xref: /openbmc/linux/fs/btrfs/inode.c (revision 0c16ed1ab758538b4a4df8368bc1a8b22453a9b4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 
74 struct btrfs_iget_args {
75 	u64 ino;
76 	struct btrfs_root *root;
77 };
78 
79 struct btrfs_dio_data {
80 	ssize_t submitted;
81 	struct extent_changeset *data_reserved;
82 	struct btrfs_ordered_extent *ordered;
83 	bool data_space_reserved;
84 	bool nocow_done;
85 };
86 
87 struct btrfs_dio_private {
88 	/* Range of I/O */
89 	u64 file_offset;
90 	u32 bytes;
91 
92 	/* This must be last */
93 	struct btrfs_bio bbio;
94 };
95 
96 static struct bio_set btrfs_dio_bioset;
97 
98 struct btrfs_rename_ctx {
99 	/* Output field. Stores the index number of the old directory entry. */
100 	u64 index;
101 };
102 
103 static const struct inode_operations btrfs_dir_inode_operations;
104 static const struct inode_operations btrfs_symlink_inode_operations;
105 static const struct inode_operations btrfs_special_inode_operations;
106 static const struct inode_operations btrfs_file_inode_operations;
107 static const struct address_space_operations btrfs_aops;
108 static const struct file_operations btrfs_dir_file_operations;
109 
110 static struct kmem_cache *btrfs_inode_cachep;
111 
112 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
113 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
114 static noinline int cow_file_range(struct btrfs_inode *inode,
115 				   struct page *locked_page,
116 				   u64 start, u64 end, int *page_started,
117 				   unsigned long *nr_written, int unlock,
118 				   u64 *done_offset);
119 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
120 				       u64 len, u64 orig_start, u64 block_start,
121 				       u64 block_len, u64 orig_block_len,
122 				       u64 ram_bytes, int compress_type,
123 				       int type);
124 
125 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
126 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
127 {
128 	struct btrfs_root *root = inode->root;
129 	const u32 csum_size = root->fs_info->csum_size;
130 
131 	/* Output without objectid, which is more meaningful */
132 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
133 		btrfs_warn_rl(root->fs_info,
134 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
135 			root->root_key.objectid, btrfs_ino(inode),
136 			logical_start,
137 			CSUM_FMT_VALUE(csum_size, csum),
138 			CSUM_FMT_VALUE(csum_size, csum_expected),
139 			mirror_num);
140 	} else {
141 		btrfs_warn_rl(root->fs_info,
142 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
143 			root->root_key.objectid, btrfs_ino(inode),
144 			logical_start,
145 			CSUM_FMT_VALUE(csum_size, csum),
146 			CSUM_FMT_VALUE(csum_size, csum_expected),
147 			mirror_num);
148 	}
149 }
150 
151 /*
152  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
153  *
154  * ilock_flags can have the following bit set:
155  *
156  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
157  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
158  *		     return -EAGAIN
159  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
160  */
161 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
162 {
163 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
164 		if (ilock_flags & BTRFS_ILOCK_TRY) {
165 			if (!inode_trylock_shared(&inode->vfs_inode))
166 				return -EAGAIN;
167 			else
168 				return 0;
169 		}
170 		inode_lock_shared(&inode->vfs_inode);
171 	} else {
172 		if (ilock_flags & BTRFS_ILOCK_TRY) {
173 			if (!inode_trylock(&inode->vfs_inode))
174 				return -EAGAIN;
175 			else
176 				return 0;
177 		}
178 		inode_lock(&inode->vfs_inode);
179 	}
180 	if (ilock_flags & BTRFS_ILOCK_MMAP)
181 		down_write(&inode->i_mmap_lock);
182 	return 0;
183 }
184 
185 /*
186  * btrfs_inode_unlock - unock inode i_rwsem
187  *
188  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
189  * to decide whether the lock acquired is shared or exclusive.
190  */
191 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
192 {
193 	if (ilock_flags & BTRFS_ILOCK_MMAP)
194 		up_write(&inode->i_mmap_lock);
195 	if (ilock_flags & BTRFS_ILOCK_SHARED)
196 		inode_unlock_shared(&inode->vfs_inode);
197 	else
198 		inode_unlock(&inode->vfs_inode);
199 }
200 
201 /*
202  * Cleanup all submitted ordered extents in specified range to handle errors
203  * from the btrfs_run_delalloc_range() callback.
204  *
205  * NOTE: caller must ensure that when an error happens, it can not call
206  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
207  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
208  * to be released, which we want to happen only when finishing the ordered
209  * extent (btrfs_finish_ordered_io()).
210  */
211 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
212 						 struct page *locked_page,
213 						 u64 offset, u64 bytes)
214 {
215 	unsigned long index = offset >> PAGE_SHIFT;
216 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
217 	u64 page_start = 0, page_end = 0;
218 	struct page *page;
219 
220 	if (locked_page) {
221 		page_start = page_offset(locked_page);
222 		page_end = page_start + PAGE_SIZE - 1;
223 	}
224 
225 	while (index <= end_index) {
226 		/*
227 		 * For locked page, we will call end_extent_writepage() on it
228 		 * in run_delalloc_range() for the error handling.  That
229 		 * end_extent_writepage() function will call
230 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
231 		 * run the ordered extent accounting.
232 		 *
233 		 * Here we can't just clear the Ordered bit, or
234 		 * btrfs_mark_ordered_io_finished() would skip the accounting
235 		 * for the page range, and the ordered extent will never finish.
236 		 */
237 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
238 			index++;
239 			continue;
240 		}
241 		page = find_get_page(inode->vfs_inode.i_mapping, index);
242 		index++;
243 		if (!page)
244 			continue;
245 
246 		/*
247 		 * Here we just clear all Ordered bits for every page in the
248 		 * range, then btrfs_mark_ordered_io_finished() will handle
249 		 * the ordered extent accounting for the range.
250 		 */
251 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
252 					       offset, bytes);
253 		put_page(page);
254 	}
255 
256 	if (locked_page) {
257 		/* The locked page covers the full range, nothing needs to be done */
258 		if (bytes + offset <= page_start + PAGE_SIZE)
259 			return;
260 		/*
261 		 * In case this page belongs to the delalloc range being
262 		 * instantiated then skip it, since the first page of a range is
263 		 * going to be properly cleaned up by the caller of
264 		 * run_delalloc_range
265 		 */
266 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
267 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
268 			offset = page_offset(locked_page) + PAGE_SIZE;
269 		}
270 	}
271 
272 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
273 }
274 
275 static int btrfs_dirty_inode(struct btrfs_inode *inode);
276 
277 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
278 				     struct btrfs_new_inode_args *args)
279 {
280 	int err;
281 
282 	if (args->default_acl) {
283 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
284 				      ACL_TYPE_DEFAULT);
285 		if (err)
286 			return err;
287 	}
288 	if (args->acl) {
289 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
290 		if (err)
291 			return err;
292 	}
293 	if (!args->default_acl && !args->acl)
294 		cache_no_acl(args->inode);
295 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
296 					 &args->dentry->d_name);
297 }
298 
299 /*
300  * this does all the hard work for inserting an inline extent into
301  * the btree.  The caller should have done a btrfs_drop_extents so that
302  * no overlapping inline items exist in the btree
303  */
304 static int insert_inline_extent(struct btrfs_trans_handle *trans,
305 				struct btrfs_path *path,
306 				struct btrfs_inode *inode, bool extent_inserted,
307 				size_t size, size_t compressed_size,
308 				int compress_type,
309 				struct page **compressed_pages,
310 				bool update_i_size)
311 {
312 	struct btrfs_root *root = inode->root;
313 	struct extent_buffer *leaf;
314 	struct page *page = NULL;
315 	char *kaddr;
316 	unsigned long ptr;
317 	struct btrfs_file_extent_item *ei;
318 	int ret;
319 	size_t cur_size = size;
320 	u64 i_size;
321 
322 	ASSERT((compressed_size > 0 && compressed_pages) ||
323 	       (compressed_size == 0 && !compressed_pages));
324 
325 	if (compressed_size && compressed_pages)
326 		cur_size = compressed_size;
327 
328 	if (!extent_inserted) {
329 		struct btrfs_key key;
330 		size_t datasize;
331 
332 		key.objectid = btrfs_ino(inode);
333 		key.offset = 0;
334 		key.type = BTRFS_EXTENT_DATA_KEY;
335 
336 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
337 		ret = btrfs_insert_empty_item(trans, root, path, &key,
338 					      datasize);
339 		if (ret)
340 			goto fail;
341 	}
342 	leaf = path->nodes[0];
343 	ei = btrfs_item_ptr(leaf, path->slots[0],
344 			    struct btrfs_file_extent_item);
345 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
346 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
347 	btrfs_set_file_extent_encryption(leaf, ei, 0);
348 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
349 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
350 	ptr = btrfs_file_extent_inline_start(ei);
351 
352 	if (compress_type != BTRFS_COMPRESS_NONE) {
353 		struct page *cpage;
354 		int i = 0;
355 		while (compressed_size > 0) {
356 			cpage = compressed_pages[i];
357 			cur_size = min_t(unsigned long, compressed_size,
358 				       PAGE_SIZE);
359 
360 			kaddr = kmap_local_page(cpage);
361 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
362 			kunmap_local(kaddr);
363 
364 			i++;
365 			ptr += cur_size;
366 			compressed_size -= cur_size;
367 		}
368 		btrfs_set_file_extent_compression(leaf, ei,
369 						  compress_type);
370 	} else {
371 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
372 		btrfs_set_file_extent_compression(leaf, ei, 0);
373 		kaddr = kmap_local_page(page);
374 		write_extent_buffer(leaf, kaddr, ptr, size);
375 		kunmap_local(kaddr);
376 		put_page(page);
377 	}
378 	btrfs_mark_buffer_dirty(leaf);
379 	btrfs_release_path(path);
380 
381 	/*
382 	 * We align size to sectorsize for inline extents just for simplicity
383 	 * sake.
384 	 */
385 	ret = btrfs_inode_set_file_extent_range(inode, 0,
386 					ALIGN(size, root->fs_info->sectorsize));
387 	if (ret)
388 		goto fail;
389 
390 	/*
391 	 * We're an inline extent, so nobody can extend the file past i_size
392 	 * without locking a page we already have locked.
393 	 *
394 	 * We must do any i_size and inode updates before we unlock the pages.
395 	 * Otherwise we could end up racing with unlink.
396 	 */
397 	i_size = i_size_read(&inode->vfs_inode);
398 	if (update_i_size && size > i_size) {
399 		i_size_write(&inode->vfs_inode, size);
400 		i_size = size;
401 	}
402 	inode->disk_i_size = i_size;
403 
404 fail:
405 	return ret;
406 }
407 
408 
409 /*
410  * conditionally insert an inline extent into the file.  This
411  * does the checks required to make sure the data is small enough
412  * to fit as an inline extent.
413  */
414 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
415 					  size_t compressed_size,
416 					  int compress_type,
417 					  struct page **compressed_pages,
418 					  bool update_i_size)
419 {
420 	struct btrfs_drop_extents_args drop_args = { 0 };
421 	struct btrfs_root *root = inode->root;
422 	struct btrfs_fs_info *fs_info = root->fs_info;
423 	struct btrfs_trans_handle *trans;
424 	u64 data_len = (compressed_size ?: size);
425 	int ret;
426 	struct btrfs_path *path;
427 
428 	/*
429 	 * We can create an inline extent if it ends at or beyond the current
430 	 * i_size, is no larger than a sector (decompressed), and the (possibly
431 	 * compressed) data fits in a leaf and the configured maximum inline
432 	 * size.
433 	 */
434 	if (size < i_size_read(&inode->vfs_inode) ||
435 	    size > fs_info->sectorsize ||
436 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
437 	    data_len > fs_info->max_inline)
438 		return 1;
439 
440 	path = btrfs_alloc_path();
441 	if (!path)
442 		return -ENOMEM;
443 
444 	trans = btrfs_join_transaction(root);
445 	if (IS_ERR(trans)) {
446 		btrfs_free_path(path);
447 		return PTR_ERR(trans);
448 	}
449 	trans->block_rsv = &inode->block_rsv;
450 
451 	drop_args.path = path;
452 	drop_args.start = 0;
453 	drop_args.end = fs_info->sectorsize;
454 	drop_args.drop_cache = true;
455 	drop_args.replace_extent = true;
456 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
457 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
458 	if (ret) {
459 		btrfs_abort_transaction(trans, ret);
460 		goto out;
461 	}
462 
463 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
464 				   size, compressed_size, compress_type,
465 				   compressed_pages, update_i_size);
466 	if (ret && ret != -ENOSPC) {
467 		btrfs_abort_transaction(trans, ret);
468 		goto out;
469 	} else if (ret == -ENOSPC) {
470 		ret = 1;
471 		goto out;
472 	}
473 
474 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
475 	ret = btrfs_update_inode(trans, root, inode);
476 	if (ret && ret != -ENOSPC) {
477 		btrfs_abort_transaction(trans, ret);
478 		goto out;
479 	} else if (ret == -ENOSPC) {
480 		ret = 1;
481 		goto out;
482 	}
483 
484 	btrfs_set_inode_full_sync(inode);
485 out:
486 	/*
487 	 * Don't forget to free the reserved space, as for inlined extent
488 	 * it won't count as data extent, free them directly here.
489 	 * And at reserve time, it's always aligned to page size, so
490 	 * just free one page here.
491 	 */
492 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
493 	btrfs_free_path(path);
494 	btrfs_end_transaction(trans);
495 	return ret;
496 }
497 
498 struct async_extent {
499 	u64 start;
500 	u64 ram_size;
501 	u64 compressed_size;
502 	struct page **pages;
503 	unsigned long nr_pages;
504 	int compress_type;
505 	struct list_head list;
506 };
507 
508 struct async_chunk {
509 	struct btrfs_inode *inode;
510 	struct page *locked_page;
511 	u64 start;
512 	u64 end;
513 	blk_opf_t write_flags;
514 	struct list_head extents;
515 	struct cgroup_subsys_state *blkcg_css;
516 	struct btrfs_work work;
517 	struct async_cow *async_cow;
518 };
519 
520 struct async_cow {
521 	atomic_t num_chunks;
522 	struct async_chunk chunks[];
523 };
524 
525 static noinline int add_async_extent(struct async_chunk *cow,
526 				     u64 start, u64 ram_size,
527 				     u64 compressed_size,
528 				     struct page **pages,
529 				     unsigned long nr_pages,
530 				     int compress_type)
531 {
532 	struct async_extent *async_extent;
533 
534 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
535 	BUG_ON(!async_extent); /* -ENOMEM */
536 	async_extent->start = start;
537 	async_extent->ram_size = ram_size;
538 	async_extent->compressed_size = compressed_size;
539 	async_extent->pages = pages;
540 	async_extent->nr_pages = nr_pages;
541 	async_extent->compress_type = compress_type;
542 	list_add_tail(&async_extent->list, &cow->extents);
543 	return 0;
544 }
545 
546 /*
547  * Check if the inode needs to be submitted to compression, based on mount
548  * options, defragmentation, properties or heuristics.
549  */
550 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
551 				      u64 end)
552 {
553 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
554 
555 	if (!btrfs_inode_can_compress(inode)) {
556 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
557 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
558 			btrfs_ino(inode));
559 		return 0;
560 	}
561 	/*
562 	 * Special check for subpage.
563 	 *
564 	 * We lock the full page then run each delalloc range in the page, thus
565 	 * for the following case, we will hit some subpage specific corner case:
566 	 *
567 	 * 0		32K		64K
568 	 * |	|///////|	|///////|
569 	 *		\- A		\- B
570 	 *
571 	 * In above case, both range A and range B will try to unlock the full
572 	 * page [0, 64K), causing the one finished later will have page
573 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
574 	 *
575 	 * So here we add an artificial limit that subpage compression can only
576 	 * if the range is fully page aligned.
577 	 *
578 	 * In theory we only need to ensure the first page is fully covered, but
579 	 * the tailing partial page will be locked until the full compression
580 	 * finishes, delaying the write of other range.
581 	 *
582 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
583 	 * first to prevent any submitted async extent to unlock the full page.
584 	 * By this, we can ensure for subpage case that only the last async_cow
585 	 * will unlock the full page.
586 	 */
587 	if (fs_info->sectorsize < PAGE_SIZE) {
588 		if (!PAGE_ALIGNED(start) ||
589 		    !PAGE_ALIGNED(end + 1))
590 			return 0;
591 	}
592 
593 	/* force compress */
594 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
595 		return 1;
596 	/* defrag ioctl */
597 	if (inode->defrag_compress)
598 		return 1;
599 	/* bad compression ratios */
600 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
601 		return 0;
602 	if (btrfs_test_opt(fs_info, COMPRESS) ||
603 	    inode->flags & BTRFS_INODE_COMPRESS ||
604 	    inode->prop_compress)
605 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
606 	return 0;
607 }
608 
609 static inline void inode_should_defrag(struct btrfs_inode *inode,
610 		u64 start, u64 end, u64 num_bytes, u32 small_write)
611 {
612 	/* If this is a small write inside eof, kick off a defrag */
613 	if (num_bytes < small_write &&
614 	    (start > 0 || end + 1 < inode->disk_i_size))
615 		btrfs_add_inode_defrag(NULL, inode, small_write);
616 }
617 
618 /*
619  * we create compressed extents in two phases.  The first
620  * phase compresses a range of pages that have already been
621  * locked (both pages and state bits are locked).
622  *
623  * This is done inside an ordered work queue, and the compression
624  * is spread across many cpus.  The actual IO submission is step
625  * two, and the ordered work queue takes care of making sure that
626  * happens in the same order things were put onto the queue by
627  * writepages and friends.
628  *
629  * If this code finds it can't get good compression, it puts an
630  * entry onto the work queue to write the uncompressed bytes.  This
631  * makes sure that both compressed inodes and uncompressed inodes
632  * are written in the same order that the flusher thread sent them
633  * down.
634  */
635 static noinline int compress_file_range(struct async_chunk *async_chunk)
636 {
637 	struct btrfs_inode *inode = async_chunk->inode;
638 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
639 	u64 blocksize = fs_info->sectorsize;
640 	u64 start = async_chunk->start;
641 	u64 end = async_chunk->end;
642 	u64 actual_end;
643 	u64 i_size;
644 	int ret = 0;
645 	struct page **pages = NULL;
646 	unsigned long nr_pages;
647 	unsigned long total_compressed = 0;
648 	unsigned long total_in = 0;
649 	int i;
650 	int will_compress;
651 	int compress_type = fs_info->compress_type;
652 	int compressed_extents = 0;
653 	int redirty = 0;
654 
655 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
656 
657 	/*
658 	 * We need to save i_size before now because it could change in between
659 	 * us evaluating the size and assigning it.  This is because we lock and
660 	 * unlock the page in truncate and fallocate, and then modify the i_size
661 	 * later on.
662 	 *
663 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
664 	 * does that for us.
665 	 */
666 	barrier();
667 	i_size = i_size_read(&inode->vfs_inode);
668 	barrier();
669 	actual_end = min_t(u64, i_size, end + 1);
670 again:
671 	will_compress = 0;
672 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
673 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
674 
675 	/*
676 	 * we don't want to send crud past the end of i_size through
677 	 * compression, that's just a waste of CPU time.  So, if the
678 	 * end of the file is before the start of our current
679 	 * requested range of bytes, we bail out to the uncompressed
680 	 * cleanup code that can deal with all of this.
681 	 *
682 	 * It isn't really the fastest way to fix things, but this is a
683 	 * very uncommon corner.
684 	 */
685 	if (actual_end <= start)
686 		goto cleanup_and_bail_uncompressed;
687 
688 	total_compressed = actual_end - start;
689 
690 	/*
691 	 * Skip compression for a small file range(<=blocksize) that
692 	 * isn't an inline extent, since it doesn't save disk space at all.
693 	 */
694 	if (total_compressed <= blocksize &&
695 	   (start > 0 || end + 1 < inode->disk_i_size))
696 		goto cleanup_and_bail_uncompressed;
697 
698 	/*
699 	 * For subpage case, we require full page alignment for the sector
700 	 * aligned range.
701 	 * Thus we must also check against @actual_end, not just @end.
702 	 */
703 	if (blocksize < PAGE_SIZE) {
704 		if (!PAGE_ALIGNED(start) ||
705 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
706 			goto cleanup_and_bail_uncompressed;
707 	}
708 
709 	total_compressed = min_t(unsigned long, total_compressed,
710 			BTRFS_MAX_UNCOMPRESSED);
711 	total_in = 0;
712 	ret = 0;
713 
714 	/*
715 	 * we do compression for mount -o compress and when the
716 	 * inode has not been flagged as nocompress.  This flag can
717 	 * change at any time if we discover bad compression ratios.
718 	 */
719 	if (inode_need_compress(inode, start, end)) {
720 		WARN_ON(pages);
721 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
722 		if (!pages) {
723 			/* just bail out to the uncompressed code */
724 			nr_pages = 0;
725 			goto cont;
726 		}
727 
728 		if (inode->defrag_compress)
729 			compress_type = inode->defrag_compress;
730 		else if (inode->prop_compress)
731 			compress_type = inode->prop_compress;
732 
733 		/*
734 		 * we need to call clear_page_dirty_for_io on each
735 		 * page in the range.  Otherwise applications with the file
736 		 * mmap'd can wander in and change the page contents while
737 		 * we are compressing them.
738 		 *
739 		 * If the compression fails for any reason, we set the pages
740 		 * dirty again later on.
741 		 *
742 		 * Note that the remaining part is redirtied, the start pointer
743 		 * has moved, the end is the original one.
744 		 */
745 		if (!redirty) {
746 			extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
747 			redirty = 1;
748 		}
749 
750 		/* Compression level is applied here and only here */
751 		ret = btrfs_compress_pages(
752 			compress_type | (fs_info->compress_level << 4),
753 					   inode->vfs_inode.i_mapping, start,
754 					   pages,
755 					   &nr_pages,
756 					   &total_in,
757 					   &total_compressed);
758 
759 		if (!ret) {
760 			unsigned long offset = offset_in_page(total_compressed);
761 			struct page *page = pages[nr_pages - 1];
762 
763 			/* zero the tail end of the last page, we might be
764 			 * sending it down to disk
765 			 */
766 			if (offset)
767 				memzero_page(page, offset, PAGE_SIZE - offset);
768 			will_compress = 1;
769 		}
770 	}
771 cont:
772 	/*
773 	 * Check cow_file_range() for why we don't even try to create inline
774 	 * extent for subpage case.
775 	 */
776 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
777 		/* lets try to make an inline extent */
778 		if (ret || total_in < actual_end) {
779 			/* we didn't compress the entire range, try
780 			 * to make an uncompressed inline extent.
781 			 */
782 			ret = cow_file_range_inline(inode, actual_end,
783 						    0, BTRFS_COMPRESS_NONE,
784 						    NULL, false);
785 		} else {
786 			/* try making a compressed inline extent */
787 			ret = cow_file_range_inline(inode, actual_end,
788 						    total_compressed,
789 						    compress_type, pages,
790 						    false);
791 		}
792 		if (ret <= 0) {
793 			unsigned long clear_flags = EXTENT_DELALLOC |
794 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
795 				EXTENT_DO_ACCOUNTING;
796 			unsigned long page_error_op;
797 
798 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
799 
800 			/*
801 			 * inline extent creation worked or returned error,
802 			 * we don't need to create any more async work items.
803 			 * Unlock and free up our temp pages.
804 			 *
805 			 * We use DO_ACCOUNTING here because we need the
806 			 * delalloc_release_metadata to be done _after_ we drop
807 			 * our outstanding extent for clearing delalloc for this
808 			 * range.
809 			 */
810 			extent_clear_unlock_delalloc(inode, start, end,
811 						     NULL,
812 						     clear_flags,
813 						     PAGE_UNLOCK |
814 						     PAGE_START_WRITEBACK |
815 						     page_error_op |
816 						     PAGE_END_WRITEBACK);
817 
818 			/*
819 			 * Ensure we only free the compressed pages if we have
820 			 * them allocated, as we can still reach here with
821 			 * inode_need_compress() == false.
822 			 */
823 			if (pages) {
824 				for (i = 0; i < nr_pages; i++) {
825 					WARN_ON(pages[i]->mapping);
826 					put_page(pages[i]);
827 				}
828 				kfree(pages);
829 			}
830 			return 0;
831 		}
832 	}
833 
834 	if (will_compress) {
835 		/*
836 		 * we aren't doing an inline extent round the compressed size
837 		 * up to a block size boundary so the allocator does sane
838 		 * things
839 		 */
840 		total_compressed = ALIGN(total_compressed, blocksize);
841 
842 		/*
843 		 * one last check to make sure the compression is really a
844 		 * win, compare the page count read with the blocks on disk,
845 		 * compression must free at least one sector size
846 		 */
847 		total_in = round_up(total_in, fs_info->sectorsize);
848 		if (total_compressed + blocksize <= total_in) {
849 			compressed_extents++;
850 
851 			/*
852 			 * The async work queues will take care of doing actual
853 			 * allocation on disk for these compressed pages, and
854 			 * will submit them to the elevator.
855 			 */
856 			add_async_extent(async_chunk, start, total_in,
857 					total_compressed, pages, nr_pages,
858 					compress_type);
859 
860 			if (start + total_in < end) {
861 				start += total_in;
862 				pages = NULL;
863 				cond_resched();
864 				goto again;
865 			}
866 			return compressed_extents;
867 		}
868 	}
869 	if (pages) {
870 		/*
871 		 * the compression code ran but failed to make things smaller,
872 		 * free any pages it allocated and our page pointer array
873 		 */
874 		for (i = 0; i < nr_pages; i++) {
875 			WARN_ON(pages[i]->mapping);
876 			put_page(pages[i]);
877 		}
878 		kfree(pages);
879 		pages = NULL;
880 		total_compressed = 0;
881 		nr_pages = 0;
882 
883 		/* flag the file so we don't compress in the future */
884 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
885 		    !(inode->prop_compress)) {
886 			inode->flags |= BTRFS_INODE_NOCOMPRESS;
887 		}
888 	}
889 cleanup_and_bail_uncompressed:
890 	/*
891 	 * No compression, but we still need to write the pages in the file
892 	 * we've been given so far.  redirty the locked page if it corresponds
893 	 * to our extent and set things up for the async work queue to run
894 	 * cow_file_range to do the normal delalloc dance.
895 	 */
896 	if (async_chunk->locked_page &&
897 	    (page_offset(async_chunk->locked_page) >= start &&
898 	     page_offset(async_chunk->locked_page)) <= end) {
899 		__set_page_dirty_nobuffers(async_chunk->locked_page);
900 		/* unlocked later on in the async handlers */
901 	}
902 
903 	if (redirty)
904 		extent_range_redirty_for_io(&inode->vfs_inode, start, end);
905 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
906 			 BTRFS_COMPRESS_NONE);
907 	compressed_extents++;
908 
909 	return compressed_extents;
910 }
911 
912 static void free_async_extent_pages(struct async_extent *async_extent)
913 {
914 	int i;
915 
916 	if (!async_extent->pages)
917 		return;
918 
919 	for (i = 0; i < async_extent->nr_pages; i++) {
920 		WARN_ON(async_extent->pages[i]->mapping);
921 		put_page(async_extent->pages[i]);
922 	}
923 	kfree(async_extent->pages);
924 	async_extent->nr_pages = 0;
925 	async_extent->pages = NULL;
926 }
927 
928 static int submit_uncompressed_range(struct btrfs_inode *inode,
929 				     struct async_extent *async_extent,
930 				     struct page *locked_page)
931 {
932 	u64 start = async_extent->start;
933 	u64 end = async_extent->start + async_extent->ram_size - 1;
934 	unsigned long nr_written = 0;
935 	int page_started = 0;
936 	int ret;
937 
938 	/*
939 	 * Call cow_file_range() to run the delalloc range directly, since we
940 	 * won't go to NOCOW or async path again.
941 	 *
942 	 * Also we call cow_file_range() with @unlock_page == 0, so that we
943 	 * can directly submit them without interruption.
944 	 */
945 	ret = cow_file_range(inode, locked_page, start, end, &page_started,
946 			     &nr_written, 0, NULL);
947 	/* Inline extent inserted, page gets unlocked and everything is done */
948 	if (page_started)
949 		return 0;
950 
951 	if (ret < 0) {
952 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
953 		if (locked_page) {
954 			const u64 page_start = page_offset(locked_page);
955 			const u64 page_end = page_start + PAGE_SIZE - 1;
956 
957 			btrfs_page_set_error(inode->root->fs_info, locked_page,
958 					     page_start, PAGE_SIZE);
959 			set_page_writeback(locked_page);
960 			end_page_writeback(locked_page);
961 			end_extent_writepage(locked_page, ret, page_start, page_end);
962 			unlock_page(locked_page);
963 		}
964 		return ret;
965 	}
966 
967 	/* All pages will be unlocked, including @locked_page */
968 	return extent_write_locked_range(&inode->vfs_inode, start, end);
969 }
970 
971 static int submit_one_async_extent(struct btrfs_inode *inode,
972 				   struct async_chunk *async_chunk,
973 				   struct async_extent *async_extent,
974 				   u64 *alloc_hint)
975 {
976 	struct extent_io_tree *io_tree = &inode->io_tree;
977 	struct btrfs_root *root = inode->root;
978 	struct btrfs_fs_info *fs_info = root->fs_info;
979 	struct btrfs_key ins;
980 	struct page *locked_page = NULL;
981 	struct extent_map *em;
982 	int ret = 0;
983 	u64 start = async_extent->start;
984 	u64 end = async_extent->start + async_extent->ram_size - 1;
985 
986 	if (async_chunk->blkcg_css)
987 		kthread_associate_blkcg(async_chunk->blkcg_css);
988 
989 	/*
990 	 * If async_chunk->locked_page is in the async_extent range, we need to
991 	 * handle it.
992 	 */
993 	if (async_chunk->locked_page) {
994 		u64 locked_page_start = page_offset(async_chunk->locked_page);
995 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
996 
997 		if (!(start >= locked_page_end || end <= locked_page_start))
998 			locked_page = async_chunk->locked_page;
999 	}
1000 	lock_extent(io_tree, start, end, NULL);
1001 
1002 	/* We have fall back to uncompressed write */
1003 	if (!async_extent->pages) {
1004 		ret = submit_uncompressed_range(inode, async_extent, locked_page);
1005 		goto done;
1006 	}
1007 
1008 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1009 				   async_extent->compressed_size,
1010 				   async_extent->compressed_size,
1011 				   0, *alloc_hint, &ins, 1, 1);
1012 	if (ret) {
1013 		free_async_extent_pages(async_extent);
1014 		/*
1015 		 * Here we used to try again by going back to non-compressed
1016 		 * path for ENOSPC.  But we can't reserve space even for
1017 		 * compressed size, how could it work for uncompressed size
1018 		 * which requires larger size?  So here we directly go error
1019 		 * path.
1020 		 */
1021 		goto out_free;
1022 	}
1023 
1024 	/* Here we're doing allocation and writeback of the compressed pages */
1025 	em = create_io_em(inode, start,
1026 			  async_extent->ram_size,	/* len */
1027 			  start,			/* orig_start */
1028 			  ins.objectid,			/* block_start */
1029 			  ins.offset,			/* block_len */
1030 			  ins.offset,			/* orig_block_len */
1031 			  async_extent->ram_size,	/* ram_bytes */
1032 			  async_extent->compress_type,
1033 			  BTRFS_ORDERED_COMPRESSED);
1034 	if (IS_ERR(em)) {
1035 		ret = PTR_ERR(em);
1036 		goto out_free_reserve;
1037 	}
1038 	free_extent_map(em);
1039 
1040 	ret = btrfs_add_ordered_extent(inode, start,		/* file_offset */
1041 				       async_extent->ram_size,	/* num_bytes */
1042 				       async_extent->ram_size,	/* ram_bytes */
1043 				       ins.objectid,		/* disk_bytenr */
1044 				       ins.offset,		/* disk_num_bytes */
1045 				       0,			/* offset */
1046 				       1 << BTRFS_ORDERED_COMPRESSED,
1047 				       async_extent->compress_type);
1048 	if (ret) {
1049 		btrfs_drop_extent_map_range(inode, start, end, false);
1050 		goto out_free_reserve;
1051 	}
1052 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1053 
1054 	/* Clear dirty, set writeback and unlock the pages. */
1055 	extent_clear_unlock_delalloc(inode, start, end,
1056 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1057 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1058 
1059 	btrfs_submit_compressed_write(inode, start,	/* file_offset */
1060 			    async_extent->ram_size,	/* num_bytes */
1061 			    ins.objectid,		/* disk_bytenr */
1062 			    ins.offset,			/* compressed_len */
1063 			    async_extent->pages,	/* compressed_pages */
1064 			    async_extent->nr_pages,
1065 			    async_chunk->write_flags, true);
1066 	*alloc_hint = ins.objectid + ins.offset;
1067 done:
1068 	if (async_chunk->blkcg_css)
1069 		kthread_associate_blkcg(NULL);
1070 	kfree(async_extent);
1071 	return ret;
1072 
1073 out_free_reserve:
1074 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1075 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1076 out_free:
1077 	extent_clear_unlock_delalloc(inode, start, end,
1078 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1079 				     EXTENT_DELALLOC_NEW |
1080 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1081 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1082 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1083 	free_async_extent_pages(async_extent);
1084 	goto done;
1085 }
1086 
1087 /*
1088  * Phase two of compressed writeback.  This is the ordered portion of the code,
1089  * which only gets called in the order the work was queued.  We walk all the
1090  * async extents created by compress_file_range and send them down to the disk.
1091  */
1092 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1093 {
1094 	struct btrfs_inode *inode = async_chunk->inode;
1095 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1096 	struct async_extent *async_extent;
1097 	u64 alloc_hint = 0;
1098 	int ret = 0;
1099 
1100 	while (!list_empty(&async_chunk->extents)) {
1101 		u64 extent_start;
1102 		u64 ram_size;
1103 
1104 		async_extent = list_entry(async_chunk->extents.next,
1105 					  struct async_extent, list);
1106 		list_del(&async_extent->list);
1107 		extent_start = async_extent->start;
1108 		ram_size = async_extent->ram_size;
1109 
1110 		ret = submit_one_async_extent(inode, async_chunk, async_extent,
1111 					      &alloc_hint);
1112 		btrfs_debug(fs_info,
1113 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1114 			    inode->root->root_key.objectid,
1115 			    btrfs_ino(inode), extent_start, ram_size, ret);
1116 	}
1117 }
1118 
1119 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1120 				      u64 num_bytes)
1121 {
1122 	struct extent_map_tree *em_tree = &inode->extent_tree;
1123 	struct extent_map *em;
1124 	u64 alloc_hint = 0;
1125 
1126 	read_lock(&em_tree->lock);
1127 	em = search_extent_mapping(em_tree, start, num_bytes);
1128 	if (em) {
1129 		/*
1130 		 * if block start isn't an actual block number then find the
1131 		 * first block in this inode and use that as a hint.  If that
1132 		 * block is also bogus then just don't worry about it.
1133 		 */
1134 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1135 			free_extent_map(em);
1136 			em = search_extent_mapping(em_tree, 0, 0);
1137 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1138 				alloc_hint = em->block_start;
1139 			if (em)
1140 				free_extent_map(em);
1141 		} else {
1142 			alloc_hint = em->block_start;
1143 			free_extent_map(em);
1144 		}
1145 	}
1146 	read_unlock(&em_tree->lock);
1147 
1148 	return alloc_hint;
1149 }
1150 
1151 /*
1152  * when extent_io.c finds a delayed allocation range in the file,
1153  * the call backs end up in this code.  The basic idea is to
1154  * allocate extents on disk for the range, and create ordered data structs
1155  * in ram to track those extents.
1156  *
1157  * locked_page is the page that writepage had locked already.  We use
1158  * it to make sure we don't do extra locks or unlocks.
1159  *
1160  * *page_started is set to one if we unlock locked_page and do everything
1161  * required to start IO on it.  It may be clean and already done with
1162  * IO when we return.
1163  *
1164  * When unlock == 1, we unlock the pages in successfully allocated regions.
1165  * When unlock == 0, we leave them locked for writing them out.
1166  *
1167  * However, we unlock all the pages except @locked_page in case of failure.
1168  *
1169  * In summary, page locking state will be as follow:
1170  *
1171  * - page_started == 1 (return value)
1172  *     - All the pages are unlocked. IO is started.
1173  *     - Note that this can happen only on success
1174  * - unlock == 1
1175  *     - All the pages except @locked_page are unlocked in any case
1176  * - unlock == 0
1177  *     - On success, all the pages are locked for writing out them
1178  *     - On failure, all the pages except @locked_page are unlocked
1179  *
1180  * When a failure happens in the second or later iteration of the
1181  * while-loop, the ordered extents created in previous iterations are kept
1182  * intact. So, the caller must clean them up by calling
1183  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1184  * example.
1185  */
1186 static noinline int cow_file_range(struct btrfs_inode *inode,
1187 				   struct page *locked_page,
1188 				   u64 start, u64 end, int *page_started,
1189 				   unsigned long *nr_written, int unlock,
1190 				   u64 *done_offset)
1191 {
1192 	struct btrfs_root *root = inode->root;
1193 	struct btrfs_fs_info *fs_info = root->fs_info;
1194 	u64 alloc_hint = 0;
1195 	u64 orig_start = start;
1196 	u64 num_bytes;
1197 	unsigned long ram_size;
1198 	u64 cur_alloc_size = 0;
1199 	u64 min_alloc_size;
1200 	u64 blocksize = fs_info->sectorsize;
1201 	struct btrfs_key ins;
1202 	struct extent_map *em;
1203 	unsigned clear_bits;
1204 	unsigned long page_ops;
1205 	bool extent_reserved = false;
1206 	int ret = 0;
1207 
1208 	if (btrfs_is_free_space_inode(inode)) {
1209 		ret = -EINVAL;
1210 		goto out_unlock;
1211 	}
1212 
1213 	num_bytes = ALIGN(end - start + 1, blocksize);
1214 	num_bytes = max(blocksize,  num_bytes);
1215 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1216 
1217 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1218 
1219 	/*
1220 	 * Due to the page size limit, for subpage we can only trigger the
1221 	 * writeback for the dirty sectors of page, that means data writeback
1222 	 * is doing more writeback than what we want.
1223 	 *
1224 	 * This is especially unexpected for some call sites like fallocate,
1225 	 * where we only increase i_size after everything is done.
1226 	 * This means we can trigger inline extent even if we didn't want to.
1227 	 * So here we skip inline extent creation completely.
1228 	 */
1229 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1230 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1231 				       end + 1);
1232 
1233 		/* lets try to make an inline extent */
1234 		ret = cow_file_range_inline(inode, actual_end, 0,
1235 					    BTRFS_COMPRESS_NONE, NULL, false);
1236 		if (ret == 0) {
1237 			/*
1238 			 * We use DO_ACCOUNTING here because we need the
1239 			 * delalloc_release_metadata to be run _after_ we drop
1240 			 * our outstanding extent for clearing delalloc for this
1241 			 * range.
1242 			 */
1243 			extent_clear_unlock_delalloc(inode, start, end,
1244 				     locked_page,
1245 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1246 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1247 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1248 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1249 			*nr_written = *nr_written +
1250 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1251 			*page_started = 1;
1252 			/*
1253 			 * locked_page is locked by the caller of
1254 			 * writepage_delalloc(), not locked by
1255 			 * __process_pages_contig().
1256 			 *
1257 			 * We can't let __process_pages_contig() to unlock it,
1258 			 * as it doesn't have any subpage::writers recorded.
1259 			 *
1260 			 * Here we manually unlock the page, since the caller
1261 			 * can't use page_started to determine if it's an
1262 			 * inline extent or a compressed extent.
1263 			 */
1264 			unlock_page(locked_page);
1265 			goto out;
1266 		} else if (ret < 0) {
1267 			goto out_unlock;
1268 		}
1269 	}
1270 
1271 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1272 
1273 	/*
1274 	 * Relocation relies on the relocated extents to have exactly the same
1275 	 * size as the original extents. Normally writeback for relocation data
1276 	 * extents follows a NOCOW path because relocation preallocates the
1277 	 * extents. However, due to an operation such as scrub turning a block
1278 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1279 	 * an extent allocated during COW has exactly the requested size and can
1280 	 * not be split into smaller extents, otherwise relocation breaks and
1281 	 * fails during the stage where it updates the bytenr of file extent
1282 	 * items.
1283 	 */
1284 	if (btrfs_is_data_reloc_root(root))
1285 		min_alloc_size = num_bytes;
1286 	else
1287 		min_alloc_size = fs_info->sectorsize;
1288 
1289 	while (num_bytes > 0) {
1290 		cur_alloc_size = num_bytes;
1291 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1292 					   min_alloc_size, 0, alloc_hint,
1293 					   &ins, 1, 1);
1294 		if (ret < 0)
1295 			goto out_unlock;
1296 		cur_alloc_size = ins.offset;
1297 		extent_reserved = true;
1298 
1299 		ram_size = ins.offset;
1300 		em = create_io_em(inode, start, ins.offset, /* len */
1301 				  start, /* orig_start */
1302 				  ins.objectid, /* block_start */
1303 				  ins.offset, /* block_len */
1304 				  ins.offset, /* orig_block_len */
1305 				  ram_size, /* ram_bytes */
1306 				  BTRFS_COMPRESS_NONE, /* compress_type */
1307 				  BTRFS_ORDERED_REGULAR /* type */);
1308 		if (IS_ERR(em)) {
1309 			ret = PTR_ERR(em);
1310 			goto out_reserve;
1311 		}
1312 		free_extent_map(em);
1313 
1314 		ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1315 					       ins.objectid, cur_alloc_size, 0,
1316 					       1 << BTRFS_ORDERED_REGULAR,
1317 					       BTRFS_COMPRESS_NONE);
1318 		if (ret)
1319 			goto out_drop_extent_cache;
1320 
1321 		if (btrfs_is_data_reloc_root(root)) {
1322 			ret = btrfs_reloc_clone_csums(inode, start,
1323 						      cur_alloc_size);
1324 			/*
1325 			 * Only drop cache here, and process as normal.
1326 			 *
1327 			 * We must not allow extent_clear_unlock_delalloc()
1328 			 * at out_unlock label to free meta of this ordered
1329 			 * extent, as its meta should be freed by
1330 			 * btrfs_finish_ordered_io().
1331 			 *
1332 			 * So we must continue until @start is increased to
1333 			 * skip current ordered extent.
1334 			 */
1335 			if (ret)
1336 				btrfs_drop_extent_map_range(inode, start,
1337 							    start + ram_size - 1,
1338 							    false);
1339 		}
1340 
1341 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1342 
1343 		/*
1344 		 * We're not doing compressed IO, don't unlock the first page
1345 		 * (which the caller expects to stay locked), don't clear any
1346 		 * dirty bits and don't set any writeback bits
1347 		 *
1348 		 * Do set the Ordered (Private2) bit so we know this page was
1349 		 * properly setup for writepage.
1350 		 */
1351 		page_ops = unlock ? PAGE_UNLOCK : 0;
1352 		page_ops |= PAGE_SET_ORDERED;
1353 
1354 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1355 					     locked_page,
1356 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1357 					     page_ops);
1358 		if (num_bytes < cur_alloc_size)
1359 			num_bytes = 0;
1360 		else
1361 			num_bytes -= cur_alloc_size;
1362 		alloc_hint = ins.objectid + ins.offset;
1363 		start += cur_alloc_size;
1364 		extent_reserved = false;
1365 
1366 		/*
1367 		 * btrfs_reloc_clone_csums() error, since start is increased
1368 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1369 		 * free metadata of current ordered extent, we're OK to exit.
