1; 1866 1867 1868 while (1) { 1869 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1870 if (ret < 0) { 1871 printk(KERN_ERR "Error searching slot for orphan: %d" 1872 "\n", ret); 1873 break; 1874 } 1875 1876 /* 1877 * if ret == 0 means we found what we were searching for, which 1878 * is weird, but possible, so only screw with path if we didnt 1879 * find the key and see if we have stuff that matches 1880 */ 1881 if (ret > 0) { 1882 if (path->slots[0] == 0) 1883 break; 1884 path->slots[0]--; 1885 } 1886 1887 /* pull out the item */ 1888 leaf = path->nodes[0]; 1889 item = btrfs_item_nr(leaf, path->slots[0]); 1890 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1891 1892 /* make sure the item matches what we want */ 1893 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 1894 break; 1895 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 1896 break; 1897 1898 /* release the path since we're done with it */ 1899 btrfs_release_path(root, path); 1900 1901 /* 1902 * this is where we are basically btrfs_lookup, without the 1903 * crossing root thing. we store the inode number in the 1904 * offset of the orphan item. 1905 */ 1906 inode = btrfs_iget_locked(root->fs_info->sb, 1907 found_key.offset, root); 1908 if (!inode) 1909 break; 1910 1911 if (inode->i_state & I_NEW) { 1912 BTRFS_I(inode)->root = root; 1913 1914 /* have to set the location manually */ 1915 BTRFS_I(inode)->location.objectid = inode->i_ino; 1916 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 1917 BTRFS_I(inode)->location.offset = 0; 1918 1919 btrfs_read_locked_inode(inode); 1920 unlock_new_inode(inode); 1921 } 1922 1923 /* 1924 * add this inode to the orphan list so btrfs_orphan_del does 1925 * the proper thing when we hit it 1926 */ 1927 spin_lock(&root->list_lock); 1928 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1929 spin_unlock(&root->list_lock); 1930 1931 /* 1932 * if this is a bad inode, means we actually succeeded in 1933 * removing the inode, but not the orphan record, which means 1934 * we need to manually delete the orphan since iput will just 1935 * do a destroy_inode 1936 */ 1937 if (is_bad_inode(inode)) { 1938 trans = btrfs_start_transaction(root, 1); 1939 btrfs_orphan_del(trans, inode); 1940 btrfs_end_transaction(trans, root); 1941 iput(inode); 1942 continue; 1943 } 1944 1945 /* if we have links, this was a truncate, lets do that */ 1946 if (inode->i_nlink) { 1947 nr_truncate++; 1948 btrfs_truncate(inode); 1949 } else { 1950 nr_unlink++; 1951 } 1952 1953 /* this will do delete_inode and everything for us */ 1954 iput(inode); 1955 } 1956 1957 if (nr_unlink) 1958 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 1959 if (nr_truncate) 1960 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 1961 1962 btrfs_free_path(path); 1963 } 1964 1965 /* 1966 * read an inode from the btree into the in-memory inode 1967 */ 1968 void btrfs_read_locked_inode(struct inode *inode) 1969 { 1970 struct btrfs_path *path; 1971 struct extent_buffer *leaf; 1972 struct btrfs_inode_item *inode_item; 1973 struct btrfs_timespec *tspec; 1974 struct btrfs_root *root = BTRFS_I(inode)->root; 1975 struct btrfs_key location; 1976 u64 alloc_group_block; 1977 u32 rdev; 1978 int ret; 1979 1980 path = btrfs_alloc_path(); 1981 BUG_ON(!path); 1982 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 1983 1984 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 1985 if (ret) 1986 goto make_bad; 1987 1988 leaf = path->nodes[0]; 1989 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1990 struct btrfs_inode_item); 1991 1992 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 1993 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 1994 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 1995 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 1996 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 1997 1998 tspec = btrfs_inode_atime(inode_item); 1999 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2000 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2001 2002 tspec = btrfs_inode_mtime(inode_item); 2003 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2004 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2005 2006 tspec = btrfs_inode_ctime(inode_item); 2007 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2008 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2009 2010 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2011 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2012 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2013 inode->i_generation = BTRFS_I(inode)->generation; 2014 inode->i_rdev = 0; 2015 rdev = btrfs_inode_rdev(leaf, inode_item); 2016 2017 BTRFS_I(inode)->index_cnt = (u64)-1; 2018 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2019 2020 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2021 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2022 alloc_group_block, 0); 2023 btrfs_free_path(path); 2024 inode_item = NULL; 2025 2026 switch (inode->i_mode & S_IFMT) { 2027 case S_IFREG: 2028 inode->i_mapping->a_ops = &btrfs_aops; 2029 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2030 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2031 inode->i_fop = &btrfs_file_operations; 2032 inode->i_op = &btrfs_file_inode_operations; 2033 break; 2034 case S_IFDIR: 2035 inode->i_fop = &btrfs_dir_file_operations; 2036 if (root == root->fs_info->tree_root) 2037 inode->i_op = &btrfs_dir_ro_inode_operations; 2038 else 2039 inode->i_op = &btrfs_dir_inode_operations; 2040 break; 2041 case S_IFLNK: 2042 inode->i_op = &btrfs_symlink_inode_operations; 2043 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2044 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2045 break; 2046 default: 2047 init_special_inode(inode, inode->i_mode, rdev); 2048 break; 2049 } 2050 return; 2051 2052 make_bad: 2053 btrfs_free_path(path); 2054 make_bad_inode(inode); 2055 } 2056 2057 /* 2058 * given a leaf and an inode, copy the inode fields into the leaf 2059 */ 2060 static void fill_inode_item(struct btrfs_trans_handle *trans, 2061 struct extent_buffer *leaf, 2062 struct btrfs_inode_item *item, 2063 struct inode *inode) 2064 { 2065 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2066 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2067 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2068 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2069 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2070 2071 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2072 inode->i_atime.tv_sec); 2073 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2074 inode->i_atime.tv_nsec); 2075 2076 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2077 inode->i_mtime.tv_sec); 2078 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2079 inode->i_mtime.tv_nsec); 2080 2081 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2082 inode->i_ctime.tv_sec); 2083 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2084 inode->i_ctime.tv_nsec); 2085 2086 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2087 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2088 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2089 btrfs_set_inode_transid(leaf, item, trans->transid); 2090 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2091 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2092 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2093 } 2094 2095 /* 2096 * copy everything in the in-memory inode into the btree. 2097 */ 2098 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2099 struct btrfs_root *root, struct inode *inode) 2100 { 2101 struct btrfs_inode_item *inode_item; 2102 struct btrfs_path *path; 2103 struct extent_buffer *leaf; 2104 int ret; 2105 2106 path = btrfs_alloc_path(); 2107 BUG_ON(!path); 2108 ret = btrfs_lookup_inode(trans, root, path, 2109 &BTRFS_I(inode)->location, 1); 2110 if (ret) { 2111 if (ret > 0) 2112 ret = -ENOENT; 2113 goto failed; 2114 } 2115 2116 leaf = path->nodes[0]; 2117 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2118 struct btrfs_inode_item); 2119 2120 fill_inode_item(trans, leaf, inode_item, inode); 2121 btrfs_mark_buffer_dirty(leaf); 2122 btrfs_set_inode_last_trans(trans, inode); 2123 ret = 0; 2124 failed: 2125 btrfs_free_path(path); 2126 return ret; 2127 } 2128 2129 2130 /* 2131 * unlink helper that gets used here in inode.c and in the tree logging 2132 * recovery code. It remove a link in a directory with a given name, and 2133 * also drops the back refs in the inode to the directory 2134 */ 2135 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2136 struct btrfs_root *root, 2137 struct inode *dir, struct inode *inode, 2138 const char *name, int name_len) 2139 { 2140 struct btrfs_path *path; 2141 int ret = 0; 2142 struct extent_buffer *leaf; 2143 struct btrfs_dir_item *di; 2144 struct btrfs_key key; 2145 u64 index; 2146 2147 path = btrfs_alloc_path(); 2148 if (!path) { 2149 ret = -ENOMEM; 2150 goto err; 2151 } 2152 2153 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2154 name, name_len, -1); 2155 if (IS_ERR(di)) { 2156 ret = PTR_ERR(di); 2157 goto err; 2158 } 2159 if (!di) { 2160 ret = -ENOENT; 2161 goto err; 2162 } 2163 leaf = path->nodes[0]; 2164 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2165 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2166 if (ret) 2167 goto err; 2168 btrfs_release_path(root, path); 2169 2170 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2171 inode->i_ino, 2172 dir->i_ino, &index); 2173 if (ret) { 2174 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2175 "inode %lu parent %lu\n", name_len, name, 2176 inode->i_ino, dir->i_ino); 2177 goto err; 2178 } 2179 2180 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2181 index, name, name_len, -1); 2182 if (IS_ERR(di)) { 2183 ret = PTR_ERR(di); 2184 goto err; 2185 } 2186 if (!di) { 2187 ret = -ENOENT; 2188 goto err; 2189 } 2190 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2191 btrfs_release_path(root, path); 2192 2193 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2194 inode, dir->i_ino); 2195 BUG_ON(ret != 0 && ret != -ENOENT); 2196 if (ret != -ENOENT) 2197 BTRFS_I(dir)->log_dirty_trans = trans->transid; 2198 2199 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2200 dir, index); 2201 BUG_ON(ret); 2202 err: 2203 btrfs_free_path(path); 2204 if (ret) 2205 goto out; 2206 2207 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2208 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2209 btrfs_update_inode(trans, root, dir); 2210 btrfs_drop_nlink(inode); 2211 ret = btrfs_update_inode(trans, root, inode); 2212 dir->i_sb->s_dirt = 1; 2213 out: 2214 return ret; 2215 } 2216 2217 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2218 { 2219 struct btrfs_root *root; 2220 struct btrfs_trans_handle *trans; 2221 struct inode *inode = dentry->d_inode; 2222 int ret; 2223 unsigned long nr = 0; 2224 2225 root = BTRFS_I(dir)->root; 2226 2227 ret = btrfs_check_free_space(root, 1, 1); 2228 if (ret) 2229 goto fail; 2230 2231 trans = btrfs_start_transaction(root, 1); 2232 2233 btrfs_set_trans_block_group(trans, dir); 2234 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2235 dentry->d_name.name, dentry->d_name.len); 2236 2237 if (inode->i_nlink == 0) 2238 ret = btrfs_orphan_add(trans, inode); 2239 2240 nr = trans->blocks_used; 2241 2242 btrfs_end_transaction_throttle(trans, root); 2243 fail: 2244 btrfs_btree_balance_dirty(root, nr); 2245 return ret; 2246 } 2247 2248 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2249 { 2250 struct inode *inode = dentry->d_inode; 2251 int err = 0; 2252 int ret; 2253 struct btrfs_root *root = BTRFS_I(dir)->root; 2254 struct btrfs_trans_handle *trans; 2255 unsigned long nr = 0; 2256 2257 /* 2258 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir 2259 * the root of a subvolume or snapshot 2260 */ 2261 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2262 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { 2263 return -ENOTEMPTY; 2264 } 2265 2266 ret = btrfs_check_free_space(root, 1, 1); 2267 if (ret) 2268 goto fail; 2269 2270 trans = btrfs_start_transaction(root, 1); 2271 btrfs_set_trans_block_group(trans, dir); 2272 2273 err = btrfs_orphan_add(trans, inode); 2274 if (err) 2275 goto fail_trans; 2276 2277 /* now the directory is empty */ 2278 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2279 dentry->d_name.name, dentry->d_name.len); 2280 if (!err) 2281 btrfs_i_size_write(inode, 0); 2282 2283 fail_trans: 2284 nr = trans->blocks_used; 2285 ret = btrfs_end_transaction_throttle(trans, root); 2286 fail: 2287 btrfs_btree_balance_dirty(root, nr); 2288 2289 if (ret && !err) 2290 err = ret; 2291 return err; 2292 } 2293 2294 #if 0 2295 /* 2296 * when truncating bytes in a file, it is possible to avoid reading 2297 * the leaves that contain only checksum items. This can be the 2298 * majority of the IO required to delete a large file, but it must 2299 * be done carefully. 