xref: /openbmc/linux/fs/btrfs/inode.c (revision 07d400a6df4767a90d49a153fdb7f4cfa1e3f23e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "ref-cache.h"
53 #include "compression.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69 
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75 
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 				   struct page *locked_page,
91 				   u64 start, u64 end, int *page_started,
92 				   unsigned long *nr_written, int unlock);
93 
94 /*
95  * a very lame attempt at stopping writes when the FS is 85% full.  There
96  * are countless ways this is incorrect, but it is better than nothing.
97  */
98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
99 			   int for_del)
100 {
101 	u64 total;
102 	u64 used;
103 	u64 thresh;
104 	int ret = 0;
105 
106 	spin_lock(&root->fs_info->delalloc_lock);
107 	total = btrfs_super_total_bytes(&root->fs_info->super_copy);
108 	used = btrfs_super_bytes_used(&root->fs_info->super_copy);
109 	if (for_del)
110 		thresh = total * 90;
111 	else
112 		thresh = total * 85;
113 
114 	do_div(thresh, 100);
115 
116 	if (used + root->fs_info->delalloc_bytes + num_required > thresh)
117 		ret = -ENOSPC;
118 	spin_unlock(&root->fs_info->delalloc_lock);
119 	return ret;
120 }
121 
122 /*
123  * this does all the hard work for inserting an inline extent into
124  * the btree.  The caller should have done a btrfs_drop_extents so that
125  * no overlapping inline items exist in the btree
126  */
127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
128 				struct btrfs_root *root, struct inode *inode,
129 				u64 start, size_t size, size_t compressed_size,
130 				struct page **compressed_pages)
131 {
132 	struct btrfs_key key;
133 	struct btrfs_path *path;
134 	struct extent_buffer *leaf;
135 	struct page *page = NULL;
136 	char *kaddr;
137 	unsigned long ptr;
138 	struct btrfs_file_extent_item *ei;
139 	int err = 0;
140 	int ret;
141 	size_t cur_size = size;
142 	size_t datasize;
143 	unsigned long offset;
144 	int use_compress = 0;
145 
146 	if (compressed_size && compressed_pages) {
147 		use_compress = 1;
148 		cur_size = compressed_size;
149 	}
150 
151 	path = btrfs_alloc_path();
152 	if (!path)
153 		return -ENOMEM;
154 
155 	btrfs_set_trans_block_group(trans, inode);
156 
157 	key.objectid = inode->i_ino;
158 	key.offset = start;
159 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
160 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
161 
162 	inode_add_bytes(inode, size);
163 	ret = btrfs_insert_empty_item(trans, root, path, &key,
164 				      datasize);
165 	BUG_ON(ret);
166 	if (ret) {
167 		err = ret;
168 		goto fail;
169 	}
170 	leaf = path->nodes[0];
171 	ei = btrfs_item_ptr(leaf, path->slots[0],
172 			    struct btrfs_file_extent_item);
173 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
174 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
175 	btrfs_set_file_extent_encryption(leaf, ei, 0);
176 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
177 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
178 	ptr = btrfs_file_extent_inline_start(ei);
179 
180 	if (use_compress) {
181 		struct page *cpage;
182 		int i = 0;
183 		while (compressed_size > 0) {
184 			cpage = compressed_pages[i];
185 			cur_size = min_t(unsigned long, compressed_size,
186 				       PAGE_CACHE_SIZE);
187 
188 			kaddr = kmap(cpage);
189 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
190 			kunmap(cpage);
191 
192 			i++;
193 			ptr += cur_size;
194 			compressed_size -= cur_size;
195 		}
196 		btrfs_set_file_extent_compression(leaf, ei,
197 						  BTRFS_COMPRESS_ZLIB);
198 	} else {
199 		page = find_get_page(inode->i_mapping,
200 				     start >> PAGE_CACHE_SHIFT);
201 		btrfs_set_file_extent_compression(leaf, ei, 0);
202 		kaddr = kmap_atomic(page, KM_USER0);
203 		offset = start & (PAGE_CACHE_SIZE - 1);
204 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
205 		kunmap_atomic(kaddr, KM_USER0);
206 		page_cache_release(page);
207 	}
208 	btrfs_mark_buffer_dirty(leaf);
209 	btrfs_free_path(path);
210 
211 	BTRFS_I(inode)->disk_i_size = inode->i_size;
212 	btrfs_update_inode(trans, root, inode);
213 	return 0;
214 fail:
215 	btrfs_free_path(path);
216 	return err;
217 }
218 
219 
220 /*
221  * conditionally insert an inline extent into the file.  This
222  * does the checks required to make sure the data is small enough
223  * to fit as an inline extent.
224  */
225 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
226 				 struct btrfs_root *root,
227 				 struct inode *inode, u64 start, u64 end,
228 				 size_t compressed_size,
229 				 struct page **compressed_pages)
230 {
231 	u64 isize = i_size_read(inode);
232 	u64 actual_end = min(end + 1, isize);
233 	u64 inline_len = actual_end - start;
234 	u64 aligned_end = (end + root->sectorsize - 1) &
235 			~((u64)root->sectorsize - 1);
236 	u64 hint_byte;
237 	u64 data_len = inline_len;
238 	int ret;
239 
240 	if (compressed_size)
241 		data_len = compressed_size;
242 
243 	if (start > 0 ||
244 	    actual_end >= PAGE_CACHE_SIZE ||
245 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
246 	    (!compressed_size &&
247 	    (actual_end & (root->sectorsize - 1)) == 0) ||
248 	    end + 1 < isize ||
249 	    data_len > root->fs_info->max_inline) {
250 		return 1;
251 	}
252 
253 	ret = btrfs_drop_extents(trans, root, inode, start,
254 				 aligned_end, start, &hint_byte);
255 	BUG_ON(ret);
256 
257 	if (isize > actual_end)
258 		inline_len = min_t(u64, isize, actual_end);
259 	ret = insert_inline_extent(trans, root, inode, start,
260 				   inline_len, compressed_size,
261 				   compressed_pages);
262 	BUG_ON(ret);
263 	btrfs_drop_extent_cache(inode, start, aligned_end, 0);
264 	return 0;
265 }
266 
267 struct async_extent {
268 	u64 start;
269 	u64 ram_size;
270 	u64 compressed_size;
271 	struct page **pages;
272 	unsigned long nr_pages;
273 	struct list_head list;
274 };
275 
276 struct async_cow {
277 	struct inode *inode;
278 	struct btrfs_root *root;
279 	struct page *locked_page;
280 	u64 start;
281 	u64 end;
282 	struct list_head extents;
283 	struct btrfs_work work;
284 };
285 
286 static noinline int add_async_extent(struct async_cow *cow,
287 				     u64 start, u64 ram_size,
288 				     u64 compressed_size,
289 				     struct page **pages,
290 				     unsigned long nr_pages)
291 {
292 	struct async_extent *async_extent;
293 
294 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
295 	async_extent->start = start;
296 	async_extent->ram_size = ram_size;
297 	async_extent->compressed_size = compressed_size;
298 	async_extent->pages = pages;
299 	async_extent->nr_pages = nr_pages;
300 	list_add_tail(&async_extent->list, &cow->extents);
301 	return 0;
302 }
303 
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321 					struct page *locked_page,
322 					u64 start, u64 end,
323 					struct async_cow *async_cow,
324 					int *num_added)
325 {
326 	struct btrfs_root *root = BTRFS_I(inode)->root;
327 	struct btrfs_trans_handle *trans;
328 	u64 num_bytes;
329 	u64 orig_start;
330 	u64 disk_num_bytes;
331 	u64 blocksize = root->sectorsize;
332 	u64 actual_end;
333 	u64 isize = i_size_read(inode);
334 	int ret = 0;
335 	struct page **pages = NULL;
336 	unsigned long nr_pages;
337 	unsigned long nr_pages_ret = 0;
338 	unsigned long total_compressed = 0;
339 	unsigned long total_in = 0;
340 	unsigned long max_compressed = 128 * 1024;
341 	unsigned long max_uncompressed = 128 * 1024;
342 	int i;
343 	int will_compress;
344 
345 	orig_start = start;
346 
347 	actual_end = min_t(u64, isize, end + 1);
348 again:
349 	will_compress = 0;
350 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
351 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
352 
353 	total_compressed = actual_end - start;
354 
355 	/* we want to make sure that amount of ram required to uncompress
356 	 * an extent is reasonable, so we limit the total size in ram
357 	 * of a compressed extent to 128k.  This is a crucial number
358 	 * because it also controls how easily we can spread reads across
359 	 * cpus for decompression.
360 	 *
361 	 * We also want to make sure the amount of IO required to do
362 	 * a random read is reasonably small, so we limit the size of
363 	 * a compressed extent to 128k.
364 	 */
365 	total_compressed = min(total_compressed, max_uncompressed);
366 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
367 	num_bytes = max(blocksize,  num_bytes);
368 	disk_num_bytes = num_bytes;
369 	total_in = 0;
370 	ret = 0;
371 
372 	/*
373 	 * we do compression for mount -o compress and when the
374 	 * inode has not been flagged as nocompress.  This flag can
375 	 * change at any time if we discover bad compression ratios.
376 	 */
377 	if (!btrfs_test_flag(inode, NOCOMPRESS) &&
378 	    btrfs_test_opt(root, COMPRESS)) {
379 		WARN_ON(pages);
380 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
381 
382 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
383 						total_compressed, pages,
384 						nr_pages, &nr_pages_ret,
385 						&total_in,
386 						&total_compressed,
387 						max_compressed);
388 
389 		if (!ret) {
390 			unsigned long offset = total_compressed &
391 				(PAGE_CACHE_SIZE - 1);
392 			struct page *page = pages[nr_pages_ret - 1];
393 			char *kaddr;
394 
395 			/* zero the tail end of the last page, we might be
396 			 * sending it down to disk
397 			 */
398 			if (offset) {
399 				kaddr = kmap_atomic(page, KM_USER0);
400 				memset(kaddr + offset, 0,
401 				       PAGE_CACHE_SIZE - offset);
402 				kunmap_atomic(kaddr, KM_USER0);
403 			}
404 			will_compress = 1;
405 		}
406 	}
407 	if (start == 0) {
408 		trans = btrfs_join_transaction(root, 1);
409 		BUG_ON(!trans);
410 		btrfs_set_trans_block_group(trans, inode);
411 
412 		/* lets try to make an inline extent */
413 		if (ret || total_in < (actual_end - start)) {
414 			/* we didn't compress the entire range, try
415 			 * to make an uncompressed inline extent.
416 			 */
417 			ret = cow_file_range_inline(trans, root, inode,
418 						    start, end, 0, NULL);
419 		} else {
420 			/* try making a compressed inline extent */
421 			ret = cow_file_range_inline(trans, root, inode,
422 						    start, end,
423 						    total_compressed, pages);
424 		}
425 		btrfs_end_transaction(trans, root);
426 		if (ret == 0) {
427 			/*
428 			 * inline extent creation worked, we don't need
429 			 * to create any more async work items.  Unlock
430 			 * and free up our temp pages.
431 			 */
432 			extent_clear_unlock_delalloc(inode,
433 						     &BTRFS_I(inode)->io_tree,
434 						     start, end, NULL, 1, 0,
435 						     0, 1, 1, 1);
436 			ret = 0;
437 			goto free_pages_out;
438 		}
439 	}
440 
441 	if (will_compress) {
442 		/*
443 		 * we aren't doing an inline extent round the compressed size
444 		 * up to a block size boundary so the allocator does sane
445 		 * things
446 		 */
447 		total_compressed = (total_compressed + blocksize - 1) &
448 			~(blocksize - 1);
449 
450 		/*
451 		 * one last check to make sure the compression is really a
452 		 * win, compare the page count read with the blocks on disk
453 		 */
454 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
455 			~(PAGE_CACHE_SIZE - 1);
456 		if (total_compressed >= total_in) {
457 			will_compress = 0;
458 		} else {
459 			disk_num_bytes = total_compressed;
460 			num_bytes = total_in;
461 		}
462 	}
463 	if (!will_compress && pages) {
464 		/*
465 		 * the compression code ran but failed to make things smaller,
466 		 * free any pages it allocated and our page pointer array
467 		 */
468 		for (i = 0; i < nr_pages_ret; i++) {
469 			WARN_ON(pages[i]->mapping);
470 			page_cache_release(pages[i]);
471 		}
472 		kfree(pages);
473 		pages = NULL;
474 		total_compressed = 0;
475 		nr_pages_ret = 0;
476 
477 		/* flag the file so we don't compress in the future */
478 		btrfs_set_flag(inode, NOCOMPRESS);
479 	}
480 	if (will_compress) {
481 		*num_added += 1;
482 
483 		/* the async work queues will take care of doing actual
484 		 * allocation on disk for these compressed pages,
485 		 * and will submit them to the elevator.
486 		 */
487 		add_async_extent(async_cow, start, num_bytes,
488 				 total_compressed, pages, nr_pages_ret);
489 
490 		if (start + num_bytes < end && start + num_bytes < actual_end) {
491 			start += num_bytes;
492 			pages = NULL;
493 			cond_resched();
494 			goto again;
495 		}
496 	} else {
497 		/*
498 		 * No compression, but we still need to write the pages in
499 		 * the file we've been given so far.  redirty the locked
500 		 * page if it corresponds to our extent and set things up
501 		 * for the async work queue to run cow_file_range to do
502 		 * the normal delalloc dance
503 		 */
504 		if (page_offset(locked_page) >= start &&
505 		    page_offset(locked_page) <= end) {
506 			__set_page_dirty_nobuffers(locked_page);
507 			/* unlocked later on in the async handlers */
508 		}
509 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
510 		*num_added += 1;
511 	}
512 
513 out:
514 	return 0;
515 
516 free_pages_out:
517 	for (i = 0; i < nr_pages_ret; i++) {
518 		WARN_ON(pages[i]->mapping);
519 		page_cache_release(pages[i]);
520 	}
521 	kfree(pages);
522 
523 	goto out;
524 }
525 
526 /*
527  * phase two of compressed writeback.  This is the ordered portion
528  * of the code, which only gets called in the order the work was
529  * queued.  We walk all the async extents created by compress_file_range
530  * and send them down to the disk.
531  */
532 static noinline int submit_compressed_extents(struct inode *inode,
533 					      struct async_cow *async_cow)
534 {
535 	struct async_extent *async_extent;
536 	u64 alloc_hint = 0;
537 	struct btrfs_trans_handle *trans;
538 	struct btrfs_key ins;
539 	struct extent_map *em;
540 	struct btrfs_root *root = BTRFS_I(inode)->root;
541 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
542 	struct extent_io_tree *io_tree;
543 	int ret;
544 
545 	if (list_empty(&async_cow->extents))
546 		return 0;
547 
548 	trans = btrfs_join_transaction(root, 1);
549 
550 	while (!list_empty(&async_cow->extents)) {
551 		async_extent = list_entry(async_cow->extents.next,
552 					  struct async_extent, list);
553 		list_del(&async_extent->list);
554 
555 		io_tree = &BTRFS_I(inode)->io_tree;
556 
557 		/* did the compression code fall back to uncompressed IO? */
558 		if (!async_extent->pages) {
559 			int page_started = 0;
560 			unsigned long nr_written = 0;
561 
562 			lock_extent(io_tree, async_extent->start,
563 				    async_extent->start +
564 				    async_extent->ram_size - 1, GFP_NOFS);
565 
566 			/* allocate blocks */
567 			cow_file_range(inode, async_cow->locked_page,
568 				       async_extent->start,
569 				       async_extent->start +
570 				       async_extent->ram_size - 1,
571 				       &page_started, &nr_written, 0);
572 
573 			/*
574 			 * if page_started, cow_file_range inserted an
575 			 * inline extent and took care of all the unlocking
576 			 * and IO for us.  Otherwise, we need to submit
577 			 * all those pages down to the drive.
578 			 */
579 			if (!page_started)
580 				extent_write_locked_range(io_tree,
581 						  inode, async_extent->start,
582 						  async_extent->start +
583 						  async_extent->ram_size - 1,
584 						  btrfs_get_extent,
585 						  WB_SYNC_ALL);
586 			kfree(async_extent);
587 			cond_resched();
588 			continue;
589 		}
590 
591 		lock_extent(io_tree, async_extent->start,
592 			    async_extent->start + async_extent->ram_size - 1,
593 			    GFP_NOFS);
594 		/*
595 		 * here we're doing allocation and writeback of the
596 		 * compressed pages
597 		 */
598 		btrfs_drop_extent_cache(inode, async_extent->start,
599 					async_extent->start +
600 					async_extent->ram_size - 1, 0);
601 
602 		ret = btrfs_reserve_extent(trans, root,
603 					   async_extent->compressed_size,
604 					   async_extent->compressed_size,
605 					   0, alloc_hint,
606 					   (u64)-1, &ins, 1);
607 		BUG_ON(ret);
608 		em = alloc_extent_map(GFP_NOFS);
609 		em->start = async_extent->start;
610 		em->len = async_extent->ram_size;
611 		em->orig_start = em->start;
612 
613 		em->block_start = ins.objectid;
614 		em->block_len = ins.offset;
615 		em->bdev = root->fs_info->fs_devices->latest_bdev;
616 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
617 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
618 
619 		while (1) {
620 			spin_lock(&em_tree->lock);
621 			ret = add_extent_mapping(em_tree, em);
622 			spin_unlock(&em_tree->lock);
623 			if (ret != -EEXIST) {
624 				free_extent_map(em);
625 				break;
626 			}
627 			btrfs_drop_extent_cache(inode, async_extent->start,
628 						async_extent->start +
629 						async_extent->ram_size - 1, 0);
630 		}
631 
632 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
633 					       ins.objectid,
634 					       async_extent->ram_size,
635 					       ins.offset,
636 					       BTRFS_ORDERED_COMPRESSED);
637 		BUG_ON(ret);
638 
639 		btrfs_end_transaction(trans, root);
640 
641 		/*
642 		 * clear dirty, set writeback and unlock the pages.
643 		 */
644 		extent_clear_unlock_delalloc(inode,
645 					     &BTRFS_I(inode)->io_tree,
646 					     async_extent->start,
647 					     async_extent->start +
648 					     async_extent->ram_size - 1,
649 					     NULL, 1, 1, 0, 1, 1, 0);
650 
651 		ret = btrfs_submit_compressed_write(inode,
652 				    async_extent->start,
653 				    async_extent->ram_size,
654 				    ins.objectid,
655 				    ins.offset, async_extent->pages,
656 				    async_extent->nr_pages);
657 
658 		BUG_ON(ret);
659 		trans = btrfs_join_transaction(root, 1);
660 		alloc_hint = ins.objectid + ins.offset;
661 		kfree(async_extent);
662 		cond_resched();
663 	}
664 
665 	btrfs_end_transaction(trans, root);
666 	return 0;
667 }
668 
669 /*
670  * when extent_io.c finds a delayed allocation range in the file,
671  * the call backs end up in this code.  The basic idea is to
672  * allocate extents on disk for the range, and create ordered data structs
673  * in ram to track those extents.
674  *
675  * locked_page is the page that writepage had locked already.  We use
676  * it to make sure we don't do extra locks or unlocks.
677  *
678  * *page_started is set to one if we unlock locked_page and do everything
679  * required to start IO on it.  It may be clean and already done with
680  * IO when we return.