1370 		 */
1371 		if (ret)
1372 			goto out_unlock;
1373 	}
1374 out:
1375 	return ret;
1376 
1377 out_drop_extent_cache:
1378 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1379 out_reserve:
1380 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1381 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1382 out_unlock:
1383 	/*
1384 	 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1385 	 * caller to write out the successfully allocated region and retry.
1386 	 */
1387 	if (done_offset && ret == -EAGAIN) {
1388 		if (orig_start < start)
1389 			*done_offset = start - 1;
1390 		else
1391 			*done_offset = start;
1392 		return ret;
1393 	} else if (ret == -EAGAIN) {
1394 		/* Convert to -ENOSPC since the caller cannot retry. */
1395 		ret = -ENOSPC;
1396 	}
1397 
1398 	/*
1399 	 * Now, we have three regions to clean up:
1400 	 *
1401 	 * |-------(1)----|---(2)---|-------------(3)----------|
1402 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1403 	 *
1404 	 * We process each region below.
1405 	 */
1406 
1407 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1408 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1409 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1410 
1411 	/*
1412 	 * For the range (1). We have already instantiated the ordered extents
1413 	 * for this region. They are cleaned up by
1414 	 * btrfs_cleanup_ordered_extents() in e.g,
1415 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1416 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1417 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1418 	 * function.
1419 	 *
1420 	 * However, in case of unlock == 0, we still need to unlock the pages
1421 	 * (except @locked_page) to ensure all the pages are unlocked.
1422 	 */
1423 	if (!unlock && orig_start < start) {
1424 		if (!locked_page)
1425 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1426 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1427 					     locked_page, 0, page_ops);
1428 	}
1429 
1430 	/*
1431 	 * For the range (2). If we reserved an extent for our delalloc range
1432 	 * (or a subrange) and failed to create the respective ordered extent,
1433 	 * then it means that when we reserved the extent we decremented the
1434 	 * extent's size from the data space_info's bytes_may_use counter and
1435 	 * incremented the space_info's bytes_reserved counter by the same
1436 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1437 	 * to decrement again the data space_info's bytes_may_use counter,
1438 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1439 	 */
1440 	if (extent_reserved) {
1441 		extent_clear_unlock_delalloc(inode, start,
1442 					     start + cur_alloc_size - 1,
1443 					     locked_page,
1444 					     clear_bits,
1445 					     page_ops);
1446 		start += cur_alloc_size;
1447 		if (start >= end)
1448 			return ret;
1449 	}
1450 
1451 	/*
1452 	 * For the range (3). We never touched the region. In addition to the
1453 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1454 	 * space_info's bytes_may_use counter, reserved in
1455 	 * btrfs_check_data_free_space().
1456 	 */
1457 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1458 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1459 				     page_ops);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * work queue call back to started compression on a file and pages
1465  */
1466 static noinline void async_cow_start(struct btrfs_work *work)
1467 {
1468 	struct async_chunk *async_chunk;
1469 	int compressed_extents;
1470 
1471 	async_chunk = container_of(work, struct async_chunk, work);
1472 
1473 	compressed_extents = compress_file_range(async_chunk);
1474 	if (compressed_extents == 0) {
1475 		btrfs_add_delayed_iput(async_chunk->inode);
1476 		async_chunk->inode = NULL;
1477 	}
1478 }
1479 
1480 /*
1481  * work queue call back to submit previously compressed pages
1482  */
1483 static noinline void async_cow_submit(struct btrfs_work *work)
1484 {
1485 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1486 						     work);
1487 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1488 	unsigned long nr_pages;
1489 
1490 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1491 		PAGE_SHIFT;
1492 
1493 	/*
1494 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1495 	 * in which case we don't have anything to submit, yet we need to
1496 	 * always adjust ->async_delalloc_pages as its paired with the init
1497 	 * happening in cow_file_range_async
1498 	 */
1499 	if (async_chunk->inode)
1500 		submit_compressed_extents(async_chunk);
1501 
1502 	/* atomic_sub_return implies a barrier */
1503 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1504 	    5 * SZ_1M)
1505 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1506 }
1507 
1508 static noinline void async_cow_free(struct btrfs_work *work)
1509 {
1510 	struct async_chunk *async_chunk;
1511 	struct async_cow *async_cow;
1512 
1513 	async_chunk = container_of(work, struct async_chunk, work);
1514 	if (async_chunk->inode)
1515 		btrfs_add_delayed_iput(async_chunk->inode);
1516 	if (async_chunk->blkcg_css)
1517 		css_put(async_chunk->blkcg_css);
1518 
1519 	async_cow = async_chunk->async_cow;
1520 	if (atomic_dec_and_test(&async_cow->num_chunks))
1521 		kvfree(async_cow);
1522 }
1523 
1524 static int cow_file_range_async(struct btrfs_inode *inode,
1525 				struct writeback_control *wbc,
1526 				struct page *locked_page,
1527 				u64 start, u64 end, int *page_started,
1528 				unsigned long *nr_written)
1529 {
1530 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1531 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1532 	struct async_cow *ctx;
1533 	struct async_chunk *async_chunk;
1534 	unsigned long nr_pages;
1535 	u64 cur_end;
1536 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1537 	int i;
1538 	bool should_compress;
1539 	unsigned nofs_flag;
1540 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1541 
1542 	unlock_extent(&inode->io_tree, start, end, NULL);
1543 
1544 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1545 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1546 		num_chunks = 1;
1547 		should_compress = false;
1548 	} else {
1549 		should_compress = true;
1550 	}
1551 
1552 	nofs_flag = memalloc_nofs_save();
1553 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1554 	memalloc_nofs_restore(nofs_flag);
1555 
1556 	if (!ctx) {
1557 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1558 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1559 			EXTENT_DO_ACCOUNTING;
1560 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1561 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1562 
1563 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1564 					     clear_bits, page_ops);
1565 		return -ENOMEM;
1566 	}
1567 
1568 	async_chunk = ctx->chunks;
1569 	atomic_set(&ctx->num_chunks, num_chunks);
1570 
1571 	for (i = 0; i < num_chunks; i++) {
1572 		if (should_compress)
1573 			cur_end = min(end, start + SZ_512K - 1);
1574 		else
1575 			cur_end = end;
1576 
1577 		/*
1578 		 * igrab is called higher up in the call chain, take only the
1579 		 * lightweight reference for the callback lifetime
1580 		 */
1581 		ihold(&inode->vfs_inode);
1582 		async_chunk[i].async_cow = ctx;
1583 		async_chunk[i].inode = inode;
1584 		async_chunk[i].start = start;
1585 		async_chunk[i].end = cur_end;
1586 		async_chunk[i].write_flags = write_flags;
1587 		INIT_LIST_HEAD(&async_chunk[i].extents);
1588 
1589 		/*
1590 		 * The locked_page comes all the way from writepage and its
1591 		 * the original page we were actually given.  As we spread
1592 		 * this large delalloc region across multiple async_chunk
1593 		 * structs, only the first struct needs a pointer to locked_page
1594 		 *
1595 		 * This way we don't need racey decisions about who is supposed
1596 		 * to unlock it.
1597 		 */
1598 		if (locked_page) {
1599 			/*
1600 			 * Depending on the compressibility, the pages might or
1601 			 * might not go through async.  We want all of them to
1602 			 * be accounted against wbc once.  Let's do it here
1603 			 * before the paths diverge.  wbc accounting is used
1604 			 * only for foreign writeback detection and doesn't
1605 			 * need full accuracy.  Just account the whole thing
1606 			 * against the first page.
1607 			 */
1608 			wbc_account_cgroup_owner(wbc, locked_page,
1609 						 cur_end - start);
1610 			async_chunk[i].locked_page = locked_page;
1611 			locked_page = NULL;
1612 		} else {
1613 			async_chunk[i].locked_page = NULL;
1614 		}
1615 
1616 		if (blkcg_css != blkcg_root_css) {
1617 			css_get(blkcg_css);
1618 			async_chunk[i].blkcg_css = blkcg_css;
1619 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1620 		} else {
1621 			async_chunk[i].blkcg_css = NULL;
1622 		}
1623 
1624 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1625 				async_cow_submit, async_cow_free);
1626 
1627 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1628 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1629 
1630 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1631 
1632 		*nr_written += nr_pages;
1633 		start = cur_end + 1;
1634 	}
1635 	*page_started = 1;
1636 	return 0;
1637 }
1638 
1639 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1640 				       struct page *locked_page, u64 start,
1641 				       u64 end, int *page_started,
1642 				       unsigned long *nr_written)
1643 {
1644 	u64 done_offset = end;
1645 	int ret;
1646 	bool locked_page_done = false;
1647 
1648 	while (start <= end) {
1649 		ret = cow_file_range(inode, locked_page, start, end, page_started,
1650 				     nr_written, 0, &done_offset);
1651 		if (ret && ret != -EAGAIN)
1652 			return ret;
1653 
1654 		if (*page_started) {
1655 			ASSERT(ret == 0);
1656 			return 0;
1657 		}
1658 
1659 		if (ret == 0)
1660 			done_offset = end;
1661 
1662 		if (done_offset == start) {
1663 			wait_on_bit_io(&inode->root->fs_info->flags,
1664 				       BTRFS_FS_NEED_ZONE_FINISH,
1665 				       TASK_UNINTERRUPTIBLE);
1666 			continue;
1667 		}
1668 
1669 		if (!locked_page_done) {
1670 			__set_page_dirty_nobuffers(locked_page);
1671 			account_page_redirty(locked_page);
1672 		}
1673 		locked_page_done = true;
1674 		extent_write_locked_range(&inode->vfs_inode, start, done_offset);
1675 
1676 		start = done_offset + 1;
1677 	}
1678 
1679 	*page_started = 1;
1680 
1681 	return 0;
1682 }
1683 
1684 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1685 					u64 bytenr, u64 num_bytes, bool nowait)
1686 {
1687 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1688 	struct btrfs_ordered_sum *sums;
1689 	int ret;
1690 	LIST_HEAD(list);
1691 
1692 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1693 				      &list, 0, nowait);
1694 	if (ret == 0 && list_empty(&list))
1695 		return 0;
1696 
1697 	while (!list_empty(&list)) {
1698 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1699 		list_del(&sums->list);
1700 		kfree(sums);
1701 	}
1702 	if (ret < 0)
1703 		return ret;
1704 	return 1;
1705 }
1706 
1707 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1708 			   const u64 start, const u64 end,
1709 			   int *page_started, unsigned long *nr_written)
1710 {
1711 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1712 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1713 	const u64 range_bytes = end + 1 - start;
1714 	struct extent_io_tree *io_tree = &inode->io_tree;
1715 	u64 range_start = start;
1716 	u64 count;
1717 
1718 	/*
1719 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1720 	 * made we had not enough available data space and therefore we did not
1721 	 * reserve data space for it, since we though we could do NOCOW for the
1722 	 * respective file range (either there is prealloc extent or the inode
1723 	 * has the NOCOW bit set).
1724 	 *
1725 	 * However when we need to fallback to COW mode (because for example the
1726 	 * block group for the corresponding extent was turned to RO mode by a
1727 	 * scrub or relocation) we need to do the following:
1728 	 *
1729 	 * 1) We increment the bytes_may_use counter of the data space info.
1730 	 *    If COW succeeds, it allocates a new data extent and after doing
1731 	 *    that it decrements the space info's bytes_may_use counter and
1732 	 *    increments its bytes_reserved counter by the same amount (we do
1733 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1734 	 *    bytes_may_use counter to compensate (when space is reserved at
1735 	 *    buffered write time, the bytes_may_use counter is incremented);
1736 	 *
1737 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1738 	 *    that if the COW path fails for any reason, it decrements (through
1739 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1740 	 *    data space info, which we incremented in the step above.
1741 	 *
1742 	 * If we need to fallback to cow and the inode corresponds to a free
1743 	 * space cache inode or an inode of the data relocation tree, we must
1744 	 * also increment bytes_may_use of the data space_info for the same
1745 	 * reason. Space caches and relocated data extents always get a prealloc
1746 	 * extent for them, however scrub or balance may have set the block
1747 	 * group that contains that extent to RO mode and therefore force COW
1748 	 * when starting writeback.
1749 	 */
1750 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1751 				 EXTENT_NORESERVE, 0, NULL);
1752 	if (count > 0 || is_space_ino || is_reloc_ino) {
1753 		u64 bytes = count;
1754 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1755 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1756 
1757 		if (is_space_ino || is_reloc_ino)
1758 			bytes = range_bytes;
1759 
1760 		spin_lock(&sinfo->lock);
1761 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1762 		spin_unlock(&sinfo->lock);
1763 
1764 		if (count > 0)
1765 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1766 					 NULL);
1767 	}
1768 
1769 	return cow_file_range(inode, locked_page, start, end, page_started,
1770 			      nr_written, 1, NULL);
1771 }
1772 
1773 struct can_nocow_file_extent_args {
1774 	/* Input fields. */
1775 
1776 	/* Start file offset of the range we want to NOCOW. */
1777 	u64 start;
1778 	/* End file offset (inclusive) of the range we want to NOCOW. */
1779 	u64 end;
1780 	bool writeback_path;
1781 	bool strict;
1782 	/*
1783 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1784 	 * anymore.
1785 	 */
1786 	bool free_path;
1787 
1788 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1789 
1790 	u64 disk_bytenr;
1791 	u64 disk_num_bytes;
1792 	u64 extent_offset;
1793 	/* Number of bytes that can be written to in NOCOW mode. */
1794 	u64 num_bytes;
1795 };
1796 
1797 /*
1798  * Check if we can NOCOW the file extent that the path points to.
1799  * This function may return with the path released, so the caller should check
1800  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1801  *
1802  * Returns: < 0 on error
1803  *            0 if we can not NOCOW
1804  *            1 if we can NOCOW
1805  */
1806 static int can_nocow_file_extent(struct btrfs_path *path,
1807 				 struct btrfs_key *key,
1808 				 struct btrfs_inode *inode,
1809 				 struct can_nocow_file_extent_args *args)
1810 {
1811 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1812 	struct extent_buffer *leaf = path->nodes[0];
1813 	struct btrfs_root *root = inode->root;
1814 	struct btrfs_file_extent_item *fi;
1815 	u64 extent_end;
1816 	u8 extent_type;
1817 	int can_nocow = 0;
1818 	int ret = 0;
1819 	bool nowait = path->nowait;
1820 
1821 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1822 	extent_type = btrfs_file_extent_type(leaf, fi);
1823 
1824 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1825 		goto out;
1826 
1827 	/* Can't access these fields unless we know it's not an inline extent. */
1828 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1829 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1830 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1831 
1832 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1833 	    extent_type == BTRFS_FILE_EXTENT_REG)
1834 		goto out;
1835 
1836 	/*
1837 	 * If the extent was created before the generation where the last snapshot
1838 	 * for its subvolume was created, then this implies the extent is shared,
1839 	 * hence we must COW.
1840 	 */
1841 	if (!args->strict &&
1842 	    btrfs_file_extent_generation(leaf, fi) <=
1843 	    btrfs_root_last_snapshot(&root->root_item))
1844 		goto out;
1845 
1846 	/* An explicit hole, must COW. */
1847 	if (args->disk_bytenr == 0)
1848 		goto out;
1849 
1850 	/* Compressed/encrypted/encoded extents must be COWed. */
1851 	if (btrfs_file_extent_compression(leaf, fi) ||
1852 	    btrfs_file_extent_encryption(leaf, fi) ||
1853 	    btrfs_file_extent_other_encoding(leaf, fi))
1854 		goto out;
1855 
1856 	extent_end = btrfs_file_extent_end(path);
1857 
1858 	/*
1859 	 * The following checks can be expensive, as they need to take other
1860 	 * locks and do btree or rbtree searches, so release the path to avoid
1861 	 * blocking other tasks for too long.
1862 	 */
1863 	btrfs_release_path(path);
1864 
1865 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1866 				    key->offset - args->extent_offset,
1867 				    args->disk_bytenr, false, path);
1868 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1869 	if (ret != 0)
1870 		goto out;
1871 
1872 	if (args->free_path) {
1873 		/*
1874 		 * We don't need the path anymore, plus through the
1875 		 * csum_exist_in_range() call below we will end up allocating
1876 		 * another path. So free the path to avoid unnecessary extra
1877 		 * memory usage.
1878 		 */
1879 		btrfs_free_path(path);
1880 		path = NULL;
1881 	}
1882 
1883 	/* If there are pending snapshots for this root, we must COW. */
1884 	if (args->writeback_path && !is_freespace_inode &&
1885 	    atomic_read(&root->snapshot_force_cow))
1886 		goto out;
1887 
1888 	args->disk_bytenr += args->extent_offset;
1889 	args->disk_bytenr += args->start - key->offset;
1890 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1891 
1892 	/*
1893 	 * Force COW if csums exist in the range. This ensures that csums for a
1894 	 * given extent are either valid or do not exist.
1895 	 */
1896 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1897 				  nowait);
1898 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1899 	if (ret != 0)
1900 		goto out;
1901 
1902 	can_nocow = 1;
1903  out:
1904 	if (args->free_path && path)
1905 		btrfs_free_path(path);
1906 
1907 	return ret < 0 ? ret : can_nocow;
1908 }
1909 
1910 /*
1911  * when nowcow writeback call back.  This checks for snapshots or COW copies
1912  * of the extents that exist in the file, and COWs the file as required.
1913  *
1914  * If no cow copies or snapshots exist, we write directly to the existing
1915  * blocks on disk
1916  */
1917 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1918 				       struct page *locked_page,
1919 				       const u64 start, const u64 end,
1920 				       int *page_started,
1921 				       unsigned long *nr_written)
1922 {
1923 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1924 	struct btrfs_root *root = inode->root;
1925 	struct btrfs_path *path;
1926 	u64 cow_start = (u64)-1;
1927 	u64 cur_offset = start;
1928 	int ret;
1929 	bool check_prev = true;
1930 	u64 ino = btrfs_ino(inode);
1931 	struct btrfs_block_group *bg;
1932 	bool nocow = false;
1933 	struct can_nocow_file_extent_args nocow_args = { 0 };
1934 
1935 	path = btrfs_alloc_path();
1936 	if (!path) {
1937 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1938 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1939 					     EXTENT_DO_ACCOUNTING |
1940 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1941 					     PAGE_START_WRITEBACK |
1942 					     PAGE_END_WRITEBACK);
1943 		return -ENOMEM;
1944 	}
1945 
1946 	nocow_args.end = end;
1947 	nocow_args.writeback_path = true;
1948 
1949 	while (1) {
1950 		struct btrfs_key found_key;
1951 		struct btrfs_file_extent_item *fi;
1952 		struct extent_buffer *leaf;
1953 		u64 extent_end;
1954 		u64 ram_bytes;
1955 		u64 nocow_end;
1956 		int extent_type;
1957 
1958 		nocow = false;
1959 
1960 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1961 					       cur_offset, 0);
1962 		if (ret < 0)
1963 			goto error;
1964 
1965 		/*
1966 		 * If there is no extent for our range when doing the initial
1967 		 * search, then go back to the previous slot as it will be the
1968 		 * one containing the search offset
1969 		 */
1970 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1971 			leaf = path->nodes[0];
1972 			btrfs_item_key_to_cpu(leaf, &found_key,
1973 					      path->slots[0] - 1);
1974 			if (found_key.objectid == ino &&
1975 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1976 				path->slots[0]--;
1977 		}
1978 		check_prev = false;
1979 next_slot:
1980 		/* Go to next leaf if we have exhausted the current one */
1981 		leaf = path->nodes[0];
1982 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1983 			ret = btrfs_next_leaf(root, path);
1984 			if (ret < 0) {
1985 				if (cow_start != (u64)-1)
1986 					cur_offset = cow_start;
1987 				goto error;
1988 			}
1989 			if (ret > 0)
1990 				break;
1991 			leaf = path->nodes[0];
1992 		}
1993 
1994 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1995 
1996 		/* Didn't find anything for our INO */
1997 		if (found_key.objectid > ino)
1998 			break;
1999 		/*
2000 		 * Keep searching until we find an EXTENT_ITEM or there are no
2001 		 * more extents for this inode
2002 		 */
2003 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2004 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2005 			path->slots[0]++;
2006 			goto next_slot;
2007 		}
2008 
2009 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2010 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2011 		    found_key.offset > end)
2012 			break;
2013 
2014 		/*
2015 		 * If the found extent starts after requested offset, then
2016 		 * adjust extent_end to be right before this extent begins
2017 		 */
2018 		if (found_key.offset > cur_offset) {
2019 			extent_end = found_key.offset;
2020 			extent_type = 0;
2021 			goto out_check;
2022 		}
2023 
2024 		/*
2025 		 * Found extent which begins before our range and potentially
2026 		 * intersect it
2027 		 */
2028 		fi = btrfs_item_ptr(leaf, path->slots[0],
2029 				    struct btrfs_file_extent_item);
2030 		extent_type = btrfs_file_extent_type(leaf, fi);
2031 		/* If this is triggered then we have a memory corruption. */
2032 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2033 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2034 			ret = -EUCLEAN;
2035 			goto error;
2036 		}
2037 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2038 		extent_end = btrfs_file_extent_end(path);
2039 
2040 		/*
2041 		 * If the extent we got ends before our current offset, skip to
2042 		 * the next extent.
2043 		 */
2044 		if (extent_end <= cur_offset) {
2045 			path->slots[0]++;
2046 			goto next_slot;
2047 		}
2048 
2049 		nocow_args.start = cur_offset;
2050 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2051 		if (ret < 0) {
2052 			if (cow_start != (u64)-1)
2053 				cur_offset = cow_start;
2054 			goto error;
2055 		} else if (ret == 0) {
2056 			goto out_check;
2057 		}
2058 
2059 		ret = 0;
2060 		bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2061 		if (bg)
2062 			nocow = true;
2063 out_check:
2064 		/*
2065 		 * If nocow is false then record the beginning of the range
2066 		 * that needs to be COWed
2067 		 */
2068 		if (!nocow) {
2069 			if (cow_start == (u64)-1)
2070 				cow_start = cur_offset;
2071 			cur_offset = extent_end;
2072 			if (cur_offset > end)
2073 				break;
2074 			if (!path->nodes[0])
2075 				continue;
2076 			path->slots[0]++;
2077 			goto next_slot;
2078 		}
2079 
2080 		/*
2081 		 * COW range from cow_start to found_key.offset - 1. As the key
2082 		 * will contain the beginning of the first extent that can be
2083 		 * NOCOW, following one which needs to be COW'ed
2084 		 */
2085 		if (cow_start != (u64)-1) {
2086 			ret = fallback_to_cow(inode, locked_page,
2087 					      cow_start, found_key.offset - 1,
2088 					      page_started, nr_written);
2089 			if (ret)
2090 				goto error;
2091 			cow_start = (u64)-1;
2092 		}
2093 
2094 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2095 
2096 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2097 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2098 			struct extent_map *em;
2099 
2100 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2101 					  orig_start,
2102 					  nocow_args.disk_bytenr, /* block_start */
2103 					  nocow_args.num_bytes, /* block_len */
2104 					  nocow_args.disk_num_bytes, /* orig_block_len */
2105 					  ram_bytes, BTRFS_COMPRESS_NONE,
2106 					  BTRFS_ORDERED_PREALLOC);
2107 			if (IS_ERR(em)) {
2108 				ret = PTR_ERR(em);
2109 				goto error;
2110 			}
2111 			free_extent_map(em);
2112 			ret = btrfs_add_ordered_extent(inode,
2113 					cur_offset, nocow_args.num_bytes,
2114 					nocow_args.num_bytes,
2115 					nocow_args.disk_bytenr,
2116 					nocow_args.num_bytes, 0,
2117 					1 << BTRFS_ORDERED_PREALLOC,
2118 					BTRFS_COMPRESS_NONE);
2119 			if (ret) {
2120 				btrfs_drop_extent_map_range(inode, cur_offset,
2121 							    nocow_end, false);
2122 				goto error;
2123 			}
2124 		} else {
2125 			ret = btrfs_add_ordered_extent(inode, cur_offset,
2126 						       nocow_args.num_bytes,
2127 						       nocow_args.num_bytes,
2128 						       nocow_args.disk_bytenr,
2129 						       nocow_args.num_bytes,
2130 						       0,
2131 						       1 << BTRFS_ORDERED_NOCOW,
2132 						       BTRFS_COMPRESS_NONE);
2133 			if (ret)
2134 				goto error;
2135 		}
2136 
2137 		if (nocow) {
2138 			btrfs_dec_nocow_writers(bg);
2139 			nocow = false;
2140 		}
2141 
2142 		if (btrfs_is_data_reloc_root(root))
2143 			/*
2144 			 * Error handled later, as we must prevent
2145 			 * extent_clear_unlock_delalloc() in error handler
2146 			 * from freeing metadata of created ordered extent.
2147 			 */
2148 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
2149 						      nocow_args.num_bytes);
2150 
2151 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2152 					     locked_page, EXTENT_LOCKED |
2153 					     EXTENT_DELALLOC |
2154 					     EXTENT_CLEAR_DATA_RESV,
2155 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2156 
2157 		cur_offset = extent_end;
2158 
2159 		/*
2160 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2161 		 * handler, as metadata for created ordered extent will only
2162 		 * be freed by btrfs_finish_ordered_io().
2163 		 */
2164 		if (ret)
2165 			goto error;
2166 		if (cur_offset > end)
2167 			break;
2168 	}
2169 	btrfs_release_path(path);
2170 
2171 	if (cur_offset <= end && cow_start == (u64)-1)
2172 		cow_start = cur_offset;
2173 
2174 	if (cow_start != (u64)-1) {
2175 		cur_offset = end;
2176 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
2177 				      page_started, nr_written);
2178 		if (ret)
2179 			goto error;
2180 	}
2181 
2182 error:
2183 	if (nocow)
2184 		btrfs_dec_nocow_writers(bg);
2185 
2186 	if (ret && cur_offset < end)
2187 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2188 					     locked_page, EXTENT_LOCKED |
2189 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2190 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2191 					     PAGE_START_WRITEBACK |
2192 					     PAGE_END_WRITEBACK);
2193 	btrfs_free_path(path);
2194 	return ret;
2195 }
2196 
2197 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2198 {
2199 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2200 		if (inode->defrag_bytes &&
2201 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2202 				   0, NULL))
2203 			return false;
2204 		return true;
2205 	}
2206 	return false;
2207 }
2208 
2209 /*
2210  * Function to process delayed allocation (create CoW) for ranges which are
2211  * being touched for the first time.
2212  */
2213 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2214 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
2215 		struct writeback_control *wbc)
2216 {
2217 	int ret;
2218 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2219 
2220 	/*
2221 	 * The range must cover part of the @locked_page, or the returned
2222 	 * @page_started can confuse the caller.
2223 	 */
2224 	ASSERT(!(end <= page_offset(locked_page) ||
2225 		 start >= page_offset(locked_page) + PAGE_SIZE));
2226 
2227 	if (should_nocow(inode, start, end)) {
2228 		/*
2229 		 * Normally on a zoned device we're only doing COW writes, but
2230 		 * in case of relocation on a zoned filesystem we have taken
2231 		 * precaution, that we're only writing sequentially. It's safe
2232 		 * to use run_delalloc_nocow() here, like for  regular
2233 		 * preallocated inodes.
2234 		 */
2235 		ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2236 		ret = run_delalloc_nocow(inode, locked_page, start, end,
2237 					 page_started, nr_written);
2238 	} else if (!btrfs_inode_can_compress(inode) ||
2239 		   !inode_need_compress(inode, start, end)) {
2240 		if (zoned)
2241 			ret = run_delalloc_zoned(inode, locked_page, start, end,
2242 						 page_started, nr_written);
2243 		else
2244 			ret = cow_file_range(inode, locked_page, start, end,
2245 					     page_started, nr_written, 1, NULL);
2246 	} else {
2247 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2248 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2249 					   page_started, nr_written);
2250 	}
2251 	ASSERT(ret <= 0);
2252 	if (ret)
2253 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2254 					      end - start + 1);
2255 	return ret;
2256 }
2257 
2258 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2259 				 struct extent_state *orig, u64 split)
2260 {
2261 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2262 	u64 size;
2263 
2264 	/* not delalloc, ignore it */
2265 	if (!(orig->state & EXTENT_DELALLOC))
2266 		return;
2267 
2268 	size = orig->end - orig->start + 1;
2269 	if (size > fs_info->max_extent_size) {
2270 		u32 num_extents;
2271 		u64 new_size;
2272 
2273 		/*
2274 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2275 		 * applies here, just in reverse.
2276 		 */
2277 		new_size = orig->end - split + 1;
2278 		num_extents = count_max_extents(fs_info, new_size);
2279 		new_size = split - orig->start;
2280 		num_extents += count_max_extents(fs_info, new_size);
2281 		if (count_max_extents(fs_info, size) >= num_extents)
2282 			return;
2283 	}
2284 
2285 	spin_lock(&inode->lock);
2286 	btrfs_mod_outstanding_extents(inode, 1);
2287 	spin_unlock(&inode->lock);
2288 }
2289 
2290 /*
2291  * Handle merged delayed allocation extents so we can keep track of new extents
2292  * that are just merged onto old extents, such as when we are doing sequential
2293  * writes, so we can properly account for the metadata space we'll need.
2294  */
2295 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2296 				 struct extent_state *other)
2297 {
2298 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2299 	u64 new_size, old_size;
2300 	u32 num_extents;
2301 
2302 	/* not delalloc, ignore it */
2303 	if (!(other->state & EXTENT_DELALLOC))
2304 		return;
2305 
2306 	if (new->start > other->start)
2307 		new_size = new->end - other->start + 1;
2308 	else
2309 		new_size = other->end - new->start + 1;
2310 
2311 	/* we're not bigger than the max, unreserve the space and go */
2312 	if (new_size <= fs_info->max_extent_size) {
2313 		spin_lock(&inode->lock);
2314 		btrfs_mod_outstanding_extents(inode, -1);
2315 		spin_unlock(&inode->lock);
2316 		return;
2317 	}
2318 
2319 	/*
2320 	 * We have to add up either side to figure out how many extents were
2321 	 * accounted for before we merged into one big extent.  If the number of
2322 	 * extents we accounted for is <= the amount we need for the new range
2323 	 * then we can return, otherwise drop.  Think of it like this
2324 	 *
2325 	 * [ 4k][MAX_SIZE]
2326 	 *
2327 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2328 	 * need 2 outstanding extents, on one side we have 1 and the other side
2329 	 * we have 1 so they are == and we can return.  But in this case
2330 	 *
2331 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2332 	 *
2333 	 * Each range on their own accounts for 2 extents, but merged together
2334 	 * they are only 3 extents worth of accounting, so we need to drop in
2335 	 * this case.
2336 	 */
2337 	old_size = other->end - other->start + 1;
2338 	num_extents = count_max_extents(fs_info, old_size);
2339 	old_size = new->end - new->start + 1;
2340 	num_extents += count_max_extents(fs_info, old_size);
2341 	if (count_max_extents(fs_info, new_size) >= num_extents)
2342 		return;
2343 
2344 	spin_lock(&inode->lock);
2345 	btrfs_mod_outstanding_extents(inode, -1);
2346 	spin_unlock(&inode->lock);
2347 }
2348 
2349 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2350 				      struct btrfs_inode *inode)
2351 {
2352 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2353 
2354 	spin_lock(&root->delalloc_lock);
2355 	if (list_empty(&inode->delalloc_inodes)) {
2356 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2357 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2358 		root->nr_delalloc_inodes++;
2359 		if (root->nr_delalloc_inodes == 1) {
2360 			spin_lock(&fs_info->delalloc_root_lock);
2361 			BUG_ON(!list_empty(&root->delalloc_root));
2362 			list_add_tail(&root->delalloc_root,
2363 				      &fs_info->delalloc_roots);
2364 			spin_unlock(&fs_info->delalloc_root_lock);
2365 		}
2366 	}
2367 	spin_unlock(&root->delalloc_lock);
2368 }
2369 
2370 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2371 				struct btrfs_inode *inode)
2372 {
2373 	struct btrfs_fs_info *fs_info = root->fs_info;
2374 
2375 	if (!list_empty(&inode->delalloc_inodes)) {
2376 		list_del_init(&inode->delalloc_inodes);
2377 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2378 			  &inode->runtime_flags);
2379 		root->nr_delalloc_inodes--;
2380 		if (!root->nr_delalloc_inodes) {
2381 			ASSERT(list_empty(&root->delalloc_inodes));
2382 			spin_lock(&fs_info->delalloc_root_lock);
2383 			BUG_ON(list_empty(&root->delalloc_root));
2384 			list_del_init(&root->delalloc_root);
2385 			spin_unlock(&fs_info->delalloc_root_lock);
2386 		}
2387 	}
2388 }
2389 
2390 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2391 				     struct btrfs_inode *inode)
2392 {
2393 	spin_lock(&root->delalloc_lock);
2394 	__btrfs_del_delalloc_inode(root, inode);
2395 	spin_unlock(&root->delalloc_lock);
2396 }
2397 
2398 /*
2399  * Properly track delayed allocation bytes in the inode and to maintain the
2400  * list of inodes that have pending delalloc work to be done.
2401  */
2402 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2403 			       u32 bits)
2404 {
2405 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2406 
2407 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2408 		WARN_ON(1);
2409 	/*
2410 	 * set_bit and clear bit hooks normally require _irqsave/restore
2411 	 * but in this case, we are only testing for the DELALLOC
2412 	 * bit, which is only set or cleared with irqs on
2413 	 */
2414 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2415 		struct btrfs_root *root = inode->root;
2416 		u64 len = state->end + 1 - state->start;
2417 		u32 num_extents = count_max_extents(fs_info, len);
2418 		bool do_list = !btrfs_is_free_space_inode(inode);
2419 
2420 		spin_lock(&inode->lock);
2421 		btrfs_mod_outstanding_extents(inode, num_extents);
2422 		spin_unlock(&inode->lock);
2423 
2424 		/* For sanity tests */
2425 		if (btrfs_is_testing(fs_info))
2426 			return;
2427 
2428 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2429 					 fs_info->delalloc_batch);
2430 		spin_lock(&inode->lock);
2431 		inode->delalloc_bytes += len;
2432 		if (bits & EXTENT_DEFRAG)
2433 			inode->defrag_bytes += len;
2434 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2435 					 &inode->runtime_flags))
2436 			btrfs_add_delalloc_inodes(root, inode);
2437 		spin_unlock(&inode->lock);
2438 	}
2439 
2440 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2441 	    (bits & EXTENT_DELALLOC_NEW)) {
2442 		spin_lock(&inode->lock);
2443 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2444 		spin_unlock(&inode->lock);
2445 	}
2446 }
2447 
2448 /*
2449  * Once a range is no longer delalloc this function ensures that proper
2450  * accounting happens.
2451  */
2452 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2453 				 struct extent_state *state, u32 bits)
2454 {
2455 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2456 	u64 len = state->end + 1 - state->start;
2457 	u32 num_extents = count_max_extents(fs_info, len);
2458 
2459 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2460 		spin_lock(&inode->lock);
2461 		inode->defrag_bytes -= len;
2462 		spin_unlock(&inode->lock);
2463 	}
2464 
2465 	/*
2466 	 * set_bit and clear bit hooks normally require _irqsave/restore
2467 	 * but in this case, we are only testing for the DELALLOC
2468 	 * bit, which is only set or cleared with irqs on
2469 	 */
2470 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2471 		struct btrfs_root *root = inode->root;
2472 		bool do_list = !btrfs_is_free_space_inode(inode);
2473 
2474 		spin_lock(&inode->lock);
2475 		btrfs_mod_outstanding_extents(inode, -num_extents);
2476 		spin_unlock(&inode->lock);
2477 
2478 		/*
2479 		 * We don't reserve metadata space for space cache inodes so we
2480 		 * don't need to call delalloc_release_metadata if there is an
2481 		 * error.
2482 		 */
2483 		if (bits & EXTENT_CLEAR_META_RESV &&
2484 		    root != fs_info->tree_root)
2485 			btrfs_delalloc_release_metadata(inode, len, false);
2486 
2487 		/* For sanity tests. */
2488 		if (btrfs_is_testing(fs_info))
2489 			return;
2490 
2491 		if (!btrfs_is_data_reloc_root(root) &&
2492 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2493 		    (bits & EXTENT_CLEAR_DATA_RESV))
2494 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2495 
2496 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2497 					 fs_info->delalloc_batch);
2498 		spin_lock(&inode->lock);
2499 		inode->delalloc_bytes -= len;
2500 		if (do_list && inode->delalloc_bytes == 0 &&
2501 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2502 					&inode->runtime_flags))
2503 			btrfs_del_delalloc_inode(root, inode);
2504 		spin_unlock(&inode->lock);
2505 	}
2506 
2507 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2508 	    (bits & EXTENT_DELALLOC_NEW)) {
2509 		spin_lock(&inode->lock);
2510 		ASSERT(inode->new_delalloc_bytes >= len);
2511 		inode->new_delalloc_bytes -= len;
2512 		if (bits & EXTENT_ADD_INODE_BYTES)
2513 			inode_add_bytes(&inode->vfs_inode, len);
2514 		spin_unlock(&inode->lock);
2515 	}
2516 }
2517 
2518 /*
2519  * Split off the first pre bytes from the extent_map at [start, start + len]
2520  *
2521  * This function is intended to be used only for extract_ordered_extent().
2522  */
2523 static int split_extent_map(struct btrfs_inode *inode, u64 start, u64 len, u64 pre)
2524 {
2525 	struct extent_map_tree *em_tree = &inode->extent_tree;
2526 	struct extent_map *em;
2527 	struct extent_map *split_pre = NULL;
2528 	struct extent_map *split_mid = NULL;
2529 	int ret = 0;
2530 	unsigned long flags;
2531 
2532 	ASSERT(pre != 0);
2533 	ASSERT(pre < len);
2534 
2535 	split_pre = alloc_extent_map();
2536 	if (!split_pre)
2537 		return -ENOMEM;
2538 	split_mid = alloc_extent_map();
2539 	if (!split_mid) {
2540 		ret = -ENOMEM;
2541 		goto out_free_pre;
2542 	}
2543 
2544 	lock_extent(&inode->io_tree, start, start + len - 1, NULL);
2545 	write_lock(&em_tree->lock);
2546 	em = lookup_extent_mapping(em_tree, start, len);
2547 	if (!em) {
2548 		ret = -EIO;
2549 		goto out_unlock;
2550 	}
2551 
2552 	ASSERT(em->len == len);
2553 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2554 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2555 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2556 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2557 	ASSERT(!list_empty(&em->list));
2558 
2559 	flags = em->flags;
2560 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2561 
2562 	/* First, replace the em with a new extent_map starting from * em->start */
2563 	split_pre->start = em->start;
2564 	split_pre->len = pre;
2565 	split_pre->orig_start = split_pre->start;
2566 	split_pre->block_start = em->block_start;
2567 	split_pre->block_len = split_pre->len;
2568 	split_pre->orig_block_len = split_pre->block_len;
2569 	split_pre->ram_bytes = split_pre->len;
2570 	split_pre->flags = flags;
2571 	split_pre->compress_type = em->compress_type;
2572 	split_pre->generation = em->generation;
2573 
2574 	replace_extent_mapping(em_tree, em, split_pre, 1);
2575 
2576 	/*
2577 	 * Now we only have an extent_map at:
2578 	 *     [em->start, em->start + pre]
2579 	 */
2580 
2581 	/* Insert the middle extent_map. */
2582 	split_mid->start = em->start + pre;
2583 	split_mid->len = em->len - pre;
2584 	split_mid->orig_start = split_mid->start;
2585 	split_mid->block_start = em->block_start + pre;
2586 	split_mid->block_len = split_mid->len;
2587 	split_mid->orig_block_len = split_mid->block_len;
2588 	split_mid->ram_bytes = split_mid->len;
2589 	split_mid->flags = flags;
2590 	split_mid->compress_type = em->compress_type;
2591 	split_mid->generation = em->generation;
2592 	add_extent_mapping(em_tree, split_mid, 1);
2593 
2594 	/* Once for us */
2595 	free_extent_map(em);
2596 	/* Once for the tree */
2597 	free_extent_map(em);
2598 
2599 out_unlock:
2600 	write_unlock(&em_tree->lock);
2601 	unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
2602 	free_extent_map(split_mid);
2603 out_free_pre:
2604 	free_extent_map(split_pre);
2605 	return ret;
2606 }
2607 
2608 int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2609 				 struct btrfs_ordered_extent *ordered)
2610 {
2611 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2612 	u64 len = bbio->bio.bi_iter.bi_size;
2613 	struct btrfs_inode *inode = bbio->inode;
2614 	u64 ordered_len = ordered->num_bytes;
2615 	int ret = 0;
2616 
2617 	/* Must always be called for the beginning of an ordered extent. */
2618 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2619 		return -EINVAL;
2620 
2621 	/* No need to split if the ordered extent covers the entire bio. */
2622 	if (ordered->disk_num_bytes == len)
2623 		return 0;
2624 
2625 	ret = btrfs_split_ordered_extent(ordered, len);
2626 	if (ret)
2627 		return ret;
2628 
2629 	/*
2630 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2631 	 * a pre-existing one.
2632 	 */
2633 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
2634 		return 0;
2635 
2636 	return split_extent_map(inode, bbio->file_offset, ordered_len, len);
2637 }
2638 
2639 /*
2640  * given a list of ordered sums record them in the inode.  This happens
2641  * at IO completion time based on sums calculated at bio submission time.
2642  */
2643 static int add_pending_csums(struct btrfs_trans_handle *trans,
2644 			     struct list_head *list)
2645 {
2646 	struct btrfs_ordered_sum *sum;
2647 	struct btrfs_root *csum_root = NULL;
2648 	int ret;
2649 
2650 	list_for_each_entry(sum, list, list) {
2651 		trans->adding_csums = true;
2652 		if (!csum_root)
2653 			csum_root = btrfs_csum_root(trans->fs_info,
2654 						    sum->bytenr);
2655 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2656 		trans->adding_csums = false;
2657 		if (ret)
2658 			return ret;
2659 	}
2660 	return 0;
2661 }
2662 
2663 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2664 					 const u64 start,
2665 					 const u64 len,
2666 					 struct extent_state **cached_state)
2667 {
2668 	u64 search_start = start;
2669 	const u64 end = start + len - 1;
2670 
2671 	while (search_start < end) {
2672 		const u64 search_len = end - search_start + 1;
2673 		struct extent_map *em;
2674 		u64 em_len;
2675 		int ret = 0;
2676 
2677 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2678 		if (IS_ERR(em))
2679 			return PTR_ERR(em);
2680 
2681 		if (em->block_start != EXTENT_MAP_HOLE)
2682 			goto next;
2683 
2684 		em_len = em->len;
2685 		if (em->start < search_start)
2686 			em_len -= search_start - em->start;
2687 		if (em_len > search_len)
2688 			em_len = search_len;
2689 
2690 		ret = set_extent_bit(&inode->io_tree, search_start,
2691 				     search_start + em_len - 1,
2692 				     EXTENT_DELALLOC_NEW, cached_state,
2693 				     GFP_NOFS);
2694 next:
2695 		search_start = extent_map_end(em);
2696 		free_extent_map(em);
2697 		if (ret)
2698 			return ret;
2699 	}
2700 	return 0;
2701 }
2702 
2703 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2704 			      unsigned int extra_bits,
2705 			      struct extent_state **cached_state)
2706 {
2707 	WARN_ON(PAGE_ALIGNED(end));
2708 
2709 	if (start >= i_size_read(&inode->vfs_inode) &&
2710 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2711 		/*
2712 		 * There can't be any extents following eof in this case so just
2713 		 * set the delalloc new bit for the range directly.
