xref: /openbmc/linux/fs/btrfs/inode.c (revision 180591bcfed1a2cec048abb21d3dab840625caab)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "ref-cache.h"
53 #include "compression.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69 
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75 
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 				   struct page *locked_page,
91 				   u64 start, u64 end, int *page_started,
92 				   unsigned long *nr_written, int unlock);
93 
94 /*
95  * a very lame attempt at stopping writes when the FS is 85% full.  There
96  * are countless ways this is incorrect, but it is better than nothing.
97  */
98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
99 			   int for_del)
100 {
101 	u64 total;
102 	u64 used;
103 	u64 thresh;
104 	int ret = 0;
105 
106 	spin_lock(&root->fs_info->delalloc_lock);
107 	total = btrfs_super_total_bytes(&root->fs_info->super_copy);
108 	used = btrfs_super_bytes_used(&root->fs_info->super_copy);
109 	if (for_del)
110 		thresh = total * 90;
111 	else
112 		thresh = total * 85;
113 
114 	do_div(thresh, 100);
115 
116 	if (used + root->fs_info->delalloc_bytes + num_required > thresh)
117 		ret = -ENOSPC;
118 	spin_unlock(&root->fs_info->delalloc_lock);
119 	return ret;
120 }
121 
122 /*
123  * this does all the hard work for inserting an inline extent into
124  * the btree.  The caller should have done a btrfs_drop_extents so that
125  * no overlapping inline items exist in the btree
126  */
127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
128 				struct btrfs_root *root, struct inode *inode,
129 				u64 start, size_t size, size_t compressed_size,
130 				struct page **compressed_pages)
131 {
132 	struct btrfs_key key;
133 	struct btrfs_path *path;
134 	struct extent_buffer *leaf;
135 	struct page *page = NULL;
136 	char *kaddr;
137 	unsigned long ptr;
138 	struct btrfs_file_extent_item *ei;
139 	int err = 0;
140 	int ret;
141 	size_t cur_size = size;
142 	size_t datasize;
143 	unsigned long offset;
144 	int use_compress = 0;
145 
146 	if (compressed_size && compressed_pages) {
147 		use_compress = 1;
148 		cur_size = compressed_size;
149 	}
150 
151 	path = btrfs_alloc_path();
152 	if (!path)
153 		return -ENOMEM;
154 
155 	btrfs_set_trans_block_group(trans, inode);
156 
157 	key.objectid = inode->i_ino;
158 	key.offset = start;
159 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
160 	inode_add_bytes(inode, size);
161 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
162 
163 	inode_add_bytes(inode, size);
164 	ret = btrfs_insert_empty_item(trans, root, path, &key,
165 				      datasize);
166 	BUG_ON(ret);
167 	if (ret) {
168 		err = ret;
169 		goto fail;
170 	}
171 	leaf = path->nodes[0];
172 	ei = btrfs_item_ptr(leaf, path->slots[0],
173 			    struct btrfs_file_extent_item);
174 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
175 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
176 	btrfs_set_file_extent_encryption(leaf, ei, 0);
177 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
178 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
179 	ptr = btrfs_file_extent_inline_start(ei);
180 
181 	if (use_compress) {
182 		struct page *cpage;
183 		int i = 0;
184 		while (compressed_size > 0) {
185 			cpage = compressed_pages[i];
186 			cur_size = min_t(unsigned long, compressed_size,
187 				       PAGE_CACHE_SIZE);
188 
189 			kaddr = kmap(cpage);
190 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
191 			kunmap(cpage);
192 
193 			i++;
194 			ptr += cur_size;
195 			compressed_size -= cur_size;
196 		}
197 		btrfs_set_file_extent_compression(leaf, ei,
198 						  BTRFS_COMPRESS_ZLIB);
199 	} else {
200 		page = find_get_page(inode->i_mapping,
201 				     start >> PAGE_CACHE_SHIFT);
202 		btrfs_set_file_extent_compression(leaf, ei, 0);
203 		kaddr = kmap_atomic(page, KM_USER0);
204 		offset = start & (PAGE_CACHE_SIZE - 1);
205 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
206 		kunmap_atomic(kaddr, KM_USER0);
207 		page_cache_release(page);
208 	}
209 	btrfs_mark_buffer_dirty(leaf);
210 	btrfs_free_path(path);
211 
212 	BTRFS_I(inode)->disk_i_size = inode->i_size;
213 	btrfs_update_inode(trans, root, inode);
214 	return 0;
215 fail:
216 	btrfs_free_path(path);
217 	return err;
218 }
219 
220 
221 /*
222  * conditionally insert an inline extent into the file.  This
223  * does the checks required to make sure the data is small enough
224  * to fit as an inline extent.
225  */
226 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
227 				 struct btrfs_root *root,
228 				 struct inode *inode, u64 start, u64 end,
229 				 size_t compressed_size,
230 				 struct page **compressed_pages)
231 {
232 	u64 isize = i_size_read(inode);
233 	u64 actual_end = min(end + 1, isize);
234 	u64 inline_len = actual_end - start;
235 	u64 aligned_end = (end + root->sectorsize - 1) &
236 			~((u64)root->sectorsize - 1);
237 	u64 hint_byte;
238 	u64 data_len = inline_len;
239 	int ret;
240 
241 	if (compressed_size)
242 		data_len = compressed_size;
243 
244 	if (start > 0 ||
245 	    actual_end >= PAGE_CACHE_SIZE ||
246 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
247 	    (!compressed_size &&
248 	    (actual_end & (root->sectorsize - 1)) == 0) ||
249 	    end + 1 < isize ||
250 	    data_len > root->fs_info->max_inline) {
251 		return 1;
252 	}
253 
254 	ret = btrfs_drop_extents(trans, root, inode, start,
255 				 aligned_end, start, &hint_byte);
256 	BUG_ON(ret);
257 
258 	if (isize > actual_end)
259 		inline_len = min_t(u64, isize, actual_end);
260 	ret = insert_inline_extent(trans, root, inode, start,
261 				   inline_len, compressed_size,
262 				   compressed_pages);
263 	BUG_ON(ret);
264 	btrfs_drop_extent_cache(inode, start, aligned_end, 0);
265 	return 0;
266 }
267 
268 struct async_extent {
269 	u64 start;
270 	u64 ram_size;
271 	u64 compressed_size;
272 	struct page **pages;
273 	unsigned long nr_pages;
274 	struct list_head list;
275 };
276 
277 struct async_cow {
278 	struct inode *inode;
279 	struct btrfs_root *root;
280 	struct page *locked_page;
281 	u64 start;
282 	u64 end;
283 	struct list_head extents;
284 	struct btrfs_work work;
285 };
286 
287 static noinline int add_async_extent(struct async_cow *cow,
288 				     u64 start, u64 ram_size,
289 				     u64 compressed_size,
290 				     struct page **pages,
291 				     unsigned long nr_pages)
292 {
293 	struct async_extent *async_extent;
294 
295 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
296 	async_extent->start = start;
297 	async_extent->ram_size = ram_size;
298 	async_extent->compressed_size = compressed_size;
299 	async_extent->pages = pages;
300 	async_extent->nr_pages = nr_pages;
301 	list_add_tail(&async_extent->list, &cow->extents);
302 	return 0;
303 }
304 
305 /*
306  * we create compressed extents in two phases.  The first
307  * phase compresses a range of pages that have already been
308  * locked (both pages and state bits are locked).
309  *
310  * This is done inside an ordered work queue, and the compression
311  * is spread across many cpus.  The actual IO submission is step
312  * two, and the ordered work queue takes care of making sure that
313  * happens in the same order things were put onto the queue by
314  * writepages and friends.
315  *
316  * If this code finds it can't get good compression, it puts an
317  * entry onto the work queue to write the uncompressed bytes.  This
318  * makes sure that both compressed inodes and uncompressed inodes
319  * are written in the same order that pdflush sent them down.
320  */
321 static noinline int compress_file_range(struct inode *inode,
322 					struct page *locked_page,
323 					u64 start, u64 end,
324 					struct async_cow *async_cow,
325 					int *num_added)
326 {
327 	struct btrfs_root *root = BTRFS_I(inode)->root;
328 	struct btrfs_trans_handle *trans;
329 	u64 num_bytes;
330 	u64 orig_start;
331 	u64 disk_num_bytes;
332 	u64 blocksize = root->sectorsize;
333 	u64 actual_end;
334 	u64 isize = i_size_read(inode);
335 	int ret = 0;
336 	struct page **pages = NULL;
337 	unsigned long nr_pages;
338 	unsigned long nr_pages_ret = 0;
339 	unsigned long total_compressed = 0;
340 	unsigned long total_in = 0;
341 	unsigned long max_compressed = 128 * 1024;
342 	unsigned long max_uncompressed = 128 * 1024;
343 	int i;
344 	int will_compress;
345 
346 	orig_start = start;
347 
348 	actual_end = min_t(u64, isize, end + 1);
349 again:
350 	will_compress = 0;
351 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353 
354 	total_compressed = actual_end - start;
355 
356 	/* we want to make sure that amount of ram required to uncompress
357 	 * an extent is reasonable, so we limit the total size in ram
358 	 * of a compressed extent to 128k.  This is a crucial number
359 	 * because it also controls how easily we can spread reads across
360 	 * cpus for decompression.
361 	 *
362 	 * We also want to make sure the amount of IO required to do
363 	 * a random read is reasonably small, so we limit the size of
364 	 * a compressed extent to 128k.
365 	 */
366 	total_compressed = min(total_compressed, max_uncompressed);
367 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
368 	num_bytes = max(blocksize,  num_bytes);
369 	disk_num_bytes = num_bytes;
370 	total_in = 0;
371 	ret = 0;
372 
373 	/*
374 	 * we do compression for mount -o compress and when the
375 	 * inode has not been flagged as nocompress.  This flag can
376 	 * change at any time if we discover bad compression ratios.
377 	 */
378 	if (!btrfs_test_flag(inode, NOCOMPRESS) &&
379 	    btrfs_test_opt(root, COMPRESS)) {
380 		WARN_ON(pages);
381 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
382 
383 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
384 						total_compressed, pages,
385 						nr_pages, &nr_pages_ret,
386 						&total_in,
387 						&total_compressed,
388 						max_compressed);
389 
390 		if (!ret) {
391 			unsigned long offset = total_compressed &
392 				(PAGE_CACHE_SIZE - 1);
393 			struct page *page = pages[nr_pages_ret - 1];
394 			char *kaddr;
395 
396 			/* zero the tail end of the last page, we might be
397 			 * sending it down to disk
398 			 */
399 			if (offset) {
400 				kaddr = kmap_atomic(page, KM_USER0);
401 				memset(kaddr + offset, 0,
402 				       PAGE_CACHE_SIZE - offset);
403 				kunmap_atomic(kaddr, KM_USER0);
404 			}
405 			will_compress = 1;
406 		}
407 	}
408 	if (start == 0) {
409 		trans = btrfs_join_transaction(root, 1);
410 		BUG_ON(!trans);
411 		btrfs_set_trans_block_group(trans, inode);
412 
413 		/* lets try to make an inline extent */
414 		if (ret || total_in < (actual_end - start)) {
415 			/* we didn't compress the entire range, try
416 			 * to make an uncompressed inline extent.
417 			 */
418 			ret = cow_file_range_inline(trans, root, inode,
419 						    start, end, 0, NULL);
420 		} else {
421 			/* try making a compressed inline extent */
422 			ret = cow_file_range_inline(trans, root, inode,
423 						    start, end,
424 						    total_compressed, pages);
425 		}
426 		btrfs_end_transaction(trans, root);
427 		if (ret == 0) {
428 			/*
429 			 * inline extent creation worked, we don't need
430 			 * to create any more async work items.  Unlock
431 			 * and free up our temp pages.
432 			 */
433 			extent_clear_unlock_delalloc(inode,
434 						     &BTRFS_I(inode)->io_tree,
435 						     start, end, NULL, 1, 0,
436 						     0, 1, 1, 1);
437 			ret = 0;
438 			goto free_pages_out;
439 		}
440 	}
441 
442 	if (will_compress) {
443 		/*
444 		 * we aren't doing an inline extent round the compressed size
445 		 * up to a block size boundary so the allocator does sane
446 		 * things
447 		 */
448 		total_compressed = (total_compressed + blocksize - 1) &
449 			~(blocksize - 1);
450 
451 		/*
452 		 * one last check to make sure the compression is really a
453 		 * win, compare the page count read with the blocks on disk
454 		 */
455 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
456 			~(PAGE_CACHE_SIZE - 1);
457 		if (total_compressed >= total_in) {
458 			will_compress = 0;
459 		} else {
460 			disk_num_bytes = total_compressed;
461 			num_bytes = total_in;
462 		}
463 	}
464 	if (!will_compress && pages) {
465 		/*
466 		 * the compression code ran but failed to make things smaller,
467 		 * free any pages it allocated and our page pointer array
468 		 */
469 		for (i = 0; i < nr_pages_ret; i++) {
470 			WARN_ON(pages[i]->mapping);
471 			page_cache_release(pages[i]);
472 		}
473 		kfree(pages);
474 		pages = NULL;
475 		total_compressed = 0;
476 		nr_pages_ret = 0;
477 
478 		/* flag the file so we don't compress in the future */
479 		btrfs_set_flag(inode, NOCOMPRESS);
480 	}
481 	if (will_compress) {
482 		*num_added += 1;
483 
484 		/* the async work queues will take care of doing actual
485 		 * allocation on disk for these compressed pages,
486 		 * and will submit them to the elevator.
487 		 */
488 		add_async_extent(async_cow, start, num_bytes,
489 				 total_compressed, pages, nr_pages_ret);
490 
491 		if (start + num_bytes < end && start + num_bytes < actual_end) {
492 			start += num_bytes;
493 			pages = NULL;
494 			cond_resched();
495 			goto again;
496 		}
497 	} else {
498 		/*
499 		 * No compression, but we still need to write the pages in
500 		 * the file we've been given so far.  redirty the locked
501 		 * page if it corresponds to our extent and set things up
502 		 * for the async work queue to run cow_file_range to do
503 		 * the normal delalloc dance
504 		 */
505 		if (page_offset(locked_page) >= start &&
506 		    page_offset(locked_page) <= end) {
507 			__set_page_dirty_nobuffers(locked_page);
508 			/* unlocked later on in the async handlers */
509 		}
510 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
511 		*num_added += 1;
512 	}
513 
514 out:
515 	return 0;
516 
517 free_pages_out:
518 	for (i = 0; i < nr_pages_ret; i++) {
519 		WARN_ON(pages[i]->mapping);
520 		page_cache_release(pages[i]);
521 	}
522 	kfree(pages);
523 
524 	goto out;
525 }
526 
527 /*
528  * phase two of compressed writeback.  This is the ordered portion
529  * of the code, which only gets called in the order the work was
530  * queued.  We walk all the async extents created by compress_file_range
531  * and send them down to the disk.
532  */
533 static noinline int submit_compressed_extents(struct inode *inode,
534 					      struct async_cow *async_cow)
535 {
536 	struct async_extent *async_extent;
537 	u64 alloc_hint = 0;
538 	struct btrfs_trans_handle *trans;
539 	struct btrfs_key ins;
540 	struct extent_map *em;
541 	struct btrfs_root *root = BTRFS_I(inode)->root;
542 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
543 	struct extent_io_tree *io_tree;
544 	int ret;
545 
546 	if (list_empty(&async_cow->extents))
547 		return 0;
548 
549 	trans = btrfs_join_transaction(root, 1);
550 
551 	while (!list_empty(&async_cow->extents)) {
552 		async_extent = list_entry(async_cow->extents.next,
553 					  struct async_extent, list);
554 		list_del(&async_extent->list);
555 
556 		io_tree = &BTRFS_I(inode)->io_tree;
557 
558 		/* did the compression code fall back to uncompressed IO? */
559 		if (!async_extent->pages) {
560 			int page_started = 0;
561 			unsigned long nr_written = 0;
562 
563 			lock_extent(io_tree, async_extent->start,
564 				    async_extent->start +
565 				    async_extent->ram_size - 1, GFP_NOFS);
566 
567 			/* allocate blocks */
568 			cow_file_range(inode, async_cow->locked_page,
569 				       async_extent->start,
570 				       async_extent->start +
571 				       async_extent->ram_size - 1,
572 				       &page_started, &nr_written, 0);
573 
574 			/*
575 			 * if page_started, cow_file_range inserted an
576 			 * inline extent and took care of all the unlocking
577 			 * and IO for us.  Otherwise, we need to submit
578 			 * all those pages down to the drive.
579 			 */
580 			if (!page_started)
581 				extent_write_locked_range(io_tree,
582 						  inode, async_extent->start,
583 						  async_extent->start +
584 						  async_extent->ram_size - 1,
585 						  btrfs_get_extent,
586 						  WB_SYNC_ALL);
587 			kfree(async_extent);
588 			cond_resched();
589 			continue;
590 		}
591 
592 		lock_extent(io_tree, async_extent->start,
593 			    async_extent->start + async_extent->ram_size - 1,
594 			    GFP_NOFS);
595 		/*
596 		 * here we're doing allocation and writeback of the
597 		 * compressed pages
598 		 */
599 		btrfs_drop_extent_cache(inode, async_extent->start,
600 					async_extent->start +
601 					async_extent->ram_size - 1, 0);
602 
603 		ret = btrfs_reserve_extent(trans, root,
604 					   async_extent->compressed_size,
605 					   async_extent->compressed_size,
606 					   0, alloc_hint,
607 					   (u64)-1, &ins, 1);
608 		BUG_ON(ret);
609 		em = alloc_extent_map(GFP_NOFS);
610 		em->start = async_extent->start;
611 		em->len = async_extent->ram_size;
612 		em->orig_start = em->start;
613 
614 		em->block_start = ins.objectid;
615 		em->block_len = ins.offset;
616 		em->bdev = root->fs_info->fs_devices->latest_bdev;
617 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
618 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
619 
620 		while (1) {
621 			spin_lock(&em_tree->lock);
622 			ret = add_extent_mapping(em_tree, em);
623 			spin_unlock(&em_tree->lock);
624 			if (ret != -EEXIST) {
625 				free_extent_map(em);
626 				break;
627 			}
628 			btrfs_drop_extent_cache(inode, async_extent->start,
629 						async_extent->start +
630 						async_extent->ram_size - 1, 0);
631 		}
632 
633 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
634 					       ins.objectid,
635 					       async_extent->ram_size,
636 					       ins.offset,
637 					       BTRFS_ORDERED_COMPRESSED);
638 		BUG_ON(ret);
639 
640 		btrfs_end_transaction(trans, root);
641 
642 		/*
643 		 * clear dirty, set writeback and unlock the pages.
644 		 */
645 		extent_clear_unlock_delalloc(inode,
646 					     &BTRFS_I(inode)->io_tree,
647 					     async_extent->start,
648 					     async_extent->start +
649 					     async_extent->ram_size - 1,
650 					     NULL, 1, 1, 0, 1, 1, 0);
651 
652 		ret = btrfs_submit_compressed_write(inode,
653 				    async_extent->start,
654 				    async_extent->ram_size,
655 				    ins.objectid,
656 				    ins.offset, async_extent->pages,
657 				    async_extent->nr_pages);
658 
659 		BUG_ON(ret);
660 		trans = btrfs_join_transaction(root, 1);
661 		alloc_hint = ins.objectid + ins.offset;
662 		kfree(async_extent);
663 		cond_resched();
664 	}
665 
666 	btrfs_end_transaction(trans, root);
667 	return 0;
668 }
669 
670 /*
671  * when extent_io.c finds a delayed allocation range in the file,
672  * the call backs end up in this code.  The basic idea is to
673  * allocate extents on disk for the range, and create ordered data structs
674  * in ram to track those extents.
675  *
676  * locked_page is the page that writepage had locked already.  We use
677  * it to make sure we don't do extra locks or unlocks.
678  *
679  * *page_started is set to one if we unlock locked_page and do everything
680  * required to start IO on it.  It may be clean and already done with
681  * IO when we return.