681  */
682 static noinline int cow_file_range(struct inode *inode,
683 				   struct page *locked_page,
684 				   u64 start, u64 end, int *page_started,
685 				   unsigned long *nr_written,
686 				   int unlock)
687 {
688 	struct btrfs_root *root = BTRFS_I(inode)->root;
689 	struct btrfs_trans_handle *trans;
690 	u64 alloc_hint = 0;
691 	u64 num_bytes;
692 	unsigned long ram_size;
693 	u64 disk_num_bytes;
694 	u64 cur_alloc_size;
695 	u64 blocksize = root->sectorsize;
696 	u64 actual_end;
697 	u64 isize = i_size_read(inode);
698 	struct btrfs_key ins;
699 	struct extent_map *em;
700 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
701 	int ret = 0;
702 
703 	trans = btrfs_join_transaction(root, 1);
704 	BUG_ON(!trans);
705 	btrfs_set_trans_block_group(trans, inode);
706 
707 	actual_end = min_t(u64, isize, end + 1);
708 
709 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
710 	num_bytes = max(blocksize,  num_bytes);
711 	disk_num_bytes = num_bytes;
712 	ret = 0;
713 
714 	if (start == 0) {
715 		/* lets try to make an inline extent */
716 		ret = cow_file_range_inline(trans, root, inode,
717 					    start, end, 0, NULL);
718 		if (ret == 0) {
719 			extent_clear_unlock_delalloc(inode,
720 						     &BTRFS_I(inode)->io_tree,
721 						     start, end, NULL, 1, 1,
722 						     1, 1, 1, 1);
723 			*nr_written = *nr_written +
724 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
725 			*page_started = 1;
726 			ret = 0;
727 			goto out;
728 		}
729 	}
730 
731 	BUG_ON(disk_num_bytes >
732 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
733 
734 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
735 
736 	while (disk_num_bytes > 0) {
737 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
738 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
739 					   root->sectorsize, 0, alloc_hint,
740 					   (u64)-1, &ins, 1);
741 		BUG_ON(ret);
742 
743 		em = alloc_extent_map(GFP_NOFS);
744 		em->start = start;
745 		em->orig_start = em->start;
746 
747 		ram_size = ins.offset;
748 		em->len = ins.offset;
749 
750 		em->block_start = ins.objectid;
751 		em->block_len = ins.offset;
752 		em->bdev = root->fs_info->fs_devices->latest_bdev;
753 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
754 
755 		while (1) {
756 			spin_lock(&em_tree->lock);
757 			ret = add_extent_mapping(em_tree, em);
758 			spin_unlock(&em_tree->lock);
759 			if (ret != -EEXIST) {
760 				free_extent_map(em);
761 				break;
762 			}
763 			btrfs_drop_extent_cache(inode, start,
764 						start + ram_size - 1, 0);
765 		}
766 
767 		cur_alloc_size = ins.offset;
768 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
769 					       ram_size, cur_alloc_size, 0);
770 		BUG_ON(ret);
771 
772 		if (root->root_key.objectid ==
773 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
774 			ret = btrfs_reloc_clone_csums(inode, start,
775 						      cur_alloc_size);
776 			BUG_ON(ret);
777 		}
778 
779 		if (disk_num_bytes < cur_alloc_size)
780 			break;
781 
782 		/* we're not doing compressed IO, don't unlock the first
783 		 * page (which the caller expects to stay locked), don't
784 		 * clear any dirty bits and don't set any writeback bits
785 		 */
786 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
787 					     start, start + ram_size - 1,
788 					     locked_page, unlock, 1,
789 					     1, 0, 0, 0);
790 		disk_num_bytes -= cur_alloc_size;
791 		num_bytes -= cur_alloc_size;
792 		alloc_hint = ins.objectid + ins.offset;
793 		start += cur_alloc_size;
794 	}
795 out:
796 	ret = 0;
797 	btrfs_end_transaction(trans, root);
798 
799 	return ret;
800 }
801 
802 /*
803  * work queue call back to started compression on a file and pages
804  */
805 static noinline void async_cow_start(struct btrfs_work *work)
806 {
807 	struct async_cow *async_cow;
808 	int num_added = 0;
809 	async_cow = container_of(work, struct async_cow, work);
810 
811 	compress_file_range(async_cow->inode, async_cow->locked_page,
812 			    async_cow->start, async_cow->end, async_cow,
813 			    &num_added);
814 	if (num_added == 0)
815 		async_cow->inode = NULL;
816 }
817 
818 /*
819  * work queue call back to submit previously compressed pages
820  */
821 static noinline void async_cow_submit(struct btrfs_work *work)
822 {
823 	struct async_cow *async_cow;
824 	struct btrfs_root *root;
825 	unsigned long nr_pages;
826 
827 	async_cow = container_of(work, struct async_cow, work);
828 
829 	root = async_cow->root;
830 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
831 		PAGE_CACHE_SHIFT;
832 
833 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
834 
835 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
836 	    5 * 1042 * 1024 &&
837 	    waitqueue_active(&root->fs_info->async_submit_wait))
838 		wake_up(&root->fs_info->async_submit_wait);
839 
840 	if (async_cow->inode)
841 		submit_compressed_extents(async_cow->inode, async_cow);
842 }
843 
844 static noinline void async_cow_free(struct btrfs_work *work)
845 {
846 	struct async_cow *async_cow;
847 	async_cow = container_of(work, struct async_cow, work);
848 	kfree(async_cow);
849 }
850 
851 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
852 				u64 start, u64 end, int *page_started,
853 				unsigned long *nr_written)
854 {
855 	struct async_cow *async_cow;
856 	struct btrfs_root *root = BTRFS_I(inode)->root;
857 	unsigned long nr_pages;
858 	u64 cur_end;
859 	int limit = 10 * 1024 * 1042;
860 
861 	if (!btrfs_test_opt(root, COMPRESS)) {
862 		return cow_file_range(inode, locked_page, start, end,
863 				      page_started, nr_written, 1);
864 	}
865 
866 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
867 			 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
868 	while (start < end) {
869 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
870 		async_cow->inode = inode;
871 		async_cow->root = root;
872 		async_cow->locked_page = locked_page;
873 		async_cow->start = start;
874 
875 		if (btrfs_test_flag(inode, NOCOMPRESS))
876 			cur_end = end;
877 		else
878 			cur_end = min(end, start + 512 * 1024 - 1);
879 
880 		async_cow->end = cur_end;
881 		INIT_LIST_HEAD(&async_cow->extents);
882 
883 		async_cow->work.func = async_cow_start;
884 		async_cow->work.ordered_func = async_cow_submit;
885 		async_cow->work.ordered_free = async_cow_free;
886 		async_cow->work.flags = 0;
887 
888 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
889 			PAGE_CACHE_SHIFT;
890 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
891 
892 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
893 				   &async_cow->work);
894 
895 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
896 			wait_event(root->fs_info->async_submit_wait,
897 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
898 			    limit));
899 		}
900 
901 		while (atomic_read(&root->fs_info->async_submit_draining) &&
902 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
903 			wait_event(root->fs_info->async_submit_wait,
904 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
905 			   0));
906 		}
907 
908 		*nr_written += nr_pages;
909 		start = cur_end + 1;
910 	}
911 	*page_started = 1;
912 	return 0;
913 }
914 
915 static noinline int csum_exist_in_range(struct btrfs_root *root,
916 					u64 bytenr, u64 num_bytes)
917 {
918 	int ret;
919 	struct btrfs_ordered_sum *sums;
920 	LIST_HEAD(list);
921 
922 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
923 				       bytenr + num_bytes - 1, &list);
924 	if (ret == 0 && list_empty(&list))
925 		return 0;
926 
927 	while (!list_empty(&list)) {
928 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
929 		list_del(&sums->list);
930 		kfree(sums);
931 	}
932 	return 1;
933 }
934 
935 /*
936  * when nowcow writeback call back.  This checks for snapshots or COW copies
937  * of the extents that exist in the file, and COWs the file as required.
938  *
939  * If no cow copies or snapshots exist, we write directly to the existing
940  * blocks on disk
941  */
942 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
943 			      u64 start, u64 end, int *page_started, int force,
944 			      unsigned long *nr_written)
945 {
946 	struct btrfs_root *root = BTRFS_I(inode)->root;
947 	struct btrfs_trans_handle *trans;
948 	struct extent_buffer *leaf;
949 	struct btrfs_path *path;
950 	struct btrfs_file_extent_item *fi;
951 	struct btrfs_key found_key;
952 	u64 cow_start;
953 	u64 cur_offset;
954 	u64 extent_end;
955 	u64 disk_bytenr;
956 	u64 num_bytes;
957 	int extent_type;
958 	int ret;
959 	int type;
960 	int nocow;
961 	int check_prev = 1;
962 
963 	path = btrfs_alloc_path();
964 	BUG_ON(!path);
965 	trans = btrfs_join_transaction(root, 1);
966 	BUG_ON(!trans);
967 
968 	cow_start = (u64)-1;
969 	cur_offset = start;
970 	while (1) {
971 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
972 					       cur_offset, 0);
973 		BUG_ON(ret < 0);
974 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
975 			leaf = path->nodes[0];
976 			btrfs_item_key_to_cpu(leaf, &found_key,
977 					      path->slots[0] - 1);
978 			if (found_key.objectid == inode->i_ino &&
979 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
980 				path->slots[0]--;
981 		}
982 		check_prev = 0;
983 next_slot:
984 		leaf = path->nodes[0];
985 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
986 			ret = btrfs_next_leaf(root, path);
987 			if (ret < 0)
988 				BUG_ON(1);
989 			if (ret > 0)
990 				break;
991 			leaf = path->nodes[0];
992 		}
993 
994 		nocow = 0;
995 		disk_bytenr = 0;
996 		num_bytes = 0;
997 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
998 
999 		if (found_key.objectid > inode->i_ino ||
1000 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1001 		    found_key.offset > end)
1002 			break;
1003 
1004 		if (found_key.offset > cur_offset) {
1005 			extent_end = found_key.offset;
1006 			goto out_check;
1007 		}
1008 
1009 		fi = btrfs_item_ptr(leaf, path->slots[0],
1010 				    struct btrfs_file_extent_item);
1011 		extent_type = btrfs_file_extent_type(leaf, fi);
1012 
1013 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1014 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1015 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1016 			extent_end = found_key.offset +
1017 				btrfs_file_extent_num_bytes(leaf, fi);
1018 			if (extent_end <= start) {
1019 				path->slots[0]++;
1020 				goto next_slot;
1021 			}
1022 			if (disk_bytenr == 0)
1023 				goto out_check;
1024 			if (btrfs_file_extent_compression(leaf, fi) ||
1025 			    btrfs_file_extent_encryption(leaf, fi) ||
1026 			    btrfs_file_extent_other_encoding(leaf, fi))
1027 				goto out_check;
1028 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1029 				goto out_check;
1030 			if (btrfs_extent_readonly(root, disk_bytenr))
1031 				goto out_check;
1032 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1033 						  disk_bytenr))
1034 				goto out_check;
1035 			disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1036 			disk_bytenr += cur_offset - found_key.offset;
1037 			num_bytes = min(end + 1, extent_end) - cur_offset;
1038 			/*
1039 			 * force cow if csum exists in the range.
1040 			 * this ensure that csum for a given extent are
1041 			 * either valid or do not exist.
1042 			 */
1043 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1044 				goto out_check;
1045 			nocow = 1;
1046 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1047 			extent_end = found_key.offset +
1048 				btrfs_file_extent_inline_len(leaf, fi);
1049 			extent_end = ALIGN(extent_end, root->sectorsize);
1050 		} else {
1051 			BUG_ON(1);
1052 		}
1053 out_check:
1054 		if (extent_end <= start) {
1055 			path->slots[0]++;
1056 			goto next_slot;
1057 		}
1058 		if (!nocow) {
1059 			if (cow_start == (u64)-1)
1060 				cow_start = cur_offset;
1061 			cur_offset = extent_end;
1062 			if (cur_offset > end)
1063 				break;
1064 			path->slots[0]++;
1065 			goto next_slot;
1066 		}
1067 
1068 		btrfs_release_path(root, path);
1069 		if (cow_start != (u64)-1) {
1070 			ret = cow_file_range(inode, locked_page, cow_start,
1071 					found_key.offset - 1, page_started,
1072 					nr_written, 1);
1073 			BUG_ON(ret);
1074 			cow_start = (u64)-1;
1075 		}
1076 
1077 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1078 			struct extent_map *em;
1079 			struct extent_map_tree *em_tree;
1080 			em_tree = &BTRFS_I(inode)->extent_tree;
1081 			em = alloc_extent_map(GFP_NOFS);
1082 			em->start = cur_offset;
1083 			em->orig_start = em->start;
1084 			em->len = num_bytes;
1085 			em->block_len = num_bytes;
1086 			em->block_start = disk_bytenr;
1087 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1088 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1089 			while (1) {
1090 				spin_lock(&em_tree->lock);
1091 				ret = add_extent_mapping(em_tree, em);
1092 				spin_unlock(&em_tree->lock);
1093 				if (ret != -EEXIST) {
1094 					free_extent_map(em);
1095 					break;
1096 				}
1097 				btrfs_drop_extent_cache(inode, em->start,
1098 						em->start + em->len - 1, 0);
1099 			}
1100 			type = BTRFS_ORDERED_PREALLOC;
1101 		} else {
1102 			type = BTRFS_ORDERED_NOCOW;
1103 		}
1104 
1105 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1106 					       num_bytes, num_bytes, type);
1107 		BUG_ON(ret);
1108 
1109 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1110 					cur_offset, cur_offset + num_bytes - 1,
1111 					locked_page, 1, 1, 1, 0, 0, 0);
1112 		cur_offset = extent_end;
1113 		if (cur_offset > end)
1114 			break;
1115 	}
1116 	btrfs_release_path(root, path);
1117 
1118 	if (cur_offset <= end && cow_start == (u64)-1)
1119 		cow_start = cur_offset;
1120 	if (cow_start != (u64)-1) {
1121 		ret = cow_file_range(inode, locked_page, cow_start, end,
1122 				     page_started, nr_written, 1);
1123 		BUG_ON(ret);
1124 	}
1125 
1126 	ret = btrfs_end_transaction(trans, root);
1127 	BUG_ON(ret);
1128 	btrfs_free_path(path);
1129 	return 0;
1130 }
1131 
1132 /*
1133  * extent_io.c call back to do delayed allocation processing
1134  */
1135 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1136 			      u64 start, u64 end, int *page_started,
1137 			      unsigned long *nr_written)
1138 {
1139 	int ret;
1140 
1141 	if (btrfs_test_flag(inode, NODATACOW))
1142 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1143 					 page_started, 1, nr_written);
1144 	else if (btrfs_test_flag(inode, PREALLOC))
1145 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1146 					 page_started, 0, nr_written);
1147 	else
1148 		ret = cow_file_range_async(inode, locked_page, start, end,
1149 					   page_started, nr_written);
1150 
1151 	return ret;
1152 }
1153 
1154 /*
1155  * extent_io.c set_bit_hook, used to track delayed allocation
1156  * bytes in this file, and to maintain the list of inodes that
1157  * have pending delalloc work to be done.
1158  */
1159 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1160 		       unsigned long old, unsigned long bits)
1161 {
1162 	/*
1163 	 * set_bit and clear bit hooks normally require _irqsave/restore
1164 	 * but in this case, we are only testeing for the DELALLOC
1165 	 * bit, which is only set or cleared with irqs on
1166 	 */
1167 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1168 		struct btrfs_root *root = BTRFS_I(inode)->root;
1169 		spin_lock(&root->fs_info->delalloc_lock);
1170 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1171 		root->fs_info->delalloc_bytes += end - start + 1;
1172 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1173 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1174 				      &root->fs_info->delalloc_inodes);
1175 		}
1176 		spin_unlock(&root->fs_info->delalloc_lock);
1177 	}
1178 	return 0;
1179 }
1180 
1181 /*
1182  * extent_io.c clear_bit_hook, see set_bit_hook for why
1183  */
1184 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1185 			 unsigned long old, unsigned long bits)
1186 {
1187 	/*
1188 	 * set_bit and clear bit hooks normally require _irqsave/restore
1189 	 * but in this case, we are only testeing for the DELALLOC
1190 	 * bit, which is only set or cleared with irqs on
1191 	 */
1192 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1193 		struct btrfs_root *root = BTRFS_I(inode)->root;
1194 
1195 		spin_lock(&root->fs_info->delalloc_lock);
1196 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
1197 			printk(KERN_INFO "btrfs warning: delalloc account "
1198 			       "%llu %llu\n",
1199 			       (unsigned long long)end - start + 1,
1200 			       (unsigned long long)
1201 			       root->fs_info->delalloc_bytes);
1202 			root->fs_info->delalloc_bytes = 0;
1203 			BTRFS_I(inode)->delalloc_bytes = 0;
1204 		} else {
1205 			root->fs_info->delalloc_bytes -= end - start + 1;
1206 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207 		}
1208 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211 		}
1212 		spin_unlock(&root->fs_info->delalloc_lock);
1213 	}
1214 	return 0;
1215 }
1216 
1217 /*
1218  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219  * we don't create bios that span stripes or chunks
1220  */
1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1222 			 size_t size, struct bio *bio,
1223 			 unsigned long bio_flags)
1224 {
1225 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226 	struct btrfs_mapping_tree *map_tree;
1227 	u64 logical = (u64)bio->bi_sector << 9;
1228 	u64 length = 0;
1229 	u64 map_length;
1230 	int ret;
1231 
1232 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1233 		return 0;
1234 
1235 	length = bio->bi_size;
1236 	map_tree = &root->fs_info->mapping_tree;
1237 	map_length = length;
1238 	ret = btrfs_map_block(map_tree, READ, logical,
1239 			      &map_length, NULL, 0);
1240 
1241 	if (map_length < length + size)
1242 		return 1;
1243 	return 0;
1244 }
1245 
1246 /*
1247  * in order to insert checksums into the metadata in large chunks,
1248  * we wait until bio submission time.   All the pages in the bio are
1249  * checksummed and sums are attached onto the ordered extent record.
1250  *
1251  * At IO completion time the cums attached on the ordered extent record
1252  * are inserted into the btree
1253  */
1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255 				    struct bio *bio, int mirror_num,
1256 				    unsigned long bio_flags)
1257 {
1258 	struct btrfs_root *root = BTRFS_I(inode)->root;
1259 	int ret = 0;
1260 
1261 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1262 	BUG_ON(ret);
1263 	return 0;
1264 }
1265 
1266 /*
1267  * in order to insert checksums into the metadata in large chunks,
1268  * we wait until bio submission time.   All the pages in the bio are
1269  * checksummed and sums are attached onto the ordered extent record.
1270  *
1271  * At IO completion time the cums attached on the ordered extent record
1272  * are inserted into the btree
1273  */
1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1275 			  int mirror_num, unsigned long bio_flags)
1276 {
1277 	struct btrfs_root *root = BTRFS_I(inode)->root;
1278 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1279 }
1280 
1281 /*
1282  * extent_io.c submission hook. This does the right thing for csum calculation
1283  * on write, or reading the csums from the tree before a read
1284  */
1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1286 			  int mirror_num, unsigned long bio_flags)
1287 {
1288 	struct btrfs_root *root = BTRFS_I(inode)->root;
1289 	int ret = 0;
1290 	int skip_sum;
1291 
1292 	skip_sum = btrfs_test_flag(inode, NODATASUM);
1293 
1294 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1295 	BUG_ON(ret);
1296 
1297 	if (!(rw & (1 << BIO_RW))) {
1298 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1299 			return btrfs_submit_compressed_read(inode, bio,
1300 						    mirror_num, bio_flags);
1301 		} else if (!skip_sum)
1302 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303 		goto mapit;
1304 	} else if (!skip_sum) {
1305 		/* csum items have already been cloned */
1306 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307 			goto mapit;
1308 		/* we're doing a write, do the async checksumming */
1309 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1310 				   inode, rw, bio, mirror_num,
1311 				   bio_flags, __btrfs_submit_bio_start,
1312 				   __btrfs_submit_bio_done);
1313 	}
1314 
1315 mapit:
1316 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1317 }
1318 
1319 /*
1320  * given a list of ordered sums record them in the inode.  This happens
1321  * at IO completion time based on sums calculated at bio submission time.