2714 		 */
2715 		extra_bits |= EXTENT_DELALLOC_NEW;
2716 	} else {
2717 		int ret;
2718 
2719 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2720 						    end + 1 - start,
2721 						    cached_state);
2722 		if (ret)
2723 			return ret;
2724 	}
2725 
2726 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2727 				   cached_state);
2728 }
2729 
2730 /* see btrfs_writepage_start_hook for details on why this is required */
2731 struct btrfs_writepage_fixup {
2732 	struct page *page;
2733 	struct btrfs_inode *inode;
2734 	struct btrfs_work work;
2735 };
2736 
2737 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2738 {
2739 	struct btrfs_writepage_fixup *fixup;
2740 	struct btrfs_ordered_extent *ordered;
2741 	struct extent_state *cached_state = NULL;
2742 	struct extent_changeset *data_reserved = NULL;
2743 	struct page *page;
2744 	struct btrfs_inode *inode;
2745 	u64 page_start;
2746 	u64 page_end;
2747 	int ret = 0;
2748 	bool free_delalloc_space = true;
2749 
2750 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2751 	page = fixup->page;
2752 	inode = fixup->inode;
2753 	page_start = page_offset(page);
2754 	page_end = page_offset(page) + PAGE_SIZE - 1;
2755 
2756 	/*
2757 	 * This is similar to page_mkwrite, we need to reserve the space before
2758 	 * we take the page lock.
2759 	 */
2760 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2761 					   PAGE_SIZE);
2762 again:
2763 	lock_page(page);
2764 
2765 	/*
2766 	 * Before we queued this fixup, we took a reference on the page.
2767 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2768 	 * address space.
2769 	 */
2770 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2771 		/*
2772 		 * Unfortunately this is a little tricky, either
2773 		 *
2774 		 * 1) We got here and our page had already been dealt with and
2775 		 *    we reserved our space, thus ret == 0, so we need to just
2776 		 *    drop our space reservation and bail.  This can happen the
2777 		 *    first time we come into the fixup worker, or could happen
2778 		 *    while waiting for the ordered extent.
2779 		 * 2) Our page was already dealt with, but we happened to get an
2780 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2781 		 *    this case we obviously don't have anything to release, but
2782 		 *    because the page was already dealt with we don't want to
2783 		 *    mark the page with an error, so make sure we're resetting
2784 		 *    ret to 0.  This is why we have this check _before_ the ret
2785 		 *    check, because we do not want to have a surprise ENOSPC
2786 		 *    when the page was already properly dealt with.
2787 		 */
2788 		if (!ret) {
2789 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2790 			btrfs_delalloc_release_space(inode, data_reserved,
2791 						     page_start, PAGE_SIZE,
2792 						     true);
2793 		}
2794 		ret = 0;
2795 		goto out_page;
2796 	}
2797 
2798 	/*
2799 	 * We can't mess with the page state unless it is locked, so now that
2800 	 * it is locked bail if we failed to make our space reservation.
2801 	 */
2802 	if (ret)
2803 		goto out_page;
2804 
2805 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2806 
2807 	/* already ordered? We're done */
2808 	if (PageOrdered(page))
2809 		goto out_reserved;
2810 
2811 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2812 	if (ordered) {
2813 		unlock_extent(&inode->io_tree, page_start, page_end,
2814 			      &cached_state);
2815 		unlock_page(page);
2816 		btrfs_start_ordered_extent(ordered);
2817 		btrfs_put_ordered_extent(ordered);
2818 		goto again;
2819 	}
2820 
2821 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2822 					&cached_state);
2823 	if (ret)
2824 		goto out_reserved;
2825 
2826 	/*
2827 	 * Everything went as planned, we're now the owner of a dirty page with
2828 	 * delayed allocation bits set and space reserved for our COW
2829 	 * destination.
2830 	 *
2831 	 * The page was dirty when we started, nothing should have cleaned it.
2832 	 */
2833 	BUG_ON(!PageDirty(page));
2834 	free_delalloc_space = false;
2835 out_reserved:
2836 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2837 	if (free_delalloc_space)
2838 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2839 					     PAGE_SIZE, true);
2840 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2841 out_page:
2842 	if (ret) {
2843 		/*
2844 		 * We hit ENOSPC or other errors.  Update the mapping and page
2845 		 * to reflect the errors and clean the page.
2846 		 */
2847 		mapping_set_error(page->mapping, ret);
2848 		end_extent_writepage(page, ret, page_start, page_end);
2849 		clear_page_dirty_for_io(page);
2850 		SetPageError(page);
2851 	}
2852 	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2853 	unlock_page(page);
2854 	put_page(page);
2855 	kfree(fixup);
2856 	extent_changeset_free(data_reserved);
2857 	/*
2858 	 * As a precaution, do a delayed iput in case it would be the last iput
2859 	 * that could need flushing space. Recursing back to fixup worker would
2860 	 * deadlock.
2861 	 */
2862 	btrfs_add_delayed_iput(inode);
2863 }
2864 
2865 /*
2866  * There are a few paths in the higher layers of the kernel that directly
2867  * set the page dirty bit without asking the filesystem if it is a
2868  * good idea.  This causes problems because we want to make sure COW
2869  * properly happens and the data=ordered rules are followed.
2870  *
2871  * In our case any range that doesn't have the ORDERED bit set
2872  * hasn't been properly setup for IO.  We kick off an async process
2873  * to fix it up.  The async helper will wait for ordered extents, set
2874  * the delalloc bit and make it safe to write the page.
2875  */
2876 int btrfs_writepage_cow_fixup(struct page *page)
2877 {
2878 	struct inode *inode = page->mapping->host;
2879 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2880 	struct btrfs_writepage_fixup *fixup;
2881 
2882 	/* This page has ordered extent covering it already */
2883 	if (PageOrdered(page))
2884 		return 0;
2885 
2886 	/*
2887 	 * PageChecked is set below when we create a fixup worker for this page,
2888 	 * don't try to create another one if we're already PageChecked()
2889 	 *
2890 	 * The extent_io writepage code will redirty the page if we send back
2891 	 * EAGAIN.
2892 	 */
2893 	if (PageChecked(page))
2894 		return -EAGAIN;
2895 
2896 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2897 	if (!fixup)
2898 		return -EAGAIN;
2899 
2900 	/*
2901 	 * We are already holding a reference to this inode from
2902 	 * write_cache_pages.  We need to hold it because the space reservation
2903 	 * takes place outside of the page lock, and we can't trust
2904 	 * page->mapping outside of the page lock.
2905 	 */
2906 	ihold(inode);
2907 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2908 	get_page(page);
2909 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2910 	fixup->page = page;
2911 	fixup->inode = BTRFS_I(inode);
2912 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2913 
2914 	return -EAGAIN;
2915 }
2916 
2917 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2918 				       struct btrfs_inode *inode, u64 file_pos,
2919 				       struct btrfs_file_extent_item *stack_fi,
2920 				       const bool update_inode_bytes,
2921 				       u64 qgroup_reserved)
2922 {
2923 	struct btrfs_root *root = inode->root;
2924 	const u64 sectorsize = root->fs_info->sectorsize;
2925 	struct btrfs_path *path;
2926 	struct extent_buffer *leaf;
2927 	struct btrfs_key ins;
2928 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2929 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2930 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2931 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2932 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2933 	struct btrfs_drop_extents_args drop_args = { 0 };
2934 	int ret;
2935 
2936 	path = btrfs_alloc_path();
2937 	if (!path)
2938 		return -ENOMEM;
2939 
2940 	/*
2941 	 * we may be replacing one extent in the tree with another.
2942 	 * The new extent is pinned in the extent map, and we don't want
2943 	 * to drop it from the cache until it is completely in the btree.
2944 	 *
2945 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2946 	 * the caller is expected to unpin it and allow it to be merged
2947 	 * with the others.
2948 	 */
2949 	drop_args.path = path;
2950 	drop_args.start = file_pos;
2951 	drop_args.end = file_pos + num_bytes;
2952 	drop_args.replace_extent = true;
2953 	drop_args.extent_item_size = sizeof(*stack_fi);
2954 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2955 	if (ret)
2956 		goto out;
2957 
2958 	if (!drop_args.extent_inserted) {
2959 		ins.objectid = btrfs_ino(inode);
2960 		ins.offset = file_pos;
2961 		ins.type = BTRFS_EXTENT_DATA_KEY;
2962 
2963 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2964 					      sizeof(*stack_fi));
2965 		if (ret)
2966 			goto out;
2967 	}
2968 	leaf = path->nodes[0];
2969 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2970 	write_extent_buffer(leaf, stack_fi,
2971 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2972 			sizeof(struct btrfs_file_extent_item));
2973 
2974 	btrfs_mark_buffer_dirty(leaf);
2975 	btrfs_release_path(path);
2976 
2977 	/*
2978 	 * If we dropped an inline extent here, we know the range where it is
2979 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2980 	 * number of bytes only for that range containing the inline extent.
2981 	 * The remaining of the range will be processed when clearning the
2982 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2983 	 */
2984 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2985 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2986 
2987 		inline_size = drop_args.bytes_found - inline_size;
2988 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2989 		drop_args.bytes_found -= inline_size;
2990 		num_bytes -= sectorsize;
2991 	}
2992 
2993 	if (update_inode_bytes)
2994 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2995 
2996 	ins.objectid = disk_bytenr;
2997 	ins.offset = disk_num_bytes;
2998 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2999 
3000 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3001 	if (ret)
3002 		goto out;
3003 
3004 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3005 					       file_pos - offset,
3006 					       qgroup_reserved, &ins);
3007 out:
3008 	btrfs_free_path(path);
3009 
3010 	return ret;
3011 }
3012 
3013 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3014 					 u64 start, u64 len)
3015 {
3016 	struct btrfs_block_group *cache;
3017 
3018 	cache = btrfs_lookup_block_group(fs_info, start);
3019 	ASSERT(cache);
3020 
3021 	spin_lock(&cache->lock);
3022 	cache->delalloc_bytes -= len;
3023 	spin_unlock(&cache->lock);
3024 
3025 	btrfs_put_block_group(cache);
3026 }
3027 
3028 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3029 					     struct btrfs_ordered_extent *oe)
3030 {
3031 	struct btrfs_file_extent_item stack_fi;
3032 	bool update_inode_bytes;
3033 	u64 num_bytes = oe->num_bytes;
3034 	u64 ram_bytes = oe->ram_bytes;
3035 
3036 	memset(&stack_fi, 0, sizeof(stack_fi));
3037 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3038 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3039 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3040 						   oe->disk_num_bytes);
3041 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3042 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3043 		num_bytes = oe->truncated_len;
3044 		ram_bytes = num_bytes;
3045 	}
3046 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3047 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3048 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3049 	/* Encryption and other encoding is reserved and all 0 */
3050 
3051 	/*
3052 	 * For delalloc, when completing an ordered extent we update the inode's
3053 	 * bytes when clearing the range in the inode's io tree, so pass false
3054 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3055 	 * except if the ordered extent was truncated.
3056 	 */
3057 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3058 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3059 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3060 
3061 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3062 					   oe->file_offset, &stack_fi,
3063 					   update_inode_bytes, oe->qgroup_rsv);
3064 }
3065 
3066 /*
3067  * As ordered data IO finishes, this gets called so we can finish
3068  * an ordered extent if the range of bytes in the file it covers are
3069  * fully written.
3070  */
3071 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3072 {
3073 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3074 	struct btrfs_root *root = inode->root;
3075 	struct btrfs_fs_info *fs_info = root->fs_info;
3076 	struct btrfs_trans_handle *trans = NULL;
3077 	struct extent_io_tree *io_tree = &inode->io_tree;
3078 	struct extent_state *cached_state = NULL;
3079 	u64 start, end;
3080 	int compress_type = 0;
3081 	int ret = 0;
3082 	u64 logical_len = ordered_extent->num_bytes;
3083 	bool freespace_inode;
3084 	bool truncated = false;
3085 	bool clear_reserved_extent = true;
3086 	unsigned int clear_bits = EXTENT_DEFRAG;
3087 
3088 	start = ordered_extent->file_offset;
3089 	end = start + ordered_extent->num_bytes - 1;
3090 
3091 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3092 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3093 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3094 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3095 		clear_bits |= EXTENT_DELALLOC_NEW;
3096 
3097 	freespace_inode = btrfs_is_free_space_inode(inode);
3098 	if (!freespace_inode)
3099 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3100 
3101 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3102 		ret = -EIO;
3103 		goto out;
3104 	}
3105 
3106 	/* A valid ->physical implies a write on a sequential zone. */
3107 	if (ordered_extent->physical != (u64)-1) {
3108 		btrfs_rewrite_logical_zoned(ordered_extent);
3109 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3110 					ordered_extent->disk_num_bytes);
3111 	}
3112 
3113 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3114 		truncated = true;
3115 		logical_len = ordered_extent->truncated_len;
3116 		/* Truncated the entire extent, don't bother adding */
3117 		if (!logical_len)
3118 			goto out;
3119 	}
3120 
3121 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3122 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3123 
3124 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3125 		if (freespace_inode)
3126 			trans = btrfs_join_transaction_spacecache(root);
3127 		else
3128 			trans = btrfs_join_transaction(root);
3129 		if (IS_ERR(trans)) {
3130 			ret = PTR_ERR(trans);
3131 			trans = NULL;
3132 			goto out;
3133 		}
3134 		trans->block_rsv = &inode->block_rsv;
3135 		ret = btrfs_update_inode_fallback(trans, root, inode);
3136 		if (ret) /* -ENOMEM or corruption */
3137 			btrfs_abort_transaction(trans, ret);
3138 		goto out;
3139 	}
3140 
3141 	clear_bits |= EXTENT_LOCKED;
3142 	lock_extent(io_tree, start, end, &cached_state);
3143 
3144 	if (freespace_inode)
3145 		trans = btrfs_join_transaction_spacecache(root);
3146 	else
3147 		trans = btrfs_join_transaction(root);
3148 	if (IS_ERR(trans)) {
3149 		ret = PTR_ERR(trans);
3150 		trans = NULL;
3151 		goto out;
3152 	}
3153 
3154 	trans->block_rsv = &inode->block_rsv;
3155 
3156 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3157 		compress_type = ordered_extent->compress_type;
3158 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3159 		BUG_ON(compress_type);
3160 		ret = btrfs_mark_extent_written(trans, inode,
3161 						ordered_extent->file_offset,
3162 						ordered_extent->file_offset +
3163 						logical_len);
3164 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3165 						  ordered_extent->disk_num_bytes);
3166 	} else {
3167 		BUG_ON(root == fs_info->tree_root);
3168 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3169 		if (!ret) {
3170 			clear_reserved_extent = false;
3171 			btrfs_release_delalloc_bytes(fs_info,
3172 						ordered_extent->disk_bytenr,
3173 						ordered_extent->disk_num_bytes);
3174 		}
3175 	}
3176 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3177 			   ordered_extent->num_bytes, trans->transid);
3178 	if (ret < 0) {
3179 		btrfs_abort_transaction(trans, ret);
3180 		goto out;
3181 	}
3182 
3183 	ret = add_pending_csums(trans, &ordered_extent->list);
3184 	if (ret) {
3185 		btrfs_abort_transaction(trans, ret);
3186 		goto out;
3187 	}
3188 
3189 	/*
3190 	 * If this is a new delalloc range, clear its new delalloc flag to
3191 	 * update the inode's number of bytes. This needs to be done first
3192 	 * before updating the inode item.
3193 	 */
3194 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3195 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3196 		clear_extent_bit(&inode->io_tree, start, end,
3197 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3198 				 &cached_state);
3199 
3200 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3201 	ret = btrfs_update_inode_fallback(trans, root, inode);
3202 	if (ret) { /* -ENOMEM or corruption */
3203 		btrfs_abort_transaction(trans, ret);
3204 		goto out;
3205 	}
3206 	ret = 0;
3207 out:
3208 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3209 			 &cached_state);
3210 
3211 	if (trans)
3212 		btrfs_end_transaction(trans);
3213 
3214 	if (ret || truncated) {
3215 		u64 unwritten_start = start;
3216 
3217 		/*
3218 		 * If we failed to finish this ordered extent for any reason we
3219 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3220 		 * extent, and mark the inode with the error if it wasn't
3221 		 * already set.  Any error during writeback would have already
3222 		 * set the mapping error, so we need to set it if we're the ones
3223 		 * marking this ordered extent as failed.
3224 		 */
3225 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3226 					     &ordered_extent->flags))
3227 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3228 
3229 		if (truncated)
3230 			unwritten_start += logical_len;
3231 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3232 
3233 		/* Drop extent maps for the part of the extent we didn't write. */
3234 		btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3235 
3236 		/*
3237 		 * If the ordered extent had an IOERR or something else went
3238 		 * wrong we need to return the space for this ordered extent
3239 		 * back to the allocator.  We only free the extent in the
3240 		 * truncated case if we didn't write out the extent at all.
3241 		 *
3242 		 * If we made it past insert_reserved_file_extent before we
3243 		 * errored out then we don't need to do this as the accounting
3244 		 * has already been done.
3245 		 */
3246 		if ((ret || !logical_len) &&
3247 		    clear_reserved_extent &&
3248 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3249 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3250 			/*
3251 			 * Discard the range before returning it back to the
3252 			 * free space pool
3253 			 */
3254 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3255 				btrfs_discard_extent(fs_info,
3256 						ordered_extent->disk_bytenr,
3257 						ordered_extent->disk_num_bytes,
3258 						NULL);
3259 			btrfs_free_reserved_extent(fs_info,
3260 					ordered_extent->disk_bytenr,
3261 					ordered_extent->disk_num_bytes, 1);
3262 		}
3263 	}
3264 
3265 	/*
3266 	 * This needs to be done to make sure anybody waiting knows we are done
3267 	 * updating everything for this ordered extent.
3268 	 */
3269 	btrfs_remove_ordered_extent(inode, ordered_extent);
3270 
3271 	/* once for us */
3272 	btrfs_put_ordered_extent(ordered_extent);
3273 	/* once for the tree */
3274 	btrfs_put_ordered_extent(ordered_extent);
3275 
3276 	return ret;
3277 }
3278 
3279 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3280 					  struct page *page, u64 start,
3281 					  u64 end, bool uptodate)
3282 {
3283 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3284 
3285 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate);
3286 }
3287 
3288 /*
3289  * Verify the checksum for a single sector without any extra action that depend
3290  * on the type of I/O.
3291  */
3292 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3293 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3294 {
3295 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3296 	char *kaddr;
3297 
3298 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3299 
3300 	shash->tfm = fs_info->csum_shash;
3301 
3302 	kaddr = kmap_local_page(page) + pgoff;
3303 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3304 	kunmap_local(kaddr);
3305 
3306 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3307 		return -EIO;
3308 	return 0;
3309 }
3310 
3311 /*
3312  * Verify the checksum of a single data sector.
3313  *
3314  * @bbio:	btrfs_io_bio which contains the csum
3315  * @dev:	device the sector is on
3316  * @bio_offset:	offset to the beginning of the bio (in bytes)
3317  * @bv:		bio_vec to check
3318  *
3319  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3320  * detected, report the error and fill the corrupted range with zero.
3321  *
3322  * Return %true if the sector is ok or had no checksum to start with, else %false.
3323  */
3324 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3325 			u32 bio_offset, struct bio_vec *bv)
3326 {
3327 	struct btrfs_inode *inode = bbio->inode;
3328 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3329 	u64 file_offset = bbio->file_offset + bio_offset;
3330 	u64 end = file_offset + bv->bv_len - 1;
3331 	u8 *csum_expected;
3332 	u8 csum[BTRFS_CSUM_SIZE];
3333 
3334 	ASSERT(bv->bv_len == fs_info->sectorsize);
3335 
3336 	if (!bbio->csum)
3337 		return true;
3338 
3339 	if (btrfs_is_data_reloc_root(inode->root) &&
3340 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3341 			   1, NULL)) {
3342 		/* Skip the range without csum for data reloc inode */
3343 		clear_extent_bits(&inode->io_tree, file_offset, end,
3344 				  EXTENT_NODATASUM);
3345 		return true;
3346 	}
3347 
3348 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3349 				fs_info->csum_size;
3350 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3351 				    csum_expected))
3352 		goto zeroit;
3353 	return true;
3354 
3355 zeroit:
3356 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3357 				    bbio->mirror_num);
3358 	if (dev)
3359 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3360 	memzero_bvec(bv);
3361 	return false;
3362 }
3363 
3364 /*
3365  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3366  *
3367  * @inode: The inode we want to perform iput on
3368  *
3369  * This function uses the generic vfs_inode::i_count to track whether we should
3370  * just decrement it (in case it's > 1) or if this is the last iput then link
3371  * the inode to the delayed iput machinery. Delayed iputs are processed at
3372  * transaction commit time/superblock commit/cleaner kthread.
3373  */
3374 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3375 {
3376 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3377 
3378 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3379 		return;
3380 
3381 	atomic_inc(&fs_info->nr_delayed_iputs);
3382 	spin_lock(&fs_info->delayed_iput_lock);
3383 	ASSERT(list_empty(&inode->delayed_iput));
3384 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3385 	spin_unlock(&fs_info->delayed_iput_lock);
3386 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3387 		wake_up_process(fs_info->cleaner_kthread);
3388 }
3389 
3390 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3391 				    struct btrfs_inode *inode)
3392 {
3393 	list_del_init(&inode->delayed_iput);
3394 	spin_unlock(&fs_info->delayed_iput_lock);
3395 	iput(&inode->vfs_inode);
3396 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3397 		wake_up(&fs_info->delayed_iputs_wait);
3398 	spin_lock(&fs_info->delayed_iput_lock);
3399 }
3400 
3401 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3402 				   struct btrfs_inode *inode)
3403 {
3404 	if (!list_empty(&inode->delayed_iput)) {
3405 		spin_lock(&fs_info->delayed_iput_lock);
3406 		if (!list_empty(&inode->delayed_iput))
3407 			run_delayed_iput_locked(fs_info, inode);
3408 		spin_unlock(&fs_info->delayed_iput_lock);
3409 	}
3410 }
3411 
3412 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3413 {
3414 
3415 	spin_lock(&fs_info->delayed_iput_lock);
3416 	while (!list_empty(&fs_info->delayed_iputs)) {
3417 		struct btrfs_inode *inode;
3418 
3419 		inode = list_first_entry(&fs_info->delayed_iputs,
3420 				struct btrfs_inode, delayed_iput);
3421 		run_delayed_iput_locked(fs_info, inode);
3422 		cond_resched_lock(&fs_info->delayed_iput_lock);
3423 	}
3424 	spin_unlock(&fs_info->delayed_iput_lock);
3425 }
3426 
3427 /*
3428  * Wait for flushing all delayed iputs
3429  *
3430  * @fs_info:  the filesystem
3431  *
3432  * This will wait on any delayed iputs that are currently running with KILLABLE
3433  * set.  Once they are all done running we will return, unless we are killed in
3434  * which case we return EINTR. This helps in user operations like fallocate etc
3435  * that might get blocked on the iputs.
3436  *
3437  * Return EINTR if we were killed, 0 if nothing's pending
3438  */
3439 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3440 {
3441 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3442 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3443 	if (ret)
3444 		return -EINTR;
3445 	return 0;
3446 }
3447 
3448 /*
3449  * This creates an orphan entry for the given inode in case something goes wrong
3450  * in the middle of an unlink.
3451  */
3452 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3453 		     struct btrfs_inode *inode)
3454 {
3455 	int ret;
3456 
3457 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3458 	if (ret && ret != -EEXIST) {
3459 		btrfs_abort_transaction(trans, ret);
3460 		return ret;
3461 	}
3462 
3463 	return 0;
3464 }
3465 
3466 /*
3467  * We have done the delete so we can go ahead and remove the orphan item for
3468  * this particular inode.
3469  */
3470 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3471 			    struct btrfs_inode *inode)
3472 {
3473 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3474 }
3475 
3476 /*
3477  * this cleans up any orphans that may be left on the list from the last use
3478  * of this root.
3479  */
3480 int btrfs_orphan_cleanup(struct btrfs_root *root)
3481 {
3482 	struct btrfs_fs_info *fs_info = root->fs_info;
3483 	struct btrfs_path *path;
3484 	struct extent_buffer *leaf;
3485 	struct btrfs_key key, found_key;
3486 	struct btrfs_trans_handle *trans;
3487 	struct inode *inode;
3488 	u64 last_objectid = 0;
3489 	int ret = 0, nr_unlink = 0;
3490 
3491 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3492 		return 0;
3493 
3494 	path = btrfs_alloc_path();
3495 	if (!path) {
3496 		ret = -ENOMEM;
3497 		goto out;
3498 	}
3499 	path->reada = READA_BACK;
3500 
3501 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3502 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3503 	key.offset = (u64)-1;
3504 
3505 	while (1) {
3506 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3507 		if (ret < 0)
3508 			goto out;
3509 
3510 		/*
3511 		 * if ret == 0 means we found what we were searching for, which
3512 		 * is weird, but possible, so only screw with path if we didn't
3513 		 * find the key and see if we have stuff that matches
3514 		 */
3515 		if (ret > 0) {
3516 			ret = 0;
3517 			if (path->slots[0] == 0)
3518 				break;
3519 			path->slots[0]--;
3520 		}
3521 
3522 		/* pull out the item */
3523 		leaf = path->nodes[0];
3524 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3525 
3526 		/* make sure the item matches what we want */
3527 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3528 			break;
3529 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3530 			break;
3531 
3532 		/* release the path since we're done with it */
3533 		btrfs_release_path(path);
3534 
3535 		/*
3536 		 * this is where we are basically btrfs_lookup, without the
3537 		 * crossing root thing.  we store the inode number in the
3538 		 * offset of the orphan item.
3539 		 */
3540 
3541 		if (found_key.offset == last_objectid) {
3542 			btrfs_err(fs_info,
3543 				  "Error removing orphan entry, stopping orphan cleanup");
3544 			ret = -EINVAL;
3545 			goto out;
3546 		}
3547 
3548 		last_objectid = found_key.offset;
3549 
3550 		found_key.objectid = found_key.offset;
3551 		found_key.type = BTRFS_INODE_ITEM_KEY;
3552 		found_key.offset = 0;
3553 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3554 		ret = PTR_ERR_OR_ZERO(inode);
3555 		if (ret && ret != -ENOENT)
3556 			goto out;
3557 
3558 		if (ret == -ENOENT && root == fs_info->tree_root) {
3559 			struct btrfs_root *dead_root;
3560 			int is_dead_root = 0;
3561 
3562 			/*
3563 			 * This is an orphan in the tree root. Currently these
3564 			 * could come from 2 sources:
3565 			 *  a) a root (snapshot/subvolume) deletion in progress
3566 			 *  b) a free space cache inode
3567 			 * We need to distinguish those two, as the orphan item
3568 			 * for a root must not get deleted before the deletion
3569 			 * of the snapshot/subvolume's tree completes.
3570 			 *
3571 			 * btrfs_find_orphan_roots() ran before us, which has
3572 			 * found all deleted roots and loaded them into
3573 			 * fs_info->fs_roots_radix. So here we can find if an
3574 			 * orphan item corresponds to a deleted root by looking
3575 			 * up the root from that radix tree.
3576 			 */
3577 
3578 			spin_lock(&fs_info->fs_roots_radix_lock);
3579 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3580 							 (unsigned long)found_key.objectid);
3581 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3582 				is_dead_root = 1;
3583 			spin_unlock(&fs_info->fs_roots_radix_lock);
3584 
3585 			if (is_dead_root) {
3586 				/* prevent this orphan from being found again */
3587 				key.offset = found_key.objectid - 1;
3588 				continue;
3589 			}
3590 
3591 		}
3592 
3593 		/*
3594 		 * If we have an inode with links, there are a couple of
3595 		 * possibilities:
3596 		 *
3597 		 * 1. We were halfway through creating fsverity metadata for the
3598 		 * file. In that case, the orphan item represents incomplete
3599 		 * fsverity metadata which must be cleaned up with
3600 		 * btrfs_drop_verity_items and deleting the orphan item.
3601 
3602 		 * 2. Old kernels (before v3.12) used to create an
3603 		 * orphan item for truncate indicating that there were possibly
3604 		 * extent items past i_size that needed to be deleted. In v3.12,
3605 		 * truncate was changed to update i_size in sync with the extent
3606 		 * items, but the (useless) orphan item was still created. Since
3607 		 * v4.18, we don't create the orphan item for truncate at all.
3608 		 *
3609 		 * So, this item could mean that we need to do a truncate, but
3610 		 * only if this filesystem was last used on a pre-v3.12 kernel
3611 		 * and was not cleanly unmounted. The odds of that are quite
3612 		 * slim, and it's a pain to do the truncate now, so just delete
3613 		 * the orphan item.
3614 		 *
3615 		 * It's also possible that this orphan item was supposed to be
3616 		 * deleted but wasn't. The inode number may have been reused,
3617 		 * but either way, we can delete the orphan item.
3618 		 */
3619 		if (ret == -ENOENT || inode->i_nlink) {
3620 			if (!ret) {
3621 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3622 				iput(inode);
3623 				if (ret)
3624 					goto out;
3625 			}
3626 			trans = btrfs_start_transaction(root, 1);
3627 			if (IS_ERR(trans)) {
3628 				ret = PTR_ERR(trans);
3629 				iput(inode);
3630 				goto out;
3631 			}
3632 			btrfs_debug(fs_info, "auto deleting %Lu",
3633 				    found_key.objectid);
3634 			ret = btrfs_del_orphan_item(trans, root,
3635 						    found_key.objectid);
3636 			btrfs_end_transaction(trans);
3637 			if (ret) {
3638 				iput(inode);
3639 				goto out;
3640 			}
3641 			continue;
3642 		}
3643 
3644 		nr_unlink++;
3645 
3646 		/* this will do delete_inode and everything for us */
3647 		iput(inode);
3648 	}
3649 	/* release the path since we're done with it */
3650 	btrfs_release_path(path);
3651 
3652 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3653 		trans = btrfs_join_transaction(root);
3654 		if (!IS_ERR(trans))
3655 			btrfs_end_transaction(trans);
3656 	}
3657 
3658 	if (nr_unlink)
3659 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3660 
3661 out:
3662 	if (ret)
3663 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3664 	btrfs_free_path(path);
3665 	return ret;
3666 }
3667 
3668 /*
3669  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3670  * don't find any xattrs, we know there can't be any acls.
3671  *
3672  * slot is the slot the inode is in, objectid is the objectid of the inode
3673  */
3674 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3675 					  int slot, u64 objectid,
3676 					  int *first_xattr_slot)
3677 {
3678 	u32 nritems = btrfs_header_nritems(leaf);
3679 	struct btrfs_key found_key;
3680 	static u64 xattr_access = 0;
3681 	static u64 xattr_default = 0;
3682 	int scanned = 0;
3683 
3684 	if (!xattr_access) {
3685 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3686 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3687 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3688 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3689 	}
3690 
3691 	slot++;
3692 	*first_xattr_slot = -1;
3693 	while (slot < nritems) {
3694 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3695 
3696 		/* we found a different objectid, there must not be acls */
3697 		if (found_key.objectid != objectid)
3698 			return 0;
3699 
3700 		/* we found an xattr, assume we've got an acl */
3701 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3702 			if (*first_xattr_slot == -1)
3703 				*first_xattr_slot = slot;
3704 			if (found_key.offset == xattr_access ||
3705 			    found_key.offset == xattr_default)
3706 				return 1;
3707 		}
3708 
3709 		/*
3710 		 * we found a key greater than an xattr key, there can't
3711 		 * be any acls later on
3712 		 */
3713 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3714 			return 0;
3715 
3716 		slot++;
3717 		scanned++;
3718 
3719 		/*
3720 		 * it goes inode, inode backrefs, xattrs, extents,
3721 		 * so if there are a ton of hard links to an inode there can
3722 		 * be a lot of backrefs.  Don't waste time searching too hard,
3723 		 * this is just an optimization
3724 		 */
3725 		if (scanned >= 8)
3726 			break;
3727 	}
3728 	/* we hit the end of the leaf before we found an xattr or
3729 	 * something larger than an xattr.  We have to assume the inode
3730 	 * has acls
3731 	 */
3732 	if (*first_xattr_slot == -1)
3733 		*first_xattr_slot = slot;
3734 	return 1;
3735 }
3736 
3737 /*
3738  * read an inode from the btree into the in-memory inode
3739  */
3740 static int btrfs_read_locked_inode(struct inode *inode,
3741 				   struct btrfs_path *in_path)
3742 {
3743 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3744 	struct btrfs_path *path = in_path;
3745 	struct extent_buffer *leaf;
3746 	struct btrfs_inode_item *inode_item;
3747 	struct btrfs_root *root = BTRFS_I(inode)->root;
3748 	struct btrfs_key location;
3749 	unsigned long ptr;
3750 	int maybe_acls;
3751 	u32 rdev;
3752 	int ret;
3753 	bool filled = false;
3754 	int first_xattr_slot;
3755 
3756 	ret = btrfs_fill_inode(inode, &rdev);
3757 	if (!ret)
3758 		filled = true;
3759 
3760 	if (!path) {
3761 		path = btrfs_alloc_path();
3762 		if (!path)
3763 			return -ENOMEM;
3764 	}
3765 
3766 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3767 
3768 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3769 	if (ret) {
3770 		if (path != in_path)
3771 			btrfs_free_path(path);
3772 		return ret;
3773 	}
3774 
3775 	leaf = path->nodes[0];
3776 
3777 	if (filled)
3778 		goto cache_index;
3779 
3780 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3781 				    struct btrfs_inode_item);
3782 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3783 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3784 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3785 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3786 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3787 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3788 			round_up(i_size_read(inode), fs_info->sectorsize));
3789 
3790 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3791 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3792 
3793 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3794 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3795 
3796 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3797 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3798 
3799 	BTRFS_I(inode)->i_otime.tv_sec =
3800 		btrfs_timespec_sec(leaf, &inode_item->otime);
3801 	BTRFS_I(inode)->i_otime.tv_nsec =
3802 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3803 
3804 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3805 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3806 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3807 
3808 	inode_set_iversion_queried(inode,
3809 				   btrfs_inode_sequence(leaf, inode_item));
3810 	inode->i_generation = BTRFS_I(inode)->generation;
3811 	inode->i_rdev = 0;
3812 	rdev = btrfs_inode_rdev(leaf, inode_item);
3813 
3814 	BTRFS_I(inode)->index_cnt = (u64)-1;
3815 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3816 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3817 
3818 cache_index:
3819 	/*
3820 	 * If we were modified in the current generation and evicted from memory
3821 	 * and then re-read we need to do a full sync since we don't have any
3822 	 * idea about which extents were modified before we were evicted from
3823 	 * cache.
3824 	 *
3825 	 * This is required for both inode re-read from disk and delayed inode
3826 	 * in delayed_nodes_tree.
3827 	 */
3828 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3829 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3830 			&BTRFS_I(inode)->runtime_flags);
3831 
3832 	/*
3833 	 * We don't persist the id of the transaction where an unlink operation
3834 	 * against the inode was last made. So here we assume the inode might
3835 	 * have been evicted, and therefore the exact value of last_unlink_trans
3836 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3837 	 * between the inode and its parent if the inode is fsync'ed and the log
3838 	 * replayed. For example, in the scenario:
3839 	 *
3840 	 * touch mydir/foo
3841 	 * ln mydir/foo mydir/bar
3842 	 * sync
3843 	 * unlink mydir/bar
3844 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3845 	 * xfs_io -c fsync mydir/foo
3846 	 * <power failure>
3847 	 * mount fs, triggers fsync log replay
3848 	 *
3849 	 * We must make sure that when we fsync our inode foo we also log its
3850 	 * parent inode, otherwise after log replay the parent still has the
3851 	 * dentry with the "bar" name but our inode foo has a link count of 1
3852 	 * and doesn't have an inode ref with the name "bar" anymore.
3853 	 *
3854 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3855 	 * but it guarantees correctness at the expense of occasional full
3856 	 * transaction commits on fsync if our inode is a directory, or if our
3857 	 * inode is not a directory, logging its parent unnecessarily.
3858 	 */
3859 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3860 
3861 	/*
3862 	 * Same logic as for last_unlink_trans. We don't persist the generation
3863 	 * of the last transaction where this inode was used for a reflink
3864 	 * operation, so after eviction and reloading the inode we must be
3865 	 * pessimistic and assume the last transaction that modified the inode.
3866 	 */
3867 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3868 
3869 	path->slots[0]++;
3870 	if (inode->i_nlink != 1 ||
3871 	    path->slots[0] >= btrfs_header_nritems(leaf))
3872 		goto cache_acl;
3873 
3874 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3875 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3876 		goto cache_acl;
3877 
3878 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3879 	if (location.type == BTRFS_INODE_REF_KEY) {
3880 		struct btrfs_inode_ref *ref;
3881 
3882 		ref = (struct btrfs_inode_ref *)ptr;
3883 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3884 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3885 		struct btrfs_inode_extref *extref;
3886 
3887 		extref = (struct btrfs_inode_extref *)ptr;
3888 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3889 								     extref);
3890 	}
3891 cache_acl:
3892 	/*
3893 	 * try to precache a NULL acl entry for files that don't have
3894 	 * any xattrs or acls
3895 	 */
3896 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3897 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3898 	if (first_xattr_slot != -1) {
3899 		path->slots[0] = first_xattr_slot;
3900 		ret = btrfs_load_inode_props(inode, path);
3901 		if (ret)
3902 			btrfs_err(fs_info,
3903 				  "error loading props for ino %llu (root %llu): %d",
3904 				  btrfs_ino(BTRFS_I(inode)),
3905 				  root->root_key.objectid, ret);
3906 	}
3907 	if (path != in_path)
3908 		btrfs_free_path(path);
3909 
3910 	if (!maybe_acls)
3911 		cache_no_acl(inode);
3912 
3913 	switch (inode->i_mode & S_IFMT) {
3914 	case S_IFREG:
3915 		inode->i_mapping->a_ops = &btrfs_aops;
3916 		inode->i_fop = &btrfs_file_operations;
3917 		inode->i_op = &btrfs_file_inode_operations;
3918 		break;
3919 	case S_IFDIR:
3920 		inode->i_fop = &btrfs_dir_file_operations;
3921 		inode->i_op = &btrfs_dir_inode_operations;
3922 		break;
3923 	case S_IFLNK:
3924 		inode->i_op = &btrfs_symlink_inode_operations;
3925 		inode_nohighmem(inode);
3926 		inode->i_mapping->a_ops = &btrfs_aops;
3927 		break;
3928 	default:
3929 		inode->i_op = &btrfs_special_inode_operations;
3930 		init_special_inode(inode, inode->i_mode, rdev);
3931 		break;
3932 	}
3933 
3934 	btrfs_sync_inode_flags_to_i_flags(inode);
3935 	return 0;
3936 }
3937 
3938 /*
3939  * given a leaf and an inode, copy the inode fields into the leaf
3940  */
3941 static void fill_inode_item(struct btrfs_trans_handle *trans,
3942 			    struct extent_buffer *leaf,
3943 			    struct btrfs_inode_item *item,
3944 			    struct inode *inode)
3945 {
3946 	struct btrfs_map_token token;
3947 	u64 flags;
3948 
3949 	btrfs_init_map_token(&token, leaf);
3950 
3951 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3952 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3953 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3954 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3955 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3956 
3957 	btrfs_set_token_timespec_sec(&token, &item->atime,
3958 				     inode->i_atime.tv_sec);
3959 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3960 				      inode->i_atime.tv_nsec);
3961 
3962 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3963 				     inode->i_mtime.tv_sec);
3964 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3965 				      inode->i_mtime.tv_nsec);
3966 
3967 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3968 				     inode->i_ctime.tv_sec);
3969 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3970 				      inode->i_ctime.tv_nsec);
3971 
3972 	btrfs_set_token_timespec_sec(&token, &item->otime,
3973 				     BTRFS_I(inode)->i_otime.tv_sec);
3974 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3975 				      BTRFS_I(inode)->i_otime.tv_nsec);
3976 
3977 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3978 	btrfs_set_token_inode_generation(&token, item,
3979 					 BTRFS_I(inode)->generation);
3980 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3981 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3982 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3983 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3984 					  BTRFS_I(inode)->ro_flags);
3985 	btrfs_set_token_inode_flags(&token, item, flags);
3986 	btrfs_set_token_inode_block_group(&token, item, 0);
3987 }
3988 
3989 /*
3990  * copy everything in the in-memory inode into the btree.
3991  */
3992 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3993 				struct btrfs_root *root,
3994 				struct btrfs_inode *inode)
3995 {
3996 	struct btrfs_inode_item *inode_item;
3997 	struct btrfs_path *path;
3998 	struct extent_buffer *leaf;
3999 	int ret;
4000 
4001 	path = btrfs_alloc_path();
4002 	if (!path)
4003 		return -ENOMEM;
4004 
4005 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4006 	if (ret) {
4007 		if (ret > 0)
4008 			ret = -ENOENT;
4009 		goto failed;
4010 	}
4011 
4012 	leaf = path->nodes[0];
4013 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4014 				    struct btrfs_inode_item);
4015 
4016 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4017 	btrfs_mark_buffer_dirty(leaf);
4018 	btrfs_set_inode_last_trans(trans, inode);
4019 	ret = 0;
4020 failed:
4021 	btrfs_free_path(path);
4022 	return ret;
4023 }
4024 
4025 /*
4026  * copy everything in the in-memory inode into the btree.
4027  */
4028 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4029 				struct btrfs_root *root,
4030 				struct btrfs_inode *inode)
4031 {
4032 	struct btrfs_fs_info *fs_info = root->fs_info;
4033 	int ret;
4034 
4035 	/*
4036 	 * If the inode is a free space inode, we can deadlock during commit
4037 	 * if we put it into the delayed code.
4038 	 *
4039 	 * The data relocation inode should also be directly updated
4040 	 * without delay
4041 	 */
4042 	if (!btrfs_is_free_space_inode(inode)
4043 	    && !btrfs_is_data_reloc_root(root)
4044 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4045 		btrfs_update_root_times(trans, root);
4046 
4047 		ret = btrfs_delayed_update_inode(trans, root, inode);
4048 		if (!ret)
4049 			btrfs_set_inode_last_trans(trans, inode);
4050 		return ret;
4051 	}
4052 
4053 	return btrfs_update_inode_item(trans, root, inode);
4054 }
4055 
4056 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4057 				struct btrfs_root *root, struct btrfs_inode *inode)
4058 {
4059 	int ret;
4060 
4061 	ret = btrfs_update_inode(trans, root, inode);
4062 	if (ret == -ENOSPC)
4063 		return btrfs_update_inode_item(trans, root, inode);
4064 	return ret;
4065 }
4066 
4067 /*
4068  * unlink helper that gets used here in inode.c and in the tree logging
4069  * recovery code.  It remove a link in a directory with a given name, and
4070  * also drops the back refs in the inode to the directory
4071  */
4072 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4073 				struct btrfs_inode *dir,
4074 				struct btrfs_inode *inode,
4075 				const struct fscrypt_str *name,
4076 				struct btrfs_rename_ctx *rename_ctx)
4077 {
4078 	struct btrfs_root *root = dir->root;
4079 	struct btrfs_fs_info *fs_info = root->fs_info;
4080 	struct btrfs_path *path;
4081 	int ret = 0;
4082 	struct btrfs_dir_item *di;
4083 	u64 index;
4084 	u64 ino = btrfs_ino(inode);
4085 	u64 dir_ino = btrfs_ino(dir);
4086 
4087 	path = btrfs_alloc_path();
4088 	if (!path) {
4089 		ret = -ENOMEM;
4090 		goto out;
4091 	}
4092 
4093 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4094 	if (IS_ERR_OR_NULL(di)) {
4095 		ret = di ? PTR_ERR(di) : -ENOENT;
4096 		goto err;
4097 	}
4098 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4099 	if (ret)
4100 		goto err;
4101 	btrfs_release_path(path);
4102 
4103 	/*
4104 	 * If we don't have dir index, we have to get it by looking up
4105 	 * the inode ref, since we get the inode ref, remove it directly,
4106 	 * it is unnecessary to do delayed deletion.