682  */
683 static noinline int cow_file_range(struct inode *inode,
684 				   struct page *locked_page,
685 				   u64 start, u64 end, int *page_started,
686 				   unsigned long *nr_written,
687 				   int unlock)
688 {
689 	struct btrfs_root *root = BTRFS_I(inode)->root;
690 	struct btrfs_trans_handle *trans;
691 	u64 alloc_hint = 0;
692 	u64 num_bytes;
693 	unsigned long ram_size;
694 	u64 disk_num_bytes;
695 	u64 cur_alloc_size;
696 	u64 blocksize = root->sectorsize;
697 	u64 actual_end;
698 	u64 isize = i_size_read(inode);
699 	struct btrfs_key ins;
700 	struct extent_map *em;
701 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702 	int ret = 0;
703 
704 	trans = btrfs_join_transaction(root, 1);
705 	BUG_ON(!trans);
706 	btrfs_set_trans_block_group(trans, inode);
707 
708 	actual_end = min_t(u64, isize, end + 1);
709 
710 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711 	num_bytes = max(blocksize,  num_bytes);
712 	disk_num_bytes = num_bytes;
713 	ret = 0;
714 
715 	if (start == 0) {
716 		/* lets try to make an inline extent */
717 		ret = cow_file_range_inline(trans, root, inode,
718 					    start, end, 0, NULL);
719 		if (ret == 0) {
720 			extent_clear_unlock_delalloc(inode,
721 						     &BTRFS_I(inode)->io_tree,
722 						     start, end, NULL, 1, 1,
723 						     1, 1, 1, 1);
724 			*nr_written = *nr_written +
725 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
726 			*page_started = 1;
727 			ret = 0;
728 			goto out;
729 		}
730 	}
731 
732 	BUG_ON(disk_num_bytes >
733 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
734 
735 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
736 
737 	while (disk_num_bytes > 0) {
738 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
739 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
740 					   root->sectorsize, 0, alloc_hint,
741 					   (u64)-1, &ins, 1);
742 		BUG_ON(ret);
743 
744 		em = alloc_extent_map(GFP_NOFS);
745 		em->start = start;
746 		em->orig_start = em->start;
747 
748 		ram_size = ins.offset;
749 		em->len = ins.offset;
750 
751 		em->block_start = ins.objectid;
752 		em->block_len = ins.offset;
753 		em->bdev = root->fs_info->fs_devices->latest_bdev;
754 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
755 
756 		while (1) {
757 			spin_lock(&em_tree->lock);
758 			ret = add_extent_mapping(em_tree, em);
759 			spin_unlock(&em_tree->lock);
760 			if (ret != -EEXIST) {
761 				free_extent_map(em);
762 				break;
763 			}
764 			btrfs_drop_extent_cache(inode, start,
765 						start + ram_size - 1, 0);
766 		}
767 
768 		cur_alloc_size = ins.offset;
769 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
770 					       ram_size, cur_alloc_size, 0);
771 		BUG_ON(ret);
772 
773 		if (root->root_key.objectid ==
774 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
775 			ret = btrfs_reloc_clone_csums(inode, start,
776 						      cur_alloc_size);
777 			BUG_ON(ret);
778 		}
779 
780 		if (disk_num_bytes < cur_alloc_size)
781 			break;
782 
783 		/* we're not doing compressed IO, don't unlock the first
784 		 * page (which the caller expects to stay locked), don't
785 		 * clear any dirty bits and don't set any writeback bits
786 		 */
787 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
788 					     start, start + ram_size - 1,
789 					     locked_page, unlock, 1,
790 					     1, 0, 0, 0);
791 		disk_num_bytes -= cur_alloc_size;
792 		num_bytes -= cur_alloc_size;
793 		alloc_hint = ins.objectid + ins.offset;
794 		start += cur_alloc_size;
795 	}
796 out:
797 	ret = 0;
798 	btrfs_end_transaction(trans, root);
799 
800 	return ret;
801 }
802 
803 /*
804  * work queue call back to started compression on a file and pages
805  */
806 static noinline void async_cow_start(struct btrfs_work *work)
807 {
808 	struct async_cow *async_cow;
809 	int num_added = 0;
810 	async_cow = container_of(work, struct async_cow, work);
811 
812 	compress_file_range(async_cow->inode, async_cow->locked_page,
813 			    async_cow->start, async_cow->end, async_cow,
814 			    &num_added);
815 	if (num_added == 0)
816 		async_cow->inode = NULL;
817 }
818 
819 /*
820  * work queue call back to submit previously compressed pages
821  */
822 static noinline void async_cow_submit(struct btrfs_work *work)
823 {
824 	struct async_cow *async_cow;
825 	struct btrfs_root *root;
826 	unsigned long nr_pages;
827 
828 	async_cow = container_of(work, struct async_cow, work);
829 
830 	root = async_cow->root;
831 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
832 		PAGE_CACHE_SHIFT;
833 
834 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
835 
836 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
837 	    5 * 1042 * 1024 &&
838 	    waitqueue_active(&root->fs_info->async_submit_wait))
839 		wake_up(&root->fs_info->async_submit_wait);
840 
841 	if (async_cow->inode)
842 		submit_compressed_extents(async_cow->inode, async_cow);
843 }
844 
845 static noinline void async_cow_free(struct btrfs_work *work)
846 {
847 	struct async_cow *async_cow;
848 	async_cow = container_of(work, struct async_cow, work);
849 	kfree(async_cow);
850 }
851 
852 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
853 				u64 start, u64 end, int *page_started,
854 				unsigned long *nr_written)
855 {
856 	struct async_cow *async_cow;
857 	struct btrfs_root *root = BTRFS_I(inode)->root;
858 	unsigned long nr_pages;
859 	u64 cur_end;
860 	int limit = 10 * 1024 * 1042;
861 
862 	if (!btrfs_test_opt(root, COMPRESS)) {
863 		return cow_file_range(inode, locked_page, start, end,
864 				      page_started, nr_written, 1);
865 	}
866 
867 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
868 			 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
869 	while (start < end) {
870 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
871 		async_cow->inode = inode;
872 		async_cow->root = root;
873 		async_cow->locked_page = locked_page;
874 		async_cow->start = start;
875 
876 		if (btrfs_test_flag(inode, NOCOMPRESS))
877 			cur_end = end;
878 		else
879 			cur_end = min(end, start + 512 * 1024 - 1);
880 
881 		async_cow->end = cur_end;
882 		INIT_LIST_HEAD(&async_cow->extents);
883 
884 		async_cow->work.func = async_cow_start;
885 		async_cow->work.ordered_func = async_cow_submit;
886 		async_cow->work.ordered_free = async_cow_free;
887 		async_cow->work.flags = 0;
888 
889 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
890 			PAGE_CACHE_SHIFT;
891 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
892 
893 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
894 				   &async_cow->work);
895 
896 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
897 			wait_event(root->fs_info->async_submit_wait,
898 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
899 			    limit));
900 		}
901 
902 		while (atomic_read(&root->fs_info->async_submit_draining) &&
903 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
904 			wait_event(root->fs_info->async_submit_wait,
905 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
906 			   0));
907 		}
908 
909 		*nr_written += nr_pages;
910 		start = cur_end + 1;
911 	}
912 	*page_started = 1;
913 	return 0;
914 }
915 
916 static noinline int csum_exist_in_range(struct btrfs_root *root,
917 					u64 bytenr, u64 num_bytes)
918 {
919 	int ret;
920 	struct btrfs_ordered_sum *sums;
921 	LIST_HEAD(list);
922 
923 	ret = btrfs_lookup_csums_range(root, bytenr, bytenr + num_bytes - 1,
924 				       &list);
925 	if (ret == 0 && list_empty(&list))
926 		return 0;
927 
928 	while (!list_empty(&list)) {
929 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
930 		list_del(&sums->list);
931 		kfree(sums);
932 	}
933 	return 1;
934 }
935 
936 /*
937  * when nowcow writeback call back.  This checks for snapshots or COW copies
938  * of the extents that exist in the file, and COWs the file as required.
939  *
940  * If no cow copies or snapshots exist, we write directly to the existing
941  * blocks on disk
942  */
943 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
944 			      u64 start, u64 end, int *page_started, int force,
945 			      unsigned long *nr_written)
946 {
947 	struct btrfs_root *root = BTRFS_I(inode)->root;
948 	struct btrfs_trans_handle *trans;
949 	struct extent_buffer *leaf;
950 	struct btrfs_path *path;
951 	struct btrfs_file_extent_item *fi;
952 	struct btrfs_key found_key;
953 	u64 cow_start;
954 	u64 cur_offset;
955 	u64 extent_end;
956 	u64 disk_bytenr;
957 	u64 num_bytes;
958 	int extent_type;
959 	int ret;
960 	int type;
961 	int nocow;
962 	int check_prev = 1;
963 
964 	path = btrfs_alloc_path();
965 	BUG_ON(!path);
966 	trans = btrfs_join_transaction(root, 1);
967 	BUG_ON(!trans);
968 
969 	cow_start = (u64)-1;
970 	cur_offset = start;
971 	while (1) {
972 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
973 					       cur_offset, 0);
974 		BUG_ON(ret < 0);
975 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
976 			leaf = path->nodes[0];
977 			btrfs_item_key_to_cpu(leaf, &found_key,
978 					      path->slots[0] - 1);
979 			if (found_key.objectid == inode->i_ino &&
980 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
981 				path->slots[0]--;
982 		}
983 		check_prev = 0;
984 next_slot:
985 		leaf = path->nodes[0];
986 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
987 			ret = btrfs_next_leaf(root, path);
988 			if (ret < 0)
989 				BUG_ON(1);
990 			if (ret > 0)
991 				break;
992 			leaf = path->nodes[0];
993 		}
994 
995 		nocow = 0;
996 		disk_bytenr = 0;
997 		num_bytes = 0;
998 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
999 
1000 		if (found_key.objectid > inode->i_ino ||
1001 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1002 		    found_key.offset > end)
1003 			break;
1004 
1005 		if (found_key.offset > cur_offset) {
1006 			extent_end = found_key.offset;
1007 			goto out_check;
1008 		}
1009 
1010 		fi = btrfs_item_ptr(leaf, path->slots[0],
1011 				    struct btrfs_file_extent_item);
1012 		extent_type = btrfs_file_extent_type(leaf, fi);
1013 
1014 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1015 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1016 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1017 			extent_end = found_key.offset +
1018 				btrfs_file_extent_num_bytes(leaf, fi);
1019 			if (extent_end <= start) {
1020 				path->slots[0]++;
1021 				goto next_slot;
1022 			}
1023 			if (disk_bytenr == 0)
1024 				goto out_check;
1025 			if (btrfs_file_extent_compression(leaf, fi) ||
1026 			    btrfs_file_extent_encryption(leaf, fi) ||
1027 			    btrfs_file_extent_other_encoding(leaf, fi))
1028 				goto out_check;
1029 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1030 				goto out_check;
1031 			if (btrfs_extent_readonly(root, disk_bytenr))
1032 				goto out_check;
1033 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1034 						  disk_bytenr))
1035 				goto out_check;
1036 			disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1037 			disk_bytenr += cur_offset - found_key.offset;
1038 			num_bytes = min(end + 1, extent_end) - cur_offset;
1039 			/*
1040 			 * force cow if csum exists in the range.
1041 			 * this ensure that csum for a given extent are
1042 			 * either valid or do not exist.
1043 			 */
1044 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1045 				goto out_check;
1046 			nocow = 1;
1047 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1048 			extent_end = found_key.offset +
1049 				btrfs_file_extent_inline_len(leaf, fi);
1050 			extent_end = ALIGN(extent_end, root->sectorsize);
1051 		} else {
1052 			BUG_ON(1);
1053 		}
1054 out_check:
1055 		if (extent_end <= start) {
1056 			path->slots[0]++;
1057 			goto next_slot;
1058 		}
1059 		if (!nocow) {
1060 			if (cow_start == (u64)-1)
1061 				cow_start = cur_offset;
1062 			cur_offset = extent_end;
1063 			if (cur_offset > end)
1064 				break;
1065 			path->slots[0]++;
1066 			goto next_slot;
1067 		}
1068 
1069 		btrfs_release_path(root, path);
1070 		if (cow_start != (u64)-1) {
1071 			ret = cow_file_range(inode, locked_page, cow_start,
1072 					found_key.offset - 1, page_started,
1073 					nr_written, 1);
1074 			BUG_ON(ret);
1075 			cow_start = (u64)-1;
1076 		}
1077 
1078 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1079 			struct extent_map *em;
1080 			struct extent_map_tree *em_tree;
1081 			em_tree = &BTRFS_I(inode)->extent_tree;
1082 			em = alloc_extent_map(GFP_NOFS);
1083 			em->start = cur_offset;
1084 			em->orig_start = em->start;
1085 			em->len = num_bytes;
1086 			em->block_len = num_bytes;
1087 			em->block_start = disk_bytenr;
1088 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1089 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1090 			while (1) {
1091 				spin_lock(&em_tree->lock);
1092 				ret = add_extent_mapping(em_tree, em);
1093 				spin_unlock(&em_tree->lock);
1094 				if (ret != -EEXIST) {
1095 					free_extent_map(em);
1096 					break;
1097 				}
1098 				btrfs_drop_extent_cache(inode, em->start,
1099 						em->start + em->len - 1, 0);
1100 			}
1101 			type = BTRFS_ORDERED_PREALLOC;
1102 		} else {
1103 			type = BTRFS_ORDERED_NOCOW;
1104 		}
1105 
1106 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1107 					       num_bytes, num_bytes, type);
1108 		BUG_ON(ret);
1109 
1110 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1111 					cur_offset, cur_offset + num_bytes - 1,
1112 					locked_page, 1, 1, 1, 0, 0, 0);
1113 		cur_offset = extent_end;
1114 		if (cur_offset > end)
1115 			break;
1116 	}
1117 	btrfs_release_path(root, path);
1118 
1119 	if (cur_offset <= end && cow_start == (u64)-1)
1120 		cow_start = cur_offset;
1121 	if (cow_start != (u64)-1) {
1122 		ret = cow_file_range(inode, locked_page, cow_start, end,
1123 				     page_started, nr_written, 1);
1124 		BUG_ON(ret);
1125 	}
1126 
1127 	ret = btrfs_end_transaction(trans, root);
1128 	BUG_ON(ret);
1129 	btrfs_free_path(path);
1130 	return 0;
1131 }
1132 
1133 /*
1134  * extent_io.c call back to do delayed allocation processing
1135  */
1136 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1137 			      u64 start, u64 end, int *page_started,
1138 			      unsigned long *nr_written)
1139 {
1140 	int ret;
1141 
1142 	if (btrfs_test_flag(inode, NODATACOW))
1143 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1144 					 page_started, 1, nr_written);
1145 	else if (btrfs_test_flag(inode, PREALLOC))
1146 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1147 					 page_started, 0, nr_written);
1148 	else
1149 		ret = cow_file_range_async(inode, locked_page, start, end,
1150 					   page_started, nr_written);
1151 
1152 	return ret;
1153 }
1154 
1155 /*
1156  * extent_io.c set_bit_hook, used to track delayed allocation
1157  * bytes in this file, and to maintain the list of inodes that
1158  * have pending delalloc work to be done.
1159  */
1160 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1161 		       unsigned long old, unsigned long bits)
1162 {
1163 	/*
1164 	 * set_bit and clear bit hooks normally require _irqsave/restore
1165 	 * but in this case, we are only testeing for the DELALLOC
1166 	 * bit, which is only set or cleared with irqs on
1167 	 */
1168 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1169 		struct btrfs_root *root = BTRFS_I(inode)->root;
1170 		spin_lock(&root->fs_info->delalloc_lock);
1171 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1172 		root->fs_info->delalloc_bytes += end - start + 1;
1173 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1174 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1175 				      &root->fs_info->delalloc_inodes);
1176 		}
1177 		spin_unlock(&root->fs_info->delalloc_lock);
1178 	}
1179 	return 0;
1180 }
1181 
1182 /*
1183  * extent_io.c clear_bit_hook, see set_bit_hook for why
1184  */
1185 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1186 			 unsigned long old, unsigned long bits)
1187 {
1188 	/*
1189 	 * set_bit and clear bit hooks normally require _irqsave/restore
1190 	 * but in this case, we are only testeing for the DELALLOC
1191 	 * bit, which is only set or cleared with irqs on
1192 	 */
1193 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1194 		struct btrfs_root *root = BTRFS_I(inode)->root;
1195 
1196 		spin_lock(&root->fs_info->delalloc_lock);
1197 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
1198 			printk(KERN_INFO "btrfs warning: delalloc account "
1199 			       "%llu %llu\n",
1200 			       (unsigned long long)end - start + 1,
1201 			       (unsigned long long)
1202 			       root->fs_info->delalloc_bytes);
1203 			root->fs_info->delalloc_bytes = 0;
1204 			BTRFS_I(inode)->delalloc_bytes = 0;
1205 		} else {
1206 			root->fs_info->delalloc_bytes -= end - start + 1;
1207 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1208 		}
1209 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1210 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1211 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1212 		}
1213 		spin_unlock(&root->fs_info->delalloc_lock);
1214 	}
1215 	return 0;
1216 }
1217 
1218 /*
1219  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1220  * we don't create bios that span stripes or chunks
1221  */
1222 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1223 			 size_t size, struct bio *bio,
1224 			 unsigned long bio_flags)
1225 {
1226 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1227 	struct btrfs_mapping_tree *map_tree;
1228 	u64 logical = (u64)bio->bi_sector << 9;
1229 	u64 length = 0;
1230 	u64 map_length;
1231 	int ret;
1232 
1233 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1234 		return 0;
1235 
1236 	length = bio->bi_size;
1237 	map_tree = &root->fs_info->mapping_tree;
1238 	map_length = length;
1239 	ret = btrfs_map_block(map_tree, READ, logical,
1240 			      &map_length, NULL, 0);
1241 
1242 	if (map_length < length + size)
1243 		return 1;
1244 	return 0;
1245 }
1246 
1247 /*
1248  * in order to insert checksums into the metadata in large chunks,
1249  * we wait until bio submission time.   All the pages in the bio are
1250  * checksummed and sums are attached onto the ordered extent record.
1251  *
1252  * At IO completion time the cums attached on the ordered extent record
1253  * are inserted into the btree
1254  */
1255 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1256 				    struct bio *bio, int mirror_num,
1257 				    unsigned long bio_flags)
1258 {
1259 	struct btrfs_root *root = BTRFS_I(inode)->root;
1260 	int ret = 0;
1261 
1262 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1263 	BUG_ON(ret);
1264 	return 0;
1265 }
1266 
1267 /*
1268  * in order to insert checksums into the metadata in large chunks,
1269  * we wait until bio submission time.   All the pages in the bio are
1270  * checksummed and sums are attached onto the ordered extent record.
1271  *
1272  * At IO completion time the cums attached on the ordered extent record
1273  * are inserted into the btree
1274  */
1275 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1276 			  int mirror_num, unsigned long bio_flags)
1277 {
1278 	struct btrfs_root *root = BTRFS_I(inode)->root;
1279 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1280 }
1281 
1282 /*
1283  * extent_io.c submission hook. This does the right thing for csum calculation
1284  * on write, or reading the csums from the tree before a read
1285  */
1286 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1287 			  int mirror_num, unsigned long bio_flags)
1288 {
1289 	struct btrfs_root *root = BTRFS_I(inode)->root;
1290 	int ret = 0;
1291 	int skip_sum;
1292 
1293 	skip_sum = btrfs_test_flag(inode, NODATASUM);
1294 
1295 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1296 	BUG_ON(ret);
1297 
1298 	if (!(rw & (1 << BIO_RW))) {
1299 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1300 			return btrfs_submit_compressed_read(inode, bio,
1301 						    mirror_num, bio_flags);
1302 		} else if (!skip_sum)
1303 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1304 		goto mapit;
1305 	} else if (!skip_sum) {
1306 		/* csum items have already been cloned */
1307 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1308 			goto mapit;
1309 		/* we're doing a write, do the async checksumming */
1310 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1311 				   inode, rw, bio, mirror_num,
1312 				   bio_flags, __btrfs_submit_bio_start,
1313 				   __btrfs_submit_bio_done);
1314 	}
1315 
1316 mapit:
1317 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1318 }
1319 
1320 /*
1321  * given a list of ordered sums record them in the inode.  This happens
1322  * at IO completion time based on sums calculated at bio submission time.