1322  */
1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1324 			     struct inode *inode, u64 file_offset,
1325 			     struct list_head *list)
1326 {
1327 	struct list_head *cur;
1328 	struct btrfs_ordered_sum *sum;
1329 
1330 	btrfs_set_trans_block_group(trans, inode);
1331 	list_for_each(cur, list) {
1332 		sum = list_entry(cur, struct btrfs_ordered_sum, list);
1333 		btrfs_csum_file_blocks(trans,
1334 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1335 	}
1336 	return 0;
1337 }
1338 
1339 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1340 {
1341 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1342 		WARN_ON(1);
1343 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1344 				   GFP_NOFS);
1345 }
1346 
1347 /* see btrfs_writepage_start_hook for details on why this is required */
1348 struct btrfs_writepage_fixup {
1349 	struct page *page;
1350 	struct btrfs_work work;
1351 };
1352 
1353 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1354 {
1355 	struct btrfs_writepage_fixup *fixup;
1356 	struct btrfs_ordered_extent *ordered;
1357 	struct page *page;
1358 	struct inode *inode;
1359 	u64 page_start;
1360 	u64 page_end;
1361 
1362 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1363 	page = fixup->page;
1364 again:
1365 	lock_page(page);
1366 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1367 		ClearPageChecked(page);
1368 		goto out_page;
1369 	}
1370 
1371 	inode = page->mapping->host;
1372 	page_start = page_offset(page);
1373 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1374 
1375 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1376 
1377 	/* already ordered? We're done */
1378 	if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1379 			     EXTENT_ORDERED, 0)) {
1380 		goto out;
1381 	}
1382 
1383 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1384 	if (ordered) {
1385 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1386 			      page_end, GFP_NOFS);
1387 		unlock_page(page);
1388 		btrfs_start_ordered_extent(inode, ordered, 1);
1389 		goto again;
1390 	}
1391 
1392 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1393 	ClearPageChecked(page);
1394 out:
1395 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1396 out_page:
1397 	unlock_page(page);
1398 	page_cache_release(page);
1399 }
1400 
1401 /*
1402  * There are a few paths in the higher layers of the kernel that directly
1403  * set the page dirty bit without asking the filesystem if it is a
1404  * good idea.  This causes problems because we want to make sure COW
1405  * properly happens and the data=ordered rules are followed.
1406  *
1407  * In our case any range that doesn't have the ORDERED bit set
1408  * hasn't been properly setup for IO.  We kick off an async process
1409  * to fix it up.  The async helper will wait for ordered extents, set
1410  * the delalloc bit and make it safe to write the page.
1411  */
1412 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1413 {
1414 	struct inode *inode = page->mapping->host;
1415 	struct btrfs_writepage_fixup *fixup;
1416 	struct btrfs_root *root = BTRFS_I(inode)->root;
1417 	int ret;
1418 
1419 	ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1420 			     EXTENT_ORDERED, 0);
1421 	if (ret)
1422 		return 0;
1423 
1424 	if (PageChecked(page))
1425 		return -EAGAIN;
1426 
1427 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1428 	if (!fixup)
1429 		return -EAGAIN;
1430 
1431 	SetPageChecked(page);
1432 	page_cache_get(page);
1433 	fixup->work.func = btrfs_writepage_fixup_worker;
1434 	fixup->page = page;
1435 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1436 	return -EAGAIN;
1437 }
1438 
1439 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1440 				       struct inode *inode, u64 file_pos,
1441 				       u64 disk_bytenr, u64 disk_num_bytes,
1442 				       u64 num_bytes, u64 ram_bytes,
1443 				       u8 compression, u8 encryption,
1444 				       u16 other_encoding, int extent_type)
1445 {
1446 	struct btrfs_root *root = BTRFS_I(inode)->root;
1447 	struct btrfs_file_extent_item *fi;
1448 	struct btrfs_path *path;
1449 	struct extent_buffer *leaf;
1450 	struct btrfs_key ins;
1451 	u64 hint;
1452 	int ret;
1453 
1454 	path = btrfs_alloc_path();
1455 	BUG_ON(!path);
1456 
1457 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1458 				 file_pos + num_bytes, file_pos, &hint);
1459 	BUG_ON(ret);
1460 
1461 	ins.objectid = inode->i_ino;
1462 	ins.offset = file_pos;
1463 	ins.type = BTRFS_EXTENT_DATA_KEY;
1464 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1465 	BUG_ON(ret);
1466 	leaf = path->nodes[0];
1467 	fi = btrfs_item_ptr(leaf, path->slots[0],
1468 			    struct btrfs_file_extent_item);
1469 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1470 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1471 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1472 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1473 	btrfs_set_file_extent_offset(leaf, fi, 0);
1474 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1475 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1476 	btrfs_set_file_extent_compression(leaf, fi, compression);
1477 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1478 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1479 	btrfs_mark_buffer_dirty(leaf);
1480 
1481 	inode_add_bytes(inode, num_bytes);
1482 	btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1483 
1484 	ins.objectid = disk_bytenr;
1485 	ins.offset = disk_num_bytes;
1486 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1487 	ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1488 					  root->root_key.objectid,
1489 					  trans->transid, inode->i_ino, &ins);
1490 	BUG_ON(ret);
1491 
1492 	btrfs_free_path(path);
1493 	return 0;
1494 }
1495 
1496 /* as ordered data IO finishes, this gets called so we can finish
1497  * an ordered extent if the range of bytes in the file it covers are
1498  * fully written.
1499  */
1500 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1501 {
1502 	struct btrfs_root *root = BTRFS_I(inode)->root;
1503 	struct btrfs_trans_handle *trans;
1504 	struct btrfs_ordered_extent *ordered_extent;
1505 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1506 	int compressed = 0;
1507 	int ret;
1508 
1509 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1510 	if (!ret)
1511 		return 0;
1512 
1513 	trans = btrfs_join_transaction(root, 1);
1514 
1515 	ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1516 	BUG_ON(!ordered_extent);
1517 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1518 		goto nocow;
1519 
1520 	lock_extent(io_tree, ordered_extent->file_offset,
1521 		    ordered_extent->file_offset + ordered_extent->len - 1,
1522 		    GFP_NOFS);
1523 
1524 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1525 		compressed = 1;
1526 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1527 		BUG_ON(compressed);
1528 		ret = btrfs_mark_extent_written(trans, root, inode,
1529 						ordered_extent->file_offset,
1530 						ordered_extent->file_offset +
1531 						ordered_extent->len);
1532 		BUG_ON(ret);
1533 	} else {
1534 		ret = insert_reserved_file_extent(trans, inode,
1535 						ordered_extent->file_offset,
1536 						ordered_extent->start,
1537 						ordered_extent->disk_len,
1538 						ordered_extent->len,
1539 						ordered_extent->len,
1540 						compressed, 0, 0,
1541 						BTRFS_FILE_EXTENT_REG);
1542 		BUG_ON(ret);
1543 	}
1544 	unlock_extent(io_tree, ordered_extent->file_offset,
1545 		    ordered_extent->file_offset + ordered_extent->len - 1,
1546 		    GFP_NOFS);
1547 nocow:
1548 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1549 			  &ordered_extent->list);
1550 
1551 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1552 	btrfs_ordered_update_i_size(inode, ordered_extent);
1553 	btrfs_update_inode(trans, root, inode);
1554 	btrfs_remove_ordered_extent(inode, ordered_extent);
1555 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1556 
1557 	/* once for us */
1558 	btrfs_put_ordered_extent(ordered_extent);
1559 	/* once for the tree */
1560 	btrfs_put_ordered_extent(ordered_extent);
1561 
1562 	btrfs_end_transaction(trans, root);
1563 	return 0;
1564 }
1565 
1566 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1567 				struct extent_state *state, int uptodate)
1568 {
1569 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1570 }
1571 
1572 /*
1573  * When IO fails, either with EIO or csum verification fails, we
1574  * try other mirrors that might have a good copy of the data.  This
1575  * io_failure_record is used to record state as we go through all the
1576  * mirrors.  If another mirror has good data, the page is set up to date
1577  * and things continue.  If a good mirror can't be found, the original
1578  * bio end_io callback is called to indicate things have failed.
1579  */
1580 struct io_failure_record {
1581 	struct page *page;
1582 	u64 start;
1583 	u64 len;
1584 	u64 logical;
1585 	unsigned long bio_flags;
1586 	int last_mirror;
1587 };
1588 
1589 static int btrfs_io_failed_hook(struct bio *failed_bio,
1590 			 struct page *page, u64 start, u64 end,
1591 			 struct extent_state *state)
1592 {
1593 	struct io_failure_record *failrec = NULL;
1594 	u64 private;
1595 	struct extent_map *em;
1596 	struct inode *inode = page->mapping->host;
1597 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1598 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1599 	struct bio *bio;
1600 	int num_copies;
1601 	int ret;
1602 	int rw;
1603 	u64 logical;
1604 
1605 	ret = get_state_private(failure_tree, start, &private);
1606 	if (ret) {
1607 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1608 		if (!failrec)
1609 			return -ENOMEM;
1610 		failrec->start = start;
1611 		failrec->len = end - start + 1;
1612 		failrec->last_mirror = 0;
1613 		failrec->bio_flags = 0;
1614 
1615 		spin_lock(&em_tree->lock);
1616 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1617 		if (em->start > start || em->start + em->len < start) {
1618 			free_extent_map(em);
1619 			em = NULL;
1620 		}
1621 		spin_unlock(&em_tree->lock);
1622 
1623 		if (!em || IS_ERR(em)) {
1624 			kfree(failrec);
1625 			return -EIO;
1626 		}
1627 		logical = start - em->start;
1628 		logical = em->block_start + logical;
1629 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1630 			logical = em->block_start;
1631 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1632 		}
1633 		failrec->logical = logical;
1634 		free_extent_map(em);
1635 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1636 				EXTENT_DIRTY, GFP_NOFS);
1637 		set_state_private(failure_tree, start,
1638 				 (u64)(unsigned long)failrec);
1639 	} else {
1640 		failrec = (struct io_failure_record *)(unsigned long)private;
1641 	}
1642 	num_copies = btrfs_num_copies(
1643 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1644 			      failrec->logical, failrec->len);
1645 	failrec->last_mirror++;
1646 	if (!state) {
1647 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1648 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1649 						    failrec->start,
1650 						    EXTENT_LOCKED);
1651 		if (state && state->start != failrec->start)
1652 			state = NULL;
1653 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1654 	}
1655 	if (!state || failrec->last_mirror > num_copies) {
1656 		set_state_private(failure_tree, failrec->start, 0);
1657 		clear_extent_bits(failure_tree, failrec->start,
1658 				  failrec->start + failrec->len - 1,
1659 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1660 		kfree(failrec);
1661 		return -EIO;
1662 	}
1663 	bio = bio_alloc(GFP_NOFS, 1);
1664 	bio->bi_private = state;
1665 	bio->bi_end_io = failed_bio->bi_end_io;
1666 	bio->bi_sector = failrec->logical >> 9;
1667 	bio->bi_bdev = failed_bio->bi_bdev;
1668 	bio->bi_size = 0;
1669 
1670 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1671 	if (failed_bio->bi_rw & (1 << BIO_RW))
1672 		rw = WRITE;
1673 	else
1674 		rw = READ;
1675 
1676 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1677 						      failrec->last_mirror,
1678 						      failrec->bio_flags);
1679 	return 0;
1680 }
1681 
1682 /*
1683  * each time an IO finishes, we do a fast check in the IO failure tree
1684  * to see if we need to process or clean up an io_failure_record
1685  */
1686 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1687 {
1688 	u64 private;
1689 	u64 private_failure;
1690 	struct io_failure_record *failure;
1691 	int ret;
1692 
1693 	private = 0;
1694 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1695 			     (u64)-1, 1, EXTENT_DIRTY)) {
1696 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1697 					start, &private_failure);
1698 		if (ret == 0) {
1699 			failure = (struct io_failure_record *)(unsigned long)
1700 				   private_failure;
1701 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1702 					  failure->start, 0);
1703 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1704 					  failure->start,
1705 					  failure->start + failure->len - 1,
1706 					  EXTENT_DIRTY | EXTENT_LOCKED,
1707 					  GFP_NOFS);
1708 			kfree(failure);
1709 		}
1710 	}
1711 	return 0;
1712 }
1713 
1714 /*
1715  * when reads are done, we need to check csums to verify the data is correct
1716  * if there's a match, we allow the bio to finish.  If not, we go through
1717  * the io_failure_record routines to find good copies
1718  */
1719 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1720 			       struct extent_state *state)
1721 {
1722 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1723 	struct inode *inode = page->mapping->host;
1724 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1725 	char *kaddr;
1726 	u64 private = ~(u32)0;
1727 	int ret;
1728 	struct btrfs_root *root = BTRFS_I(inode)->root;
1729 	u32 csum = ~(u32)0;
1730 	unsigned long flags;
1731 
1732 	if (PageChecked(page)) {
1733 		ClearPageChecked(page);
1734 		goto good;
1735 	}
1736 	if (btrfs_test_flag(inode, NODATASUM))
1737 		return 0;
1738 
1739 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1740 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1741 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1742 				  GFP_NOFS);
1743 		return 0;
1744 	}
1745 
1746 	if (state && state->start == start) {
1747 		private = state->private;
1748 		ret = 0;
1749 	} else {
1750 		ret = get_state_private(io_tree, start, &private);
1751 	}
1752 	local_irq_save(flags);
1753 	kaddr = kmap_atomic(page, KM_IRQ0);
1754 	if (ret)
1755 		goto zeroit;
1756 
1757 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1758 	btrfs_csum_final(csum, (char *)&csum);
1759 	if (csum != private)
1760 		goto zeroit;
1761 
1762 	kunmap_atomic(kaddr, KM_IRQ0);
1763 	local_irq_restore(flags);
1764 good:
1765 	/* if the io failure tree for this inode is non-empty,
1766 	 * check to see if we've recovered from a failed IO
1767 	 */
1768 	btrfs_clean_io_failures(inode, start);
1769 	return 0;
1770 
1771 zeroit:
1772 	printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1773 	       "private %llu\n", page->mapping->host->i_ino,
1774 	       (unsigned long long)start, csum,
1775 	       (unsigned long long)private);
1776 	memset(kaddr + offset, 1, end - start + 1);
1777 	flush_dcache_page(page);
1778 	kunmap_atomic(kaddr, KM_IRQ0);
1779 	local_irq_restore(flags);
1780 	if (private == 0)
1781 		return 0;
1782 	return -EIO;
1783 }
1784 
1785 /*
1786  * This creates an orphan entry for the given inode in case something goes
1787  * wrong in the middle of an unlink/truncate.
1788  */
1789 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1790 {
1791 	struct btrfs_root *root = BTRFS_I(inode)->root;
1792 	int ret = 0;
1793 
1794 	spin_lock(&root->list_lock);
1795 
1796 	/* already on the orphan list, we're good */
1797 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1798 		spin_unlock(&root->list_lock);
1799 		return 0;
1800 	}
1801 
1802 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1803 
1804 	spin_unlock(&root->list_lock);
1805 
1806 	/*
1807 	 * insert an orphan item to track this unlinked/truncated file
1808 	 */
1809 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1810 
1811 	return ret;
1812 }
1813 
1814 /*
1815  * We have done the truncate/delete so we can go ahead and remove the orphan
1816  * item for this particular inode.
1817  */
1818 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1819 {
1820 	struct btrfs_root *root = BTRFS_I(inode)->root;
1821 	int ret = 0;
1822 
1823 	spin_lock(&root->list_lock);
1824 
1825 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1826 		spin_unlock(&root->list_lock);
1827 		return 0;
1828 	}
1829 
1830 	list_del_init(&BTRFS_I(inode)->i_orphan);
1831 	if (!trans) {
1832 		spin_unlock(&root->list_lock);
1833 		return 0;
1834 	}
1835 
1836 	spin_unlock(&root->list_lock);
1837 
1838 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1839 
1840 	return ret;
1841 }
1842 
1843 /*
1844  * this cleans up any orphans that may be left on the list from the last use
1845  * of this root.
1846  */
1847 void btrfs_orphan_cleanup(struct btrfs_root *root)
1848 {
1849 	struct btrfs_path *path;
1850 	struct extent_buffer *leaf;
1851 	struct btrfs_item *item;
1852 	struct btrfs_key key, found_key;
1853 	struct btrfs_trans_handle *trans;
1854 	struct inode *inode;
1855 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
1856 
1857 	path = btrfs_alloc_path();
1858 	if (!path)
1859 		return;
1860 	path->reada = -1;
1861 
1862 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1863 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1864 	key.offset = (u64)-1;
1865 
1866 
1867 	while (1) {
1868 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1869 		if (ret < 0) {
1870 			printk(KERN_ERR "Error searching slot for orphan: %d"
1871 			       "\n", ret);
1872 			break;
1873 		}
1874 
1875 		/*
1876 		 * if ret == 0 means we found what we were searching for, which
1877 		 * is weird, but possible, so only screw with path if we didnt
1878 		 * find the key and see if we have stuff that matches
1879 		 */
1880 		if (ret > 0) {
1881 			if (path->slots[0] == 0)
1882 				break;
1883 			path->slots[0]--;
1884 		}
1885 
1886 		/* pull out the item */
1887 		leaf = path->nodes[0];
1888 		item = btrfs_item_nr(leaf, path->slots[0]);
1889 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1890 
1891 		/* make sure the item matches what we want */
1892 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1893 			break;
1894 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1895 			break;
1896 
1897 		/* release the path since we're done with it */
1898 		btrfs_release_path(root, path);
1899 
1900 		/*
1901 		 * this is where we are basically btrfs_lookup, without the
1902 		 * crossing root thing.  we store the inode number in the
1903 		 * offset of the orphan item.
1904 		 */
1905 		inode = btrfs_iget_locked(root->fs_info->sb,
1906 					  found_key.offset, root);
1907 		if (!inode)
1908 			break;
1909 
1910 		if (inode->i_state & I_NEW) {
1911 			BTRFS_I(inode)->root = root;
1912 
1913 			/* have to set the location manually */
1914 			BTRFS_I(inode)->location.objectid = inode->i_ino;
1915 			BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1916 			BTRFS_I(inode)->location.offset = 0;
1917 
1918 			btrfs_read_locked_inode(inode);
1919 			unlock_new_inode(inode);
1920 		}
1921 
1922 		/*
1923 		 * add this inode to the orphan list so btrfs_orphan_del does
1924 		 * the proper thing when we hit it
1925 		 */
1926 		spin_lock(&root->list_lock);
1927 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1928 		spin_unlock(&root->list_lock);
1929 
1930 		/*
1931 		 * if this is a bad inode, means we actually succeeded in
1932 		 * removing the inode, but not the orphan record, which means
1933 		 * we need to manually delete the orphan since iput will just
1934 		 * do a destroy_inode
1935 		 */
1936 		if (is_bad_inode(inode)) {
1937 			trans = btrfs_start_transaction(root, 1);
1938 			btrfs_orphan_del(trans, inode);
1939 			btrfs_end_transaction(trans, root);
1940 			iput(inode);
1941 			continue;
1942 		}
1943 
1944 		/* if we have links, this was a truncate, lets do that */
1945 		if (inode->i_nlink) {
1946 			nr_truncate++;
1947 			btrfs_truncate(inode);
1948 		} else {
1949 			nr_unlink++;
1950 		}
1951 
1952 		/* this will do delete_inode and everything for us */
1953 		iput(inode);
1954 	}
1955 
1956 	if (nr_unlink)
1957 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1958 	if (nr_truncate)
1959 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1960 
1961 	btrfs_free_path(path);
1962 }
1963 
1964 /*
1965  * read an inode from the btree into the in-memory inode
1966  */
1967 void btrfs_read_locked_inode(struct inode *inode)
1968 {
1969 	struct btrfs_path *path;
1970 	struct extent_buffer *leaf;
1971 	struct btrfs_inode_item *inode_item;
1972 	struct btrfs_timespec *tspec;
1973 	struct btrfs_root *root = BTRFS_I(inode)->root;
1974 	struct btrfs_key location;
1975 	u64 alloc_group_block;
1976 	u32 rdev;
1977 	int ret;
1978 
1979 	path = btrfs_alloc_path();
1980 	BUG_ON(!path);
1981 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1982 
1983 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1984 	if (ret)
1985 		goto make_bad;
1986 
1987 	leaf = path->nodes[0];
1988 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1989 				    struct btrfs_inode_item);
1990 
1991 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1992 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1993 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1994 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1995 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1996 
1997 	tspec = btrfs_inode_atime(inode_item);
1998 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1999 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2000 
2001 	tspec = btrfs_inode_mtime(inode_item);
2002 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2003 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2004 
2005 	tspec = btrfs_inode_ctime(inode_item);
2006 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2007 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2008 
2009 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2010 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2011 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2012 	inode->i_generation = BTRFS_I(inode)->generation;
2013 	inode->i_rdev = 0;
2014 	rdev = btrfs_inode_rdev(leaf, inode_item);
2015 
2016 	BTRFS_I(inode)->index_cnt = (u64)-1;
2017 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2018 
2019 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2020 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2021 						alloc_group_block, 0);
2022 	btrfs_free_path(path);
2023 	inode_item = NULL;
2024 
2025 	switch (inode->i_mode & S_IFMT) {
2026 	case S_IFREG:
2027 		inode->i_mapping->a_ops = &btrfs_aops;
2028 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2029 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2030 		inode->i_fop = &btrfs_file_operations;
2031 		inode->i_op = &btrfs_file_inode_operations;
2032 		break;
2033 	case S_IFDIR:
2034 		inode->i_fop = &btrfs_dir_file_operations;
2035 		if (root == root->fs_info->tree_root)
2036 			inode->i_op = &btrfs_dir_ro_inode_operations;
2037 		else
2038 			inode->i_op = &btrfs_dir_inode_operations;
2039 		break;
2040 	case S_IFLNK:
2041 		inode->i_op = &btrfs_symlink_inode_operations;
2042 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2043 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2044 		break;
2045 	default:
2046 		init_special_inode(inode, inode->i_mode, rdev);
2047 		break;
2048 	}
2049 	return;
2050 
2051 make_bad:
2052 	btrfs_free_path(path);
2053 	make_bad_inode(inode);
2054 }
2055 
2056 /*
2057  * given a leaf and an inode, copy the inode fields into the leaf
2058  */
2059 static void fill_inode_item(struct btrfs_trans_handle *trans,
2060 			    struct extent_buffer *leaf,
2061 			    struct btrfs_inode_item *item,
2062 			    struct inode *inode)
2063 {
2064 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2065 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2066 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2067 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2068 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2069 
2070 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2071 			       inode->i_atime.tv_sec);
2072 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2073 				inode->i_atime.tv_nsec);
2074 
2075 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2076 			       inode->i_mtime.tv_sec);
2077 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2078 				inode->i_mtime.tv_nsec);
2079 
2080 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2081 			       inode->i_ctime.tv_sec);
2082 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2083 				inode->i_ctime.tv_nsec);
2084 
2085 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2086 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2087 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2088 	btrfs_set_inode_transid(leaf, item, trans->transid);
2089 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2090 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2091 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2092 }
2093 
2094 /*
2095  * copy everything in the in-memory inode into the btree.