2300 * 2301 * The keys in the level just above the leaves are checked to make sure 2302 * the lowest key in a given leaf is a csum key, and starts at an offset 2303 * after the new size. 2304 * 2305 * Then the key for the next leaf is checked to make sure it also has 2306 * a checksum item for the same file. If it does, we know our target leaf 2307 * contains only checksum items, and it can be safely freed without reading 2308 * it. 2309 * 2310 * This is just an optimization targeted at large files. It may do 2311 * nothing. It will return 0 unless things went badly. 2312 */ 2313 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2314 struct btrfs_root *root, 2315 struct btrfs_path *path, 2316 struct inode *inode, u64 new_size) 2317 { 2318 struct btrfs_key key; 2319 int ret; 2320 int nritems; 2321 struct btrfs_key found_key; 2322 struct btrfs_key other_key; 2323 struct btrfs_leaf_ref *ref; 2324 u64 leaf_gen; 2325 u64 leaf_start; 2326 2327 path->lowest_level = 1; 2328 key.objectid = inode->i_ino; 2329 key.type = BTRFS_CSUM_ITEM_KEY; 2330 key.offset = new_size; 2331 again: 2332 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2333 if (ret < 0) 2334 goto out; 2335 2336 if (path->nodes[1] == NULL) { 2337 ret = 0; 2338 goto out; 2339 } 2340 ret = 0; 2341 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2342 nritems = btrfs_header_nritems(path->nodes[1]); 2343 2344 if (!nritems) 2345 goto out; 2346 2347 if (path->slots[1] >= nritems) 2348 goto next_node; 2349 2350 /* did we find a key greater than anything we want to delete? */ 2351 if (found_key.objectid > inode->i_ino || 2352 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2353 goto out; 2354 2355 /* we check the next key in the node to make sure the leave contains 2356 * only checksum items. This comparison doesn't work if our 2357 * leaf is the last one in the node 2358 */ 2359 if (path->slots[1] + 1 >= nritems) { 2360 next_node: 2361 /* search forward from the last key in the node, this 2362 * will bring us into the next node in the tree 2363 */ 2364 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2365 2366 /* unlikely, but we inc below, so check to be safe */ 2367 if (found_key.offset == (u64)-1) 2368 goto out; 2369 2370 /* search_forward needs a path with locks held, do the 2371 * search again for the original key. It is possible 2372 * this will race with a balance and return a path that 2373 * we could modify, but this drop is just an optimization 2374 * and is allowed to miss some leaves. 2375 */ 2376 btrfs_release_path(root, path); 2377 found_key.offset++; 2378 2379 /* setup a max key for search_forward */ 2380 other_key.offset = (u64)-1; 2381 other_key.type = key.type; 2382 other_key.objectid = key.objectid; 2383 2384 path->keep_locks = 1; 2385 ret = btrfs_search_forward(root, &found_key, &other_key, 2386 path, 0, 0); 2387 path->keep_locks = 0; 2388 if (ret || found_key.objectid != key.objectid || 2389 found_key.type != key.type) { 2390 ret = 0; 2391 goto out; 2392 } 2393 2394 key.offset = found_key.offset; 2395 btrfs_release_path(root, path); 2396 cond_resched(); 2397 goto again; 2398 } 2399 2400 /* we know there's one more slot after us in the tree, 2401 * read that key so we can verify it is also a checksum item 2402 */ 2403 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2404 2405 if (found_key.objectid < inode->i_ino) 2406 goto next_key; 2407 2408 if (found_key.type != key.type || found_key.offset < new_size) 2409 goto next_key; 2410 2411 /* 2412 * if the key for the next leaf isn't a csum key from this objectid, 2413 * we can't be sure there aren't good items inside this leaf. 2414 * Bail out 2415 */ 2416 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2417 goto out; 2418 2419 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2420 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2421 /* 2422 * it is safe to delete this leaf, it contains only 2423 * csum items from this inode at an offset >= new_size 2424 */ 2425 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2426 BUG_ON(ret); 2427 2428 if (root->ref_cows && leaf_gen < trans->transid) { 2429 ref = btrfs_alloc_leaf_ref(root, 0); 2430 if (ref) { 2431 ref->root_gen = root->root_key.offset; 2432 ref->bytenr = leaf_start; 2433 ref->owner = 0; 2434 ref->generation = leaf_gen; 2435 ref->nritems = 0; 2436 2437 ret = btrfs_add_leaf_ref(root, ref, 0); 2438 WARN_ON(ret); 2439 btrfs_free_leaf_ref(root, ref); 2440 } else { 2441 WARN_ON(1); 2442 } 2443 } 2444 next_key: 2445 btrfs_release_path(root, path); 2446 2447 if (other_key.objectid == inode->i_ino && 2448 other_key.type == key.type && other_key.offset > key.offset) { 2449 key.offset = other_key.offset; 2450 cond_resched(); 2451 goto again; 2452 } 2453 ret = 0; 2454 out: 2455 /* fixup any changes we've made to the path */ 2456 path->lowest_level = 0; 2457 path->keep_locks = 0; 2458 btrfs_release_path(root, path); 2459 return ret; 2460 } 2461 2462 #endif 2463 2464 /* 2465 * this can truncate away extent items, csum items and directory items. 2466 * It starts at a high offset and removes keys until it can't find 2467 * any higher than new_size 2468 * 2469 * csum items that cross the new i_size are truncated to the new size 2470 * as well. 2471 * 2472 * min_type is the minimum key type to truncate down to. If set to 0, this 2473 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2474 */ 2475 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2476 struct btrfs_root *root, 2477 struct inode *inode, 2478 u64 new_size, u32 min_type) 2479 { 2480 int ret; 2481 struct btrfs_path *path; 2482 struct btrfs_key key; 2483 struct btrfs_key found_key; 2484 u32 found_type; 2485 struct extent_buffer *leaf; 2486 struct btrfs_file_extent_item *fi; 2487 u64 extent_start = 0; 2488 u64 extent_num_bytes = 0; 2489 u64 item_end = 0; 2490 u64 root_gen = 0; 2491 u64 root_owner = 0; 2492 int found_extent; 2493 int del_item; 2494 int pending_del_nr = 0; 2495 int pending_del_slot = 0; 2496 int extent_type = -1; 2497 int encoding; 2498 u64 mask = root->sectorsize - 1; 2499 2500 if (root->ref_cows) 2501 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2502 path = btrfs_alloc_path(); 2503 path->reada = -1; 2504 BUG_ON(!path); 2505 2506 /* FIXME, add redo link to tree so we don't leak on crash */ 2507 key.objectid = inode->i_ino; 2508 key.offset = (u64)-1; 2509 key.type = (u8)-1; 2510 2511 btrfs_init_path(path); 2512 2513 search_again: 2514 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2515 if (ret < 0) 2516 goto error; 2517 2518 if (ret > 0) { 2519 /* there are no items in the tree for us to truncate, we're 2520 * done 2521 */ 2522 if (path->slots[0] == 0) { 2523 ret = 0; 2524 goto error; 2525 } 2526 path->slots[0]--; 2527 } 2528 2529 while (1) { 2530 fi = NULL; 2531 leaf = path->nodes[0]; 2532 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2533 found_type = btrfs_key_type(&found_key); 2534 encoding = 0; 2535 2536 if (found_key.objectid != inode->i_ino) 2537 break; 2538 2539 if (found_type < min_type) 2540 break; 2541 2542 item_end = found_key.offset; 2543 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2544 fi = btrfs_item_ptr(leaf, path->slots[0], 2545 struct btrfs_file_extent_item); 2546 extent_type = btrfs_file_extent_type(leaf, fi); 2547 encoding = btrfs_file_extent_compression(leaf, fi); 2548 encoding |= btrfs_file_extent_encryption(leaf, fi); 2549 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2550 2551 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2552 item_end += 2553 btrfs_file_extent_num_bytes(leaf, fi); 2554 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2555 item_end += btrfs_file_extent_inline_len(leaf, 2556 fi); 2557 } 2558 item_end--; 2559 } 2560 if (item_end < new_size) { 2561 if (found_type == BTRFS_DIR_ITEM_KEY) 2562 found_type = BTRFS_INODE_ITEM_KEY; 2563 else if (found_type == BTRFS_EXTENT_ITEM_KEY) 2564 found_type = BTRFS_EXTENT_DATA_KEY; 2565 else if (found_type == BTRFS_EXTENT_DATA_KEY) 2566 found_type = BTRFS_XATTR_ITEM_KEY; 2567 else if (found_type == BTRFS_XATTR_ITEM_KEY) 2568 found_type = BTRFS_INODE_REF_KEY; 2569 else if (found_type) 2570 found_type--; 2571 else 2572 break; 2573 btrfs_set_key_type(&key, found_type); 2574 goto next; 2575 } 2576 if (found_key.offset >= new_size) 2577 del_item = 1; 2578 else 2579 del_item = 0; 2580 found_extent = 0; 2581 2582 /* FIXME, shrink the extent if the ref count is only 1 */ 2583 if (found_type != BTRFS_EXTENT_DATA_KEY) 2584 goto delete; 2585 2586 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2587 u64 num_dec; 2588 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 2589 if (!del_item && !encoding) { 2590 u64 orig_num_bytes = 2591 btrfs_file_extent_num_bytes(leaf, fi); 2592 extent_num_bytes = new_size - 2593 found_key.offset + root->sectorsize - 1; 2594 extent_num_bytes = extent_num_bytes & 2595 ~((u64)root->sectorsize - 1); 2596 btrfs_set_file_extent_num_bytes(leaf, fi, 2597 extent_num_bytes); 2598 num_dec = (orig_num_bytes - 2599 extent_num_bytes); 2600 if (root->ref_cows && extent_start != 0) 2601 inode_sub_bytes(inode, num_dec); 2602 btrfs_mark_buffer_dirty(leaf); 2603 } else { 2604 extent_num_bytes = 2605 btrfs_file_extent_disk_num_bytes(leaf, 2606 fi); 2607 /* FIXME blocksize != 4096 */ 2608 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 2609 if (extent_start != 0) { 2610 found_extent = 1; 2611 if (root->ref_cows) 2612 inode_sub_bytes(inode, num_dec); 2613 } 2614 root_gen = btrfs_header_generation(leaf); 2615 root_owner = btrfs_header_owner(leaf); 2616 } 2617 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2618 /* 2619 * we can't truncate inline items that have had 2620 * special encodings 2621 */ 2622 if (!del_item && 2623 btrfs_file_extent_compression(leaf, fi) == 0 && 2624 btrfs_file_extent_encryption(leaf, fi) == 0 && 2625 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 2626 u32 size = new_size - found_key.offset; 2627 2628 if (root->ref_cows) { 2629 inode_sub_bytes(inode, item_end + 1 - 2630 new_size); 2631 } 2632 size = 2633 btrfs_file_extent_calc_inline_size(size); 2634 ret = btrfs_truncate_item(trans, root, path, 2635 size, 1); 2636 BUG_ON(ret); 2637 } else if (root->ref_cows) { 2638 inode_sub_bytes(inode, item_end + 1 - 2639 found_key.offset); 2640 } 2641 } 2642 delete: 2643 if (del_item) { 2644 if (!pending_del_nr) { 2645 /* no pending yet, add ourselves */ 2646 pending_del_slot = path->slots[0]; 2647 pending_del_nr = 1; 2648 } else if (pending_del_nr && 2649 path->slots[0] + 1 == pending_del_slot) { 2650 /* hop on the pending chunk */ 2651 pending_del_nr++; 2652 pending_del_slot = path->slots[0]; 2653 } else { 2654 BUG(); 2655 } 2656 } else { 2657 break; 2658 } 2659 if (found_extent) { 2660 ret = btrfs_free_extent(trans, root, extent_start, 2661 extent_num_bytes, 2662 leaf->start, root_owner, 2663 root_gen, inode->i_ino, 0); 2664 BUG_ON(ret); 2665 } 2666 next: 2667 if (path->slots[0] == 0) { 2668 if (pending_del_nr) 2669 goto del_pending; 2670 btrfs_release_path(root, path); 2671 goto search_again; 2672 } 2673 2674 path->slots[0]--; 2675 if (pending_del_nr && 2676 path->slots[0] + 1 != pending_del_slot) { 2677 struct btrfs_key debug; 2678 del_pending: 2679 btrfs_item_key_to_cpu(path->nodes[0], &debug, 2680 pending_del_slot); 2681 ret = btrfs_del_items(trans, root, path, 2682 pending_del_slot, 2683 pending_del_nr); 2684 BUG_ON(ret); 2685 pending_del_nr = 0; 2686 btrfs_release_path(root, path); 2687 goto search_again; 2688 } 2689 } 2690 ret = 0; 2691 error: 2692 if (pending_del_nr) { 2693 ret = btrfs_del_items(trans, root, path, pending_del_slot, 2694 pending_del_nr); 2695 } 2696 btrfs_free_path(path); 2697 inode->i_sb->s_dirt = 1; 2698 return ret; 2699 } 2700 2701 /* 2702 * taken from block_truncate_page, but does cow as it zeros out 2703 * any bytes left in the last page in the file. 2704 */ 2705 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 2706 { 2707 struct inode *inode = mapping->host; 2708 struct btrfs_root *root = BTRFS_I(inode)->root; 2709 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2710 struct btrfs_ordered_extent *ordered; 2711 char *kaddr; 2712 u32 blocksize = root->sectorsize; 2713 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2714 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2715 struct page *page; 2716 int ret = 0; 2717 u64 page_start; 2718 u64 page_end; 2719 2720 if ((offset & (blocksize - 1)) == 0) 2721 goto out; 2722 2723 ret = -ENOMEM; 2724 again: 2725 page = grab_cache_page(mapping, index); 2726 if (!page) 2727 goto out; 2728 2729 page_start = page_offset(page); 2730 page_end = page_start + PAGE_CACHE_SIZE - 1; 2731 2732 if (!PageUptodate(page)) { 2733 ret = btrfs_readpage(NULL, page); 2734 lock_page(page); 2735 if (page->mapping != mapping) { 2736 unlock_page(page); 2737 page_cache_release(page); 2738 goto again; 2739 } 2740 if (!PageUptodate(page)) { 2741 ret = -EIO; 2742 goto out_unlock; 2743 } 2744 } 2745 wait_on_page_writeback(page); 2746 2747 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 2748 set_page_extent_mapped(page); 2749 2750 ordered = btrfs_lookup_ordered_extent(inode, page_start); 2751 if (ordered) { 2752 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2753 unlock_page(page); 2754 page_cache_release(page); 2755 btrfs_start_ordered_extent(inode, ordered, 1); 2756 btrfs_put_ordered_extent(ordered); 2757 goto again; 2758 } 2759 2760 btrfs_set_extent_delalloc(inode, page_start, page_end); 2761 ret = 0; 2762 if (offset != PAGE_CACHE_SIZE) { 2763 kaddr = kmap(page); 2764 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2765 flush_dcache_page(page); 2766 kunmap(page); 2767 } 2768 ClearPageChecked(page); 2769 set_page_dirty(page); 2770 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2771 2772 out_unlock: 2773 unlock_page(page); 2774 page_cache_release(page); 2775 out: 2776 return ret; 2777 } 2778 2779 int btrfs_cont_expand(struct inode *inode, loff_t size) 2780 { 2781 struct btrfs_trans_handle *trans; 2782 struct btrfs_root *root = BTRFS_I(inode)->root; 2783 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2784 struct extent_map *em; 2785 u64 mask = root->sectorsize - 1; 2786 u64 hole_start = (inode->i_size + mask) & ~mask; 2787 u64 block_end = (size + mask) & ~mask; 2788 u64 last_byte; 2789 u64 cur_offset; 2790 u64 hole_size; 2791 int err; 2792 2793 if (size <= hole_start) 2794 return 0; 2795 2796 err = btrfs_check_free_space(root, 1, 0); 2797 if (err) 2798 return err; 2799 2800 btrfs_truncate_page(inode->i_mapping, inode->i_size); 2801 2802 while (1) { 2803 struct btrfs_ordered_extent *ordered; 2804 btrfs_wait_ordered_range(inode, hole_start, 2805 block_end - hole_start); 2806 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2807 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 2808 if (!ordered) 2809 break; 2810 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2811 btrfs_put_ordered_extent(ordered); 2812 } 2813 2814 trans = btrfs_start_transaction(root, 1); 2815 btrfs_set_trans_block_group(trans, inode); 2816 2817 cur_offset = hole_start; 2818 while (1) { 2819 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2820 block_end - cur_offset, 0); 2821 BUG_ON(IS_ERR(em) || !em); 2822 last_byte = min(extent_map_end(em), block_end); 2823 last_byte = (last_byte + mask) & ~mask; 2824 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2825 u64 hint_byte = 0; 2826 hole_size = last_byte - cur_offset; 2827 err = btrfs_drop_extents(trans, root, inode, 2828 cur_offset, 2829 cur_offset + hole_size, 2830 cur_offset, &hint_byte); 2831 if (err) 2832 break; 2833 err = btrfs_insert_file_extent(trans, root, 2834 inode->i_ino, cur_offset, 0, 2835 0, hole_size, 0, hole_size, 2836 0, 0, 0); 2837 btrfs_drop_extent_cache(inode, hole_start, 2838 last_byte - 1, 0); 2839 } 2840 free_extent_map(em); 2841 cur_offset = last_byte; 2842 if (err || cur_offset >= block_end) 2843 break; 2844 } 2845 2846 btrfs_end_transaction(trans, root); 2847 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2848 return err; 2849 } 2850 2851 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 2852 { 2853 struct inode *inode = dentry->d_inode; 2854 int err; 2855 2856 err = inode_change_ok(inode, attr); 2857 if (err) 2858 return err; 2859 2860 if (S_ISREG(inode->i_mode) && 2861 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) { 2862 err = btrfs_cont_expand(inode, attr->ia_size); 2863 if (err) 2864 return err; 2865 } 2866 2867 err = inode_setattr(inode, attr); 2868 2869 if (!err && ((attr->ia_valid & ATTR_MODE))) 2870 err = btrfs_acl_chmod(inode); 2871 return err; 2872 } 2873 2874 void btrfs_delete_inode(struct inode *inode) 2875 { 2876 struct btrfs_trans_handle *trans; 2877 struct btrfs_root *root = BTRFS_I(inode)->root; 2878 unsigned long nr; 2879 int ret; 2880 2881 truncate_inode_pages(&inode->i_data, 0); 2882 if (is_bad_inode(inode)) { 2883 btrfs_orphan_del(NULL, inode); 2884 goto no_delete; 2885 } 2886 btrfs_wait_ordered_range(inode, 0, (u64)-1); 2887 2888 btrfs_i_size_write(inode, 0); 2889 trans = btrfs_join_transaction(root, 1); 2890 2891 btrfs_set_trans_block_group(trans, inode); 2892 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); 2893 if (ret) { 2894 btrfs_orphan_del(NULL, inode); 2895 goto no_delete_lock; 2896 } 2897 2898 btrfs_orphan_del(trans, inode); 2899 2900 nr = trans->blocks_used; 2901 clear_inode(inode); 2902 2903 btrfs_end_transaction(trans, root); 2904 btrfs_btree_balance_dirty(root, nr); 2905 return; 2906 2907 no_delete_lock: 2908 nr = trans->blocks_used; 2909 btrfs_end_transaction(trans, root); 2910 btrfs_btree_balance_dirty(root, nr); 2911 no_delete: 2912 clear_inode(inode); 2913 } 2914 2915 /* 2916 * this returns the key found in the dir entry in the location pointer. 2917 * If no dir entries were found, location->objectid is 0. 2918 */ 2919 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 2920 struct btrfs_key *location) 2921 { 2922 const char *name = dentry->d_name.name; 2923 int namelen = dentry->d_name.len; 2924 struct btrfs_dir_item *di; 2925 struct btrfs_path *path; 2926 struct btrfs_root *root = BTRFS_I(dir)->root; 2927 int ret = 0; 2928 2929 path = btrfs_alloc_path(); 2930 BUG_ON(!path); 2931 2932 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 2933 namelen, 0); 2934 if (IS_ERR(di)) 2935 ret = PTR_ERR(di); 2936 2937 if (!di || IS_ERR(di)) 2938 goto out_err; 2939 2940 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 2941 out: 2942 btrfs_free_path(path); 2943 return ret; 2944 out_err: 2945 location->objectid = 0; 2946 goto out; 2947 } 2948 2949 /* 2950 * when we hit a tree root in a directory, the btrfs part of the inode 2951 * needs to be changed to reflect the root directory of the tree root. This 2952 * is kind of like crossing a mount point. 2953 */ 2954 static int fixup_tree_root_location(struct btrfs_root *root, 2955 struct btrfs_key *location, 2956 struct btrfs_root **sub_root, 2957 struct dentry *dentry) 2958 { 2959 struct btrfs_root_item *ri; 2960 2961 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) 2962 return 0; 2963 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 2964 return 0; 2965 2966 *sub_root = btrfs_read_fs_root(root->fs_info, location, 2967 dentry->d_name.name, 2968 dentry->d_name.len); 2969 if (IS_ERR(*sub_root)) 2970 return PTR_ERR(*sub_root); 2971 2972 ri = &(*sub_root)->root_item; 2973 location->objectid = btrfs_root_dirid(ri); 2974 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 2975 location->offset = 0; 2976 2977 return 0; 2978 } 2979 2980 static noinline void init_btrfs_i(struct inode *inode) 2981 { 2982 struct btrfs_inode *bi = BTRFS_I(inode); 2983 2984 bi->i_acl = NULL; 2985 bi->i_default_acl = NULL; 2986 2987 bi->generation = 0; 2988 bi->sequence = 0; 2989 bi->last_trans = 0; 2990 bi->logged_trans = 0; 2991 bi->delalloc_bytes = 0; 2992 bi->disk_i_size = 0; 2993 bi->flags = 0; 2994 bi->index_cnt = (u64)-1; 2995 bi->log_dirty_trans = 0; 2996 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 2997 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 2998 inode->i_mapping, GFP_NOFS); 2999 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 3000 inode->i_mapping, GFP_NOFS); 3001 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3002 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3003 mutex_init(&BTRFS_I(inode)->extent_mutex); 3004 mutex_init(&BTRFS_I(inode)->log_mutex); 3005 } 3006 3007 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3008 { 3009 struct btrfs_iget_args *args = p; 3010 inode->i_ino = args->ino; 3011 init_btrfs_i(inode); 3012 BTRFS_I(inode)->root = args->root; 3013 return 0; 3014 } 3015 3016 static int btrfs_find_actor(struct inode *inode, void *opaque) 3017 { 3018 struct btrfs_iget_args *args = opaque; 3019 return args->ino == inode->i_ino && 3020 args->root == BTRFS_I(inode)->root; 3021 } 3022 3023 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, 3024 struct btrfs_root *root, int wait) 3025 { 3026 struct inode *inode; 3027 struct btrfs_iget_args args; 3028 args.ino = objectid; 3029 args.root = root; 3030 3031 if (wait) { 3032 inode = ilookup5(s, objectid, btrfs_find_actor, 3033 (void *)&args); 3034 } else { 3035 inode = ilookup5_nowait(s, objectid, btrfs_find_actor, 3036 (void *)&args); 3037 } 3038 return inode; 3039 } 3040 3041 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, 3042 struct btrfs_root *root) 3043 { 3044 struct inode *inode; 3045 struct btrfs_iget_args args; 3046 args.ino = objectid; 3047 args.root = root; 3048 3049 inode = iget5_locked(s, objectid, btrfs_find_actor, 3050 btrfs_init_locked_inode, 3051 (void *)&args); 3052 return inode; 3053 } 3054 3055 /* Get an inode object given its location and corresponding root. 3056 * Returns in *is_new if the inode was read from disk 3057 */ 3058 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3059 struct btrfs_root *root, int *is_new) 3060 { 3061 struct inode *inode; 3062 3063 inode = btrfs_iget_locked(s, location->objectid, root); 3064 if (!inode) 3065 return ERR_PTR(-EACCES); 3066 3067 if (inode->i_state & I_NEW) { 3068 BTRFS_I(inode)->root = root; 3069 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3070 btrfs_read_locked_inode(inode); 3071 unlock_new_inode(inode); 3072 if (is_new) 3073 *is_new = 1; 3074 } else { 3075 if (is_new) 3076 *is_new = 0; 3077 } 3078 3079 return inode; 3080 } 3081 3082 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3083 { 3084 struct inode *inode; 3085 struct btrfs_inode *bi = BTRFS_I(dir); 3086 struct btrfs_root *root = bi->root; 3087 struct btrfs_root *sub_root = root; 3088 struct btrfs_key location; 3089 int ret, new; 3090 3091 if (dentry->d_name.len > BTRFS_NAME_LEN) 3092 return ERR_PTR(-ENAMETOOLONG); 3093 3094 ret = btrfs_inode_by_name(dir, dentry, &location); 3095 3096 if (ret < 0) 3097 return ERR_PTR(ret); 3098 3099 inode = NULL; 3100 if (location.objectid) { 3101 ret = fixup_tree_root_location(root, &location, &sub_root, 3102 dentry); 3103 if (ret < 0) 3104 return ERR_PTR(ret); 3105 if (ret > 0) 3106 return ERR_PTR(-ENOENT); 3107 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new); 3108 if (IS_ERR(inode)) 3109 return ERR_CAST(inode); 3110 } 3111 return inode; 3112 } 3113 3114 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3115 struct nameidata *nd) 3116 { 3117 struct inode *inode; 3118 3119 if (dentry->d_name.len > BTRFS_NAME_LEN) 3120 return ERR_PTR(-ENAMETOOLONG); 3121 3122 inode = btrfs_lookup_dentry(dir, dentry); 3123 if (IS_ERR(inode)) 3124 return ERR_CAST(inode); 3125 3126 return d_splice_alias(inode, dentry); 3127 } 3128 3129 static unsigned char btrfs_filetype_table[] = { 3130 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3131 }; 3132 3133 static int btrfs_real_readdir(struct file *filp, void *dirent, 3134 filldir_t filldir) 3135 { 3136 struct inode *inode = filp->f_dentry->d_inode; 3137 struct btrfs_root *root = BTRFS_I(inode)->root; 3138 struct btrfs_item *item; 3139 struct btrfs_dir_item *di; 3140 struct btrfs_key key; 3141 struct btrfs_key found_key; 3142 struct btrfs_path *path; 3143 int ret; 3144 u32 nritems; 3145 struct extent_buffer *leaf; 3146 int slot; 3147 int advance; 3148 unsigned char d_type; 3149 int over = 0; 3150 u32 di_cur; 3151 u32 di_total; 3152 u32 di_len; 3153 int key_type = BTRFS_DIR_INDEX_KEY; 3154 char tmp_name[32]; 3155 char *name_ptr; 3156 int name_len; 3157 3158 /* FIXME, use a real flag for deciding about the key type */ 3159 if (root->fs_info->tree_root == root) 3160 key_type = BTRFS_DIR_ITEM_KEY; 3161 3162 /* special case for "." */ 3163 if (filp->f_pos == 0) { 3164 over = filldir(dirent, ".", 1, 3165 1, inode->i_ino, 3166 DT_DIR); 3167 if (over) 3168 return 0; 3169 filp->f_pos = 1; 3170 } 3171 /* special case for .., just use the back ref */ 3172 if (filp->f_pos == 1) { 3173 u64 pino = parent_ino(filp->f_path.dentry); 3174 over = filldir(dirent, "..", 2, 3175 2, pino, DT_DIR); 3176 if (over) 3177 return 0; 3178 filp->f_pos = 2; 3179 } 3180 path = btrfs_alloc_path(); 3181 path->reada = 2; 3182 3183 btrfs_set_key_type(&key, key_type); 3184 key.offset = filp->f_pos; 3185 key.objectid = inode->i_ino; 3186 3187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3188 if (ret < 0) 3189 goto err; 3190 advance = 0; 3191 3192 while (1) { 3193 leaf = path->nodes[0]; 3194 nritems = btrfs_header_nritems(leaf); 3195 slot = path->slots[0]; 3196 if (advance || slot >= nritems) { 3197 if (slot >= nritems - 1) { 3198 ret = btrfs_next_leaf(root, path); 3199 if (ret) 3200 break; 3201 leaf = path->nodes[0]; 3202 nritems = btrfs_header_nritems(leaf); 3203 slot = path->slots[0]; 3204 } else { 3205 slot++; 3206 path->slots[0]++; 3207 } 3208 } 3209 3210 advance = 1; 3211 item = btrfs_item_nr(leaf, slot); 3212 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3213 3214 if (found_key.objectid != key.objectid) 3215 break; 3216 if (btrfs_key_type(&found_key) != key_type) 3217 break; 3218 if (found_key.offset < filp->f_pos) 3219 continue; 3220 3221 filp->f_pos = found_key.offset; 3222 3223 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3224 di_cur = 0; 3225 di_total = btrfs_item_size(leaf, item); 3226 3227 while (di_cur < di_total) { 3228 struct btrfs_key location; 3229 3230 name_len = btrfs_dir_name_len(leaf, di); 3231 if (name_len <= sizeof(tmp_name)) { 3232 name_ptr = tmp_name; 3233 } else { 3234 name_ptr = kmalloc(name_len, GFP_NOFS); 3235 if (!name_ptr) { 3236 ret = -ENOMEM; 3237 goto err; 3238 } 3239 } 3240 read_extent_buffer(leaf, name_ptr, 3241 (unsigned long)(di + 1), name_len); 3242 3243 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3244 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3245 3246 /* is this a reference to our own snapshot? If so 3247 * skip it 3248 */ 3249 if (location.type == BTRFS_ROOT_ITEM_KEY && 3250 location.objectid == root->root_key.objectid) { 3251 over = 0; 3252 goto skip; 3253 } 3254 over = filldir(dirent, name_ptr, name_len, 3255 found_key.offset, location.objectid, 3256 d_type); 3257 3258 skip: 3259 if (name_ptr != tmp_name) 3260 kfree(name_ptr); 3261 3262 if (over) 3263 goto nopos; 3264 di_len = btrfs_dir_name_len(leaf, di) + 3265 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3266 di_cur += di_len; 3267 di = (struct btrfs_dir_item *)((char *)di + di_len); 3268 } 3269 } 3270 3271 /* Reached end of directory/root. Bump pos past the last item. */ 3272 if (key_type == BTRFS_DIR_INDEX_KEY) 3273 filp->f_pos = INT_LIMIT(typeof(filp->f_pos)); 3274 else 3275 filp->f_pos++; 3276 nopos: 3277 ret = 0; 3278 err: 3279 btrfs_free_path(path); 3280 return ret; 3281 } 3282 3283 int btrfs_write_inode(struct inode *inode, int wait) 3284 { 3285 struct btrfs_root *root = BTRFS_I(inode)->root; 3286 struct btrfs_trans_handle *trans; 3287 int ret = 0; 3288 3289 if (root->fs_info->btree_inode == inode) 3290 return 0; 3291 3292 if (wait) { 3293 trans = btrfs_join_transaction(root, 1); 3294 btrfs_set_trans_block_group(trans, inode); 3295 ret = btrfs_commit_transaction(trans, root); 3296 } 3297 return ret; 3298 } 3299 3300 /* 3301 * This is somewhat expensive, updating the tree every time the 3302 * inode changes. But, it is most likely to find the inode in cache. 3303 * FIXME, needs more benchmarking...there are no reasons other than performance 3304 * to keep or drop this code. 3305 */ 3306 void btrfs_dirty_inode(struct inode *inode) 3307 { 3308 struct btrfs_root *root = BTRFS_I(inode)->root; 3309 struct btrfs_trans_handle *trans; 3310 3311 trans = btrfs_join_transaction(root, 1); 3312 btrfs_set_trans_block_group(trans, inode); 3313 btrfs_update_inode(trans, root, inode); 3314 btrfs_end_transaction(trans, root); 3315 } 3316 3317 /* 3318 * find the highest existing sequence number in a directory 3319 * and then set the in-memory index_cnt variable to reflect 3320 * free sequence numbers 3321 */ 3322 static int btrfs_set_inode_index_count(struct inode *inode) 3323 { 3324 struct btrfs_root *root = BTRFS_I(inode)->root; 3325 struct btrfs_key key, found_key; 3326 struct btrfs_path *path; 3327 struct extent_buffer *leaf; 3328 int ret; 3329 3330 key.objectid = inode->i_ino; 3331 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 3332 key.offset = (u64)-1; 3333 3334 path = btrfs_alloc_path(); 3335 if (!path) 3336 return -ENOMEM; 3337 3338 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3339 if (ret < 0) 3340 goto out; 3341 /* FIXME: we should be able to handle this */ 3342 if (ret == 0) 3343 goto out; 3344 ret = 0; 3345 3346 /* 3347 * MAGIC NUMBER EXPLANATION: 3348 * since we search a directory based on f_pos we have to start at 2 3349 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 3350 * else has to start at 2 3351 */ 3352 if (path->slots[0] == 0) { 3353 BTRFS_I(inode)->index_cnt = 2; 3354 goto out; 3355 } 3356 3357 path->slots[0]--; 3358 3359 leaf = path->nodes[0]; 3360 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3361 3362 if (found_key.objectid != inode->i_ino || 3363 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 3364 BTRFS_I(inode)->index_cnt = 2; 3365 goto out; 3366 } 3367 3368 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 3369 out: 3370 btrfs_free_path(path); 3371 return ret; 3372 } 3373 3374 /* 3375 * helper to find a free sequence number in a given directory. This current 3376 * code is very simple, later versions will do smarter things in the btree 3377 */ 3378 int btrfs_set_inode_index(struct inode *dir, u64 *index) 3379 { 3380 int ret = 0; 3381 3382 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 3383 ret = btrfs_set_inode_index_count(dir); 3384 if (ret) 3385 return ret; 3386 } 3387 3388 *index = BTRFS_I(dir)->index_cnt; 3389 BTRFS_I(dir)->index_cnt++; 3390 3391 return ret; 3392 } 3393 3394 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 3395 struct btrfs_root *root, 3396 struct inode *dir, 3397 const char *name, int name_len, 3398 u64 ref_objectid, u64 objectid, 3399 u64 alloc_hint, int mode, u64 *index) 3400 { 3401 struct inode *inode; 3402 struct btrfs_inode_item *inode_item; 3403 struct btrfs_key *location; 3404 struct btrfs_path *path; 3405 struct btrfs_inode_ref *ref; 3406 struct btrfs_key key[2]; 3407 u32 sizes[2]; 3408 unsigned long ptr; 3409 int ret; 3410 int owner; 3411 3412 path = btrfs_alloc_path(); 3413 BUG_ON(!path); 3414 3415 inode = new_inode(root->fs_info->sb); 3416 if (!inode) 3417 return ERR_PTR(-ENOMEM); 3418 3419 if (dir) { 3420 ret = btrfs_set_inode_index(dir, index); 3421 if (ret) 3422 return ERR_PTR(ret); 3423 } 3424 /* 3425 * index_cnt is ignored for everything but a dir, 3426 * btrfs_get_inode_index_count has an explanation for the magic 3427 * number 3428 */ 3429 init_btrfs_i(inode); 3430 BTRFS_I(inode)->index_cnt = 2; 3431 BTRFS_I(inode)->root = root; 3432 BTRFS_I(inode)->generation = trans->transid; 3433 3434 if (mode & S_IFDIR) 3435 owner = 0; 3436 else 3437 owner = 1; 3438 BTRFS_I(inode)->block_group = 3439 btrfs_find_block_group(root, 0, alloc_hint, owner); 3440 if ((mode & S_IFREG)) { 3441 if (btrfs_test_opt(root, NODATASUM)) 3442 btrfs_set_flag(inode, NODATASUM); 3443 if (btrfs_test_opt(root, NODATACOW)) 3444 btrfs_set_flag(inode, NODATACOW); 3445 } 3446 3447 key[0].objectid = objectid; 3448 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 3449 key[0].offset = 0; 3450 3451 key[1].objectid = objectid; 3452 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 3453 key[1].offset = ref_objectid; 3454 3455 sizes[0] = sizeof(struct btrfs_inode_item); 3456 sizes[1] = name_len + sizeof(*ref); 3457 3458 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 3459 if (ret != 0) 3460 goto fail; 3461 3462 if (objectid > root->highest_inode) 3463 root->highest_inode = objectid; 3464 3465 inode->i_uid = current_fsuid(); 3466 inode->i_gid = current_fsgid(); 3467 inode->i_mode = mode; 3468 inode->i_ino = objectid; 3469 inode_set_bytes(inode, 0); 3470 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3471 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3472 struct btrfs_inode_item); 3473 fill_inode_item(trans, path->nodes[0], inode_item, inode); 3474 3475 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3476 struct btrfs_inode_ref); 3477 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 3478 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 3479 ptr = (unsigned long)(ref + 1); 3480 write_extent_buffer(path->nodes[0], name, ptr, name_len); 3481 3482 btrfs_mark_buffer_dirty(path->nodes[0]); 3483 btrfs_free_path(path); 3484 3485 location = &BTRFS_I(inode)->location; 3486 location->objectid = objectid; 3487 location->offset = 0; 3488 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3489 3490 insert_inode_hash(inode); 3491 return inode; 3492 fail: 3493 if (dir) 3494 BTRFS_I(dir)->index_cnt--; 3495 btrfs_free_path(path); 3496 return ERR_PTR(ret); 3497 } 3498 3499 static inline u8 btrfs_inode_type(struct inode *inode) 3500 { 3501 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 3502 } 3503 3504 /* 3505 * utility function to add 'inode' into 'parent_inode' with 3506 * a give name and a given sequence number. 