1323  */
1324 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1325 			     struct inode *inode, u64 file_offset,
1326 			     struct list_head *list)
1327 {
1328 	struct list_head *cur;
1329 	struct btrfs_ordered_sum *sum;
1330 
1331 	btrfs_set_trans_block_group(trans, inode);
1332 	list_for_each(cur, list) {
1333 		sum = list_entry(cur, struct btrfs_ordered_sum, list);
1334 		btrfs_csum_file_blocks(trans,
1335 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1336 	}
1337 	return 0;
1338 }
1339 
1340 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1341 {
1342 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1343 		WARN_ON(1);
1344 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1345 				   GFP_NOFS);
1346 }
1347 
1348 /* see btrfs_writepage_start_hook for details on why this is required */
1349 struct btrfs_writepage_fixup {
1350 	struct page *page;
1351 	struct btrfs_work work;
1352 };
1353 
1354 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1355 {
1356 	struct btrfs_writepage_fixup *fixup;
1357 	struct btrfs_ordered_extent *ordered;
1358 	struct page *page;
1359 	struct inode *inode;
1360 	u64 page_start;
1361 	u64 page_end;
1362 
1363 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1364 	page = fixup->page;
1365 again:
1366 	lock_page(page);
1367 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1368 		ClearPageChecked(page);
1369 		goto out_page;
1370 	}
1371 
1372 	inode = page->mapping->host;
1373 	page_start = page_offset(page);
1374 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1375 
1376 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1377 
1378 	/* already ordered? We're done */
1379 	if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1380 			     EXTENT_ORDERED, 0)) {
1381 		goto out;
1382 	}
1383 
1384 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1385 	if (ordered) {
1386 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1387 			      page_end, GFP_NOFS);
1388 		unlock_page(page);
1389 		btrfs_start_ordered_extent(inode, ordered, 1);
1390 		goto again;
1391 	}
1392 
1393 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1394 	ClearPageChecked(page);
1395 out:
1396 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1397 out_page:
1398 	unlock_page(page);
1399 	page_cache_release(page);
1400 }
1401 
1402 /*
1403  * There are a few paths in the higher layers of the kernel that directly
1404  * set the page dirty bit without asking the filesystem if it is a
1405  * good idea.  This causes problems because we want to make sure COW
1406  * properly happens and the data=ordered rules are followed.
1407  *
1408  * In our case any range that doesn't have the ORDERED bit set
1409  * hasn't been properly setup for IO.  We kick off an async process
1410  * to fix it up.  The async helper will wait for ordered extents, set
1411  * the delalloc bit and make it safe to write the page.
1412  */
1413 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1414 {
1415 	struct inode *inode = page->mapping->host;
1416 	struct btrfs_writepage_fixup *fixup;
1417 	struct btrfs_root *root = BTRFS_I(inode)->root;
1418 	int ret;
1419 
1420 	ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1421 			     EXTENT_ORDERED, 0);
1422 	if (ret)
1423 		return 0;
1424 
1425 	if (PageChecked(page))
1426 		return -EAGAIN;
1427 
1428 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1429 	if (!fixup)
1430 		return -EAGAIN;
1431 
1432 	SetPageChecked(page);
1433 	page_cache_get(page);
1434 	fixup->work.func = btrfs_writepage_fixup_worker;
1435 	fixup->page = page;
1436 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1437 	return -EAGAIN;
1438 }
1439 
1440 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1441 				       struct inode *inode, u64 file_pos,
1442 				       u64 disk_bytenr, u64 disk_num_bytes,
1443 				       u64 num_bytes, u64 ram_bytes,
1444 				       u8 compression, u8 encryption,
1445 				       u16 other_encoding, int extent_type)
1446 {
1447 	struct btrfs_root *root = BTRFS_I(inode)->root;
1448 	struct btrfs_file_extent_item *fi;
1449 	struct btrfs_path *path;
1450 	struct extent_buffer *leaf;
1451 	struct btrfs_key ins;
1452 	u64 hint;
1453 	int ret;
1454 
1455 	path = btrfs_alloc_path();
1456 	BUG_ON(!path);
1457 
1458 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1459 				 file_pos + num_bytes, file_pos, &hint);
1460 	BUG_ON(ret);
1461 
1462 	ins.objectid = inode->i_ino;
1463 	ins.offset = file_pos;
1464 	ins.type = BTRFS_EXTENT_DATA_KEY;
1465 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1466 	BUG_ON(ret);
1467 	leaf = path->nodes[0];
1468 	fi = btrfs_item_ptr(leaf, path->slots[0],
1469 			    struct btrfs_file_extent_item);
1470 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1471 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1472 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1473 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1474 	btrfs_set_file_extent_offset(leaf, fi, 0);
1475 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1476 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1477 	btrfs_set_file_extent_compression(leaf, fi, compression);
1478 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1479 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1480 	btrfs_mark_buffer_dirty(leaf);
1481 
1482 	inode_add_bytes(inode, num_bytes);
1483 	btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1484 
1485 	ins.objectid = disk_bytenr;
1486 	ins.offset = disk_num_bytes;
1487 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1488 	ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1489 					  root->root_key.objectid,
1490 					  trans->transid, inode->i_ino, &ins);
1491 	BUG_ON(ret);
1492 
1493 	btrfs_free_path(path);
1494 	return 0;
1495 }
1496 
1497 /* as ordered data IO finishes, this gets called so we can finish
1498  * an ordered extent if the range of bytes in the file it covers are
1499  * fully written.
1500  */
1501 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1502 {
1503 	struct btrfs_root *root = BTRFS_I(inode)->root;
1504 	struct btrfs_trans_handle *trans;
1505 	struct btrfs_ordered_extent *ordered_extent;
1506 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1507 	int compressed = 0;
1508 	int ret;
1509 
1510 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1511 	if (!ret)
1512 		return 0;
1513 
1514 	trans = btrfs_join_transaction(root, 1);
1515 
1516 	ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1517 	BUG_ON(!ordered_extent);
1518 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1519 		goto nocow;
1520 
1521 	lock_extent(io_tree, ordered_extent->file_offset,
1522 		    ordered_extent->file_offset + ordered_extent->len - 1,
1523 		    GFP_NOFS);
1524 
1525 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1526 		compressed = 1;
1527 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1528 		BUG_ON(compressed);
1529 		ret = btrfs_mark_extent_written(trans, root, inode,
1530 						ordered_extent->file_offset,
1531 						ordered_extent->file_offset +
1532 						ordered_extent->len);
1533 		BUG_ON(ret);
1534 	} else {
1535 		ret = insert_reserved_file_extent(trans, inode,
1536 						ordered_extent->file_offset,
1537 						ordered_extent->start,
1538 						ordered_extent->disk_len,
1539 						ordered_extent->len,
1540 						ordered_extent->len,
1541 						compressed, 0, 0,
1542 						BTRFS_FILE_EXTENT_REG);
1543 		BUG_ON(ret);
1544 	}
1545 	unlock_extent(io_tree, ordered_extent->file_offset,
1546 		    ordered_extent->file_offset + ordered_extent->len - 1,
1547 		    GFP_NOFS);
1548 nocow:
1549 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1550 			  &ordered_extent->list);
1551 
1552 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1553 	btrfs_ordered_update_i_size(inode, ordered_extent);
1554 	btrfs_update_inode(trans, root, inode);
1555 	btrfs_remove_ordered_extent(inode, ordered_extent);
1556 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1557 
1558 	/* once for us */
1559 	btrfs_put_ordered_extent(ordered_extent);
1560 	/* once for the tree */
1561 	btrfs_put_ordered_extent(ordered_extent);
1562 
1563 	btrfs_end_transaction(trans, root);
1564 	return 0;
1565 }
1566 
1567 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1568 				struct extent_state *state, int uptodate)
1569 {
1570 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1571 }
1572 
1573 /*
1574  * When IO fails, either with EIO or csum verification fails, we
1575  * try other mirrors that might have a good copy of the data.  This
1576  * io_failure_record is used to record state as we go through all the
1577  * mirrors.  If another mirror has good data, the page is set up to date
1578  * and things continue.  If a good mirror can't be found, the original
1579  * bio end_io callback is called to indicate things have failed.
1580  */
1581 struct io_failure_record {
1582 	struct page *page;
1583 	u64 start;
1584 	u64 len;
1585 	u64 logical;
1586 	unsigned long bio_flags;
1587 	int last_mirror;
1588 };
1589 
1590 static int btrfs_io_failed_hook(struct bio *failed_bio,
1591 			 struct page *page, u64 start, u64 end,
1592 			 struct extent_state *state)
1593 {
1594 	struct io_failure_record *failrec = NULL;
1595 	u64 private;
1596 	struct extent_map *em;
1597 	struct inode *inode = page->mapping->host;
1598 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1599 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1600 	struct bio *bio;
1601 	int num_copies;
1602 	int ret;
1603 	int rw;
1604 	u64 logical;
1605 
1606 	ret = get_state_private(failure_tree, start, &private);
1607 	if (ret) {
1608 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1609 		if (!failrec)
1610 			return -ENOMEM;
1611 		failrec->start = start;
1612 		failrec->len = end - start + 1;
1613 		failrec->last_mirror = 0;
1614 		failrec->bio_flags = 0;
1615 
1616 		spin_lock(&em_tree->lock);
1617 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1618 		if (em->start > start || em->start + em->len < start) {
1619 			free_extent_map(em);
1620 			em = NULL;
1621 		}
1622 		spin_unlock(&em_tree->lock);
1623 
1624 		if (!em || IS_ERR(em)) {
1625 			kfree(failrec);
1626 			return -EIO;
1627 		}
1628 		logical = start - em->start;
1629 		logical = em->block_start + logical;
1630 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1631 			logical = em->block_start;
1632 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1633 		}
1634 		failrec->logical = logical;
1635 		free_extent_map(em);
1636 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1637 				EXTENT_DIRTY, GFP_NOFS);
1638 		set_state_private(failure_tree, start,
1639 				 (u64)(unsigned long)failrec);
1640 	} else {
1641 		failrec = (struct io_failure_record *)(unsigned long)private;
1642 	}
1643 	num_copies = btrfs_num_copies(
1644 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1645 			      failrec->logical, failrec->len);
1646 	failrec->last_mirror++;
1647 	if (!state) {
1648 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1649 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1650 						    failrec->start,
1651 						    EXTENT_LOCKED);
1652 		if (state && state->start != failrec->start)
1653 			state = NULL;
1654 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1655 	}
1656 	if (!state || failrec->last_mirror > num_copies) {
1657 		set_state_private(failure_tree, failrec->start, 0);
1658 		clear_extent_bits(failure_tree, failrec->start,
1659 				  failrec->start + failrec->len - 1,
1660 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1661 		kfree(failrec);
1662 		return -EIO;
1663 	}
1664 	bio = bio_alloc(GFP_NOFS, 1);
1665 	bio->bi_private = state;
1666 	bio->bi_end_io = failed_bio->bi_end_io;
1667 	bio->bi_sector = failrec->logical >> 9;
1668 	bio->bi_bdev = failed_bio->bi_bdev;
1669 	bio->bi_size = 0;
1670 
1671 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1672 	if (failed_bio->bi_rw & (1 << BIO_RW))
1673 		rw = WRITE;
1674 	else
1675 		rw = READ;
1676 
1677 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1678 						      failrec->last_mirror,
1679 						      failrec->bio_flags);
1680 	return 0;
1681 }
1682 
1683 /*
1684  * each time an IO finishes, we do a fast check in the IO failure tree
1685  * to see if we need to process or clean up an io_failure_record
1686  */
1687 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1688 {
1689 	u64 private;
1690 	u64 private_failure;
1691 	struct io_failure_record *failure;
1692 	int ret;
1693 
1694 	private = 0;
1695 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1696 			     (u64)-1, 1, EXTENT_DIRTY)) {
1697 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1698 					start, &private_failure);
1699 		if (ret == 0) {
1700 			failure = (struct io_failure_record *)(unsigned long)
1701 				   private_failure;
1702 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1703 					  failure->start, 0);
1704 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1705 					  failure->start,
1706 					  failure->start + failure->len - 1,
1707 					  EXTENT_DIRTY | EXTENT_LOCKED,
1708 					  GFP_NOFS);
1709 			kfree(failure);
1710 		}
1711 	}
1712 	return 0;
1713 }
1714 
1715 /*
1716  * when reads are done, we need to check csums to verify the data is correct
1717  * if there's a match, we allow the bio to finish.  If not, we go through
1718  * the io_failure_record routines to find good copies
1719  */
1720 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1721 			       struct extent_state *state)
1722 {
1723 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1724 	struct inode *inode = page->mapping->host;
1725 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1726 	char *kaddr;
1727 	u64 private = ~(u32)0;
1728 	int ret;
1729 	struct btrfs_root *root = BTRFS_I(inode)->root;
1730 	u32 csum = ~(u32)0;
1731 	unsigned long flags;
1732 
1733 	if (PageChecked(page)) {
1734 		ClearPageChecked(page);
1735 		goto good;
1736 	}
1737 	if (btrfs_test_flag(inode, NODATASUM))
1738 		return 0;
1739 
1740 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1741 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1742 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1743 				  GFP_NOFS);
1744 		return 0;
1745 	}
1746 
1747 	if (state && state->start == start) {
1748 		private = state->private;
1749 		ret = 0;
1750 	} else {
1751 		ret = get_state_private(io_tree, start, &private);
1752 	}
1753 	local_irq_save(flags);
1754 	kaddr = kmap_atomic(page, KM_IRQ0);
1755 	if (ret)
1756 		goto zeroit;
1757 
1758 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1759 	btrfs_csum_final(csum, (char *)&csum);
1760 	if (csum != private)
1761 		goto zeroit;
1762 
1763 	kunmap_atomic(kaddr, KM_IRQ0);
1764 	local_irq_restore(flags);
1765 good:
1766 	/* if the io failure tree for this inode is non-empty,
1767 	 * check to see if we've recovered from a failed IO
1768 	 */
1769 	btrfs_clean_io_failures(inode, start);
1770 	return 0;
1771 
1772 zeroit:
1773 	printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1774 	       "private %llu\n", page->mapping->host->i_ino,
1775 	       (unsigned long long)start, csum,
1776 	       (unsigned long long)private);
1777 	memset(kaddr + offset, 1, end - start + 1);
1778 	flush_dcache_page(page);
1779 	kunmap_atomic(kaddr, KM_IRQ0);
1780 	local_irq_restore(flags);
1781 	if (private == 0)
1782 		return 0;
1783 	return -EIO;
1784 }
1785 
1786 /*
1787  * This creates an orphan entry for the given inode in case something goes
1788  * wrong in the middle of an unlink/truncate.
1789  */
1790 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1791 {
1792 	struct btrfs_root *root = BTRFS_I(inode)->root;
1793 	int ret = 0;
1794 
1795 	spin_lock(&root->list_lock);
1796 
1797 	/* already on the orphan list, we're good */
1798 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1799 		spin_unlock(&root->list_lock);
1800 		return 0;
1801 	}
1802 
1803 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1804 
1805 	spin_unlock(&root->list_lock);
1806 
1807 	/*
1808 	 * insert an orphan item to track this unlinked/truncated file
1809 	 */
1810 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1811 
1812 	return ret;
1813 }
1814 
1815 /*
1816  * We have done the truncate/delete so we can go ahead and remove the orphan
1817  * item for this particular inode.
1818  */
1819 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1820 {
1821 	struct btrfs_root *root = BTRFS_I(inode)->root;
1822 	int ret = 0;
1823 
1824 	spin_lock(&root->list_lock);
1825 
1826 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1827 		spin_unlock(&root->list_lock);
1828 		return 0;
1829 	}
1830 
1831 	list_del_init(&BTRFS_I(inode)->i_orphan);
1832 	if (!trans) {
1833 		spin_unlock(&root->list_lock);
1834 		return 0;
1835 	}
1836 
1837 	spin_unlock(&root->list_lock);
1838 
1839 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1840 
1841 	return ret;
1842 }
1843 
1844 /*
1845  * this cleans up any orphans that may be left on the list from the last use
1846  * of this root.
1847  */
1848 void btrfs_orphan_cleanup(struct btrfs_root *root)
1849 {
1850 	struct btrfs_path *path;
1851 	struct extent_buffer *leaf;
1852 	struct btrfs_item *item;
1853 	struct btrfs_key key, found_key;
1854 	struct btrfs_trans_handle *trans;
1855 	struct inode *inode;
1856 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
1857 
1858 	path = btrfs_alloc_path();
1859 	if (!path)
1860 		return;
1861 	path->reada = -1;
1862 
1863 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1864 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1865 	key.offset = (u64)-1;
1866 
1867 
1868 	while (1) {
1869 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1870 		if (ret < 0) {
1871 			printk(KERN_ERR "Error searching slot for orphan: %d"
1872 			       "\n", ret);
1873 			break;
1874 		}
1875 
1876 		/*
1877 		 * if ret == 0 means we found what we were searching for, which
1878 		 * is weird, but possible, so only screw with path if we didnt
1879 		 * find the key and see if we have stuff that matches
1880 		 */
1881 		if (ret > 0) {
1882 			if (path->slots[0] == 0)
1883 				break;
1884 			path->slots[0]--;
1885 		}
1886 
1887 		/* pull out the item */
1888 		leaf = path->nodes[0];
1889 		item = btrfs_item_nr(leaf, path->slots[0]);
1890 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1891 
1892 		/* make sure the item matches what we want */
1893 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1894 			break;
1895 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1896 			break;
1897 
1898 		/* release the path since we're done with it */
1899 		btrfs_release_path(root, path);
1900 
1901 		/*
1902 		 * this is where we are basically btrfs_lookup, without the
1903 		 * crossing root thing.  we store the inode number in the
1904 		 * offset of the orphan item.
