1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/smp_lock.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/version.h> 38 #include <linux/xattr.h> 39 #include <linux/posix_acl.h> 40 #include <linux/falloc.h> 41 #include "compat.h" 42 #include "ctree.h" 43 #include "disk-io.h" 44 #include "transaction.h" 45 #include "btrfs_inode.h" 46 #include "ioctl.h" 47 #include "print-tree.h" 48 #include "volumes.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "ref-cache.h" 53 #include "compression.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 static struct inode_operations btrfs_dir_inode_operations; 61 static struct inode_operations btrfs_symlink_inode_operations; 62 static struct inode_operations btrfs_dir_ro_inode_operations; 63 static struct inode_operations btrfs_special_inode_operations; 64 static struct inode_operations btrfs_file_inode_operations; 65 static struct address_space_operations btrfs_aops; 66 static struct address_space_operations btrfs_symlink_aops; 67 static struct file_operations btrfs_dir_file_operations; 68 static struct extent_io_ops btrfs_extent_io_ops; 69 70 static struct kmem_cache *btrfs_inode_cachep; 71 struct kmem_cache *btrfs_trans_handle_cachep; 72 struct kmem_cache *btrfs_transaction_cachep; 73 struct kmem_cache *btrfs_bit_radix_cachep; 74 struct kmem_cache *btrfs_path_cachep; 75 76 #define S_SHIFT 12 77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static void btrfs_truncate(struct inode *inode); 88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 89 static noinline int cow_file_range(struct inode *inode, 90 struct page *locked_page, 91 u64 start, u64 end, int *page_started, 92 unsigned long *nr_written, int unlock); 93 94 /* 95 * a very lame attempt at stopping writes when the FS is 85% full. There 96 * are countless ways this is incorrect, but it is better than nothing. 97 */ 98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required, 99 int for_del) 100 { 101 u64 total; 102 u64 used; 103 u64 thresh; 104 int ret = 0; 105 106 spin_lock(&root->fs_info->delalloc_lock); 107 total = btrfs_super_total_bytes(&root->fs_info->super_copy); 108 used = btrfs_super_bytes_used(&root->fs_info->super_copy); 109 if (for_del) 110 thresh = total * 90; 111 else 112 thresh = total * 85; 113 114 do_div(thresh, 100); 115 116 if (used + root->fs_info->delalloc_bytes + num_required > thresh) 117 ret = -ENOSPC; 118 spin_unlock(&root->fs_info->delalloc_lock); 119 return ret; 120 } 121 122 /* 123 * this does all the hard work for inserting an inline extent into 124 * the btree. The caller should have done a btrfs_drop_extents so that 125 * no overlapping inline items exist in the btree 126 */ 127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 128 struct btrfs_root *root, struct inode *inode, 129 u64 start, size_t size, size_t compressed_size, 130 struct page **compressed_pages) 131 { 132 struct btrfs_key key; 133 struct btrfs_path *path; 134 struct extent_buffer *leaf; 135 struct page *page = NULL; 136 char *kaddr; 137 unsigned long ptr; 138 struct btrfs_file_extent_item *ei; 139 int err = 0; 140 int ret; 141 size_t cur_size = size; 142 size_t datasize; 143 unsigned long offset; 144 int use_compress = 0; 145 146 if (compressed_size && compressed_pages) { 147 use_compress = 1; 148 cur_size = compressed_size; 149 } 150 151 path = btrfs_alloc_path(); 152 if (!path) 153 return -ENOMEM; 154 155 btrfs_set_trans_block_group(trans, inode); 156 157 key.objectid = inode->i_ino; 158 key.offset = start; 159 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 160 datasize = btrfs_file_extent_calc_inline_size(cur_size); 161 162 inode_add_bytes(inode, size); 163 ret = btrfs_insert_empty_item(trans, root, path, &key, 164 datasize); 165 BUG_ON(ret); 166 if (ret) { 167 err = ret; 168 goto fail; 169 } 170 leaf = path->nodes[0]; 171 ei = btrfs_item_ptr(leaf, path->slots[0], 172 struct btrfs_file_extent_item); 173 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 174 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 175 btrfs_set_file_extent_encryption(leaf, ei, 0); 176 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 177 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 178 ptr = btrfs_file_extent_inline_start(ei); 179 180 if (use_compress) { 181 struct page *cpage; 182 int i = 0; 183 while (compressed_size > 0) { 184 cpage = compressed_pages[i]; 185 cur_size = min_t(unsigned long, compressed_size, 186 PAGE_CACHE_SIZE); 187 188 kaddr = kmap(cpage); 189 write_extent_buffer(leaf, kaddr, ptr, cur_size); 190 kunmap(cpage); 191 192 i++; 193 ptr += cur_size; 194 compressed_size -= cur_size; 195 } 196 btrfs_set_file_extent_compression(leaf, ei, 197 BTRFS_COMPRESS_ZLIB); 198 } else { 199 page = find_get_page(inode->i_mapping, 200 start >> PAGE_CACHE_SHIFT); 201 btrfs_set_file_extent_compression(leaf, ei, 0); 202 kaddr = kmap_atomic(page, KM_USER0); 203 offset = start & (PAGE_CACHE_SIZE - 1); 204 write_extent_buffer(leaf, kaddr + offset, ptr, size); 205 kunmap_atomic(kaddr, KM_USER0); 206 page_cache_release(page); 207 } 208 btrfs_mark_buffer_dirty(leaf); 209 btrfs_free_path(path); 210 211 BTRFS_I(inode)->disk_i_size = inode->i_size; 212 btrfs_update_inode(trans, root, inode); 213 return 0; 214 fail: 215 btrfs_free_path(path); 216 return err; 217 } 218 219 220 /* 221 * conditionally insert an inline extent into the file. This 222 * does the checks required to make sure the data is small enough 223 * to fit as an inline extent. 