2096  */
2097 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2098 				struct btrfs_root *root, struct inode *inode)
2099 {
2100 	struct btrfs_inode_item *inode_item;
2101 	struct btrfs_path *path;
2102 	struct extent_buffer *leaf;
2103 	int ret;
2104 
2105 	path = btrfs_alloc_path();
2106 	BUG_ON(!path);
2107 	ret = btrfs_lookup_inode(trans, root, path,
2108 				 &BTRFS_I(inode)->location, 1);
2109 	if (ret) {
2110 		if (ret > 0)
2111 			ret = -ENOENT;
2112 		goto failed;
2113 	}
2114 
2115 	leaf = path->nodes[0];
2116 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2117 				  struct btrfs_inode_item);
2118 
2119 	fill_inode_item(trans, leaf, inode_item, inode);
2120 	btrfs_mark_buffer_dirty(leaf);
2121 	btrfs_set_inode_last_trans(trans, inode);
2122 	ret = 0;
2123 failed:
2124 	btrfs_free_path(path);
2125 	return ret;
2126 }
2127 
2128 
2129 /*
2130  * unlink helper that gets used here in inode.c and in the tree logging
2131  * recovery code.  It remove a link in a directory with a given name, and
2132  * also drops the back refs in the inode to the directory
2133  */
2134 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2135 		       struct btrfs_root *root,
2136 		       struct inode *dir, struct inode *inode,
2137 		       const char *name, int name_len)
2138 {
2139 	struct btrfs_path *path;
2140 	int ret = 0;
2141 	struct extent_buffer *leaf;
2142 	struct btrfs_dir_item *di;
2143 	struct btrfs_key key;
2144 	u64 index;
2145 
2146 	path = btrfs_alloc_path();
2147 	if (!path) {
2148 		ret = -ENOMEM;
2149 		goto err;
2150 	}
2151 
2152 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2153 				    name, name_len, -1);
2154 	if (IS_ERR(di)) {
2155 		ret = PTR_ERR(di);
2156 		goto err;
2157 	}
2158 	if (!di) {
2159 		ret = -ENOENT;
2160 		goto err;
2161 	}
2162 	leaf = path->nodes[0];
2163 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2164 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2165 	if (ret)
2166 		goto err;
2167 	btrfs_release_path(root, path);
2168 
2169 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2170 				  inode->i_ino,
2171 				  dir->i_ino, &index);
2172 	if (ret) {
2173 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2174 		       "inode %lu parent %lu\n", name_len, name,
2175 		       inode->i_ino, dir->i_ino);
2176 		goto err;
2177 	}
2178 
2179 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2180 					 index, name, name_len, -1);
2181 	if (IS_ERR(di)) {
2182 		ret = PTR_ERR(di);
2183 		goto err;
2184 	}
2185 	if (!di) {
2186 		ret = -ENOENT;
2187 		goto err;
2188 	}
2189 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2190 	btrfs_release_path(root, path);
2191 
2192 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2193 					 inode, dir->i_ino);
2194 	BUG_ON(ret != 0 && ret != -ENOENT);
2195 	if (ret != -ENOENT)
2196 		BTRFS_I(dir)->log_dirty_trans = trans->transid;
2197 
2198 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2199 					   dir, index);
2200 	BUG_ON(ret);
2201 err:
2202 	btrfs_free_path(path);
2203 	if (ret)
2204 		goto out;
2205 
2206 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2207 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2208 	btrfs_update_inode(trans, root, dir);
2209 	btrfs_drop_nlink(inode);
2210 	ret = btrfs_update_inode(trans, root, inode);
2211 	dir->i_sb->s_dirt = 1;
2212 out:
2213 	return ret;
2214 }
2215 
2216 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2217 {
2218 	struct btrfs_root *root;
2219 	struct btrfs_trans_handle *trans;
2220 	struct inode *inode = dentry->d_inode;
2221 	int ret;
2222 	unsigned long nr = 0;
2223 
2224 	root = BTRFS_I(dir)->root;
2225 
2226 	ret = btrfs_check_free_space(root, 1, 1);
2227 	if (ret)
2228 		goto fail;
2229 
2230 	trans = btrfs_start_transaction(root, 1);
2231 
2232 	btrfs_set_trans_block_group(trans, dir);
2233 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2234 				 dentry->d_name.name, dentry->d_name.len);
2235 
2236 	if (inode->i_nlink == 0)
2237 		ret = btrfs_orphan_add(trans, inode);
2238 
2239 	nr = trans->blocks_used;
2240 
2241 	btrfs_end_transaction_throttle(trans, root);
2242 fail:
2243 	btrfs_btree_balance_dirty(root, nr);
2244 	return ret;
2245 }
2246 
2247 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2248 {
2249 	struct inode *inode = dentry->d_inode;
2250 	int err = 0;
2251 	int ret;
2252 	struct btrfs_root *root = BTRFS_I(dir)->root;
2253 	struct btrfs_trans_handle *trans;
2254 	unsigned long nr = 0;
2255 
2256 	/*
2257 	 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2258 	 * the root of a subvolume or snapshot
2259 	 */
2260 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2261 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2262 		return -ENOTEMPTY;
2263 	}
2264 
2265 	ret = btrfs_check_free_space(root, 1, 1);
2266 	if (ret)
2267 		goto fail;
2268 
2269 	trans = btrfs_start_transaction(root, 1);
2270 	btrfs_set_trans_block_group(trans, dir);
2271 
2272 	err = btrfs_orphan_add(trans, inode);
2273 	if (err)
2274 		goto fail_trans;
2275 
2276 	/* now the directory is empty */
2277 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2278 				 dentry->d_name.name, dentry->d_name.len);
2279 	if (!err)
2280 		btrfs_i_size_write(inode, 0);
2281 
2282 fail_trans:
2283 	nr = trans->blocks_used;
2284 	ret = btrfs_end_transaction_throttle(trans, root);
2285 fail:
2286 	btrfs_btree_balance_dirty(root, nr);
2287 
2288 	if (ret && !err)
2289 		err = ret;
2290 	return err;
2291 }
2292 
2293 #if 0
2294 /*
2295  * when truncating bytes in a file, it is possible to avoid reading
2296  * the leaves that contain only checksum items.  This can be the
2297  * majority of the IO required to delete a large file, but it must
2298  * be done carefully.
2299  *
2300  * The keys in the level just above the leaves are checked to make sure
2301  * the lowest key in a given leaf is a csum key, and starts at an offset
2302  * after the new  size.
2303  *
2304  * Then the key for the next leaf is checked to make sure it also has
2305  * a checksum item for the same file.  If it does, we know our target leaf
2306  * contains only checksum items, and it can be safely freed without reading
2307  * it.
2308  *
2309  * This is just an optimization targeted at large files.  It may do
2310  * nothing.  It will return 0 unless things went badly.
2311  */
2312 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2313 				     struct btrfs_root *root,
2314 				     struct btrfs_path *path,
2315 				     struct inode *inode, u64 new_size)
2316 {
2317 	struct btrfs_key key;
2318 	int ret;
2319 	int nritems;
2320 	struct btrfs_key found_key;
2321 	struct btrfs_key other_key;
2322 	struct btrfs_leaf_ref *ref;
2323 	u64 leaf_gen;
2324 	u64 leaf_start;
2325 
2326 	path->lowest_level = 1;
2327 	key.objectid = inode->i_ino;
2328 	key.type = BTRFS_CSUM_ITEM_KEY;
2329 	key.offset = new_size;
2330 again:
2331 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2332 	if (ret < 0)
2333 		goto out;
2334 
2335 	if (path->nodes[1] == NULL) {
2336 		ret = 0;
2337 		goto out;
2338 	}
2339 	ret = 0;
2340 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2341 	nritems = btrfs_header_nritems(path->nodes[1]);
2342 
2343 	if (!nritems)
2344 		goto out;
2345 
2346 	if (path->slots[1] >= nritems)
2347 		goto next_node;
2348 
2349 	/* did we find a key greater than anything we want to delete? */
2350 	if (found_key.objectid > inode->i_ino ||
2351 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2352 		goto out;
2353 
2354 	/* we check the next key in the node to make sure the leave contains
2355 	 * only checksum items.  This comparison doesn't work if our
2356 	 * leaf is the last one in the node
2357 	 */
2358 	if (path->slots[1] + 1 >= nritems) {
2359 next_node:
2360 		/* search forward from the last key in the node, this
2361 		 * will bring us into the next node in the tree
2362 		 */
2363 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2364 
2365 		/* unlikely, but we inc below, so check to be safe */
2366 		if (found_key.offset == (u64)-1)
2367 			goto out;
2368 
2369 		/* search_forward needs a path with locks held, do the
2370 		 * search again for the original key.  It is possible
2371 		 * this will race with a balance and return a path that
2372 		 * we could modify, but this drop is just an optimization
2373 		 * and is allowed to miss some leaves.
2374 		 */
2375 		btrfs_release_path(root, path);
2376 		found_key.offset++;
2377 
2378 		/* setup a max key for search_forward */
2379 		other_key.offset = (u64)-1;
2380 		other_key.type = key.type;
2381 		other_key.objectid = key.objectid;
2382 
2383 		path->keep_locks = 1;
2384 		ret = btrfs_search_forward(root, &found_key, &other_key,
2385 					   path, 0, 0);
2386 		path->keep_locks = 0;
2387 		if (ret || found_key.objectid != key.objectid ||
2388 		    found_key.type != key.type) {
2389 			ret = 0;
2390 			goto out;
2391 		}
2392 
2393 		key.offset = found_key.offset;
2394 		btrfs_release_path(root, path);
2395 		cond_resched();
2396 		goto again;
2397 	}
2398 
2399 	/* we know there's one more slot after us in the tree,
2400 	 * read that key so we can verify it is also a checksum item
2401 	 */
2402 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2403 
2404 	if (found_key.objectid < inode->i_ino)
2405 		goto next_key;
2406 
2407 	if (found_key.type != key.type || found_key.offset < new_size)
2408 		goto next_key;
2409 
2410 	/*
2411 	 * if the key for the next leaf isn't a csum key from this objectid,
2412 	 * we can't be sure there aren't good items inside this leaf.
2413 	 * Bail out
2414 	 */
2415 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2416 		goto out;
2417 
2418 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2419 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2420 	/*
2421 	 * it is safe to delete this leaf, it contains only
2422 	 * csum items from this inode at an offset >= new_size
2423 	 */
2424 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2425 	BUG_ON(ret);
2426 
2427 	if (root->ref_cows && leaf_gen < trans->transid) {
2428 		ref = btrfs_alloc_leaf_ref(root, 0);
2429 		if (ref) {
2430 			ref->root_gen = root->root_key.offset;
2431 			ref->bytenr = leaf_start;
2432 			ref->owner = 0;
2433 			ref->generation = leaf_gen;
2434 			ref->nritems = 0;
2435 
2436 			ret = btrfs_add_leaf_ref(root, ref, 0);
2437 			WARN_ON(ret);
2438 			btrfs_free_leaf_ref(root, ref);
2439 		} else {
2440 			WARN_ON(1);
2441 		}
2442 	}
2443 next_key:
2444 	btrfs_release_path(root, path);
2445 
2446 	if (other_key.objectid == inode->i_ino &&
2447 	    other_key.type == key.type && other_key.offset > key.offset) {
2448 		key.offset = other_key.offset;
2449 		cond_resched();
2450 		goto again;
2451 	}
2452 	ret = 0;
2453 out:
2454 	/* fixup any changes we've made to the path */
2455 	path->lowest_level = 0;
2456 	path->keep_locks = 0;
2457 	btrfs_release_path(root, path);
2458 	return ret;
2459 }
2460 
2461 #endif
2462 
2463 /*
2464  * this can truncate away extent items, csum items and directory items.
2465  * It starts at a high offset and removes keys until it can't find
2466  * any higher than new_size
2467  *
2468  * csum items that cross the new i_size are truncated to the new size
2469  * as well.
2470  *
2471  * min_type is the minimum key type to truncate down to.  If set to 0, this
2472  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2473  */
2474 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2475 					struct btrfs_root *root,
2476 					struct inode *inode,
2477 					u64 new_size, u32 min_type)
2478 {
2479 	int ret;
2480 	struct btrfs_path *path;
2481 	struct btrfs_key key;
2482 	struct btrfs_key found_key;
2483 	u32 found_type;
2484 	struct extent_buffer *leaf;
2485 	struct btrfs_file_extent_item *fi;
2486 	u64 extent_start = 0;
2487 	u64 extent_num_bytes = 0;
2488 	u64 item_end = 0;
2489 	u64 root_gen = 0;
2490 	u64 root_owner = 0;
2491 	int found_extent;
2492 	int del_item;
2493 	int pending_del_nr = 0;
2494 	int pending_del_slot = 0;
2495 	int extent_type = -1;
2496 	int encoding;
2497 	u64 mask = root->sectorsize - 1;
2498 
2499 	if (root->ref_cows)
2500 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2501 	path = btrfs_alloc_path();
2502 	path->reada = -1;
2503 	BUG_ON(!path);
2504 
2505 	/* FIXME, add redo link to tree so we don't leak on crash */
2506 	key.objectid = inode->i_ino;
2507 	key.offset = (u64)-1;
2508 	key.type = (u8)-1;
2509 
2510 	btrfs_init_path(path);
2511 
2512 search_again:
2513 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2514 	if (ret < 0)
2515 		goto error;
2516 
2517 	if (ret > 0) {
2518 		/* there are no items in the tree for us to truncate, we're
2519 		 * done
2520 		 */
2521 		if (path->slots[0] == 0) {
2522 			ret = 0;
2523 			goto error;
2524 		}
2525 		path->slots[0]--;
2526 	}
2527 
2528 	while (1) {
2529 		fi = NULL;
2530 		leaf = path->nodes[0];
2531 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2532 		found_type = btrfs_key_type(&found_key);
2533 		encoding = 0;
2534 
2535 		if (found_key.objectid != inode->i_ino)
2536 			break;
2537 
2538 		if (found_type < min_type)
2539 			break;
2540 
2541 		item_end = found_key.offset;
2542 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2543 			fi = btrfs_item_ptr(leaf, path->slots[0],
2544 					    struct btrfs_file_extent_item);
2545 			extent_type = btrfs_file_extent_type(leaf, fi);
2546 			encoding = btrfs_file_extent_compression(leaf, fi);
2547 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2548 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2549 
2550 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2551 				item_end +=
2552 				    btrfs_file_extent_num_bytes(leaf, fi);
2553 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2554 				item_end += btrfs_file_extent_inline_len(leaf,
2555 									 fi);
2556 			}
2557 			item_end--;
2558 		}
2559 		if (item_end < new_size) {
2560 			if (found_type == BTRFS_DIR_ITEM_KEY)
2561 				found_type = BTRFS_INODE_ITEM_KEY;
2562 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2563 				found_type = BTRFS_EXTENT_DATA_KEY;
2564 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2565 				found_type = BTRFS_XATTR_ITEM_KEY;
2566 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2567 				found_type = BTRFS_INODE_REF_KEY;
2568 			else if (found_type)
2569 				found_type--;
2570 			else
2571 				break;
2572 			btrfs_set_key_type(&key, found_type);
2573 			goto next;
2574 		}
2575 		if (found_key.offset >= new_size)
2576 			del_item = 1;
2577 		else
2578 			del_item = 0;
2579 		found_extent = 0;
2580 
2581 		/* FIXME, shrink the extent if the ref count is only 1 */
2582 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2583 			goto delete;
2584 
2585 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2586 			u64 num_dec;
2587 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2588 			if (!del_item && !encoding) {
2589 				u64 orig_num_bytes =
2590 					btrfs_file_extent_num_bytes(leaf, fi);
2591 				extent_num_bytes = new_size -
2592 					found_key.offset + root->sectorsize - 1;
2593 				extent_num_bytes = extent_num_bytes &
2594 					~((u64)root->sectorsize - 1);
2595 				btrfs_set_file_extent_num_bytes(leaf, fi,
2596 							 extent_num_bytes);
2597 				num_dec = (orig_num_bytes -
2598 					   extent_num_bytes);
2599 				if (root->ref_cows && extent_start != 0)
2600 					inode_sub_bytes(inode, num_dec);
2601 				btrfs_mark_buffer_dirty(leaf);
2602 			} else {
2603 				extent_num_bytes =
2604 					btrfs_file_extent_disk_num_bytes(leaf,
2605 									 fi);
2606 				/* FIXME blocksize != 4096 */
2607 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2608 				if (extent_start != 0) {
2609 					found_extent = 1;
2610 					if (root->ref_cows)
2611 						inode_sub_bytes(inode, num_dec);
2612 				}
2613 				root_gen = btrfs_header_generation(leaf);
2614 				root_owner = btrfs_header_owner(leaf);
2615 			}
2616 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2617 			/*
2618 			 * we can't truncate inline items that have had
2619 			 * special encodings
2620 			 */
2621 			if (!del_item &&
2622 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2623 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2624 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2625 				u32 size = new_size - found_key.offset;
2626 
2627 				if (root->ref_cows) {
2628 					inode_sub_bytes(inode, item_end + 1 -
2629 							new_size);
2630 				}
2631 				size =
2632 				    btrfs_file_extent_calc_inline_size(size);
2633 				ret = btrfs_truncate_item(trans, root, path,
2634 							  size, 1);
2635 				BUG_ON(ret);
2636 			} else if (root->ref_cows) {
2637 				inode_sub_bytes(inode, item_end + 1 -
2638 						found_key.offset);
2639 			}
2640 		}
2641 delete:
2642 		if (del_item) {
2643 			if (!pending_del_nr) {
2644 				/* no pending yet, add ourselves */
2645 				pending_del_slot = path->slots[0];
2646 				pending_del_nr = 1;
2647 			} else if (pending_del_nr &&
2648 				   path->slots[0] + 1 == pending_del_slot) {
2649 				/* hop on the pending chunk */
2650 				pending_del_nr++;
2651 				pending_del_slot = path->slots[0];
2652 			} else {
2653 				BUG();
2654 			}
2655 		} else {
2656 			break;
2657 		}
2658 		if (found_extent) {
2659 			ret = btrfs_free_extent(trans, root, extent_start,
2660 						extent_num_bytes,
2661 						leaf->start, root_owner,
2662 						root_gen, inode->i_ino, 0);
2663 			BUG_ON(ret);
2664 		}
2665 next:
2666 		if (path->slots[0] == 0) {
2667 			if (pending_del_nr)
2668 				goto del_pending;
2669 			btrfs_release_path(root, path);
2670 			goto search_again;
2671 		}
2672 
2673 		path->slots[0]--;
2674 		if (pending_del_nr &&
2675 		    path->slots[0] + 1 != pending_del_slot) {
2676 			struct btrfs_key debug;
2677 del_pending:
2678 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
2679 					      pending_del_slot);
2680 			ret = btrfs_del_items(trans, root, path,
2681 					      pending_del_slot,
2682 					      pending_del_nr);
2683 			BUG_ON(ret);
2684 			pending_del_nr = 0;
2685 			btrfs_release_path(root, path);
2686 			goto search_again;
2687 		}
2688 	}
2689 	ret = 0;
2690 error:
2691 	if (pending_del_nr) {
2692 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
2693 				      pending_del_nr);
2694 	}
2695 	btrfs_free_path(path);
2696 	inode->i_sb->s_dirt = 1;
2697 	return ret;
2698 }
2699 
2700 /*
2701  * taken from block_truncate_page, but does cow as it zeros out
2702  * any bytes left in the last page in the file.