1905 		 */
1906 		inode = btrfs_iget_locked(root->fs_info->sb,
1907 					  found_key.offset, root);
1908 		if (!inode)
1909 			break;
1910 
1911 		if (inode->i_state & I_NEW) {
1912 			BTRFS_I(inode)->root = root;
1913 
1914 			/* have to set the location manually */
1915 			BTRFS_I(inode)->location.objectid = inode->i_ino;
1916 			BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1917 			BTRFS_I(inode)->location.offset = 0;
1918 
1919 			btrfs_read_locked_inode(inode);
1920 			unlock_new_inode(inode);
1921 		}
1922 
1923 		/*
1924 		 * add this inode to the orphan list so btrfs_orphan_del does
1925 		 * the proper thing when we hit it
1926 		 */
1927 		spin_lock(&root->list_lock);
1928 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1929 		spin_unlock(&root->list_lock);
1930 
1931 		/*
1932 		 * if this is a bad inode, means we actually succeeded in
1933 		 * removing the inode, but not the orphan record, which means
1934 		 * we need to manually delete the orphan since iput will just
1935 		 * do a destroy_inode
1936 		 */
1937 		if (is_bad_inode(inode)) {
1938 			trans = btrfs_start_transaction(root, 1);
1939 			btrfs_orphan_del(trans, inode);
1940 			btrfs_end_transaction(trans, root);
1941 			iput(inode);
1942 			continue;
1943 		}
1944 
1945 		/* if we have links, this was a truncate, lets do that */
1946 		if (inode->i_nlink) {
1947 			nr_truncate++;
1948 			btrfs_truncate(inode);
1949 		} else {
1950 			nr_unlink++;
1951 		}
1952 
1953 		/* this will do delete_inode and everything for us */
1954 		iput(inode);
1955 	}
1956 
1957 	if (nr_unlink)
1958 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1959 	if (nr_truncate)
1960 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1961 
1962 	btrfs_free_path(path);
1963 }
1964 
1965 /*
1966  * read an inode from the btree into the in-memory inode
1967  */
1968 void btrfs_read_locked_inode(struct inode *inode)
1969 {
1970 	struct btrfs_path *path;
1971 	struct extent_buffer *leaf;
1972 	struct btrfs_inode_item *inode_item;
1973 	struct btrfs_timespec *tspec;
1974 	struct btrfs_root *root = BTRFS_I(inode)->root;
1975 	struct btrfs_key location;
1976 	u64 alloc_group_block;
1977 	u32 rdev;
1978 	int ret;
1979 
1980 	path = btrfs_alloc_path();
1981 	BUG_ON(!path);
1982 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1983 
1984 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1985 	if (ret)
1986 		goto make_bad;
1987 
1988 	leaf = path->nodes[0];
1989 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1990 				    struct btrfs_inode_item);
1991 
1992 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1993 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1994 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1995 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1996 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1997 
1998 	tspec = btrfs_inode_atime(inode_item);
1999 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2000 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2001 
2002 	tspec = btrfs_inode_mtime(inode_item);
2003 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2004 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2005 
2006 	tspec = btrfs_inode_ctime(inode_item);
2007 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2008 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2009 
2010 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2011 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2012 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2013 	inode->i_generation = BTRFS_I(inode)->generation;
2014 	inode->i_rdev = 0;
2015 	rdev = btrfs_inode_rdev(leaf, inode_item);
2016 
2017 	BTRFS_I(inode)->index_cnt = (u64)-1;
2018 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2019 
2020 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2021 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2022 						alloc_group_block, 0);
2023 	btrfs_free_path(path);
2024 	inode_item = NULL;
2025 
2026 	switch (inode->i_mode & S_IFMT) {
2027 	case S_IFREG:
2028 		inode->i_mapping->a_ops = &btrfs_aops;
2029 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2030 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2031 		inode->i_fop = &btrfs_file_operations;
2032 		inode->i_op = &btrfs_file_inode_operations;
2033 		break;
2034 	case S_IFDIR:
2035 		inode->i_fop = &btrfs_dir_file_operations;
2036 		if (root == root->fs_info->tree_root)
2037 			inode->i_op = &btrfs_dir_ro_inode_operations;
2038 		else
2039 			inode->i_op = &btrfs_dir_inode_operations;
2040 		break;
2041 	case S_IFLNK:
2042 		inode->i_op = &btrfs_symlink_inode_operations;
2043 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2044 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2045 		break;
2046 	default:
2047 		init_special_inode(inode, inode->i_mode, rdev);
2048 		break;
2049 	}
2050 	return;
2051 
2052 make_bad:
2053 	btrfs_free_path(path);
2054 	make_bad_inode(inode);
2055 }
2056 
2057 /*
2058  * given a leaf and an inode, copy the inode fields into the leaf
2059  */
2060 static void fill_inode_item(struct btrfs_trans_handle *trans,
2061 			    struct extent_buffer *leaf,
2062 			    struct btrfs_inode_item *item,
2063 			    struct inode *inode)
2064 {
2065 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2066 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2067 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2068 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2069 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2070 
2071 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2072 			       inode->i_atime.tv_sec);
2073 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2074 				inode->i_atime.tv_nsec);
2075 
2076 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2077 			       inode->i_mtime.tv_sec);
2078 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2079 				inode->i_mtime.tv_nsec);
2080 
2081 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2082 			       inode->i_ctime.tv_sec);
2083 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2084 				inode->i_ctime.tv_nsec);
2085 
2086 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2087 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2088 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2089 	btrfs_set_inode_transid(leaf, item, trans->transid);
2090 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2091 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2092 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2093 }
2094 
2095 /*
2096  * copy everything in the in-memory inode into the btree.
2097  */
2098 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2099 				struct btrfs_root *root, struct inode *inode)
2100 {
2101 	struct btrfs_inode_item *inode_item;
2102 	struct btrfs_path *path;
2103 	struct extent_buffer *leaf;
2104 	int ret;
2105 
2106 	path = btrfs_alloc_path();
2107 	BUG_ON(!path);
2108 	ret = btrfs_lookup_inode(trans, root, path,
2109 				 &BTRFS_I(inode)->location, 1);
2110 	if (ret) {
2111 		if (ret > 0)
2112 			ret = -ENOENT;
2113 		goto failed;
2114 	}
2115 
2116 	leaf = path->nodes[0];
2117 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2118 				  struct btrfs_inode_item);
2119 
2120 	fill_inode_item(trans, leaf, inode_item, inode);
2121 	btrfs_mark_buffer_dirty(leaf);
2122 	btrfs_set_inode_last_trans(trans, inode);
2123 	ret = 0;
2124 failed:
2125 	btrfs_free_path(path);
2126 	return ret;
2127 }
2128 
2129 
2130 /*
2131  * unlink helper that gets used here in inode.c and in the tree logging
2132  * recovery code.  It remove a link in a directory with a given name, and
2133  * also drops the back refs in the inode to the directory
2134  */
2135 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2136 		       struct btrfs_root *root,
2137 		       struct inode *dir, struct inode *inode,
2138 		       const char *name, int name_len)
2139 {
2140 	struct btrfs_path *path;
2141 	int ret = 0;
2142 	struct extent_buffer *leaf;
2143 	struct btrfs_dir_item *di;
2144 	struct btrfs_key key;
2145 	u64 index;
2146 
2147 	path = btrfs_alloc_path();
2148 	if (!path) {
2149 		ret = -ENOMEM;
2150 		goto err;
2151 	}
2152 
2153 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2154 				    name, name_len, -1);
2155 	if (IS_ERR(di)) {
2156 		ret = PTR_ERR(di);
2157 		goto err;
2158 	}
2159 	if (!di) {
2160 		ret = -ENOENT;
2161 		goto err;
2162 	}
2163 	leaf = path->nodes[0];
2164 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2165 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2166 	if (ret)
2167 		goto err;
2168 	btrfs_release_path(root, path);
2169 
2170 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2171 				  inode->i_ino,
2172 				  dir->i_ino, &index);
2173 	if (ret) {
2174 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2175 		       "inode %lu parent %lu\n", name_len, name,
2176 		       inode->i_ino, dir->i_ino);
2177 		goto err;
2178 	}
2179 
2180 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2181 					 index, name, name_len, -1);
2182 	if (IS_ERR(di)) {
2183 		ret = PTR_ERR(di);
2184 		goto err;
2185 	}
2186 	if (!di) {
2187 		ret = -ENOENT;
2188 		goto err;
2189 	}
2190 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2191 	btrfs_release_path(root, path);
2192 
2193 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2194 					 inode, dir->i_ino);
2195 	BUG_ON(ret != 0 && ret != -ENOENT);
2196 	if (ret != -ENOENT)
2197 		BTRFS_I(dir)->log_dirty_trans = trans->transid;
2198 
2199 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2200 					   dir, index);
2201 	BUG_ON(ret);
2202 err:
2203 	btrfs_free_path(path);
2204 	if (ret)
2205 		goto out;
2206 
2207 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2208 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2209 	btrfs_update_inode(trans, root, dir);
2210 	btrfs_drop_nlink(inode);
2211 	ret = btrfs_update_inode(trans, root, inode);
2212 	dir->i_sb->s_dirt = 1;
2213 out:
2214 	return ret;
2215 }
2216 
2217 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2218 {
2219 	struct btrfs_root *root;
2220 	struct btrfs_trans_handle *trans;
2221 	struct inode *inode = dentry->d_inode;
2222 	int ret;
2223 	unsigned long nr = 0;
2224 
2225 	root = BTRFS_I(dir)->root;
2226 
2227 	ret = btrfs_check_free_space(root, 1, 1);
2228 	if (ret)
2229 		goto fail;
2230 
2231 	trans = btrfs_start_transaction(root, 1);
2232 
2233 	btrfs_set_trans_block_group(trans, dir);
2234 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2235 				 dentry->d_name.name, dentry->d_name.len);
2236 
2237 	if (inode->i_nlink == 0)
2238 		ret = btrfs_orphan_add(trans, inode);
2239 
2240 	nr = trans->blocks_used;
2241 
2242 	btrfs_end_transaction_throttle(trans, root);
2243 fail:
2244 	btrfs_btree_balance_dirty(root, nr);
2245 	return ret;
2246 }
2247 
2248 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2249 {
2250 	struct inode *inode = dentry->d_inode;
2251 	int err = 0;
2252 	int ret;
2253 	struct btrfs_root *root = BTRFS_I(dir)->root;
2254 	struct btrfs_trans_handle *trans;
2255 	unsigned long nr = 0;
2256 
2257 	/*
2258 	 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2259 	 * the root of a subvolume or snapshot
2260 	 */
2261 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2262 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2263 		return -ENOTEMPTY;
2264 	}
2265 
2266 	ret = btrfs_check_free_space(root, 1, 1);
2267 	if (ret)
2268 		goto fail;
2269 
2270 	trans = btrfs_start_transaction(root, 1);
2271 	btrfs_set_trans_block_group(trans, dir);
2272 
2273 	err = btrfs_orphan_add(trans, inode);
2274 	if (err)
2275 		goto fail_trans;
2276 
2277 	/* now the directory is empty */
2278 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2279 				 dentry->d_name.name, dentry->d_name.len);
2280 	if (!err)
2281 		btrfs_i_size_write(inode, 0);
2282 
2283 fail_trans:
2284 	nr = trans->blocks_used;
2285 	ret = btrfs_end_transaction_throttle(trans, root);
2286 fail:
2287 	btrfs_btree_balance_dirty(root, nr);
2288 
2289 	if (ret && !err)
2290 		err = ret;
2291 	return err;
2292 }
2293 
2294 #if 0
2295 /*
2296  * when truncating bytes in a file, it is possible to avoid reading
2297  * the leaves that contain only checksum items.  This can be the
2298  * majority of the IO required to delete a large file, but it must
2299  * be done carefully.
2300  *
2301  * The keys in the level just above the leaves are checked to make sure
2302  * the lowest key in a given leaf is a csum key, and starts at an offset
2303  * after the new  size.
2304  *
2305  * Then the key for the next leaf is checked to make sure it also has
2306  * a checksum item for the same file.  If it does, we know our target leaf
2307  * contains only checksum items, and it can be safely freed without reading
2308  * it.
2309  *
2310  * This is just an optimization targeted at large files.  It may do
2311  * nothing.  It will return 0 unless things went badly.
2312  */
2313 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2314 				     struct btrfs_root *root,
2315 				     struct btrfs_path *path,
2316 				     struct inode *inode, u64 new_size)
2317 {
2318 	struct btrfs_key key;
2319 	int ret;
2320 	int nritems;
2321 	struct btrfs_key found_key;
2322 	struct btrfs_key other_key;
2323 	struct btrfs_leaf_ref *ref;
2324 	u64 leaf_gen;
2325 	u64 leaf_start;
2326 
2327 	path->lowest_level = 1;
2328 	key.objectid = inode->i_ino;
2329 	key.type = BTRFS_CSUM_ITEM_KEY;
2330 	key.offset = new_size;
2331 again:
2332 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2333 	if (ret < 0)
2334 		goto out;
2335 
2336 	if (path->nodes[1] == NULL) {
2337 		ret = 0;
2338 		goto out;
2339 	}
2340 	ret = 0;
2341 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2342 	nritems = btrfs_header_nritems(path->nodes[1]);
2343 
2344 	if (!nritems)
2345 		goto out;
2346 
2347 	if (path->slots[1] >= nritems)
2348 		goto next_node;
2349 
2350 	/* did we find a key greater than anything we want to delete? */
2351 	if (found_key.objectid > inode->i_ino ||
2352 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2353 		goto out;
2354 
2355 	/* we check the next key in the node to make sure the leave contains
2356 	 * only checksum items.  This comparison doesn't work if our
2357 	 * leaf is the last one in the node
2358 	 */
2359 	if (path->slots[1] + 1 >= nritems) {
2360 next_node:
2361 		/* search forward from the last key in the node, this
2362 		 * will bring us into the next node in the tree
2363 		 */
2364 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2365 
2366 		/* unlikely, but we inc below, so check to be safe */
2367 		if (found_key.offset == (u64)-1)
2368 			goto out;
2369 
2370 		/* search_forward needs a path with locks held, do the
2371 		 * search again for the original key.  It is possible
2372 		 * this will race with a balance and return a path that
2373 		 * we could modify, but this drop is just an optimization
2374 		 * and is allowed to miss some leaves.
2375 		 */
2376 		btrfs_release_path(root, path);
2377 		found_key.offset++;
2378 
2379 		/* setup a max key for search_forward */
2380 		other_key.offset = (u64)-1;
2381 		other_key.type = key.type;
2382 		other_key.objectid = key.objectid;
2383 
2384 		path->keep_locks = 1;
2385 		ret = btrfs_search_forward(root, &found_key, &other_key,
2386 					   path, 0, 0);
2387 		path->keep_locks = 0;
2388 		if (ret || found_key.objectid != key.objectid ||
2389 		    found_key.type != key.type) {
2390 			ret = 0;
2391 			goto out;
2392 		}
2393 
2394 		key.offset = found_key.offset;
2395 		btrfs_release_path(root, path);
2396 		cond_resched();
2397 		goto again;
2398 	}
2399 
2400 	/* we know there's one more slot after us in the tree,
2401 	 * read that key so we can verify it is also a checksum item
2402 	 */
2403 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2404 
2405 	if (found_key.objectid < inode->i_ino)
2406 		goto next_key;
2407 
2408 	if (found_key.type != key.type || found_key.offset < new_size)
2409 		goto next_key;
2410 
2411 	/*
2412 	 * if the key for the next leaf isn't a csum key from this objectid,
2413 	 * we can't be sure there aren't good items inside this leaf.
2414 	 * Bail out
2415 	 */
2416 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2417 		goto out;
2418 
2419 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2420 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2421 	/*
2422 	 * it is safe to delete this leaf, it contains only
2423 	 * csum items from this inode at an offset >= new_size
2424 	 */
2425 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2426 	BUG_ON(ret);
2427 
2428 	if (root->ref_cows && leaf_gen < trans->transid) {
2429 		ref = btrfs_alloc_leaf_ref(root, 0);
2430 		if (ref) {
2431 			ref->root_gen = root->root_key.offset;
2432 			ref->bytenr = leaf_start;
2433 			ref->owner = 0;
2434 			ref->generation = leaf_gen;
2435 			ref->nritems = 0;
2436 
2437 			ret = btrfs_add_leaf_ref(root, ref, 0);
2438 			WARN_ON(ret);
2439 			btrfs_free_leaf_ref(root, ref);
2440 		} else {
2441 			WARN_ON(1);
2442 		}
2443 	}
2444 next_key:
2445 	btrfs_release_path(root, path);
2446 
2447 	if (other_key.objectid == inode->i_ino &&
2448 	    other_key.type == key.type && other_key.offset > key.offset) {
2449 		key.offset = other_key.offset;
2450 		cond_resched();
2451 		goto again;
2452 	}
2453 	ret = 0;
2454 out:
2455 	/* fixup any changes we've made to the path */
2456 	path->lowest_level = 0;
2457 	path->keep_locks = 0;
2458 	btrfs_release_path(root, path);
2459 	return ret;
2460 }
2461 
2462 #endif
2463 
2464 /*
2465  * this can truncate away extent items, csum items and directory items.
2466  * It starts at a high offset and removes keys until it can't find
2467  * any higher than new_size
2468  *
2469  * csum items that cross the new i_size are truncated to the new size
2470  * as well.
2471  *
2472  * min_type is the minimum key type to truncate down to.  If set to 0, this
2473  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2474  */
2475 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2476 					struct btrfs_root *root,
2477 					struct inode *inode,
2478 					u64 new_size, u32 min_type)
2479 {
2480 	int ret;
2481 	struct btrfs_path *path;
2482 	struct btrfs_key key;
2483 	struct btrfs_key found_key;
2484 	u32 found_type;
2485 	struct extent_buffer *leaf;
2486 	struct btrfs_file_extent_item *fi;
2487 	u64 extent_start = 0;
2488 	u64 extent_num_bytes = 0;
2489 	u64 item_end = 0;
2490 	u64 root_gen = 0;
2491 	u64 root_owner = 0;
2492 	int found_extent;
2493 	int del_item;
2494 	int pending_del_nr = 0;
2495 	int pending_del_slot = 0;
2496 	int extent_type = -1;
2497 	int encoding;
2498 	u64 mask = root->sectorsize - 1;
2499 
2500 	if (root->ref_cows)
2501 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2502 	path = btrfs_alloc_path();
2503 	path->reada = -1;
2504 	BUG_ON(!path);
2505 
2506 	/* FIXME, add redo link to tree so we don't leak on crash */
2507 	key.objectid = inode->i_ino;
2508 	key.offset = (u64)-1;
2509 	key.type = (u8)-1;
2510 
2511 	btrfs_init_path(path);
2512 
2513 search_again:
2514 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2515 	if (ret < 0)
2516 		goto error;
2517 
2518 	if (ret > 0) {
2519 		/* there are no items in the tree for us to truncate, we're
2520 		 * done
2521 		 */
2522 		if (path->slots[0] == 0) {
2523 			ret = 0;
2524 			goto error;
2525 		}
2526 		path->slots[0]--;
2527 	}
2528 
2529 	while (1) {
2530 		fi = NULL;
2531 		leaf = path->nodes[0];
2532 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2533 		found_type = btrfs_key_type(&found_key);
2534 		encoding = 0;
2535 
2536 		if (found_key.objectid != inode->i_ino)
2537 			break;
2538 
2539 		if (found_type < min_type)
2540 			break;
2541 
2542 		item_end = found_key.offset;
2543 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2544 			fi = btrfs_item_ptr(leaf, path->slots[0],
2545 					    struct btrfs_file_extent_item);
2546 			extent_type = btrfs_file_extent_type(leaf, fi);
2547 			encoding = btrfs_file_extent_compression(leaf, fi);
2548 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2549 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2550 
2551 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2552 				item_end +=
2553 				    btrfs_file_extent_num_bytes(leaf, fi);
2554 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2555 				item_end += btrfs_file_extent_inline_len(leaf,
2556 									 fi);
2557 			}
2558 			item_end--;
2559 		}
2560 		if (item_end < new_size) {
2561 			if (found_type == BTRFS_DIR_ITEM_KEY)
2562 				found_type = BTRFS_INODE_ITEM_KEY;
2563 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2564 				found_type = BTRFS_EXTENT_DATA_KEY;
2565 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2566 				found_type = BTRFS_XATTR_ITEM_KEY;
2567 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2568 				found_type = BTRFS_INODE_REF_KEY;
2569 			else if (found_type)
2570 				found_type--;
2571 			else
2572 				break;
2573 			btrfs_set_key_type(&key, found_type);
2574 			goto next;
2575 		}
2576 		if (found_key.offset >= new_size)
2577 			del_item = 1;
2578 		else
2579 			del_item = 0;
2580 		found_extent = 0;
2581 
2582 		/* FIXME, shrink the extent if the ref count is only 1 */
2583 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2584 			goto delete;
2585 
2586 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2587 			u64 num_dec;
2588 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2589 			if (!del_item && !encoding) {
2590 				u64 orig_num_bytes =
2591 					btrfs_file_extent_num_bytes(leaf, fi);
2592 				extent_num_bytes = new_size -
2593 					found_key.offset + root->sectorsize - 1;
2594 				extent_num_bytes = extent_num_bytes &
2595 					~((u64)root->sectorsize - 1);
2596 				btrfs_set_file_extent_num_bytes(leaf, fi,
2597 							 extent_num_bytes);
2598 				num_dec = (orig_num_bytes -
2599 					   extent_num_bytes);
2600 				if (root->ref_cows && extent_start != 0)
2601 					inode_sub_bytes(inode, num_dec);
2602 				btrfs_mark_buffer_dirty(leaf);
2603 			} else {
2604 				extent_num_bytes =
2605 					btrfs_file_extent_disk_num_bytes(leaf,
2606 									 fi);
2607 				/* FIXME blocksize != 4096 */
2608 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2609 				if (extent_start != 0) {
2610 					found_extent = 1;
2611 					if (root->ref_cows)
2612 						inode_sub_bytes(inode, num_dec);
2613 				}
2614 				root_gen = btrfs_header_generation(leaf);
2615 				root_owner = btrfs_header_owner(leaf);
2616 			}
2617 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2618 			/*
2619 			 * we can't truncate inline items that have had
2620 			 * special encodings
2621 			 */
2622 			if (!del_item &&
2623 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2624 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2625 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2626 				u32 size = new_size - found_key.offset;
2627 
2628 				if (root->ref_cows) {
2629 					inode_sub_bytes(inode, item_end + 1 -
2630 							new_size);
2631 				}
2632 				size =
2633 				    btrfs_file_extent_calc_inline_size(size);
2634 				ret = btrfs_truncate_item(trans, root, path,
2635 							  size, 1);
2636 				BUG_ON(ret);
2637 			} else if (root->ref_cows) {
2638 				inode_sub_bytes(inode, item_end + 1 -
2639 						found_key.offset);
2640 			}
2641 		}
2642 delete:
2643 		if (del_item) {
2644 			if (!pending_del_nr) {
2645 				/* no pending yet, add ourselves */
2646 				pending_del_slot = path->slots[0];
2647 				pending_del_nr = 1;
2648 			} else if (pending_del_nr &&
2649 				   path->slots[0] + 1 == pending_del_slot) {
2650 				/* hop on the pending chunk */
2651 				pending_del_nr++;
2652 				pending_del_slot = path->slots[0];
2653 			} else {
2654 				BUG();
2655 			}
2656 		} else {
2657 			break;
2658 		}
2659 		if (found_extent) {
2660 			ret = btrfs_free_extent(trans, root, extent_start,
2661 						extent_num_bytes,
2662 						leaf->start, root_owner,
2663 						root_gen, inode->i_ino, 0);
2664 			BUG_ON(ret);
2665 		}
2666 next:
2667 		if (path->slots[0] == 0) {
2668 			if (pending_del_nr)
2669 				goto del_pending;
2670 			btrfs_release_path(root, path);
2671 			goto search_again;
2672 		}
2673 
2674 		path->slots[0]--;
2675 		if (pending_del_nr &&
2676 		    path->slots[0] + 1 != pending_del_slot) {
2677 			struct btrfs_key debug;
2678 del_pending:
2679 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
2680 					      pending_del_slot);
2681 			ret = btrfs_del_items(trans, root, path,
2682 					      pending_del_slot,
2683 					      pending_del_nr);
2684 			BUG_ON(ret);
2685 			pending_del_nr = 0;
2686 			btrfs_release_path(root, path);
2687 			goto search_again;
2688 		}
2689 	}
2690 	ret = 0;
2691 error:
2692 	if (pending_del_nr) {
2693 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
2694 				      pending_del_nr);
2695 	}
2696 	btrfs_free_path(path);
2697 	inode->i_sb->s_dirt = 1;
2698 	return ret;
2699 }
2700 
2701 /*
2702  * taken from block_truncate_page, but does cow as it zeros out
2703  * any bytes left in the last page in the file.