224 */ 225 static int cow_file_range_inline(struct btrfs_trans_handle *trans, 226 struct btrfs_root *root, 227 struct inode *inode, u64 start, u64 end, 228 size_t compressed_size, 229 struct page **compressed_pages) 230 { 231 u64 isize = i_size_read(inode); 232 u64 actual_end = min(end + 1, isize); 233 u64 inline_len = actual_end - start; 234 u64 aligned_end = (end + root->sectorsize - 1) & 235 ~((u64)root->sectorsize - 1); 236 u64 hint_byte; 237 u64 data_len = inline_len; 238 int ret; 239 240 if (compressed_size) 241 data_len = compressed_size; 242 243 if (start > 0 || 244 actual_end >= PAGE_CACHE_SIZE || 245 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 246 (!compressed_size && 247 (actual_end & (root->sectorsize - 1)) == 0) || 248 end + 1 < isize || 249 data_len > root->fs_info->max_inline) { 250 return 1; 251 } 252 253 ret = btrfs_drop_extents(trans, root, inode, start, 254 aligned_end, start, &hint_byte); 255 BUG_ON(ret); 256 257 if (isize > actual_end) 258 inline_len = min_t(u64, isize, actual_end); 259 ret = insert_inline_extent(trans, root, inode, start, 260 inline_len, compressed_size, 261 compressed_pages); 262 BUG_ON(ret); 263 btrfs_drop_extent_cache(inode, start, aligned_end, 0); 264 return 0; 265 } 266 267 struct async_extent { 268 u64 start; 269 u64 ram_size; 270 u64 compressed_size; 271 struct page **pages; 272 unsigned long nr_pages; 273 struct list_head list; 274 }; 275 276 struct async_cow { 277 struct inode *inode; 278 struct btrfs_root *root; 279 struct page *locked_page; 280 u64 start; 281 u64 end; 282 struct list_head extents; 283 struct btrfs_work work; 284 }; 285 286 static noinline int add_async_extent(struct async_cow *cow, 287 u64 start, u64 ram_size, 288 u64 compressed_size, 289 struct page **pages, 290 unsigned long nr_pages) 291 { 292 struct async_extent *async_extent; 293 294 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 295 async_extent->start = start; 296 async_extent->ram_size = ram_size; 297 async_extent->compressed_size = compressed_size; 298 async_extent->pages = pages; 299 async_extent->nr_pages = nr_pages; 300 list_add_tail(&async_extent->list, &cow->extents); 301 return 0; 302 } 303 304 /* 305 * we create compressed extents in two phases. The first 306 * phase compresses a range of pages that have already been 307 * locked (both pages and state bits are locked). 308 * 309 * This is done inside an ordered work queue, and the compression 310 * is spread across many cpus. The actual IO submission is step 311 * two, and the ordered work queue takes care of making sure that 312 * happens in the same order things were put onto the queue by 313 * writepages and friends. 314 * 315 * If this code finds it can't get good compression, it puts an 316 * entry onto the work queue to write the uncompressed bytes. This 317 * makes sure that both compressed inodes and uncompressed inodes 318 * are written in the same order that pdflush sent them down. 319 */ 320 static noinline int compress_file_range(struct inode *inode, 321 struct page *locked_page, 322 u64 start, u64 end, 323 struct async_cow *async_cow, 324 int *num_added) 325 { 326 struct btrfs_root *root = BTRFS_I(inode)->root; 327 struct btrfs_trans_handle *trans; 328 u64 num_bytes; 329 u64 orig_start; 330 u64 disk_num_bytes; 331 u64 blocksize = root->sectorsize; 332 u64 actual_end; 333 u64 isize = i_size_read(inode); 334 int ret = 0; 335 struct page **pages = NULL; 336 unsigned long nr_pages; 337 unsigned long nr_pages_ret = 0; 338 unsigned long total_compressed = 0; 339 unsigned long total_in = 0; 340 unsigned long max_compressed = 128 * 1024; 341 unsigned long max_uncompressed = 128 * 1024; 342 int i; 343 int will_compress; 344 345 orig_start = start; 346 347 actual_end = min_t(u64, isize, end + 1); 348 again: 349 will_compress = 0; 350 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 351 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 352 353 total_compressed = actual_end - start; 354 355 /* we want to make sure that amount of ram required to uncompress 356 * an extent is reasonable, so we limit the total size in ram 357 * of a compressed extent to 128k. This is a crucial number 358 * because it also controls how easily we can spread reads across 359 * cpus for decompression. 