2703  */
2704 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2705 {
2706 	struct inode *inode = mapping->host;
2707 	struct btrfs_root *root = BTRFS_I(inode)->root;
2708 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2709 	struct btrfs_ordered_extent *ordered;
2710 	char *kaddr;
2711 	u32 blocksize = root->sectorsize;
2712 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2713 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2714 	struct page *page;
2715 	int ret = 0;
2716 	u64 page_start;
2717 	u64 page_end;
2718 
2719 	if ((offset & (blocksize - 1)) == 0)
2720 		goto out;
2721 
2722 	ret = -ENOMEM;
2723 again:
2724 	page = grab_cache_page(mapping, index);
2725 	if (!page)
2726 		goto out;
2727 
2728 	page_start = page_offset(page);
2729 	page_end = page_start + PAGE_CACHE_SIZE - 1;
2730 
2731 	if (!PageUptodate(page)) {
2732 		ret = btrfs_readpage(NULL, page);
2733 		lock_page(page);
2734 		if (page->mapping != mapping) {
2735 			unlock_page(page);
2736 			page_cache_release(page);
2737 			goto again;
2738 		}
2739 		if (!PageUptodate(page)) {
2740 			ret = -EIO;
2741 			goto out_unlock;
2742 		}
2743 	}
2744 	wait_on_page_writeback(page);
2745 
2746 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2747 	set_page_extent_mapped(page);
2748 
2749 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2750 	if (ordered) {
2751 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2752 		unlock_page(page);
2753 		page_cache_release(page);
2754 		btrfs_start_ordered_extent(inode, ordered, 1);
2755 		btrfs_put_ordered_extent(ordered);
2756 		goto again;
2757 	}
2758 
2759 	btrfs_set_extent_delalloc(inode, page_start, page_end);
2760 	ret = 0;
2761 	if (offset != PAGE_CACHE_SIZE) {
2762 		kaddr = kmap(page);
2763 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2764 		flush_dcache_page(page);
2765 		kunmap(page);
2766 	}
2767 	ClearPageChecked(page);
2768 	set_page_dirty(page);
2769 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2770 
2771 out_unlock:
2772 	unlock_page(page);
2773 	page_cache_release(page);
2774 out:
2775 	return ret;
2776 }
2777 
2778 int btrfs_cont_expand(struct inode *inode, loff_t size)
2779 {
2780 	struct btrfs_trans_handle *trans;
2781 	struct btrfs_root *root = BTRFS_I(inode)->root;
2782 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2783 	struct extent_map *em;
2784 	u64 mask = root->sectorsize - 1;
2785 	u64 hole_start = (inode->i_size + mask) & ~mask;
2786 	u64 block_end = (size + mask) & ~mask;
2787 	u64 last_byte;
2788 	u64 cur_offset;
2789 	u64 hole_size;
2790 	int err;
2791 
2792 	if (size <= hole_start)
2793 		return 0;
2794 
2795 	err = btrfs_check_free_space(root, 1, 0);
2796 	if (err)
2797 		return err;
2798 
2799 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
2800 
2801 	while (1) {
2802 		struct btrfs_ordered_extent *ordered;
2803 		btrfs_wait_ordered_range(inode, hole_start,
2804 					 block_end - hole_start);
2805 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2806 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2807 		if (!ordered)
2808 			break;
2809 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2810 		btrfs_put_ordered_extent(ordered);
2811 	}
2812 
2813 	trans = btrfs_start_transaction(root, 1);
2814 	btrfs_set_trans_block_group(trans, inode);
2815 
2816 	cur_offset = hole_start;
2817 	while (1) {
2818 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2819 				block_end - cur_offset, 0);
2820 		BUG_ON(IS_ERR(em) || !em);
2821 		last_byte = min(extent_map_end(em), block_end);
2822 		last_byte = (last_byte + mask) & ~mask;
2823 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2824 			u64 hint_byte = 0;
2825 			hole_size = last_byte - cur_offset;
2826 			err = btrfs_drop_extents(trans, root, inode,
2827 						 cur_offset,
2828 						 cur_offset + hole_size,
2829 						 cur_offset, &hint_byte);
2830 			if (err)
2831 				break;
2832 			err = btrfs_insert_file_extent(trans, root,
2833 					inode->i_ino, cur_offset, 0,
2834 					0, hole_size, 0, hole_size,
2835 					0, 0, 0);
2836 			btrfs_drop_extent_cache(inode, hole_start,
2837 					last_byte - 1, 0);
2838 		}
2839 		free_extent_map(em);
2840 		cur_offset = last_byte;
2841 		if (err || cur_offset >= block_end)
2842 			break;
2843 	}
2844 
2845 	btrfs_end_transaction(trans, root);
2846 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2847 	return err;
2848 }
2849 
2850 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2851 {
2852 	struct inode *inode = dentry->d_inode;
2853 	int err;
2854 
2855 	err = inode_change_ok(inode, attr);
2856 	if (err)
2857 		return err;
2858 
2859 	if (S_ISREG(inode->i_mode) &&
2860 	    attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2861 		err = btrfs_cont_expand(inode, attr->ia_size);
2862 		if (err)
2863 			return err;
2864 	}
2865 
2866 	err = inode_setattr(inode, attr);
2867 
2868 	if (!err && ((attr->ia_valid & ATTR_MODE)))
2869 		err = btrfs_acl_chmod(inode);
2870 	return err;
2871 }
2872 
2873 void btrfs_delete_inode(struct inode *inode)
2874 {
2875 	struct btrfs_trans_handle *trans;
2876 	struct btrfs_root *root = BTRFS_I(inode)->root;
2877 	unsigned long nr;
2878 	int ret;
2879 
2880 	truncate_inode_pages(&inode->i_data, 0);
2881 	if (is_bad_inode(inode)) {
2882 		btrfs_orphan_del(NULL, inode);
2883 		goto no_delete;
2884 	}
2885 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
2886 
2887 	btrfs_i_size_write(inode, 0);
2888 	trans = btrfs_join_transaction(root, 1);
2889 
2890 	btrfs_set_trans_block_group(trans, inode);
2891 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2892 	if (ret) {
2893 		btrfs_orphan_del(NULL, inode);
2894 		goto no_delete_lock;
2895 	}
2896 
2897 	btrfs_orphan_del(trans, inode);
2898 
2899 	nr = trans->blocks_used;
2900 	clear_inode(inode);
2901 
2902 	btrfs_end_transaction(trans, root);
2903 	btrfs_btree_balance_dirty(root, nr);
2904 	return;
2905 
2906 no_delete_lock:
2907 	nr = trans->blocks_used;
2908 	btrfs_end_transaction(trans, root);
2909 	btrfs_btree_balance_dirty(root, nr);
2910 no_delete:
2911 	clear_inode(inode);
2912 }
2913 
2914 /*
2915  * this returns the key found in the dir entry in the location pointer.
2916  * If no dir entries were found, location->objectid is 0.
2917  */
2918 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2919 			       struct btrfs_key *location)
2920 {
2921 	const char *name = dentry->d_name.name;
2922 	int namelen = dentry->d_name.len;
2923 	struct btrfs_dir_item *di;
2924 	struct btrfs_path *path;
2925 	struct btrfs_root *root = BTRFS_I(dir)->root;
2926 	int ret = 0;
2927 
2928 	path = btrfs_alloc_path();
2929 	BUG_ON(!path);
2930 
2931 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2932 				    namelen, 0);
2933 	if (IS_ERR(di))
2934 		ret = PTR_ERR(di);
2935 
2936 	if (!di || IS_ERR(di))
2937 		goto out_err;
2938 
2939 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2940 out:
2941 	btrfs_free_path(path);
2942 	return ret;
2943 out_err:
2944 	location->objectid = 0;
2945 	goto out;
2946 }
2947 
2948 /*
2949  * when we hit a tree root in a directory, the btrfs part of the inode
2950  * needs to be changed to reflect the root directory of the tree root.  This
2951  * is kind of like crossing a mount point.
2952  */
2953 static int fixup_tree_root_location(struct btrfs_root *root,
2954 			     struct btrfs_key *location,
2955 			     struct btrfs_root **sub_root,
2956 			     struct dentry *dentry)
2957 {
2958 	struct btrfs_root_item *ri;
2959 
2960 	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2961 		return 0;
2962 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2963 		return 0;
2964 
2965 	*sub_root = btrfs_read_fs_root(root->fs_info, location,
2966 					dentry->d_name.name,
2967 					dentry->d_name.len);
2968 	if (IS_ERR(*sub_root))
2969 		return PTR_ERR(*sub_root);
2970 
2971 	ri = &(*sub_root)->root_item;
2972 	location->objectid = btrfs_root_dirid(ri);
2973 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2974 	location->offset = 0;
2975 
2976 	return 0;
2977 }
2978 
2979 static noinline void init_btrfs_i(struct inode *inode)
2980 {
2981 	struct btrfs_inode *bi = BTRFS_I(inode);
2982 
2983 	bi->i_acl = NULL;
2984 	bi->i_default_acl = NULL;
2985 
2986 	bi->generation = 0;
2987 	bi->sequence = 0;
2988 	bi->last_trans = 0;
2989 	bi->logged_trans = 0;
2990 	bi->delalloc_bytes = 0;
2991 	bi->disk_i_size = 0;
2992 	bi->flags = 0;
2993 	bi->index_cnt = (u64)-1;
2994 	bi->log_dirty_trans = 0;
2995 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2996 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2997 			     inode->i_mapping, GFP_NOFS);
2998 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2999 			     inode->i_mapping, GFP_NOFS);
3000 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3001 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3002 	mutex_init(&BTRFS_I(inode)->extent_mutex);
3003 	mutex_init(&BTRFS_I(inode)->log_mutex);
3004 }
3005 
3006 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3007 {
3008 	struct btrfs_iget_args *args = p;
3009 	inode->i_ino = args->ino;
3010 	init_btrfs_i(inode);
3011 	BTRFS_I(inode)->root = args->root;
3012 	return 0;
3013 }
3014 
3015 static int btrfs_find_actor(struct inode *inode, void *opaque)
3016 {
3017 	struct btrfs_iget_args *args = opaque;
3018 	return args->ino == inode->i_ino &&
3019 		args->root == BTRFS_I(inode)->root;
3020 }
3021 
3022 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3023 			    struct btrfs_root *root, int wait)
3024 {
3025 	struct inode *inode;
3026 	struct btrfs_iget_args args;
3027 	args.ino = objectid;
3028 	args.root = root;
3029 
3030 	if (wait) {
3031 		inode = ilookup5(s, objectid, btrfs_find_actor,
3032 				 (void *)&args);
3033 	} else {
3034 		inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3035 					(void *)&args);
3036 	}
3037 	return inode;
3038 }
3039 
3040 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3041 				struct btrfs_root *root)
3042 {
3043 	struct inode *inode;
3044 	struct btrfs_iget_args args;
3045 	args.ino = objectid;
3046 	args.root = root;
3047 
3048 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3049 			     btrfs_init_locked_inode,
3050 			     (void *)&args);
3051 	return inode;
3052 }
3053 
3054 /* Get an inode object given its location and corresponding root.
3055  * Returns in *is_new if the inode was read from disk
3056  */
3057 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3058 			 struct btrfs_root *root, int *is_new)
3059 {
3060 	struct inode *inode;
3061 
3062 	inode = btrfs_iget_locked(s, location->objectid, root);
3063 	if (!inode)
3064 		return ERR_PTR(-EACCES);
3065 
3066 	if (inode->i_state & I_NEW) {
3067 		BTRFS_I(inode)->root = root;
3068 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3069 		btrfs_read_locked_inode(inode);
3070 		unlock_new_inode(inode);
3071 		if (is_new)
3072 			*is_new = 1;
3073 	} else {
3074 		if (is_new)
3075 			*is_new = 0;
3076 	}
3077 
3078 	return inode;
3079 }
3080 
3081 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3082 {
3083 	struct inode *inode;
3084 	struct btrfs_inode *bi = BTRFS_I(dir);
3085 	struct btrfs_root *root = bi->root;
3086 	struct btrfs_root *sub_root = root;
3087 	struct btrfs_key location;
3088 	int ret, new;
3089 
3090 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3091 		return ERR_PTR(-ENAMETOOLONG);
3092 
3093 	ret = btrfs_inode_by_name(dir, dentry, &location);
3094 
3095 	if (ret < 0)
3096 		return ERR_PTR(ret);
3097 
3098 	inode = NULL;
3099 	if (location.objectid) {
3100 		ret = fixup_tree_root_location(root, &location, &sub_root,
3101 						dentry);
3102 		if (ret < 0)
3103 			return ERR_PTR(ret);
3104 		if (ret > 0)
3105 			return ERR_PTR(-ENOENT);
3106 		inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3107 		if (IS_ERR(inode))
3108 			return ERR_CAST(inode);
3109 	}
3110 	return inode;
3111 }
3112 
3113 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3114 				   struct nameidata *nd)
3115 {
3116 	struct inode *inode;
3117 
3118 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3119 		return ERR_PTR(-ENAMETOOLONG);
3120 
3121 	inode = btrfs_lookup_dentry(dir, dentry);
3122 	if (IS_ERR(inode))
3123 		return ERR_CAST(inode);
3124 
3125 	return d_splice_alias(inode, dentry);
3126 }
3127 
3128 static unsigned char btrfs_filetype_table[] = {
3129 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3130 };
3131 
3132 static int btrfs_real_readdir(struct file *filp, void *dirent,
3133 			      filldir_t filldir)
3134 {
3135 	struct inode *inode = filp->f_dentry->d_inode;
3136 	struct btrfs_root *root = BTRFS_I(inode)->root;
3137 	struct btrfs_item *item;
3138 	struct btrfs_dir_item *di;
3139 	struct btrfs_key key;
3140 	struct btrfs_key found_key;
3141 	struct btrfs_path *path;
3142 	int ret;
3143 	u32 nritems;
3144 	struct extent_buffer *leaf;
3145 	int slot;
3146 	int advance;
3147 	unsigned char d_type;
3148 	int over = 0;
3149 	u32 di_cur;
3150 	u32 di_total;
3151 	u32 di_len;
3152 	int key_type = BTRFS_DIR_INDEX_KEY;
3153 	char tmp_name[32];
3154 	char *name_ptr;
3155 	int name_len;
3156 
3157 	/* FIXME, use a real flag for deciding about the key type */
3158 	if (root->fs_info->tree_root == root)
3159 		key_type = BTRFS_DIR_ITEM_KEY;
3160 
3161 	/* special case for "." */
3162 	if (filp->f_pos == 0) {
3163 		over = filldir(dirent, ".", 1,
3164 			       1, inode->i_ino,
3165 			       DT_DIR);
3166 		if (over)
3167 			return 0;
3168 		filp->f_pos = 1;
3169 	}
3170 	/* special case for .., just use the back ref */
3171 	if (filp->f_pos == 1) {
3172 		u64 pino = parent_ino(filp->f_path.dentry);
3173 		over = filldir(dirent, "..", 2,
3174 			       2, pino, DT_DIR);
3175 		if (over)
3176 			return 0;
3177 		filp->f_pos = 2;
3178 	}
3179 	path = btrfs_alloc_path();
3180 	path->reada = 2;
3181 
3182 	btrfs_set_key_type(&key, key_type);
3183 	key.offset = filp->f_pos;
3184 	key.objectid = inode->i_ino;
3185 
3186 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3187 	if (ret < 0)
3188 		goto err;
3189 	advance = 0;
3190 
3191 	while (1) {
3192 		leaf = path->nodes[0];
3193 		nritems = btrfs_header_nritems(leaf);
3194 		slot = path->slots[0];
3195 		if (advance || slot >= nritems) {
3196 			if (slot >= nritems - 1) {
3197 				ret = btrfs_next_leaf(root, path);
3198 				if (ret)
3199 					break;
3200 				leaf = path->nodes[0];
3201 				nritems = btrfs_header_nritems(leaf);
3202 				slot = path->slots[0];
3203 			} else {
3204 				slot++;
3205 				path->slots[0]++;
3206 			}
3207 		}
3208 
3209 		advance = 1;
3210 		item = btrfs_item_nr(leaf, slot);
3211 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3212 
3213 		if (found_key.objectid != key.objectid)
3214 			break;
3215 		if (btrfs_key_type(&found_key) != key_type)
3216 			break;
3217 		if (found_key.offset < filp->f_pos)
3218 			continue;
3219 
3220 		filp->f_pos = found_key.offset;
3221 
3222 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3223 		di_cur = 0;
3224 		di_total = btrfs_item_size(leaf, item);
3225 
3226 		while (di_cur < di_total) {
3227 			struct btrfs_key location;
3228 
3229 			name_len = btrfs_dir_name_len(leaf, di);
3230 			if (name_len <= sizeof(tmp_name)) {
3231 				name_ptr = tmp_name;
3232 			} else {
3233 				name_ptr = kmalloc(name_len, GFP_NOFS);
3234 				if (!name_ptr) {
3235 					ret = -ENOMEM;
3236 					goto err;
3237 				}
3238 			}
3239 			read_extent_buffer(leaf, name_ptr,
3240 					   (unsigned long)(di + 1), name_len);
3241 
3242 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3243 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3244 
3245 			/* is this a reference to our own snapshot? If so
3246 			 * skip it
3247 			 */
3248 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3249 			    location.objectid == root->root_key.objectid) {
3250 				over = 0;
3251 				goto skip;
3252 			}
3253 			over = filldir(dirent, name_ptr, name_len,
3254 				       found_key.offset, location.objectid,
3255 				       d_type);
3256 
3257 skip:
3258 			if (name_ptr != tmp_name)
3259 				kfree(name_ptr);
3260 
3261 			if (over)
3262 				goto nopos;
3263 			di_len = btrfs_dir_name_len(leaf, di) +
3264 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3265 			di_cur += di_len;
3266 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3267 		}
3268 	}
3269 
3270 	/* Reached end of directory/root. Bump pos past the last item. */
3271 	if (key_type == BTRFS_DIR_INDEX_KEY)
3272 		filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3273 	else
3274 		filp->f_pos++;
3275 nopos:
3276 	ret = 0;
3277 err:
3278 	btrfs_free_path(path);
3279 	return ret;
3280 }
3281 
3282 int btrfs_write_inode(struct inode *inode, int wait)
3283 {
3284 	struct btrfs_root *root = BTRFS_I(inode)->root;
3285 	struct btrfs_trans_handle *trans;
3286 	int ret = 0;
3287 
3288 	if (root->fs_info->btree_inode == inode)
3289 		return 0;
3290 
3291 	if (wait) {
3292 		trans = btrfs_join_transaction(root, 1);
3293 		btrfs_set_trans_block_group(trans, inode);
3294 		ret = btrfs_commit_transaction(trans, root);
3295 	}
3296 	return ret;
3297 }
3298 
3299 /*
3300  * This is somewhat expensive, updating the tree every time the
3301  * inode changes.  But, it is most likely to find the inode in cache.