2704  */
2705 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2706 {
2707 	struct inode *inode = mapping->host;
2708 	struct btrfs_root *root = BTRFS_I(inode)->root;
2709 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2710 	struct btrfs_ordered_extent *ordered;
2711 	char *kaddr;
2712 	u32 blocksize = root->sectorsize;
2713 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2714 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2715 	struct page *page;
2716 	int ret = 0;
2717 	u64 page_start;
2718 	u64 page_end;
2719 
2720 	if ((offset & (blocksize - 1)) == 0)
2721 		goto out;
2722 
2723 	ret = -ENOMEM;
2724 again:
2725 	page = grab_cache_page(mapping, index);
2726 	if (!page)
2727 		goto out;
2728 
2729 	page_start = page_offset(page);
2730 	page_end = page_start + PAGE_CACHE_SIZE - 1;
2731 
2732 	if (!PageUptodate(page)) {
2733 		ret = btrfs_readpage(NULL, page);
2734 		lock_page(page);
2735 		if (page->mapping != mapping) {
2736 			unlock_page(page);
2737 			page_cache_release(page);
2738 			goto again;
2739 		}
2740 		if (!PageUptodate(page)) {
2741 			ret = -EIO;
2742 			goto out_unlock;
2743 		}
2744 	}
2745 	wait_on_page_writeback(page);
2746 
2747 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2748 	set_page_extent_mapped(page);
2749 
2750 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2751 	if (ordered) {
2752 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2753 		unlock_page(page);
2754 		page_cache_release(page);
2755 		btrfs_start_ordered_extent(inode, ordered, 1);
2756 		btrfs_put_ordered_extent(ordered);
2757 		goto again;
2758 	}
2759 
2760 	btrfs_set_extent_delalloc(inode, page_start, page_end);
2761 	ret = 0;
2762 	if (offset != PAGE_CACHE_SIZE) {
2763 		kaddr = kmap(page);
2764 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2765 		flush_dcache_page(page);
2766 		kunmap(page);
2767 	}
2768 	ClearPageChecked(page);
2769 	set_page_dirty(page);
2770 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2771 
2772 out_unlock:
2773 	unlock_page(page);
2774 	page_cache_release(page);
2775 out:
2776 	return ret;
2777 }
2778 
2779 int btrfs_cont_expand(struct inode *inode, loff_t size)
2780 {
2781 	struct btrfs_trans_handle *trans;
2782 	struct btrfs_root *root = BTRFS_I(inode)->root;
2783 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2784 	struct extent_map *em;
2785 	u64 mask = root->sectorsize - 1;
2786 	u64 hole_start = (inode->i_size + mask) & ~mask;
2787 	u64 block_end = (size + mask) & ~mask;
2788 	u64 last_byte;
2789 	u64 cur_offset;
2790 	u64 hole_size;
2791 	int err;
2792 
2793 	if (size <= hole_start)
2794 		return 0;
2795 
2796 	err = btrfs_check_free_space(root, 1, 0);
2797 	if (err)
2798 		return err;
2799 
2800 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
2801 
2802 	while (1) {
2803 		struct btrfs_ordered_extent *ordered;
2804 		btrfs_wait_ordered_range(inode, hole_start,
2805 					 block_end - hole_start);
2806 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2807 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2808 		if (!ordered)
2809 			break;
2810 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2811 		btrfs_put_ordered_extent(ordered);
2812 	}
2813 
2814 	trans = btrfs_start_transaction(root, 1);
2815 	btrfs_set_trans_block_group(trans, inode);
2816 
2817 	cur_offset = hole_start;
2818 	while (1) {
2819 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2820 				block_end - cur_offset, 0);
2821 		BUG_ON(IS_ERR(em) || !em);
2822 		last_byte = min(extent_map_end(em), block_end);
2823 		last_byte = (last_byte + mask) & ~mask;
2824 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2825 			u64 hint_byte = 0;
2826 			hole_size = last_byte - cur_offset;
2827 			err = btrfs_drop_extents(trans, root, inode,
2828 						 cur_offset,
2829 						 cur_offset + hole_size,
2830 						 cur_offset, &hint_byte);
2831 			if (err)
2832 				break;
2833 			err = btrfs_insert_file_extent(trans, root,
2834 					inode->i_ino, cur_offset, 0,
2835 					0, hole_size, 0, hole_size,
2836 					0, 0, 0);
2837 			btrfs_drop_extent_cache(inode, hole_start,
2838 					last_byte - 1, 0);
2839 		}
2840 		free_extent_map(em);
2841 		cur_offset = last_byte;
2842 		if (err || cur_offset >= block_end)
2843 			break;
2844 	}
2845 
2846 	btrfs_end_transaction(trans, root);
2847 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2848 	return err;
2849 }
2850 
2851 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2852 {
2853 	struct inode *inode = dentry->d_inode;
2854 	int err;
2855 
2856 	err = inode_change_ok(inode, attr);
2857 	if (err)
2858 		return err;
2859 
2860 	if (S_ISREG(inode->i_mode) &&
2861 	    attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2862 		err = btrfs_cont_expand(inode, attr->ia_size);
2863 		if (err)
2864 			return err;
2865 	}
2866 
2867 	err = inode_setattr(inode, attr);
2868 
2869 	if (!err && ((attr->ia_valid & ATTR_MODE)))
2870 		err = btrfs_acl_chmod(inode);
2871 	return err;
2872 }
2873 
2874 void btrfs_delete_inode(struct inode *inode)
2875 {
2876 	struct btrfs_trans_handle *trans;
2877 	struct btrfs_root *root = BTRFS_I(inode)->root;
2878 	unsigned long nr;
2879 	int ret;
2880 
2881 	truncate_inode_pages(&inode->i_data, 0);
2882 	if (is_bad_inode(inode)) {
2883 		btrfs_orphan_del(NULL, inode);
2884 		goto no_delete;
2885 	}
2886 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
2887 
2888 	btrfs_i_size_write(inode, 0);
2889 	trans = btrfs_join_transaction(root, 1);
2890 
2891 	btrfs_set_trans_block_group(trans, inode);
2892 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2893 	if (ret) {
2894 		btrfs_orphan_del(NULL, inode);
2895 		goto no_delete_lock;
2896 	}
2897 
2898 	btrfs_orphan_del(trans, inode);
2899 
2900 	nr = trans->blocks_used;
2901 	clear_inode(inode);
2902 
2903 	btrfs_end_transaction(trans, root);
2904 	btrfs_btree_balance_dirty(root, nr);
2905 	return;
2906 
2907 no_delete_lock:
2908 	nr = trans->blocks_used;
2909 	btrfs_end_transaction(trans, root);
2910 	btrfs_btree_balance_dirty(root, nr);
2911 no_delete:
2912 	clear_inode(inode);
2913 }
2914 
2915 /*
2916  * this returns the key found in the dir entry in the location pointer.
2917  * If no dir entries were found, location->objectid is 0.
2918  */
2919 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2920 			       struct btrfs_key *location)
2921 {
2922 	const char *name = dentry->d_name.name;
2923 	int namelen = dentry->d_name.len;
2924 	struct btrfs_dir_item *di;
2925 	struct btrfs_path *path;
2926 	struct btrfs_root *root = BTRFS_I(dir)->root;
2927 	int ret = 0;
2928 
2929 	path = btrfs_alloc_path();
2930 	BUG_ON(!path);
2931 
2932 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2933 				    namelen, 0);
2934 	if (IS_ERR(di))
2935 		ret = PTR_ERR(di);
2936 
2937 	if (!di || IS_ERR(di))
2938 		goto out_err;
2939 
2940 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2941 out:
2942 	btrfs_free_path(path);
2943 	return ret;
2944 out_err:
2945 	location->objectid = 0;
2946 	goto out;
2947 }
2948 
2949 /*
2950  * when we hit a tree root in a directory, the btrfs part of the inode
2951  * needs to be changed to reflect the root directory of the tree root.  This
2952  * is kind of like crossing a mount point.
2953  */
2954 static int fixup_tree_root_location(struct btrfs_root *root,
2955 			     struct btrfs_key *location,
2956 			     struct btrfs_root **sub_root,
2957 			     struct dentry *dentry)
2958 {
2959 	struct btrfs_root_item *ri;
2960 
2961 	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2962 		return 0;
2963 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2964 		return 0;
2965 
2966 	*sub_root = btrfs_read_fs_root(root->fs_info, location,
2967 					dentry->d_name.name,
2968 					dentry->d_name.len);
2969 	if (IS_ERR(*sub_root))
2970 		return PTR_ERR(*sub_root);
2971 
2972 	ri = &(*sub_root)->root_item;
2973 	location->objectid = btrfs_root_dirid(ri);
2974 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2975 	location->offset = 0;
2976 
2977 	return 0;
2978 }
2979 
2980 static noinline void init_btrfs_i(struct inode *inode)
2981 {
2982 	struct btrfs_inode *bi = BTRFS_I(inode);
2983 
2984 	bi->i_acl = NULL;
2985 	bi->i_default_acl = NULL;
2986 
2987 	bi->generation = 0;
2988 	bi->sequence = 0;
2989 	bi->last_trans = 0;
2990 	bi->logged_trans = 0;
2991 	bi->delalloc_bytes = 0;
2992 	bi->disk_i_size = 0;
2993 	bi->flags = 0;
2994 	bi->index_cnt = (u64)-1;
2995 	bi->log_dirty_trans = 0;
2996 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2997 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2998 			     inode->i_mapping, GFP_NOFS);
2999 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3000 			     inode->i_mapping, GFP_NOFS);
3001 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3002 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3003 	mutex_init(&BTRFS_I(inode)->extent_mutex);
3004 	mutex_init(&BTRFS_I(inode)->log_mutex);
3005 }
3006 
3007 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3008 {
3009 	struct btrfs_iget_args *args = p;
3010 	inode->i_ino = args->ino;
3011 	init_btrfs_i(inode);
3012 	BTRFS_I(inode)->root = args->root;
3013 	return 0;
3014 }
3015 
3016 static int btrfs_find_actor(struct inode *inode, void *opaque)
3017 {
3018 	struct btrfs_iget_args *args = opaque;
3019 	return args->ino == inode->i_ino &&
3020 		args->root == BTRFS_I(inode)->root;
3021 }
3022 
3023 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3024 			    struct btrfs_root *root, int wait)
3025 {
3026 	struct inode *inode;
3027 	struct btrfs_iget_args args;
3028 	args.ino = objectid;
3029 	args.root = root;
3030 
3031 	if (wait) {
3032 		inode = ilookup5(s, objectid, btrfs_find_actor,
3033 				 (void *)&args);
3034 	} else {
3035 		inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3036 					(void *)&args);
3037 	}
3038 	return inode;
3039 }
3040 
3041 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3042 				struct btrfs_root *root)
3043 {
3044 	struct inode *inode;
3045 	struct btrfs_iget_args args;
3046 	args.ino = objectid;
3047 	args.root = root;
3048 
3049 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3050 			     btrfs_init_locked_inode,
3051 			     (void *)&args);
3052 	return inode;
3053 }
3054 
3055 /* Get an inode object given its location and corresponding root.
3056  * Returns in *is_new if the inode was read from disk
3057  */
3058 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3059 			 struct btrfs_root *root, int *is_new)
3060 {
3061 	struct inode *inode;
3062 
3063 	inode = btrfs_iget_locked(s, location->objectid, root);
3064 	if (!inode)
3065 		return ERR_PTR(-EACCES);
3066 
3067 	if (inode->i_state & I_NEW) {
3068 		BTRFS_I(inode)->root = root;
3069 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3070 		btrfs_read_locked_inode(inode);
3071 		unlock_new_inode(inode);
3072 		if (is_new)
3073 			*is_new = 1;
3074 	} else {
3075 		if (is_new)
3076 			*is_new = 0;
3077 	}
3078 
3079 	return inode;
3080 }
3081 
3082 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3083 {
3084 	struct inode *inode;
3085 	struct btrfs_inode *bi = BTRFS_I(dir);
3086 	struct btrfs_root *root = bi->root;
3087 	struct btrfs_root *sub_root = root;
3088 	struct btrfs_key location;
3089 	int ret, new;
3090 
3091 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3092 		return ERR_PTR(-ENAMETOOLONG);
3093 
3094 	ret = btrfs_inode_by_name(dir, dentry, &location);
3095 
3096 	if (ret < 0)
3097 		return ERR_PTR(ret);
3098 
3099 	inode = NULL;
3100 	if (location.objectid) {
3101 		ret = fixup_tree_root_location(root, &location, &sub_root,
3102 						dentry);
3103 		if (ret < 0)
3104 			return ERR_PTR(ret);
3105 		if (ret > 0)
3106 			return ERR_PTR(-ENOENT);
3107 		inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3108 		if (IS_ERR(inode))
3109 			return ERR_CAST(inode);
3110 	}
3111 	return inode;
3112 }
3113 
3114 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3115 				   struct nameidata *nd)
3116 {
3117 	struct inode *inode;
3118 
3119 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3120 		return ERR_PTR(-ENAMETOOLONG);
3121 
3122 	inode = btrfs_lookup_dentry(dir, dentry);
3123 	if (IS_ERR(inode))
3124 		return ERR_CAST(inode);
3125 
3126 	return d_splice_alias(inode, dentry);
3127 }
3128 
3129 static unsigned char btrfs_filetype_table[] = {
3130 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3131 };
3132 
3133 static int btrfs_real_readdir(struct file *filp, void *dirent,
3134 			      filldir_t filldir)
3135 {
3136 	struct inode *inode = filp->f_dentry->d_inode;
3137 	struct btrfs_root *root = BTRFS_I(inode)->root;
3138 	struct btrfs_item *item;
3139 	struct btrfs_dir_item *di;
3140 	struct btrfs_key key;
3141 	struct btrfs_key found_key;
3142 	struct btrfs_path *path;
3143 	int ret;
3144 	u32 nritems;
3145 	struct extent_buffer *leaf;
3146 	int slot;
3147 	int advance;
3148 	unsigned char d_type;
3149 	int over = 0;
3150 	u32 di_cur;
3151 	u32 di_total;
3152 	u32 di_len;
3153 	int key_type = BTRFS_DIR_INDEX_KEY;
3154 	char tmp_name[32];
3155 	char *name_ptr;
3156 	int name_len;
3157 
3158 	/* FIXME, use a real flag for deciding about the key type */
3159 	if (root->fs_info->tree_root == root)
3160 		key_type = BTRFS_DIR_ITEM_KEY;
3161 
3162 	/* special case for "." */
3163 	if (filp->f_pos == 0) {
3164 		over = filldir(dirent, ".", 1,
3165 			       1, inode->i_ino,
3166 			       DT_DIR);
3167 		if (over)
3168 			return 0;
3169 		filp->f_pos = 1;
3170 	}
3171 	/* special case for .., just use the back ref */
3172 	if (filp->f_pos == 1) {
3173 		u64 pino = parent_ino(filp->f_path.dentry);
3174 		over = filldir(dirent, "..", 2,
3175 			       2, pino, DT_DIR);
3176 		if (over)
3177 			return 0;
3178 		filp->f_pos = 2;
3179 	}
3180 	path = btrfs_alloc_path();
3181 	path->reada = 2;
3182 
3183 	btrfs_set_key_type(&key, key_type);
3184 	key.offset = filp->f_pos;
3185 	key.objectid = inode->i_ino;
3186 
3187 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3188 	if (ret < 0)
3189 		goto err;
3190 	advance = 0;
3191 
3192 	while (1) {
3193 		leaf = path->nodes[0];
3194 		nritems = btrfs_header_nritems(leaf);
3195 		slot = path->slots[0];
3196 		if (advance || slot >= nritems) {
3197 			if (slot >= nritems - 1) {
3198 				ret = btrfs_next_leaf(root, path);
3199 				if (ret)
3200 					break;
3201 				leaf = path->nodes[0];
3202 				nritems = btrfs_header_nritems(leaf);
3203 				slot = path->slots[0];
3204 			} else {
3205 				slot++;
3206 				path->slots[0]++;
3207 			}
3208 		}
3209 
3210 		advance = 1;
3211 		item = btrfs_item_nr(leaf, slot);
3212 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3213 
3214 		if (found_key.objectid != key.objectid)
3215 			break;
3216 		if (btrfs_key_type(&found_key) != key_type)
3217 			break;
3218 		if (found_key.offset < filp->f_pos)
3219 			continue;
3220 
3221 		filp->f_pos = found_key.offset;
3222 
3223 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3224 		di_cur = 0;
3225 		di_total = btrfs_item_size(leaf, item);
3226 
3227 		while (di_cur < di_total) {
3228 			struct btrfs_key location;
3229 
3230 			name_len = btrfs_dir_name_len(leaf, di);
3231 			if (name_len <= sizeof(tmp_name)) {
3232 				name_ptr = tmp_name;
3233 			} else {
3234 				name_ptr = kmalloc(name_len, GFP_NOFS);
3235 				if (!name_ptr) {
3236 					ret = -ENOMEM;
3237 					goto err;
3238 				}
3239 			}
3240 			read_extent_buffer(leaf, name_ptr,
3241 					   (unsigned long)(di + 1), name_len);
3242 
3243 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3244 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3245 
3246 			/* is this a reference to our own snapshot? If so
3247 			 * skip it
3248 			 */
3249 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3250 			    location.objectid == root->root_key.objectid) {
3251 				over = 0;
3252 				goto skip;
3253 			}
3254 			over = filldir(dirent, name_ptr, name_len,
3255 				       found_key.offset, location.objectid,
3256 				       d_type);
3257 
3258 skip:
3259 			if (name_ptr != tmp_name)
3260 				kfree(name_ptr);
3261 
3262 			if (over)
3263 				goto nopos;
3264 			di_len = btrfs_dir_name_len(leaf, di) +
3265 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3266 			di_cur += di_len;
3267 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3268 		}
3269 	}
3270 
3271 	/* Reached end of directory/root. Bump pos past the last item. */
3272 	if (key_type == BTRFS_DIR_INDEX_KEY)
3273 		filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3274 	else
3275 		filp->f_pos++;
3276 nopos:
3277 	ret = 0;
3278 err:
3279 	btrfs_free_path(path);
3280 	return ret;
3281 }
3282 
3283 int btrfs_write_inode(struct inode *inode, int wait)
3284 {
3285 	struct btrfs_root *root = BTRFS_I(inode)->root;
3286 	struct btrfs_trans_handle *trans;
3287 	int ret = 0;
3288 
3289 	if (root->fs_info->btree_inode == inode)
3290 		return 0;
3291 
3292 	if (wait) {
3293 		trans = btrfs_join_transaction(root, 1);
3294 		btrfs_set_trans_block_group(trans, inode);
3295 		ret = btrfs_commit_transaction(trans, root);
3296 	}
3297 	return ret;
3298 }
3299 
3300 /*
3301  * This is somewhat expensive, updating the tree every time the
3302  * inode changes.  But, it is most likely to find the inode in cache.