4107 	 *
4108 	 * But if we have dir index, needn't search inode ref to get it.
4109 	 * Since the inode ref is close to the inode item, it is better
4110 	 * that we delay to delete it, and just do this deletion when
4111 	 * we update the inode item.
4112 	 */
4113 	if (inode->dir_index) {
4114 		ret = btrfs_delayed_delete_inode_ref(inode);
4115 		if (!ret) {
4116 			index = inode->dir_index;
4117 			goto skip_backref;
4118 		}
4119 	}
4120 
4121 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4122 	if (ret) {
4123 		btrfs_info(fs_info,
4124 			"failed to delete reference to %.*s, inode %llu parent %llu",
4125 			name->len, name->name, ino, dir_ino);
4126 		btrfs_abort_transaction(trans, ret);
4127 		goto err;
4128 	}
4129 skip_backref:
4130 	if (rename_ctx)
4131 		rename_ctx->index = index;
4132 
4133 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4134 	if (ret) {
4135 		btrfs_abort_transaction(trans, ret);
4136 		goto err;
4137 	}
4138 
4139 	/*
4140 	 * If we are in a rename context, we don't need to update anything in the
4141 	 * log. That will be done later during the rename by btrfs_log_new_name().
4142 	 * Besides that, doing it here would only cause extra unnecessary btree
4143 	 * operations on the log tree, increasing latency for applications.
4144 	 */
4145 	if (!rename_ctx) {
4146 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4147 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4148 	}
4149 
4150 	/*
4151 	 * If we have a pending delayed iput we could end up with the final iput
4152 	 * being run in btrfs-cleaner context.  If we have enough of these built
4153 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4154 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4155 	 * the inode we can run the delayed iput here without any issues as the
4156 	 * final iput won't be done until after we drop the ref we're currently
4157 	 * holding.
4158 	 */
4159 	btrfs_run_delayed_iput(fs_info, inode);
4160 err:
4161 	btrfs_free_path(path);
4162 	if (ret)
4163 		goto out;
4164 
4165 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4166 	inode_inc_iversion(&inode->vfs_inode);
4167 	inode_inc_iversion(&dir->vfs_inode);
4168 	inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4169 	dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime;
4170 	dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime;
4171 	ret = btrfs_update_inode(trans, root, dir);
4172 out:
4173 	return ret;
4174 }
4175 
4176 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4177 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4178 		       const struct fscrypt_str *name)
4179 {
4180 	int ret;
4181 
4182 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4183 	if (!ret) {
4184 		drop_nlink(&inode->vfs_inode);
4185 		ret = btrfs_update_inode(trans, inode->root, inode);
4186 	}
4187 	return ret;
4188 }
4189 
4190 /*
4191  * helper to start transaction for unlink and rmdir.
4192  *
4193  * unlink and rmdir are special in btrfs, they do not always free space, so
4194  * if we cannot make our reservations the normal way try and see if there is
4195  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4196  * allow the unlink to occur.
4197  */
4198 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4199 {
4200 	struct btrfs_root *root = dir->root;
4201 
4202 	return btrfs_start_transaction_fallback_global_rsv(root,
4203 						   BTRFS_UNLINK_METADATA_UNITS);
4204 }
4205 
4206 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4207 {
4208 	struct btrfs_trans_handle *trans;
4209 	struct inode *inode = d_inode(dentry);
4210 	int ret;
4211 	struct fscrypt_name fname;
4212 
4213 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4214 	if (ret)
4215 		return ret;
4216 
4217 	/* This needs to handle no-key deletions later on */
4218 
4219 	trans = __unlink_start_trans(BTRFS_I(dir));
4220 	if (IS_ERR(trans)) {
4221 		ret = PTR_ERR(trans);
4222 		goto fscrypt_free;
4223 	}
4224 
4225 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4226 			0);
4227 
4228 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4229 				 &fname.disk_name);
4230 	if (ret)
4231 		goto end_trans;
4232 
4233 	if (inode->i_nlink == 0) {
4234 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4235 		if (ret)
4236 			goto end_trans;
4237 	}
4238 
4239 end_trans:
4240 	btrfs_end_transaction(trans);
4241 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4242 fscrypt_free:
4243 	fscrypt_free_filename(&fname);
4244 	return ret;
4245 }
4246 
4247 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4248 			       struct btrfs_inode *dir, struct dentry *dentry)
4249 {
4250 	struct btrfs_root *root = dir->root;
4251 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4252 	struct btrfs_path *path;
4253 	struct extent_buffer *leaf;
4254 	struct btrfs_dir_item *di;
4255 	struct btrfs_key key;
4256 	u64 index;
4257 	int ret;
4258 	u64 objectid;
4259 	u64 dir_ino = btrfs_ino(dir);
4260 	struct fscrypt_name fname;
4261 
4262 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4263 	if (ret)
4264 		return ret;
4265 
4266 	/* This needs to handle no-key deletions later on */
4267 
4268 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4269 		objectid = inode->root->root_key.objectid;
4270 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4271 		objectid = inode->location.objectid;
4272 	} else {
4273 		WARN_ON(1);
4274 		fscrypt_free_filename(&fname);
4275 		return -EINVAL;
4276 	}
4277 
4278 	path = btrfs_alloc_path();
4279 	if (!path) {
4280 		ret = -ENOMEM;
4281 		goto out;
4282 	}
4283 
4284 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4285 				   &fname.disk_name, -1);
4286 	if (IS_ERR_OR_NULL(di)) {
4287 		ret = di ? PTR_ERR(di) : -ENOENT;
4288 		goto out;
4289 	}
4290 
4291 	leaf = path->nodes[0];
4292 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4293 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4294 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4295 	if (ret) {
4296 		btrfs_abort_transaction(trans, ret);
4297 		goto out;
4298 	}
4299 	btrfs_release_path(path);
4300 
4301 	/*
4302 	 * This is a placeholder inode for a subvolume we didn't have a
4303 	 * reference to at the time of the snapshot creation.  In the meantime
4304 	 * we could have renamed the real subvol link into our snapshot, so
4305 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4306 	 * Instead simply lookup the dir_index_item for this entry so we can
4307 	 * remove it.  Otherwise we know we have a ref to the root and we can
4308 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4309 	 */
4310 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4311 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4312 		if (IS_ERR_OR_NULL(di)) {
4313 			if (!di)
4314 				ret = -ENOENT;
4315 			else
4316 				ret = PTR_ERR(di);
4317 			btrfs_abort_transaction(trans, ret);
4318 			goto out;
4319 		}
4320 
4321 		leaf = path->nodes[0];
4322 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4323 		index = key.offset;
4324 		btrfs_release_path(path);
4325 	} else {
4326 		ret = btrfs_del_root_ref(trans, objectid,
4327 					 root->root_key.objectid, dir_ino,
4328 					 &index, &fname.disk_name);
4329 		if (ret) {
4330 			btrfs_abort_transaction(trans, ret);
4331 			goto out;
4332 		}
4333 	}
4334 
4335 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4336 	if (ret) {
4337 		btrfs_abort_transaction(trans, ret);
4338 		goto out;
4339 	}
4340 
4341 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4342 	inode_inc_iversion(&dir->vfs_inode);
4343 	dir->vfs_inode.i_mtime = current_time(&dir->vfs_inode);
4344 	dir->vfs_inode.i_ctime = dir->vfs_inode.i_mtime;
4345 	ret = btrfs_update_inode_fallback(trans, root, dir);
4346 	if (ret)
4347 		btrfs_abort_transaction(trans, ret);
4348 out:
4349 	btrfs_free_path(path);
4350 	fscrypt_free_filename(&fname);
4351 	return ret;
4352 }
4353 
4354 /*
4355  * Helper to check if the subvolume references other subvolumes or if it's
4356  * default.
4357  */
4358 static noinline int may_destroy_subvol(struct btrfs_root *root)
4359 {
4360 	struct btrfs_fs_info *fs_info = root->fs_info;
4361 	struct btrfs_path *path;
4362 	struct btrfs_dir_item *di;
4363 	struct btrfs_key key;
4364 	struct fscrypt_str name = FSTR_INIT("default", 7);
4365 	u64 dir_id;
4366 	int ret;
4367 
4368 	path = btrfs_alloc_path();
4369 	if (!path)
4370 		return -ENOMEM;
4371 
4372 	/* Make sure this root isn't set as the default subvol */
4373 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4374 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4375 				   dir_id, &name, 0);
4376 	if (di && !IS_ERR(di)) {
4377 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4378 		if (key.objectid == root->root_key.objectid) {
4379 			ret = -EPERM;
4380 			btrfs_err(fs_info,
4381 				  "deleting default subvolume %llu is not allowed",
4382 				  key.objectid);
4383 			goto out;
4384 		}
4385 		btrfs_release_path(path);
4386 	}
4387 
4388 	key.objectid = root->root_key.objectid;
4389 	key.type = BTRFS_ROOT_REF_KEY;
4390 	key.offset = (u64)-1;
4391 
4392 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4393 	if (ret < 0)
4394 		goto out;
4395 	BUG_ON(ret == 0);
4396 
4397 	ret = 0;
4398 	if (path->slots[0] > 0) {
4399 		path->slots[0]--;
4400 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4401 		if (key.objectid == root->root_key.objectid &&
4402 		    key.type == BTRFS_ROOT_REF_KEY)
4403 			ret = -ENOTEMPTY;
4404 	}
4405 out:
4406 	btrfs_free_path(path);
4407 	return ret;
4408 }
4409 
4410 /* Delete all dentries for inodes belonging to the root */
4411 static void btrfs_prune_dentries(struct btrfs_root *root)
4412 {
4413 	struct btrfs_fs_info *fs_info = root->fs_info;
4414 	struct rb_node *node;
4415 	struct rb_node *prev;
4416 	struct btrfs_inode *entry;
4417 	struct inode *inode;
4418 	u64 objectid = 0;
4419 
4420 	if (!BTRFS_FS_ERROR(fs_info))
4421 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4422 
4423 	spin_lock(&root->inode_lock);
4424 again:
4425 	node = root->inode_tree.rb_node;
4426 	prev = NULL;
4427 	while (node) {
4428 		prev = node;
4429 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4430 
4431 		if (objectid < btrfs_ino(entry))
4432 			node = node->rb_left;
4433 		else if (objectid > btrfs_ino(entry))
4434 			node = node->rb_right;
4435 		else
4436 			break;
4437 	}
4438 	if (!node) {
4439 		while (prev) {
4440 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4441 			if (objectid <= btrfs_ino(entry)) {
4442 				node = prev;
4443 				break;
4444 			}
4445 			prev = rb_next(prev);
4446 		}
4447 	}
4448 	while (node) {
4449 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4450 		objectid = btrfs_ino(entry) + 1;
4451 		inode = igrab(&entry->vfs_inode);
4452 		if (inode) {
4453 			spin_unlock(&root->inode_lock);
4454 			if (atomic_read(&inode->i_count) > 1)
4455 				d_prune_aliases(inode);
4456 			/*
4457 			 * btrfs_drop_inode will have it removed from the inode
4458 			 * cache when its usage count hits zero.
4459 			 */
4460 			iput(inode);
4461 			cond_resched();
4462 			spin_lock(&root->inode_lock);
4463 			goto again;
4464 		}
4465 
4466 		if (cond_resched_lock(&root->inode_lock))
4467 			goto again;
4468 
4469 		node = rb_next(node);
4470 	}
4471 	spin_unlock(&root->inode_lock);
4472 }
4473 
4474 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4475 {
4476 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4477 	struct btrfs_root *root = dir->root;
4478 	struct inode *inode = d_inode(dentry);
4479 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4480 	struct btrfs_trans_handle *trans;
4481 	struct btrfs_block_rsv block_rsv;
4482 	u64 root_flags;
4483 	int ret;
4484 
4485 	/*
4486 	 * Don't allow to delete a subvolume with send in progress. This is
4487 	 * inside the inode lock so the error handling that has to drop the bit
4488 	 * again is not run concurrently.
4489 	 */
4490 	spin_lock(&dest->root_item_lock);
4491 	if (dest->send_in_progress) {
4492 		spin_unlock(&dest->root_item_lock);
4493 		btrfs_warn(fs_info,
4494 			   "attempt to delete subvolume %llu during send",
4495 			   dest->root_key.objectid);
4496 		return -EPERM;
4497 	}
4498 	if (atomic_read(&dest->nr_swapfiles)) {
4499 		spin_unlock(&dest->root_item_lock);
4500 		btrfs_warn(fs_info,
4501 			   "attempt to delete subvolume %llu with active swapfile",
4502 			   root->root_key.objectid);
4503 		return -EPERM;
4504 	}
4505 	root_flags = btrfs_root_flags(&dest->root_item);
4506 	btrfs_set_root_flags(&dest->root_item,
4507 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4508 	spin_unlock(&dest->root_item_lock);
4509 
4510 	down_write(&fs_info->subvol_sem);
4511 
4512 	ret = may_destroy_subvol(dest);
4513 	if (ret)
4514 		goto out_up_write;
4515 
4516 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4517 	/*
4518 	 * One for dir inode,
4519 	 * two for dir entries,
4520 	 * two for root ref/backref.
4521 	 */
4522 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4523 	if (ret)
4524 		goto out_up_write;
4525 
4526 	trans = btrfs_start_transaction(root, 0);
4527 	if (IS_ERR(trans)) {
4528 		ret = PTR_ERR(trans);
4529 		goto out_release;
4530 	}
4531 	trans->block_rsv = &block_rsv;
4532 	trans->bytes_reserved = block_rsv.size;
4533 
4534 	btrfs_record_snapshot_destroy(trans, dir);
4535 
4536 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4537 	if (ret) {
4538 		btrfs_abort_transaction(trans, ret);
4539 		goto out_end_trans;
4540 	}
4541 
4542 	ret = btrfs_record_root_in_trans(trans, dest);
4543 	if (ret) {
4544 		btrfs_abort_transaction(trans, ret);
4545 		goto out_end_trans;
4546 	}
4547 
4548 	memset(&dest->root_item.drop_progress, 0,
4549 		sizeof(dest->root_item.drop_progress));
4550 	btrfs_set_root_drop_level(&dest->root_item, 0);
4551 	btrfs_set_root_refs(&dest->root_item, 0);
4552 
4553 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4554 		ret = btrfs_insert_orphan_item(trans,
4555 					fs_info->tree_root,
4556 					dest->root_key.objectid);
4557 		if (ret) {
4558 			btrfs_abort_transaction(trans, ret);
4559 			goto out_end_trans;
4560 		}
4561 	}
4562 
4563 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4564 				  BTRFS_UUID_KEY_SUBVOL,
4565 				  dest->root_key.objectid);
4566 	if (ret && ret != -ENOENT) {
4567 		btrfs_abort_transaction(trans, ret);
4568 		goto out_end_trans;
4569 	}
4570 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4571 		ret = btrfs_uuid_tree_remove(trans,
4572 					  dest->root_item.received_uuid,
4573 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4574 					  dest->root_key.objectid);
4575 		if (ret && ret != -ENOENT) {
4576 			btrfs_abort_transaction(trans, ret);
4577 			goto out_end_trans;
4578 		}
4579 	}
4580 
4581 	free_anon_bdev(dest->anon_dev);
4582 	dest->anon_dev = 0;
4583 out_end_trans:
4584 	trans->block_rsv = NULL;
4585 	trans->bytes_reserved = 0;
4586 	ret = btrfs_end_transaction(trans);
4587 	inode->i_flags |= S_DEAD;
4588 out_release:
4589 	btrfs_subvolume_release_metadata(root, &block_rsv);
4590 out_up_write:
4591 	up_write(&fs_info->subvol_sem);
4592 	if (ret) {
4593 		spin_lock(&dest->root_item_lock);
4594 		root_flags = btrfs_root_flags(&dest->root_item);
4595 		btrfs_set_root_flags(&dest->root_item,
4596 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4597 		spin_unlock(&dest->root_item_lock);
4598 	} else {
4599 		d_invalidate(dentry);
4600 		btrfs_prune_dentries(dest);
4601 		ASSERT(dest->send_in_progress == 0);
4602 	}
4603 
4604 	return ret;
4605 }
4606 
4607 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4608 {
4609 	struct inode *inode = d_inode(dentry);
4610 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4611 	int err = 0;
4612 	struct btrfs_trans_handle *trans;
4613 	u64 last_unlink_trans;
4614 	struct fscrypt_name fname;
4615 
4616 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4617 		return -ENOTEMPTY;
4618 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4619 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4620 			btrfs_err(fs_info,
4621 			"extent tree v2 doesn't support snapshot deletion yet");
4622 			return -EOPNOTSUPP;
4623 		}
4624 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4625 	}
4626 
4627 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4628 	if (err)
4629 		return err;
4630 
4631 	/* This needs to handle no-key deletions later on */
4632 
4633 	trans = __unlink_start_trans(BTRFS_I(dir));
4634 	if (IS_ERR(trans)) {
4635 		err = PTR_ERR(trans);
4636 		goto out_notrans;
4637 	}
4638 
4639 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4640 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4641 		goto out;
4642 	}
4643 
4644 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4645 	if (err)
4646 		goto out;
4647 
4648 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4649 
4650 	/* now the directory is empty */
4651 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4652 				 &fname.disk_name);
4653 	if (!err) {
4654 		btrfs_i_size_write(BTRFS_I(inode), 0);
4655 		/*
4656 		 * Propagate the last_unlink_trans value of the deleted dir to
4657 		 * its parent directory. This is to prevent an unrecoverable
4658 		 * log tree in the case we do something like this:
4659 		 * 1) create dir foo
4660 		 * 2) create snapshot under dir foo
4661 		 * 3) delete the snapshot
4662 		 * 4) rmdir foo
4663 		 * 5) mkdir foo
4664 		 * 6) fsync foo or some file inside foo
4665 		 */
4666 		if (last_unlink_trans >= trans->transid)
4667 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4668 	}
4669 out:
4670 	btrfs_end_transaction(trans);
4671 out_notrans:
4672 	btrfs_btree_balance_dirty(fs_info);
4673 	fscrypt_free_filename(&fname);
4674 
4675 	return err;
4676 }
4677 
4678 /*
4679  * btrfs_truncate_block - read, zero a chunk and write a block
4680  * @inode - inode that we're zeroing
4681  * @from - the offset to start zeroing
4682  * @len - the length to zero, 0 to zero the entire range respective to the
4683  *	offset
4684  * @front - zero up to the offset instead of from the offset on
4685  *
4686  * This will find the block for the "from" offset and cow the block and zero the
4687  * part we want to zero.  This is used with truncate and hole punching.
4688  */
4689 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4690 			 int front)
4691 {
4692 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4693 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4694 	struct extent_io_tree *io_tree = &inode->io_tree;
4695 	struct btrfs_ordered_extent *ordered;
4696 	struct extent_state *cached_state = NULL;
4697 	struct extent_changeset *data_reserved = NULL;
4698 	bool only_release_metadata = false;
4699 	u32 blocksize = fs_info->sectorsize;
4700 	pgoff_t index = from >> PAGE_SHIFT;
4701 	unsigned offset = from & (blocksize - 1);
4702 	struct page *page;
4703 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4704 	size_t write_bytes = blocksize;
4705 	int ret = 0;
4706 	u64 block_start;
4707 	u64 block_end;
4708 
4709 	if (IS_ALIGNED(offset, blocksize) &&
4710 	    (!len || IS_ALIGNED(len, blocksize)))
4711 		goto out;
4712 
4713 	block_start = round_down(from, blocksize);
4714 	block_end = block_start + blocksize - 1;
4715 
4716 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4717 					  blocksize, false);
4718 	if (ret < 0) {
4719 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4720 			/* For nocow case, no need to reserve data space */
4721 			only_release_metadata = true;
4722 		} else {
4723 			goto out;
4724 		}
4725 	}
4726 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4727 	if (ret < 0) {
4728 		if (!only_release_metadata)
4729 			btrfs_free_reserved_data_space(inode, data_reserved,
4730 						       block_start, blocksize);
4731 		goto out;
4732 	}
4733 again:
4734 	page = find_or_create_page(mapping, index, mask);
4735 	if (!page) {
4736 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4737 					     blocksize, true);
4738 		btrfs_delalloc_release_extents(inode, blocksize);
4739 		ret = -ENOMEM;
4740 		goto out;
4741 	}
4742 	ret = set_page_extent_mapped(page);
4743 	if (ret < 0)
4744 		goto out_unlock;
4745 
4746 	if (!PageUptodate(page)) {
4747 		ret = btrfs_read_folio(NULL, page_folio(page));
4748 		lock_page(page);
4749 		if (page->mapping != mapping) {
4750 			unlock_page(page);
4751 			put_page(page);
4752 			goto again;
4753 		}
4754 		if (!PageUptodate(page)) {
4755 			ret = -EIO;
4756 			goto out_unlock;
4757 		}
4758 	}
4759 	wait_on_page_writeback(page);
4760 
4761 	lock_extent(io_tree, block_start, block_end, &cached_state);
4762 
4763 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4764 	if (ordered) {
4765 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4766 		unlock_page(page);
4767 		put_page(page);
4768 		btrfs_start_ordered_extent(ordered);
4769 		btrfs_put_ordered_extent(ordered);
4770 		goto again;
4771 	}
4772 
4773 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4774 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4775 			 &cached_state);
4776 
4777 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4778 					&cached_state);
4779 	if (ret) {
4780 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4781 		goto out_unlock;
4782 	}
4783 
4784 	if (offset != blocksize) {
4785 		if (!len)
4786 			len = blocksize - offset;
4787 		if (front)
4788 			memzero_page(page, (block_start - page_offset(page)),
4789 				     offset);
4790 		else
4791 			memzero_page(page, (block_start - page_offset(page)) + offset,
4792 				     len);
4793 	}
4794 	btrfs_page_clear_checked(fs_info, page, block_start,
4795 				 block_end + 1 - block_start);
4796 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4797 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4798 
4799 	if (only_release_metadata)
4800 		set_extent_bit(&inode->io_tree, block_start, block_end,
4801 			       EXTENT_NORESERVE, NULL, GFP_NOFS);
4802 
4803 out_unlock:
4804 	if (ret) {
4805 		if (only_release_metadata)
4806 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4807 		else
4808 			btrfs_delalloc_release_space(inode, data_reserved,
4809 					block_start, blocksize, true);
4810 	}
4811 	btrfs_delalloc_release_extents(inode, blocksize);
4812 	unlock_page(page);
4813 	put_page(page);
4814 out:
4815 	if (only_release_metadata)
4816 		btrfs_check_nocow_unlock(inode);
4817 	extent_changeset_free(data_reserved);
4818 	return ret;
4819 }
4820 
4821 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4822 			     u64 offset, u64 len)
4823 {
4824 	struct btrfs_fs_info *fs_info = root->fs_info;
4825 	struct btrfs_trans_handle *trans;
4826 	struct btrfs_drop_extents_args drop_args = { 0 };
4827 	int ret;
4828 
4829 	/*
4830 	 * If NO_HOLES is enabled, we don't need to do anything.
4831 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4832 	 * or btrfs_update_inode() will be called, which guarantee that the next
4833 	 * fsync will know this inode was changed and needs to be logged.
4834 	 */
4835 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4836 		return 0;
4837 
4838 	/*
4839 	 * 1 - for the one we're dropping
4840 	 * 1 - for the one we're adding
4841 	 * 1 - for updating the inode.
4842 	 */
4843 	trans = btrfs_start_transaction(root, 3);
4844 	if (IS_ERR(trans))
4845 		return PTR_ERR(trans);
4846 
4847 	drop_args.start = offset;
4848 	drop_args.end = offset + len;
4849 	drop_args.drop_cache = true;
4850 
4851 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4852 	if (ret) {
4853 		btrfs_abort_transaction(trans, ret);
4854 		btrfs_end_transaction(trans);
4855 		return ret;
4856 	}
4857 
4858 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4859 	if (ret) {
4860 		btrfs_abort_transaction(trans, ret);
4861 	} else {
4862 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4863 		btrfs_update_inode(trans, root, inode);
4864 	}
4865 	btrfs_end_transaction(trans);
4866 	return ret;
4867 }
4868 
4869 /*
4870  * This function puts in dummy file extents for the area we're creating a hole
4871  * for.  So if we are truncating this file to a larger size we need to insert
4872  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4873  * the range between oldsize and size
4874  */
4875 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4876 {
4877 	struct btrfs_root *root = inode->root;
4878 	struct btrfs_fs_info *fs_info = root->fs_info;
4879 	struct extent_io_tree *io_tree = &inode->io_tree;
4880 	struct extent_map *em = NULL;
4881 	struct extent_state *cached_state = NULL;
4882 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4883 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4884 	u64 last_byte;
4885 	u64 cur_offset;
4886 	u64 hole_size;
4887 	int err = 0;
4888 
4889 	/*
4890 	 * If our size started in the middle of a block we need to zero out the
4891 	 * rest of the block before we expand the i_size, otherwise we could
4892 	 * expose stale data.
4893 	 */
4894 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4895 	if (err)
4896 		return err;
4897 
4898 	if (size <= hole_start)
4899 		return 0;
4900 
4901 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4902 					   &cached_state);
4903 	cur_offset = hole_start;
4904 	while (1) {
4905 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4906 				      block_end - cur_offset);
4907 		if (IS_ERR(em)) {
4908 			err = PTR_ERR(em);
4909 			em = NULL;
4910 			break;
4911 		}
4912 		last_byte = min(extent_map_end(em), block_end);
4913 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4914 		hole_size = last_byte - cur_offset;
4915 
4916 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4917 			struct extent_map *hole_em;
4918 
4919 			err = maybe_insert_hole(root, inode, cur_offset,
4920 						hole_size);
4921 			if (err)
4922 				break;
4923 
4924 			err = btrfs_inode_set_file_extent_range(inode,
4925 							cur_offset, hole_size);
4926 			if (err)
4927 				break;
4928 
4929 			hole_em = alloc_extent_map();
4930 			if (!hole_em) {
4931 				btrfs_drop_extent_map_range(inode, cur_offset,
4932 						    cur_offset + hole_size - 1,
4933 						    false);
4934 				btrfs_set_inode_full_sync(inode);
4935 				goto next;
4936 			}
4937 			hole_em->start = cur_offset;
4938 			hole_em->len = hole_size;
4939 			hole_em->orig_start = cur_offset;
4940 
4941 			hole_em->block_start = EXTENT_MAP_HOLE;
4942 			hole_em->block_len = 0;
4943 			hole_em->orig_block_len = 0;
4944 			hole_em->ram_bytes = hole_size;
4945 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4946 			hole_em->generation = fs_info->generation;
4947 
4948 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4949 			free_extent_map(hole_em);
4950 		} else {
4951 			err = btrfs_inode_set_file_extent_range(inode,
4952 							cur_offset, hole_size);
4953 			if (err)
4954 				break;
4955 		}
4956 next:
4957 		free_extent_map(em);
4958 		em = NULL;
4959 		cur_offset = last_byte;
4960 		if (cur_offset >= block_end)
4961 			break;
4962 	}
4963 	free_extent_map(em);
4964 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4965 	return err;
4966 }
4967 
4968 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4969 {
4970 	struct btrfs_root *root = BTRFS_I(inode)->root;
4971 	struct btrfs_trans_handle *trans;
4972 	loff_t oldsize = i_size_read(inode);
4973 	loff_t newsize = attr->ia_size;
4974 	int mask = attr->ia_valid;
4975 	int ret;
4976 
4977 	/*
4978 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4979 	 * special case where we need to update the times despite not having
4980 	 * these flags set.  For all other operations the VFS set these flags
4981 	 * explicitly if it wants a timestamp update.
4982 	 */
4983 	if (newsize != oldsize) {
4984 		inode_inc_iversion(inode);
4985 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4986 			inode->i_mtime = current_time(inode);
4987 			inode->i_ctime = inode->i_mtime;
4988 		}
4989 	}
4990 
4991 	if (newsize > oldsize) {
4992 		/*
4993 		 * Don't do an expanding truncate while snapshotting is ongoing.
4994 		 * This is to ensure the snapshot captures a fully consistent
4995 		 * state of this file - if the snapshot captures this expanding
4996 		 * truncation, it must capture all writes that happened before
4997 		 * this truncation.
4998 		 */
4999 		btrfs_drew_write_lock(&root->snapshot_lock);
5000 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5001 		if (ret) {
5002 			btrfs_drew_write_unlock(&root->snapshot_lock);
5003 			return ret;
5004 		}
5005 
5006 		trans = btrfs_start_transaction(root, 1);
5007 		if (IS_ERR(trans)) {
5008 			btrfs_drew_write_unlock(&root->snapshot_lock);
5009 			return PTR_ERR(trans);
5010 		}
5011 
5012 		i_size_write(inode, newsize);
5013 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5014 		pagecache_isize_extended(inode, oldsize, newsize);
5015 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5016 		btrfs_drew_write_unlock(&root->snapshot_lock);
5017 		btrfs_end_transaction(trans);
5018 	} else {
5019 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5020 
5021 		if (btrfs_is_zoned(fs_info)) {
5022 			ret = btrfs_wait_ordered_range(inode,
5023 					ALIGN(newsize, fs_info->sectorsize),
5024 					(u64)-1);
5025 			if (ret)
5026 				return ret;
5027 		}
5028 
5029 		/*
5030 		 * We're truncating a file that used to have good data down to
5031 		 * zero. Make sure any new writes to the file get on disk
5032 		 * on close.
5033 		 */
5034 		if (newsize == 0)
5035 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5036 				&BTRFS_I(inode)->runtime_flags);
5037 
5038 		truncate_setsize(inode, newsize);
5039 
5040 		inode_dio_wait(inode);
5041 
5042 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5043 		if (ret && inode->i_nlink) {
5044 			int err;
5045 
5046 			/*
5047 			 * Truncate failed, so fix up the in-memory size. We
5048 			 * adjusted disk_i_size down as we removed extents, so
5049 			 * wait for disk_i_size to be stable and then update the
5050 			 * in-memory size to match.
5051 			 */
5052 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5053 			if (err)
5054 				return err;
5055 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5056 		}
5057 	}
5058 
5059 	return ret;
5060 }
5061 
5062 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5063 			 struct iattr *attr)
5064 {
5065 	struct inode *inode = d_inode(dentry);
5066 	struct btrfs_root *root = BTRFS_I(inode)->root;
5067 	int err;
5068 
5069 	if (btrfs_root_readonly(root))
5070 		return -EROFS;
5071 
5072 	err = setattr_prepare(idmap, dentry, attr);
5073 	if (err)
5074 		return err;
5075 
5076 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5077 		err = btrfs_setsize(inode, attr);
5078 		if (err)
5079 			return err;
5080 	}
5081 
5082 	if (attr->ia_valid) {
5083 		setattr_copy(idmap, inode, attr);
5084 		inode_inc_iversion(inode);
5085 		err = btrfs_dirty_inode(BTRFS_I(inode));
5086 
5087 		if (!err && attr->ia_valid & ATTR_MODE)
5088 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5089 	}
5090 
5091 	return err;
5092 }
5093 
5094 /*
5095  * While truncating the inode pages during eviction, we get the VFS
5096  * calling btrfs_invalidate_folio() against each folio of the inode. This
5097  * is slow because the calls to btrfs_invalidate_folio() result in a
5098  * huge amount of calls to lock_extent() and clear_extent_bit(),
5099  * which keep merging and splitting extent_state structures over and over,
5100  * wasting lots of time.
5101  *
5102  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5103  * skip all those expensive operations on a per folio basis and do only
5104  * the ordered io finishing, while we release here the extent_map and
5105  * extent_state structures, without the excessive merging and splitting.
5106  */
5107 static void evict_inode_truncate_pages(struct inode *inode)
5108 {
5109 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5110 	struct rb_node *node;
5111 
5112 	ASSERT(inode->i_state & I_FREEING);
5113 	truncate_inode_pages_final(&inode->i_data);
5114 
5115 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5116 
5117 	/*
5118 	 * Keep looping until we have no more ranges in the io tree.
5119 	 * We can have ongoing bios started by readahead that have
5120 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5121 	 * still in progress (unlocked the pages in the bio but did not yet
5122 	 * unlocked the ranges in the io tree). Therefore this means some
5123 	 * ranges can still be locked and eviction started because before
5124 	 * submitting those bios, which are executed by a separate task (work
5125 	 * queue kthread), inode references (inode->i_count) were not taken
5126 	 * (which would be dropped in the end io callback of each bio).
5127 	 * Therefore here we effectively end up waiting for those bios and
5128 	 * anyone else holding locked ranges without having bumped the inode's
5129 	 * reference count - if we don't do it, when they access the inode's
5130 	 * io_tree to unlock a range it may be too late, leading to an
5131 	 * use-after-free issue.
5132 	 */
5133 	spin_lock(&io_tree->lock);
5134 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5135 		struct extent_state *state;
5136 		struct extent_state *cached_state = NULL;
5137 		u64 start;
5138 		u64 end;
5139 		unsigned state_flags;
5140 
5141 		node = rb_first(&io_tree->state);
5142 		state = rb_entry(node, struct extent_state, rb_node);
5143 		start = state->start;
5144 		end = state->end;
5145 		state_flags = state->state;
5146 		spin_unlock(&io_tree->lock);
5147 
5148 		lock_extent(io_tree, start, end, &cached_state);
5149 
5150 		/*
5151 		 * If still has DELALLOC flag, the extent didn't reach disk,
5152 		 * and its reserved space won't be freed by delayed_ref.
5153 		 * So we need to free its reserved space here.
5154 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5155 		 *
5156 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5157 		 */
5158 		if (state_flags & EXTENT_DELALLOC)
5159 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5160 					       end - start + 1);
5161 
5162 		clear_extent_bit(io_tree, start, end,
5163 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5164 				 &cached_state);
5165 
5166 		cond_resched();
5167 		spin_lock(&io_tree->lock);
5168 	}
5169 	spin_unlock(&io_tree->lock);
5170 }
5171 
5172 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5173 							struct btrfs_block_rsv *rsv)
5174 {
5175 	struct btrfs_fs_info *fs_info = root->fs_info;
5176 	struct btrfs_trans_handle *trans;
5177 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5178 	int ret;
5179 
5180 	/*
5181 	 * Eviction should be taking place at some place safe because of our
5182 	 * delayed iputs.  However the normal flushing code will run delayed
5183 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5184 	 *
5185 	 * We reserve the delayed_refs_extra here again because we can't use
5186 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5187 	 * above.  We reserve our extra bit here because we generate a ton of
5188 	 * delayed refs activity by truncating.
5189 	 *
5190 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5191 	 * if we fail to make this reservation we can re-try without the
5192 	 * delayed_refs_extra so we can make some forward progress.
5193 	 */
5194 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5195 				     BTRFS_RESERVE_FLUSH_EVICT);
5196 	if (ret) {
5197 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5198 					     BTRFS_RESERVE_FLUSH_EVICT);
5199 		if (ret) {
5200 			btrfs_warn(fs_info,
5201 				   "could not allocate space for delete; will truncate on mount");
5202 			return ERR_PTR(-ENOSPC);
5203 		}
5204 		delayed_refs_extra = 0;
5205 	}
5206 
5207 	trans = btrfs_join_transaction(root);
5208 	if (IS_ERR(trans))
5209 		return trans;
5210 
5211 	if (delayed_refs_extra) {
5212 		trans->block_rsv = &fs_info->trans_block_rsv;
5213 		trans->bytes_reserved = delayed_refs_extra;
5214 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5215 					delayed_refs_extra, true);
5216 	}
5217 	return trans;
5218 }
5219 
5220 void btrfs_evict_inode(struct inode *inode)
5221 {
5222 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5223 	struct btrfs_trans_handle *trans;
5224 	struct btrfs_root *root = BTRFS_I(inode)->root;
5225 	struct btrfs_block_rsv *rsv = NULL;
5226 	int ret;
5227 
5228 	trace_btrfs_inode_evict(inode);
5229 
5230 	if (!root) {
5231 		fsverity_cleanup_inode(inode);
5232 		clear_inode(inode);
5233 		return;
5234 	}
5235 
5236 	evict_inode_truncate_pages(inode);
5237 
5238 	if (inode->i_nlink &&
5239 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5240 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5241 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5242 		goto out;
5243 
5244 	if (is_bad_inode(inode))
5245 		goto out;
5246 
5247 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5248 		goto out;
5249 
5250 	if (inode->i_nlink > 0) {
5251 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5252 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5253 		goto out;
5254 	}
5255 
5256 	/*
5257 	 * This makes sure the inode item in tree is uptodate and the space for
5258 	 * the inode update is released.
5259 	 */
5260 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5261 	if (ret)
5262 		goto out;
5263 
5264 	/*
5265 	 * This drops any pending insert or delete operations we have for this
5266 	 * inode.  We could have a delayed dir index deletion queued up, but
5267 	 * we're removing the inode completely so that'll be taken care of in
5268 	 * the truncate.
5269 	 */
5270 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5271 
5272 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5273 	if (!rsv)
5274 		goto out;
5275 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5276 	rsv->failfast = true;
5277 
5278 	btrfs_i_size_write(BTRFS_I(inode), 0);
5279 
5280 	while (1) {
5281 		struct btrfs_truncate_control control = {
5282 			.inode = BTRFS_I(inode),
5283 			.ino = btrfs_ino(BTRFS_I(inode)),
5284 			.new_size = 0,
5285 			.min_type = 0,
5286 		};
5287 
5288 		trans = evict_refill_and_join(root, rsv);
5289 		if (IS_ERR(trans))
5290 			goto out;
5291 
5292 		trans->block_rsv = rsv;
5293 
5294 		ret = btrfs_truncate_inode_items(trans, root, &control);
5295 		trans->block_rsv = &fs_info->trans_block_rsv;
5296 		btrfs_end_transaction(trans);
5297 		/*
5298 		 * We have not added new delayed items for our inode after we
5299 		 * have flushed its delayed items, so no need to throttle on
5300 		 * delayed items. However we have modified extent buffers.
5301 		 */
5302 		btrfs_btree_balance_dirty_nodelay(fs_info);
5303 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5304 			goto out;
5305 		else if (!ret)
5306 			break;
5307 	}
5308 
5309 	/*
5310 	 * Errors here aren't a big deal, it just means we leave orphan items in
5311 	 * the tree. They will be cleaned up on the next mount. If the inode
5312 	 * number gets reused, cleanup deletes the orphan item without doing
5313 	 * anything, and unlink reuses the existing orphan item.
5314 	 *
5315 	 * If it turns out that we are dropping too many of these, we might want
5316 	 * to add a mechanism for retrying these after a commit.
5317 	 */
5318 	trans = evict_refill_and_join(root, rsv);
5319 	if (!IS_ERR(trans)) {
5320 		trans->block_rsv = rsv;
5321 		btrfs_orphan_del(trans, BTRFS_I(inode));
5322 		trans->block_rsv = &fs_info->trans_block_rsv;
5323 		btrfs_end_transaction(trans);
5324 	}
5325 
5326 out:
5327 	btrfs_free_block_rsv(fs_info, rsv);
5328 	/*
5329 	 * If we didn't successfully delete, the orphan item will still be in
5330 	 * the tree and we'll retry on the next mount. Again, we might also want
5331 	 * to retry these periodically in the future.
5332 	 */
5333 	btrfs_remove_delayed_node(BTRFS_I(inode));
5334 	fsverity_cleanup_inode(inode);
5335 	clear_inode(inode);
5336 }
5337 
5338 /*
5339  * Return the key found in the dir entry in the location pointer, fill @type
5340  * with BTRFS_FT_*, and return 0.
5341  *
5342  * If no dir entries were found, returns -ENOENT.
5343  * If found a corrupted location in dir entry, returns -EUCLEAN.
5344  */
5345 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5346 			       struct btrfs_key *location, u8 *type)
5347 {
5348 	struct btrfs_dir_item *di;
5349 	struct btrfs_path *path;
5350 	struct btrfs_root *root = dir->root;
5351 	int ret = 0;
5352 	struct fscrypt_name fname;
5353 
5354 	path = btrfs_alloc_path();
5355 	if (!path)
5356 		return -ENOMEM;
5357 
5358 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5359 	if (ret < 0)
5360 		goto out;
5361 	/*
5362 	 * fscrypt_setup_filename() should never return a positive value, but
5363 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5364 	 */
5365 	ASSERT(ret == 0);
5366 
5367 	/* This needs to handle no-key deletions later on */
5368 
5369 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5370 				   &fname.disk_name, 0);
5371 	if (IS_ERR_OR_NULL(di)) {
5372 		ret = di ? PTR_ERR(di) : -ENOENT;
5373 		goto out;
5374 	}
5375 
5376 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5377 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5378 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5379 		ret = -EUCLEAN;
5380 		btrfs_warn(root->fs_info,
5381 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5382 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5383 			   location->objectid, location->type, location->offset);
5384 	}
5385 	if (!ret)
5386 		*type = btrfs_dir_ftype(path->nodes[0], di);
5387 out:
5388 	fscrypt_free_filename(&fname);
5389 	btrfs_free_path(path);
5390 	return ret;
5391 }
5392 
5393 /*
5394  * when we hit a tree root in a directory, the btrfs part of the inode
5395  * needs to be changed to reflect the root directory of the tree root.  This
5396  * is kind of like crossing a mount point.