3507 * if 'add_backref' is true, also insert a backref from the 3508 * inode to the parent directory. 3509 */ 3510 int btrfs_add_link(struct btrfs_trans_handle *trans, 3511 struct inode *parent_inode, struct inode *inode, 3512 const char *name, int name_len, int add_backref, u64 index) 3513 { 3514 int ret; 3515 struct btrfs_key key; 3516 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 3517 3518 key.objectid = inode->i_ino; 3519 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 3520 key.offset = 0; 3521 3522 ret = btrfs_insert_dir_item(trans, root, name, name_len, 3523 parent_inode->i_ino, 3524 &key, btrfs_inode_type(inode), 3525 index); 3526 if (ret == 0) { 3527 if (add_backref) { 3528 ret = btrfs_insert_inode_ref(trans, root, 3529 name, name_len, 3530 inode->i_ino, 3531 parent_inode->i_ino, 3532 index); 3533 } 3534 btrfs_i_size_write(parent_inode, parent_inode->i_size + 3535 name_len * 2); 3536 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 3537 ret = btrfs_update_inode(trans, root, parent_inode); 3538 } 3539 return ret; 3540 } 3541 3542 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 3543 struct dentry *dentry, struct inode *inode, 3544 int backref, u64 index) 3545 { 3546 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3547 inode, dentry->d_name.name, 3548 dentry->d_name.len, backref, index); 3549 if (!err) { 3550 d_instantiate(dentry, inode); 3551 return 0; 3552 } 3553 if (err > 0) 3554 err = -EEXIST; 3555 return err; 3556 } 3557 3558 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 3559 int mode, dev_t rdev) 3560 { 3561 struct btrfs_trans_handle *trans; 3562 struct btrfs_root *root = BTRFS_I(dir)->root; 3563 struct inode *inode = NULL; 3564 int err; 3565 int drop_inode = 0; 3566 u64 objectid; 3567 unsigned long nr = 0; 3568 u64 index = 0; 3569 3570 if (!new_valid_dev(rdev)) 3571 return -EINVAL; 3572 3573 err = btrfs_check_free_space(root, 1, 0); 3574 if (err) 3575 goto fail; 3576 3577 trans = btrfs_start_transaction(root, 1); 3578 btrfs_set_trans_block_group(trans, dir); 3579 3580 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3581 if (err) { 3582 err = -ENOSPC; 3583 goto out_unlock; 3584 } 3585 3586 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3587 dentry->d_name.len, 3588 dentry->d_parent->d_inode->i_ino, objectid, 3589 BTRFS_I(dir)->block_group, mode, &index); 3590 err = PTR_ERR(inode); 3591 if (IS_ERR(inode)) 3592 goto out_unlock; 3593 3594 err = btrfs_init_acl(inode, dir); 3595 if (err) { 3596 drop_inode = 1; 3597 goto out_unlock; 3598 } 3599 3600 btrfs_set_trans_block_group(trans, inode); 3601 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3602 if (err) 3603 drop_inode = 1; 3604 else { 3605 inode->i_op = &btrfs_special_inode_operations; 3606 init_special_inode(inode, inode->i_mode, rdev); 3607 btrfs_update_inode(trans, root, inode); 3608 } 3609 dir->i_sb->s_dirt = 1; 3610 btrfs_update_inode_block_group(trans, inode); 3611 btrfs_update_inode_block_group(trans, dir); 3612 out_unlock: 3613 nr = trans->blocks_used; 3614 btrfs_end_transaction_throttle(trans, root); 3615 fail: 3616 if (drop_inode) { 3617 inode_dec_link_count(inode); 3618 iput(inode); 3619 } 3620 btrfs_btree_balance_dirty(root, nr); 3621 return err; 3622 } 3623 3624 static int btrfs_create(struct inode *dir, struct dentry *dentry, 3625 int mode, struct nameidata *nd) 3626 { 3627 struct btrfs_trans_handle *trans; 3628 struct btrfs_root *root = BTRFS_I(dir)->root; 3629 struct inode *inode = NULL; 3630 int err; 3631 int drop_inode = 0; 3632 unsigned long nr = 0; 3633 u64 objectid; 3634 u64 index = 0; 3635 3636 err = btrfs_check_free_space(root, 1, 0); 3637 if (err) 3638 goto fail; 3639 trans = btrfs_start_transaction(root, 1); 3640 btrfs_set_trans_block_group(trans, dir); 3641 3642 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3643 if (err) { 3644 err = -ENOSPC; 3645 goto out_unlock; 3646 } 3647 3648 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3649 dentry->d_name.len, 3650 dentry->d_parent->d_inode->i_ino, 3651 objectid, BTRFS_I(dir)->block_group, mode, 3652 &index); 3653 err = PTR_ERR(inode); 3654 if (IS_ERR(inode)) 3655 goto out_unlock; 3656 3657 err = btrfs_init_acl(inode, dir); 3658 if (err) { 3659 drop_inode = 1; 3660 goto out_unlock; 3661 } 3662 3663 btrfs_set_trans_block_group(trans, inode); 3664 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3665 if (err) 3666 drop_inode = 1; 3667 else { 3668 inode->i_mapping->a_ops = &btrfs_aops; 3669 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3670 inode->i_fop = &btrfs_file_operations; 3671 inode->i_op = &btrfs_file_inode_operations; 3672 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3673 } 3674 dir->i_sb->s_dirt = 1; 3675 btrfs_update_inode_block_group(trans, inode); 3676 btrfs_update_inode_block_group(trans, dir); 3677 out_unlock: 3678 nr = trans->blocks_used; 3679 btrfs_end_transaction_throttle(trans, root); 3680 fail: 3681 if (drop_inode) { 3682 inode_dec_link_count(inode); 3683 iput(inode); 3684 } 3685 btrfs_btree_balance_dirty(root, nr); 3686 return err; 3687 } 3688 3689 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 3690 struct dentry *dentry) 3691 { 3692 struct btrfs_trans_handle *trans; 3693 struct btrfs_root *root = BTRFS_I(dir)->root; 3694 struct inode *inode = old_dentry->d_inode; 3695 u64 index; 3696 unsigned long nr = 0; 3697 int err; 3698 int drop_inode = 0; 3699 3700 if (inode->i_nlink == 0) 3701 return -ENOENT; 3702 3703 btrfs_inc_nlink(inode); 3704 err = btrfs_check_free_space(root, 1, 0); 3705 if (err) 3706 goto fail; 3707 err = btrfs_set_inode_index(dir, &index); 3708 if (err) 3709 goto fail; 3710 3711 trans = btrfs_start_transaction(root, 1); 3712 3713 btrfs_set_trans_block_group(trans, dir); 3714 atomic_inc(&inode->i_count); 3715 3716 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 3717 3718 if (err) 3719 drop_inode = 1; 3720 3721 dir->i_sb->s_dirt = 1; 3722 btrfs_update_inode_block_group(trans, dir); 3723 err = btrfs_update_inode(trans, root, inode); 3724 3725 if (err) 3726 drop_inode = 1; 3727 3728 nr = trans->blocks_used; 3729 btrfs_end_transaction_throttle(trans, root); 3730 fail: 3731 if (drop_inode) { 3732 inode_dec_link_count(inode); 3733 iput(inode); 3734 } 3735 btrfs_btree_balance_dirty(root, nr); 3736 return err; 3737 } 3738 3739 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 3740 { 3741 struct inode *inode = NULL; 3742 struct btrfs_trans_handle *trans; 3743 struct btrfs_root *root = BTRFS_I(dir)->root; 3744 int err = 0; 3745 int drop_on_err = 0; 3746 u64 objectid = 0; 3747 u64 index = 0; 3748 unsigned long nr = 1; 3749 3750 err = btrfs_check_free_space(root, 1, 0); 3751 if (err) 3752 goto out_unlock; 3753 3754 trans = btrfs_start_transaction(root, 1); 3755 btrfs_set_trans_block_group(trans, dir); 3756 3757 if (IS_ERR(trans)) { 3758 err = PTR_ERR(trans); 3759 goto out_unlock; 3760 } 3761 3762 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3763 if (err) { 3764 err = -ENOSPC; 3765 goto out_unlock; 3766 } 3767 3768 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3769 dentry->d_name.len, 3770 dentry->d_parent->d_inode->i_ino, objectid, 3771 BTRFS_I(dir)->block_group, S_IFDIR | mode, 3772 &index); 3773 if (IS_ERR(inode)) { 3774 err = PTR_ERR(inode); 3775 goto out_fail; 3776 } 3777 3778 drop_on_err = 1; 3779 3780 err = btrfs_init_acl(inode, dir); 3781 if (err) 3782 goto out_fail; 3783 3784 inode->i_op = &btrfs_dir_inode_operations; 3785 inode->i_fop = &btrfs_dir_file_operations; 3786 btrfs_set_trans_block_group(trans, inode); 3787 3788 btrfs_i_size_write(inode, 0); 3789 err = btrfs_update_inode(trans, root, inode); 3790 if (err) 3791 goto out_fail; 3792 3793 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3794 inode, dentry->d_name.name, 3795 dentry->d_name.len, 0, index); 3796 if (err) 3797 goto out_fail; 3798 3799 d_instantiate(dentry, inode); 3800 drop_on_err = 0; 3801 dir->i_sb->s_dirt = 1; 3802 btrfs_update_inode_block_group(trans, inode); 3803 btrfs_update_inode_block_group(trans, dir); 3804 3805 out_fail: 3806 nr = trans->blocks_used; 3807 btrfs_end_transaction_throttle(trans, root); 3808 3809 out_unlock: 3810 if (drop_on_err) 3811 iput(inode); 3812 btrfs_btree_balance_dirty(root, nr); 3813 return err; 3814 } 3815 3816 /* helper for btfs_get_extent. Given an existing extent in the tree, 3817 * and an extent that you want to insert, deal with overlap and insert 3818 * the new extent into the tree. 3819 */ 3820 static int merge_extent_mapping(struct extent_map_tree *em_tree, 3821 struct extent_map *existing, 3822 struct extent_map *em, 3823 u64 map_start, u64 map_len) 3824 { 3825 u64 start_diff; 3826 3827 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 3828 start_diff = map_start - em->start; 3829 em->start = map_start; 3830 em->len = map_len; 3831 if (em->block_start < EXTENT_MAP_LAST_BYTE && 3832 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3833 em->block_start += start_diff; 3834 em->block_len -= start_diff; 3835 } 3836 return add_extent_mapping(em_tree, em); 3837 } 3838 3839 static noinline int uncompress_inline(struct btrfs_path *path, 3840 struct inode *inode, struct page *page, 3841 size_t pg_offset, u64 extent_offset, 3842 struct btrfs_file_extent_item *item) 3843 { 3844 int ret; 3845 struct extent_buffer *leaf = path->nodes[0]; 3846 char *tmp; 3847 size_t max_size; 3848 unsigned long inline_size; 3849 unsigned long ptr; 3850 3851 WARN_ON(pg_offset != 0); 3852 max_size = btrfs_file_extent_ram_bytes(leaf, item); 3853 inline_size = btrfs_file_extent_inline_item_len(leaf, 3854 btrfs_item_nr(leaf, path->slots[0])); 3855 tmp = kmalloc(inline_size, GFP_NOFS); 3856 ptr = btrfs_file_extent_inline_start(item); 3857 3858 read_extent_buffer(leaf, tmp, ptr, inline_size); 3859 3860 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 3861 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 3862 inline_size, max_size); 3863 if (ret) { 3864 char *kaddr = kmap_atomic(page, KM_USER0); 3865 unsigned long copy_size = min_t(u64, 3866 PAGE_CACHE_SIZE - pg_offset, 3867 max_size - extent_offset); 3868 memset(kaddr + pg_offset, 0, copy_size); 3869 kunmap_atomic(kaddr, KM_USER0); 3870 } 3871 kfree(tmp); 3872 return 0; 3873 } 3874 3875 /* 3876 * a bit scary, this does extent mapping from logical file offset to the disk. 3877 * the ugly parts come from merging extents from the disk with the in-ram 3878 * representation. This gets more complex because of the data=ordered code, 3879 * where the in-ram extents might be locked pending data=ordered completion. 