3303  * FIXME, needs more benchmarking...there are no reasons other than performance
3304  * to keep or drop this code.
3305  */
3306 void btrfs_dirty_inode(struct inode *inode)
3307 {
3308 	struct btrfs_root *root = BTRFS_I(inode)->root;
3309 	struct btrfs_trans_handle *trans;
3310 
3311 	trans = btrfs_join_transaction(root, 1);
3312 	btrfs_set_trans_block_group(trans, inode);
3313 	btrfs_update_inode(trans, root, inode);
3314 	btrfs_end_transaction(trans, root);
3315 }
3316 
3317 /*
3318  * find the highest existing sequence number in a directory
3319  * and then set the in-memory index_cnt variable to reflect
3320  * free sequence numbers
3321  */
3322 static int btrfs_set_inode_index_count(struct inode *inode)
3323 {
3324 	struct btrfs_root *root = BTRFS_I(inode)->root;
3325 	struct btrfs_key key, found_key;
3326 	struct btrfs_path *path;
3327 	struct extent_buffer *leaf;
3328 	int ret;
3329 
3330 	key.objectid = inode->i_ino;
3331 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3332 	key.offset = (u64)-1;
3333 
3334 	path = btrfs_alloc_path();
3335 	if (!path)
3336 		return -ENOMEM;
3337 
3338 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3339 	if (ret < 0)
3340 		goto out;
3341 	/* FIXME: we should be able to handle this */
3342 	if (ret == 0)
3343 		goto out;
3344 	ret = 0;
3345 
3346 	/*
3347 	 * MAGIC NUMBER EXPLANATION:
3348 	 * since we search a directory based on f_pos we have to start at 2
3349 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3350 	 * else has to start at 2
3351 	 */
3352 	if (path->slots[0] == 0) {
3353 		BTRFS_I(inode)->index_cnt = 2;
3354 		goto out;
3355 	}
3356 
3357 	path->slots[0]--;
3358 
3359 	leaf = path->nodes[0];
3360 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3361 
3362 	if (found_key.objectid != inode->i_ino ||
3363 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3364 		BTRFS_I(inode)->index_cnt = 2;
3365 		goto out;
3366 	}
3367 
3368 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3369 out:
3370 	btrfs_free_path(path);
3371 	return ret;
3372 }
3373 
3374 /*
3375  * helper to find a free sequence number in a given directory.  This current
3376  * code is very simple, later versions will do smarter things in the btree
3377  */
3378 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3379 {
3380 	int ret = 0;
3381 
3382 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3383 		ret = btrfs_set_inode_index_count(dir);
3384 		if (ret)
3385 			return ret;
3386 	}
3387 
3388 	*index = BTRFS_I(dir)->index_cnt;
3389 	BTRFS_I(dir)->index_cnt++;
3390 
3391 	return ret;
3392 }
3393 
3394 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3395 				     struct btrfs_root *root,
3396 				     struct inode *dir,
3397 				     const char *name, int name_len,
3398 				     u64 ref_objectid, u64 objectid,
3399 				     u64 alloc_hint, int mode, u64 *index)
3400 {
3401 	struct inode *inode;
3402 	struct btrfs_inode_item *inode_item;
3403 	struct btrfs_key *location;
3404 	struct btrfs_path *path;
3405 	struct btrfs_inode_ref *ref;
3406 	struct btrfs_key key[2];
3407 	u32 sizes[2];
3408 	unsigned long ptr;
3409 	int ret;
3410 	int owner;
3411 
3412 	path = btrfs_alloc_path();
3413 	BUG_ON(!path);
3414 
3415 	inode = new_inode(root->fs_info->sb);
3416 	if (!inode)
3417 		return ERR_PTR(-ENOMEM);
3418 
3419 	if (dir) {
3420 		ret = btrfs_set_inode_index(dir, index);
3421 		if (ret)
3422 			return ERR_PTR(ret);
3423 	}
3424 	/*
3425 	 * index_cnt is ignored for everything but a dir,
3426 	 * btrfs_get_inode_index_count has an explanation for the magic
3427 	 * number
3428 	 */
3429 	init_btrfs_i(inode);
3430 	BTRFS_I(inode)->index_cnt = 2;
3431 	BTRFS_I(inode)->root = root;
3432 	BTRFS_I(inode)->generation = trans->transid;
3433 
3434 	if (mode & S_IFDIR)
3435 		owner = 0;
3436 	else
3437 		owner = 1;
3438 	BTRFS_I(inode)->block_group =
3439 			btrfs_find_block_group(root, 0, alloc_hint, owner);
3440 	if ((mode & S_IFREG)) {
3441 		if (btrfs_test_opt(root, NODATASUM))
3442 			btrfs_set_flag(inode, NODATASUM);
3443 		if (btrfs_test_opt(root, NODATACOW))
3444 			btrfs_set_flag(inode, NODATACOW);
3445 	}
3446 
3447 	key[0].objectid = objectid;
3448 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3449 	key[0].offset = 0;
3450 
3451 	key[1].objectid = objectid;
3452 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3453 	key[1].offset = ref_objectid;
3454 
3455 	sizes[0] = sizeof(struct btrfs_inode_item);
3456 	sizes[1] = name_len + sizeof(*ref);
3457 
3458 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3459 	if (ret != 0)
3460 		goto fail;
3461 
3462 	if (objectid > root->highest_inode)
3463 		root->highest_inode = objectid;
3464 
3465 	inode->i_uid = current_fsuid();
3466 	inode->i_gid = current_fsgid();
3467 	inode->i_mode = mode;
3468 	inode->i_ino = objectid;
3469 	inode_set_bytes(inode, 0);
3470 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3471 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3472 				  struct btrfs_inode_item);
3473 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
3474 
3475 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3476 			     struct btrfs_inode_ref);
3477 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3478 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3479 	ptr = (unsigned long)(ref + 1);
3480 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
3481 
3482 	btrfs_mark_buffer_dirty(path->nodes[0]);
3483 	btrfs_free_path(path);
3484 
3485 	location = &BTRFS_I(inode)->location;
3486 	location->objectid = objectid;
3487 	location->offset = 0;
3488 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3489 
3490 	insert_inode_hash(inode);
3491 	return inode;
3492 fail:
3493 	if (dir)
3494 		BTRFS_I(dir)->index_cnt--;
3495 	btrfs_free_path(path);
3496 	return ERR_PTR(ret);
3497 }
3498 
3499 static inline u8 btrfs_inode_type(struct inode *inode)
3500 {
3501 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3502 }
3503 
3504 /*
3505  * utility function to add 'inode' into 'parent_inode' with
3506  * a give name and a given sequence number.
3507  * if 'add_backref' is true, also insert a backref from the
3508  * inode to the parent directory.
3509  */
3510 int btrfs_add_link(struct btrfs_trans_handle *trans,
3511 		   struct inode *parent_inode, struct inode *inode,
3512 		   const char *name, int name_len, int add_backref, u64 index)
3513 {
3514 	int ret;
3515 	struct btrfs_key key;
3516 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3517 
3518 	key.objectid = inode->i_ino;
3519 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3520 	key.offset = 0;
3521 
3522 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
3523 				    parent_inode->i_ino,
3524 				    &key, btrfs_inode_type(inode),
3525 				    index);
3526 	if (ret == 0) {
3527 		if (add_backref) {
3528 			ret = btrfs_insert_inode_ref(trans, root,
3529 						     name, name_len,
3530 						     inode->i_ino,
3531 						     parent_inode->i_ino,
3532 						     index);
3533 		}
3534 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
3535 				   name_len * 2);
3536 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3537 		ret = btrfs_update_inode(trans, root, parent_inode);
3538 	}
3539 	return ret;
3540 }
3541 
3542 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3543 			    struct dentry *dentry, struct inode *inode,
3544 			    int backref, u64 index)
3545 {
3546 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3547 				 inode, dentry->d_name.name,
3548 				 dentry->d_name.len, backref, index);
3549 	if (!err) {
3550 		d_instantiate(dentry, inode);
3551 		return 0;
3552 	}
3553 	if (err > 0)
3554 		err = -EEXIST;
3555 	return err;
3556 }
3557 
3558 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3559 			int mode, dev_t rdev)
3560 {
3561 	struct btrfs_trans_handle *trans;
3562 	struct btrfs_root *root = BTRFS_I(dir)->root;
3563 	struct inode *inode = NULL;
3564 	int err;
3565 	int drop_inode = 0;
3566 	u64 objectid;
3567 	unsigned long nr = 0;
3568 	u64 index = 0;
3569 
3570 	if (!new_valid_dev(rdev))
3571 		return -EINVAL;
3572 
3573 	err = btrfs_check_free_space(root, 1, 0);
3574 	if (err)
3575 		goto fail;
3576 
3577 	trans = btrfs_start_transaction(root, 1);
3578 	btrfs_set_trans_block_group(trans, dir);
3579 
3580 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3581 	if (err) {
3582 		err = -ENOSPC;
3583 		goto out_unlock;
3584 	}
3585 
3586 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3587 				dentry->d_name.len,
3588 				dentry->d_parent->d_inode->i_ino, objectid,
3589 				BTRFS_I(dir)->block_group, mode, &index);
3590 	err = PTR_ERR(inode);
3591 	if (IS_ERR(inode))
3592 		goto out_unlock;
3593 
3594 	err = btrfs_init_acl(inode, dir);
3595 	if (err) {
3596 		drop_inode = 1;
3597 		goto out_unlock;
3598 	}
3599 
3600 	btrfs_set_trans_block_group(trans, inode);
3601 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3602 	if (err)
3603 		drop_inode = 1;
3604 	else {
3605 		inode->i_op = &btrfs_special_inode_operations;
3606 		init_special_inode(inode, inode->i_mode, rdev);
3607 		btrfs_update_inode(trans, root, inode);
3608 	}
3609 	dir->i_sb->s_dirt = 1;
3610 	btrfs_update_inode_block_group(trans, inode);
3611 	btrfs_update_inode_block_group(trans, dir);
3612 out_unlock:
3613 	nr = trans->blocks_used;
3614 	btrfs_end_transaction_throttle(trans, root);
3615 fail:
3616 	if (drop_inode) {
3617 		inode_dec_link_count(inode);
3618 		iput(inode);
3619 	}
3620 	btrfs_btree_balance_dirty(root, nr);
3621 	return err;
3622 }
3623 
3624 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3625 			int mode, struct nameidata *nd)
3626 {
3627 	struct btrfs_trans_handle *trans;
3628 	struct btrfs_root *root = BTRFS_I(dir)->root;
3629 	struct inode *inode = NULL;
3630 	int err;
3631 	int drop_inode = 0;
3632 	unsigned long nr = 0;
3633 	u64 objectid;
3634 	u64 index = 0;
3635 
3636 	err = btrfs_check_free_space(root, 1, 0);
3637 	if (err)
3638 		goto fail;
3639 	trans = btrfs_start_transaction(root, 1);
3640 	btrfs_set_trans_block_group(trans, dir);
3641 
3642 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3643 	if (err) {
3644 		err = -ENOSPC;
3645 		goto out_unlock;
3646 	}
3647 
3648 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3649 				dentry->d_name.len,
3650 				dentry->d_parent->d_inode->i_ino,
3651 				objectid, BTRFS_I(dir)->block_group, mode,
3652 				&index);
3653 	err = PTR_ERR(inode);
3654 	if (IS_ERR(inode))
3655 		goto out_unlock;
3656 
3657 	err = btrfs_init_acl(inode, dir);
3658 	if (err) {
3659 		drop_inode = 1;
3660 		goto out_unlock;
3661 	}
3662 
3663 	btrfs_set_trans_block_group(trans, inode);
3664 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3665 	if (err)
3666 		drop_inode = 1;
3667 	else {
3668 		inode->i_mapping->a_ops = &btrfs_aops;
3669 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3670 		inode->i_fop = &btrfs_file_operations;
3671 		inode->i_op = &btrfs_file_inode_operations;
3672 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3673 	}
3674 	dir->i_sb->s_dirt = 1;
3675 	btrfs_update_inode_block_group(trans, inode);
3676 	btrfs_update_inode_block_group(trans, dir);
3677 out_unlock:
3678 	nr = trans->blocks_used;
3679 	btrfs_end_transaction_throttle(trans, root);
3680 fail:
3681 	if (drop_inode) {
3682 		inode_dec_link_count(inode);
3683 		iput(inode);
3684 	}
3685 	btrfs_btree_balance_dirty(root, nr);
3686 	return err;
3687 }
3688 
3689 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3690 		      struct dentry *dentry)
3691 {
3692 	struct btrfs_trans_handle *trans;
3693 	struct btrfs_root *root = BTRFS_I(dir)->root;
3694 	struct inode *inode = old_dentry->d_inode;
3695 	u64 index;
3696 	unsigned long nr = 0;
3697 	int err;
3698 	int drop_inode = 0;
3699 
3700 	if (inode->i_nlink == 0)
3701 		return -ENOENT;
3702 
3703 	btrfs_inc_nlink(inode);
3704 	err = btrfs_check_free_space(root, 1, 0);
3705 	if (err)
3706 		goto fail;
3707 	err = btrfs_set_inode_index(dir, &index);
3708 	if (err)
3709 		goto fail;
3710 
3711 	trans = btrfs_start_transaction(root, 1);
3712 
3713 	btrfs_set_trans_block_group(trans, dir);
3714 	atomic_inc(&inode->i_count);
3715 
3716 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3717 
3718 	if (err)
3719 		drop_inode = 1;
3720 
3721 	dir->i_sb->s_dirt = 1;
3722 	btrfs_update_inode_block_group(trans, dir);
3723 	err = btrfs_update_inode(trans, root, inode);
3724 
3725 	if (err)
3726 		drop_inode = 1;
3727 
3728 	nr = trans->blocks_used;
3729 	btrfs_end_transaction_throttle(trans, root);
3730 fail:
3731 	if (drop_inode) {
3732 		inode_dec_link_count(inode);
3733 		iput(inode);
3734 	}
3735 	btrfs_btree_balance_dirty(root, nr);
3736 	return err;
3737 }
3738 
3739 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3740 {
3741 	struct inode *inode = NULL;
3742 	struct btrfs_trans_handle *trans;
3743 	struct btrfs_root *root = BTRFS_I(dir)->root;
3744 	int err = 0;
3745 	int drop_on_err = 0;
3746 	u64 objectid = 0;
3747 	u64 index = 0;
3748 	unsigned long nr = 1;
3749 
3750 	err = btrfs_check_free_space(root, 1, 0);
3751 	if (err)
3752 		goto out_unlock;
3753 
3754 	trans = btrfs_start_transaction(root, 1);
3755 	btrfs_set_trans_block_group(trans, dir);
3756 
3757 	if (IS_ERR(trans)) {
3758 		err = PTR_ERR(trans);
3759 		goto out_unlock;
3760 	}
3761 
3762 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3763 	if (err) {
3764 		err = -ENOSPC;
3765 		goto out_unlock;
3766 	}
3767 
3768 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3769 				dentry->d_name.len,
3770 				dentry->d_parent->d_inode->i_ino, objectid,
3771 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
3772 				&index);
3773 	if (IS_ERR(inode)) {
3774 		err = PTR_ERR(inode);
3775 		goto out_fail;
3776 	}
3777 
3778 	drop_on_err = 1;
3779 
3780 	err = btrfs_init_acl(inode, dir);
3781 	if (err)
3782 		goto out_fail;
3783 
3784 	inode->i_op = &btrfs_dir_inode_operations;
3785 	inode->i_fop = &btrfs_dir_file_operations;
3786 	btrfs_set_trans_block_group(trans, inode);
3787 
3788 	btrfs_i_size_write(inode, 0);
3789 	err = btrfs_update_inode(trans, root, inode);
3790 	if (err)
3791 		goto out_fail;
3792 
3793 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3794 				 inode, dentry->d_name.name,
3795 				 dentry->d_name.len, 0, index);
3796 	if (err)
3797 		goto out_fail;
3798 
3799 	d_instantiate(dentry, inode);
3800 	drop_on_err = 0;
3801 	dir->i_sb->s_dirt = 1;
3802 	btrfs_update_inode_block_group(trans, inode);
3803 	btrfs_update_inode_block_group(trans, dir);
3804 
3805 out_fail:
3806 	nr = trans->blocks_used;
3807 	btrfs_end_transaction_throttle(trans, root);
3808 
3809 out_unlock:
3810 	if (drop_on_err)
3811 		iput(inode);
3812 	btrfs_btree_balance_dirty(root, nr);
3813 	return err;
3814 }
3815 
3816 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3817  * and an extent that you want to insert, deal with overlap and insert
3818  * the new extent into the tree.
3819  */
3820 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3821 				struct extent_map *existing,
3822 				struct extent_map *em,
3823 				u64 map_start, u64 map_len)
3824 {
3825 	u64 start_diff;
3826 
3827 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3828 	start_diff = map_start - em->start;
3829 	em->start = map_start;
3830 	em->len = map_len;
3831 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3832 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3833 		em->block_start += start_diff;
3834 		em->block_len -= start_diff;
3835 	}
3836 	return add_extent_mapping(em_tree, em);
3837 }
3838 
3839 static noinline int uncompress_inline(struct btrfs_path *path,
3840 				      struct inode *inode, struct page *page,
3841 				      size_t pg_offset, u64 extent_offset,
3842 				      struct btrfs_file_extent_item *item)
3843 {
3844 	int ret;
3845 	struct extent_buffer *leaf = path->nodes[0];
3846 	char *tmp;
3847 	size_t max_size;
3848 	unsigned long inline_size;
3849 	unsigned long ptr;
3850 
3851 	WARN_ON(pg_offset != 0);
3852 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
3853 	inline_size = btrfs_file_extent_inline_item_len(leaf,
3854 					btrfs_item_nr(leaf, path->slots[0]));
3855 	tmp = kmalloc(inline_size, GFP_NOFS);
3856 	ptr = btrfs_file_extent_inline_start(item);
3857 
3858 	read_extent_buffer(leaf, tmp, ptr, inline_size);
3859 
3860 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3861 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3862 				    inline_size, max_size);
3863 	if (ret) {
3864 		char *kaddr = kmap_atomic(page, KM_USER0);
3865 		unsigned long copy_size = min_t(u64,
3866 				  PAGE_CACHE_SIZE - pg_offset,
3867 				  max_size - extent_offset);
3868 		memset(kaddr + pg_offset, 0, copy_size);
3869 		kunmap_atomic(kaddr, KM_USER0);
3870 	}
3871 	kfree(tmp);
3872 	return 0;
3873 }
3874 
3875 /*
3876  * a bit scary, this does extent mapping from logical file offset to the disk.
3877  * the ugly parts come from merging extents from the disk with the in-ram
3878  * representation.  This gets more complex because of the data=ordered code,
3879  * where the in-ram extents might be locked pending data=ordered completion.
3880  *
3881  * This also copies inline extents directly into the page.