5397  */
5398 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5399 				    struct btrfs_inode *dir,
5400 				    struct dentry *dentry,
5401 				    struct btrfs_key *location,
5402 				    struct btrfs_root **sub_root)
5403 {
5404 	struct btrfs_path *path;
5405 	struct btrfs_root *new_root;
5406 	struct btrfs_root_ref *ref;
5407 	struct extent_buffer *leaf;
5408 	struct btrfs_key key;
5409 	int ret;
5410 	int err = 0;
5411 	struct fscrypt_name fname;
5412 
5413 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5414 	if (ret)
5415 		return ret;
5416 
5417 	path = btrfs_alloc_path();
5418 	if (!path) {
5419 		err = -ENOMEM;
5420 		goto out;
5421 	}
5422 
5423 	err = -ENOENT;
5424 	key.objectid = dir->root->root_key.objectid;
5425 	key.type = BTRFS_ROOT_REF_KEY;
5426 	key.offset = location->objectid;
5427 
5428 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5429 	if (ret) {
5430 		if (ret < 0)
5431 			err = ret;
5432 		goto out;
5433 	}
5434 
5435 	leaf = path->nodes[0];
5436 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5437 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5438 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5439 		goto out;
5440 
5441 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5442 				   (unsigned long)(ref + 1), fname.disk_name.len);
5443 	if (ret)
5444 		goto out;
5445 
5446 	btrfs_release_path(path);
5447 
5448 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5449 	if (IS_ERR(new_root)) {
5450 		err = PTR_ERR(new_root);
5451 		goto out;
5452 	}
5453 
5454 	*sub_root = new_root;
5455 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5456 	location->type = BTRFS_INODE_ITEM_KEY;
5457 	location->offset = 0;
5458 	err = 0;
5459 out:
5460 	btrfs_free_path(path);
5461 	fscrypt_free_filename(&fname);
5462 	return err;
5463 }
5464 
5465 static void inode_tree_add(struct btrfs_inode *inode)
5466 {
5467 	struct btrfs_root *root = inode->root;
5468 	struct btrfs_inode *entry;
5469 	struct rb_node **p;
5470 	struct rb_node *parent;
5471 	struct rb_node *new = &inode->rb_node;
5472 	u64 ino = btrfs_ino(inode);
5473 
5474 	if (inode_unhashed(&inode->vfs_inode))
5475 		return;
5476 	parent = NULL;
5477 	spin_lock(&root->inode_lock);
5478 	p = &root->inode_tree.rb_node;
5479 	while (*p) {
5480 		parent = *p;
5481 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5482 
5483 		if (ino < btrfs_ino(entry))
5484 			p = &parent->rb_left;
5485 		else if (ino > btrfs_ino(entry))
5486 			p = &parent->rb_right;
5487 		else {
5488 			WARN_ON(!(entry->vfs_inode.i_state &
5489 				  (I_WILL_FREE | I_FREEING)));
5490 			rb_replace_node(parent, new, &root->inode_tree);
5491 			RB_CLEAR_NODE(parent);
5492 			spin_unlock(&root->inode_lock);
5493 			return;
5494 		}
5495 	}
5496 	rb_link_node(new, parent, p);
5497 	rb_insert_color(new, &root->inode_tree);
5498 	spin_unlock(&root->inode_lock);
5499 }
5500 
5501 static void inode_tree_del(struct btrfs_inode *inode)
5502 {
5503 	struct btrfs_root *root = inode->root;
5504 	int empty = 0;
5505 
5506 	spin_lock(&root->inode_lock);
5507 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5508 		rb_erase(&inode->rb_node, &root->inode_tree);
5509 		RB_CLEAR_NODE(&inode->rb_node);
5510 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5511 	}
5512 	spin_unlock(&root->inode_lock);
5513 
5514 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5515 		spin_lock(&root->inode_lock);
5516 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5517 		spin_unlock(&root->inode_lock);
5518 		if (empty)
5519 			btrfs_add_dead_root(root);
5520 	}
5521 }
5522 
5523 
5524 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5525 {
5526 	struct btrfs_iget_args *args = p;
5527 
5528 	inode->i_ino = args->ino;
5529 	BTRFS_I(inode)->location.objectid = args->ino;
5530 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5531 	BTRFS_I(inode)->location.offset = 0;
5532 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5533 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5534 
5535 	if (args->root && args->root == args->root->fs_info->tree_root &&
5536 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5537 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5538 			&BTRFS_I(inode)->runtime_flags);
5539 	return 0;
5540 }
5541 
5542 static int btrfs_find_actor(struct inode *inode, void *opaque)
5543 {
5544 	struct btrfs_iget_args *args = opaque;
5545 
5546 	return args->ino == BTRFS_I(inode)->location.objectid &&
5547 		args->root == BTRFS_I(inode)->root;
5548 }
5549 
5550 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5551 				       struct btrfs_root *root)
5552 {
5553 	struct inode *inode;
5554 	struct btrfs_iget_args args;
5555 	unsigned long hashval = btrfs_inode_hash(ino, root);
5556 
5557 	args.ino = ino;
5558 	args.root = root;
5559 
5560 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5561 			     btrfs_init_locked_inode,
5562 			     (void *)&args);
5563 	return inode;
5564 }
5565 
5566 /*
5567  * Get an inode object given its inode number and corresponding root.
5568  * Path can be preallocated to prevent recursing back to iget through
5569  * allocator. NULL is also valid but may require an additional allocation
5570  * later.
5571  */
5572 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5573 			      struct btrfs_root *root, struct btrfs_path *path)
5574 {
5575 	struct inode *inode;
5576 
5577 	inode = btrfs_iget_locked(s, ino, root);
5578 	if (!inode)
5579 		return ERR_PTR(-ENOMEM);
5580 
5581 	if (inode->i_state & I_NEW) {
5582 		int ret;
5583 
5584 		ret = btrfs_read_locked_inode(inode, path);
5585 		if (!ret) {
5586 			inode_tree_add(BTRFS_I(inode));
5587 			unlock_new_inode(inode);
5588 		} else {
5589 			iget_failed(inode);
5590 			/*
5591 			 * ret > 0 can come from btrfs_search_slot called by
5592 			 * btrfs_read_locked_inode, this means the inode item
5593 			 * was not found.
5594 			 */
5595 			if (ret > 0)
5596 				ret = -ENOENT;
5597 			inode = ERR_PTR(ret);
5598 		}
5599 	}
5600 
5601 	return inode;
5602 }
5603 
5604 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5605 {
5606 	return btrfs_iget_path(s, ino, root, NULL);
5607 }
5608 
5609 static struct inode *new_simple_dir(struct super_block *s,
5610 				    struct btrfs_key *key,
5611 				    struct btrfs_root *root)
5612 {
5613 	struct inode *inode = new_inode(s);
5614 
5615 	if (!inode)
5616 		return ERR_PTR(-ENOMEM);
5617 
5618 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5619 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5620 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5621 
5622 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5623 	/*
5624 	 * We only need lookup, the rest is read-only and there's no inode
5625 	 * associated with the dentry
5626 	 */
5627 	inode->i_op = &simple_dir_inode_operations;
5628 	inode->i_opflags &= ~IOP_XATTR;
5629 	inode->i_fop = &simple_dir_operations;
5630 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5631 	inode->i_mtime = current_time(inode);
5632 	inode->i_atime = inode->i_mtime;
5633 	inode->i_ctime = inode->i_mtime;
5634 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5635 
5636 	return inode;
5637 }
5638 
5639 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5640 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5641 static_assert(BTRFS_FT_DIR == FT_DIR);
5642 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5643 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5644 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5645 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5646 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5647 
5648 static inline u8 btrfs_inode_type(struct inode *inode)
5649 {
5650 	return fs_umode_to_ftype(inode->i_mode);
5651 }
5652 
5653 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5654 {
5655 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5656 	struct inode *inode;
5657 	struct btrfs_root *root = BTRFS_I(dir)->root;
5658 	struct btrfs_root *sub_root = root;
5659 	struct btrfs_key location;
5660 	u8 di_type = 0;
5661 	int ret = 0;
5662 
5663 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5664 		return ERR_PTR(-ENAMETOOLONG);
5665 
5666 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5667 	if (ret < 0)
5668 		return ERR_PTR(ret);
5669 
5670 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5671 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5672 		if (IS_ERR(inode))
5673 			return inode;
5674 
5675 		/* Do extra check against inode mode with di_type */
5676 		if (btrfs_inode_type(inode) != di_type) {
5677 			btrfs_crit(fs_info,
5678 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5679 				  inode->i_mode, btrfs_inode_type(inode),
5680 				  di_type);
5681 			iput(inode);
5682 			return ERR_PTR(-EUCLEAN);
5683 		}
5684 		return inode;
5685 	}
5686 
5687 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5688 				       &location, &sub_root);
5689 	if (ret < 0) {
5690 		if (ret != -ENOENT)
5691 			inode = ERR_PTR(ret);
5692 		else
5693 			inode = new_simple_dir(dir->i_sb, &location, root);
5694 	} else {
5695 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5696 		btrfs_put_root(sub_root);
5697 
5698 		if (IS_ERR(inode))
5699 			return inode;
5700 
5701 		down_read(&fs_info->cleanup_work_sem);
5702 		if (!sb_rdonly(inode->i_sb))
5703 			ret = btrfs_orphan_cleanup(sub_root);
5704 		up_read(&fs_info->cleanup_work_sem);
5705 		if (ret) {
5706 			iput(inode);
5707 			inode = ERR_PTR(ret);
5708 		}
5709 	}
5710 
5711 	return inode;
5712 }
5713 
5714 static int btrfs_dentry_delete(const struct dentry *dentry)
5715 {
5716 	struct btrfs_root *root;
5717 	struct inode *inode = d_inode(dentry);
5718 
5719 	if (!inode && !IS_ROOT(dentry))
5720 		inode = d_inode(dentry->d_parent);
5721 
5722 	if (inode) {
5723 		root = BTRFS_I(inode)->root;
5724 		if (btrfs_root_refs(&root->root_item) == 0)
5725 			return 1;
5726 
5727 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5728 			return 1;
5729 	}
5730 	return 0;
5731 }
5732 
5733 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5734 				   unsigned int flags)
5735 {
5736 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5737 
5738 	if (inode == ERR_PTR(-ENOENT))
5739 		inode = NULL;
5740 	return d_splice_alias(inode, dentry);
5741 }
5742 
5743 /*
5744  * All this infrastructure exists because dir_emit can fault, and we are holding
5745  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5746  * our information into that, and then dir_emit from the buffer.  This is
5747  * similar to what NFS does, only we don't keep the buffer around in pagecache
5748  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5749  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5750  * tree lock.
5751  */
5752 static int btrfs_opendir(struct inode *inode, struct file *file)
5753 {
5754 	struct btrfs_file_private *private;
5755 
5756 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5757 	if (!private)
5758 		return -ENOMEM;
5759 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5760 	if (!private->filldir_buf) {
5761 		kfree(private);
5762 		return -ENOMEM;
5763 	}
5764 	file->private_data = private;
5765 	return 0;
5766 }
5767 
5768 struct dir_entry {
5769 	u64 ino;
5770 	u64 offset;
5771 	unsigned type;
5772 	int name_len;
5773 };
5774 
5775 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5776 {
5777 	while (entries--) {
5778 		struct dir_entry *entry = addr;
5779 		char *name = (char *)(entry + 1);
5780 
5781 		ctx->pos = get_unaligned(&entry->offset);
5782 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5783 					 get_unaligned(&entry->ino),
5784 					 get_unaligned(&entry->type)))
5785 			return 1;
5786 		addr += sizeof(struct dir_entry) +
5787 			get_unaligned(&entry->name_len);
5788 		ctx->pos++;
5789 	}
5790 	return 0;
5791 }
5792 
5793 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5794 {
5795 	struct inode *inode = file_inode(file);
5796 	struct btrfs_root *root = BTRFS_I(inode)->root;
5797 	struct btrfs_file_private *private = file->private_data;
5798 	struct btrfs_dir_item *di;
5799 	struct btrfs_key key;
5800 	struct btrfs_key found_key;
5801 	struct btrfs_path *path;
5802 	void *addr;
5803 	struct list_head ins_list;
5804 	struct list_head del_list;
5805 	int ret;
5806 	char *name_ptr;
5807 	int name_len;
5808 	int entries = 0;
5809 	int total_len = 0;
5810 	bool put = false;
5811 	struct btrfs_key location;
5812 
5813 	if (!dir_emit_dots(file, ctx))
5814 		return 0;
5815 
5816 	path = btrfs_alloc_path();
5817 	if (!path)
5818 		return -ENOMEM;
5819 
5820 	addr = private->filldir_buf;
5821 	path->reada = READA_FORWARD;
5822 
5823 	INIT_LIST_HEAD(&ins_list);
5824 	INIT_LIST_HEAD(&del_list);
5825 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5826 
5827 again:
5828 	key.type = BTRFS_DIR_INDEX_KEY;
5829 	key.offset = ctx->pos;
5830 	key.objectid = btrfs_ino(BTRFS_I(inode));
5831 
5832 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5833 		struct dir_entry *entry;
5834 		struct extent_buffer *leaf = path->nodes[0];
5835 		u8 ftype;
5836 
5837 		if (found_key.objectid != key.objectid)
5838 			break;
5839 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5840 			break;
5841 		if (found_key.offset < ctx->pos)
5842 			continue;
5843 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5844 			continue;
5845 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5846 		name_len = btrfs_dir_name_len(leaf, di);
5847 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5848 		    PAGE_SIZE) {
5849 			btrfs_release_path(path);
5850 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5851 			if (ret)
5852 				goto nopos;
5853 			addr = private->filldir_buf;
5854 			entries = 0;
5855 			total_len = 0;
5856 			goto again;
5857 		}
5858 
5859 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5860 		entry = addr;
5861 		name_ptr = (char *)(entry + 1);
5862 		read_extent_buffer(leaf, name_ptr,
5863 				   (unsigned long)(di + 1), name_len);
5864 		put_unaligned(name_len, &entry->name_len);
5865 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5866 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5867 		put_unaligned(location.objectid, &entry->ino);
5868 		put_unaligned(found_key.offset, &entry->offset);
5869 		entries++;
5870 		addr += sizeof(struct dir_entry) + name_len;
5871 		total_len += sizeof(struct dir_entry) + name_len;
5872 	}
5873 	/* Catch error encountered during iteration */
5874 	if (ret < 0)
5875 		goto err;
5876 
5877 	btrfs_release_path(path);
5878 
5879 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5880 	if (ret)
5881 		goto nopos;
5882 
5883 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5884 	if (ret)
5885 		goto nopos;
5886 
5887 	/*
5888 	 * Stop new entries from being returned after we return the last
5889 	 * entry.
5890 	 *
5891 	 * New directory entries are assigned a strictly increasing
5892 	 * offset.  This means that new entries created during readdir
5893 	 * are *guaranteed* to be seen in the future by that readdir.
5894 	 * This has broken buggy programs which operate on names as
5895 	 * they're returned by readdir.  Until we re-use freed offsets
5896 	 * we have this hack to stop new entries from being returned
5897 	 * under the assumption that they'll never reach this huge
5898 	 * offset.
5899 	 *
5900 	 * This is being careful not to overflow 32bit loff_t unless the
5901 	 * last entry requires it because doing so has broken 32bit apps
5902 	 * in the past.
5903 	 */
5904 	if (ctx->pos >= INT_MAX)
5905 		ctx->pos = LLONG_MAX;
5906 	else
5907 		ctx->pos = INT_MAX;
5908 nopos:
5909 	ret = 0;
5910 err:
5911 	if (put)
5912 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5913 	btrfs_free_path(path);
5914 	return ret;
5915 }
5916 
5917 /*
5918  * This is somewhat expensive, updating the tree every time the
5919  * inode changes.  But, it is most likely to find the inode in cache.
5920  * FIXME, needs more benchmarking...there are no reasons other than performance
5921  * to keep or drop this code.
5922  */
5923 static int btrfs_dirty_inode(struct btrfs_inode *inode)
5924 {
5925 	struct btrfs_root *root = inode->root;
5926 	struct btrfs_fs_info *fs_info = root->fs_info;
5927 	struct btrfs_trans_handle *trans;
5928 	int ret;
5929 
5930 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
5931 		return 0;
5932 
5933 	trans = btrfs_join_transaction(root);
5934 	if (IS_ERR(trans))
5935 		return PTR_ERR(trans);
5936 
5937 	ret = btrfs_update_inode(trans, root, inode);
5938 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5939 		/* whoops, lets try again with the full transaction */
5940 		btrfs_end_transaction(trans);
5941 		trans = btrfs_start_transaction(root, 1);
5942 		if (IS_ERR(trans))
5943 			return PTR_ERR(trans);
5944 
5945 		ret = btrfs_update_inode(trans, root, inode);
5946 	}
5947 	btrfs_end_transaction(trans);
5948 	if (inode->delayed_node)
5949 		btrfs_balance_delayed_items(fs_info);
5950 
5951 	return ret;
5952 }
5953 
5954 /*
5955  * This is a copy of file_update_time.  We need this so we can return error on
5956  * ENOSPC for updating the inode in the case of file write and mmap writes.
5957  */
5958 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5959 			     int flags)
5960 {
5961 	struct btrfs_root *root = BTRFS_I(inode)->root;
5962 	bool dirty = flags & ~S_VERSION;
5963 
5964 	if (btrfs_root_readonly(root))
5965 		return -EROFS;
5966 
5967 	if (flags & S_VERSION)
5968 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5969 	if (flags & S_CTIME)
5970 		inode->i_ctime = *now;
5971 	if (flags & S_MTIME)
5972 		inode->i_mtime = *now;
5973 	if (flags & S_ATIME)
5974 		inode->i_atime = *now;
5975 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
5976 }
5977 
5978 /*
5979  * find the highest existing sequence number in a directory
5980  * and then set the in-memory index_cnt variable to reflect
5981  * free sequence numbers
5982  */
5983 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5984 {
5985 	struct btrfs_root *root = inode->root;
5986 	struct btrfs_key key, found_key;
5987 	struct btrfs_path *path;
5988 	struct extent_buffer *leaf;
5989 	int ret;
5990 
5991 	key.objectid = btrfs_ino(inode);
5992 	key.type = BTRFS_DIR_INDEX_KEY;
5993 	key.offset = (u64)-1;
5994 
5995 	path = btrfs_alloc_path();
5996 	if (!path)
5997 		return -ENOMEM;
5998 
5999 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6000 	if (ret < 0)
6001 		goto out;
6002 	/* FIXME: we should be able to handle this */
6003 	if (ret == 0)
6004 		goto out;
6005 	ret = 0;
6006 
6007 	if (path->slots[0] == 0) {
6008 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6009 		goto out;
6010 	}
6011 
6012 	path->slots[0]--;
6013 
6014 	leaf = path->nodes[0];
6015 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6016 
6017 	if (found_key.objectid != btrfs_ino(inode) ||
6018 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6019 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6020 		goto out;
6021 	}
6022 
6023 	inode->index_cnt = found_key.offset + 1;
6024 out:
6025 	btrfs_free_path(path);
6026 	return ret;
6027 }
6028 
6029 /*
6030  * helper to find a free sequence number in a given directory.  This current
6031  * code is very simple, later versions will do smarter things in the btree
6032  */
6033 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6034 {
6035 	int ret = 0;
6036 
6037 	if (dir->index_cnt == (u64)-1) {
6038 		ret = btrfs_inode_delayed_dir_index_count(dir);
6039 		if (ret) {
6040 			ret = btrfs_set_inode_index_count(dir);
6041 			if (ret)
6042 				return ret;
6043 		}
6044 	}
6045 
6046 	*index = dir->index_cnt;
6047 	dir->index_cnt++;
6048 
6049 	return ret;
6050 }
6051 
6052 static int btrfs_insert_inode_locked(struct inode *inode)
6053 {
6054 	struct btrfs_iget_args args;
6055 
6056 	args.ino = BTRFS_I(inode)->location.objectid;
6057 	args.root = BTRFS_I(inode)->root;
6058 
6059 	return insert_inode_locked4(inode,
6060 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6061 		   btrfs_find_actor, &args);
6062 }
6063 
6064 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6065 			    unsigned int *trans_num_items)
6066 {
6067 	struct inode *dir = args->dir;
6068 	struct inode *inode = args->inode;
6069 	int ret;
6070 
6071 	if (!args->orphan) {
6072 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6073 					     &args->fname);
6074 		if (ret)
6075 			return ret;
6076 	}
6077 
6078 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6079 	if (ret) {
6080 		fscrypt_free_filename(&args->fname);
6081 		return ret;
6082 	}
6083 
6084 	/* 1 to add inode item */
6085 	*trans_num_items = 1;
6086 	/* 1 to add compression property */
6087 	if (BTRFS_I(dir)->prop_compress)
6088 		(*trans_num_items)++;
6089 	/* 1 to add default ACL xattr */
6090 	if (args->default_acl)
6091 		(*trans_num_items)++;
6092 	/* 1 to add access ACL xattr */
6093 	if (args->acl)
6094 		(*trans_num_items)++;
6095 #ifdef CONFIG_SECURITY
6096 	/* 1 to add LSM xattr */
6097 	if (dir->i_security)
6098 		(*trans_num_items)++;
6099 #endif
6100 	if (args->orphan) {
6101 		/* 1 to add orphan item */
6102 		(*trans_num_items)++;
6103 	} else {
6104 		/*
6105 		 * 1 to add dir item
6106 		 * 1 to add dir index
6107 		 * 1 to update parent inode item
6108 		 *
6109 		 * No need for 1 unit for the inode ref item because it is
6110 		 * inserted in a batch together with the inode item at
6111 		 * btrfs_create_new_inode().
6112 		 */
6113 		*trans_num_items += 3;
6114 	}
6115 	return 0;
6116 }
6117 
6118 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6119 {
6120 	posix_acl_release(args->acl);
6121 	posix_acl_release(args->default_acl);
6122 	fscrypt_free_filename(&args->fname);
6123 }
6124 
6125 /*
6126  * Inherit flags from the parent inode.
6127  *
6128  * Currently only the compression flags and the cow flags are inherited.
6129  */
6130 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6131 {
6132 	unsigned int flags;
6133 
6134 	flags = dir->flags;
6135 
6136 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6137 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6138 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6139 	} else if (flags & BTRFS_INODE_COMPRESS) {
6140 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6141 		inode->flags |= BTRFS_INODE_COMPRESS;
6142 	}
6143 
6144 	if (flags & BTRFS_INODE_NODATACOW) {
6145 		inode->flags |= BTRFS_INODE_NODATACOW;
6146 		if (S_ISREG(inode->vfs_inode.i_mode))
6147 			inode->flags |= BTRFS_INODE_NODATASUM;
6148 	}
6149 
6150 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6151 }
6152 
6153 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6154 			   struct btrfs_new_inode_args *args)
6155 {
6156 	struct inode *dir = args->dir;
6157 	struct inode *inode = args->inode;
6158 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6159 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6160 	struct btrfs_root *root;
6161 	struct btrfs_inode_item *inode_item;
6162 	struct btrfs_key *location;
6163 	struct btrfs_path *path;
6164 	u64 objectid;
6165 	struct btrfs_inode_ref *ref;
6166 	struct btrfs_key key[2];
6167 	u32 sizes[2];
6168 	struct btrfs_item_batch batch;
6169 	unsigned long ptr;
6170 	int ret;
6171 
6172 	path = btrfs_alloc_path();
6173 	if (!path)
6174 		return -ENOMEM;
6175 
6176 	if (!args->subvol)
6177 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6178 	root = BTRFS_I(inode)->root;
6179 
6180 	ret = btrfs_get_free_objectid(root, &objectid);
6181 	if (ret)
6182 		goto out;
6183 	inode->i_ino = objectid;
6184 
6185 	if (args->orphan) {
6186 		/*
6187 		 * O_TMPFILE, set link count to 0, so that after this point, we
6188 		 * fill in an inode item with the correct link count.
6189 		 */
6190 		set_nlink(inode, 0);
6191 	} else {
6192 		trace_btrfs_inode_request(dir);
6193 
6194 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6195 		if (ret)
6196 			goto out;
6197 	}
6198 	/* index_cnt is ignored for everything but a dir. */
6199 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6200 	BTRFS_I(inode)->generation = trans->transid;
6201 	inode->i_generation = BTRFS_I(inode)->generation;
6202 
6203 	/*
6204 	 * Subvolumes don't inherit flags from their parent directory.
6205 	 * Originally this was probably by accident, but we probably can't
6206 	 * change it now without compatibility issues.
6207 	 */
6208 	if (!args->subvol)
6209 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6210 
6211 	if (S_ISREG(inode->i_mode)) {
6212 		if (btrfs_test_opt(fs_info, NODATASUM))
6213 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6214 		if (btrfs_test_opt(fs_info, NODATACOW))
6215 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6216 				BTRFS_INODE_NODATASUM;
6217 	}
6218 
6219 	location = &BTRFS_I(inode)->location;
6220 	location->objectid = objectid;
6221 	location->offset = 0;
6222 	location->type = BTRFS_INODE_ITEM_KEY;
6223 
6224 	ret = btrfs_insert_inode_locked(inode);
6225 	if (ret < 0) {
6226 		if (!args->orphan)
6227 			BTRFS_I(dir)->index_cnt--;
6228 		goto out;
6229 	}
6230 
6231 	/*
6232 	 * We could have gotten an inode number from somebody who was fsynced
6233 	 * and then removed in this same transaction, so let's just set full
6234 	 * sync since it will be a full sync anyway and this will blow away the
6235 	 * old info in the log.
6236 	 */
6237 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6238 
6239 	key[0].objectid = objectid;
6240 	key[0].type = BTRFS_INODE_ITEM_KEY;
6241 	key[0].offset = 0;
6242 
6243 	sizes[0] = sizeof(struct btrfs_inode_item);
6244 
6245 	if (!args->orphan) {
6246 		/*
6247 		 * Start new inodes with an inode_ref. This is slightly more
6248 		 * efficient for small numbers of hard links since they will
6249 		 * be packed into one item. Extended refs will kick in if we
6250 		 * add more hard links than can fit in the ref item.
6251 		 */
6252 		key[1].objectid = objectid;
6253 		key[1].type = BTRFS_INODE_REF_KEY;
6254 		if (args->subvol) {
6255 			key[1].offset = objectid;
6256 			sizes[1] = 2 + sizeof(*ref);
6257 		} else {
6258 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6259 			sizes[1] = name->len + sizeof(*ref);
6260 		}
6261 	}
6262 
6263 	batch.keys = &key[0];
6264 	batch.data_sizes = &sizes[0];
6265 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6266 	batch.nr = args->orphan ? 1 : 2;
6267 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6268 	if (ret != 0) {
6269 		btrfs_abort_transaction(trans, ret);
6270 		goto discard;
6271 	}
6272 
6273 	inode->i_mtime = current_time(inode);
6274 	inode->i_atime = inode->i_mtime;
6275 	inode->i_ctime = inode->i_mtime;
6276 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6277 
6278 	/*
6279 	 * We're going to fill the inode item now, so at this point the inode
6280 	 * must be fully initialized.
6281 	 */
6282 
6283 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6284 				  struct btrfs_inode_item);
6285 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6286 			     sizeof(*inode_item));
6287 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6288 
6289 	if (!args->orphan) {
6290 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6291 				     struct btrfs_inode_ref);
6292 		ptr = (unsigned long)(ref + 1);
6293 		if (args->subvol) {
6294 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6295 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6296 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6297 		} else {
6298 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6299 						     name->len);
6300 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6301 						  BTRFS_I(inode)->dir_index);
6302 			write_extent_buffer(path->nodes[0], name->name, ptr,
6303 					    name->len);
6304 		}
6305 	}
6306 
6307 	btrfs_mark_buffer_dirty(path->nodes[0]);
6308 	/*
6309 	 * We don't need the path anymore, plus inheriting properties, adding
6310 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6311 	 * allocating yet another path. So just free our path.
6312 	 */
6313 	btrfs_free_path(path);
6314 	path = NULL;
6315 
6316 	if (args->subvol) {
6317 		struct inode *parent;
6318 
6319 		/*
6320 		 * Subvolumes inherit properties from their parent subvolume,
6321 		 * not the directory they were created in.
6322 		 */
6323 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6324 				    BTRFS_I(dir)->root);
6325 		if (IS_ERR(parent)) {
6326 			ret = PTR_ERR(parent);
6327 		} else {
6328 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6329 			iput(parent);
6330 		}
6331 	} else {
6332 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6333 	}
6334 	if (ret) {
6335 		btrfs_err(fs_info,
6336 			  "error inheriting props for ino %llu (root %llu): %d",
6337 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6338 			  ret);
6339 	}
6340 
6341 	/*
6342 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6343 	 * probably a bug.
6344 	 */
6345 	if (!args->subvol) {
6346 		ret = btrfs_init_inode_security(trans, args);
6347 		if (ret) {
6348 			btrfs_abort_transaction(trans, ret);
6349 			goto discard;
6350 		}
6351 	}
6352 
6353 	inode_tree_add(BTRFS_I(inode));
6354 
6355 	trace_btrfs_inode_new(inode);
6356 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6357 
6358 	btrfs_update_root_times(trans, root);
6359 
6360 	if (args->orphan) {
6361 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6362 	} else {
6363 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6364 				     0, BTRFS_I(inode)->dir_index);
6365 	}
6366 	if (ret) {
6367 		btrfs_abort_transaction(trans, ret);
6368 		goto discard;
6369 	}
6370 
6371 	return 0;
6372 
6373 discard:
6374 	/*
6375 	 * discard_new_inode() calls iput(), but the caller owns the reference
6376 	 * to the inode.
6377 	 */
6378 	ihold(inode);
6379 	discard_new_inode(inode);
6380 out:
6381 	btrfs_free_path(path);
6382 	return ret;
6383 }
6384 
6385 /*
6386  * utility function to add 'inode' into 'parent_inode' with
6387  * a give name and a given sequence number.
6388  * if 'add_backref' is true, also insert a backref from the
6389  * inode to the parent directory.
6390  */
6391 int btrfs_add_link(struct btrfs_trans_handle *trans,
6392 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6393 		   const struct fscrypt_str *name, int add_backref, u64 index)
6394 {
6395 	int ret = 0;
6396 	struct btrfs_key key;
6397 	struct btrfs_root *root = parent_inode->root;
6398 	u64 ino = btrfs_ino(inode);
6399 	u64 parent_ino = btrfs_ino(parent_inode);
6400 
6401 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6402 		memcpy(&key, &inode->root->root_key, sizeof(key));
6403 	} else {
6404 		key.objectid = ino;
6405 		key.type = BTRFS_INODE_ITEM_KEY;
6406 		key.offset = 0;
6407 	}
6408 
6409 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6410 		ret = btrfs_add_root_ref(trans, key.objectid,
6411 					 root->root_key.objectid, parent_ino,
6412 					 index, name);
6413 	} else if (add_backref) {
6414 		ret = btrfs_insert_inode_ref(trans, root, name,
6415 					     ino, parent_ino, index);
6416 	}
6417 
6418 	/* Nothing to clean up yet */
6419 	if (ret)
6420 		return ret;
6421 
6422 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6423 				    btrfs_inode_type(&inode->vfs_inode), index);
6424 	if (ret == -EEXIST || ret == -EOVERFLOW)
6425 		goto fail_dir_item;
6426 	else if (ret) {
6427 		btrfs_abort_transaction(trans, ret);
6428 		return ret;
6429 	}
6430 
6431 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6432 			   name->len * 2);
6433 	inode_inc_iversion(&parent_inode->vfs_inode);
6434 	/*
6435 	 * If we are replaying a log tree, we do not want to update the mtime
6436 	 * and ctime of the parent directory with the current time, since the
6437 	 * log replay procedure is responsible for setting them to their correct
6438 	 * values (the ones it had when the fsync was done).
6439 	 */
6440 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6441 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6442 
6443 		parent_inode->vfs_inode.i_mtime = now;
6444 		parent_inode->vfs_inode.i_ctime = now;
6445 	}
6446 	ret = btrfs_update_inode(trans, root, parent_inode);
6447 	if (ret)
6448 		btrfs_abort_transaction(trans, ret);
6449 	return ret;
6450 
6451 fail_dir_item:
6452 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6453 		u64 local_index;
6454 		int err;
6455 		err = btrfs_del_root_ref(trans, key.objectid,
6456 					 root->root_key.objectid, parent_ino,
6457 					 &local_index, name);
6458 		if (err)
6459 			btrfs_abort_transaction(trans, err);
6460 	} else if (add_backref) {
6461 		u64 local_index;
6462 		int err;
6463 
6464 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6465 					  &local_index);
6466 		if (err)
6467 			btrfs_abort_transaction(trans, err);
6468 	}
6469 
6470 	/* Return the original error code */
6471 	return ret;
6472 }
6473 
6474 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6475 			       struct inode *inode)
6476 {
6477 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6478 	struct btrfs_root *root = BTRFS_I(dir)->root;
6479 	struct btrfs_new_inode_args new_inode_args = {
6480 		.dir = dir,
6481 		.dentry = dentry,
6482 		.inode = inode,
6483 	};
6484 	unsigned int trans_num_items;
6485 	struct btrfs_trans_handle *trans;
6486 	int err;
6487 
6488 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6489 	if (err)
6490 		goto out_inode;
6491 
6492 	trans = btrfs_start_transaction(root, trans_num_items);
6493 	if (IS_ERR(trans)) {
6494 		err = PTR_ERR(trans);
6495 		goto out_new_inode_args;
6496 	}
6497 
6498 	err = btrfs_create_new_inode(trans, &new_inode_args);
6499 	if (!err)
6500 		d_instantiate_new(dentry, inode);
6501 
6502 	btrfs_end_transaction(trans);
6503 	btrfs_btree_balance_dirty(fs_info);
6504 out_new_inode_args:
6505 	btrfs_new_inode_args_destroy(&new_inode_args);
6506 out_inode:
6507 	if (err)
6508 		iput(inode);
6509 	return err;
6510 }
6511 
6512 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6513 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6514 {
6515 	struct inode *inode;
6516 
6517 	inode = new_inode(dir->i_sb);
6518 	if (!inode)
6519 		return -ENOMEM;
6520 	inode_init_owner(idmap, inode, dir, mode);
6521 	inode->i_op = &btrfs_special_inode_operations;
6522 	init_special_inode(inode, inode->i_mode, rdev);
6523 	return btrfs_create_common(dir, dentry, inode);
6524 }
6525 
6526 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6527 			struct dentry *dentry, umode_t mode, bool excl)
6528 {
6529 	struct inode *inode;
6530 
6531 	inode = new_inode(dir->i_sb);
6532 	if (!inode)
6533 		return -ENOMEM;
6534 	inode_init_owner(idmap, inode, dir, mode);
6535 	inode->i_fop = &btrfs_file_operations;
6536 	inode->i_op = &btrfs_file_inode_operations;
6537 	inode->i_mapping->a_ops = &btrfs_aops;
6538 	return btrfs_create_common(dir, dentry, inode);
6539 }
6540 
6541 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6542 		      struct dentry *dentry)
6543 {
6544 	struct btrfs_trans_handle *trans = NULL;
6545 	struct btrfs_root *root = BTRFS_I(dir)->root;
6546 	struct inode *inode = d_inode(old_dentry);
6547 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6548 	struct fscrypt_name fname;
6549 	u64 index;
6550 	int err;
6551 	int drop_inode = 0;
6552 
6553 	/* do not allow sys_link's with other subvols of the same device */
6554 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6555 		return -EXDEV;
6556 
6557 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6558 		return -EMLINK;
6559 
6560 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6561 	if (err)
6562 		goto fail;
6563 
6564 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6565 	if (err)
6566 		goto fail;
6567 
6568 	/*
6569 	 * 2 items for inode and inode ref
6570 	 * 2 items for dir items
6571 	 * 1 item for parent inode
6572 	 * 1 item for orphan item deletion if O_TMPFILE
6573 	 */
6574 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6575 	if (IS_ERR(trans)) {
6576 		err = PTR_ERR(trans);
6577 		trans = NULL;
6578 		goto fail;
6579 	}
6580 
6581 	/* There are several dir indexes for this inode, clear the cache. */
6582 	BTRFS_I(inode)->dir_index = 0ULL;
6583 	inc_nlink(inode);
6584 	inode_inc_iversion(inode);
6585 	inode->i_ctime = current_time(inode);
6586 	ihold(inode);
6587 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6588 
6589 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6590 			     &fname.disk_name, 1, index);
6591 
6592 	if (err) {
6593 		drop_inode = 1;
6594 	} else {
6595 		struct dentry *parent = dentry->d_parent;
6596 
6597 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6598 		if (err)
6599 			goto fail;
6600 		if (inode->i_nlink == 1) {
6601 			/*
6602 			 * If new hard link count is 1, it's a file created
6603 			 * with open(2) O_TMPFILE flag.
6604 			 */
6605 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6606 			if (err)
6607 				goto fail;
6608 		}
6609 		d_instantiate(dentry, inode);
6610 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6611 	}
6612 
6613 fail:
6614 	fscrypt_free_filename(&fname);
6615 	if (trans)
6616 		btrfs_end_transaction(trans);
6617 	if (drop_inode) {
6618 		inode_dec_link_count(inode);
6619 		iput(inode);
6620 	}
6621 	btrfs_btree_balance_dirty(fs_info);
6622 	return err;
6623 }
6624 
6625 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6626 		       struct dentry *dentry, umode_t mode)
6627 {
6628 	struct inode *inode;
6629 
6630 	inode = new_inode(dir->i_sb);
6631 	if (!inode)
6632 		return -ENOMEM;
6633 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6634 	inode->i_op = &btrfs_dir_inode_operations;
6635 	inode->i_fop = &btrfs_dir_file_operations;
6636 	return btrfs_create_common(dir, dentry, inode);
6637 }
6638 
6639 static noinline int uncompress_inline(struct btrfs_path *path,
6640 				      struct page *page,
6641 				      struct btrfs_file_extent_item *item)
6642 {
6643 	int ret;
6644 	struct extent_buffer *leaf = path->nodes[0];
6645 	char *tmp;
6646 	size_t max_size;
6647 	unsigned long inline_size;
6648 	unsigned long ptr;
6649 	int compress_type;
6650 
6651 	compress_type = btrfs_file_extent_compression(leaf, item);
6652 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6653 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6654 	tmp = kmalloc(inline_size, GFP_NOFS);
6655 	if (!tmp)
6656 		return -ENOMEM;
6657 	ptr = btrfs_file_extent_inline_start(item);
6658 
6659 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6660 
6661 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6662 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6663 
6664 	/*
6665 	 * decompression code contains a memset to fill in any space between the end
6666 	 * of the uncompressed data and the end of max_size in case the decompressed
6667 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6668 	 * the end of an inline extent and the beginning of the next block, so we
6669 	 * cover that region here.
6670 	 */
6671 
6672 	if (max_size < PAGE_SIZE)
6673 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6674 	kfree(tmp);
6675 	return ret;
6676 }
6677 
6678 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6679 			      struct page *page)
6680 {
6681 	struct btrfs_file_extent_item *fi;
6682 	void *kaddr;
6683 	size_t copy_size;
6684 
6685 	if (!page || PageUptodate(page))
6686 		return 0;
6687 
6688 	ASSERT(page_offset(page) == 0);
6689 
6690 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6691 			    struct btrfs_file_extent_item);
6692 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6693 		return uncompress_inline(path, page, fi);
6694 
6695 	copy_size = min_t(u64, PAGE_SIZE,
6696 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6697 	kaddr = kmap_local_page(page);
6698 	read_extent_buffer(path->nodes[0], kaddr,
6699 			   btrfs_file_extent_inline_start(fi), copy_size);
6700 	kunmap_local(kaddr);
6701 	if (copy_size < PAGE_SIZE)
6702 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6703 	return 0;
6704 }
6705 
6706 /*
6707  * Lookup the first extent overlapping a range in a file.
6708  *
6709  * @inode:	file to search in
6710  * @page:	page to read extent data into if the extent is inline
6711  * @pg_offset:	offset into @page to copy to
6712  * @start:	file offset
6713  * @len:	length of range starting at @start
6714  *
6715  * Return the first &struct extent_map which overlaps the given range, reading
6716  * it from the B-tree and caching it if necessary. Note that there may be more
6717  * extents which overlap the given range after the returned extent_map.
6718  *
6719  * If @page is not NULL and the extent is inline, this also reads the extent
6720  * data directly into the page and marks the extent up to date in the io_tree.
6721  *
6722  * Return: ERR_PTR on error, non-NULL extent_map on success.
6723  */
6724 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6725 				    struct page *page, size_t pg_offset,
6726 				    u64 start, u64 len)
6727 {
6728 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6729 	int ret = 0;
6730 	u64 extent_start = 0;
6731 	u64 extent_end = 0;
6732 	u64 objectid = btrfs_ino(inode);
6733 	int extent_type = -1;
6734 	struct btrfs_path *path = NULL;
6735 	struct btrfs_root *root = inode->root;
6736 	struct btrfs_file_extent_item *item;
6737 	struct extent_buffer *leaf;
6738 	struct btrfs_key found_key;
6739 	struct extent_map *em = NULL;
6740 	struct extent_map_tree *em_tree = &inode->extent_tree;
6741 
6742 	read_lock(&em_tree->lock);
6743 	em = lookup_extent_mapping(em_tree, start, len);
6744 	read_unlock(&em_tree->lock);
6745 
6746 	if (em) {
6747 		if (em->start > start || em->start + em->len <= start)
6748 			free_extent_map(em);
6749 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6750 			free_extent_map(em);
6751 		else
6752 			goto out;
6753 	}
6754 	em = alloc_extent_map();
6755 	if (!em) {
6756 		ret = -ENOMEM;
6757 		goto out;
6758 	}
6759 	em->start = EXTENT_MAP_HOLE;
6760 	em->orig_start = EXTENT_MAP_HOLE;
6761 	em->len = (u64)-1;
6762 	em->block_len = (u64)-1;
6763 
6764 	path = btrfs_alloc_path();
6765 	if (!path) {
6766 		ret = -ENOMEM;
6767 		goto out;
6768 	}
6769 
6770 	/* Chances are we'll be called again, so go ahead and do readahead */
6771 	path->reada = READA_FORWARD;
6772 
6773 	/*
6774 	 * The same explanation in load_free_space_cache applies here as well,
6775 	 * we only read when we're loading the free space cache, and at that
6776 	 * point the commit_root has everything we need.
6777 	 */
6778 	if (btrfs_is_free_space_inode(inode)) {
6779 		path->search_commit_root = 1;
6780 		path->skip_locking = 1;
6781 	}
6782 
6783 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6784 	if (ret < 0) {
6785 		goto out;
6786 	} else if (ret > 0) {
6787 		if (path->slots[0] == 0)
6788 			goto not_found;
6789 		path->slots[0]--;
6790 		ret = 0;
6791 	}
6792 
6793 	leaf = path->nodes[0];
6794 	item = btrfs_item_ptr(leaf, path->slots[0],
6795 			      struct btrfs_file_extent_item);
6796 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6797 	if (found_key.objectid != objectid ||
6798 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6799 		/*
6800 		 * If we backup past the first extent we want to move forward
6801 		 * and see if there is an extent in front of us, otherwise we'll
6802 		 * say there is a hole for our whole search range which can
6803 		 * cause problems.
6804 		 */
6805 		extent_end = start;
6806 		goto next;
6807 	}
6808 
6809 	extent_type = btrfs_file_extent_type(leaf, item);
6810 	extent_start = found_key.offset;
6811 	extent_end = btrfs_file_extent_end(path);
6812 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6813 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6814 		/* Only regular file could have regular/prealloc extent */
6815 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6816 			ret = -EUCLEAN;
6817 			btrfs_crit(fs_info,
6818 		"regular/prealloc extent found for non-regular inode %llu",
6819 				   btrfs_ino(inode));
6820 			goto out;
6821 		}
6822 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6823 						       extent_start);
6824 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6825 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6826 						      path->slots[0],
6827 						      extent_start);
6828 	}
6829 next:
6830 	if (start >= extent_end) {
6831 		path->slots[0]++;
6832 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6833 			ret = btrfs_next_leaf(root, path);
6834 			if (ret < 0)
6835 				goto out;
6836 			else if (ret > 0)
6837 				goto not_found;
6838 
6839 			leaf = path->nodes[0];
6840 		}
6841 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6842 		if (found_key.objectid != objectid ||
6843 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6844 			goto not_found;
6845 		if (start + len <= found_key.offset)
6846 			goto not_found;
6847 		if (start > found_key.offset)
6848 			goto next;
6849 
6850 		/* New extent overlaps with existing one */
6851 		em->start = start;
6852 		em->orig_start = start;
6853 		em->len = found_key.offset - start;
6854 		em->block_start = EXTENT_MAP_HOLE;
6855 		goto insert;
6856 	}
6857 
6858 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6859 
6860 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6861 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6862 		goto insert;
6863 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6864 		/*
6865 		 * Inline extent can only exist at file offset 0. This is
6866 		 * ensured by tree-checker and inline extent creation path.
6867 		 * Thus all members representing file offsets should be zero.
6868 		 */
6869 		ASSERT(pg_offset == 0);
6870 		ASSERT(extent_start == 0);
6871 		ASSERT(em->start == 0);
6872 
6873 		/*
6874 		 * btrfs_extent_item_to_extent_map() should have properly
6875 		 * initialized em members already.
6876 		 *
6877 		 * Other members are not utilized for inline extents.