3302  * FIXME, needs more benchmarking...there are no reasons other than performance
3303  * to keep or drop this code.
3304  */
3305 void btrfs_dirty_inode(struct inode *inode)
3306 {
3307 	struct btrfs_root *root = BTRFS_I(inode)->root;
3308 	struct btrfs_trans_handle *trans;
3309 
3310 	trans = btrfs_join_transaction(root, 1);
3311 	btrfs_set_trans_block_group(trans, inode);
3312 	btrfs_update_inode(trans, root, inode);
3313 	btrfs_end_transaction(trans, root);
3314 }
3315 
3316 /*
3317  * find the highest existing sequence number in a directory
3318  * and then set the in-memory index_cnt variable to reflect
3319  * free sequence numbers
3320  */
3321 static int btrfs_set_inode_index_count(struct inode *inode)
3322 {
3323 	struct btrfs_root *root = BTRFS_I(inode)->root;
3324 	struct btrfs_key key, found_key;
3325 	struct btrfs_path *path;
3326 	struct extent_buffer *leaf;
3327 	int ret;
3328 
3329 	key.objectid = inode->i_ino;
3330 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3331 	key.offset = (u64)-1;
3332 
3333 	path = btrfs_alloc_path();
3334 	if (!path)
3335 		return -ENOMEM;
3336 
3337 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3338 	if (ret < 0)
3339 		goto out;
3340 	/* FIXME: we should be able to handle this */
3341 	if (ret == 0)
3342 		goto out;
3343 	ret = 0;
3344 
3345 	/*
3346 	 * MAGIC NUMBER EXPLANATION:
3347 	 * since we search a directory based on f_pos we have to start at 2
3348 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3349 	 * else has to start at 2
3350 	 */
3351 	if (path->slots[0] == 0) {
3352 		BTRFS_I(inode)->index_cnt = 2;
3353 		goto out;
3354 	}
3355 
3356 	path->slots[0]--;
3357 
3358 	leaf = path->nodes[0];
3359 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3360 
3361 	if (found_key.objectid != inode->i_ino ||
3362 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3363 		BTRFS_I(inode)->index_cnt = 2;
3364 		goto out;
3365 	}
3366 
3367 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3368 out:
3369 	btrfs_free_path(path);
3370 	return ret;
3371 }
3372 
3373 /*
3374  * helper to find a free sequence number in a given directory.  This current
3375  * code is very simple, later versions will do smarter things in the btree
3376  */
3377 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3378 {
3379 	int ret = 0;
3380 
3381 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3382 		ret = btrfs_set_inode_index_count(dir);
3383 		if (ret)
3384 			return ret;
3385 	}
3386 
3387 	*index = BTRFS_I(dir)->index_cnt;
3388 	BTRFS_I(dir)->index_cnt++;
3389 
3390 	return ret;
3391 }
3392 
3393 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3394 				     struct btrfs_root *root,
3395 				     struct inode *dir,
3396 				     const char *name, int name_len,
3397 				     u64 ref_objectid, u64 objectid,
3398 				     u64 alloc_hint, int mode, u64 *index)
3399 {
3400 	struct inode *inode;
3401 	struct btrfs_inode_item *inode_item;
3402 	struct btrfs_key *location;
3403 	struct btrfs_path *path;
3404 	struct btrfs_inode_ref *ref;
3405 	struct btrfs_key key[2];
3406 	u32 sizes[2];
3407 	unsigned long ptr;
3408 	int ret;
3409 	int owner;
3410 
3411 	path = btrfs_alloc_path();
3412 	BUG_ON(!path);
3413 
3414 	inode = new_inode(root->fs_info->sb);
3415 	if (!inode)
3416 		return ERR_PTR(-ENOMEM);
3417 
3418 	if (dir) {
3419 		ret = btrfs_set_inode_index(dir, index);
3420 		if (ret)
3421 			return ERR_PTR(ret);
3422 	}
3423 	/*
3424 	 * index_cnt is ignored for everything but a dir,
3425 	 * btrfs_get_inode_index_count has an explanation for the magic
3426 	 * number
3427 	 */
3428 	init_btrfs_i(inode);
3429 	BTRFS_I(inode)->index_cnt = 2;
3430 	BTRFS_I(inode)->root = root;
3431 	BTRFS_I(inode)->generation = trans->transid;
3432 
3433 	if (mode & S_IFDIR)
3434 		owner = 0;
3435 	else
3436 		owner = 1;
3437 	BTRFS_I(inode)->block_group =
3438 			btrfs_find_block_group(root, 0, alloc_hint, owner);
3439 	if ((mode & S_IFREG)) {
3440 		if (btrfs_test_opt(root, NODATASUM))
3441 			btrfs_set_flag(inode, NODATASUM);
3442 		if (btrfs_test_opt(root, NODATACOW))
3443 			btrfs_set_flag(inode, NODATACOW);
3444 	}
3445 
3446 	key[0].objectid = objectid;
3447 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3448 	key[0].offset = 0;
3449 
3450 	key[1].objectid = objectid;
3451 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3452 	key[1].offset = ref_objectid;
3453 
3454 	sizes[0] = sizeof(struct btrfs_inode_item);
3455 	sizes[1] = name_len + sizeof(*ref);
3456 
3457 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3458 	if (ret != 0)
3459 		goto fail;
3460 
3461 	if (objectid > root->highest_inode)
3462 		root->highest_inode = objectid;
3463 
3464 	inode->i_uid = current_fsuid();
3465 	inode->i_gid = current_fsgid();
3466 	inode->i_mode = mode;
3467 	inode->i_ino = objectid;
3468 	inode_set_bytes(inode, 0);
3469 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3470 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3471 				  struct btrfs_inode_item);
3472 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
3473 
3474 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3475 			     struct btrfs_inode_ref);
3476 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3477 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3478 	ptr = (unsigned long)(ref + 1);
3479 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
3480 
3481 	btrfs_mark_buffer_dirty(path->nodes[0]);
3482 	btrfs_free_path(path);
3483 
3484 	location = &BTRFS_I(inode)->location;
3485 	location->objectid = objectid;
3486 	location->offset = 0;
3487 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3488 
3489 	insert_inode_hash(inode);
3490 	return inode;
3491 fail:
3492 	if (dir)
3493 		BTRFS_I(dir)->index_cnt--;
3494 	btrfs_free_path(path);
3495 	return ERR_PTR(ret);
3496 }
3497 
3498 static inline u8 btrfs_inode_type(struct inode *inode)
3499 {
3500 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3501 }
3502 
3503 /*
3504  * utility function to add 'inode' into 'parent_inode' with
3505  * a give name and a given sequence number.
3506  * if 'add_backref' is true, also insert a backref from the
3507  * inode to the parent directory.
3508  */
3509 int btrfs_add_link(struct btrfs_trans_handle *trans,
3510 		   struct inode *parent_inode, struct inode *inode,
3511 		   const char *name, int name_len, int add_backref, u64 index)
3512 {
3513 	int ret;
3514 	struct btrfs_key key;
3515 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3516 
3517 	key.objectid = inode->i_ino;
3518 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3519 	key.offset = 0;
3520 
3521 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
3522 				    parent_inode->i_ino,
3523 				    &key, btrfs_inode_type(inode),
3524 				    index);
3525 	if (ret == 0) {
3526 		if (add_backref) {
3527 			ret = btrfs_insert_inode_ref(trans, root,
3528 						     name, name_len,
3529 						     inode->i_ino,
3530 						     parent_inode->i_ino,
3531 						     index);
3532 		}
3533 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
3534 				   name_len * 2);
3535 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3536 		ret = btrfs_update_inode(trans, root, parent_inode);
3537 	}
3538 	return ret;
3539 }
3540 
3541 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3542 			    struct dentry *dentry, struct inode *inode,
3543 			    int backref, u64 index)
3544 {
3545 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3546 				 inode, dentry->d_name.name,
3547 				 dentry->d_name.len, backref, index);
3548 	if (!err) {
3549 		d_instantiate(dentry, inode);
3550 		return 0;
3551 	}
3552 	if (err > 0)
3553 		err = -EEXIST;
3554 	return err;
3555 }
3556 
3557 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3558 			int mode, dev_t rdev)
3559 {
3560 	struct btrfs_trans_handle *trans;
3561 	struct btrfs_root *root = BTRFS_I(dir)->root;
3562 	struct inode *inode = NULL;
3563 	int err;
3564 	int drop_inode = 0;
3565 	u64 objectid;
3566 	unsigned long nr = 0;
3567 	u64 index = 0;
3568 
3569 	if (!new_valid_dev(rdev))
3570 		return -EINVAL;
3571 
3572 	err = btrfs_check_free_space(root, 1, 0);
3573 	if (err)
3574 		goto fail;
3575 
3576 	trans = btrfs_start_transaction(root, 1);
3577 	btrfs_set_trans_block_group(trans, dir);
3578 
3579 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3580 	if (err) {
3581 		err = -ENOSPC;
3582 		goto out_unlock;
3583 	}
3584 
3585 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3586 				dentry->d_name.len,
3587 				dentry->d_parent->d_inode->i_ino, objectid,
3588 				BTRFS_I(dir)->block_group, mode, &index);
3589 	err = PTR_ERR(inode);
3590 	if (IS_ERR(inode))
3591 		goto out_unlock;
3592 
3593 	err = btrfs_init_acl(inode, dir);
3594 	if (err) {
3595 		drop_inode = 1;
3596 		goto out_unlock;
3597 	}
3598 
3599 	btrfs_set_trans_block_group(trans, inode);
3600 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3601 	if (err)
3602 		drop_inode = 1;
3603 	else {
3604 		inode->i_op = &btrfs_special_inode_operations;
3605 		init_special_inode(inode, inode->i_mode, rdev);
3606 		btrfs_update_inode(trans, root, inode);
3607 	}
3608 	dir->i_sb->s_dirt = 1;
3609 	btrfs_update_inode_block_group(trans, inode);
3610 	btrfs_update_inode_block_group(trans, dir);
3611 out_unlock:
3612 	nr = trans->blocks_used;
3613 	btrfs_end_transaction_throttle(trans, root);
3614 fail:
3615 	if (drop_inode) {
3616 		inode_dec_link_count(inode);
3617 		iput(inode);
3618 	}
3619 	btrfs_btree_balance_dirty(root, nr);
3620 	return err;
3621 }
3622 
3623 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3624 			int mode, struct nameidata *nd)
3625 {
3626 	struct btrfs_trans_handle *trans;
3627 	struct btrfs_root *root = BTRFS_I(dir)->root;
3628 	struct inode *inode = NULL;
3629 	int err;
3630 	int drop_inode = 0;
3631 	unsigned long nr = 0;
3632 	u64 objectid;
3633 	u64 index = 0;
3634 
3635 	err = btrfs_check_free_space(root, 1, 0);
3636 	if (err)
3637 		goto fail;
3638 	trans = btrfs_start_transaction(root, 1);
3639 	btrfs_set_trans_block_group(trans, dir);
3640 
3641 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3642 	if (err) {
3643 		err = -ENOSPC;
3644 		goto out_unlock;
3645 	}
3646 
3647 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3648 				dentry->d_name.len,
3649 				dentry->d_parent->d_inode->i_ino,
3650 				objectid, BTRFS_I(dir)->block_group, mode,
3651 				&index);
3652 	err = PTR_ERR(inode);
3653 	if (IS_ERR(inode))
3654 		goto out_unlock;
3655 
3656 	err = btrfs_init_acl(inode, dir);
3657 	if (err) {
3658 		drop_inode = 1;
3659 		goto out_unlock;
3660 	}
3661 
3662 	btrfs_set_trans_block_group(trans, inode);
3663 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3664 	if (err)
3665 		drop_inode = 1;
3666 	else {
3667 		inode->i_mapping->a_ops = &btrfs_aops;
3668 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3669 		inode->i_fop = &btrfs_file_operations;
3670 		inode->i_op = &btrfs_file_inode_operations;
3671 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3672 	}
3673 	dir->i_sb->s_dirt = 1;
3674 	btrfs_update_inode_block_group(trans, inode);
3675 	btrfs_update_inode_block_group(trans, dir);
3676 out_unlock:
3677 	nr = trans->blocks_used;
3678 	btrfs_end_transaction_throttle(trans, root);
3679 fail:
3680 	if (drop_inode) {
3681 		inode_dec_link_count(inode);
3682 		iput(inode);
3683 	}
3684 	btrfs_btree_balance_dirty(root, nr);
3685 	return err;
3686 }
3687 
3688 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3689 		      struct dentry *dentry)
3690 {
3691 	struct btrfs_trans_handle *trans;
3692 	struct btrfs_root *root = BTRFS_I(dir)->root;
3693 	struct inode *inode = old_dentry->d_inode;
3694 	u64 index;
3695 	unsigned long nr = 0;
3696 	int err;
3697 	int drop_inode = 0;
3698 
3699 	if (inode->i_nlink == 0)
3700 		return -ENOENT;
3701 
3702 	btrfs_inc_nlink(inode);
3703 	err = btrfs_check_free_space(root, 1, 0);
3704 	if (err)
3705 		goto fail;
3706 	err = btrfs_set_inode_index(dir, &index);
3707 	if (err)
3708 		goto fail;
3709 
3710 	trans = btrfs_start_transaction(root, 1);
3711 
3712 	btrfs_set_trans_block_group(trans, dir);
3713 	atomic_inc(&inode->i_count);
3714 
3715 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3716 
3717 	if (err)
3718 		drop_inode = 1;
3719 
3720 	dir->i_sb->s_dirt = 1;
3721 	btrfs_update_inode_block_group(trans, dir);
3722 	err = btrfs_update_inode(trans, root, inode);
3723 
3724 	if (err)
3725 		drop_inode = 1;
3726 
3727 	nr = trans->blocks_used;
3728 	btrfs_end_transaction_throttle(trans, root);
3729 fail:
3730 	if (drop_inode) {
3731 		inode_dec_link_count(inode);
3732 		iput(inode);
3733 	}
3734 	btrfs_btree_balance_dirty(root, nr);
3735 	return err;
3736 }
3737 
3738 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3739 {
3740 	struct inode *inode = NULL;
3741 	struct btrfs_trans_handle *trans;
3742 	struct btrfs_root *root = BTRFS_I(dir)->root;
3743 	int err = 0;
3744 	int drop_on_err = 0;
3745 	u64 objectid = 0;
3746 	u64 index = 0;
3747 	unsigned long nr = 1;
3748 
3749 	err = btrfs_check_free_space(root, 1, 0);
3750 	if (err)
3751 		goto out_unlock;
3752 
3753 	trans = btrfs_start_transaction(root, 1);
3754 	btrfs_set_trans_block_group(trans, dir);
3755 
3756 	if (IS_ERR(trans)) {
3757 		err = PTR_ERR(trans);
3758 		goto out_unlock;
3759 	}
3760 
3761 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3762 	if (err) {
3763 		err = -ENOSPC;
3764 		goto out_unlock;
3765 	}
3766 
3767 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3768 				dentry->d_name.len,
3769 				dentry->d_parent->d_inode->i_ino, objectid,
3770 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
3771 				&index);
3772 	if (IS_ERR(inode)) {
3773 		err = PTR_ERR(inode);
3774 		goto out_fail;
3775 	}
3776 
3777 	drop_on_err = 1;
3778 
3779 	err = btrfs_init_acl(inode, dir);
3780 	if (err)
3781 		goto out_fail;
3782 
3783 	inode->i_op = &btrfs_dir_inode_operations;
3784 	inode->i_fop = &btrfs_dir_file_operations;
3785 	btrfs_set_trans_block_group(trans, inode);
3786 
3787 	btrfs_i_size_write(inode, 0);
3788 	err = btrfs_update_inode(trans, root, inode);
3789 	if (err)
3790 		goto out_fail;
3791 
3792 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3793 				 inode, dentry->d_name.name,
3794 				 dentry->d_name.len, 0, index);
3795 	if (err)
3796 		goto out_fail;
3797 
3798 	d_instantiate(dentry, inode);
3799 	drop_on_err = 0;
3800 	dir->i_sb->s_dirt = 1;
3801 	btrfs_update_inode_block_group(trans, inode);
3802 	btrfs_update_inode_block_group(trans, dir);
3803 
3804 out_fail:
3805 	nr = trans->blocks_used;
3806 	btrfs_end_transaction_throttle(trans, root);
3807 
3808 out_unlock:
3809 	if (drop_on_err)
3810 		iput(inode);
3811 	btrfs_btree_balance_dirty(root, nr);
3812 	return err;
3813 }
3814 
3815 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3816  * and an extent that you want to insert, deal with overlap and insert
3817  * the new extent into the tree.
3818  */
3819 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3820 				struct extent_map *existing,
3821 				struct extent_map *em,
3822 				u64 map_start, u64 map_len)
3823 {
3824 	u64 start_diff;
3825 
3826 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3827 	start_diff = map_start - em->start;
3828 	em->start = map_start;
3829 	em->len = map_len;
3830 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3831 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3832 		em->block_start += start_diff;
3833 		em->block_len -= start_diff;
3834 	}
3835 	return add_extent_mapping(em_tree, em);
3836 }
3837 
3838 static noinline int uncompress_inline(struct btrfs_path *path,
3839 				      struct inode *inode, struct page *page,
3840 				      size_t pg_offset, u64 extent_offset,
3841 				      struct btrfs_file_extent_item *item)
3842 {
3843 	int ret;
3844 	struct extent_buffer *leaf = path->nodes[0];
3845 	char *tmp;
3846 	size_t max_size;
3847 	unsigned long inline_size;
3848 	unsigned long ptr;
3849 
3850 	WARN_ON(pg_offset != 0);
3851 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
3852 	inline_size = btrfs_file_extent_inline_item_len(leaf,
3853 					btrfs_item_nr(leaf, path->slots[0]));
3854 	tmp = kmalloc(inline_size, GFP_NOFS);
3855 	ptr = btrfs_file_extent_inline_start(item);
3856 
3857 	read_extent_buffer(leaf, tmp, ptr, inline_size);
3858 
3859 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3860 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3861 				    inline_size, max_size);
3862 	if (ret) {
3863 		char *kaddr = kmap_atomic(page, KM_USER0);
3864 		unsigned long copy_size = min_t(u64,
3865 				  PAGE_CACHE_SIZE - pg_offset,
3866 				  max_size - extent_offset);
3867 		memset(kaddr + pg_offset, 0, copy_size);
3868 		kunmap_atomic(kaddr, KM_USER0);
3869 	}
3870 	kfree(tmp);
3871 	return 0;
3872 }
3873 
3874 /*
3875  * a bit scary, this does extent mapping from logical file offset to the disk.
3876  * the ugly parts come from merging extents from the disk with the in-ram
3877  * representation.  This gets more complex because of the data=ordered code,
3878  * where the in-ram extents might be locked pending data=ordered completion.
3879  *
3880  * This also copies inline extents directly into the page.