3882  */
3883 
3884 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3885 				    size_t pg_offset, u64 start, u64 len,
3886 				    int create)
3887 {
3888 	int ret;
3889 	int err = 0;
3890 	u64 bytenr;
3891 	u64 extent_start = 0;
3892 	u64 extent_end = 0;
3893 	u64 objectid = inode->i_ino;
3894 	u32 found_type;
3895 	struct btrfs_path *path = NULL;
3896 	struct btrfs_root *root = BTRFS_I(inode)->root;
3897 	struct btrfs_file_extent_item *item;
3898 	struct extent_buffer *leaf;
3899 	struct btrfs_key found_key;
3900 	struct extent_map *em = NULL;
3901 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3902 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3903 	struct btrfs_trans_handle *trans = NULL;
3904 	int compressed;
3905 
3906 again:
3907 	spin_lock(&em_tree->lock);
3908 	em = lookup_extent_mapping(em_tree, start, len);
3909 	if (em)
3910 		em->bdev = root->fs_info->fs_devices->latest_bdev;
3911 	spin_unlock(&em_tree->lock);
3912 
3913 	if (em) {
3914 		if (em->start > start || em->start + em->len <= start)
3915 			free_extent_map(em);
3916 		else if (em->block_start == EXTENT_MAP_INLINE && page)
3917 			free_extent_map(em);
3918 		else
3919 			goto out;
3920 	}
3921 	em = alloc_extent_map(GFP_NOFS);
3922 	if (!em) {
3923 		err = -ENOMEM;
3924 		goto out;
3925 	}
3926 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3927 	em->start = EXTENT_MAP_HOLE;
3928 	em->orig_start = EXTENT_MAP_HOLE;
3929 	em->len = (u64)-1;
3930 	em->block_len = (u64)-1;
3931 
3932 	if (!path) {
3933 		path = btrfs_alloc_path();
3934 		BUG_ON(!path);
3935 	}
3936 
3937 	ret = btrfs_lookup_file_extent(trans, root, path,
3938 				       objectid, start, trans != NULL);
3939 	if (ret < 0) {
3940 		err = ret;
3941 		goto out;
3942 	}
3943 
3944 	if (ret != 0) {
3945 		if (path->slots[0] == 0)
3946 			goto not_found;
3947 		path->slots[0]--;
3948 	}
3949 
3950 	leaf = path->nodes[0];
3951 	item = btrfs_item_ptr(leaf, path->slots[0],
3952 			      struct btrfs_file_extent_item);
3953 	/* are we inside the extent that was found? */
3954 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3955 	found_type = btrfs_key_type(&found_key);
3956 	if (found_key.objectid != objectid ||
3957 	    found_type != BTRFS_EXTENT_DATA_KEY) {
3958 		goto not_found;
3959 	}
3960 
3961 	found_type = btrfs_file_extent_type(leaf, item);
3962 	extent_start = found_key.offset;
3963 	compressed = btrfs_file_extent_compression(leaf, item);
3964 	if (found_type == BTRFS_FILE_EXTENT_REG ||
3965 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3966 		extent_end = extent_start +
3967 		       btrfs_file_extent_num_bytes(leaf, item);
3968 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3969 		size_t size;
3970 		size = btrfs_file_extent_inline_len(leaf, item);
3971 		extent_end = (extent_start + size + root->sectorsize - 1) &
3972 			~((u64)root->sectorsize - 1);
3973 	}
3974 
3975 	if (start >= extent_end) {
3976 		path->slots[0]++;
3977 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3978 			ret = btrfs_next_leaf(root, path);
3979 			if (ret < 0) {
3980 				err = ret;
3981 				goto out;
3982 			}
3983 			if (ret > 0)
3984 				goto not_found;
3985 			leaf = path->nodes[0];
3986 		}
3987 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3988 		if (found_key.objectid != objectid ||
3989 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
3990 			goto not_found;
3991 		if (start + len <= found_key.offset)
3992 			goto not_found;
3993 		em->start = start;
3994 		em->len = found_key.offset - start;
3995 		goto not_found_em;
3996 	}
3997 
3998 	if (found_type == BTRFS_FILE_EXTENT_REG ||
3999 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4000 		em->start = extent_start;
4001 		em->len = extent_end - extent_start;
4002 		em->orig_start = extent_start -
4003 				 btrfs_file_extent_offset(leaf, item);
4004 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4005 		if (bytenr == 0) {
4006 			em->block_start = EXTENT_MAP_HOLE;
4007 			goto insert;
4008 		}
4009 		if (compressed) {
4010 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4011 			em->block_start = bytenr;
4012 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4013 									 item);
4014 		} else {
4015 			bytenr += btrfs_file_extent_offset(leaf, item);
4016 			em->block_start = bytenr;
4017 			em->block_len = em->len;
4018 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4019 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4020 		}
4021 		goto insert;
4022 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4023 		unsigned long ptr;
4024 		char *map;
4025 		size_t size;
4026 		size_t extent_offset;
4027 		size_t copy_size;
4028 
4029 		em->block_start = EXTENT_MAP_INLINE;
4030 		if (!page || create) {
4031 			em->start = extent_start;
4032 			em->len = extent_end - extent_start;
4033 			goto out;
4034 		}
4035 
4036 		size = btrfs_file_extent_inline_len(leaf, item);
4037 		extent_offset = page_offset(page) + pg_offset - extent_start;
4038 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4039 				size - extent_offset);
4040 		em->start = extent_start + extent_offset;
4041 		em->len = (copy_size + root->sectorsize - 1) &
4042 			~((u64)root->sectorsize - 1);
4043 		em->orig_start = EXTENT_MAP_INLINE;
4044 		if (compressed)
4045 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4046 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4047 		if (create == 0 && !PageUptodate(page)) {
4048 			if (btrfs_file_extent_compression(leaf, item) ==
4049 			    BTRFS_COMPRESS_ZLIB) {
4050 				ret = uncompress_inline(path, inode, page,
4051 							pg_offset,
4052 							extent_offset, item);
4053 				BUG_ON(ret);
4054 			} else {
4055 				map = kmap(page);
4056 				read_extent_buffer(leaf, map + pg_offset, ptr,
4057 						   copy_size);
4058 				kunmap(page);
4059 			}
4060 			flush_dcache_page(page);
4061 		} else if (create && PageUptodate(page)) {
4062 			if (!trans) {
4063 				kunmap(page);
4064 				free_extent_map(em);
4065 				em = NULL;
4066 				btrfs_release_path(root, path);
4067 				trans = btrfs_join_transaction(root, 1);
4068 				goto again;
4069 			}
4070 			map = kmap(page);
4071 			write_extent_buffer(leaf, map + pg_offset, ptr,
4072 					    copy_size);
4073 			kunmap(page);
4074 			btrfs_mark_buffer_dirty(leaf);
4075 		}
4076 		set_extent_uptodate(io_tree, em->start,
4077 				    extent_map_end(em) - 1, GFP_NOFS);
4078 		goto insert;
4079 	} else {
4080 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4081 		WARN_ON(1);
4082 	}
4083 not_found:
4084 	em->start = start;
4085 	em->len = len;
4086 not_found_em:
4087 	em->block_start = EXTENT_MAP_HOLE;
4088 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4089 insert:
4090 	btrfs_release_path(root, path);
4091 	if (em->start > start || extent_map_end(em) <= start) {
4092 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4093 		       "[%llu %llu]\n", (unsigned long long)em->start,
4094 		       (unsigned long long)em->len,
4095 		       (unsigned long long)start,
4096 		       (unsigned long long)len);
4097 		err = -EIO;
4098 		goto out;
4099 	}
4100 
4101 	err = 0;
4102 	spin_lock(&em_tree->lock);
4103 	ret = add_extent_mapping(em_tree, em);
4104 	/* it is possible that someone inserted the extent into the tree
4105 	 * while we had the lock dropped.  It is also possible that
4106 	 * an overlapping map exists in the tree
4107 	 */
4108 	if (ret == -EEXIST) {
4109 		struct extent_map *existing;
4110 
4111 		ret = 0;
4112 
4113 		existing = lookup_extent_mapping(em_tree, start, len);
4114 		if (existing && (existing->start > start ||
4115 		    existing->start + existing->len <= start)) {
4116 			free_extent_map(existing);
4117 			existing = NULL;
4118 		}
4119 		if (!existing) {
4120 			existing = lookup_extent_mapping(em_tree, em->start,
4121 							 em->len);
4122 			if (existing) {
4123 				err = merge_extent_mapping(em_tree, existing,
4124 							   em, start,
4125 							   root->sectorsize);
4126 				free_extent_map(existing);
4127 				if (err) {
4128 					free_extent_map(em);
4129 					em = NULL;
4130 				}
4131 			} else {
4132 				err = -EIO;
4133 				free_extent_map(em);
4134 				em = NULL;
4135 			}
4136 		} else {
4137 			free_extent_map(em);
4138 			em = existing;
4139 			err = 0;
4140 		}
4141 	}
4142 	spin_unlock(&em_tree->lock);
4143 out:
4144 	if (path)
4145 		btrfs_free_path(path);
4146 	if (trans) {
4147 		ret = btrfs_end_transaction(trans, root);
4148 		if (!err)
4149 			err = ret;
4150 	}
4151 	if (err) {
4152 		free_extent_map(em);
4153 		WARN_ON(1);
4154 		return ERR_PTR(err);
4155 	}
4156 	return em;
4157 }
4158 
4159 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4160 			const struct iovec *iov, loff_t offset,
4161 			unsigned long nr_segs)
4162 {
4163 	return -EINVAL;
4164 }
4165 
4166 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4167 {
4168 	return extent_bmap(mapping, iblock, btrfs_get_extent);
4169 }
4170 
4171 int btrfs_readpage(struct file *file, struct page *page)
4172 {
4173 	struct extent_io_tree *tree;
4174 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4175 	return extent_read_full_page(tree, page, btrfs_get_extent);
4176 }
4177 
4178 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4179 {
4180 	struct extent_io_tree *tree;
4181 
4182 
4183 	if (current->flags & PF_MEMALLOC) {
4184 		redirty_page_for_writepage(wbc, page);
4185 		unlock_page(page);
4186 		return 0;
4187 	}
4188 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4189 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4190 }
4191 
4192 int btrfs_writepages(struct address_space *mapping,
4193 		     struct writeback_control *wbc)
4194 {
4195 	struct extent_io_tree *tree;
4196 
4197 	tree = &BTRFS_I(mapping->host)->io_tree;
4198 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4199 }
4200 
4201 static int
4202 btrfs_readpages(struct file *file, struct address_space *mapping,
4203 		struct list_head *pages, unsigned nr_pages)
4204 {
4205 	struct extent_io_tree *tree;
4206 	tree = &BTRFS_I(mapping->host)->io_tree;
4207 	return extent_readpages(tree, mapping, pages, nr_pages,
4208 				btrfs_get_extent);
4209 }
4210 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4211 {
4212 	struct extent_io_tree *tree;
4213 	struct extent_map_tree *map;
4214 	int ret;
4215 
4216 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4217 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4218 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4219 	if (ret == 1) {
4220 		ClearPagePrivate(page);
4221 		set_page_private(page, 0);
4222 		page_cache_release(page);
4223 	}
4224 	return ret;
4225 }
4226 
4227 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4228 {
4229 	if (PageWriteback(page) || PageDirty(page))
4230 		return 0;
4231 	return __btrfs_releasepage(page, gfp_flags);
4232 }
4233 
4234 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4235 {
4236 	struct extent_io_tree *tree;
4237 	struct btrfs_ordered_extent *ordered;
4238 	u64 page_start = page_offset(page);
4239 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4240 
4241 	wait_on_page_writeback(page);
4242 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4243 	if (offset) {
4244 		btrfs_releasepage(page, GFP_NOFS);
4245 		return;
4246 	}
4247 
4248 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4249 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4250 					   page_offset(page));
4251 	if (ordered) {
4252 		/*
4253 		 * IO on this page will never be started, so we need
4254 		 * to account for any ordered extents now
4255 		 */
4256 		clear_extent_bit(tree, page_start, page_end,
4257 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4258 				 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4259 		btrfs_finish_ordered_io(page->mapping->host,
4260 					page_start, page_end);
4261 		btrfs_put_ordered_extent(ordered);
4262 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4263 	}
4264 	clear_extent_bit(tree, page_start, page_end,
4265 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4266 		 EXTENT_ORDERED,
4267 		 1, 1, GFP_NOFS);
4268 	__btrfs_releasepage(page, GFP_NOFS);
4269 
4270 	ClearPageChecked(page);
4271 	if (PagePrivate(page)) {
4272 		ClearPagePrivate(page);
4273 		set_page_private(page, 0);
4274 		page_cache_release(page);
4275 	}
4276 }
4277 
4278 /*
4279  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4280  * called from a page fault handler when a page is first dirtied. Hence we must
4281  * be careful to check for EOF conditions here. We set the page up correctly
4282  * for a written page which means we get ENOSPC checking when writing into
4283  * holes and correct delalloc and unwritten extent mapping on filesystems that
4284  * support these features.
4285  *
4286  * We are not allowed to take the i_mutex here so we have to play games to
4287  * protect against truncate races as the page could now be beyond EOF.  Because
4288  * vmtruncate() writes the inode size before removing pages, once we have the
4289  * page lock we can determine safely if the page is beyond EOF. If it is not
4290  * beyond EOF, then the page is guaranteed safe against truncation until we
4291  * unlock the page.
4292  */
4293 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4294 {
4295 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4296 	struct btrfs_root *root = BTRFS_I(inode)->root;
4297 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4298 	struct btrfs_ordered_extent *ordered;
4299 	char *kaddr;
4300 	unsigned long zero_start;
4301 	loff_t size;
4302 	int ret;
4303 	u64 page_start;
4304 	u64 page_end;
4305 
4306 	ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4307 	if (ret)
4308 		goto out;
4309 
4310 	ret = -EINVAL;
4311 again:
4312 	lock_page(page);
4313 	size = i_size_read(inode);
4314 	page_start = page_offset(page);
4315 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4316 
4317 	if ((page->mapping != inode->i_mapping) ||
4318 	    (page_start >= size)) {
4319 		/* page got truncated out from underneath us */
4320 		goto out_unlock;
4321 	}
4322 	wait_on_page_writeback(page);
4323 
4324 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4325 	set_page_extent_mapped(page);
4326 
4327 	/*
4328 	 * we can't set the delalloc bits if there are pending ordered
4329 	 * extents.  Drop our locks and wait for them to finish
4330 	 */
4331 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4332 	if (ordered) {
4333 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4334 		unlock_page(page);
4335 		btrfs_start_ordered_extent(inode, ordered, 1);
4336 		btrfs_put_ordered_extent(ordered);
4337 		goto again;
4338 	}
4339 
4340 	btrfs_set_extent_delalloc(inode, page_start, page_end);
4341 	ret = 0;
4342 
4343 	/* page is wholly or partially inside EOF */
4344 	if (page_start + PAGE_CACHE_SIZE > size)
4345 		zero_start = size & ~PAGE_CACHE_MASK;
4346 	else
4347 		zero_start = PAGE_CACHE_SIZE;
4348 
4349 	if (zero_start != PAGE_CACHE_SIZE) {
4350 		kaddr = kmap(page);
4351 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4352 		flush_dcache_page(page);
4353 		kunmap(page);
4354 	}
4355 	ClearPageChecked(page);
4356 	set_page_dirty(page);
4357 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4358 
4359 out_unlock:
4360 	unlock_page(page);
4361 out:
4362 	return ret;
4363 }
4364 
4365 static void btrfs_truncate(struct inode *inode)
4366 {
4367 	struct btrfs_root *root = BTRFS_I(inode)->root;
4368 	int ret;
4369 	struct btrfs_trans_handle *trans;
4370 	unsigned long nr;
4371 	u64 mask = root->sectorsize - 1;
4372 
4373 	if (!S_ISREG(inode->i_mode))
4374 		return;
4375 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4376 		return;
4377 
4378 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
4379 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4380 
4381 	trans = btrfs_start_transaction(root, 1);
4382 	btrfs_set_trans_block_group(trans, inode);
4383 	btrfs_i_size_write(inode, inode->i_size);
4384 
4385 	ret = btrfs_orphan_add(trans, inode);
4386 	if (ret)
4387 		goto out;
4388 	/* FIXME, add redo link to tree so we don't leak on crash */
4389 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4390 				      BTRFS_EXTENT_DATA_KEY);
4391 	btrfs_update_inode(trans, root, inode);
4392 
4393 	ret = btrfs_orphan_del(trans, inode);
4394 	BUG_ON(ret);
4395 
4396 out:
4397 	nr = trans->blocks_used;
4398 	ret = btrfs_end_transaction_throttle(trans, root);
4399 	BUG_ON(ret);
4400 	btrfs_btree_balance_dirty(root, nr);
4401 }
4402 
4403 /*
4404  * create a new subvolume directory/inode (helper for the ioctl).