3880 * 3881 * This also copies inline extents directly into the page. 3882 */ 3883 3884 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 3885 size_t pg_offset, u64 start, u64 len, 3886 int create) 3887 { 3888 int ret; 3889 int err = 0; 3890 u64 bytenr; 3891 u64 extent_start = 0; 3892 u64 extent_end = 0; 3893 u64 objectid = inode->i_ino; 3894 u32 found_type; 3895 struct btrfs_path *path = NULL; 3896 struct btrfs_root *root = BTRFS_I(inode)->root; 3897 struct btrfs_file_extent_item *item; 3898 struct extent_buffer *leaf; 3899 struct btrfs_key found_key; 3900 struct extent_map *em = NULL; 3901 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3903 struct btrfs_trans_handle *trans = NULL; 3904 int compressed; 3905 3906 again: 3907 spin_lock(&em_tree->lock); 3908 em = lookup_extent_mapping(em_tree, start, len); 3909 if (em) 3910 em->bdev = root->fs_info->fs_devices->latest_bdev; 3911 spin_unlock(&em_tree->lock); 3912 3913 if (em) { 3914 if (em->start > start || em->start + em->len <= start) 3915 free_extent_map(em); 3916 else if (em->block_start == EXTENT_MAP_INLINE && page) 3917 free_extent_map(em); 3918 else 3919 goto out; 3920 } 3921 em = alloc_extent_map(GFP_NOFS); 3922 if (!em) { 3923 err = -ENOMEM; 3924 goto out; 3925 } 3926 em->bdev = root->fs_info->fs_devices->latest_bdev; 3927 em->start = EXTENT_MAP_HOLE; 3928 em->orig_start = EXTENT_MAP_HOLE; 3929 em->len = (u64)-1; 3930 em->block_len = (u64)-1; 3931 3932 if (!path) { 3933 path = btrfs_alloc_path(); 3934 BUG_ON(!path); 3935 } 3936 3937 ret = btrfs_lookup_file_extent(trans, root, path, 3938 objectid, start, trans != NULL); 3939 if (ret < 0) { 3940 err = ret; 3941 goto out; 3942 } 3943 3944 if (ret != 0) { 3945 if (path->slots[0] == 0) 3946 goto not_found; 3947 path->slots[0]--; 3948 } 3949 3950 leaf = path->nodes[0]; 3951 item = btrfs_item_ptr(leaf, path->slots[0], 3952 struct btrfs_file_extent_item); 3953 /* are we inside the extent that was found? */ 3954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3955 found_type = btrfs_key_type(&found_key); 3956 if (found_key.objectid != objectid || 3957 found_type != BTRFS_EXTENT_DATA_KEY) { 3958 goto not_found; 3959 } 3960 3961 found_type = btrfs_file_extent_type(leaf, item); 3962 extent_start = found_key.offset; 3963 compressed = btrfs_file_extent_compression(leaf, item); 3964 if (found_type == BTRFS_FILE_EXTENT_REG || 3965 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 3966 extent_end = extent_start + 3967 btrfs_file_extent_num_bytes(leaf, item); 3968 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 3969 size_t size; 3970 size = btrfs_file_extent_inline_len(leaf, item); 3971 extent_end = (extent_start + size + root->sectorsize - 1) & 3972 ~((u64)root->sectorsize - 1); 3973 } 3974 3975 if (start >= extent_end) { 3976 path->slots[0]++; 3977 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3978 ret = btrfs_next_leaf(root, path); 3979 if (ret < 0) { 3980 err = ret; 3981 goto out; 3982 } 3983 if (ret > 0) 3984 goto not_found; 3985 leaf = path->nodes[0]; 3986 } 3987 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3988 if (found_key.objectid != objectid || 3989 found_key.type != BTRFS_EXTENT_DATA_KEY) 3990 goto not_found; 3991 if (start + len <= found_key.offset) 3992 goto not_found; 3993 em->start = start; 3994 em->len = found_key.offset - start; 3995 goto not_found_em; 3996 } 3997 3998 if (found_type == BTRFS_FILE_EXTENT_REG || 3999 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4000 em->start = extent_start; 4001 em->len = extent_end - extent_start; 4002 em->orig_start = extent_start - 4003 btrfs_file_extent_offset(leaf, item); 4004 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4005 if (bytenr == 0) { 4006 em->block_start = EXTENT_MAP_HOLE; 4007 goto insert; 4008 } 4009 if (compressed) { 4010 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4011 em->block_start = bytenr; 4012 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4013 item); 4014 } else { 4015 bytenr += btrfs_file_extent_offset(leaf, item); 4016 em->block_start = bytenr; 4017 em->block_len = em->len; 4018 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4019 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4020 } 4021 goto insert; 4022 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4023 unsigned long ptr; 4024 char *map; 4025 size_t size; 4026 size_t extent_offset; 4027 size_t copy_size; 4028 4029 em->block_start = EXTENT_MAP_INLINE; 4030 if (!page || create) { 4031 em->start = extent_start; 4032 em->len = extent_end - extent_start; 4033 goto out; 4034 } 4035 4036 size = btrfs_file_extent_inline_len(leaf, item); 4037 extent_offset = page_offset(page) + pg_offset - extent_start; 4038 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4039 size - extent_offset); 4040 em->start = extent_start + extent_offset; 4041 em->len = (copy_size + root->sectorsize - 1) & 4042 ~((u64)root->sectorsize - 1); 4043 em->orig_start = EXTENT_MAP_INLINE; 4044 if (compressed) 4045 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4046 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4047 if (create == 0 && !PageUptodate(page)) { 4048 if (btrfs_file_extent_compression(leaf, item) == 4049 BTRFS_COMPRESS_ZLIB) { 4050 ret = uncompress_inline(path, inode, page, 4051 pg_offset, 4052 extent_offset, item); 4053 BUG_ON(ret); 4054 } else { 4055 map = kmap(page); 4056 read_extent_buffer(leaf, map + pg_offset, ptr, 4057 copy_size); 4058 kunmap(page); 4059 } 4060 flush_dcache_page(page); 4061 } else if (create && PageUptodate(page)) { 4062 if (!trans) { 4063 kunmap(page); 4064 free_extent_map(em); 4065 em = NULL; 4066 btrfs_release_path(root, path); 4067 trans = btrfs_join_transaction(root, 1); 4068 goto again; 4069 } 4070 map = kmap(page); 4071 write_extent_buffer(leaf, map + pg_offset, ptr, 4072 copy_size); 4073 kunmap(page); 4074 btrfs_mark_buffer_dirty(leaf); 4075 } 4076 set_extent_uptodate(io_tree, em->start, 4077 extent_map_end(em) - 1, GFP_NOFS); 4078 goto insert; 4079 } else { 4080 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4081 WARN_ON(1); 4082 } 4083 not_found: 4084 em->start = start; 4085 em->len = len; 4086 not_found_em: 4087 em->block_start = EXTENT_MAP_HOLE; 4088 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4089 insert: 4090 btrfs_release_path(root, path); 4091 if (em->start > start || extent_map_end(em) <= start) { 4092 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4093 "[%llu %llu]\n", (unsigned long long)em->start, 4094 (unsigned long long)em->len, 4095 (unsigned long long)start, 4096 (unsigned long long)len); 4097 err = -EIO; 4098 goto out; 4099 } 4100 4101 err = 0; 4102 spin_lock(&em_tree->lock); 4103 ret = add_extent_mapping(em_tree, em); 4104 /* it is possible that someone inserted the extent into the tree 4105 * while we had the lock dropped. It is also possible that 4106 * an overlapping map exists in the tree 4107 */ 4108 if (ret == -EEXIST) { 4109 struct extent_map *existing; 4110 4111 ret = 0; 4112 4113 existing = lookup_extent_mapping(em_tree, start, len); 4114 if (existing && (existing->start > start || 4115 existing->start + existing->len <= start)) { 4116 free_extent_map(existing); 4117 existing = NULL; 4118 } 4119 if (!existing) { 4120 existing = lookup_extent_mapping(em_tree, em->start, 4121 em->len); 4122 if (existing) { 4123 err = merge_extent_mapping(em_tree, existing, 4124 em, start, 4125 root->sectorsize); 4126 free_extent_map(existing); 4127 if (err) { 4128 free_extent_map(em); 4129 em = NULL; 4130 } 4131 } else { 4132 err = -EIO; 4133 free_extent_map(em); 4134 em = NULL; 4135 } 4136 } else { 4137 free_extent_map(em); 4138 em = existing; 4139 err = 0; 4140 } 4141 } 4142 spin_unlock(&em_tree->lock); 4143 out: 4144 if (path) 4145 btrfs_free_path(path); 4146 if (trans) { 4147 ret = btrfs_end_transaction(trans, root); 4148 if (!err) 4149 err = ret; 4150 } 4151 if (err) { 4152 free_extent_map(em); 4153 WARN_ON(1); 4154 return ERR_PTR(err); 4155 } 4156 return em; 4157 } 4158 4159 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4160 const struct iovec *iov, loff_t offset, 4161 unsigned long nr_segs) 4162 { 4163 return -EINVAL; 4164 } 4165 4166 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock) 4167 { 4168 return extent_bmap(mapping, iblock, btrfs_get_extent); 4169 } 4170 4171 int btrfs_readpage(struct file *file, struct page *page) 4172 { 4173 struct extent_io_tree *tree; 4174 tree = &BTRFS_I(page->mapping->host)->io_tree; 4175 return extent_read_full_page(tree, page, btrfs_get_extent); 4176 } 4177 4178 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4179 { 4180 struct extent_io_tree *tree; 4181 4182 4183 if (current->flags & PF_MEMALLOC) { 4184 redirty_page_for_writepage(wbc, page); 4185 unlock_page(page); 4186 return 0; 4187 } 4188 tree = &BTRFS_I(page->mapping->host)->io_tree; 4189 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4190 } 4191 4192 int btrfs_writepages(struct address_space *mapping, 4193 struct writeback_control *wbc) 4194 { 4195 struct extent_io_tree *tree; 4196 4197 tree = &BTRFS_I(mapping->host)->io_tree; 4198 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4199 } 4200 4201 static int 4202 btrfs_readpages(struct file *file, struct address_space *mapping, 4203 struct list_head *pages, unsigned nr_pages) 4204 { 4205 struct extent_io_tree *tree; 4206 tree = &BTRFS_I(mapping->host)->io_tree; 4207 return extent_readpages(tree, mapping, pages, nr_pages, 4208 btrfs_get_extent); 4209 } 4210 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4211 { 4212 struct extent_io_tree *tree; 4213 struct extent_map_tree *map; 4214 int ret; 4215 4216 tree = &BTRFS_I(page->mapping->host)->io_tree; 4217 map = &BTRFS_I(page->mapping->host)->extent_tree; 4218 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 4219 if (ret == 1) { 4220 ClearPagePrivate(page); 4221 set_page_private(page, 0); 4222 page_cache_release(page); 4223 } 4224 return ret; 4225 } 4226 4227 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4228 { 4229 if (PageWriteback(page) || PageDirty(page)) 4230 return 0; 4231 return __btrfs_releasepage(page, gfp_flags); 4232 } 4233 4234 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 4235 { 4236 struct extent_io_tree *tree; 4237 struct btrfs_ordered_extent *ordered; 4238 u64 page_start = page_offset(page); 4239 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 4240 4241 wait_on_page_writeback(page); 4242 tree = &BTRFS_I(page->mapping->host)->io_tree; 4243 if (offset) { 4244 btrfs_releasepage(page, GFP_NOFS); 4245 return; 4246 } 4247 4248 lock_extent(tree, page_start, page_end, GFP_NOFS); 4249 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 4250 page_offset(page)); 4251 if (ordered) { 4252 /* 4253 * IO on this page will never be started, so we need 4254 * to account for any ordered extents now 4255 */ 4256 clear_extent_bit(tree, page_start, page_end, 4257 EXTENT_DIRTY | EXTENT_DELALLOC | 4258 EXTENT_LOCKED, 1, 0, GFP_NOFS); 4259 btrfs_finish_ordered_io(page->mapping->host, 4260 page_start, page_end); 4261 btrfs_put_ordered_extent(ordered); 4262 lock_extent(tree, page_start, page_end, GFP_NOFS); 4263 } 4264 clear_extent_bit(tree, page_start, page_end, 4265 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4266 EXTENT_ORDERED, 4267 1, 1, GFP_NOFS); 4268 __btrfs_releasepage(page, GFP_NOFS); 4269 4270 ClearPageChecked(page); 4271 if (PagePrivate(page)) { 4272 ClearPagePrivate(page); 4273 set_page_private(page, 0); 4274 page_cache_release(page); 4275 } 4276 } 4277 4278 /* 4279 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 4280 * called from a page fault handler when a page is first dirtied. Hence we must 4281 * be careful to check for EOF conditions here. We set the page up correctly 4282 * for a written page which means we get ENOSPC checking when writing into 4283 * holes and correct delalloc and unwritten extent mapping on filesystems that 4284 * support these features. 