360 * 361 * We also want to make sure the amount of IO required to do 362 * a random read is reasonably small, so we limit the size of 363 * a compressed extent to 128k. 364 */ 365 total_compressed = min(total_compressed, max_uncompressed); 366 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 367 num_bytes = max(blocksize, num_bytes); 368 disk_num_bytes = num_bytes; 369 total_in = 0; 370 ret = 0; 371 372 /* 373 * we do compression for mount -o compress and when the 374 * inode has not been flagged as nocompress. This flag can 375 * change at any time if we discover bad compression ratios. 376 */ 377 if (!btrfs_test_flag(inode, NOCOMPRESS) && 378 btrfs_test_opt(root, COMPRESS)) { 379 WARN_ON(pages); 380 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 381 382 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 383 total_compressed, pages, 384 nr_pages, &nr_pages_ret, 385 &total_in, 386 &total_compressed, 387 max_compressed); 388 389 if (!ret) { 390 unsigned long offset = total_compressed & 391 (PAGE_CACHE_SIZE - 1); 392 struct page *page = pages[nr_pages_ret - 1]; 393 char *kaddr; 394 395 /* zero the tail end of the last page, we might be 396 * sending it down to disk 397 */ 398 if (offset) { 399 kaddr = kmap_atomic(page, KM_USER0); 400 memset(kaddr + offset, 0, 401 PAGE_CACHE_SIZE - offset); 402 kunmap_atomic(kaddr, KM_USER0); 403 } 404 will_compress = 1; 405 } 406 } 407 if (start == 0) { 408 trans = btrfs_join_transaction(root, 1); 409 BUG_ON(!trans); 410 btrfs_set_trans_block_group(trans, inode); 411 412 /* lets try to make an inline extent */ 413 if (ret || total_in < (actual_end - start)) { 414 /* we didn't compress the entire range, try 415 * to make an uncompressed inline extent. 416 */ 417 ret = cow_file_range_inline(trans, root, inode, 418 start, end, 0, NULL); 419 } else { 420 /* try making a compressed inline extent */ 421 ret = cow_file_range_inline(trans, root, inode, 422 start, end, 423 total_compressed, pages); 424 } 425 btrfs_end_transaction(trans, root); 426 if (ret == 0) { 427 /* 428 * inline extent creation worked, we don't need 429 * to create any more async work items. Unlock 430 * and free up our temp pages. 431 */ 432 extent_clear_unlock_delalloc(inode, 433 &BTRFS_I(inode)->io_tree, 434 start, end, NULL, 1, 0, 435 0, 1, 1, 1); 436 ret = 0; 437 goto free_pages_out; 438 } 439 } 440 441 if (will_compress) { 442 /* 443 * we aren't doing an inline extent round the compressed size 444 * up to a block size boundary so the allocator does sane 445 * things 446 */ 447 total_compressed = (total_compressed + blocksize - 1) & 448 ~(blocksize - 1); 449 450 /* 451 * one last check to make sure the compression is really a 452 * win, compare the page count read with the blocks on disk 453 */ 454 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 455 ~(PAGE_CACHE_SIZE - 1); 456 if (total_compressed >= total_in) { 457 will_compress = 0; 458 } else { 459 disk_num_bytes = total_compressed; 460 num_bytes = total_in; 461 } 462 } 463 if (!will_compress && pages) { 464 /* 465 * the compression code ran but failed to make things smaller, 466 * free any pages it allocated and our page pointer array 467 */ 468 for (i = 0; i < nr_pages_ret; i++) { 469 WARN_ON(pages[i]->mapping); 470 page_cache_release(pages[i]); 471 } 472 kfree(pages); 473 pages = NULL; 474 total_compressed = 0; 475 nr_pages_ret = 0; 476 477 /* flag the file so we don't compress in the future */ 478 btrfs_set_flag(inode, NOCOMPRESS); 479 } 480 if (will_compress) { 481 *num_added += 1; 482 483 /* the async work queues will take care of doing actual 484 * allocation on disk for these compressed pages, 485 * and will submit them to the elevator. 486 */ 487 add_async_extent(async_cow, start, num_bytes, 488 total_compressed, pages, nr_pages_ret); 489 490 if (start + num_bytes < end && start + num_bytes < actual_end) { 491 start += num_bytes; 492 pages = NULL; 493 cond_resched(); 494 goto again; 495 } 496 } else { 497 /* 498 * No compression, but we still need to write the pages in 499 * the file we've been given so far. redirty the locked 500 * page if it corresponds to our extent and set things up 501 * for the async work queue to run cow_file_range to do 502 * the normal delalloc dance 503 */ 504 if (page_offset(locked_page) >= start && 505 page_offset(locked_page) <= end) { 506 __set_page_dirty_nobuffers(locked_page); 507 /* unlocked later on in the async handlers */ 508 } 509 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 510 *num_added += 1; 511 } 512 513 out: 514 return 0; 515 516 free_pages_out: 517 for (i = 0; i < nr_pages_ret; i++) { 518 WARN_ON(pages[i]->mapping); 519 page_cache_release(pages[i]); 520 } 521 kfree(pages); 522 523 goto out; 524 } 525 526 /* 527 * phase two of compressed writeback. This is the ordered portion 528 * of the code, which only gets called in the order the work was 529 * queued. We walk all the async extents created by compress_file_range 530 * and send them down to the disk. 531 */ 532 static noinline int submit_compressed_extents(struct inode *inode, 533 struct async_cow *async_cow) 534 { 535 struct async_extent *async_extent; 536 u64 alloc_hint = 0; 537 struct btrfs_trans_handle *trans; 538 struct