6878 		 */
6879 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6880 		ASSERT(em->len == fs_info->sectorsize);
6881 
6882 		ret = read_inline_extent(inode, path, page);
6883 		if (ret < 0)
6884 			goto out;
6885 		goto insert;
6886 	}
6887 not_found:
6888 	em->start = start;
6889 	em->orig_start = start;
6890 	em->len = len;
6891 	em->block_start = EXTENT_MAP_HOLE;
6892 insert:
6893 	ret = 0;
6894 	btrfs_release_path(path);
6895 	if (em->start > start || extent_map_end(em) <= start) {
6896 		btrfs_err(fs_info,
6897 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6898 			  em->start, em->len, start, len);
6899 		ret = -EIO;
6900 		goto out;
6901 	}
6902 
6903 	write_lock(&em_tree->lock);
6904 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6905 	write_unlock(&em_tree->lock);
6906 out:
6907 	btrfs_free_path(path);
6908 
6909 	trace_btrfs_get_extent(root, inode, em);
6910 
6911 	if (ret) {
6912 		free_extent_map(em);
6913 		return ERR_PTR(ret);
6914 	}
6915 	return em;
6916 }
6917 
6918 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6919 						  struct btrfs_dio_data *dio_data,
6920 						  const u64 start,
6921 						  const u64 len,
6922 						  const u64 orig_start,
6923 						  const u64 block_start,
6924 						  const u64 block_len,
6925 						  const u64 orig_block_len,
6926 						  const u64 ram_bytes,
6927 						  const int type)
6928 {
6929 	struct extent_map *em = NULL;
6930 	struct btrfs_ordered_extent *ordered;
6931 
6932 	if (type != BTRFS_ORDERED_NOCOW) {
6933 		em = create_io_em(inode, start, len, orig_start, block_start,
6934 				  block_len, orig_block_len, ram_bytes,
6935 				  BTRFS_COMPRESS_NONE, /* compress_type */
6936 				  type);
6937 		if (IS_ERR(em))
6938 			goto out;
6939 	}
6940 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6941 					     block_start, block_len, 0,
6942 					     (1 << type) |
6943 					     (1 << BTRFS_ORDERED_DIRECT),
6944 					     BTRFS_COMPRESS_NONE);
6945 	if (IS_ERR(ordered)) {
6946 		if (em) {
6947 			free_extent_map(em);
6948 			btrfs_drop_extent_map_range(inode, start,
6949 						    start + len - 1, false);
6950 		}
6951 		em = ERR_CAST(ordered);
6952 	} else {
6953 		ASSERT(!dio_data->ordered);
6954 		dio_data->ordered = ordered;
6955 	}
6956  out:
6957 
6958 	return em;
6959 }
6960 
6961 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6962 						  struct btrfs_dio_data *dio_data,
6963 						  u64 start, u64 len)
6964 {
6965 	struct btrfs_root *root = inode->root;
6966 	struct btrfs_fs_info *fs_info = root->fs_info;
6967 	struct extent_map *em;
6968 	struct btrfs_key ins;
6969 	u64 alloc_hint;
6970 	int ret;
6971 
6972 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6973 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6974 				   0, alloc_hint, &ins, 1, 1);
6975 	if (ret)
6976 		return ERR_PTR(ret);
6977 
6978 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
6979 				     ins.objectid, ins.offset, ins.offset,
6980 				     ins.offset, BTRFS_ORDERED_REGULAR);
6981 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6982 	if (IS_ERR(em))
6983 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6984 					   1);
6985 
6986 	return em;
6987 }
6988 
6989 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
6990 {
6991 	struct btrfs_block_group *block_group;
6992 	bool readonly = false;
6993 
6994 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
6995 	if (!block_group || block_group->ro)
6996 		readonly = true;
6997 	if (block_group)
6998 		btrfs_put_block_group(block_group);
6999 	return readonly;
7000 }
7001 
7002 /*
7003  * Check if we can do nocow write into the range [@offset, @offset + @len)
7004  *
7005  * @offset:	File offset
7006  * @len:	The length to write, will be updated to the nocow writeable
7007  *		range
7008  * @orig_start:	(optional) Return the original file offset of the file extent
7009  * @orig_len:	(optional) Return the original on-disk length of the file extent
7010  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7011  * @strict:	if true, omit optimizations that might force us into unnecessary
7012  *		cow. e.g., don't trust generation number.
7013  *
7014  * Return:
7015  * >0	and update @len if we can do nocow write
7016  *  0	if we can't do nocow write
7017  * <0	if error happened
7018  *
7019  * NOTE: This only checks the file extents, caller is responsible to wait for
7020  *	 any ordered extents.
7021  */
7022 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7023 			      u64 *orig_start, u64 *orig_block_len,
7024 			      u64 *ram_bytes, bool nowait, bool strict)
7025 {
7026 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7027 	struct can_nocow_file_extent_args nocow_args = { 0 };
7028 	struct btrfs_path *path;
7029 	int ret;
7030 	struct extent_buffer *leaf;
7031 	struct btrfs_root *root = BTRFS_I(inode)->root;
7032 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7033 	struct btrfs_file_extent_item *fi;
7034 	struct btrfs_key key;
7035 	int found_type;
7036 
7037 	path = btrfs_alloc_path();
7038 	if (!path)
7039 		return -ENOMEM;
7040 	path->nowait = nowait;
7041 
7042 	ret = btrfs_lookup_file_extent(NULL, root, path,
7043 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7044 	if (ret < 0)
7045 		goto out;
7046 
7047 	if (ret == 1) {
7048 		if (path->slots[0] == 0) {
7049 			/* can't find the item, must cow */
7050 			ret = 0;
7051 			goto out;
7052 		}
7053 		path->slots[0]--;
7054 	}
7055 	ret = 0;
7056 	leaf = path->nodes[0];
7057 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7058 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7059 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7060 		/* not our file or wrong item type, must cow */
7061 		goto out;
7062 	}
7063 
7064 	if (key.offset > offset) {
7065 		/* Wrong offset, must cow */
7066 		goto out;
7067 	}
7068 
7069 	if (btrfs_file_extent_end(path) <= offset)
7070 		goto out;
7071 
7072 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7073 	found_type = btrfs_file_extent_type(leaf, fi);
7074 	if (ram_bytes)
7075 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7076 
7077 	nocow_args.start = offset;
7078 	nocow_args.end = offset + *len - 1;
7079 	nocow_args.strict = strict;
7080 	nocow_args.free_path = true;
7081 
7082 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7083 	/* can_nocow_file_extent() has freed the path. */
7084 	path = NULL;
7085 
7086 	if (ret != 1) {
7087 		/* Treat errors as not being able to NOCOW. */
7088 		ret = 0;
7089 		goto out;
7090 	}
7091 
7092 	ret = 0;
7093 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7094 		goto out;
7095 
7096 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7097 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7098 		u64 range_end;
7099 
7100 		range_end = round_up(offset + nocow_args.num_bytes,
7101 				     root->fs_info->sectorsize) - 1;
7102 		ret = test_range_bit(io_tree, offset, range_end,
7103 				     EXTENT_DELALLOC, 0, NULL);
7104 		if (ret) {
7105 			ret = -EAGAIN;
7106 			goto out;
7107 		}
7108 	}
7109 
7110 	if (orig_start)
7111 		*orig_start = key.offset - nocow_args.extent_offset;
7112 	if (orig_block_len)
7113 		*orig_block_len = nocow_args.disk_num_bytes;
7114 
7115 	*len = nocow_args.num_bytes;
7116 	ret = 1;
7117 out:
7118 	btrfs_free_path(path);
7119 	return ret;
7120 }
7121 
7122 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7123 			      struct extent_state **cached_state,
7124 			      unsigned int iomap_flags)
7125 {
7126 	const bool writing = (iomap_flags & IOMAP_WRITE);
7127 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7128 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7129 	struct btrfs_ordered_extent *ordered;
7130 	int ret = 0;
7131 
7132 	while (1) {
7133 		if (nowait) {
7134 			if (!try_lock_extent(io_tree, lockstart, lockend,
7135 					     cached_state))
7136 				return -EAGAIN;
7137 		} else {
7138 			lock_extent(io_tree, lockstart, lockend, cached_state);
7139 		}
7140 		/*
7141 		 * We're concerned with the entire range that we're going to be
7142 		 * doing DIO to, so we need to make sure there's no ordered
7143 		 * extents in this range.
7144 		 */
7145 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7146 						     lockend - lockstart + 1);
7147 
7148 		/*
7149 		 * We need to make sure there are no buffered pages in this
7150 		 * range either, we could have raced between the invalidate in
7151 		 * generic_file_direct_write and locking the extent.  The
7152 		 * invalidate needs to happen so that reads after a write do not
7153 		 * get stale data.
7154 		 */
7155 		if (!ordered &&
7156 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7157 							 lockstart, lockend)))
7158 			break;
7159 
7160 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7161 
7162 		if (ordered) {
7163 			if (nowait) {
7164 				btrfs_put_ordered_extent(ordered);
7165 				ret = -EAGAIN;
7166 				break;
7167 			}
7168 			/*
7169 			 * If we are doing a DIO read and the ordered extent we
7170 			 * found is for a buffered write, we can not wait for it
7171 			 * to complete and retry, because if we do so we can
7172 			 * deadlock with concurrent buffered writes on page
7173 			 * locks. This happens only if our DIO read covers more
7174 			 * than one extent map, if at this point has already
7175 			 * created an ordered extent for a previous extent map
7176 			 * and locked its range in the inode's io tree, and a
7177 			 * concurrent write against that previous extent map's
7178 			 * range and this range started (we unlock the ranges
7179 			 * in the io tree only when the bios complete and
7180 			 * buffered writes always lock pages before attempting
7181 			 * to lock range in the io tree).
7182 			 */
7183 			if (writing ||
7184 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7185 				btrfs_start_ordered_extent(ordered);
7186 			else
7187 				ret = nowait ? -EAGAIN : -ENOTBLK;
7188 			btrfs_put_ordered_extent(ordered);
7189 		} else {
7190 			/*
7191 			 * We could trigger writeback for this range (and wait
7192 			 * for it to complete) and then invalidate the pages for
7193 			 * this range (through invalidate_inode_pages2_range()),
7194 			 * but that can lead us to a deadlock with a concurrent
7195 			 * call to readahead (a buffered read or a defrag call
7196 			 * triggered a readahead) on a page lock due to an
7197 			 * ordered dio extent we created before but did not have
7198 			 * yet a corresponding bio submitted (whence it can not
7199 			 * complete), which makes readahead wait for that
7200 			 * ordered extent to complete while holding a lock on
7201 			 * that page.
7202 			 */
7203 			ret = nowait ? -EAGAIN : -ENOTBLK;
7204 		}
7205 
7206 		if (ret)
7207 			break;
7208 
7209 		cond_resched();
7210 	}
7211 
7212 	return ret;
7213 }
7214 
7215 /* The callers of this must take lock_extent() */
7216 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7217 				       u64 len, u64 orig_start, u64 block_start,
7218 				       u64 block_len, u64 orig_block_len,
7219 				       u64 ram_bytes, int compress_type,
7220 				       int type)
7221 {
7222 	struct extent_map *em;
7223 	int ret;
7224 
7225 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7226 	       type == BTRFS_ORDERED_COMPRESSED ||
7227 	       type == BTRFS_ORDERED_NOCOW ||
7228 	       type == BTRFS_ORDERED_REGULAR);
7229 
7230 	em = alloc_extent_map();
7231 	if (!em)
7232 		return ERR_PTR(-ENOMEM);
7233 
7234 	em->start = start;
7235 	em->orig_start = orig_start;
7236 	em->len = len;
7237 	em->block_len = block_len;
7238 	em->block_start = block_start;
7239 	em->orig_block_len = orig_block_len;
7240 	em->ram_bytes = ram_bytes;
7241 	em->generation = -1;
7242 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7243 	if (type == BTRFS_ORDERED_PREALLOC) {
7244 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7245 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7246 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7247 		em->compress_type = compress_type;
7248 	}
7249 
7250 	ret = btrfs_replace_extent_map_range(inode, em, true);
7251 	if (ret) {
7252 		free_extent_map(em);
7253 		return ERR_PTR(ret);
7254 	}
7255 
7256 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7257 	return em;
7258 }
7259 
7260 
7261 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7262 					 struct inode *inode,
7263 					 struct btrfs_dio_data *dio_data,
7264 					 u64 start, u64 len,
7265 					 unsigned int iomap_flags)
7266 {
7267 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7268 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7269 	struct extent_map *em = *map;
7270 	int type;
7271 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7272 	struct btrfs_block_group *bg;
7273 	bool can_nocow = false;
7274 	bool space_reserved = false;
7275 	u64 prev_len;
7276 	int ret = 0;
7277 
7278 	/*
7279 	 * We don't allocate a new extent in the following cases
7280 	 *
7281 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7282 	 * existing extent.
7283 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7284 	 * just use the extent.
7285 	 *
7286 	 */
7287 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7288 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7289 	     em->block_start != EXTENT_MAP_HOLE)) {
7290 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7291 			type = BTRFS_ORDERED_PREALLOC;
7292 		else
7293 			type = BTRFS_ORDERED_NOCOW;
7294 		len = min(len, em->len - (start - em->start));
7295 		block_start = em->block_start + (start - em->start);
7296 
7297 		if (can_nocow_extent(inode, start, &len, &orig_start,
7298 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7299 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7300 			if (bg)
7301 				can_nocow = true;
7302 		}
7303 	}
7304 
7305 	prev_len = len;
7306 	if (can_nocow) {
7307 		struct extent_map *em2;
7308 
7309 		/* We can NOCOW, so only need to reserve metadata space. */
7310 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7311 						      nowait);
7312 		if (ret < 0) {
7313 			/* Our caller expects us to free the input extent map. */
7314 			free_extent_map(em);
7315 			*map = NULL;
7316 			btrfs_dec_nocow_writers(bg);
7317 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7318 				ret = -EAGAIN;
7319 			goto out;
7320 		}
7321 		space_reserved = true;
7322 
7323 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7324 					      orig_start, block_start,
7325 					      len, orig_block_len,
7326 					      ram_bytes, type);
7327 		btrfs_dec_nocow_writers(bg);
7328 		if (type == BTRFS_ORDERED_PREALLOC) {
7329 			free_extent_map(em);
7330 			*map = em2;
7331 			em = em2;
7332 		}
7333 
7334 		if (IS_ERR(em2)) {
7335 			ret = PTR_ERR(em2);
7336 			goto out;
7337 		}
7338 
7339 		dio_data->nocow_done = true;
7340 	} else {
7341 		/* Our caller expects us to free the input extent map. */
7342 		free_extent_map(em);
7343 		*map = NULL;
7344 
7345 		if (nowait)
7346 			return -EAGAIN;
7347 
7348 		/*
7349 		 * If we could not allocate data space before locking the file
7350 		 * range and we can't do a NOCOW write, then we have to fail.
7351 		 */
7352 		if (!dio_data->data_space_reserved)
7353 			return -ENOSPC;
7354 
7355 		/*
7356 		 * We have to COW and we have already reserved data space before,
7357 		 * so now we reserve only metadata.
7358 		 */
7359 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7360 						      false);
7361 		if (ret < 0)
7362 			goto out;
7363 		space_reserved = true;
7364 
7365 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7366 		if (IS_ERR(em)) {
7367 			ret = PTR_ERR(em);
7368 			goto out;
7369 		}
7370 		*map = em;
7371 		len = min(len, em->len - (start - em->start));
7372 		if (len < prev_len)
7373 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7374 							prev_len - len, true);
7375 	}
7376 
7377 	/*
7378 	 * We have created our ordered extent, so we can now release our reservation
7379 	 * for an outstanding extent.
7380 	 */
7381 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7382 
7383 	/*
7384 	 * Need to update the i_size under the extent lock so buffered
7385 	 * readers will get the updated i_size when we unlock.
7386 	 */
7387 	if (start + len > i_size_read(inode))
7388 		i_size_write(inode, start + len);
7389 out:
7390 	if (ret && space_reserved) {
7391 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7392 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7393 	}
7394 	return ret;
7395 }
7396 
7397 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7398 		loff_t length, unsigned int flags, struct iomap *iomap,
7399 		struct iomap *srcmap)
7400 {
7401 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7402 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7403 	struct extent_map *em;
7404 	struct extent_state *cached_state = NULL;
7405 	struct btrfs_dio_data *dio_data = iter->private;
7406 	u64 lockstart, lockend;
7407 	const bool write = !!(flags & IOMAP_WRITE);
7408 	int ret = 0;
7409 	u64 len = length;
7410 	const u64 data_alloc_len = length;
7411 	bool unlock_extents = false;
7412 
7413 	/*
7414 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7415 	 * we're NOWAIT we may submit a bio for a partial range and return
7416 	 * EIOCBQUEUED, which would result in an errant short read.
7417 	 *
7418 	 * The best way to handle this would be to allow for partial completions
7419 	 * of iocb's, so we could submit the partial bio, return and fault in
7420 	 * the rest of the pages, and then submit the io for the rest of the
7421 	 * range.  However we don't have that currently, so simply return
7422 	 * -EAGAIN at this point so that the normal path is used.
7423 	 */
7424 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7425 		return -EAGAIN;
7426 
7427 	/*
7428 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7429 	 * to allocate a contiguous array for the checksums.
7430 	 */
7431 	if (!write)
7432 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7433 
7434 	lockstart = start;
7435 	lockend = start + len - 1;
7436 
7437 	/*
7438 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7439 	 * enough if we've written compressed pages to this area, so we need to
7440 	 * flush the dirty pages again to make absolutely sure that any
7441 	 * outstanding dirty pages are on disk - the first flush only starts
7442 	 * compression on the data, while keeping the pages locked, so by the
7443 	 * time the second flush returns we know bios for the compressed pages
7444 	 * were submitted and finished, and the pages no longer under writeback.
7445 	 *
7446 	 * If we have a NOWAIT request and we have any pages in the range that
7447 	 * are locked, likely due to compression still in progress, we don't want
7448 	 * to block on page locks. We also don't want to block on pages marked as
7449 	 * dirty or under writeback (same as for the non-compression case).
7450 	 * iomap_dio_rw() did the same check, but after that and before we got
7451 	 * here, mmap'ed writes may have happened or buffered reads started
7452 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7453 	 * the file range yet.
7454 	 */
7455 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7456 		     &BTRFS_I(inode)->runtime_flags)) {
7457 		if (flags & IOMAP_NOWAIT) {
7458 			if (filemap_range_needs_writeback(inode->i_mapping,
7459 							  lockstart, lockend))
7460 				return -EAGAIN;
7461 		} else {
7462 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7463 						       start + length - 1);
7464 			if (ret)
7465 				return ret;
7466 		}
7467 	}
7468 
7469 	memset(dio_data, 0, sizeof(*dio_data));
7470 
7471 	/*
7472 	 * We always try to allocate data space and must do it before locking
7473 	 * the file range, to avoid deadlocks with concurrent writes to the same
7474 	 * range if the range has several extents and the writes don't expand the
7475 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7476 	 * allocate data space here we continue and later, after locking the
7477 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7478 	 * NOCOW write.
7479 	 */
7480 	if (write && !(flags & IOMAP_NOWAIT)) {
7481 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7482 						  &dio_data->data_reserved,
7483 						  start, data_alloc_len, false);
7484 		if (!ret)
7485 			dio_data->data_space_reserved = true;
7486 		else if (ret && !(BTRFS_I(inode)->flags &
7487 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7488 			goto err;
7489 	}
7490 
7491 	/*
7492 	 * If this errors out it's because we couldn't invalidate pagecache for
7493 	 * this range and we need to fallback to buffered IO, or we are doing a
7494 	 * NOWAIT read/write and we need to block.
7495 	 */
7496 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7497 	if (ret < 0)
7498 		goto err;
7499 
7500 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7501 	if (IS_ERR(em)) {
7502 		ret = PTR_ERR(em);
7503 		goto unlock_err;
7504 	}
7505 
7506 	/*
7507 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7508 	 * io.  INLINE is special, and we could probably kludge it in here, but
7509 	 * it's still buffered so for safety lets just fall back to the generic
7510 	 * buffered path.
7511 	 *
7512 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7513 	 * decompress it, so there will be buffering required no matter what we
7514 	 * do, so go ahead and fallback to buffered.
7515 	 *
7516 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7517 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7518 	 * the generic code.
7519 	 */
7520 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7521 	    em->block_start == EXTENT_MAP_INLINE) {
7522 		free_extent_map(em);
7523 		/*
7524 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7525 		 * fallback to buffered IO. This is not only because we can
7526 		 * block with buffered IO (no support for NOWAIT semantics at
7527 		 * the moment) but also to avoid returning short reads to user
7528 		 * space - this happens if we were able to read some data from
7529 		 * previous non-compressed extents and then when we fallback to
7530 		 * buffered IO, at btrfs_file_read_iter() by calling
7531 		 * filemap_read(), we fail to fault in pages for the read buffer,
7532 		 * in which case filemap_read() returns a short read (the number
7533 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7534 		 */
7535 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7536 		goto unlock_err;
7537 	}
7538 
7539 	len = min(len, em->len - (start - em->start));
7540 
7541 	/*
7542 	 * If we have a NOWAIT request and the range contains multiple extents
7543 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7544 	 * caller fallback to a context where it can do a blocking (without
7545 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7546 	 * success to the caller, which is not optimal for writes and for reads
7547 	 * it can result in unexpected behaviour for an application.
7548 	 *
7549 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7550 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7551 	 * asked for, resulting in an unexpected, and incorrect, short read.
7552 	 * That is, the caller asked to read N bytes and we return less than that,
7553 	 * which is wrong unless we are crossing EOF. This happens if we get a
7554 	 * page fault error when trying to fault in pages for the buffer that is
7555 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7556 	 * have previously submitted bios for other extents in the range, in
7557 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7558 	 * those bios have completed by the time we get the page fault error,
7559 	 * which we return back to our caller - we should only return EIOCBQUEUED
7560 	 * after we have submitted bios for all the extents in the range.
7561 	 */
7562 	if ((flags & IOMAP_NOWAIT) && len < length) {
7563 		free_extent_map(em);
7564 		ret = -EAGAIN;
7565 		goto unlock_err;
7566 	}
7567 
7568 	if (write) {
7569 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7570 						    start, len, flags);
7571 		if (ret < 0)
7572 			goto unlock_err;
7573 		unlock_extents = true;
7574 		/* Recalc len in case the new em is smaller than requested */
7575 		len = min(len, em->len - (start - em->start));
7576 		if (dio_data->data_space_reserved) {
7577 			u64 release_offset;
7578 			u64 release_len = 0;
7579 
7580 			if (dio_data->nocow_done) {
7581 				release_offset = start;
7582 				release_len = data_alloc_len;
7583 			} else if (len < data_alloc_len) {
7584 				release_offset = start + len;
7585 				release_len = data_alloc_len - len;
7586 			}
7587 
7588 			if (release_len > 0)
7589 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7590 							       dio_data->data_reserved,
7591 							       release_offset,
7592 							       release_len);
7593 		}
7594 	} else {
7595 		/*
7596 		 * We need to unlock only the end area that we aren't using.
7597 		 * The rest is going to be unlocked by the endio routine.
7598 		 */
7599 		lockstart = start + len;
7600 		if (lockstart < lockend)
7601 			unlock_extents = true;
7602 	}
7603 
7604 	if (unlock_extents)
7605 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7606 			      &cached_state);
7607 	else
7608 		free_extent_state(cached_state);
7609 
7610 	/*
7611 	 * Translate extent map information to iomap.
7612 	 * We trim the extents (and move the addr) even though iomap code does
7613 	 * that, since we have locked only the parts we are performing I/O in.
7614 	 */
7615 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7616 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7617 		iomap->addr = IOMAP_NULL_ADDR;
7618 		iomap->type = IOMAP_HOLE;
7619 	} else {
7620 		iomap->addr = em->block_start + (start - em->start);
7621 		iomap->type = IOMAP_MAPPED;
7622 	}
7623 	iomap->offset = start;
7624 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7625 	iomap->length = len;
7626 	free_extent_map(em);
7627 
7628 	return 0;
7629 
7630 unlock_err:
7631 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7632 		      &cached_state);
7633 err:
7634 	if (dio_data->data_space_reserved) {
7635 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7636 					       dio_data->data_reserved,
7637 					       start, data_alloc_len);
7638 		extent_changeset_free(dio_data->data_reserved);
7639 	}
7640 
7641 	return ret;
7642 }
7643 
7644 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7645 		ssize_t written, unsigned int flags, struct iomap *iomap)
7646 {
7647 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7648 	struct btrfs_dio_data *dio_data = iter->private;
7649 	size_t submitted = dio_data->submitted;
7650 	const bool write = !!(flags & IOMAP_WRITE);
7651 	int ret = 0;
7652 
7653 	if (!write && (iomap->type == IOMAP_HOLE)) {
7654 		/* If reading from a hole, unlock and return */
7655 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7656 			      NULL);
7657 		return 0;
7658 	}
7659 
7660 	if (submitted < length) {
7661 		pos += submitted;
7662 		length -= submitted;
7663 		if (write)
7664 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
7665 						       pos, length, false);
7666 		else
7667 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7668 				      pos + length - 1, NULL);
7669 		ret = -ENOTBLK;
7670 	}
7671 	if (write) {
7672 		btrfs_put_ordered_extent(dio_data->ordered);
7673 		dio_data->ordered = NULL;
7674 	}
7675 
7676 	if (write)
7677 		extent_changeset_free(dio_data->data_reserved);
7678 	return ret;
7679 }
7680 
7681 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7682 {
7683 	struct btrfs_dio_private *dip =
7684 		container_of(bbio, struct btrfs_dio_private, bbio);
7685 	struct btrfs_inode *inode = bbio->inode;
7686 	struct bio *bio = &bbio->bio;
7687 
7688 	if (bio->bi_status) {
7689 		btrfs_warn(inode->root->fs_info,
7690 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7691 			   btrfs_ino(inode), bio->bi_opf,
7692 			   dip->file_offset, dip->bytes, bio->bi_status);
7693 	}
7694 
7695 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
7696 		btrfs_mark_ordered_io_finished(inode, NULL, dip->file_offset,
7697 					       dip->bytes, !bio->bi_status);
7698 	else
7699 		unlock_extent(&inode->io_tree, dip->file_offset,
7700 			      dip->file_offset + dip->bytes - 1, NULL);
7701 
7702 	bbio->bio.bi_private = bbio->private;
7703 	iomap_dio_bio_end_io(bio);
7704 }
7705 
7706 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7707 				loff_t file_offset)
7708 {
7709 	struct btrfs_bio *bbio = btrfs_bio(bio);
7710 	struct btrfs_dio_private *dip =
7711 		container_of(bbio, struct btrfs_dio_private, bbio);
7712 	struct btrfs_dio_data *dio_data = iter->private;
7713 
7714 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7715 		       btrfs_dio_end_io, bio->bi_private);
7716 	bbio->inode = BTRFS_I(iter->inode);
7717 	bbio->file_offset = file_offset;
7718 
7719 	dip->file_offset = file_offset;
7720 	dip->bytes = bio->bi_iter.bi_size;
7721 
7722 	dio_data->submitted += bio->bi_iter.bi_size;
7723 
7724 	/*
7725 	 * Check if we are doing a partial write.  If we are, we need to split
7726 	 * the ordered extent to match the submitted bio.  Hang on to the
7727 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7728 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7729 	 * remaining pages is blocked on the outstanding ordered extent.
7730 	 */
7731 	if (iter->flags & IOMAP_WRITE) {
7732 		int ret;
7733 
7734 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7735 		if (ret) {
7736 			btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
7737 			return;
7738 		}
7739 	}
7740 
7741 	btrfs_submit_bio(bbio, 0);
7742 }
7743 
7744 static const struct iomap_ops btrfs_dio_iomap_ops = {
7745 	.iomap_begin            = btrfs_dio_iomap_begin,
7746 	.iomap_end              = btrfs_dio_iomap_end,
7747 };
7748 
7749 static const struct iomap_dio_ops btrfs_dio_ops = {
7750 	.submit_io		= btrfs_dio_submit_io,
7751 	.bio_set		= &btrfs_dio_bioset,
7752 };
7753 
7754 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7755 {
7756 	struct btrfs_dio_data data = { 0 };
7757 
7758 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7759 			    IOMAP_DIO_PARTIAL, &data, done_before);
7760 }
7761 
7762 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7763 				  size_t done_before)
7764 {
7765 	struct btrfs_dio_data data = { 0 };
7766 
7767 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7768 			    IOMAP_DIO_PARTIAL, &data, done_before);
7769 }
7770 
7771 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7772 			u64 start, u64 len)
7773 {
7774 	int	ret;
7775 
7776 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7777 	if (ret)
7778 		return ret;
7779 
7780 	/*
7781 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7782 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7783 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7784 	 * in the compression of data (in an async thread) and will return
7785 	 * before the compression is done and writeback is started. A second
7786 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7787 	 * complete and writeback to start. We also need to wait for ordered
7788 	 * extents to complete, because our fiemap implementation uses mainly
7789 	 * file extent items to list the extents, searching for extent maps
7790 	 * only for file ranges with holes or prealloc extents to figure out
7791 	 * if we have delalloc in those ranges.
7792 	 */
7793 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7794 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7795 		if (ret)
7796 			return ret;
7797 	}
7798 
7799 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7800 }
7801 
7802 static int btrfs_writepages(struct address_space *mapping,
7803 			    struct writeback_control *wbc)
7804 {
7805 	return extent_writepages(mapping, wbc);
7806 }
7807 
7808 static void btrfs_readahead(struct readahead_control *rac)
7809 {
7810 	extent_readahead(rac);
7811 }
7812 
7813 /*
7814  * For release_folio() and invalidate_folio() we have a race window where
7815  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7816  * If we continue to release/invalidate the page, we could cause use-after-free
7817  * for subpage spinlock.  So this function is to spin and wait for subpage
7818  * spinlock.
7819  */
7820 static void wait_subpage_spinlock(struct page *page)
7821 {
7822 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7823 	struct btrfs_subpage *subpage;
7824 
7825 	if (!btrfs_is_subpage(fs_info, page))
7826 		return;
7827 
7828 	ASSERT(PagePrivate(page) && page->private);
7829 	subpage = (struct btrfs_subpage *)page->private;
7830 
7831 	/*
7832 	 * This may look insane as we just acquire the spinlock and release it,
7833 	 * without doing anything.  But we just want to make sure no one is
7834 	 * still holding the subpage spinlock.
7835 	 * And since the page is not dirty nor writeback, and we have page
7836 	 * locked, the only possible way to hold a spinlock is from the endio
7837 	 * function to clear page writeback.
7838 	 *
7839 	 * Here we just acquire the spinlock so that all existing callers
7840 	 * should exit and we're safe to release/invalidate the page.
7841 	 */
7842 	spin_lock_irq(&subpage->lock);
7843 	spin_unlock_irq(&subpage->lock);
7844 }
7845 
7846 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7847 {
7848 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7849 
7850 	if (ret == 1) {
7851 		wait_subpage_spinlock(&folio->page);
7852 		clear_page_extent_mapped(&folio->page);
7853 	}
7854 	return ret;
7855 }
7856 
7857 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7858 {
7859 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7860 		return false;
7861 	return __btrfs_release_folio(folio, gfp_flags);
7862 }
7863 
7864 #ifdef CONFIG_MIGRATION
7865 static int btrfs_migrate_folio(struct address_space *mapping,
7866 			     struct folio *dst, struct folio *src,
7867 			     enum migrate_mode mode)
7868 {
7869 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7870 
7871 	if (ret != MIGRATEPAGE_SUCCESS)
7872 		return ret;
7873 
7874 	if (folio_test_ordered(src)) {
7875 		folio_clear_ordered(src);
7876 		folio_set_ordered(dst);
7877 	}
7878 
7879 	return MIGRATEPAGE_SUCCESS;
7880 }
7881 #else
7882 #define btrfs_migrate_folio NULL
7883 #endif
7884 
7885 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7886 				 size_t length)
7887 {
7888 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7889 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7890 	struct extent_io_tree *tree = &inode->io_tree;
7891 	struct extent_state *cached_state = NULL;
7892 	u64 page_start = folio_pos(folio);
7893 	u64 page_end = page_start + folio_size(folio) - 1;
7894 	u64 cur;
7895 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7896 
7897 	/*
7898 	 * We have folio locked so no new ordered extent can be created on this
7899 	 * page, nor bio can be submitted for this folio.
7900 	 *
7901 	 * But already submitted bio can still be finished on this folio.
7902 	 * Furthermore, endio function won't skip folio which has Ordered
7903 	 * (Private2) already cleared, so it's possible for endio and
7904 	 * invalidate_folio to do the same ordered extent accounting twice
7905 	 * on one folio.
7906 	 *
7907 	 * So here we wait for any submitted bios to finish, so that we won't
7908 	 * do double ordered extent accounting on the same folio.
7909 	 */
7910 	folio_wait_writeback(folio);
7911 	wait_subpage_spinlock(&folio->page);
7912 
7913 	/*
7914 	 * For subpage case, we have call sites like
7915 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7916 	 * sectorsize.
7917 	 * If the range doesn't cover the full folio, we don't need to and
7918 	 * shouldn't clear page extent mapped, as folio->private can still
7919 	 * record subpage dirty bits for other part of the range.
7920 	 *
7921 	 * For cases that invalidate the full folio even the range doesn't
7922 	 * cover the full folio, like invalidating the last folio, we're
7923 	 * still safe to wait for ordered extent to finish.
7924 	 */
7925 	if (!(offset == 0 && length == folio_size(folio))) {
7926 		btrfs_release_folio(folio, GFP_NOFS);
7927 		return;
7928 	}
7929 
7930 	if (!inode_evicting)
7931 		lock_extent(tree, page_start, page_end, &cached_state);
7932 
7933 	cur = page_start;
7934 	while (cur < page_end) {
7935 		struct btrfs_ordered_extent *ordered;
7936 		u64 range_end;
7937 		u32 range_len;
7938 		u32 extra_flags = 0;
7939 
7940 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7941 							   page_end + 1 - cur);
7942 		if (!ordered) {
7943 			range_end = page_end;
7944 			/*
7945 			 * No ordered extent covering this range, we are safe
7946 			 * to delete all extent states in the range.
7947 			 */
7948 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7949 			goto next;
7950 		}
7951 		if (ordered->file_offset > cur) {
7952 			/*
7953 			 * There is a range between [cur, oe->file_offset) not
7954 			 * covered by any ordered extent.
7955 			 * We are safe to delete all extent states, and handle
7956 			 * the ordered extent in the next iteration.
7957 			 */
7958 			range_end = ordered->file_offset - 1;
7959 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7960 			goto next;
7961 		}
7962 
7963 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7964 				page_end);
7965 		ASSERT(range_end + 1 - cur < U32_MAX);
7966 		range_len = range_end + 1 - cur;
7967 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
7968 			/*
7969 			 * If Ordered (Private2) is cleared, it means endio has
7970 			 * already been executed for the range.
7971 			 * We can't delete the extent states as
7972 			 * btrfs_finish_ordered_io() may still use some of them.
7973 			 */
7974 			goto next;
7975 		}
7976 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
7977 
7978 		/*
7979 		 * IO on this page will never be started, so we need to account
7980 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7981 		 * here, must leave that up for the ordered extent completion.
7982 		 *
7983 		 * This will also unlock the range for incoming
7984 		 * btrfs_finish_ordered_io().
7985 		 */
7986 		if (!inode_evicting)
7987 			clear_extent_bit(tree, cur, range_end,
7988 					 EXTENT_DELALLOC |
7989 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7990 					 EXTENT_DEFRAG, &cached_state);
7991 
7992 		spin_lock_irq(&inode->ordered_tree.lock);
7993 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7994 		ordered->truncated_len = min(ordered->truncated_len,
7995 					     cur - ordered->file_offset);
7996 		spin_unlock_irq(&inode->ordered_tree.lock);
7997 
7998 		/*
7999 		 * If the ordered extent has finished, we're safe to delete all
8000 		 * the extent states of the range, otherwise
8001 		 * btrfs_finish_ordered_io() will get executed by endio for
8002 		 * other pages, so we can't delete extent states.
8003 		 */
8004 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8005 						   cur, range_end + 1 - cur)) {
8006 			btrfs_finish_ordered_io(ordered);
8007 			/*
8008 			 * The ordered extent has finished, now we're again
8009 			 * safe to delete all extent states of the range.
8010 			 */
8011 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8012 		}
8013 next:
8014 		if (ordered)
8015 			btrfs_put_ordered_extent(ordered);
8016 		/*
8017 		 * Qgroup reserved space handler
8018 		 * Sector(s) here will be either:
8019 		 *
8020 		 * 1) Already written to disk or bio already finished
8021 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8022 		 *    Qgroup will be handled by its qgroup_record then.
8023 		 *    btrfs_qgroup_free_data() call will do nothing here.
8024 		 *
8025 		 * 2) Not written to disk yet
8026 		 *    Then btrfs_qgroup_free_data() call will clear the
8027 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8028 		 *    reserved data space.
8029 		 *    Since the IO will never happen for this page.
8030 		 */
8031 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8032 		if (!inode_evicting) {
8033 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8034 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8035 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8036 				 extra_flags, &cached_state);
8037 		}
8038 		cur = range_end + 1;
8039 	}
8040 	/*
8041 	 * We have iterated through all ordered extents of the page, the page
8042 	 * should not have Ordered (Private2) anymore, or the above iteration
8043 	 * did something wrong.
8044 	 */
8045 	ASSERT(!folio_test_ordered(folio));
8046 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8047 	if (!inode_evicting)
8048 		__btrfs_release_folio(folio, GFP_NOFS);
8049 	clear_page_extent_mapped(&folio->page);
8050 }
8051 
8052 /*
8053  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8054  * called from a page fault handler when a page is first dirtied. Hence we must
8055  * be careful to check for EOF conditions here. We set the page up correctly
8056  * for a written page which means we get ENOSPC checking when writing into
8057  * holes and correct delalloc and unwritten extent mapping on filesystems that
8058  * support these features.
8059  *
8060  * We are not allowed to take the i_mutex here so we have to play games to
8061  * protect against truncate races as the page could now be beyond EOF.  Because
8062  * truncate_setsize() writes the inode size before removing pages, once we have
8063  * the page lock we can determine safely if the page is beyond EOF. If it is not
8064  * beyond EOF, then the page is guaranteed safe against truncation until we
8065  * unlock the page.
8066  */
8067 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8068 {
8069 	struct page *page = vmf->page;
8070 	struct inode *inode = file_inode(vmf->vma->vm_file);
8071 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8072 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8073 	struct btrfs_ordered_extent *ordered;
8074 	struct extent_state *cached_state = NULL;
8075 	struct extent_changeset *data_reserved = NULL;
8076 	unsigned long zero_start;
8077 	loff_t size;
8078 	vm_fault_t ret;
8079 	int ret2;
8080 	int reserved = 0;
8081 	u64 reserved_space;
8082 	u64 page_start;
8083 	u64 page_end;
8084 	u64 end;
8085 
8086 	reserved_space = PAGE_SIZE;
8087 
8088 	sb_start_pagefault(inode->i_sb);
8089 	page_start = page_offset(page);
8090 	page_end = page_start + PAGE_SIZE - 1;
8091 	end = page_end;
8092 
8093 	/*
8094 	 * Reserving delalloc space after obtaining the page lock can lead to
8095 	 * deadlock. For example, if a dirty page is locked by this function
8096 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8097 	 * dirty page write out, then the btrfs_writepages() function could
8098 	 * end up waiting indefinitely to get a lock on the page currently
8099 	 * being processed by btrfs_page_mkwrite() function.
8100 	 */
8101 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8102 					    page_start, reserved_space);
8103 	if (!ret2) {
8104 		ret2 = file_update_time(vmf->vma->vm_file);
8105 		reserved = 1;
8106 	}
8107 	if (ret2) {
8108 		ret = vmf_error(ret2);
8109 		if (reserved)
8110 			goto out;
8111 		goto out_noreserve;
8112 	}
8113 
8114 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8115 again:
8116 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8117 	lock_page(page);
8118 	size = i_size_read(inode);
8119 
8120 	if ((page->mapping != inode->i_mapping) ||
8121 	    (page_start >= size)) {
8122 		/* page got truncated out from underneath us */
8123 		goto out_unlock;
8124 	}
8125 	wait_on_page_writeback(page);
8126 
8127 	lock_extent(io_tree, page_start, page_end, &cached_state);
8128 	ret2 = set_page_extent_mapped(page);
8129 	if (ret2 < 0) {
8130 		ret = vmf_error(ret2);
8131 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8132 		goto out_unlock;
8133 	}
8134 
8135 	/*
8136 	 * we can't set the delalloc bits if there are pending ordered
8137 	 * extents.  Drop our locks and wait for them to finish
8138 	 */
8139 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8140 			PAGE_SIZE);
8141 	if (ordered) {
8142 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8143 		unlock_page(page);
8144 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8145 		btrfs_start_ordered_extent(ordered);
8146 		btrfs_put_ordered_extent(ordered);
8147 		goto again;
8148 	}
8149 
8150 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8151 		reserved_space = round_up(size - page_start,
8152 					  fs_info->sectorsize);
8153 		if (reserved_space < PAGE_SIZE) {
8154 			end = page_start + reserved_space - 1;
8155 			btrfs_delalloc_release_space(BTRFS_I(inode),
8156 					data_reserved, page_start,
8157 					PAGE_SIZE - reserved_space, true);
8158 		}
8159 	}
8160 
8161 	/*
8162 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8163 	 * faulted in, but write(2) could also dirty a page and set delalloc
8164 	 * bits, thus in this case for space account reason, we still need to
8165 	 * clear any delalloc bits within this page range since we have to
8166 	 * reserve data&meta space before lock_page() (see above comments).
8167 	 */
8168 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8169 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8170 			  EXTENT_DEFRAG, &cached_state);
8171 
8172 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8173 					&cached_state);
8174 	if (ret2) {
8175 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8176 		ret = VM_FAULT_SIGBUS;
8177 		goto out_unlock;
8178 	}
8179 
8180 	/* page is wholly or partially inside EOF */
8181 	if (page_start + PAGE_SIZE > size)
8182 		zero_start = offset_in_page(size);
8183 	else
8184 		zero_start = PAGE_SIZE;
8185 
8186 	if (zero_start != PAGE_SIZE)
8187 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8188 
8189 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8190 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8191 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8192 
8193 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8194 
8195 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8196 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8197 
8198 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8199 	sb_end_pagefault(inode->i_sb);
8200 	extent_changeset_free(data_reserved);
8201 	return VM_FAULT_LOCKED;
8202 
8203 out_unlock:
8204 	unlock_page(page);
8205 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8206 out:
8207 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8208 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8209 				     reserved_space, (ret != 0));
8210 out_noreserve:
8211 	sb_end_pagefault(inode->i_sb);
8212 	extent_changeset_free(data_reserved);
8213 	return ret;
8214 }
8215 
8216 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8217 {
8218 	struct btrfs_truncate_control control = {
8219 		.inode = inode,
8220 		.ino = btrfs_ino(inode),
8221 		.min_type = BTRFS_EXTENT_DATA_KEY,
8222 		.clear_extent_range = true,
8223 	};
8224 	struct btrfs_root *root = inode->root;
8225 	struct btrfs_fs_info *fs_info = root->fs_info;
8226 	struct btrfs_block_rsv *rsv;
8227 	int ret;
8228 	struct btrfs_trans_handle *trans;
8229 	u64 mask = fs_info->sectorsize - 1;
8230 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8231 
8232 	if (!skip_writeback) {
8233 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8234 					       inode->vfs_inode.i_size & (~mask),
8235 					       (u64)-1);
8236 		if (ret)
8237 			return ret;
8238 	}
8239 
8240 	/*
8241 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8242 	 * things going on here:
8243 	 *
8244 	 * 1) We need to reserve space to update our inode.