4405  */
4406 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4407 			     struct btrfs_root *new_root, struct dentry *dentry,
4408 			     u64 new_dirid, u64 alloc_hint)
4409 {
4410 	struct inode *inode;
4411 	int error;
4412 	u64 index = 0;
4413 
4414 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4415 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4416 	if (IS_ERR(inode))
4417 		return PTR_ERR(inode);
4418 	inode->i_op = &btrfs_dir_inode_operations;
4419 	inode->i_fop = &btrfs_dir_file_operations;
4420 
4421 	inode->i_nlink = 1;
4422 	btrfs_i_size_write(inode, 0);
4423 
4424 	error = btrfs_update_inode(trans, new_root, inode);
4425 	if (error)
4426 		return error;
4427 
4428 	d_instantiate(dentry, inode);
4429 	return 0;
4430 }
4431 
4432 /* helper function for file defrag and space balancing.  This
4433  * forces readahead on a given range of bytes in an inode
4434  */
4435 unsigned long btrfs_force_ra(struct address_space *mapping,
4436 			      struct file_ra_state *ra, struct file *file,
4437 			      pgoff_t offset, pgoff_t last_index)
4438 {
4439 	pgoff_t req_size = last_index - offset + 1;
4440 
4441 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4442 	return offset + req_size;
4443 }
4444 
4445 struct inode *btrfs_alloc_inode(struct super_block *sb)
4446 {
4447 	struct btrfs_inode *ei;
4448 
4449 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4450 	if (!ei)
4451 		return NULL;
4452 	ei->last_trans = 0;
4453 	ei->logged_trans = 0;
4454 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4455 	ei->i_acl = BTRFS_ACL_NOT_CACHED;
4456 	ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4457 	INIT_LIST_HEAD(&ei->i_orphan);
4458 	return &ei->vfs_inode;
4459 }
4460 
4461 void btrfs_destroy_inode(struct inode *inode)
4462 {
4463 	struct btrfs_ordered_extent *ordered;
4464 	WARN_ON(!list_empty(&inode->i_dentry));
4465 	WARN_ON(inode->i_data.nrpages);
4466 
4467 	if (BTRFS_I(inode)->i_acl &&
4468 	    BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4469 		posix_acl_release(BTRFS_I(inode)->i_acl);
4470 	if (BTRFS_I(inode)->i_default_acl &&
4471 	    BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4472 		posix_acl_release(BTRFS_I(inode)->i_default_acl);
4473 
4474 	spin_lock(&BTRFS_I(inode)->root->list_lock);
4475 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4476 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4477 		       " list\n", inode->i_ino);
4478 		dump_stack();
4479 	}
4480 	spin_unlock(&BTRFS_I(inode)->root->list_lock);
4481 
4482 	while (1) {
4483 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4484 		if (!ordered)
4485 			break;
4486 		else {
4487 			printk(KERN_ERR "btrfs found ordered "
4488 			       "extent %llu %llu on inode cleanup\n",
4489 			       (unsigned long long)ordered->file_offset,
4490 			       (unsigned long long)ordered->len);
4491 			btrfs_remove_ordered_extent(inode, ordered);
4492 			btrfs_put_ordered_extent(ordered);
4493 			btrfs_put_ordered_extent(ordered);
4494 		}
4495 	}
4496 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4497 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4498 }
4499 
4500 static void init_once(void *foo)
4501 {
4502 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4503 
4504 	inode_init_once(&ei->vfs_inode);
4505 }
4506 
4507 void btrfs_destroy_cachep(void)
4508 {
4509 	if (btrfs_inode_cachep)
4510 		kmem_cache_destroy(btrfs_inode_cachep);
4511 	if (btrfs_trans_handle_cachep)
4512 		kmem_cache_destroy(btrfs_trans_handle_cachep);
4513 	if (btrfs_transaction_cachep)
4514 		kmem_cache_destroy(btrfs_transaction_cachep);
4515 	if (btrfs_bit_radix_cachep)
4516 		kmem_cache_destroy(btrfs_bit_radix_cachep);
4517 	if (btrfs_path_cachep)
4518 		kmem_cache_destroy(btrfs_path_cachep);
4519 }
4520 
4521 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4522 				       unsigned long extra_flags,
4523 				       void (*ctor)(void *))
4524 {
4525 	return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4526 				 SLAB_MEM_SPREAD | extra_flags), ctor);
4527 }
4528 
4529 int btrfs_init_cachep(void)
4530 {
4531 	btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4532 					  sizeof(struct btrfs_inode),
4533 					  0, init_once);
4534 	if (!btrfs_inode_cachep)
4535 		goto fail;
4536 	btrfs_trans_handle_cachep =
4537 			btrfs_cache_create("btrfs_trans_handle_cache",
4538 					   sizeof(struct btrfs_trans_handle),
4539 					   0, NULL);
4540 	if (!btrfs_trans_handle_cachep)
4541 		goto fail;
4542 	btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4543 					     sizeof(struct btrfs_transaction),
4544 					     0, NULL);
4545 	if (!btrfs_transaction_cachep)
4546 		goto fail;
4547 	btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4548 					 sizeof(struct btrfs_path),
4549 					 0, NULL);
4550 	if (!btrfs_path_cachep)
4551 		goto fail;
4552 	btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4553 					      SLAB_DESTROY_BY_RCU, NULL);
4554 	if (!btrfs_bit_radix_cachep)
4555 		goto fail;
4556 	return 0;
4557 fail:
4558 	btrfs_destroy_cachep();
4559 	return -ENOMEM;
4560 }
4561 
4562 static int btrfs_getattr(struct vfsmount *mnt,
4563 			 struct dentry *dentry, struct kstat *stat)
4564 {
4565 	struct inode *inode = dentry->d_inode;
4566 	generic_fillattr(inode, stat);
4567 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4568 	stat->blksize = PAGE_CACHE_SIZE;
4569 	stat->blocks = (inode_get_bytes(inode) +
4570 			BTRFS_I(inode)->delalloc_bytes) >> 9;
4571 	return 0;
4572 }
4573 
4574 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4575 			   struct inode *new_dir, struct dentry *new_dentry)
4576 {
4577 	struct btrfs_trans_handle *trans;
4578 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
4579 	struct inode *new_inode = new_dentry->d_inode;
4580 	struct inode *old_inode = old_dentry->d_inode;
4581 	struct timespec ctime = CURRENT_TIME;
4582 	u64 index = 0;
4583 	int ret;
4584 
4585 	/* we're not allowed to rename between subvolumes */
4586 	if (BTRFS_I(old_inode)->root->root_key.objectid !=
4587 	    BTRFS_I(new_dir)->root->root_key.objectid)
4588 		return -EXDEV;
4589 
4590 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
4591 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4592 		return -ENOTEMPTY;
4593 	}
4594 
4595 	/* to rename a snapshot or subvolume, we need to juggle the
4596 	 * backrefs.  This isn't coded yet
4597 	 */
4598 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4599 		return -EXDEV;
4600 
4601 	ret = btrfs_check_free_space(root, 1, 0);
4602 	if (ret)
4603 		goto out_unlock;
4604 
4605 	trans = btrfs_start_transaction(root, 1);
4606 
4607 	btrfs_set_trans_block_group(trans, new_dir);
4608 
4609 	btrfs_inc_nlink(old_dentry->d_inode);
4610 	old_dir->i_ctime = old_dir->i_mtime = ctime;
4611 	new_dir->i_ctime = new_dir->i_mtime = ctime;
4612 	old_inode->i_ctime = ctime;
4613 
4614 	ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4615 				 old_dentry->d_name.name,
4616 				 old_dentry->d_name.len);
4617 	if (ret)
4618 		goto out_fail;
4619 
4620 	if (new_inode) {
4621 		new_inode->i_ctime = CURRENT_TIME;
4622 		ret = btrfs_unlink_inode(trans, root, new_dir,
4623 					 new_dentry->d_inode,
4624 					 new_dentry->d_name.name,
4625 					 new_dentry->d_name.len);
4626 		if (ret)
4627 			goto out_fail;
4628 		if (new_inode->i_nlink == 0) {
4629 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4630 			if (ret)
4631 				goto out_fail;
4632 		}
4633 
4634 	}
4635 	ret = btrfs_set_inode_index(new_dir, &index);
4636 	if (ret)
4637 		goto out_fail;
4638 
4639 	ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4640 			     old_inode, new_dentry->d_name.name,
4641 			     new_dentry->d_name.len, 1, index);
4642 	if (ret)
4643 		goto out_fail;
4644 
4645 out_fail:
4646 	btrfs_end_transaction_throttle(trans, root);
4647 out_unlock:
4648 	return ret;
4649 }
4650 
4651 /*
4652  * some fairly slow code that needs optimization. This walks the list
4653  * of all the inodes with pending delalloc and forces them to disk.
4654  */
4655 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4656 {
4657 	struct list_head *head = &root->fs_info->delalloc_inodes;
4658 	struct btrfs_inode *binode;
4659 	struct inode *inode;
4660 
4661 	if (root->fs_info->sb->s_flags & MS_RDONLY)
4662 		return -EROFS;
4663 
4664 	spin_lock(&root->fs_info->delalloc_lock);
4665 	while (!list_empty(head)) {
4666 		binode = list_entry(head->next, struct btrfs_inode,
4667 				    delalloc_inodes);
4668 		inode = igrab(&binode->vfs_inode);
4669 		if (!inode)
4670 			list_del_init(&binode->delalloc_inodes);
4671 		spin_unlock(&root->fs_info->delalloc_lock);
4672 		if (inode) {
4673 			filemap_flush(inode->i_mapping);
4674 			iput(inode);
4675 		}
4676 		cond_resched();
4677 		spin_lock(&root->fs_info->delalloc_lock);
4678 	}
4679 	spin_unlock(&root->fs_info->delalloc_lock);
4680 
4681 	/* the filemap_flush will queue IO into the worker threads, but
4682 	 * we have to make sure the IO is actually started and that
4683 	 * ordered extents get created before we return
4684 	 */
4685 	atomic_inc(&root->fs_info->async_submit_draining);
4686 	while (atomic_read(&root->fs_info->nr_async_submits) ||
4687 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
4688 		wait_event(root->fs_info->async_submit_wait,
4689 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4690 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4691 	}
4692 	atomic_dec(&root->fs_info->async_submit_draining);
4693 	return 0;
4694 }
4695 
4696 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4697 			 const char *symname)
4698 {
4699 	struct btrfs_trans_handle *trans;
4700 	struct btrfs_root *root = BTRFS_I(dir)->root;
4701 	struct btrfs_path *path;
4702 	struct btrfs_key key;
4703 	struct inode *inode = NULL;
4704 	int err;
4705 	int drop_inode = 0;
4706 	u64 objectid;
4707 	u64 index = 0 ;
4708 	int name_len;
4709 	int datasize;
4710 	unsigned long ptr;
4711 	struct btrfs_file_extent_item *ei;
4712 	struct extent_buffer *leaf;
4713 	unsigned long nr = 0;
4714 
4715 	name_len = strlen(symname) + 1;
4716 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4717 		return -ENAMETOOLONG;
4718 
4719 	err = btrfs_check_free_space(root, 1, 0);
4720 	if (err)
4721 		goto out_fail;
4722 
4723 	trans = btrfs_start_transaction(root, 1);
4724 	btrfs_set_trans_block_group(trans, dir);
4725 
4726 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4727 	if (err) {
4728 		err = -ENOSPC;
4729 		goto out_unlock;
4730 	}
4731 
4732 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4733 				dentry->d_name.len,
4734 				dentry->d_parent->d_inode->i_ino, objectid,
4735 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4736 				&index);
4737 	err = PTR_ERR(inode);
4738 	if (IS_ERR(inode))
4739 		goto out_unlock;
4740 
4741 	err = btrfs_init_acl(inode, dir);
4742 	if (err) {
4743 		drop_inode = 1;
4744 		goto out_unlock;
4745 	}
4746 
4747 	btrfs_set_trans_block_group(trans, inode);
4748 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4749 	if (err)
4750 		drop_inode = 1;
4751 	else {
4752 		inode->i_mapping->a_ops = &btrfs_aops;
4753 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4754 		inode->i_fop = &btrfs_file_operations;
4755 		inode->i_op = &btrfs_file_inode_operations;
4756 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4757 	}
4758 	dir->i_sb->s_dirt = 1;
4759 	btrfs_update_inode_block_group(trans, inode);
4760 	btrfs_update_inode_block_group(trans, dir);
4761 	if (drop_inode)
4762 		goto out_unlock;
4763 
4764 	path = btrfs_alloc_path();
4765 	BUG_ON(!path);
4766 	key.objectid = inode->i_ino;
4767 	key.offset = 0;
4768 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4769 	datasize = btrfs_file_extent_calc_inline_size(name_len);
4770 	err = btrfs_insert_empty_item(trans, root, path, &key,
4771 				      datasize);
4772 	if (err) {
4773 		drop_inode = 1;
4774 		goto out_unlock;
4775 	}
4776 	leaf = path->nodes[0];
4777 	ei = btrfs_item_ptr(leaf, path->slots[0],
4778 			    struct btrfs_file_extent_item);
4779 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4780 	btrfs_set_file_extent_type(leaf, ei,
4781 				   BTRFS_FILE_EXTENT_INLINE);
4782 	btrfs_set_file_extent_encryption(leaf, ei, 0);
4783 	btrfs_set_file_extent_compression(leaf, ei, 0);
4784 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4785 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4786 
4787 	ptr = btrfs_file_extent_inline_start(ei);
4788 	write_extent_buffer(leaf, symname, ptr, name_len);
4789 	btrfs_mark_buffer_dirty(leaf);
4790 	btrfs_free_path(path);
4791 
4792 	inode->i_op = &btrfs_symlink_inode_operations;
4793 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
4794 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4795 	inode_set_bytes(inode, name_len);
4796 	btrfs_i_size_write(inode, name_len - 1);
4797 	err = btrfs_update_inode(trans, root, inode);
4798 	if (err)
4799 		drop_inode = 1;
4800 
4801 out_unlock:
4802 	nr = trans->blocks_used;
4803 	btrfs_end_transaction_throttle(trans, root);
4804 out_fail:
4805 	if (drop_inode) {
4806 		inode_dec_link_count(inode);
4807 		iput(inode);
4808 	}
4809 	btrfs_btree_balance_dirty(root, nr);
4810 	return err;
4811 }
4812 
4813 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4814 			       u64 alloc_hint, int mode)
4815 {
4816 	struct btrfs_trans_handle *trans;
4817 	struct btrfs_root *root = BTRFS_I(inode)->root;
4818 	struct btrfs_key ins;
4819 	u64 alloc_size;
4820 	u64 cur_offset = start;
4821 	u64 num_bytes = end - start;
4822 	int ret = 0;
4823 
4824 	trans = btrfs_join_transaction(root, 1);
4825 	BUG_ON(!trans);
4826 	btrfs_set_trans_block_group(trans, inode);
4827 
4828 	while (num_bytes > 0) {
4829 		alloc_size = min(num_bytes, root->fs_info->max_extent);
4830 		ret = btrfs_reserve_extent(trans, root, alloc_size,
4831 					   root->sectorsize, 0, alloc_hint,
4832 					   (u64)-1, &ins, 1);
4833 		if (ret) {
4834 			WARN_ON(1);
4835 			goto out;
4836 		}
4837 		ret = insert_reserved_file_extent(trans, inode,
4838 						  cur_offset, ins.objectid,
4839 						  ins.offset, ins.offset,
4840 						  ins.offset, 0, 0, 0,
4841 						  BTRFS_FILE_EXTENT_PREALLOC);
4842 		BUG_ON(ret);
4843 		num_bytes -= ins.offset;
4844 		cur_offset += ins.offset;
4845 		alloc_hint = ins.objectid + ins.offset;
4846 	}
4847 out:
4848 	if (cur_offset > start) {
4849 		inode->i_ctime = CURRENT_TIME;
4850 		btrfs_set_flag(inode, PREALLOC);
4851 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4852 		    cur_offset > i_size_read(inode))
4853 			btrfs_i_size_write(inode, cur_offset);
4854 		ret = btrfs_update_inode(trans, root, inode);
4855 		BUG_ON(ret);
4856 	}
4857 
4858 	btrfs_end_transaction(trans, root);
4859 	return ret;
4860 }
4861 
4862 static long btrfs_fallocate(struct inode *inode, int mode,
4863 			    loff_t offset, loff_t len)
4864 {
4865 	u64 cur_offset;
4866 	u64 last_byte;
4867 	u64 alloc_start;
4868 	u64 alloc_end;
4869 	u64 alloc_hint = 0;
4870 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4871 	struct extent_map *em;
4872 	int ret;
4873 
4874 	alloc_start = offset & ~mask;
4875 	alloc_end =  (offset + len + mask) & ~mask;
4876 
4877 	mutex_lock(&inode->i_mutex);
4878 	if (alloc_start > inode->i_size) {
4879 		ret = btrfs_cont_expand(inode, alloc_start);
4880 		if (ret)
4881 			goto out;
4882 	}
4883 
4884 	while (1) {
4885 		struct btrfs_ordered_extent *ordered;
4886 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4887 			    alloc_end - 1, GFP_NOFS);
4888 		ordered = btrfs_lookup_first_ordered_extent(inode,
4889 							    alloc_end - 1);
4890 		if (ordered &&
4891 		    ordered->file_offset + ordered->len > alloc_start &&
4892 		    ordered->file_offset < alloc_end) {
4893 			btrfs_put_ordered_extent(ordered);
4894 			unlock_extent(&BTRFS_I(inode)->io_tree,
4895 				      alloc_start, alloc_end - 1, GFP_NOFS);
4896 			btrfs_wait_ordered_range(inode, alloc_start,
4897 						 alloc_end - alloc_start);
4898 		} else {
4899 			if (ordered)
4900 				btrfs_put_ordered_extent(ordered);
4901 			break;
4902 		}
4903 	}
4904 
4905 	cur_offset = alloc_start;
4906 	while (1) {
4907 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4908 				      alloc_end - cur_offset, 0);
4909 		BUG_ON(IS_ERR(em) || !em);
4910 		last_byte = min(extent_map_end(em), alloc_end);
4911 		last_byte = (last_byte + mask) & ~mask;
4912 		if (em->block_start == EXTENT_MAP_HOLE) {
4913 			ret = prealloc_file_range(inode, cur_offset,
4914 					last_byte, alloc_hint, mode);
4915 			if (ret < 0) {
4916 				free_extent_map(em);
4917 				break;
4918 			}
4919 		}
4920 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4921 			alloc_hint = em->block_start;
4922 		free_extent_map(em);
4923 
4924 		cur_offset = last_byte;
4925 		if (cur_offset >= alloc_end) {
4926 			ret = 0;
4927 			break;
4928 		}
4929 	}
4930 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4931 		      GFP_NOFS);
4932 out:
4933 	mutex_unlock(&inode->i_mutex);
4934 	return ret;
4935 }
4936 
4937 static int btrfs_set_page_dirty(struct page *page)
4938 {
4939 	return __set_page_dirty_nobuffers(page);
4940 }
4941 
4942 static int btrfs_permission(struct inode *inode, int mask)
4943 {
4944 	if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4945 		return -EACCES;
4946 	return generic_permission(inode, mask, btrfs_check_acl);
4947 }
4948 
4949 static struct inode_operations btrfs_dir_inode_operations = {
4950 	.getattr	= btrfs_getattr,
4951 	.lookup		= btrfs_lookup,
4952 	.create		= btrfs_create,
4953 	.unlink		= btrfs_unlink,
4954 	.link		= btrfs_link,
4955 	.mkdir		= btrfs_mkdir,
4956 	.rmdir		= btrfs_rmdir,
4957 	.rename		= btrfs_rename,
4958 	.symlink	= btrfs_symlink,
4959 	.setattr	= btrfs_setattr,
4960 	.mknod		= btrfs_mknod,
4961 	.setxattr	= btrfs_setxattr,
4962 	.getxattr	= btrfs_getxattr,
4963 	.listxattr	= btrfs_listxattr,
4964 	.removexattr	= btrfs_removexattr,
4965 	.permission	= btrfs_permission,
4966 };
4967 static struct inode_operations btrfs_dir_ro_inode_operations = {
4968 	.lookup		= btrfs_lookup,
4969 	.permission	= btrfs_permission,
4970 };
4971 static struct file_operations btrfs_dir_file_operations = {
4972 	.llseek		= generic_file_llseek,
4973 	.read		= generic_read_dir,
4974 	.readdir	= btrfs_real_readdir,
4975 	.unlocked_ioctl	= btrfs_ioctl,
4976 #ifdef CONFIG_COMPAT
4977 	.compat_ioctl	= btrfs_ioctl,
4978 #endif
4979 	.release        = btrfs_release_file,
4980 	.fsync		= btrfs_sync_file,
4981 };
4982 
4983 static struct extent_io_ops btrfs_extent_io_ops = {
4984 	.fill_delalloc = run_delalloc_range,
4985 	.submit_bio_hook = btrfs_submit_bio_hook,
4986 	.merge_bio_hook = btrfs_merge_bio_hook,
4987 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
4988 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
4989 	.writepage_start_hook = btrfs_writepage_start_hook,
4990 	.readpage_io_failed_hook = btrfs_io_failed_hook,
4991 	.set_bit_hook = btrfs_set_bit_hook,
4992 	.clear_bit_hook = btrfs_clear_bit_hook,
4993 };
4994 
4995 static struct address_space_operations btrfs_aops = {
4996 	.readpage	= btrfs_readpage,
4997 	.writepage	= btrfs_writepage,
4998 	.writepages	= btrfs_writepages,
4999 	.readpages	= btrfs_readpages,
5000 	.sync_page	= block_sync_page,
5001 	.bmap		= btrfs_bmap,
5002 	.direct_IO	= btrfs_direct_IO,
5003 	.invalidatepage = btrfs_invalidatepage,
5004 	.releasepage	= btrfs_releasepage,
5005 	.set_page_dirty	= btrfs_set_page_dirty,
5006 };
5007 
5008 static struct address_space_operations btrfs_symlink_aops = {
5009 	.readpage	= btrfs_readpage,
5010 	.writepage	= btrfs_writepage,
5011 	.invalidatepage = btrfs_invalidatepage,
5012 	.releasepage	= btrfs_releasepage,
5013 };
5014 
5015 static struct inode_operations btrfs_file_inode_operations = {
5016 	.truncate	= btrfs_truncate,
5017 	.getattr	= btrfs_getattr,
5018 	.setattr	= btrfs_setattr,
5019 	.setxattr	= btrfs_setxattr,
5020 	.getxattr	= btrfs_getxattr,
5021 	.listxattr      = btrfs_listxattr,
5022 	.removexattr	= btrfs_removexattr,
5023 	.permission	= btrfs_permission,
5024 	.fallocate	= btrfs_fallocate,
5025 };
5026 static struct inode_operations btrfs_special_inode_operations = {
5027 	.getattr	= btrfs_getattr,
5028 	.setattr	= btrfs_setattr,
5029 	.permission	= btrfs_permission,
5030 	.setxattr	= btrfs_setxattr,
5031 	.getxattr	= btrfs_getxattr,
5032 	.listxattr	= btrfs_listxattr,
5033 	.removexattr	= btrfs_removexattr,
5034 };
5035 static struct inode_operations btrfs_symlink_inode_operations = {
5036 	.readlink	= generic_readlink,
5037 	.follow_link	= page_follow_link_light,
5038 	.put_link	= page_put_link,
5039 	.permission	= btrfs_permission,
5040 };
5041