btrfs_key ins; 539 struct extent_map *em; 540 struct btrfs_root *root = BTRFS_I(inode)->root; 541 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 542 struct extent_io_tree *io_tree; 543 int ret; 544 545 if (list_empty(&async_cow->extents)) 546 return 0; 547 548 trans = btrfs_join_transaction(root, 1); 549 550 while (!list_empty(&async_cow->extents)) { 551 async_extent = list_entry(async_cow->extents.next, 552 struct async_extent, list); 553 list_del(&async_extent->list); 554 555 io_tree = &BTRFS_I(inode)->io_tree; 556 557 /* did the compression code fall back to uncompressed IO? */ 558 if (!async_extent->pages) { 559 int page_started = 0; 560 unsigned long nr_written = 0; 561 562 lock_extent(io_tree, async_extent->start, 563 async_extent->start + 564 async_extent->ram_size - 1, GFP_NOFS); 565 566 /* allocate blocks */ 567 cow_file_range(inode, async_cow->locked_page, 568 async_extent->start, 569 async_extent->start + 570 async_extent->ram_size - 1, 571 &page_started, &nr_written, 0); 572 573 /* 574 * if page_started, cow_file_range inserted an 575 * inline extent and took care of all the unlocking 576 * and IO for us. Otherwise, we need to submit 577 * all those pages down to the drive. 578 */ 579 if (!page_started) 580 extent_write_locked_range(io_tree, 581 inode, async_extent->start, 582 async_extent->start + 583 async_extent->ram_size - 1, 584 btrfs_get_extent, 585 WB_SYNC_ALL); 586 kfree(async_extent); 587 cond_resched(); 588 continue; 589 } 590 591 lock_extent(io_tree, async_extent->start, 592 async_extent->start + async_extent->ram_size - 1, 593 GFP_NOFS); 594 /* 595 * here we're doing allocation and writeback of the 596 * compressed pages 597 */ 598 btrfs_drop_extent_cache(inode, async_extent->start, 599 async_extent->start + 600 async_extent->ram_size - 1, 0); 601 602 ret = btrfs_reserve_extent(trans, root, 603 async_extent->compressed_size, 604 async_extent->compressed_size, 605 0, alloc_hint, 606 (u64)-1, &ins, 1); 607 BUG_ON(ret); 608 em = alloc_extent_map(GFP_NOFS); 609 em->start = async_extent->start; 610 em->len = async_extent->ram_size; 611 em->orig_start = em->start; 612 613 em->block_start = ins.objectid; 614 em->block_len = ins.offset; 615 em->bdev = root->fs_info->fs_devices->latest_bdev; 616 set_bit(EXTENT_FLAG_PINNED, &em->flags); 617 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 618 619 while (1) { 620 spin_lock(&em_tree->lock); 621 ret = add_extent_mapping(em_tree, em); 622 spin_unlock(&em_tree->lock); 623 if (ret != -EEXIST) { 624 free_extent_map(em); 625 break; 626 } 627 btrfs_drop_extent_cache(inode, async_extent->start, 628 async_extent->start + 629 async_extent->ram_size - 1, 0); 630 } 631 632 ret = btrfs_add_ordered_extent(inode, async_extent->start, 633 ins.objectid, 634 async_extent->ram_size, 635 ins.offset, 636 BTRFS_ORDERED_COMPRESSED); 637 BUG_ON(ret); 638 639 btrfs_end_transaction(trans, root); 640 641 /* 642 * clear dirty, set writeback and unlock the pages. 643 */ 644 extent_clear_unlock_delalloc(inode, 645 &BTRFS_I(inode)->io_tree, 646 async_extent->start, 647 async_extent->start + 648 async_extent->ram_size - 1, 649 NULL, 1, 1, 0, 1, 1, 0); 650 651 ret = btrfs_submit_compressed_write(inode, 652 async_extent->start, 653 async_extent->ram_size, 654 ins.objectid, 655 ins.offset, async_extent->pages, 656 async_extent->nr_pages); 657 658 BUG_ON(ret); 659 trans = btrfs_join_transaction(root, 1); 660 alloc_hint = ins.objectid + ins.offset; 661 kfree(async_extent); 662 cond_resched(); 663 } 664 665 btrfs_end_transaction(trans, root); 666 return 0; 667 } 668 669 /* 670 * when extent_io.c finds a delayed allocation range in the file, 671 * the call backs end up in this code. The basic idea is to 672 * allocate extents on disk for the range, and create ordered data structs 673 * in ram to track those extents. 674 * 675 * locked_page is the page that writepage had locked already. We use 676 * it to make sure we don't do extra locks or unlocks. 677 * 678 * *page_started is set to one if we unlock locked_page and do everything 679 * required to start IO on it. It may be clean and already done with 680 * IO when we return. 681 */ 682 static noinline int cow_file_range(struct inode *inode, 683 struct page *locked_page, 684 u64 start, u64 end, int *page_started, 685 unsigned long *nr_written, 686 int unlock) 687 { 688 struct btrfs_root *root = BTRFS_I(inode)->root; 689 struct btrfs_trans_handle *trans; 690 u64 alloc_hint = 0; 691 u64 num_bytes; 692 unsigned long ram_size; 693 u64 disk_num_bytes; 694 u64 cur_alloc_size; 695 u64 blocksize = root->sectorsize; 696 u64 actual_end; 697 u64 isize = i_size_read(inode); 698 struct btrfs_key ins; 699 struct extent_map *em; 700 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 701 int ret = 0; 702 703 trans = btrfs_join_transaction(root, 1); 704 BUG_ON(!trans); 705 btrfs_set_trans_block_group(trans, inode); 706 707 actual_end = min_t(u64, isize, end + 1); 708 709 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 