8245 	 *
8246 	 * 2) We need to have something to cache all the space that is going to
8247 	 * be free'd up by the truncate operation, but also have some slack
8248 	 * space reserved in case it uses space during the truncate (thank you
8249 	 * very much snapshotting).
8250 	 *
8251 	 * And we need these to be separate.  The fact is we can use a lot of
8252 	 * space doing the truncate, and we have no earthly idea how much space
8253 	 * we will use, so we need the truncate reservation to be separate so it
8254 	 * doesn't end up using space reserved for updating the inode.  We also
8255 	 * need to be able to stop the transaction and start a new one, which
8256 	 * means we need to be able to update the inode several times, and we
8257 	 * have no idea of knowing how many times that will be, so we can't just
8258 	 * reserve 1 item for the entirety of the operation, so that has to be
8259 	 * done separately as well.
8260 	 *
8261 	 * So that leaves us with
8262 	 *
8263 	 * 1) rsv - for the truncate reservation, which we will steal from the
8264 	 * transaction reservation.
8265 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8266 	 * updating the inode.
8267 	 */
8268 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8269 	if (!rsv)
8270 		return -ENOMEM;
8271 	rsv->size = min_size;
8272 	rsv->failfast = true;
8273 
8274 	/*
8275 	 * 1 for the truncate slack space
8276 	 * 1 for updating the inode.
8277 	 */
8278 	trans = btrfs_start_transaction(root, 2);
8279 	if (IS_ERR(trans)) {
8280 		ret = PTR_ERR(trans);
8281 		goto out;
8282 	}
8283 
8284 	/* Migrate the slack space for the truncate to our reserve */
8285 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8286 				      min_size, false);
8287 	BUG_ON(ret);
8288 
8289 	trans->block_rsv = rsv;
8290 
8291 	while (1) {
8292 		struct extent_state *cached_state = NULL;
8293 		const u64 new_size = inode->vfs_inode.i_size;
8294 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8295 
8296 		control.new_size = new_size;
8297 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8298 		/*
8299 		 * We want to drop from the next block forward in case this new
8300 		 * size is not block aligned since we will be keeping the last
8301 		 * block of the extent just the way it is.
8302 		 */
8303 		btrfs_drop_extent_map_range(inode,
8304 					    ALIGN(new_size, fs_info->sectorsize),
8305 					    (u64)-1, false);
8306 
8307 		ret = btrfs_truncate_inode_items(trans, root, &control);
8308 
8309 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8310 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8311 
8312 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8313 
8314 		trans->block_rsv = &fs_info->trans_block_rsv;
8315 		if (ret != -ENOSPC && ret != -EAGAIN)
8316 			break;
8317 
8318 		ret = btrfs_update_inode(trans, root, inode);
8319 		if (ret)
8320 			break;
8321 
8322 		btrfs_end_transaction(trans);
8323 		btrfs_btree_balance_dirty(fs_info);
8324 
8325 		trans = btrfs_start_transaction(root, 2);
8326 		if (IS_ERR(trans)) {
8327 			ret = PTR_ERR(trans);
8328 			trans = NULL;
8329 			break;
8330 		}
8331 
8332 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8333 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8334 					      rsv, min_size, false);
8335 		BUG_ON(ret);	/* shouldn't happen */
8336 		trans->block_rsv = rsv;
8337 	}
8338 
8339 	/*
8340 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8341 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8342 	 * know we've truncated everything except the last little bit, and can
8343 	 * do btrfs_truncate_block and then update the disk_i_size.
8344 	 */
8345 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8346 		btrfs_end_transaction(trans);
8347 		btrfs_btree_balance_dirty(fs_info);
8348 
8349 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8350 		if (ret)
8351 			goto out;
8352 		trans = btrfs_start_transaction(root, 1);
8353 		if (IS_ERR(trans)) {
8354 			ret = PTR_ERR(trans);
8355 			goto out;
8356 		}
8357 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8358 	}
8359 
8360 	if (trans) {
8361 		int ret2;
8362 
8363 		trans->block_rsv = &fs_info->trans_block_rsv;
8364 		ret2 = btrfs_update_inode(trans, root, inode);
8365 		if (ret2 && !ret)
8366 			ret = ret2;
8367 
8368 		ret2 = btrfs_end_transaction(trans);
8369 		if (ret2 && !ret)
8370 			ret = ret2;
8371 		btrfs_btree_balance_dirty(fs_info);
8372 	}
8373 out:
8374 	btrfs_free_block_rsv(fs_info, rsv);
8375 	/*
8376 	 * So if we truncate and then write and fsync we normally would just
8377 	 * write the extents that changed, which is a problem if we need to
8378 	 * first truncate that entire inode.  So set this flag so we write out
8379 	 * all of the extents in the inode to the sync log so we're completely
8380 	 * safe.
8381 	 *
8382 	 * If no extents were dropped or trimmed we don't need to force the next
8383 	 * fsync to truncate all the inode's items from the log and re-log them
8384 	 * all. This means the truncate operation did not change the file size,
8385 	 * or changed it to a smaller size but there was only an implicit hole
8386 	 * between the old i_size and the new i_size, and there were no prealloc
8387 	 * extents beyond i_size to drop.
8388 	 */
8389 	if (control.extents_found > 0)
8390 		btrfs_set_inode_full_sync(inode);
8391 
8392 	return ret;
8393 }
8394 
8395 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8396 				     struct inode *dir)
8397 {
8398 	struct inode *inode;
8399 
8400 	inode = new_inode(dir->i_sb);
8401 	if (inode) {
8402 		/*
8403 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8404 		 * the parent's sgid bit is set. This is probably a bug.
8405 		 */
8406 		inode_init_owner(idmap, inode, NULL,
8407 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8408 		inode->i_op = &btrfs_dir_inode_operations;
8409 		inode->i_fop = &btrfs_dir_file_operations;
8410 	}
8411 	return inode;
8412 }
8413 
8414 struct inode *btrfs_alloc_inode(struct super_block *sb)
8415 {
8416 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8417 	struct btrfs_inode *ei;
8418 	struct inode *inode;
8419 
8420 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8421 	if (!ei)
8422 		return NULL;
8423 
8424 	ei->root = NULL;
8425 	ei->generation = 0;
8426 	ei->last_trans = 0;
8427 	ei->last_sub_trans = 0;
8428 	ei->logged_trans = 0;
8429 	ei->delalloc_bytes = 0;
8430 	ei->new_delalloc_bytes = 0;
8431 	ei->defrag_bytes = 0;
8432 	ei->disk_i_size = 0;
8433 	ei->flags = 0;
8434 	ei->ro_flags = 0;
8435 	ei->csum_bytes = 0;
8436 	ei->index_cnt = (u64)-1;
8437 	ei->dir_index = 0;
8438 	ei->last_unlink_trans = 0;
8439 	ei->last_reflink_trans = 0;
8440 	ei->last_log_commit = 0;
8441 
8442 	spin_lock_init(&ei->lock);
8443 	ei->outstanding_extents = 0;
8444 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8445 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8446 					      BTRFS_BLOCK_RSV_DELALLOC);
8447 	ei->runtime_flags = 0;
8448 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8449 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8450 
8451 	ei->delayed_node = NULL;
8452 
8453 	ei->i_otime.tv_sec = 0;
8454 	ei->i_otime.tv_nsec = 0;
8455 
8456 	inode = &ei->vfs_inode;
8457 	extent_map_tree_init(&ei->extent_tree);
8458 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8459 	ei->io_tree.inode = ei;
8460 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8461 			    IO_TREE_INODE_FILE_EXTENT);
8462 	atomic_set(&ei->sync_writers, 0);
8463 	mutex_init(&ei->log_mutex);
8464 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8465 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8466 	INIT_LIST_HEAD(&ei->delayed_iput);
8467 	RB_CLEAR_NODE(&ei->rb_node);
8468 	init_rwsem(&ei->i_mmap_lock);
8469 
8470 	return inode;
8471 }
8472 
8473 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8474 void btrfs_test_destroy_inode(struct inode *inode)
8475 {
8476 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8477 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8478 }
8479 #endif
8480 
8481 void btrfs_free_inode(struct inode *inode)
8482 {
8483 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8484 }
8485 
8486 void btrfs_destroy_inode(struct inode *vfs_inode)
8487 {
8488 	struct btrfs_ordered_extent *ordered;
8489 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8490 	struct btrfs_root *root = inode->root;
8491 	bool freespace_inode;
8492 
8493 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8494 	WARN_ON(vfs_inode->i_data.nrpages);
8495 	WARN_ON(inode->block_rsv.reserved);
8496 	WARN_ON(inode->block_rsv.size);
8497 	WARN_ON(inode->outstanding_extents);
8498 	if (!S_ISDIR(vfs_inode->i_mode)) {
8499 		WARN_ON(inode->delalloc_bytes);
8500 		WARN_ON(inode->new_delalloc_bytes);
8501 	}
8502 	WARN_ON(inode->csum_bytes);
8503 	WARN_ON(inode->defrag_bytes);
8504 
8505 	/*
8506 	 * This can happen where we create an inode, but somebody else also
8507 	 * created the same inode and we need to destroy the one we already
8508 	 * created.
8509 	 */
8510 	if (!root)
8511 		return;
8512 
8513 	/*
8514 	 * If this is a free space inode do not take the ordered extents lockdep
8515 	 * map.
8516 	 */
8517 	freespace_inode = btrfs_is_free_space_inode(inode);
8518 
8519 	while (1) {
8520 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8521 		if (!ordered)
8522 			break;
8523 		else {
8524 			btrfs_err(root->fs_info,
8525 				  "found ordered extent %llu %llu on inode cleanup",
8526 				  ordered->file_offset, ordered->num_bytes);
8527 
8528 			if (!freespace_inode)
8529 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8530 
8531 			btrfs_remove_ordered_extent(inode, ordered);
8532 			btrfs_put_ordered_extent(ordered);
8533 			btrfs_put_ordered_extent(ordered);
8534 		}
8535 	}
8536 	btrfs_qgroup_check_reserved_leak(inode);
8537 	inode_tree_del(inode);
8538 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8539 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8540 	btrfs_put_root(inode->root);
8541 }
8542 
8543 int btrfs_drop_inode(struct inode *inode)
8544 {
8545 	struct btrfs_root *root = BTRFS_I(inode)->root;
8546 
8547 	if (root == NULL)
8548 		return 1;
8549 
8550 	/* the snap/subvol tree is on deleting */
8551 	if (btrfs_root_refs(&root->root_item) == 0)
8552 		return 1;
8553 	else
8554 		return generic_drop_inode(inode);
8555 }
8556 
8557 static void init_once(void *foo)
8558 {
8559 	struct btrfs_inode *ei = foo;
8560 
8561 	inode_init_once(&ei->vfs_inode);
8562 }
8563 
8564 void __cold btrfs_destroy_cachep(void)
8565 {
8566 	/*
8567 	 * Make sure all delayed rcu free inodes are flushed before we
8568 	 * destroy cache.
8569 	 */
8570 	rcu_barrier();
8571 	bioset_exit(&btrfs_dio_bioset);
8572 	kmem_cache_destroy(btrfs_inode_cachep);
8573 }
8574 
8575 int __init btrfs_init_cachep(void)
8576 {
8577 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8578 			sizeof(struct btrfs_inode), 0,
8579 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8580 			init_once);
8581 	if (!btrfs_inode_cachep)
8582 		goto fail;
8583 
8584 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8585 			offsetof(struct btrfs_dio_private, bbio.bio),
8586 			BIOSET_NEED_BVECS))
8587 		goto fail;
8588 
8589 	return 0;
8590 fail:
8591 	btrfs_destroy_cachep();
8592 	return -ENOMEM;
8593 }
8594 
8595 static int btrfs_getattr(struct mnt_idmap *idmap,
8596 			 const struct path *path, struct kstat *stat,
8597 			 u32 request_mask, unsigned int flags)
8598 {
8599 	u64 delalloc_bytes;
8600 	u64 inode_bytes;
8601 	struct inode *inode = d_inode(path->dentry);
8602 	u32 blocksize = inode->i_sb->s_blocksize;
8603 	u32 bi_flags = BTRFS_I(inode)->flags;
8604 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8605 
8606 	stat->result_mask |= STATX_BTIME;
8607 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8608 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8609 	if (bi_flags & BTRFS_INODE_APPEND)
8610 		stat->attributes |= STATX_ATTR_APPEND;
8611 	if (bi_flags & BTRFS_INODE_COMPRESS)
8612 		stat->attributes |= STATX_ATTR_COMPRESSED;
8613 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8614 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8615 	if (bi_flags & BTRFS_INODE_NODUMP)
8616 		stat->attributes |= STATX_ATTR_NODUMP;
8617 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8618 		stat->attributes |= STATX_ATTR_VERITY;
8619 
8620 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8621 				  STATX_ATTR_COMPRESSED |
8622 				  STATX_ATTR_IMMUTABLE |
8623 				  STATX_ATTR_NODUMP);
8624 
8625 	generic_fillattr(idmap, inode, stat);
8626 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8627 
8628 	spin_lock(&BTRFS_I(inode)->lock);
8629 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8630 	inode_bytes = inode_get_bytes(inode);
8631 	spin_unlock(&BTRFS_I(inode)->lock);
8632 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8633 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8634 	return 0;
8635 }
8636 
8637 static int btrfs_rename_exchange(struct inode *old_dir,
8638 			      struct dentry *old_dentry,
8639 			      struct inode *new_dir,
8640 			      struct dentry *new_dentry)
8641 {
8642 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8643 	struct btrfs_trans_handle *trans;
8644 	unsigned int trans_num_items;
8645 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8646 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8647 	struct inode *new_inode = new_dentry->d_inode;
8648 	struct inode *old_inode = old_dentry->d_inode;
8649 	struct timespec64 ctime = current_time(old_inode);
8650 	struct btrfs_rename_ctx old_rename_ctx;
8651 	struct btrfs_rename_ctx new_rename_ctx;
8652 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8653 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8654 	u64 old_idx = 0;
8655 	u64 new_idx = 0;
8656 	int ret;
8657 	int ret2;
8658 	bool need_abort = false;
8659 	struct fscrypt_name old_fname, new_fname;
8660 	struct fscrypt_str *old_name, *new_name;
8661 
8662 	/*
8663 	 * For non-subvolumes allow exchange only within one subvolume, in the
8664 	 * same inode namespace. Two subvolumes (represented as directory) can
8665 	 * be exchanged as they're a logical link and have a fixed inode number.
8666 	 */
8667 	if (root != dest &&
8668 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8669 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8670 		return -EXDEV;
8671 
8672 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8673 	if (ret)
8674 		return ret;
8675 
8676 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8677 	if (ret) {
8678 		fscrypt_free_filename(&old_fname);
8679 		return ret;
8680 	}
8681 
8682 	old_name = &old_fname.disk_name;
8683 	new_name = &new_fname.disk_name;
8684 
8685 	/* close the race window with snapshot create/destroy ioctl */
8686 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8687 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8688 		down_read(&fs_info->subvol_sem);
8689 
8690 	/*
8691 	 * For each inode:
8692 	 * 1 to remove old dir item
8693 	 * 1 to remove old dir index
8694 	 * 1 to add new dir item
8695 	 * 1 to add new dir index
8696 	 * 1 to update parent inode
8697 	 *
8698 	 * If the parents are the same, we only need to account for one
8699 	 */
8700 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8701 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8702 		/*
8703 		 * 1 to remove old root ref
8704 		 * 1 to remove old root backref
8705 		 * 1 to add new root ref
8706 		 * 1 to add new root backref
8707 		 */
8708 		trans_num_items += 4;
8709 	} else {
8710 		/*
8711 		 * 1 to update inode item
8712 		 * 1 to remove old inode ref
8713 		 * 1 to add new inode ref
8714 		 */
8715 		trans_num_items += 3;
8716 	}
8717 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8718 		trans_num_items += 4;
8719 	else
8720 		trans_num_items += 3;
8721 	trans = btrfs_start_transaction(root, trans_num_items);
8722 	if (IS_ERR(trans)) {
8723 		ret = PTR_ERR(trans);
8724 		goto out_notrans;
8725 	}
8726 
8727 	if (dest != root) {
8728 		ret = btrfs_record_root_in_trans(trans, dest);
8729 		if (ret)
8730 			goto out_fail;
8731 	}
8732 
8733 	/*
8734 	 * We need to find a free sequence number both in the source and
8735 	 * in the destination directory for the exchange.
8736 	 */
8737 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8738 	if (ret)
8739 		goto out_fail;
8740 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8741 	if (ret)
8742 		goto out_fail;
8743 
8744 	BTRFS_I(old_inode)->dir_index = 0ULL;
8745 	BTRFS_I(new_inode)->dir_index = 0ULL;
8746 
8747 	/* Reference for the source. */
8748 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8749 		/* force full log commit if subvolume involved. */
8750 		btrfs_set_log_full_commit(trans);
8751 	} else {
8752 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8753 					     btrfs_ino(BTRFS_I(new_dir)),
8754 					     old_idx);
8755 		if (ret)
8756 			goto out_fail;
8757 		need_abort = true;
8758 	}
8759 
8760 	/* And now for the dest. */
8761 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8762 		/* force full log commit if subvolume involved. */
8763 		btrfs_set_log_full_commit(trans);
8764 	} else {
8765 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8766 					     btrfs_ino(BTRFS_I(old_dir)),
8767 					     new_idx);
8768 		if (ret) {
8769 			if (need_abort)
8770 				btrfs_abort_transaction(trans, ret);
8771 			goto out_fail;
8772 		}
8773 	}
8774 
8775 	/* Update inode version and ctime/mtime. */
8776 	inode_inc_iversion(old_dir);
8777 	inode_inc_iversion(new_dir);
8778 	inode_inc_iversion(old_inode);
8779 	inode_inc_iversion(new_inode);
8780 	old_dir->i_mtime = ctime;
8781 	old_dir->i_ctime = ctime;
8782 	new_dir->i_mtime = ctime;
8783 	new_dir->i_ctime = ctime;
8784 	old_inode->i_ctime = ctime;
8785 	new_inode->i_ctime = ctime;
8786 
8787 	if (old_dentry->d_parent != new_dentry->d_parent) {
8788 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8789 				BTRFS_I(old_inode), 1);
8790 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8791 				BTRFS_I(new_inode), 1);
8792 	}
8793 
8794 	/* src is a subvolume */
8795 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8796 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8797 	} else { /* src is an inode */
8798 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8799 					   BTRFS_I(old_dentry->d_inode),
8800 					   old_name, &old_rename_ctx);
8801 		if (!ret)
8802 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8803 	}
8804 	if (ret) {
8805 		btrfs_abort_transaction(trans, ret);
8806 		goto out_fail;
8807 	}
8808 
8809 	/* dest is a subvolume */
8810 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8811 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8812 	} else { /* dest is an inode */
8813 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8814 					   BTRFS_I(new_dentry->d_inode),
8815 					   new_name, &new_rename_ctx);
8816 		if (!ret)
8817 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8818 	}
8819 	if (ret) {
8820 		btrfs_abort_transaction(trans, ret);
8821 		goto out_fail;
8822 	}
8823 
8824 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8825 			     new_name, 0, old_idx);
8826 	if (ret) {
8827 		btrfs_abort_transaction(trans, ret);
8828 		goto out_fail;
8829 	}
8830 
8831 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8832 			     old_name, 0, new_idx);
8833 	if (ret) {
8834 		btrfs_abort_transaction(trans, ret);
8835 		goto out_fail;
8836 	}
8837 
8838 	if (old_inode->i_nlink == 1)
8839 		BTRFS_I(old_inode)->dir_index = old_idx;
8840 	if (new_inode->i_nlink == 1)
8841 		BTRFS_I(new_inode)->dir_index = new_idx;
8842 
8843 	/*
8844 	 * Now pin the logs of the roots. We do it to ensure that no other task
8845 	 * can sync the logs while we are in progress with the rename, because
8846 	 * that could result in an inconsistency in case any of the inodes that
8847 	 * are part of this rename operation were logged before.
8848 	 */
8849 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8850 		btrfs_pin_log_trans(root);
8851 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8852 		btrfs_pin_log_trans(dest);
8853 
8854 	/* Do the log updates for all inodes. */
8855 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8856 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8857 				   old_rename_ctx.index, new_dentry->d_parent);
8858 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8859 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8860 				   new_rename_ctx.index, old_dentry->d_parent);
8861 
8862 	/* Now unpin the logs. */
8863 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8864 		btrfs_end_log_trans(root);
8865 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8866 		btrfs_end_log_trans(dest);
8867 out_fail:
8868 	ret2 = btrfs_end_transaction(trans);
8869 	ret = ret ? ret : ret2;
8870 out_notrans:
8871 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8872 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8873 		up_read(&fs_info->subvol_sem);
8874 
8875 	fscrypt_free_filename(&new_fname);
8876 	fscrypt_free_filename(&old_fname);
8877 	return ret;
8878 }
8879 
8880 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8881 					struct inode *dir)
8882 {
8883 	struct inode *inode;
8884 
8885 	inode = new_inode(dir->i_sb);
8886 	if (inode) {
8887 		inode_init_owner(idmap, inode, dir,
8888 				 S_IFCHR | WHITEOUT_MODE);
8889 		inode->i_op = &btrfs_special_inode_operations;
8890 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8891 	}
8892 	return inode;
8893 }
8894 
8895 static int btrfs_rename(struct mnt_idmap *idmap,
8896 			struct inode *old_dir, struct dentry *old_dentry,
8897 			struct inode *new_dir, struct dentry *new_dentry,
8898 			unsigned int flags)
8899 {
8900 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8901 	struct btrfs_new_inode_args whiteout_args = {
8902 		.dir = old_dir,
8903 		.dentry = old_dentry,
8904 	};
8905 	struct btrfs_trans_handle *trans;
8906 	unsigned int trans_num_items;
8907 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8908 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8909 	struct inode *new_inode = d_inode(new_dentry);
8910 	struct inode *old_inode = d_inode(old_dentry);
8911 	struct btrfs_rename_ctx rename_ctx;
8912 	u64 index = 0;
8913 	int ret;
8914 	int ret2;
8915 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8916 	struct fscrypt_name old_fname, new_fname;
8917 
8918 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8919 		return -EPERM;
8920 
8921 	/* we only allow rename subvolume link between subvolumes */
8922 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8923 		return -EXDEV;
8924 
8925 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8926 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8927 		return -ENOTEMPTY;
8928 
8929 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8930 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8931 		return -ENOTEMPTY;
8932 
8933 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8934 	if (ret)
8935 		return ret;
8936 
8937 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8938 	if (ret) {
8939 		fscrypt_free_filename(&old_fname);
8940 		return ret;
8941 	}
8942 
8943 	/* check for collisions, even if the  name isn't there */
8944 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8945 	if (ret) {
8946 		if (ret == -EEXIST) {
8947 			/* we shouldn't get
8948 			 * eexist without a new_inode */
8949 			if (WARN_ON(!new_inode)) {
8950 				goto out_fscrypt_names;
8951 			}
8952 		} else {
8953 			/* maybe -EOVERFLOW */
8954 			goto out_fscrypt_names;
8955 		}
8956 	}
8957 	ret = 0;
8958 
8959 	/*
8960 	 * we're using rename to replace one file with another.  Start IO on it
8961 	 * now so  we don't add too much work to the end of the transaction
8962 	 */
8963 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8964 		filemap_flush(old_inode->i_mapping);
8965 
8966 	if (flags & RENAME_WHITEOUT) {
8967 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8968 		if (!whiteout_args.inode) {
8969 			ret = -ENOMEM;
8970 			goto out_fscrypt_names;
8971 		}
8972 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8973 		if (ret)
8974 			goto out_whiteout_inode;
8975 	} else {
8976 		/* 1 to update the old parent inode. */
8977 		trans_num_items = 1;
8978 	}
8979 
8980 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8981 		/* Close the race window with snapshot create/destroy ioctl */
8982 		down_read(&fs_info->subvol_sem);
8983 		/*
8984 		 * 1 to remove old root ref
8985 		 * 1 to remove old root backref
8986 		 * 1 to add new root ref
8987 		 * 1 to add new root backref
8988 		 */
8989 		trans_num_items += 4;
8990 	} else {
8991 		/*
8992 		 * 1 to update inode
8993 		 * 1 to remove old inode ref
8994 		 * 1 to add new inode ref
8995 		 */
8996 		trans_num_items += 3;
8997 	}
8998 	/*
8999 	 * 1 to remove old dir item
9000 	 * 1 to remove old dir index
9001 	 * 1 to add new dir item
9002 	 * 1 to add new dir index
9003 	 */
9004 	trans_num_items += 4;
9005 	/* 1 to update new parent inode if it's not the same as the old parent */
9006 	if (new_dir != old_dir)
9007 		trans_num_items++;
9008 	if (new_inode) {
9009 		/*
9010 		 * 1 to update inode
9011 		 * 1 to remove inode ref
9012 		 * 1 to remove dir item
9013 		 * 1 to remove dir index
9014 		 * 1 to possibly add orphan item
9015 		 */
9016 		trans_num_items += 5;
9017 	}
9018 	trans = btrfs_start_transaction(root, trans_num_items);
9019 	if (IS_ERR(trans)) {
9020 		ret = PTR_ERR(trans);
9021 		goto out_notrans;
9022 	}
9023 
9024 	if (dest != root) {
9025 		ret = btrfs_record_root_in_trans(trans, dest);
9026 		if (ret)
9027 			goto out_fail;
9028 	}
9029 
9030 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9031 	if (ret)
9032 		goto out_fail;
9033 
9034 	BTRFS_I(old_inode)->dir_index = 0ULL;
9035 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9036 		/* force full log commit if subvolume involved. */
9037 		btrfs_set_log_full_commit(trans);
9038 	} else {
9039 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9040 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9041 					     index);
9042 		if (ret)
9043 			goto out_fail;
9044 	}
9045 
9046 	inode_inc_iversion(old_dir);
9047 	inode_inc_iversion(new_dir);
9048 	inode_inc_iversion(old_inode);
9049 	old_dir->i_mtime = current_time(old_dir);
9050 	old_dir->i_ctime = old_dir->i_mtime;
9051 	new_dir->i_mtime = old_dir->i_mtime;
9052 	new_dir->i_ctime = old_dir->i_mtime;
9053 	old_inode->i_ctime = old_dir->i_mtime;
9054 
9055 	if (old_dentry->d_parent != new_dentry->d_parent)
9056 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9057 				BTRFS_I(old_inode), 1);
9058 
9059 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9060 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9061 	} else {
9062 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9063 					   BTRFS_I(d_inode(old_dentry)),
9064 					   &old_fname.disk_name, &rename_ctx);
9065 		if (!ret)
9066 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9067 	}
9068 	if (ret) {
9069 		btrfs_abort_transaction(trans, ret);
9070 		goto out_fail;
9071 	}
9072 
9073 	if (new_inode) {
9074 		inode_inc_iversion(new_inode);
9075 		new_inode->i_ctime = current_time(new_inode);
9076 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9077 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9078 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9079 			BUG_ON(new_inode->i_nlink == 0);
9080 		} else {
9081 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9082 						 BTRFS_I(d_inode(new_dentry)),
9083 						 &new_fname.disk_name);
9084 		}
9085 		if (!ret && new_inode->i_nlink == 0)
9086 			ret = btrfs_orphan_add(trans,
9087 					BTRFS_I(d_inode(new_dentry)));
9088 		if (ret) {
9089 			btrfs_abort_transaction(trans, ret);
9090 			goto out_fail;
9091 		}
9092 	}
9093 
9094 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9095 			     &new_fname.disk_name, 0, index);
9096 	if (ret) {
9097 		btrfs_abort_transaction(trans, ret);
9098 		goto out_fail;
9099 	}
9100 
9101 	if (old_inode->i_nlink == 1)
9102 		BTRFS_I(old_inode)->dir_index = index;
9103 
9104 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9105 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9106 				   rename_ctx.index, new_dentry->d_parent);
9107 
9108 	if (flags & RENAME_WHITEOUT) {
9109 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9110 		if (ret) {
9111 			btrfs_abort_transaction(trans, ret);
9112 			goto out_fail;
9113 		} else {
9114 			unlock_new_inode(whiteout_args.inode);
9115 			iput(whiteout_args.inode);
9116 			whiteout_args.inode = NULL;
9117 		}
9118 	}
9119 out_fail:
9120 	ret2 = btrfs_end_transaction(trans);
9121 	ret = ret ? ret : ret2;
9122 out_notrans:
9123 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9124 		up_read(&fs_info->subvol_sem);
9125 	if (flags & RENAME_WHITEOUT)
9126 		btrfs_new_inode_args_destroy(&whiteout_args);
9127 out_whiteout_inode:
9128 	if (flags & RENAME_WHITEOUT)
9129 		iput(whiteout_args.inode);
9130 out_fscrypt_names:
9131 	fscrypt_free_filename(&old_fname);
9132 	fscrypt_free_filename(&new_fname);
9133 	return ret;
9134 }
9135 
9136 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9137 			 struct dentry *old_dentry, struct inode *new_dir,
9138 			 struct dentry *new_dentry, unsigned int flags)
9139 {
9140 	int ret;
9141 
9142 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9143 		return -EINVAL;
9144 
9145 	if (flags & RENAME_EXCHANGE)
9146 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9147 					    new_dentry);
9148 	else
9149 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9150 				   new_dentry, flags);
9151 
9152 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9153 
9154 	return ret;
9155 }
9156 
9157 struct btrfs_delalloc_work {
9158 	struct inode *inode;
9159 	struct completion completion;
9160 	struct list_head list;
9161 	struct btrfs_work work;
9162 };
9163 
9164 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9165 {
9166 	struct btrfs_delalloc_work *delalloc_work;
9167 	struct inode *inode;
9168 
9169 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9170 				     work);
9171 	inode = delalloc_work->inode;
9172 	filemap_flush(inode->i_mapping);
9173 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9174 				&BTRFS_I(inode)->runtime_flags))
9175 		filemap_flush(inode->i_mapping);
9176 
9177 	iput(inode);
9178 	complete(&delalloc_work->completion);
9179 }
9180 
9181 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9182 {
9183 	struct btrfs_delalloc_work *work;
9184 
9185 	work = kmalloc(sizeof(*work), GFP_NOFS);
9186 	if (!work)
9187 		return NULL;
9188 
9189 	init_completion(&work->completion);
9190 	INIT_LIST_HEAD(&work->list);
9191 	work->inode = inode;
9192 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9193 
9194 	return work;
9195 }
9196 
9197 /*
9198  * some fairly slow code that needs optimization. This walks the list
9199  * of all the inodes with pending delalloc and forces them to disk.
9200  */
9201 static int start_delalloc_inodes(struct btrfs_root *root,
9202 				 struct writeback_control *wbc, bool snapshot,
9203 				 bool in_reclaim_context)
9204 {
9205 	struct btrfs_inode *binode;
9206 	struct inode *inode;
9207 	struct btrfs_delalloc_work *work, *next;
9208 	struct list_head works;
9209 	struct list_head splice;
9210 	int ret = 0;
9211 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9212 
9213 	INIT_LIST_HEAD(&works);
9214 	INIT_LIST_HEAD(&splice);
9215 
9216 	mutex_lock(&root->delalloc_mutex);
9217 	spin_lock(&root->delalloc_lock);
9218 	list_splice_init(&root->delalloc_inodes, &splice);
9219 	while (!list_empty(&splice)) {
9220 		binode = list_entry(splice.next, struct btrfs_inode,
9221 				    delalloc_inodes);
9222 
9223 		list_move_tail(&binode->delalloc_inodes,
9224 			       &root->delalloc_inodes);
9225 
9226 		if (in_reclaim_context &&
9227 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9228 			continue;
9229 
9230 		inode = igrab(&binode->vfs_inode);
9231 		if (!inode) {
9232 			cond_resched_lock(&root->delalloc_lock);
9233 			continue;
9234 		}
9235 		spin_unlock(&root->delalloc_lock);
9236 
9237 		if (snapshot)
9238 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9239 				&binode->runtime_flags);
9240 		if (full_flush) {
9241 			work = btrfs_alloc_delalloc_work(inode);
9242 			if (!work) {
9243 				iput(inode);
9244 				ret = -ENOMEM;
9245 				goto out;
9246 			}
9247 			list_add_tail(&work->list, &works);
9248 			btrfs_queue_work(root->fs_info->flush_workers,
9249 					 &work->work);
9250 		} else {
9251 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9252 			btrfs_add_delayed_iput(BTRFS_I(inode));
9253 			if (ret || wbc->nr_to_write <= 0)
9254 				goto out;
9255 		}
9256 		cond_resched();
9257 		spin_lock(&root->delalloc_lock);
9258 	}
9259 	spin_unlock(&root->delalloc_lock);
9260 
9261 out:
9262 	list_for_each_entry_safe(work, next, &works, list) {
9263 		list_del_init(&work->list);
9264 		wait_for_completion(&work->completion);
9265 		kfree(work);
9266 	}
9267 
9268 	if (!list_empty(&splice)) {
9269 		spin_lock(&root->delalloc_lock);
9270 		list_splice_tail(&splice, &root->delalloc_inodes);
9271 		spin_unlock(&root->delalloc_lock);
9272 	}
9273 	mutex_unlock(&root->delalloc_mutex);
9274 	return ret;
9275 }
9276 
9277 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9278 {
9279 	struct writeback_control wbc = {
9280 		.nr_to_write = LONG_MAX,
9281 		.sync_mode = WB_SYNC_NONE,
9282 		.range_start = 0,
9283 		.range_end = LLONG_MAX,
9284 	};
9285 	struct btrfs_fs_info *fs_info = root->fs_info;
9286 
9287 	if (BTRFS_FS_ERROR(fs_info))
9288 		return -EROFS;
9289 
9290 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9291 }
9292 
9293 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9294 			       bool in_reclaim_context)
9295 {
9296 	struct writeback_control wbc = {
9297 		.nr_to_write = nr,
9298 		.sync_mode = WB_SYNC_NONE,
9299 		.range_start = 0,
9300 		.range_end = LLONG_MAX,
9301 	};
9302 	struct btrfs_root *root;
9303 	struct list_head splice;
9304 	int ret;
9305 
9306 	if (BTRFS_FS_ERROR(fs_info))
9307 		return -EROFS;
9308 
9309 	INIT_LIST_HEAD(&splice);
9310 
9311 	mutex_lock(&fs_info->delalloc_root_mutex);
9312 	spin_lock(&fs_info->delalloc_root_lock);
9313 	list_splice_init(&fs_info->delalloc_roots, &splice);
9314 	while (!list_empty(&splice)) {
9315 		/*
9316 		 * Reset nr_to_write here so we know that we're doing a full
9317 		 * flush.
9318 		 */
9319 		if (nr == LONG_MAX)
9320 			wbc.nr_to_write = LONG_MAX;
9321 
9322 		root = list_first_entry(&splice, struct btrfs_root,
9323 					delalloc_root);
9324 		root = btrfs_grab_root(root);
9325 		BUG_ON(!root);
9326 		list_move_tail(&root->delalloc_root,
9327 			       &fs_info->delalloc_roots);
9328 		spin_unlock(&fs_info->delalloc_root_lock);
9329 
9330 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9331 		btrfs_put_root(root);
9332 		if (ret < 0 || wbc.nr_to_write <= 0)
9333 			goto out;
9334 		spin_lock(&fs_info->delalloc_root_lock);
9335 	}
9336 	spin_unlock(&fs_info->delalloc_root_lock);
9337 
9338 	ret = 0;
9339 out:
9340 	if (!list_empty(&splice)) {
9341 		spin_lock(&fs_info->delalloc_root_lock);
9342 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9343 		spin_unlock(&fs_info->delalloc_root_lock);
9344 	}
9345 	mutex_unlock(&fs_info->delalloc_root_mutex);
9346 	return ret;
9347 }
9348 
9349 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9350 			 struct dentry *dentry, const char *symname)
9351 {
9352 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9353 	struct btrfs_trans_handle *trans;
9354 	struct btrfs_root *root = BTRFS_I(dir)->root;
9355 	struct btrfs_path *path;
9356 	struct btrfs_key key;
9357 	struct inode *inode;
9358 	struct btrfs_new_inode_args new_inode_args = {
9359 		.dir = dir,
9360 		.dentry = dentry,
9361 	};
9362 	unsigned int trans_num_items;
9363 	int err;
9364 	int name_len;
9365 	int datasize;
9366 	unsigned long ptr;
9367 	struct btrfs_file_extent_item *ei;
9368 	struct extent_buffer *leaf;
9369 
9370 	name_len = strlen(symname);
9371 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9372 		return -ENAMETOOLONG;
9373 
9374 	inode = new_inode(dir->i_sb);
9375 	if (!inode)
9376 		return -ENOMEM;
9377 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9378 	inode->i_op = &btrfs_symlink_inode_operations;
9379 	inode_nohighmem(inode);
9380 	inode->i_mapping->a_ops = &btrfs_aops;
9381 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9382 	inode_set_bytes(inode, name_len);
9383 
9384 	new_inode_args.inode = inode;
9385 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9386 	if (err)
9387 		goto out_inode;
9388 	/* 1 additional item for the inline extent */
9389 	trans_num_items++;
9390 
9391 	trans = btrfs_start_transaction(root, trans_num_items);
9392 	if (IS_ERR(trans)) {
9393 		err = PTR_ERR(trans);
9394 		goto out_new_inode_args;
9395 	}
9396 
9397 	err = btrfs_create_new_inode(trans, &new_inode_args);
9398 	if (err)
9399 		goto out;
9400 
9401 	path = btrfs_alloc_path();
9402 	if (!path) {
9403 		err = -ENOMEM;
9404 		btrfs_abort_transaction(trans, err);
9405 		discard_new_inode(inode);
9406 		inode = NULL;
9407 		goto out;
9408 	}
9409 	key.objectid = btrfs_ino(BTRFS_I(inode));
9410 	key.offset = 0;
9411 	key.type = BTRFS_EXTENT_DATA_KEY;
9412 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9413 	err = btrfs_insert_empty_item(trans, root, path, &key,
9414 				      datasize);
9415 	if (err) {
9416 		btrfs_abort_transaction(trans, err);
9417 		btrfs_free_path(path);
9418 		discard_new_inode(inode);
9419 		inode = NULL;
9420 		goto out;
9421 	}
9422 	leaf = path->nodes[0];
9423 	ei = btrfs_item_ptr(leaf, path->slots[0],
9424 			    struct btrfs_file_extent_item);
9425 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9426 	btrfs_set_file_extent_type(leaf, ei,
9427 				   BTRFS_FILE_EXTENT_INLINE);
9428 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9429 	btrfs_set_file_extent_compression(leaf, ei, 0);
9430 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9431 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9432 
9433 	ptr = btrfs_file_extent_inline_start(ei);
9434 	write_extent_buffer(leaf, symname, ptr, name_len);
9435 	btrfs_mark_buffer_dirty(leaf);
9436 	btrfs_free_path(path);
9437 
9438 	d_instantiate_new(dentry, inode);
9439 	err = 0;
9440 out:
9441 	btrfs_end_transaction(trans);
9442 	btrfs_btree_balance_dirty(fs_info);
9443 out_new_inode_args:
9444 	btrfs_new_inode_args_destroy(&new_inode_args);
9445 out_inode:
9446 	if (err)
9447 		iput(inode);
9448 	return err;
9449 }
9450 
9451 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9452 				       struct btrfs_trans_handle *trans_in,
9453 				       struct btrfs_inode *inode,
9454 				       struct btrfs_key *ins,
9455 				       u64 file_offset)
9456 {
9457 	struct btrfs_file_extent_item stack_fi;
9458 	struct btrfs_replace_extent_info extent_info;
9459 	struct btrfs_trans_handle *trans = trans_in;
9460 	struct btrfs_path *path;
9461 	u64 start = ins->objectid;
9462 	u64 len = ins->offset;
9463 	int qgroup_released;
9464 	int ret;
9465 
9466 	memset(&stack_fi, 0, sizeof(stack_fi));
9467 
9468 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9469 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9470 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9471 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9472 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9473 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9474 	/* Encryption and other encoding is reserved and all 0 */
9475 
9476 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9477 	if (qgroup_released < 0)
9478 		return ERR_PTR(qgroup_released);
9479 
9480 	if (trans) {
9481 		ret = insert_reserved_file_extent(trans, inode,
9482 						  file_offset, &stack_fi,
9483 						  true, qgroup_released);
9484 		if (ret)
9485 			goto free_qgroup;
9486 		return trans;
9487 	}
9488 
9489 	extent_info.disk_offset = start;
9490 	extent_info.disk_len = len;
9491 	extent_info.data_offset = 0;
9492 	extent_info.data_len = len;
9493 	extent_info.file_offset = file_offset;
9494 	extent_info.extent_buf = (char *)&stack_fi;
9495 	extent_info.is_new_extent = true;
9496 	extent_info.update_times = true;
9497 	extent_info.qgroup_reserved = qgroup_released;
9498 	extent_info.insertions = 0;
9499 
9500 	path = btrfs_alloc_path();
9501 	if (!path) {
9502 		ret = -ENOMEM;
9503 		goto free_qgroup;
9504 	}
9505 
9506 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9507 				     file_offset + len - 1, &extent_info,
9508 				     &trans);
9509 	btrfs_free_path(path);
9510 	if (ret)
9511 		goto free_qgroup;
9512 	return trans;
9513 
9514 free_qgroup:
9515 	/*
9516 	 * We have released qgroup data range at the beginning of the function,
9517 	 * and normally qgroup_released bytes will be freed when committing
9518 	 * transaction.
9519 	 * But if we error out early, we have to free what we have released
9520 	 * or we leak qgroup data reservation.
9521 	 */
9522 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9523 			inode->root->root_key.objectid, qgroup_released,
9524 			BTRFS_QGROUP_RSV_DATA);
9525 	return ERR_PTR(ret);
9526 }
9527 
9528 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9529 				       u64 start, u64 num_bytes, u64 min_size,
9530 				       loff_t actual_len, u64 *alloc_hint,
9531 				       struct btrfs_trans_handle *trans)
9532 {
9533 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9534 	struct extent_map *em;
9535 	struct btrfs_root *root = BTRFS_I(inode)->root;
9536 	struct btrfs_key ins;
9537 	u64 cur_offset = start;
9538 	u64 clear_offset = start;
9539 	u64 i_size;
9540 	u64 cur_bytes;
9541 	u64 last_alloc = (u64)-1;
9542 	int ret = 0;
9543 	bool own_trans = true;
9544 	u64 end = start + num_bytes - 1;
9545 
9546 	if (trans)
9547 		own_trans = false;
9548 	while (num_bytes > 0) {
9549 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9550 		cur_bytes = max(cur_bytes, min_size);
9551 		/*
9552 		 * If we are severely fragmented we could end up with really
9553 		 * small allocations, so if the allocator is returning small
9554 		 * chunks lets make its job easier by only searching for those
9555 		 * sized chunks.
9556 		 */
9557 		cur_bytes = min(cur_bytes, last_alloc);
9558 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9559 				min_size, 0, *alloc_hint, &ins, 1, 0);
9560 		if (ret)
9561 			break;
9562 
9563 		/*
9564 		 * We've reserved this space, and thus converted it from
9565 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9566 		 * from here on out we will only need to clear our reservation
9567 		 * for the remaining unreserved area, so advance our
9568 		 * clear_offset by our extent size.
9569 		 */
9570 		clear_offset += ins.offset;
9571 
9572 		last_alloc = ins.offset;
9573 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9574 						    &ins, cur_offset);
9575 		/*
9576 		 * Now that we inserted the prealloc extent we can finally
9577 		 * decrement the number of reservations in the block group.