3881  */
3882 
3883 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3884 				    size_t pg_offset, u64 start, u64 len,
3885 				    int create)
3886 {
3887 	int ret;
3888 	int err = 0;
3889 	u64 bytenr;
3890 	u64 extent_start = 0;
3891 	u64 extent_end = 0;
3892 	u64 objectid = inode->i_ino;
3893 	u32 found_type;
3894 	struct btrfs_path *path = NULL;
3895 	struct btrfs_root *root = BTRFS_I(inode)->root;
3896 	struct btrfs_file_extent_item *item;
3897 	struct extent_buffer *leaf;
3898 	struct btrfs_key found_key;
3899 	struct extent_map *em = NULL;
3900 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3901 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3902 	struct btrfs_trans_handle *trans = NULL;
3903 	int compressed;
3904 
3905 again:
3906 	spin_lock(&em_tree->lock);
3907 	em = lookup_extent_mapping(em_tree, start, len);
3908 	if (em)
3909 		em->bdev = root->fs_info->fs_devices->latest_bdev;
3910 	spin_unlock(&em_tree->lock);
3911 
3912 	if (em) {
3913 		if (em->start > start || em->start + em->len <= start)
3914 			free_extent_map(em);
3915 		else if (em->block_start == EXTENT_MAP_INLINE && page)
3916 			free_extent_map(em);
3917 		else
3918 			goto out;
3919 	}
3920 	em = alloc_extent_map(GFP_NOFS);
3921 	if (!em) {
3922 		err = -ENOMEM;
3923 		goto out;
3924 	}
3925 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3926 	em->start = EXTENT_MAP_HOLE;
3927 	em->orig_start = EXTENT_MAP_HOLE;
3928 	em->len = (u64)-1;
3929 	em->block_len = (u64)-1;
3930 
3931 	if (!path) {
3932 		path = btrfs_alloc_path();
3933 		BUG_ON(!path);
3934 	}
3935 
3936 	ret = btrfs_lookup_file_extent(trans, root, path,
3937 				       objectid, start, trans != NULL);
3938 	if (ret < 0) {
3939 		err = ret;
3940 		goto out;
3941 	}
3942 
3943 	if (ret != 0) {
3944 		if (path->slots[0] == 0)
3945 			goto not_found;
3946 		path->slots[0]--;
3947 	}
3948 
3949 	leaf = path->nodes[0];
3950 	item = btrfs_item_ptr(leaf, path->slots[0],
3951 			      struct btrfs_file_extent_item);
3952 	/* are we inside the extent that was found? */
3953 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3954 	found_type = btrfs_key_type(&found_key);
3955 	if (found_key.objectid != objectid ||
3956 	    found_type != BTRFS_EXTENT_DATA_KEY) {
3957 		goto not_found;
3958 	}
3959 
3960 	found_type = btrfs_file_extent_type(leaf, item);
3961 	extent_start = found_key.offset;
3962 	compressed = btrfs_file_extent_compression(leaf, item);
3963 	if (found_type == BTRFS_FILE_EXTENT_REG ||
3964 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3965 		extent_end = extent_start +
3966 		       btrfs_file_extent_num_bytes(leaf, item);
3967 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3968 		size_t size;
3969 		size = btrfs_file_extent_inline_len(leaf, item);
3970 		extent_end = (extent_start + size + root->sectorsize - 1) &
3971 			~((u64)root->sectorsize - 1);
3972 	}
3973 
3974 	if (start >= extent_end) {
3975 		path->slots[0]++;
3976 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3977 			ret = btrfs_next_leaf(root, path);
3978 			if (ret < 0) {
3979 				err = ret;
3980 				goto out;
3981 			}
3982 			if (ret > 0)
3983 				goto not_found;
3984 			leaf = path->nodes[0];
3985 		}
3986 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3987 		if (found_key.objectid != objectid ||
3988 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
3989 			goto not_found;
3990 		if (start + len <= found_key.offset)
3991 			goto not_found;
3992 		em->start = start;
3993 		em->len = found_key.offset - start;
3994 		goto not_found_em;
3995 	}
3996 
3997 	if (found_type == BTRFS_FILE_EXTENT_REG ||
3998 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3999 		em->start = extent_start;
4000 		em->len = extent_end - extent_start;
4001 		em->orig_start = extent_start -
4002 				 btrfs_file_extent_offset(leaf, item);
4003 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4004 		if (bytenr == 0) {
4005 			em->block_start = EXTENT_MAP_HOLE;
4006 			goto insert;
4007 		}
4008 		if (compressed) {
4009 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4010 			em->block_start = bytenr;
4011 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4012 									 item);
4013 		} else {
4014 			bytenr += btrfs_file_extent_offset(leaf, item);
4015 			em->block_start = bytenr;
4016 			em->block_len = em->len;
4017 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4018 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4019 		}
4020 		goto insert;
4021 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4022 		unsigned long ptr;
4023 		char *map;
4024 		size_t size;
4025 		size_t extent_offset;
4026 		size_t copy_size;
4027 
4028 		em->block_start = EXTENT_MAP_INLINE;
4029 		if (!page || create) {
4030 			em->start = extent_start;
4031 			em->len = extent_end - extent_start;
4032 			goto out;
4033 		}
4034 
4035 		size = btrfs_file_extent_inline_len(leaf, item);
4036 		extent_offset = page_offset(page) + pg_offset - extent_start;
4037 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4038 				size - extent_offset);
4039 		em->start = extent_start + extent_offset;
4040 		em->len = (copy_size + root->sectorsize - 1) &
4041 			~((u64)root->sectorsize - 1);
4042 		em->orig_start = EXTENT_MAP_INLINE;
4043 		if (compressed)
4044 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4045 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4046 		if (create == 0 && !PageUptodate(page)) {
4047 			if (btrfs_file_extent_compression(leaf, item) ==
4048 			    BTRFS_COMPRESS_ZLIB) {
4049 				ret = uncompress_inline(path, inode, page,
4050 							pg_offset,
4051 							extent_offset, item);
4052 				BUG_ON(ret);
4053 			} else {
4054 				map = kmap(page);
4055 				read_extent_buffer(leaf, map + pg_offset, ptr,
4056 						   copy_size);
4057 				kunmap(page);
4058 			}
4059 			flush_dcache_page(page);
4060 		} else if (create && PageUptodate(page)) {
4061 			if (!trans) {
4062 				kunmap(page);
4063 				free_extent_map(em);
4064 				em = NULL;
4065 				btrfs_release_path(root, path);
4066 				trans = btrfs_join_transaction(root, 1);
4067 				goto again;
4068 			}
4069 			map = kmap(page);
4070 			write_extent_buffer(leaf, map + pg_offset, ptr,
4071 					    copy_size);
4072 			kunmap(page);
4073 			btrfs_mark_buffer_dirty(leaf);
4074 		}
4075 		set_extent_uptodate(io_tree, em->start,
4076 				    extent_map_end(em) - 1, GFP_NOFS);
4077 		goto insert;
4078 	} else {
4079 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4080 		WARN_ON(1);
4081 	}
4082 not_found:
4083 	em->start = start;
4084 	em->len = len;
4085 not_found_em:
4086 	em->block_start = EXTENT_MAP_HOLE;
4087 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4088 insert:
4089 	btrfs_release_path(root, path);
4090 	if (em->start > start || extent_map_end(em) <= start) {
4091 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4092 		       "[%llu %llu]\n", (unsigned long long)em->start,
4093 		       (unsigned long long)em->len,
4094 		       (unsigned long long)start,
4095 		       (unsigned long long)len);
4096 		err = -EIO;
4097 		goto out;
4098 	}
4099 
4100 	err = 0;
4101 	spin_lock(&em_tree->lock);
4102 	ret = add_extent_mapping(em_tree, em);
4103 	/* it is possible that someone inserted the extent into the tree
4104 	 * while we had the lock dropped.  It is also possible that
4105 	 * an overlapping map exists in the tree
4106 	 */
4107 	if (ret == -EEXIST) {
4108 		struct extent_map *existing;
4109 
4110 		ret = 0;
4111 
4112 		existing = lookup_extent_mapping(em_tree, start, len);
4113 		if (existing && (existing->start > start ||
4114 		    existing->start + existing->len <= start)) {
4115 			free_extent_map(existing);
4116 			existing = NULL;
4117 		}
4118 		if (!existing) {
4119 			existing = lookup_extent_mapping(em_tree, em->start,
4120 							 em->len);
4121 			if (existing) {
4122 				err = merge_extent_mapping(em_tree, existing,
4123 							   em, start,
4124 							   root->sectorsize);
4125 				free_extent_map(existing);
4126 				if (err) {
4127 					free_extent_map(em);
4128 					em = NULL;
4129 				}
4130 			} else {
4131 				err = -EIO;
4132 				free_extent_map(em);
4133 				em = NULL;
4134 			}
4135 		} else {
4136 			free_extent_map(em);
4137 			em = existing;
4138 			err = 0;
4139 		}
4140 	}
4141 	spin_unlock(&em_tree->lock);
4142 out:
4143 	if (path)
4144 		btrfs_free_path(path);
4145 	if (trans) {
4146 		ret = btrfs_end_transaction(trans, root);
4147 		if (!err)
4148 			err = ret;
4149 	}
4150 	if (err) {
4151 		free_extent_map(em);
4152 		WARN_ON(1);
4153 		return ERR_PTR(err);
4154 	}
4155 	return em;
4156 }
4157 
4158 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4159 			const struct iovec *iov, loff_t offset,
4160 			unsigned long nr_segs)
4161 {
4162 	return -EINVAL;
4163 }
4164 
4165 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4166 {
4167 	return extent_bmap(mapping, iblock, btrfs_get_extent);
4168 }
4169 
4170 int btrfs_readpage(struct file *file, struct page *page)
4171 {
4172 	struct extent_io_tree *tree;
4173 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4174 	return extent_read_full_page(tree, page, btrfs_get_extent);
4175 }
4176 
4177 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4178 {
4179 	struct extent_io_tree *tree;
4180 
4181 
4182 	if (current->flags & PF_MEMALLOC) {
4183 		redirty_page_for_writepage(wbc, page);
4184 		unlock_page(page);
4185 		return 0;
4186 	}
4187 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4188 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4189 }
4190 
4191 int btrfs_writepages(struct address_space *mapping,
4192 		     struct writeback_control *wbc)
4193 {
4194 	struct extent_io_tree *tree;
4195 
4196 	tree = &BTRFS_I(mapping->host)->io_tree;
4197 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4198 }
4199 
4200 static int
4201 btrfs_readpages(struct file *file, struct address_space *mapping,
4202 		struct list_head *pages, unsigned nr_pages)
4203 {
4204 	struct extent_io_tree *tree;
4205 	tree = &BTRFS_I(mapping->host)->io_tree;
4206 	return extent_readpages(tree, mapping, pages, nr_pages,
4207 				btrfs_get_extent);
4208 }
4209 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4210 {
4211 	struct extent_io_tree *tree;
4212 	struct extent_map_tree *map;
4213 	int ret;
4214 
4215 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4216 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4217 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4218 	if (ret == 1) {
4219 		ClearPagePrivate(page);
4220 		set_page_private(page, 0);
4221 		page_cache_release(page);
4222 	}
4223 	return ret;
4224 }
4225 
4226 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4227 {
4228 	if (PageWriteback(page) || PageDirty(page))
4229 		return 0;
4230 	return __btrfs_releasepage(page, gfp_flags);
4231 }
4232 
4233 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4234 {
4235 	struct extent_io_tree *tree;
4236 	struct btrfs_ordered_extent *ordered;
4237 	u64 page_start = page_offset(page);
4238 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4239 
4240 	wait_on_page_writeback(page);
4241 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4242 	if (offset) {
4243 		btrfs_releasepage(page, GFP_NOFS);
4244 		return;
4245 	}
4246 
4247 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4248 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4249 					   page_offset(page));
4250 	if (ordered) {
4251 		/*
4252 		 * IO on this page will never be started, so we need
4253 		 * to account for any ordered extents now
4254 		 */
4255 		clear_extent_bit(tree, page_start, page_end,
4256 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4257 				 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4258 		btrfs_finish_ordered_io(page->mapping->host,
4259 					page_start, page_end);
4260 		btrfs_put_ordered_extent(ordered);
4261 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4262 	}
4263 	clear_extent_bit(tree, page_start, page_end,
4264 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4265 		 EXTENT_ORDERED,
4266 		 1, 1, GFP_NOFS);
4267 	__btrfs_releasepage(page, GFP_NOFS);
4268 
4269 	ClearPageChecked(page);
4270 	if (PagePrivate(page)) {
4271 		ClearPagePrivate(page);
4272 		set_page_private(page, 0);
4273 		page_cache_release(page);
4274 	}
4275 }
4276 
4277 /*
4278  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4279  * called from a page fault handler when a page is first dirtied. Hence we must
4280  * be careful to check for EOF conditions here. We set the page up correctly
4281  * for a written page which means we get ENOSPC checking when writing into
4282  * holes and correct delalloc and unwritten extent mapping on filesystems that
4283  * support these features.
4284  *
4285  * We are not allowed to take the i_mutex here so we have to play games to
4286  * protect against truncate races as the page could now be beyond EOF.  Because
4287  * vmtruncate() writes the inode size before removing pages, once we have the
4288  * page lock we can determine safely if the page is beyond EOF. If it is not
4289  * beyond EOF, then the page is guaranteed safe against truncation until we
4290  * unlock the page.
4291  */
4292 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4293 {
4294 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4295 	struct btrfs_root *root = BTRFS_I(inode)->root;
4296 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4297 	struct btrfs_ordered_extent *ordered;
4298 	char *kaddr;
4299 	unsigned long zero_start;
4300 	loff_t size;
4301 	int ret;
4302 	u64 page_start;
4303 	u64 page_end;
4304 
4305 	ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4306 	if (ret)
4307 		goto out;
4308 
4309 	ret = -EINVAL;
4310 again:
4311 	lock_page(page);
4312 	size = i_size_read(inode);
4313 	page_start = page_offset(page);
4314 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4315 
4316 	if ((page->mapping != inode->i_mapping) ||
4317 	    (page_start >= size)) {
4318 		/* page got truncated out from underneath us */
4319 		goto out_unlock;
4320 	}
4321 	wait_on_page_writeback(page);
4322 
4323 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4324 	set_page_extent_mapped(page);
4325 
4326 	/*
4327 	 * we can't set the delalloc bits if there are pending ordered
4328 	 * extents.  Drop our locks and wait for them to finish
4329 	 */
4330 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4331 	if (ordered) {
4332 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4333 		unlock_page(page);
4334 		btrfs_start_ordered_extent(inode, ordered, 1);
4335 		btrfs_put_ordered_extent(ordered);
4336 		goto again;
4337 	}
4338 
4339 	btrfs_set_extent_delalloc(inode, page_start, page_end);
4340 	ret = 0;
4341 
4342 	/* page is wholly or partially inside EOF */
4343 	if (page_start + PAGE_CACHE_SIZE > size)
4344 		zero_start = size & ~PAGE_CACHE_MASK;
4345 	else
4346 		zero_start = PAGE_CACHE_SIZE;
4347 
4348 	if (zero_start != PAGE_CACHE_SIZE) {
4349 		kaddr = kmap(page);
4350 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4351 		flush_dcache_page(page);
4352 		kunmap(page);
4353 	}
4354 	ClearPageChecked(page);
4355 	set_page_dirty(page);
4356 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4357 
4358 out_unlock:
4359 	unlock_page(page);
4360 out:
4361 	return ret;
4362 }
4363 
4364 static void btrfs_truncate(struct inode *inode)
4365 {
4366 	struct btrfs_root *root = BTRFS_I(inode)->root;
4367 	int ret;
4368 	struct btrfs_trans_handle *trans;
4369 	unsigned long nr;
4370 	u64 mask = root->sectorsize - 1;
4371 
4372 	if (!S_ISREG(inode->i_mode))
4373 		return;
4374 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4375 		return;
4376 
4377 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
4378 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4379 
4380 	trans = btrfs_start_transaction(root, 1);
4381 	btrfs_set_trans_block_group(trans, inode);
4382 	btrfs_i_size_write(inode, inode->i_size);
4383 
4384 	ret = btrfs_orphan_add(trans, inode);
4385 	if (ret)
4386 		goto out;
4387 	/* FIXME, add redo link to tree so we don't leak on crash */
4388 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4389 				      BTRFS_EXTENT_DATA_KEY);
4390 	btrfs_update_inode(trans, root, inode);
4391 
4392 	ret = btrfs_orphan_del(trans, inode);
4393 	BUG_ON(ret);
4394 
4395 out:
4396 	nr = trans->blocks_used;
4397 	ret = btrfs_end_transaction_throttle(trans, root);
4398 	BUG_ON(ret);
4399 	btrfs_btree_balance_dirty(root, nr);
4400 }
4401 
4402 /*
4403  * create a new subvolume directory/inode (helper for the ioctl).