710 num_bytes = max(blocksize, num_bytes); 711 disk_num_bytes = num_bytes; 712 ret = 0; 713 714 if (start == 0) { 715 /* lets try to make an inline extent */ 716 ret = cow_file_range_inline(trans, root, inode, 717 start, end, 0, NULL); 718 if (ret == 0) { 719 extent_clear_unlock_delalloc(inode, 720 &BTRFS_I(inode)->io_tree, 721 start, end, NULL, 1, 1, 722 1, 1, 1, 1); 723 *nr_written = *nr_written + 724 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 725 *page_started = 1; 726 ret = 0; 727 goto out; 728 } 729 } 730 731 BUG_ON(disk_num_bytes > 732 btrfs_super_total_bytes(&root->fs_info->super_copy)); 733 734 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 735 736 while (disk_num_bytes > 0) { 737 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 738 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 739 root->sectorsize, 0, alloc_hint, 740 (u64)-1, &ins, 1); 741 BUG_ON(ret); 742 743 em = alloc_extent_map(GFP_NOFS); 744 em->start = start; 745 em->orig_start = em->start; 746 747 ram_size = ins.offset; 748 em->len = ins.offset; 749 750 em->block_start = ins.objectid; 751 em->block_len = ins.offset; 752 em->bdev = root->fs_info->fs_devices->latest_bdev; 753 set_bit(EXTENT_FLAG_PINNED, &em->flags); 754 755 while (1) { 756 spin_lock(&em_tree->lock); 757 ret = add_extent_mapping(em_tree, em); 758 spin_unlock(&em_tree->lock); 759 if (ret != -EEXIST) { 760 free_extent_map(em); 761 break; 762 } 763 btrfs_drop_extent_cache(inode, start, 764 start + ram_size - 1, 0); 765 } 766 767 cur_alloc_size = ins.offset; 768 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 769 ram_size, cur_alloc_size, 0); 770 BUG_ON(ret); 771 772 if (root->root_key.objectid == 773 BTRFS_DATA_RELOC_TREE_OBJECTID) { 774 ret = btrfs_reloc_clone_csums(inode, start, 775 cur_alloc_size); 776 BUG_ON(ret); 777 } 778 779 if (disk_num_bytes < cur_alloc_size) 780 break; 781 782 /* we're not doing compressed IO, don't unlock the first 783 * page (which the caller expects to stay locked), don't 784 * clear any dirty bits and don't set any writeback bits 785 */ 786 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 787 start, start + ram_size - 1, 788 locked_page, unlock, 1, 789 1, 0, 0, 0); 790 disk_num_bytes -= cur_alloc_size; 791 num_bytes -= cur_alloc_size; 792 alloc_hint = ins.objectid + ins.offset; 793 start += cur_alloc_size; 794 } 795 out: 796 ret = 0; 797 btrfs_end_transaction(trans, root); 798 799 return ret; 800 } 801 802 /* 803 * work queue call back to started compression on a file and pages 804 */ 805 static noinline void async_cow_start(struct btrfs_work *work) 806 { 807 struct async_cow *async_cow; 808 int num_added = 0; 809 async_cow = container_of(work, struct async_cow, work); 810 811 compress_file_range(async_cow->inode, async_cow->locked_page, 812 async_cow->start, async_cow->end, async_cow, 813 &num_added); 814 if (num_added == 0) 815 async_cow->inode = NULL; 816 } 817 818 /* 819 * work queue call back to submit previously compressed pages 820 */ 821 static noinline void async_cow_submit(struct btrfs_work *work) 822 { 823 struct async_cow *async_cow; 824 struct btrfs_root *root; 825 unsigned long nr_pages; 826 827 async_cow = container_of(work, struct async_cow, work); 828 829 root = async_cow->root; 830 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 831 PAGE_CACHE_SHIFT; 832 833 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 834 835 if (atomic_read(&root->fs_info->async_delalloc_pages) < 836 5 * 1042 * 1024 && 837 waitqueue_active(&root->fs_info->async_submit_wait)) 838 wake_up(&root->fs_info->async_submit_wait); 839 840 if (async_cow->inode) 841 submit_compressed_extents(async_cow->inode, async_cow); 842 } 843 844 static noinline void async_cow_free(struct btrfs_work *work) 845 { 846 struct async_cow *async_cow; 847 async_cow = container_of(work, struct async_cow, work); 848 kfree(async_cow); 849 } 850 851 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 852 u64 start, u64 end, int *page_started, 853 unsigned long *nr_written) 854 { 855 struct async_cow *async_cow; 856 struct btrfs_root *root = BTRFS_I(inode)->root; 857 unsigned long nr_pages; 858 u64 cur_end; 859 int limit = 10 * 1024 * 1042; 860 861 if (!btrfs_test_opt(root, COMPRESS)) { 862 return cow_file_range(inode, locked_page, start, end, 863 page_started, nr_written, 1); 864 } 865 866 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | 867 EXTENT_DELALLOC, 1, 0, GFP_NOFS); 868 while (start < end) { 869 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 870 async_cow->inode = inode; 871 async_cow->root = root; 872 async_cow->locked_page = locked_page; 873 async_cow->start = start; 874 875 if (btrfs_test_flag(inode, NOCOMPRESS)) 876 cur_end = end; 877 else 878 cur_end = min(end, start + 512 * 1024 - 1); 879 880 async_cow->end = cur_end; 881 INIT_LIST_HEAD(&async_cow->extents); 882 883 async_cow->work.func = async_cow_start; 884 async_cow->work.ordered_func = async_cow_submit; 885 async_cow->work.ordered_free = async_cow_free; 886 async_cow->work.flags = 0; 887 888 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 889 PAGE_CACHE_SHIFT; 890 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 891 892 btrfs_queue_worker(&root->fs_info->delalloc_workers, 893 &async_cow->work); 894 895 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 896 wait_event(root->fs_info->async_submit_wait, 897 (atomic_read(&root->fs_info->async_delalloc_pages) < 898 limit)); 899 } 900 901 while (atomic_read(&root->fs_info->async_submit_draining) && 902 atomic_read(&root->fs_info->async_delalloc_pages)) { 903 wait_event(root->fs_info->async_submit_wait, 904 (atomic_read(&root->fs_info->async_delalloc_pages) == 905 0)); 906 } 907 908 *nr_written += nr_pages; 909 start = cur_end + 1; 910 } 911 *page_started = 1; 912 return 0; 913 } 914 915 static noinline int csum_exist_in_range(struct btrfs_root *root, 916 u64 bytenr, u64 num_bytes) 917 { 918 int ret; 919 struct btrfs_ordered_sum *sums; 920 LIST_HEAD(list); 921 922 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 923 bytenr + num_bytes - 1, &list); 924 if (ret == 0 && list_empty(&list)) 925 return 0; 926 927 while (!list_empty(&list)) { 928 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 929 list_del(&sums->list); 930 kfree(sums); 931 } 932 return 1; 933 } 934 935 /* 936 * when nowcow writeback call back. This checks for snapshots or COW copies 937 * of the extents that exist in the file, and COWs the file as required. 938 * 939 * If no cow copies or snapshots exist, we write directly to the existing 940 * blocks on disk 941 */ 942 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page, 943 u64 start, u64 end, int *page_started, int force, 944 unsigned long *nr_written) 945 { 946 struct btrfs_root *root = BTRFS_I(inode)->root; 947 struct btrfs_trans_handle *trans; 948 struct extent_buffer *leaf; 949 struct btrfs_path *path; 950 struct btrfs_file_extent_item *fi; 951 struct btrfs_key found_key; 952 u64 cow_start; 953 u64 cur_offset; 954 u64 extent_end; 955 u64 disk_bytenr; 956 u64 num_bytes; 957 int extent_type; 958 int ret; 959 int type; 960 int nocow; 961 int check_prev = 1; 962 963 path = btrfs_alloc_path(); 964 BUG_ON(!path); 965 trans = btrfs_join_transaction(root, 1); 966 BUG_ON(!trans); 967 968 cow_start = (u64)-1; 969 cur_offset = start; 970 while (1) { 971 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 972 cur_offset, 0); 973 BUG_ON(ret < 0); 974 if (ret > 0 && path->slots[0] > 0 && check_prev) { 975 leaf = path->nodes[0]; 976 btrfs_item_key_to_cpu(leaf, &found_key, 977 path->slots[0] - 1); 978 if (found_key.objectid == inode->i_ino && 979 found_key.type == BTRFS_EXTENT_DATA_KEY) 980 path->slots[0]--; 981 } 982 check_prev = 0; 983 next_slot: 984 leaf = path->nodes[0]; 985 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 986 ret = btrfs_next_leaf(root, path); 987 if (ret < 0) 988 BUG_ON(1); 989 if (ret > 0) 990 break; 991 leaf = path->nodes[0]; 992 } 993 994 nocow = 0; 995 disk_bytenr = 0; 996 num_bytes = 0; 997 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 998 999 if (found_key.objectid > inode->i_ino || 1000 found_key.type > BTRFS_EXTENT_DATA_KEY || 1001 found_key.offset > end) 1002 break; 1003 1004 if (found_key.offset > cur_offset) { 1005 extent_end = found_key.offset; 1006 goto out_check; 1007 } 1008 1009 fi = btrfs_item_ptr(leaf, path->slots[0], 1010 struct btrfs_file_extent_item); 1011 extent_type = btrfs_file_extent_type(leaf, fi); 1012 1013 if (extent_type == BTRFS_FILE_EXTENT_REG || 1014 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1015 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1016 extent_end = found_key.offset + 1017 btrfs_file_extent_num_bytes(leaf, fi); 1018 if (extent_end <= start) { 1019 path->slots[0]++; 1020 goto next_slot; 1021 } 1022 if (disk_bytenr == 0) 1023 goto out_check; 1024 if (btrfs_file_extent_compression(leaf, fi) || 1025 btrfs_file_extent_encryption(leaf, fi) || 1026 btrfs_file_extent_other_encoding(leaf, fi)) 1027 goto out_check; 1028 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1029 goto out_check; 1030 if (btrfs_extent_readonly(root, disk_bytenr)) 1031 goto out_check; 1032 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1033 disk_bytenr)) 1034 goto out_check; 1035 disk_bytenr += btrfs_file_extent_offset(leaf, fi); 1036 disk_bytenr += cur_offset - found_key.offset; 1037 num_bytes = min(end + 1, extent_end) - cur_offset; 1038 /* 1039 * force cow if csum exists in the range. 1040 * this ensure that csum for a given extent are 1041 * either valid or do not exist. 