4285 * 4286 * We are not allowed to take the i_mutex here so we have to play games to 4287 * protect against truncate races as the page could now be beyond EOF. Because 4288 * vmtruncate() writes the inode size before removing pages, once we have the 4289 * page lock we can determine safely if the page is beyond EOF. If it is not 4290 * beyond EOF, then the page is guaranteed safe against truncation until we 4291 * unlock the page. 4292 */ 4293 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4294 { 4295 struct inode *inode = fdentry(vma->vm_file)->d_inode; 4296 struct btrfs_root *root = BTRFS_I(inode)->root; 4297 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4298 struct btrfs_ordered_extent *ordered; 4299 char *kaddr; 4300 unsigned long zero_start; 4301 loff_t size; 4302 int ret; 4303 u64 page_start; 4304 u64 page_end; 4305 4306 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0); 4307 if (ret) 4308 goto out; 4309 4310 ret = -EINVAL; 4311 again: 4312 lock_page(page); 4313 size = i_size_read(inode); 4314 page_start = page_offset(page); 4315 page_end = page_start + PAGE_CACHE_SIZE - 1; 4316 4317 if ((page->mapping != inode->i_mapping) || 4318 (page_start >= size)) { 4319 /* page got truncated out from underneath us */ 4320 goto out_unlock; 4321 } 4322 wait_on_page_writeback(page); 4323 4324 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4325 set_page_extent_mapped(page); 4326 4327 /* 4328 * we can't set the delalloc bits if there are pending ordered 4329 * extents. Drop our locks and wait for them to finish 4330 */ 4331 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4332 if (ordered) { 4333 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4334 unlock_page(page); 4335 btrfs_start_ordered_extent(inode, ordered, 1); 4336 btrfs_put_ordered_extent(ordered); 4337 goto again; 4338 } 4339 4340 btrfs_set_extent_delalloc(inode, page_start, page_end); 4341 ret = 0; 4342 4343 /* page is wholly or partially inside EOF */ 4344 if (page_start + PAGE_CACHE_SIZE > size) 4345 zero_start = size & ~PAGE_CACHE_MASK; 4346 else 4347 zero_start = PAGE_CACHE_SIZE; 4348 4349 if (zero_start != PAGE_CACHE_SIZE) { 4350 kaddr = kmap(page); 4351 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 4352 flush_dcache_page(page); 4353 kunmap(page); 4354 } 4355 ClearPageChecked(page); 4356 set_page_dirty(page); 4357 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4358 4359 out_unlock: 4360 unlock_page(page); 4361 out: 4362 return ret; 4363 } 4364 4365 static void btrfs_truncate(struct inode *inode) 4366 { 4367 struct btrfs_root *root = BTRFS_I(inode)->root; 4368 int ret; 4369 struct btrfs_trans_handle *trans; 4370 unsigned long nr; 4371 u64 mask = root->sectorsize - 1; 4372 4373 if (!S_ISREG(inode->i_mode)) 4374 return; 4375 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4376 return; 4377 4378 btrfs_truncate_page(inode->i_mapping, inode->i_size); 4379 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 4380 4381 trans = btrfs_start_transaction(root, 1); 4382 btrfs_set_trans_block_group(trans, inode); 4383 btrfs_i_size_write(inode, inode->i_size); 4384 4385 ret = btrfs_orphan_add(trans, inode); 4386 if (ret) 4387 goto out; 4388 /* FIXME, add redo link to tree so we don't leak on crash */ 4389 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 4390 BTRFS_EXTENT_DATA_KEY); 4391 btrfs_update_inode(trans, root, inode); 4392 4393 ret = btrfs_orphan_del(trans, inode); 4394 BUG_ON(ret); 4395 4396 out: 4397 nr = trans->blocks_used; 4398 ret = btrfs_end_transaction_throttle(trans, root); 4399 BUG_ON(ret); 4400 btrfs_btree_balance_dirty(root, nr); 4401 } 4402 4403 /* 4404 * create a new subvolume directory/inode (helper for the ioctl). 4405 */ 4406 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 4407 struct btrfs_root *new_root, struct dentry *dentry, 4408 u64 new_dirid, u64 alloc_hint) 4409 { 4410 struct inode *inode; 4411 int error; 4412 u64 index = 0; 4413 4414 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 4415 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 4416 if (IS_ERR(inode)) 4417 return PTR_ERR(inode); 4418 inode->i_op = &btrfs_dir_inode_operations; 4419 inode->i_fop = &btrfs_dir_file_operations; 4420 4421 inode->i_nlink = 1; 4422 btrfs_i_size_write(inode, 0); 4423 4424 error = btrfs_update_inode(trans, new_root, inode); 4425 if (error) 4426 return error; 4427 4428 d_instantiate(dentry, inode); 4429 return 0; 4430 } 4431 4432 /* helper function for file defrag and space balancing. This 4433 * forces readahead on a given range of bytes in an inode 4434 */ 4435 unsigned long btrfs_force_ra(struct address_space *mapping, 4436 struct file_ra_state *ra, struct file *file, 4437 pgoff_t offset, pgoff_t last_index) 4438 { 4439 pgoff_t req_size = last_index - offset + 1; 4440 4441 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 4442 return offset + req_size; 4443 } 4444 4445 struct inode *btrfs_alloc_inode(struct super_block *sb) 4446 { 4447 struct btrfs_inode *ei; 4448 4449 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 4450 if (!ei) 4451 return NULL; 4452 ei->last_trans = 0; 4453 ei->logged_trans = 0; 4454 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 4455 ei->i_acl = BTRFS_ACL_NOT_CACHED; 4456 ei->i_default_acl = BTRFS_ACL_NOT_CACHED; 4457 INIT_LIST_HEAD(&ei->i_orphan); 4458 return &ei->vfs_inode; 4459 } 4460 4461 void btrfs_destroy_inode(struct inode *inode) 4462 { 4463 struct btrfs_ordered_extent *ordered; 4464 WARN_ON(!list_empty(&inode->i_dentry)); 4465 WARN_ON(inode->i_data.nrpages); 4466 4467 if (BTRFS_I(inode)->i_acl && 4468 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) 4469 posix_acl_release(BTRFS_I(inode)->i_acl); 4470 if (BTRFS_I(inode)->i_default_acl && 4471 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) 4472 posix_acl_release(BTRFS_I(inode)->i_default_acl); 4473 4474 spin_lock(&BTRFS_I(inode)->root->list_lock); 4475 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 4476 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" 4477 " list\n", inode->i_ino); 4478 dump_stack(); 4479 } 4480 spin_unlock(&BTRFS_I(inode)->root->list_lock); 4481 4482 while (1) { 4483 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 4484 if (!ordered) 4485 break; 4486 else { 4487 printk(KERN_ERR "btrfs found ordered " 4488 "extent %llu %llu on inode cleanup\n", 4489 (unsigned long long)ordered->file_offset, 4490 (unsigned long long)ordered->len); 4491 btrfs_remove_ordered_extent(inode, ordered); 4492 btrfs_put_ordered_extent(ordered); 4493 btrfs_put_ordered_extent(ordered); 4494 } 4495 } 4496 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 4497 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 4498 } 4499 4500 static void init_once(void *foo) 4501 { 4502 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 4503 4504 inode_init_once(&ei->vfs_inode); 4505 } 4506 4507 void btrfs_destroy_cachep(void) 4508 { 4509 if (btrfs_inode_cachep) 4510 kmem_cache_destroy(btrfs_inode_cachep); 4511 if (btrfs_trans_handle_cachep) 4512 kmem_cache_destroy(btrfs_trans_handle_cachep); 4513 if (btrfs_transaction_cachep) 4514 kmem_cache_destroy(btrfs_transaction_cachep); 4515 if (btrfs_bit_radix_cachep) 4516 kmem_cache_destroy(btrfs_bit_radix_cachep); 4517 if (btrfs_path_cachep) 4518 kmem_cache_destroy(btrfs_path_cachep); 4519 } 4520 4521 struct kmem_cache *btrfs_cache_create(const char *name, size_t size, 4522 unsigned long extra_flags, 4523 void (*ctor)(void *)) 4524 { 4525 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT | 4526 SLAB_MEM_SPREAD | extra_flags), ctor); 4527 } 4528 4529 int btrfs_init_cachep(void) 4530 { 4531 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache", 4532 sizeof(struct btrfs_inode), 4533 0, init_once); 4534 if (!btrfs_inode_cachep) 4535 goto fail; 4536 btrfs_trans_handle_cachep = 4537 btrfs_cache_create("btrfs_trans_handle_cache", 4538 sizeof(struct btrfs_trans_handle), 4539 0, NULL); 4540 if (!btrfs_trans_handle_cachep) 4541 goto fail; 4542 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache", 4543 sizeof(struct btrfs_transaction), 4544 0, NULL); 4545 if (!btrfs_transaction_cachep) 4546 goto fail; 4547 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache", 4548 sizeof(struct btrfs_path), 4549 0, NULL); 4550 if (!btrfs_path_cachep) 4551 goto fail; 4552 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256, 4553 SLAB_DESTROY_BY_RCU, NULL); 4554 if (!btrfs_bit_radix_cachep) 4555 goto fail; 4556 return 0; 4557 fail: 4558 btrfs_destroy_cachep(); 4559 return -ENOMEM; 4560 } 4561 4562 static int btrfs_getattr(struct vfsmount *mnt, 4563 struct dentry *dentry, struct kstat *stat) 4564 { 4565 struct inode *inode = dentry->d_inode; 4566 generic_fillattr(inode, stat); 4567 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 4568 stat->blksize = PAGE_CACHE_SIZE; 4569 stat->blocks = (inode_get_bytes(inode) + 4570 BTRFS_I(inode)->delalloc_bytes) >> 9; 4571 return 0; 4572 } 4573 4574 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4575 struct inode *new_dir, struct dentry *new_dentry) 4576 { 4577 struct btrfs_trans_handle *trans; 4578 struct btrfs_root *root = BTRFS_I(old_dir)->root; 4579 struct inode *new_inode = new_dentry->d_inode; 4580 struct inode *old_inode = old_dentry->d_inode; 4581 struct timespec ctime = CURRENT_TIME; 4582 u64 index = 0; 4583 int ret; 4584 4585 /* we're not allowed to rename between subvolumes */ 4586 if (BTRFS_I(old_inode)->root->root_key.objectid != 4587 BTRFS_I(new_dir)->root->root_key.objectid) 4588 return -EXDEV; 4589 4590 if (S_ISDIR(old_inode->i_mode) && new_inode && 4591 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { 4592 return -ENOTEMPTY; 4593 } 4594 4595 /* to rename a snapshot or subvolume, we need to juggle the 4596 * backrefs. This isn't coded yet 4597 */ 4598 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 4599 return -EXDEV; 4600 4601 ret = btrfs_check_free_space(root, 1, 0); 4602 if (ret) 4603 goto out_unlock; 4604 4605 trans = btrfs_start_transaction(root, 1); 4606 4607 btrfs_set_trans_block_group(trans, new_dir); 4608 4609 btrfs_inc_nlink(old_dentry->d_inode); 4610 old_dir->i_ctime = old_dir->i_mtime = ctime; 4611 new_dir->i_ctime = new_dir->i_mtime = ctime; 4612 old_inode->i_ctime = ctime; 4613 4614 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, 4615 old_dentry->d_name.name, 4616 old_dentry->d_name.len); 4617 if (ret) 4618 goto out_fail; 4619 4620 if (new_inode) { 4621 new_inode->i_ctime = CURRENT_TIME; 4622 ret = btrfs_unlink_inode(trans, root, new_dir, 4623 new_dentry->d_inode, 4624 new_dentry->d_name.name, 4625 new_dentry->d_name.len); 4626 if (ret) 4627 goto out_fail; 4628 if (new_inode->i_nlink == 0) { 4629 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 4630 if (ret) 4631 goto out_fail; 4632 } 4633 4634 } 4635 ret = btrfs_set_inode_index(new_dir, &index); 4636 if (ret) 4637 goto out_fail; 4638 4639 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, 4640 old_inode, new_dentry->d_name.name, 4641 new_dentry->d_name.len, 1, index); 4642 if (ret) 4643 goto out_fail; 4644 4645 out_fail: 4646 btrfs_end_transaction_throttle(trans, root); 4647 out_unlock: 4648 return ret; 4649 } 4650 4651 /* 4652 * some fairly slow code that needs optimization. This walks the list 4653 * of all the inodes with pending delalloc and forces them to disk. 4654 */ 4655 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 4656 { 4657 struct list_head *head = &root->fs_info->delalloc_inodes; 4658 struct btrfs_inode *binode; 4659 struct inode *inode; 4660 4661 if (root->fs_info->sb->s_flags & MS_RDONLY) 4662 return -EROFS; 4663 4664 spin_lock(&root->fs_info->delalloc_lock); 4665 while (!list_empty(head)) { 4666 binode = list_entry(head->next, struct btrfs_inode, 4667 delalloc_inodes); 4668 inode = igrab(&binode->vfs_inode); 4669 if (!inode) 4670 list_del_init(&binode->delalloc_inodes); 4671 spin_unlock(&root->fs_info->delalloc_lock); 4672 if (inode) { 4673 filemap_flush(inode->i_mapping); 4674 iput(inode); 4675 } 4676 cond_resched(); 4677 spin_lock(&root->fs_info->delalloc_lock); 4678 } 4679 spin_unlock(&root->fs_info->delalloc_lock); 4680 4681 /* the filemap_flush will queue IO into the worker threads, but 4682 * we have to make sure the IO is actually started and that 4683 * ordered extents get created before we return 4684 */ 4685 atomic_inc(&root->fs_info->async_submit_draining); 4686 while (atomic_read(&root->fs_info->nr_async_submits) || 4687 atomic_read(&root->fs_info->async_delalloc_pages)) { 4688 wait_event(root->fs_info->async_submit_wait, 4689 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 4690 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 4691 } 4692 atomic_dec(&root->fs_info->async_submit_draining); 4693 return 0; 4694 } 4695 4696 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 4697 const char *symname) 4698 { 4699 struct btrfs_trans_handle *trans; 4700 struct btrfs_root *root = BTRFS_I(dir)->root; 4701 struct btrfs_path *path; 4702 struct btrfs_key key; 4703 struct inode *inode = NULL; 4704 int err; 4705 int drop_inode = 0; 4706 u64 objectid; 4707 u64 index = 0 ; 4708 int name_len; 4709 int datasize; 4710 unsigned long ptr; 4711 struct btrfs_file_extent_item *ei; 4712 struct extent_buffer *leaf; 4713 unsigned long nr = 0; 4714 4715 name_len = strlen(symname) + 1; 4716 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 4717 return -ENAMETOOLONG; 4718 4719 err = btrfs_check_free_space(root, 1, 0); 4720 if (err) 4721 goto out_fail; 4722 4723 trans = btrfs_start_transaction(root, 1); 4724 btrfs_set_trans_block_group(trans, dir); 4725 4726 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4727 if (err) { 4728 err = -ENOSPC; 4729 goto out_unlock; 4730 } 4731 4732 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4733 dentry->d_name.len, 4734 dentry->d_parent->d_inode->i_ino, objectid, 4735 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 4736 &index); 4737 err = PTR_ERR(inode); 4738 if (IS_ERR(inode)) 4739 goto out_unlock; 4740 4741 err = btrfs_init_acl(inode, dir); 4742 if (err) { 4743 drop_inode = 1; 4744 goto out_unlock; 4745 } 4746 4747 btrfs_set_trans_block_group(trans, inode); 4748 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4749 if (err) 4750 drop_inode = 1; 4751 else { 4752 inode->i_mapping->a_ops = &btrfs_aops; 4753 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4754 inode->i_fop = &btrfs_file_operations; 4755 inode->i_op = &btrfs_file_inode_operations; 4756 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4757 } 4758 dir->i_sb->s_dirt = 1; 4759 btrfs_update_inode_block_group(trans, inode); 4760 btrfs_update_inode_block_group(trans, dir); 4761 if (drop_inode) 4762 goto out_unlock; 4763 4764 path = btrfs_alloc_path(); 4765 BUG_ON(!path); 4766 key.objectid = inode->i_ino; 4767 key.offset = 0; 4768 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 4769 datasize = btrfs_file_extent_calc_inline_size(name_len); 4770 err = btrfs_insert_empty_item(trans, root, path, &key, 4771 datasize); 4772 if (err) { 4773 drop_inode = 1; 4774 goto out_unlock; 4775 } 4776 leaf = path->nodes[0]; 4777 ei = btrfs_item_ptr(leaf, path->slots[0], 4778 struct btrfs_file_extent_item); 4779 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 4780 btrfs_set_file_extent_type(leaf, ei, 4781 BTRFS_FILE_EXTENT_INLINE); 4782 btrfs_set_file_extent_encryption(leaf, ei, 0); 4783 btrfs_set_file_extent_compression(leaf, ei, 0); 4784 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 4785 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 4786 4787 ptr = btrfs_file_extent_inline_start(ei); 4788 write_extent_buffer(leaf, symname, ptr, name_len); 4789 btrfs_mark_buffer_dirty(leaf); 4790 btrfs_free_path(path); 4791 4792 inode->i_op = &btrfs_symlink_inode_operations; 4793 inode->i_mapping->a_ops = &btrfs_symlink_aops; 4794 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4795 inode_set_bytes(inode, name_len); 4796 btrfs_i_size_write(inode, name_len - 1); 4797 err = btrfs_update_inode(trans, root, inode); 4798 if (err) 4799 drop_inode = 1; 4800 4801 out_unlock: 4802 nr = trans->blocks_used; 4803 btrfs_end_transaction_throttle(trans, root); 4804 out_fail: 4805 if (drop_inode) { 4806 inode_dec_link_count(inode); 4807 iput(inode); 4808 } 4809 btrfs_btree_balance_dirty(root, nr); 4810 return err; 4811 } 4812 4813 static int prealloc_file_range(struct inode *inode, u64 start, u64 end, 4814 u64 alloc_hint, int mode) 4815 { 4816 struct btrfs_trans_handle *trans; 4817 struct btrfs_root *root = BTRFS_I(inode)->root; 4818 struct btrfs_key ins; 4819 u64 alloc_size; 4820 u64 cur_offset = start; 4821 u64 num_bytes = end - start; 4822 int ret = 0; 4823 4824 trans = btrfs_join_transaction(root, 1); 4825 BUG_ON(!trans); 4826 btrfs_set_trans_block_group(trans, inode); 4827 4828 while (num_bytes > 0) { 4829 alloc_size = min(num_bytes, root->fs_info->max_extent); 4830 ret = btrfs_reserve_extent(trans, root, alloc_size, 4831 root->sectorsize, 0, alloc_hint, 4832 (u64)-1, &ins, 1); 4833 if (ret) { 4834 WARN_ON(1); 4835 goto out; 4836 } 4837 ret = insert_reserved_file_extent(trans, inode, 4838 cur_offset, ins.objectid, 4839 ins.offset, ins.offset, 4840 ins.offset, 0, 0, 0, 4841 BTRFS_FILE_EXTENT_PREALLOC); 4842 BUG_ON(ret); 4843 num_bytes -= ins.offset; 4844 cur_offset += ins.offset; 4845 alloc_hint = ins.objectid + ins.offset; 4846 } 4847 out: 4848 if (cur_offset > start) { 4849 inode->i_ctime = CURRENT_TIME; 4850 btrfs_set_flag(inode, PREALLOC); 4851 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4852 cur_offset > i_size_read(inode)) 4853 btrfs_i_size_write(inode, cur_offset); 4854 ret = btrfs_update_inode(trans, root, inode); 4855 BUG_ON(ret); 4856 } 4857 4858 btrfs_end_transaction(trans, root); 4859 return ret; 4860 } 4861 4862 static long btrfs_fallocate(struct inode *inode, int mode, 4863 loff_t offset, loff_t len) 4864 { 4865 u64 cur_offset; 4866 u64 last_byte; 4867 u64 alloc_start; 4868 u64 alloc_end; 4869 u64 alloc_hint = 0; 4870 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 4871 struct extent_map *em; 4872 int ret; 4873 4874 alloc_start = offset & ~mask; 4875 alloc_end = (offset + len + mask) & ~mask; 4876 4877 mutex_lock(&inode->i_mutex); 4878 if (alloc_start > inode->i_size) { 4879 ret = btrfs_cont_expand(inode, alloc_start); 4880 if (ret) 4881 goto out; 4882 } 4883 4884 while (1) { 4885 struct btrfs_ordered_extent *ordered; 4886 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, 4887 alloc_end - 1, GFP_NOFS); 4888 ordered = btrfs_lookup_first_ordered_extent(inode, 4889 alloc_end - 1); 4890 if (ordered && 4891 ordered->file_offset + ordered->len > alloc_start && 4892 ordered->file_offset < alloc_end) { 4893 btrfs_put_ordered_extent(ordered); 4894 unlock_extent(&BTRFS_I(inode)->io_tree, 4895 alloc_start, alloc_end - 1, GFP_NOFS); 4896 btrfs_wait_ordered_range(inode, alloc_start, 4897 alloc_end - alloc_start); 4898 } else { 4899 if (ordered) 4900 btrfs_put_ordered_extent(ordered); 4901 break; 4902 } 4903 } 4904 4905 cur_offset = alloc_start; 4906 while (1) { 4907 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4908 alloc_end - cur_offset, 0); 4909 BUG_ON(IS_ERR(em) || !em); 4910 last_byte = min(extent_map_end(em), alloc_end); 4911 last_byte = (last_byte + mask) & ~mask; 4912 if (em->block_start == EXTENT_MAP_HOLE) { 4913 ret = prealloc_file_range(inode, cur_offset, 4914 last_byte, alloc_hint, mode); 4915 if (ret < 0) { 4916 free_extent_map(em); 4917 break; 4918 } 4919 } 4920 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 4921 alloc_hint = em->block_start; 4922 free_extent_map(em); 4923 4924 cur_offset = last_byte; 4925 if (cur_offset >= alloc_end) { 4926 ret = 0; 4927 break; 4928 } 4929 } 4930 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1, 4931 GFP_NOFS); 4932 out: 4933 mutex_unlock(&inode->i_mutex); 4934 return ret; 4935 } 4936 4937 static int btrfs_set_page_dirty(struct page *page) 4938 { 4939 return __set_page_dirty_nobuffers(page); 4940 } 4941 4942 static int btrfs_permission(struct inode *inode, int mask) 4943 { 4944 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE)) 4945 return -EACCES; 4946 return generic_permission(inode, mask, btrfs_check_acl); 4947 } 4948 4949 static struct inode_operations btrfs_dir_inode_operations = { 4950 .getattr = btrfs_getattr, 4951 .lookup = btrfs_lookup, 4952 .create = btrfs_create, 4953 .unlink = btrfs_unlink, 4954 .link = btrfs_link, 4955 .mkdir = btrfs_mkdir, 4956 .rmdir = btrfs_rmdir, 4957 .rename = btrfs_rename, 4958 .symlink = btrfs_symlink, 4959 .setattr = btrfs_setattr, 4960 .mknod = btrfs_mknod, 4961 .setxattr = btrfs_setxattr, 4962 .getxattr = btrfs_getxattr, 4963 .listxattr = btrfs_listxattr, 4964 .removexattr = btrfs_removexattr, 4965 .permission = btrfs_permission, 4966 }; 4967 static struct inode_operations btrfs_dir_ro_inode_operations = { 4968 .lookup = btrfs_lookup, 4969 .permission = btrfs_permission, 4970 }; 4971 static struct file_operations btrfs_dir_file_operations = { 4972 .llseek = generic_file_llseek, 4973 .read = generic_read_dir, 4974 .readdir = btrfs_real_readdir, 4975 .unlocked_ioctl = btrfs_ioctl, 4976 #ifdef CONFIG_COMPAT 4977 .compat_ioctl = btrfs_ioctl, 4978 #endif 4979 .release = btrfs_release_file, 4980 .fsync = btrfs_sync_file, 4981 }; 4982 4983 static struct extent_io_ops btrfs_extent_io_ops = { 4984 .fill_delalloc = run_delalloc_range, 4985 .submit_bio_hook = btrfs_submit_bio_hook, 4986 .merge_bio_hook = btrfs_merge_bio_hook, 4987 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 4988 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 4989 .writepage_start_hook = btrfs_writepage_start_hook, 4990 .readpage_io_failed_hook = btrfs_io_failed_hook, 4991 .set_bit_hook = btrfs_set_bit_hook, 4992 .clear_bit_hook = btrfs_clear_bit_hook, 4993 }; 4994 4995 static struct address_space_operations btrfs_aops = { 4996 .readpage = btrfs_readpage, 4997 .writepage = btrfs_writepage, 4998 .writepages = btrfs_writepages, 4999 .readpages = btrfs_readpages, 5000 .sync_page = block_sync_page, 5001 .bmap = btrfs_bmap, 5002 .direct_IO = btrfs_direct_IO, 5003 .invalidatepage = btrfs_invalidatepage, 5004 .releasepage = btrfs_releasepage, 5005 .set_page_dirty = btrfs_set_page_dirty, 5006 }; 5007 5008 static struct address_space_operations btrfs_symlink_aops = { 5009 .readpage = btrfs_readpage, 5010 .writepage = btrfs_writepage, 5011 .invalidatepage = btrfs_invalidatepage, 5012 .releasepage = btrfs_releasepage, 5013 }; 5014 5015 static struct inode_operations btrfs_file_inode_operations = { 5016 .truncate = btrfs_truncate, 5017 .getattr = btrfs_getattr, 5018 .setattr = btrfs_setattr, 5019 .setxattr = btrfs_setxattr, 5020 .getxattr = btrfs_getxattr, 5021 .listxattr = btrfs_listxattr, 5022 .removexattr = btrfs_removexattr, 5023 .permission = btrfs_permission, 5024 .fallocate = btrfs_fallocate, 5025 }; 5026 static struct inode_operations btrfs_special_inode_operations = { 5027 .getattr = btrfs_getattr, 5028 .setattr = btrfs_setattr, 5029 .permission = btrfs_permission, 5030 .setxattr = btrfs_setxattr, 5031 .getxattr = btrfs_getxattr, 5032 .listxattr = btrfs_listxattr, 5033 .removexattr = btrfs_removexattr, 5034 }; 5035 static struct inode_operations btrfs_symlink_inode_operations = { 5036 .readlink = generic_readlink, 5037 .follow_link = page_follow_link_light, 5038 .put_link = page_put_link, 5039 .permission = btrfs_permission, 5040 }; 5041