4404  */
4405 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4406 			     struct btrfs_root *new_root, struct dentry *dentry,
4407 			     u64 new_dirid, u64 alloc_hint)
4408 {
4409 	struct inode *inode;
4410 	int error;
4411 	u64 index = 0;
4412 
4413 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4414 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4415 	if (IS_ERR(inode))
4416 		return PTR_ERR(inode);
4417 	inode->i_op = &btrfs_dir_inode_operations;
4418 	inode->i_fop = &btrfs_dir_file_operations;
4419 
4420 	inode->i_nlink = 1;
4421 	btrfs_i_size_write(inode, 0);
4422 
4423 	error = btrfs_update_inode(trans, new_root, inode);
4424 	if (error)
4425 		return error;
4426 
4427 	d_instantiate(dentry, inode);
4428 	return 0;
4429 }
4430 
4431 /* helper function for file defrag and space balancing.  This
4432  * forces readahead on a given range of bytes in an inode
4433  */
4434 unsigned long btrfs_force_ra(struct address_space *mapping,
4435 			      struct file_ra_state *ra, struct file *file,
4436 			      pgoff_t offset, pgoff_t last_index)
4437 {
4438 	pgoff_t req_size = last_index - offset + 1;
4439 
4440 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4441 	return offset + req_size;
4442 }
4443 
4444 struct inode *btrfs_alloc_inode(struct super_block *sb)
4445 {
4446 	struct btrfs_inode *ei;
4447 
4448 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4449 	if (!ei)
4450 		return NULL;
4451 	ei->last_trans = 0;
4452 	ei->logged_trans = 0;
4453 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4454 	ei->i_acl = BTRFS_ACL_NOT_CACHED;
4455 	ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4456 	INIT_LIST_HEAD(&ei->i_orphan);
4457 	return &ei->vfs_inode;
4458 }
4459 
4460 void btrfs_destroy_inode(struct inode *inode)
4461 {
4462 	struct btrfs_ordered_extent *ordered;
4463 	WARN_ON(!list_empty(&inode->i_dentry));
4464 	WARN_ON(inode->i_data.nrpages);
4465 
4466 	if (BTRFS_I(inode)->i_acl &&
4467 	    BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4468 		posix_acl_release(BTRFS_I(inode)->i_acl);
4469 	if (BTRFS_I(inode)->i_default_acl &&
4470 	    BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4471 		posix_acl_release(BTRFS_I(inode)->i_default_acl);
4472 
4473 	spin_lock(&BTRFS_I(inode)->root->list_lock);
4474 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4475 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4476 		       " list\n", inode->i_ino);
4477 		dump_stack();
4478 	}
4479 	spin_unlock(&BTRFS_I(inode)->root->list_lock);
4480 
4481 	while (1) {
4482 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4483 		if (!ordered)
4484 			break;
4485 		else {
4486 			printk(KERN_ERR "btrfs found ordered "
4487 			       "extent %llu %llu on inode cleanup\n",
4488 			       (unsigned long long)ordered->file_offset,
4489 			       (unsigned long long)ordered->len);
4490 			btrfs_remove_ordered_extent(inode, ordered);
4491 			btrfs_put_ordered_extent(ordered);
4492 			btrfs_put_ordered_extent(ordered);
4493 		}
4494 	}
4495 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4496 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4497 }
4498 
4499 static void init_once(void *foo)
4500 {
4501 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4502 
4503 	inode_init_once(&ei->vfs_inode);
4504 }
4505 
4506 void btrfs_destroy_cachep(void)
4507 {
4508 	if (btrfs_inode_cachep)
4509 		kmem_cache_destroy(btrfs_inode_cachep);
4510 	if (btrfs_trans_handle_cachep)
4511 		kmem_cache_destroy(btrfs_trans_handle_cachep);
4512 	if (btrfs_transaction_cachep)
4513 		kmem_cache_destroy(btrfs_transaction_cachep);
4514 	if (btrfs_bit_radix_cachep)
4515 		kmem_cache_destroy(btrfs_bit_radix_cachep);
4516 	if (btrfs_path_cachep)
4517 		kmem_cache_destroy(btrfs_path_cachep);
4518 }
4519 
4520 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4521 				       unsigned long extra_flags,
4522 				       void (*ctor)(void *))
4523 {
4524 	return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4525 				 SLAB_MEM_SPREAD | extra_flags), ctor);
4526 }
4527 
4528 int btrfs_init_cachep(void)
4529 {
4530 	btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4531 					  sizeof(struct btrfs_inode),
4532 					  0, init_once);
4533 	if (!btrfs_inode_cachep)
4534 		goto fail;
4535 	btrfs_trans_handle_cachep =
4536 			btrfs_cache_create("btrfs_trans_handle_cache",
4537 					   sizeof(struct btrfs_trans_handle),
4538 					   0, NULL);
4539 	if (!btrfs_trans_handle_cachep)
4540 		goto fail;
4541 	btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4542 					     sizeof(struct btrfs_transaction),
4543 					     0, NULL);
4544 	if (!btrfs_transaction_cachep)
4545 		goto fail;
4546 	btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4547 					 sizeof(struct btrfs_path),
4548 					 0, NULL);
4549 	if (!btrfs_path_cachep)
4550 		goto fail;
4551 	btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4552 					      SLAB_DESTROY_BY_RCU, NULL);
4553 	if (!btrfs_bit_radix_cachep)
4554 		goto fail;
4555 	return 0;
4556 fail:
4557 	btrfs_destroy_cachep();
4558 	return -ENOMEM;
4559 }
4560 
4561 static int btrfs_getattr(struct vfsmount *mnt,
4562 			 struct dentry *dentry, struct kstat *stat)
4563 {
4564 	struct inode *inode = dentry->d_inode;
4565 	generic_fillattr(inode, stat);
4566 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4567 	stat->blksize = PAGE_CACHE_SIZE;
4568 	stat->blocks = (inode_get_bytes(inode) +
4569 			BTRFS_I(inode)->delalloc_bytes) >> 9;
4570 	return 0;
4571 }
4572 
4573 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4574 			   struct inode *new_dir, struct dentry *new_dentry)
4575 {
4576 	struct btrfs_trans_handle *trans;
4577 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
4578 	struct inode *new_inode = new_dentry->d_inode;
4579 	struct inode *old_inode = old_dentry->d_inode;
4580 	struct timespec ctime = CURRENT_TIME;
4581 	u64 index = 0;
4582 	int ret;
4583 
4584 	/* we're not allowed to rename between subvolumes */
4585 	if (BTRFS_I(old_inode)->root->root_key.objectid !=
4586 	    BTRFS_I(new_dir)->root->root_key.objectid)
4587 		return -EXDEV;
4588 
4589 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
4590 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4591 		return -ENOTEMPTY;
4592 	}
4593 
4594 	/* to rename a snapshot or subvolume, we need to juggle the
4595 	 * backrefs.  This isn't coded yet
4596 	 */
4597 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4598 		return -EXDEV;
4599 
4600 	ret = btrfs_check_free_space(root, 1, 0);
4601 	if (ret)
4602 		goto out_unlock;
4603 
4604 	trans = btrfs_start_transaction(root, 1);
4605 
4606 	btrfs_set_trans_block_group(trans, new_dir);
4607 
4608 	btrfs_inc_nlink(old_dentry->d_inode);
4609 	old_dir->i_ctime = old_dir->i_mtime = ctime;
4610 	new_dir->i_ctime = new_dir->i_mtime = ctime;
4611 	old_inode->i_ctime = ctime;
4612 
4613 	ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4614 				 old_dentry->d_name.name,
4615 				 old_dentry->d_name.len);
4616 	if (ret)
4617 		goto out_fail;
4618 
4619 	if (new_inode) {
4620 		new_inode->i_ctime = CURRENT_TIME;
4621 		ret = btrfs_unlink_inode(trans, root, new_dir,
4622 					 new_dentry->d_inode,
4623 					 new_dentry->d_name.name,
4624 					 new_dentry->d_name.len);
4625 		if (ret)
4626 			goto out_fail;
4627 		if (new_inode->i_nlink == 0) {
4628 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4629 			if (ret)
4630 				goto out_fail;
4631 		}
4632 
4633 	}
4634 	ret = btrfs_set_inode_index(new_dir, &index);
4635 	if (ret)
4636 		goto out_fail;
4637 
4638 	ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4639 			     old_inode, new_dentry->d_name.name,
4640 			     new_dentry->d_name.len, 1, index);
4641 	if (ret)
4642 		goto out_fail;
4643 
4644 out_fail:
4645 	btrfs_end_transaction_throttle(trans, root);
4646 out_unlock:
4647 	return ret;
4648 }
4649 
4650 /*
4651  * some fairly slow code that needs optimization. This walks the list
4652  * of all the inodes with pending delalloc and forces them to disk.
4653  */
4654 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4655 {
4656 	struct list_head *head = &root->fs_info->delalloc_inodes;
4657 	struct btrfs_inode *binode;
4658 	struct inode *inode;
4659 
4660 	if (root->fs_info->sb->s_flags & MS_RDONLY)
4661 		return -EROFS;
4662 
4663 	spin_lock(&root->fs_info->delalloc_lock);
4664 	while (!list_empty(head)) {
4665 		binode = list_entry(head->next, struct btrfs_inode,
4666 				    delalloc_inodes);
4667 		inode = igrab(&binode->vfs_inode);
4668 		if (!inode)
4669 			list_del_init(&binode->delalloc_inodes);
4670 		spin_unlock(&root->fs_info->delalloc_lock);
4671 		if (inode) {
4672 			filemap_flush(inode->i_mapping);
4673 			iput(inode);
4674 		}
4675 		cond_resched();
4676 		spin_lock(&root->fs_info->delalloc_lock);
4677 	}
4678 	spin_unlock(&root->fs_info->delalloc_lock);
4679 
4680 	/* the filemap_flush will queue IO into the worker threads, but
4681 	 * we have to make sure the IO is actually started and that
4682 	 * ordered extents get created before we return
4683 	 */
4684 	atomic_inc(&root->fs_info->async_submit_draining);
4685 	while (atomic_read(&root->fs_info->nr_async_submits) ||
4686 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
4687 		wait_event(root->fs_info->async_submit_wait,
4688 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4689 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4690 	}
4691 	atomic_dec(&root->fs_info->async_submit_draining);
4692 	return 0;
4693 }
4694 
4695 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4696 			 const char *symname)
4697 {
4698 	struct btrfs_trans_handle *trans;
4699 	struct btrfs_root *root = BTRFS_I(dir)->root;
4700 	struct btrfs_path *path;
4701 	struct btrfs_key key;
4702 	struct inode *inode = NULL;
4703 	int err;
4704 	int drop_inode = 0;
4705 	u64 objectid;
4706 	u64 index = 0 ;
4707 	int name_len;
4708 	int datasize;
4709 	unsigned long ptr;
4710 	struct btrfs_file_extent_item *ei;
4711 	struct extent_buffer *leaf;
4712 	unsigned long nr = 0;
4713 
4714 	name_len = strlen(symname) + 1;
4715 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4716 		return -ENAMETOOLONG;
4717 
4718 	err = btrfs_check_free_space(root, 1, 0);
4719 	if (err)
4720 		goto out_fail;
4721 
4722 	trans = btrfs_start_transaction(root, 1);
4723 	btrfs_set_trans_block_group(trans, dir);
4724 
4725 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4726 	if (err) {
4727 		err = -ENOSPC;
4728 		goto out_unlock;
4729 	}
4730 
4731 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4732 				dentry->d_name.len,
4733 				dentry->d_parent->d_inode->i_ino, objectid,
4734 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4735 				&index);
4736 	err = PTR_ERR(inode);
4737 	if (IS_ERR(inode))
4738 		goto out_unlock;
4739 
4740 	err = btrfs_init_acl(inode, dir);
4741 	if (err) {
4742 		drop_inode = 1;
4743 		goto out_unlock;
4744 	}
4745 
4746 	btrfs_set_trans_block_group(trans, inode);
4747 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4748 	if (err)
4749 		drop_inode = 1;
4750 	else {
4751 		inode->i_mapping->a_ops = &btrfs_aops;
4752 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4753 		inode->i_fop = &btrfs_file_operations;
4754 		inode->i_op = &btrfs_file_inode_operations;
4755 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4756 	}
4757 	dir->i_sb->s_dirt = 1;
4758 	btrfs_update_inode_block_group(trans, inode);
4759 	btrfs_update_inode_block_group(trans, dir);
4760 	if (drop_inode)
4761 		goto out_unlock;
4762 
4763 	path = btrfs_alloc_path();
4764 	BUG_ON(!path);
4765 	key.objectid = inode->i_ino;
4766 	key.offset = 0;
4767 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4768 	datasize = btrfs_file_extent_calc_inline_size(name_len);
4769 	err = btrfs_insert_empty_item(trans, root, path, &key,
4770 				      datasize);
4771 	if (err) {
4772 		drop_inode = 1;
4773 		goto out_unlock;
4774 	}
4775 	leaf = path->nodes[0];
4776 	ei = btrfs_item_ptr(leaf, path->slots[0],
4777 			    struct btrfs_file_extent_item);
4778 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4779 	btrfs_set_file_extent_type(leaf, ei,
4780 				   BTRFS_FILE_EXTENT_INLINE);
4781 	btrfs_set_file_extent_encryption(leaf, ei, 0);
4782 	btrfs_set_file_extent_compression(leaf, ei, 0);
4783 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4784 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4785 
4786 	ptr = btrfs_file_extent_inline_start(ei);
4787 	write_extent_buffer(leaf, symname, ptr, name_len);
4788 	btrfs_mark_buffer_dirty(leaf);
4789 	btrfs_free_path(path);
4790 
4791 	inode->i_op = &btrfs_symlink_inode_operations;
4792 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
4793 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4794 	inode_set_bytes(inode, name_len);
4795 	btrfs_i_size_write(inode, name_len - 1);
4796 	err = btrfs_update_inode(trans, root, inode);
4797 	if (err)
4798 		drop_inode = 1;
4799 
4800 out_unlock:
4801 	nr = trans->blocks_used;
4802 	btrfs_end_transaction_throttle(trans, root);
4803 out_fail:
4804 	if (drop_inode) {
4805 		inode_dec_link_count(inode);
4806 		iput(inode);
4807 	}
4808 	btrfs_btree_balance_dirty(root, nr);
4809 	return err;
4810 }
4811 
4812 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4813 			       u64 alloc_hint, int mode)
4814 {
4815 	struct btrfs_trans_handle *trans;
4816 	struct btrfs_root *root = BTRFS_I(inode)->root;
4817 	struct btrfs_key ins;
4818 	u64 alloc_size;
4819 	u64 cur_offset = start;
4820 	u64 num_bytes = end - start;
4821 	int ret = 0;
4822 
4823 	trans = btrfs_join_transaction(root, 1);
4824 	BUG_ON(!trans);
4825 	btrfs_set_trans_block_group(trans, inode);
4826 
4827 	while (num_bytes > 0) {
4828 		alloc_size = min(num_bytes, root->fs_info->max_extent);
4829 		ret = btrfs_reserve_extent(trans, root, alloc_size,
4830 					   root->sectorsize, 0, alloc_hint,
4831 					   (u64)-1, &ins, 1);
4832 		if (ret) {
4833 			WARN_ON(1);
4834 			goto out;
4835 		}
4836 		ret = insert_reserved_file_extent(trans, inode,
4837 						  cur_offset, ins.objectid,
4838 						  ins.offset, ins.offset,
4839 						  ins.offset, 0, 0, 0,
4840 						  BTRFS_FILE_EXTENT_PREALLOC);
4841 		BUG_ON(ret);
4842 		num_bytes -= ins.offset;
4843 		cur_offset += ins.offset;
4844 		alloc_hint = ins.objectid + ins.offset;
4845 	}
4846 out:
4847 	if (cur_offset > start) {
4848 		inode->i_ctime = CURRENT_TIME;
4849 		btrfs_set_flag(inode, PREALLOC);
4850 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4851 		    cur_offset > i_size_read(inode))
4852 			btrfs_i_size_write(inode, cur_offset);
4853 		ret = btrfs_update_inode(trans, root, inode);
4854 		BUG_ON(ret);
4855 	}
4856 
4857 	btrfs_end_transaction(trans, root);
4858 	return ret;
4859 }
4860 
4861 static long btrfs_fallocate(struct inode *inode, int mode,
4862 			    loff_t offset, loff_t len)
4863 {
4864 	u64 cur_offset;
4865 	u64 last_byte;
4866 	u64 alloc_start;
4867 	u64 alloc_end;
4868 	u64 alloc_hint = 0;
4869 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4870 	struct extent_map *em;
4871 	int ret;
4872 
4873 	alloc_start = offset & ~mask;
4874 	alloc_end =  (offset + len + mask) & ~mask;
4875 
4876 	mutex_lock(&inode->i_mutex);
4877 	if (alloc_start > inode->i_size) {
4878 		ret = btrfs_cont_expand(inode, alloc_start);
4879 		if (ret)
4880 			goto out;
4881 	}
4882 
4883 	while (1) {
4884 		struct btrfs_ordered_extent *ordered;
4885 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4886 			    alloc_end - 1, GFP_NOFS);
4887 		ordered = btrfs_lookup_first_ordered_extent(inode,
4888 							    alloc_end - 1);
4889 		if (ordered &&
4890 		    ordered->file_offset + ordered->len > alloc_start &&
4891 		    ordered->file_offset < alloc_end) {
4892 			btrfs_put_ordered_extent(ordered);
4893 			unlock_extent(&BTRFS_I(inode)->io_tree,
4894 				      alloc_start, alloc_end - 1, GFP_NOFS);
4895 			btrfs_wait_ordered_range(inode, alloc_start,
4896 						 alloc_end - alloc_start);
4897 		} else {
4898 			if (ordered)
4899 				btrfs_put_ordered_extent(ordered);
4900 			break;
4901 		}
4902 	}
4903 
4904 	cur_offset = alloc_start;
4905 	while (1) {
4906 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4907 				      alloc_end - cur_offset, 0);
4908 		BUG_ON(IS_ERR(em) || !em);
4909 		last_byte = min(extent_map_end(em), alloc_end);
4910 		last_byte = (last_byte + mask) & ~mask;
4911 		if (em->block_start == EXTENT_MAP_HOLE) {
4912 			ret = prealloc_file_range(inode, cur_offset,
4913 					last_byte, alloc_hint, mode);
4914 			if (ret < 0) {
4915 				free_extent_map(em);
4916 				break;
4917 			}
4918 		}
4919 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4920 			alloc_hint = em->block_start;
4921 		free_extent_map(em);
4922 
4923 		cur_offset = last_byte;
4924 		if (cur_offset >= alloc_end) {
4925 			ret = 0;
4926 			break;
4927 		}
4928 	}
4929 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4930 		      GFP_NOFS);
4931 out:
4932 	mutex_unlock(&inode->i_mutex);
4933 	return ret;
4934 }
4935 
4936 static int btrfs_set_page_dirty(struct page *page)
4937 {
4938 	return __set_page_dirty_nobuffers(page);
4939 }
4940 
4941 static int btrfs_permission(struct inode *inode, int mask)
4942 {
4943 	if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4944 		return -EACCES;
4945 	return generic_permission(inode, mask, btrfs_check_acl);
4946 }
4947 
4948 static struct inode_operations btrfs_dir_inode_operations = {
4949 	.getattr	= btrfs_getattr,
4950 	.lookup		= btrfs_lookup,
4951 	.create		= btrfs_create,
4952 	.unlink		= btrfs_unlink,
4953 	.link		= btrfs_link,
4954 	.mkdir		= btrfs_mkdir,
4955 	.rmdir		= btrfs_rmdir,
4956 	.rename		= btrfs_rename,
4957 	.symlink	= btrfs_symlink,
4958 	.setattr	= btrfs_setattr,
4959 	.mknod		= btrfs_mknod,
4960 	.setxattr	= btrfs_setxattr,
4961 	.getxattr	= btrfs_getxattr,
4962 	.listxattr	= btrfs_listxattr,
4963 	.removexattr	= btrfs_removexattr,
4964 	.permission	= btrfs_permission,
4965 };
4966 static struct inode_operations btrfs_dir_ro_inode_operations = {
4967 	.lookup		= btrfs_lookup,
4968 	.permission	= btrfs_permission,
4969 };
4970 static struct file_operations btrfs_dir_file_operations = {
4971 	.llseek		= generic_file_llseek,
4972 	.read		= generic_read_dir,
4973 	.readdir	= btrfs_real_readdir,
4974 	.unlocked_ioctl	= btrfs_ioctl,
4975 #ifdef CONFIG_COMPAT
4976 	.compat_ioctl	= btrfs_ioctl,
4977 #endif
4978 	.release        = btrfs_release_file,
4979 	.fsync		= btrfs_sync_file,
4980 };
4981 
4982 static struct extent_io_ops btrfs_extent_io_ops = {
4983 	.fill_delalloc = run_delalloc_range,
4984 	.submit_bio_hook = btrfs_submit_bio_hook,
4985 	.merge_bio_hook = btrfs_merge_bio_hook,
4986 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
4987 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
4988 	.writepage_start_hook = btrfs_writepage_start_hook,
4989 	.readpage_io_failed_hook = btrfs_io_failed_hook,
4990 	.set_bit_hook = btrfs_set_bit_hook,
4991 	.clear_bit_hook = btrfs_clear_bit_hook,
4992 };
4993 
4994 static struct address_space_operations btrfs_aops = {
4995 	.readpage	= btrfs_readpage,
4996 	.writepage	= btrfs_writepage,
4997 	.writepages	= btrfs_writepages,
4998 	.readpages	= btrfs_readpages,
4999 	.sync_page	= block_sync_page,
5000 	.bmap		= btrfs_bmap,
5001 	.direct_IO	= btrfs_direct_IO,
5002 	.invalidatepage = btrfs_invalidatepage,
5003 	.releasepage	= btrfs_releasepage,
5004 	.set_page_dirty	= btrfs_set_page_dirty,
5005 };
5006 
5007 static struct address_space_operations btrfs_symlink_aops = {
5008 	.readpage	= btrfs_readpage,
5009 	.writepage	= btrfs_writepage,
5010 	.invalidatepage = btrfs_invalidatepage,
5011 	.releasepage	= btrfs_releasepage,
5012 };
5013 
5014 static struct inode_operations btrfs_file_inode_operations = {
5015 	.truncate	= btrfs_truncate,
5016 	.getattr	= btrfs_getattr,
5017 	.setattr	= btrfs_setattr,
5018 	.setxattr	= btrfs_setxattr,
5019 	.getxattr	= btrfs_getxattr,
5020 	.listxattr      = btrfs_listxattr,
5021 	.removexattr	= btrfs_removexattr,
5022 	.permission	= btrfs_permission,
5023 	.fallocate	= btrfs_fallocate,
5024 };
5025 static struct inode_operations btrfs_special_inode_operations = {
5026 	.getattr	= btrfs_getattr,
5027 	.setattr	= btrfs_setattr,
5028 	.permission	= btrfs_permission,
5029 	.setxattr	= btrfs_setxattr,
5030 	.getxattr	= btrfs_getxattr,
5031 	.listxattr	= btrfs_listxattr,
5032 	.removexattr	= btrfs_removexattr,
5033 };
5034 static struct inode_operations btrfs_symlink_inode_operations = {
5035 	.readlink	= generic_readlink,
5036 	.follow_link	= page_follow_link_light,
5037 	.put_link	= page_put_link,
5038 	.permission	= btrfs_permission,
5039 };
5040