1042 */ 1043 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1044 goto out_check; 1045 nocow = 1; 1046 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1047 extent_end = found_key.offset + 1048 btrfs_file_extent_inline_len(leaf, fi); 1049 extent_end = ALIGN(extent_end, root->sectorsize); 1050 } else { 1051 BUG_ON(1); 1052 } 1053 out_check: 1054 if (extent_end <= start) { 1055 path->slots[0]++; 1056 goto next_slot; 1057 } 1058 if (!nocow) { 1059 if (cow_start == (u64)-1) 1060 cow_start = cur_offset; 1061 cur_offset = extent_end; 1062 if (cur_offset > end) 1063 break; 1064 path->slots[0]++; 1065 goto next_slot; 1066 } 1067 1068 btrfs_release_path(root, path); 1069 if (cow_start != (u64)-1) { 1070 ret = cow_file_range(inode, locked_page, cow_start, 1071 found_key.offset - 1, page_started, 1072 nr_written, 1); 1073 BUG_ON(ret); 1074 cow_start = (u64)-1; 1075 } 1076 1077 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1078 struct extent_map *em; 1079 struct extent_map_tree *em_tree; 1080 em_tree = &BTRFS_I(inode)->extent_tree; 1081 em = alloc_extent_map(GFP_NOFS); 1082 em->start = cur_offset; 1083 em->orig_start = em->start; 1084 em->len = num_bytes; 1085 em->block_len = num_bytes; 1086 em->block_start = disk_bytenr; 1087 em->bdev = root->fs_info->fs_devices->latest_bdev; 1088 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1089 while (1) { 1090 spin_lock(&em_tree->lock); 1091 ret = add_extent_mapping(em_tree, em); 1092 spin_unlock(&em_tree->lock); 1093 if (ret != -EEXIST) { 1094 free_extent_map(em); 1095 break; 1096 } 1097 btrfs_drop_extent_cache(inode, em->start, 1098 em->start + em->len - 1, 0); 1099 } 1100 type = BTRFS_ORDERED_PREALLOC; 1101 } else { 1102 type = BTRFS_ORDERED_NOCOW; 1103 } 1104 1105 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1106 num_bytes, num_bytes, type); 1107 BUG_ON(ret); 1108 1109 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1110 cur_offset, cur_offset + num_bytes - 1, 1111 locked_page, 1, 1, 1, 0, 0, 0); 1112 cur_offset = extent_end; 1113 if (cur_offset > end) 1114 break; 1115 } 1116 btrfs_release_path(root, path); 1117 1118 if (cur_offset <= end && cow_start == (u64)-1) 1119 cow_start = cur_offset; 1120 if (cow_start != (u64)-1) { 1121 ret = cow_file_range(inode, locked_page, cow_start, end, 1122 page_started, nr_written, 1); 1123 BUG_ON(ret); 1124 } 1125 1126 ret = btrfs_end_transaction(trans, root); 1127 BUG_ON(ret); 1128 btrfs_free_path(path); 1129 return 0; 1130 } 1131 1132 /* 1133 * extent_io.c call back to do delayed allocation processing 1134 */ 1135 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1136 u64 start, u64 end, int *page_started, 1137 unsigned long *nr_written) 1138 { 1139 int ret; 1140 1141 if (btrfs_test_flag(inode, NODATACOW)) 1142 ret = run_delalloc_nocow(inode, locked_page, start, end, 1143 page_started, 1, nr_written); 1144 else if (btrfs_test_flag(inode, PREALLOC)) 1145 ret = run_delalloc_nocow(inode, locked_page, start, end, 1146 page_started, 0, nr_written); 1147 else 1148 ret = cow_file_range_async(inode, locked_page, start, end, 1149 page_started, nr_written); 1150 1151 return ret; 1152 } 1153 1154 /* 1155 * extent_io.c set_bit_hook, used to track delayed allocation 1156 * bytes in this file, and to maintain the list of inodes that 1157 * have pending delalloc work to be done. 1158 */ 1159 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1160 unsigned long old, unsigned long bits) 1161 { 1162 /* 1163 * set_bit and clear bit hooks normally require _irqsave/restore 1164 * but in this case, we are only testeing for the DELALLOC 1165 * bit, which is only set or cleared with irqs on 1166 */ 1167 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1168 struct btrfs_root *root = BTRFS_I(inode)->root; 1169 spin_lock(&root->fs_info->delalloc_lock); 1170 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1171 root->fs_info->delalloc_bytes += end - start + 1; 1172 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1173 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1174 &root->fs_info->delalloc_inodes); 1175 } 1176 spin_unlock(&root->fs_info->delalloc_lock); 1177 } 1178 return 0; 1179 } 1180 1181 /* 1182 * extent_io.c clear_bit_hook, see set_bit_hook for why 1183 */ 1184 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, 1185 unsigned long old, unsigned long bits) 1186 { 1187 /* 1188 * set_bit and clear bit hooks normally require _irqsave/restore 1189 * but in this case, we are only testeing for the DELALLOC 1190 * bit, which is only set or cleared with irqs on 1191 */ 1192 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1193 struct btrfs_root *root = BTRFS_I(inode)->root; 1194 1195 spin_lock(&root->fs_info->delalloc_lock); 1196 if (end - start + 1 > root->fs_info->delalloc_bytes) { 1197 printk(KERN_INFO "btrfs warning: delalloc account " 1198 "%llu %llu\n", 1199 (unsigned long long)end - start + 1, 1200 (unsigned long long) 1201 root->fs_info->delalloc_bytes); 1202 root->fs_info->delalloc_bytes = 0; 1203 BTRFS_I(inode)->delalloc_bytes = 0; 1204 } else { 1205 root->fs_info->delalloc_bytes -= end - start + 1; 1206 BTRFS_I(inode)->delalloc_bytes -= end - start + 1; 1207 } 1208 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1209 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1210 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1211 } 1212 