9578 		 * If we did it before, we could race with relocation and have
9579 		 * relocation miss the reserved extent, making it fail later.
9580 		 */
9581 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9582 		if (IS_ERR(trans)) {
9583 			ret = PTR_ERR(trans);
9584 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9585 						   ins.offset, 0);
9586 			break;
9587 		}
9588 
9589 		em = alloc_extent_map();
9590 		if (!em) {
9591 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9592 					    cur_offset + ins.offset - 1, false);
9593 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9594 			goto next;
9595 		}
9596 
9597 		em->start = cur_offset;
9598 		em->orig_start = cur_offset;
9599 		em->len = ins.offset;
9600 		em->block_start = ins.objectid;
9601 		em->block_len = ins.offset;
9602 		em->orig_block_len = ins.offset;
9603 		em->ram_bytes = ins.offset;
9604 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9605 		em->generation = trans->transid;
9606 
9607 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9608 		free_extent_map(em);
9609 next:
9610 		num_bytes -= ins.offset;
9611 		cur_offset += ins.offset;
9612 		*alloc_hint = ins.objectid + ins.offset;
9613 
9614 		inode_inc_iversion(inode);
9615 		inode->i_ctime = current_time(inode);
9616 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9617 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9618 		    (actual_len > inode->i_size) &&
9619 		    (cur_offset > inode->i_size)) {
9620 			if (cur_offset > actual_len)
9621 				i_size = actual_len;
9622 			else
9623 				i_size = cur_offset;
9624 			i_size_write(inode, i_size);
9625 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9626 		}
9627 
9628 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9629 
9630 		if (ret) {
9631 			btrfs_abort_transaction(trans, ret);
9632 			if (own_trans)
9633 				btrfs_end_transaction(trans);
9634 			break;
9635 		}
9636 
9637 		if (own_trans) {
9638 			btrfs_end_transaction(trans);
9639 			trans = NULL;
9640 		}
9641 	}
9642 	if (clear_offset < end)
9643 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9644 			end - clear_offset + 1);
9645 	return ret;
9646 }
9647 
9648 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9649 			      u64 start, u64 num_bytes, u64 min_size,
9650 			      loff_t actual_len, u64 *alloc_hint)
9651 {
9652 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9653 					   min_size, actual_len, alloc_hint,
9654 					   NULL);
9655 }
9656 
9657 int btrfs_prealloc_file_range_trans(struct inode *inode,
9658 				    struct btrfs_trans_handle *trans, int mode,
9659 				    u64 start, u64 num_bytes, u64 min_size,
9660 				    loff_t actual_len, u64 *alloc_hint)
9661 {
9662 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9663 					   min_size, actual_len, alloc_hint, trans);
9664 }
9665 
9666 static int btrfs_permission(struct mnt_idmap *idmap,
9667 			    struct inode *inode, int mask)
9668 {
9669 	struct btrfs_root *root = BTRFS_I(inode)->root;
9670 	umode_t mode = inode->i_mode;
9671 
9672 	if (mask & MAY_WRITE &&
9673 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9674 		if (btrfs_root_readonly(root))
9675 			return -EROFS;
9676 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9677 			return -EACCES;
9678 	}
9679 	return generic_permission(idmap, inode, mask);
9680 }
9681 
9682 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9683 			 struct file *file, umode_t mode)
9684 {
9685 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9686 	struct btrfs_trans_handle *trans;
9687 	struct btrfs_root *root = BTRFS_I(dir)->root;
9688 	struct inode *inode;
9689 	struct btrfs_new_inode_args new_inode_args = {
9690 		.dir = dir,
9691 		.dentry = file->f_path.dentry,
9692 		.orphan = true,
9693 	};
9694 	unsigned int trans_num_items;
9695 	int ret;
9696 
9697 	inode = new_inode(dir->i_sb);
9698 	if (!inode)
9699 		return -ENOMEM;
9700 	inode_init_owner(idmap, inode, dir, mode);
9701 	inode->i_fop = &btrfs_file_operations;
9702 	inode->i_op = &btrfs_file_inode_operations;
9703 	inode->i_mapping->a_ops = &btrfs_aops;
9704 
9705 	new_inode_args.inode = inode;
9706 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9707 	if (ret)
9708 		goto out_inode;
9709 
9710 	trans = btrfs_start_transaction(root, trans_num_items);
9711 	if (IS_ERR(trans)) {
9712 		ret = PTR_ERR(trans);
9713 		goto out_new_inode_args;
9714 	}
9715 
9716 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9717 
9718 	/*
9719 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9720 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9721 	 * 0, through:
9722 	 *
9723 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9724 	 */
9725 	set_nlink(inode, 1);
9726 
9727 	if (!ret) {
9728 		d_tmpfile(file, inode);
9729 		unlock_new_inode(inode);
9730 		mark_inode_dirty(inode);
9731 	}
9732 
9733 	btrfs_end_transaction(trans);
9734 	btrfs_btree_balance_dirty(fs_info);
9735 out_new_inode_args:
9736 	btrfs_new_inode_args_destroy(&new_inode_args);
9737 out_inode:
9738 	if (ret)
9739 		iput(inode);
9740 	return finish_open_simple(file, ret);
9741 }
9742 
9743 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9744 {
9745 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9746 	unsigned long index = start >> PAGE_SHIFT;
9747 	unsigned long end_index = end >> PAGE_SHIFT;
9748 	struct page *page;
9749 	u32 len;
9750 
9751 	ASSERT(end + 1 - start <= U32_MAX);
9752 	len = end + 1 - start;
9753 	while (index <= end_index) {
9754 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9755 		ASSERT(page); /* Pages should be in the extent_io_tree */
9756 
9757 		btrfs_page_set_writeback(fs_info, page, start, len);
9758 		put_page(page);
9759 		index++;
9760 	}
9761 }
9762 
9763 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9764 					     int compress_type)
9765 {
9766 	switch (compress_type) {
9767 	case BTRFS_COMPRESS_NONE:
9768 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9769 	case BTRFS_COMPRESS_ZLIB:
9770 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9771 	case BTRFS_COMPRESS_LZO:
9772 		/*
9773 		 * The LZO format depends on the sector size. 64K is the maximum
9774 		 * sector size that we support.
9775 		 */
9776 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9777 			return -EINVAL;
9778 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9779 		       (fs_info->sectorsize_bits - 12);
9780 	case BTRFS_COMPRESS_ZSTD:
9781 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9782 	default:
9783 		return -EUCLEAN;
9784 	}
9785 }
9786 
9787 static ssize_t btrfs_encoded_read_inline(
9788 				struct kiocb *iocb,
9789 				struct iov_iter *iter, u64 start,
9790 				u64 lockend,
9791 				struct extent_state **cached_state,
9792 				u64 extent_start, size_t count,
9793 				struct btrfs_ioctl_encoded_io_args *encoded,
9794 				bool *unlocked)
9795 {
9796 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9797 	struct btrfs_root *root = inode->root;
9798 	struct btrfs_fs_info *fs_info = root->fs_info;
9799 	struct extent_io_tree *io_tree = &inode->io_tree;
9800 	struct btrfs_path *path;
9801 	struct extent_buffer *leaf;
9802 	struct btrfs_file_extent_item *item;
9803 	u64 ram_bytes;
9804 	unsigned long ptr;
9805 	void *tmp;
9806 	ssize_t ret;
9807 
9808 	path = btrfs_alloc_path();
9809 	if (!path) {
9810 		ret = -ENOMEM;
9811 		goto out;
9812 	}
9813 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9814 				       extent_start, 0);
9815 	if (ret) {
9816 		if (ret > 0) {
9817 			/* The extent item disappeared? */
9818 			ret = -EIO;
9819 		}
9820 		goto out;
9821 	}
9822 	leaf = path->nodes[0];
9823 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9824 
9825 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9826 	ptr = btrfs_file_extent_inline_start(item);
9827 
9828 	encoded->len = min_t(u64, extent_start + ram_bytes,
9829 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9830 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9831 				 btrfs_file_extent_compression(leaf, item));
9832 	if (ret < 0)
9833 		goto out;
9834 	encoded->compression = ret;
9835 	if (encoded->compression) {
9836 		size_t inline_size;
9837 
9838 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9839 								path->slots[0]);
9840 		if (inline_size > count) {
9841 			ret = -ENOBUFS;
9842 			goto out;
9843 		}
9844 		count = inline_size;
9845 		encoded->unencoded_len = ram_bytes;
9846 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9847 	} else {
9848 		count = min_t(u64, count, encoded->len);
9849 		encoded->len = count;
9850 		encoded->unencoded_len = count;
9851 		ptr += iocb->ki_pos - extent_start;
9852 	}
9853 
9854 	tmp = kmalloc(count, GFP_NOFS);
9855 	if (!tmp) {
9856 		ret = -ENOMEM;
9857 		goto out;
9858 	}
9859 	read_extent_buffer(leaf, tmp, ptr, count);
9860 	btrfs_release_path(path);
9861 	unlock_extent(io_tree, start, lockend, cached_state);
9862 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9863 	*unlocked = true;
9864 
9865 	ret = copy_to_iter(tmp, count, iter);
9866 	if (ret != count)
9867 		ret = -EFAULT;
9868 	kfree(tmp);
9869 out:
9870 	btrfs_free_path(path);
9871 	return ret;
9872 }
9873 
9874 struct btrfs_encoded_read_private {
9875 	wait_queue_head_t wait;
9876 	atomic_t pending;
9877 	blk_status_t status;
9878 };
9879 
9880 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9881 {
9882 	struct btrfs_encoded_read_private *priv = bbio->private;
9883 
9884 	if (bbio->bio.bi_status) {
9885 		/*
9886 		 * The memory barrier implied by the atomic_dec_return() here
9887 		 * pairs with the memory barrier implied by the
9888 		 * atomic_dec_return() or io_wait_event() in
9889 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9890 		 * write is observed before the load of status in
9891 		 * btrfs_encoded_read_regular_fill_pages().
9892 		 */
9893 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9894 	}
9895 	if (!atomic_dec_return(&priv->pending))
9896 		wake_up(&priv->wait);
9897 	bio_put(&bbio->bio);
9898 }
9899 
9900 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9901 					  u64 file_offset, u64 disk_bytenr,
9902 					  u64 disk_io_size, struct page **pages)
9903 {
9904 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9905 	struct btrfs_encoded_read_private priv = {
9906 		.pending = ATOMIC_INIT(1),
9907 	};
9908 	unsigned long i = 0;
9909 	struct btrfs_bio *bbio;
9910 
9911 	init_waitqueue_head(&priv.wait);
9912 
9913 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9914 			       btrfs_encoded_read_endio, &priv);
9915 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9916 	bbio->inode = inode;
9917 
9918 	do {
9919 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9920 
9921 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9922 			atomic_inc(&priv.pending);
9923 			btrfs_submit_bio(bbio, 0);
9924 
9925 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9926 					       btrfs_encoded_read_endio, &priv);
9927 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9928 			bbio->inode = inode;
9929 			continue;
9930 		}
9931 
9932 		i++;
9933 		disk_bytenr += bytes;
9934 		disk_io_size -= bytes;
9935 	} while (disk_io_size);
9936 
9937 	atomic_inc(&priv.pending);
9938 	btrfs_submit_bio(bbio, 0);
9939 
9940 	if (atomic_dec_return(&priv.pending))
9941 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
9942 	/* See btrfs_encoded_read_endio() for ordering. */
9943 	return blk_status_to_errno(READ_ONCE(priv.status));
9944 }
9945 
9946 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9947 					  struct iov_iter *iter,
9948 					  u64 start, u64 lockend,
9949 					  struct extent_state **cached_state,
9950 					  u64 disk_bytenr, u64 disk_io_size,
9951 					  size_t count, bool compressed,
9952 					  bool *unlocked)
9953 {
9954 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9955 	struct extent_io_tree *io_tree = &inode->io_tree;
9956 	struct page **pages;
9957 	unsigned long nr_pages, i;
9958 	u64 cur;
9959 	size_t page_offset;
9960 	ssize_t ret;
9961 
9962 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9963 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9964 	if (!pages)
9965 		return -ENOMEM;
9966 	ret = btrfs_alloc_page_array(nr_pages, pages);
9967 	if (ret) {
9968 		ret = -ENOMEM;
9969 		goto out;
9970 		}
9971 
9972 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9973 						    disk_io_size, pages);
9974 	if (ret)
9975 		goto out;
9976 
9977 	unlock_extent(io_tree, start, lockend, cached_state);
9978 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9979 	*unlocked = true;
9980 
9981 	if (compressed) {
9982 		i = 0;
9983 		page_offset = 0;
9984 	} else {
9985 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9986 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9987 	}
9988 	cur = 0;
9989 	while (cur < count) {
9990 		size_t bytes = min_t(size_t, count - cur,
9991 				     PAGE_SIZE - page_offset);
9992 
9993 		if (copy_page_to_iter(pages[i], page_offset, bytes,
9994 				      iter) != bytes) {
9995 			ret = -EFAULT;
9996 			goto out;
9997 		}
9998 		i++;
9999 		cur += bytes;
10000 		page_offset = 0;
10001 	}
10002 	ret = count;
10003 out:
10004 	for (i = 0; i < nr_pages; i++) {
10005 		if (pages[i])
10006 			__free_page(pages[i]);
10007 	}
10008 	kfree(pages);
10009 	return ret;
10010 }
10011 
10012 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10013 			   struct btrfs_ioctl_encoded_io_args *encoded)
10014 {
10015 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10016 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10017 	struct extent_io_tree *io_tree = &inode->io_tree;
10018 	ssize_t ret;
10019 	size_t count = iov_iter_count(iter);
10020 	u64 start, lockend, disk_bytenr, disk_io_size;
10021 	struct extent_state *cached_state = NULL;
10022 	struct extent_map *em;
10023 	bool unlocked = false;
10024 
10025 	file_accessed(iocb->ki_filp);
10026 
10027 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10028 
10029 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10030 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10031 		return 0;
10032 	}
10033 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10034 	/*
10035 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10036 	 * it's compressed we know that it won't be longer than this.
10037 	 */
10038 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10039 
10040 	for (;;) {
10041 		struct btrfs_ordered_extent *ordered;
10042 
10043 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10044 					       lockend - start + 1);
10045 		if (ret)
10046 			goto out_unlock_inode;
10047 		lock_extent(io_tree, start, lockend, &cached_state);
10048 		ordered = btrfs_lookup_ordered_range(inode, start,
10049 						     lockend - start + 1);
10050 		if (!ordered)
10051 			break;
10052 		btrfs_put_ordered_extent(ordered);
10053 		unlock_extent(io_tree, start, lockend, &cached_state);
10054 		cond_resched();
10055 	}
10056 
10057 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10058 	if (IS_ERR(em)) {
10059 		ret = PTR_ERR(em);
10060 		goto out_unlock_extent;
10061 	}
10062 
10063 	if (em->block_start == EXTENT_MAP_INLINE) {
10064 		u64 extent_start = em->start;
10065 
10066 		/*
10067 		 * For inline extents we get everything we need out of the
10068 		 * extent item.
10069 		 */
10070 		free_extent_map(em);
10071 		em = NULL;
10072 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10073 						&cached_state, extent_start,
10074 						count, encoded, &unlocked);
10075 		goto out;
10076 	}
10077 
10078 	/*
10079 	 * We only want to return up to EOF even if the extent extends beyond
10080 	 * that.
10081 	 */
10082 	encoded->len = min_t(u64, extent_map_end(em),
10083 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10084 	if (em->block_start == EXTENT_MAP_HOLE ||
10085 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10086 		disk_bytenr = EXTENT_MAP_HOLE;
10087 		count = min_t(u64, count, encoded->len);
10088 		encoded->len = count;
10089 		encoded->unencoded_len = count;
10090 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10091 		disk_bytenr = em->block_start;
10092 		/*
10093 		 * Bail if the buffer isn't large enough to return the whole
10094 		 * compressed extent.
10095 		 */
10096 		if (em->block_len > count) {
10097 			ret = -ENOBUFS;
10098 			goto out_em;
10099 		}
10100 		disk_io_size = em->block_len;
10101 		count = em->block_len;
10102 		encoded->unencoded_len = em->ram_bytes;
10103 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10104 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10105 							     em->compress_type);
10106 		if (ret < 0)
10107 			goto out_em;
10108 		encoded->compression = ret;
10109 	} else {
10110 		disk_bytenr = em->block_start + (start - em->start);
10111 		if (encoded->len > count)
10112 			encoded->len = count;
10113 		/*
10114 		 * Don't read beyond what we locked. This also limits the page
10115 		 * allocations that we'll do.
10116 		 */
10117 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10118 		count = start + disk_io_size - iocb->ki_pos;
10119 		encoded->len = count;
10120 		encoded->unencoded_len = count;
10121 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10122 	}
10123 	free_extent_map(em);
10124 	em = NULL;
10125 
10126 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10127 		unlock_extent(io_tree, start, lockend, &cached_state);
10128 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10129 		unlocked = true;
10130 		ret = iov_iter_zero(count, iter);
10131 		if (ret != count)
10132 			ret = -EFAULT;
10133 	} else {
10134 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10135 						 &cached_state, disk_bytenr,
10136 						 disk_io_size, count,
10137 						 encoded->compression,
10138 						 &unlocked);
10139 	}
10140 
10141 out:
10142 	if (ret >= 0)
10143 		iocb->ki_pos += encoded->len;
10144 out_em:
10145 	free_extent_map(em);
10146 out_unlock_extent:
10147 	if (!unlocked)
10148 		unlock_extent(io_tree, start, lockend, &cached_state);
10149 out_unlock_inode:
10150 	if (!unlocked)
10151 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10152 	return ret;
10153 }
10154 
10155 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10156 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10157 {
10158 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10159 	struct btrfs_root *root = inode->root;
10160 	struct btrfs_fs_info *fs_info = root->fs_info;
10161 	struct extent_io_tree *io_tree = &inode->io_tree;
10162 	struct extent_changeset *data_reserved = NULL;
10163 	struct extent_state *cached_state = NULL;
10164 	int compression;
10165 	size_t orig_count;
10166 	u64 start, end;
10167 	u64 num_bytes, ram_bytes, disk_num_bytes;
10168 	unsigned long nr_pages, i;
10169 	struct page **pages;
10170 	struct btrfs_key ins;
10171 	bool extent_reserved = false;
10172 	struct extent_map *em;
10173 	ssize_t ret;
10174 
10175 	switch (encoded->compression) {
10176 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10177 		compression = BTRFS_COMPRESS_ZLIB;
10178 		break;
10179 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10180 		compression = BTRFS_COMPRESS_ZSTD;
10181 		break;
10182 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10183 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10184 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10185 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10186 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10187 		/* The sector size must match for LZO. */
10188 		if (encoded->compression -
10189 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10190 		    fs_info->sectorsize_bits)
10191 			return -EINVAL;
10192 		compression = BTRFS_COMPRESS_LZO;
10193 		break;
10194 	default:
10195 		return -EINVAL;
10196 	}
10197 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10198 		return -EINVAL;
10199 
10200 	orig_count = iov_iter_count(from);
10201 
10202 	/* The extent size must be sane. */
10203 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10204 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10205 		return -EINVAL;
10206 
10207 	/*
10208 	 * The compressed data must be smaller than the decompressed data.
10209 	 *
10210 	 * It's of course possible for data to compress to larger or the same
10211 	 * size, but the buffered I/O path falls back to no compression for such
10212 	 * data, and we don't want to break any assumptions by creating these
10213 	 * extents.
10214 	 *
10215 	 * Note that this is less strict than the current check we have that the
10216 	 * compressed data must be at least one sector smaller than the
10217 	 * decompressed data. We only want to enforce the weaker requirement
10218 	 * from old kernels that it is at least one byte smaller.
10219 	 */
10220 	if (orig_count >= encoded->unencoded_len)
10221 		return -EINVAL;
10222 
10223 	/* The extent must start on a sector boundary. */
10224 	start = iocb->ki_pos;
10225 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10226 		return -EINVAL;
10227 
10228 	/*
10229 	 * The extent must end on a sector boundary. However, we allow a write
10230 	 * which ends at or extends i_size to have an unaligned length; we round
10231 	 * up the extent size and set i_size to the unaligned end.
10232 	 */
10233 	if (start + encoded->len < inode->vfs_inode.i_size &&
10234 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10235 		return -EINVAL;
10236 
10237 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10238 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10239 		return -EINVAL;
10240 
10241 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10242 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10243 	end = start + num_bytes - 1;
10244 
10245 	/*
10246 	 * If the extent cannot be inline, the compressed data on disk must be
10247 	 * sector-aligned. For convenience, we extend it with zeroes if it
10248 	 * isn't.
10249 	 */
10250 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10251 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10252 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10253 	if (!pages)
10254 		return -ENOMEM;
10255 	for (i = 0; i < nr_pages; i++) {
10256 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10257 		char *kaddr;
10258 
10259 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10260 		if (!pages[i]) {
10261 			ret = -ENOMEM;
10262 			goto out_pages;
10263 		}
10264 		kaddr = kmap_local_page(pages[i]);
10265 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10266 			kunmap_local(kaddr);
10267 			ret = -EFAULT;
10268 			goto out_pages;
10269 		}
10270 		if (bytes < PAGE_SIZE)
10271 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10272 		kunmap_local(kaddr);
10273 	}
10274 
10275 	for (;;) {
10276 		struct btrfs_ordered_extent *ordered;
10277 
10278 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10279 		if (ret)
10280 			goto out_pages;
10281 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10282 						    start >> PAGE_SHIFT,
10283 						    end >> PAGE_SHIFT);
10284 		if (ret)
10285 			goto out_pages;
10286 		lock_extent(io_tree, start, end, &cached_state);
10287 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10288 		if (!ordered &&
10289 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10290 			break;
10291 		if (ordered)
10292 			btrfs_put_ordered_extent(ordered);
10293 		unlock_extent(io_tree, start, end, &cached_state);
10294 		cond_resched();
10295 	}
10296 
10297 	/*
10298 	 * We don't use the higher-level delalloc space functions because our
10299 	 * num_bytes and disk_num_bytes are different.
10300 	 */
10301 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10302 	if (ret)
10303 		goto out_unlock;
10304 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10305 	if (ret)
10306 		goto out_free_data_space;
10307 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10308 					      false);
10309 	if (ret)
10310 		goto out_qgroup_free_data;
10311 
10312 	/* Try an inline extent first. */
10313 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10314 	    encoded->unencoded_offset == 0) {
10315 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10316 					    compression, pages, true);
10317 		if (ret <= 0) {
10318 			if (ret == 0)
10319 				ret = orig_count;
10320 			goto out_delalloc_release;
10321 		}
10322 	}
10323 
10324 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10325 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10326 	if (ret)
10327 		goto out_delalloc_release;
10328 	extent_reserved = true;
10329 
10330 	em = create_io_em(inode, start, num_bytes,
10331 			  start - encoded->unencoded_offset, ins.objectid,
10332 			  ins.offset, ins.offset, ram_bytes, compression,
10333 			  BTRFS_ORDERED_COMPRESSED);
10334 	if (IS_ERR(em)) {
10335 		ret = PTR_ERR(em);
10336 		goto out_free_reserved;
10337 	}
10338 	free_extent_map(em);
10339 
10340 	ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10341 				       ins.objectid, ins.offset,
10342 				       encoded->unencoded_offset,
10343 				       (1 << BTRFS_ORDERED_ENCODED) |
10344 				       (1 << BTRFS_ORDERED_COMPRESSED),
10345 				       compression);
10346 	if (ret) {
10347 		btrfs_drop_extent_map_range(inode, start, end, false);
10348 		goto out_free_reserved;
10349 	}
10350 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10351 
10352 	if (start + encoded->len > inode->vfs_inode.i_size)
10353 		i_size_write(&inode->vfs_inode, start + encoded->len);
10354 
10355 	unlock_extent(io_tree, start, end, &cached_state);
10356 
10357 	btrfs_delalloc_release_extents(inode, num_bytes);
10358 
10359 	btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10360 					  ins.offset, pages, nr_pages, 0, false);
10361 	ret = orig_count;
10362 	goto out;
10363 
10364 out_free_reserved:
10365 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10366 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10367 out_delalloc_release:
10368 	btrfs_delalloc_release_extents(inode, num_bytes);
10369 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10370 out_qgroup_free_data:
10371 	if (ret < 0)
10372 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10373 out_free_data_space:
10374 	/*
10375 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10376 	 * bytes_may_use.
10377 	 */
10378 	if (!extent_reserved)
10379 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10380 out_unlock:
10381 	unlock_extent(io_tree, start, end, &cached_state);
10382 out_pages:
10383 	for (i = 0; i < nr_pages; i++) {
10384 		if (pages[i])
10385 			__free_page(pages[i]);
10386 	}
10387 	kvfree(pages);
10388 out:
10389 	if (ret >= 0)
10390 		iocb->ki_pos += encoded->len;
10391 	return ret;
10392 }
10393 
10394 #ifdef CONFIG_SWAP
10395 /*
10396  * Add an entry indicating a block group or device which is pinned by a
10397  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10398  * negative errno on failure.
10399  */
10400 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10401 				  bool is_block_group)
10402 {
10403 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10404 	struct btrfs_swapfile_pin *sp, *entry;
10405 	struct rb_node **p;
10406 	struct rb_node *parent = NULL;
10407 
10408 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10409 	if (!sp)
10410 		return -ENOMEM;
10411 	sp->ptr = ptr;
10412 	sp->inode = inode;
10413 	sp->is_block_group = is_block_group;
10414 	sp->bg_extent_count = 1;
10415 
10416 	spin_lock(&fs_info->swapfile_pins_lock);
10417 	p = &fs_info->swapfile_pins.rb_node;
10418 	while (*p) {
10419 		parent = *p;
10420 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10421 		if (sp->ptr < entry->ptr ||
10422 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10423 			p = &(*p)->rb_left;
10424 		} else if (sp->ptr > entry->ptr ||
10425 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10426 			p = &(*p)->rb_right;
10427 		} else {
10428 			if (is_block_group)
10429 				entry->bg_extent_count++;
10430 			spin_unlock(&fs_info->swapfile_pins_lock);
10431 			kfree(sp);
10432 			return 1;
10433 		}
10434 	}
10435 	rb_link_node(&sp->node, parent, p);
10436 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10437 	spin_unlock(&fs_info->swapfile_pins_lock);
10438 	return 0;
10439 }
10440 
10441 /* Free all of the entries pinned by this swapfile. */
10442 static void btrfs_free_swapfile_pins(struct inode *inode)
10443 {
10444 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10445 	struct btrfs_swapfile_pin *sp;
10446 	struct rb_node *node, *next;
10447 
10448 	spin_lock(&fs_info->swapfile_pins_lock);
10449 	node = rb_first(&fs_info->swapfile_pins);
10450 	while (node) {
10451 		next = rb_next(node);
10452 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10453 		if (sp->inode == inode) {
10454 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10455 			if (sp->is_block_group) {
10456 				btrfs_dec_block_group_swap_extents(sp->ptr,
10457 							   sp->bg_extent_count);
10458 				btrfs_put_block_group(sp->ptr);
10459 			}
10460 			kfree(sp);
10461 		}
10462 		node = next;
10463 	}
10464 	spin_unlock(&fs_info->swapfile_pins_lock);
10465 }
10466 
10467 struct btrfs_swap_info {
10468 	u64 start;
10469 	u64 block_start;
10470 	u64 block_len;
10471 	u64 lowest_ppage;
10472 	u64 highest_ppage;
10473 	unsigned long nr_pages;
10474 	int nr_extents;
10475 };
10476 
10477 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10478 				 struct btrfs_swap_info *bsi)
10479 {
10480 	unsigned long nr_pages;
10481 	unsigned long max_pages;
10482 	u64 first_ppage, first_ppage_reported, next_ppage;
10483 	int ret;
10484 
10485 	/*
10486 	 * Our swapfile may have had its size extended after the swap header was
10487 	 * written. In that case activating the swapfile should not go beyond
10488 	 * the max size set in the swap header.
10489 	 */
10490 	if (bsi->nr_pages >= sis->max)
10491 		return 0;
10492 
10493 	max_pages = sis->max - bsi->nr_pages;
10494 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10495 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10496 
10497 	if (first_ppage >= next_ppage)
10498 		return 0;
10499 	nr_pages = next_ppage - first_ppage;
10500 	nr_pages = min(nr_pages, max_pages);
10501 
10502 	first_ppage_reported = first_ppage;
10503 	if (bsi->start == 0)
10504 		first_ppage_reported++;
10505 	if (bsi->lowest_ppage > first_ppage_reported)
10506 		bsi->lowest_ppage = first_ppage_reported;
10507 	if (bsi->highest_ppage < (next_ppage - 1))
10508 		bsi->highest_ppage = next_ppage - 1;
10509 
10510 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10511 	if (ret < 0)
10512 		return ret;
10513 	bsi->nr_extents += ret;
10514 	bsi->nr_pages += nr_pages;
10515 	return 0;
10516 }
10517 
10518 static void btrfs_swap_deactivate(struct file *file)
10519 {
10520 	struct inode *inode = file_inode(file);
10521 
10522 	btrfs_free_swapfile_pins(inode);
10523 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10524 }
10525 
10526 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10527 			       sector_t *span)
10528 {
10529 	struct inode *inode = file_inode(file);
10530 	struct btrfs_root *root = BTRFS_I(inode)->root;
10531 	struct btrfs_fs_info *fs_info = root->fs_info;
10532 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10533 	struct extent_state *cached_state = NULL;
10534 	struct extent_map *em = NULL;
10535 	struct btrfs_device *device = NULL;
10536 	struct btrfs_swap_info bsi = {
10537 		.lowest_ppage = (sector_t)-1ULL,
10538 	};
10539 	int ret = 0;
10540 	u64 isize;
10541 	u64 start;
10542 
10543 	/*
10544 	 * If the swap file was just created, make sure delalloc is done. If the
10545 	 * file changes again after this, the user is doing something stupid and
10546 	 * we don't really care.
10547 	 */
10548 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10549 	if (ret)
10550 		return ret;
10551 
10552 	/*
10553 	 * The inode is locked, so these flags won't change after we check them.
10554 	 */
10555 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10556 		btrfs_warn(fs_info, "swapfile must not be compressed");
10557 		return -EINVAL;
10558 	}
10559 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10560 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10561 		return -EINVAL;
10562 	}
10563 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10564 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10565 		return -EINVAL;
10566 	}
10567 
10568 	/*
10569 	 * Balance or device remove/replace/resize can move stuff around from
10570 	 * under us. The exclop protection makes sure they aren't running/won't
10571 	 * run concurrently while we are mapping the swap extents, and
10572 	 * fs_info->swapfile_pins prevents them from running while the swap
10573 	 * file is active and moving the extents. Note that this also prevents
10574 	 * a concurrent device add which isn't actually necessary, but it's not
10575 	 * really worth the trouble to allow it.
10576 	 */
10577 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10578 		btrfs_warn(fs_info,
10579 	   "cannot activate swapfile while exclusive operation is running");
10580 		return -EBUSY;
10581 	}
10582 
10583 	/*
10584 	 * Prevent snapshot creation while we are activating the swap file.
10585 	 * We do not want to race with snapshot creation. If snapshot creation
10586 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10587 	 * completes before the first write into the swap file after it is
10588 	 * activated, than that write would fallback to COW.
10589 	 */
10590 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10591 		btrfs_exclop_finish(fs_info);
10592 		btrfs_warn(fs_info,
10593 	   "cannot activate swapfile because snapshot creation is in progress");
10594 		return -EINVAL;
10595 	}
10596 	/*
10597 	 * Snapshots can create extents which require COW even if NODATACOW is
10598 	 * set. We use this counter to prevent snapshots. We must increment it
10599 	 * before walking the extents because we don't want a concurrent
10600 	 * snapshot to run after we've already checked the extents.
10601 	 *
10602 	 * It is possible that subvolume is marked for deletion but still not
10603 	 * removed yet. To prevent this race, we check the root status before
10604 	 * activating the swapfile.
10605 	 */
10606 	spin_lock(&root->root_item_lock);
10607 	if (btrfs_root_dead(root)) {
10608 		spin_unlock(&root->root_item_lock);
10609 
10610 		btrfs_exclop_finish(fs_info);
10611 		btrfs_warn(fs_info,
10612 		"cannot activate swapfile because subvolume %llu is being deleted",
10613 			root->root_key.objectid);
10614 		return -EPERM;
10615 	}
10616 	atomic_inc(&root->nr_swapfiles);
10617 	spin_unlock(&root->root_item_lock);
10618 
10619 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10620 
10621 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10622 	start = 0;
10623 	while (start < isize) {
10624 		u64 logical_block_start, physical_block_start;
10625 		struct btrfs_block_group *bg;
10626 		u64 len = isize - start;
10627 
10628 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10629 		if (IS_ERR(em)) {
10630 			ret = PTR_ERR(em);
10631 			goto out;
10632 		}
10633 
10634 		if (em->block_start == EXTENT_MAP_HOLE) {
10635 			btrfs_warn(fs_info, "swapfile must not have holes");
10636 			ret = -EINVAL;
10637 			goto out;
10638 		}
10639 		if (em->block_start == EXTENT_MAP_INLINE) {
10640 			/*
10641 			 * It's unlikely we'll ever actually find ourselves
10642 			 * here, as a file small enough to fit inline won't be
10643 			 * big enough to store more than the swap header, but in
10644 			 * case something changes in the future, let's catch it
10645 			 * here rather than later.
10646 			 */
10647 			btrfs_warn(fs_info, "swapfile must not be inline");
10648 			ret = -EINVAL;
10649 			goto out;
10650 		}
10651 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10652 			btrfs_warn(fs_info, "swapfile must not be compressed");
10653 			ret = -EINVAL;
10654 			goto out;
10655 		}
10656 
10657 		logical_block_start = em->block_start + (start - em->start);
10658 		len = min(len, em->len - (start - em->start));
10659 		free_extent_map(em);
10660 		em = NULL;
10661 
10662 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10663 		if (ret < 0) {
10664 			goto out;
10665 		} else if (ret) {
10666 			ret = 0;
10667 		} else {
10668 			btrfs_warn(fs_info,
10669 				   "swapfile must not be copy-on-write");
10670 			ret = -EINVAL;
10671 			goto out;
10672 		}
10673 
10674 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10675 		if (IS_ERR(em)) {
10676 			ret = PTR_ERR(em);
10677 			goto out;
10678 		}
10679 
10680 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10681 			btrfs_warn(fs_info,
10682 				   "swapfile must have single data profile");
10683 			ret = -EINVAL;
10684 			goto out;
10685 		}
10686 
10687 		if (device == NULL) {
10688 			device = em->map_lookup->stripes[0].dev;
10689 			ret = btrfs_add_swapfile_pin(inode, device, false);
10690 			if (ret == 1)
10691 				ret = 0;
10692 			else if (ret)
10693 				goto out;
10694 		} else if (device != em->map_lookup->stripes[0].dev) {
10695 			btrfs_warn(fs_info, "swapfile must be on one device");
10696 			ret = -EINVAL;
10697 			goto out;
10698 		}
10699 
10700 		physical_block_start = (em->map_lookup->stripes[0].physical +
10701 					(logical_block_start - em->start));
10702 		len = min(len, em->len - (logical_block_start - em->start));
10703 		free_extent_map(em);
10704 		em = NULL;
10705 
10706 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10707 		if (!bg) {
10708 			btrfs_warn(fs_info,
10709 			   "could not find block group containing swapfile");
10710 			ret = -EINVAL;
10711 			goto out;
10712 		}
10713 
10714 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10715 			btrfs_warn(fs_info,
10716 			   "block group for swapfile at %llu is read-only%s",
10717 			   bg->start,
10718 			   atomic_read(&fs_info->scrubs_running) ?
10719 				       " (scrub running)" : "");
10720 			btrfs_put_block_group(bg);
10721 			ret = -EINVAL;
10722 			goto out;
10723 		}
10724 
10725 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10726 		if (ret) {
10727 			btrfs_put_block_group(bg);
10728 			if (ret == 1)
10729 				ret = 0;
10730 			else
10731 				goto out;
10732 		}
10733 
10734 		if (bsi.block_len &&
10735 		    bsi.block_start + bsi.block_len == physical_block_start) {
10736 			bsi.block_len += len;
10737 		} else {
10738 			if (bsi.block_len) {
10739 				ret = btrfs_add_swap_extent(sis, &bsi);
10740 				if (ret)
10741 					goto out;
10742 			}
10743 			bsi.start = start;
10744 			bsi.block_start = physical_block_start;
10745 			bsi.block_len = len;
10746 		}
10747 
10748 		start += len;
10749 	}
10750 
10751 	if (bsi.block_len)
10752 		ret = btrfs_add_swap_extent(sis, &bsi);
10753 
10754 out:
10755 	if (!IS_ERR_OR_NULL(em))
10756 		free_extent_map(em);
10757 
10758 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10759 
10760 	if (ret)
10761 		btrfs_swap_deactivate(file);
10762 
10763 	btrfs_drew_write_unlock(&root->snapshot_lock);
10764 
10765 	btrfs_exclop_finish(fs_info);
10766 
10767 	if (ret)
10768 		return ret;
10769 
10770 	if (device)
10771 		sis->bdev = device->bdev;
10772 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10773 	sis->max = bsi.nr_pages;
10774 	sis->pages = bsi.nr_pages - 1;
10775 	sis->highest_bit = bsi.nr_pages - 1;
10776 	return bsi.nr_extents;
10777 }
10778 #else
10779 static void btrfs_swap_deactivate(struct file *file)
10780 {
10781 }
10782 
10783 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10784 			       sector_t *span)
10785 {
10786 	return -EOPNOTSUPP;
10787 }
10788 #endif
10789 
10790 /*
10791  * Update the number of bytes used in the VFS' inode. When we replace extents in
10792  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10793  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10794  * always get a correct value.
10795  */
10796 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10797 			      const u64 add_bytes,
10798 			      const u64 del_bytes)
10799 {
10800 	if (add_bytes == del_bytes)
10801 		return;
10802 
10803 	spin_lock(&inode->lock);
10804 	if (del_bytes > 0)
10805 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10806 	if (add_bytes > 0)
10807 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10808 	spin_unlock(&inode->lock);
10809 }
10810 
10811 /*
10812  * Verify that there are no ordered extents for a given file range.
10813  *
10814  * @inode:   The target inode.
10815  * @start:   Start offset of the file range, should be sector size aligned.
10816  * @end:     End offset (inclusive) of the file range, its value +1 should be
10817  *           sector size aligned.
10818  *
10819  * This should typically be used for cases where we locked an inode's VFS lock in
10820  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10821  * we have flushed all delalloc in the range, we have waited for all ordered
10822  * extents in the range to complete and finally we have locked the file range in
10823  * the inode's io_tree.
10824  */
10825 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10826 {
10827 	struct btrfs_root *root = inode->root;
10828 	struct btrfs_ordered_extent *ordered;
10829 
10830 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10831 		return;
10832 
10833 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10834 	if (ordered) {
10835 		btrfs_err(root->fs_info,
10836 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10837 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10838 			  ordered->file_offset,
10839 			  ordered->file_offset + ordered->num_bytes - 1);
10840 		btrfs_put_ordered_extent(ordered);
10841 	}
10842 
10843 	ASSERT(ordered == NULL);
10844 }
10845 
10846 static const struct inode_operations btrfs_dir_inode_operations = {
10847 	.getattr	= btrfs_getattr,
10848 	.lookup		= btrfs_lookup,
10849 	.create		= btrfs_create,
10850 	.unlink		= btrfs_unlink,
10851 	.link		= btrfs_link,
10852 	.mkdir		= btrfs_mkdir,
10853 	.rmdir		= btrfs_rmdir,
10854 	.rename		= btrfs_rename2,
10855 	.symlink	= btrfs_symlink,
10856 	.setattr	= btrfs_setattr,
10857 	.mknod		= btrfs_mknod,
10858 	.listxattr	= btrfs_listxattr,
10859 	.permission	= btrfs_permission,
10860 	.get_inode_acl	= btrfs_get_acl,
10861 	.set_acl	= btrfs_set_acl,
10862 	.update_time	= btrfs_update_time,
10863 	.tmpfile        = btrfs_tmpfile,
10864 	.fileattr_get	= btrfs_fileattr_get,
10865 	.fileattr_set	= btrfs_fileattr_set,
10866 };
10867 
10868 static const struct file_operations btrfs_dir_file_operations = {
10869 	.llseek		= generic_file_llseek,
10870 	.read		= generic_read_dir,
10871 	.iterate_shared	= btrfs_real_readdir,
10872 	.open		= btrfs_opendir,
10873 	.unlocked_ioctl	= btrfs_ioctl,
10874 #ifdef CONFIG_COMPAT
10875 	.compat_ioctl	= btrfs_compat_ioctl,
10876 #endif
10877 	.release        = btrfs_release_file,
10878 	.fsync		= btrfs_sync_file,
10879 };
10880 
10881 /*
10882  * btrfs doesn't support the bmap operation because swapfiles
10883  * use bmap to make a mapping of extents in the file.  They assume
10884  * these extents won't change over the life of the file and they
10885  * use the bmap result to do IO directly to the drive.
10886  *
10887  * the btrfs bmap call would return logical addresses that aren't
10888  * suitable for IO and they also will change frequently as COW
10889  * operations happen.  So, swapfile + btrfs == corruption.
10890  *
10891  * For now we're avoiding this by dropping bmap.
10892  */
10893 static const struct address_space_operations btrfs_aops = {
10894 	.read_folio	= btrfs_read_folio,
10895 	.writepages	= btrfs_writepages,
10896 	.readahead	= btrfs_readahead,
10897 	.direct_IO	= noop_direct_IO,
10898 	.invalidate_folio = btrfs_invalidate_folio,
10899 	.release_folio	= btrfs_release_folio,
10900 	.migrate_folio	= btrfs_migrate_folio,
10901 	.dirty_folio	= filemap_dirty_folio,
10902 	.error_remove_page = generic_error_remove_page,
10903 	.swap_activate	= btrfs_swap_activate,
10904 	.swap_deactivate = btrfs_swap_deactivate,
10905 };
10906 
10907 static const struct inode_operations btrfs_file_inode_operations = {
10908 	.getattr	= btrfs_getattr,
10909 	.setattr	= btrfs_setattr,
10910 	.listxattr      = btrfs_listxattr,
10911 	.permission	= btrfs_permission,
10912 	.fiemap		= btrfs_fiemap,
10913 	.get_inode_acl	= btrfs_get_acl,
10914 	.set_acl	= btrfs_set_acl,
10915 	.update_time	= btrfs_update_time,
10916 	.fileattr_get	= btrfs_fileattr_get,
10917 	.fileattr_set	= btrfs_fileattr_set,
10918 };
10919 static const struct inode_operations btrfs_special_inode_operations = {
10920 	.getattr	= btrfs_getattr,
10921 	.setattr	= btrfs_setattr,
10922 	.permission	= btrfs_permission,
10923 	.listxattr	= btrfs_listxattr,
10924 	.get_inode_acl	= btrfs_get_acl,
10925 	.set_acl	= btrfs_set_acl,
10926 	.update_time	= btrfs_update_time,
10927 };
10928 static const struct inode_operations btrfs_symlink_inode_operations = {
10929 	.get_link	= page_get_link,
10930 	.getattr	= btrfs_getattr,
10931 	.setattr	= btrfs_setattr,
10932 	.permission	= btrfs_permission,
10933 	.listxattr	= btrfs_listxattr,
10934 	.update_time	= btrfs_update_time,
10935 };
10936 
10937 const struct dentry_operations btrfs_dentry_operations = {
10938 	.d_delete	= btrfs_dentry_delete,
10939 };
10940