spin_unlock(&root->fs_info->delalloc_lock); 1213 } 1214 return 0; 1215 } 1216 1217 /* 1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1219 * we don't create bios that span stripes or chunks 1220 */ 1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1222 size_t size, struct bio *bio, 1223 unsigned long bio_flags) 1224 { 1225 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1226 struct btrfs_mapping_tree *map_tree; 1227 u64 logical = (u64)bio->bi_sector << 9; 1228 u64 length = 0; 1229 u64 map_length; 1230 int ret; 1231 1232 if (bio_flags & EXTENT_BIO_COMPRESSED) 1233 return 0; 1234 1235 length = bio->bi_size; 1236 map_tree = &root->fs_info->mapping_tree; 1237 map_length = length; 1238 ret = btrfs_map_block(map_tree, READ, logical, 1239 &map_length, NULL, 0); 1240 1241 if (map_length < length + size) 1242 return 1; 1243 return 0; 1244 } 1245 1246 /* 1247 * in order to insert checksums into the metadata in large chunks, 1248 * we wait until bio submission time. All the pages in the bio are 1249 * checksummed and sums are attached onto the ordered extent record. 1250 * 1251 * At IO completion time the cums attached on the ordered extent record 1252 * are inserted into the btree 1253 */ 1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1255 struct bio *bio, int mirror_num, 1256 unsigned long bio_flags) 1257 { 1258 struct btrfs_root *root = BTRFS_I(inode)->root; 1259 int ret = 0; 1260 1261 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1262 BUG_ON(ret); 1263 return 0; 1264 } 1265 1266 /* 1267 * in order to insert checksums into the metadata in large chunks, 1268 * we wait until bio submission time. All the pages in the bio are 1269 * checksummed and sums are attached onto the ordered extent record. 1270 * 1271 * At IO completion time the cums attached on the ordered extent record 1272 * are inserted into the btree 1273 */ 1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1275 int mirror_num, unsigned long bio_flags) 1276 { 1277 struct btrfs_root *root = BTRFS_I(inode)->root; 1278 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1279 } 1280 1281 /* 1282 * extent_io.c submission hook. This does the right thing for csum calculation 1283 * on write, or reading the csums from the tree before a read 1284 */ 1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1286 int mirror_num, unsigned long bio_flags) 1287 { 1288 struct btrfs_root *root = BTRFS_I(inode)->root; 1289 int ret = 0; 1290 int skip_sum; 1291 1292 skip_sum = btrfs_test_flag(inode, NODATASUM); 1293 1294 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1295 BUG_ON(ret); 1296 1297 if (!(rw & (1 << BIO_RW))) { 1298 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1299 return btrfs_submit_compressed_read(inode, bio, 1300 mirror_num, bio_flags); 1301 } else if (!skip_sum) 1302 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1303 goto mapit; 1304 } else if (!skip_sum) { 1305 /* csum items have already been cloned */ 1306 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1307 goto mapit; 1308 /* we're doing a write, do the async checksumming */ 1309 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1310 inode, rw, bio, mirror_num, 1311 bio_flags, __btrfs_submit_bio_start, 1312 __btrfs_submit_bio_done); 1313 } 1314 1315 mapit: 1316 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1317 } 1318 1319 /* 1320 * given a list of ordered sums record them in the inode. This happens 1321 * at IO completion time based on sums calculated at bio submission time. 1322 */ 1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1324 struct inode *inode, u64 file_offset, 1325 struct list_head *list) 1326 { 1327 struct list_head *cur; 1328 struct btrfs_ordered_sum *sum; 1329 1330 btrfs_set_trans_block_group(trans, inode); 1331 list_for_each(cur, list) { 1332 sum = list_entry(cur, struct btrfs_ordered_sum, list); 1333 btrfs_csum_file_blocks(trans, 1334 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1335 } 1336 return 0; 1337 } 1338 1339 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1340 { 1341 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1342 WARN_ON(1); 1343 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1344 GFP_NOFS); 1345 } 1346 1347 /* see btrfs_writepage_start_hook for details on why this is required */ 1348 struct btrfs_writepage_fixup { 1349 struct page *page; 1350 struct btrfs_work work; 1351 }; 1352 1353 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1354 { 1355 struct btrfs_writepage_fixup *fixup; 1356 struct btrfs_ordered_extent *ordered; 1357 struct page *page; 1358 struct inode *inode; 1359 u64 page_start; 1360 u64 page_end; 1361 1362 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1363 page = fixup->page; 1364 again: 1365 lock_page(page); 1366 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1367 ClearPageChecked(page); 1368 goto out_page; 1369 } 1370 1371 inode = page->mapping->host; 1372 page_start = page_offset(page); 1373 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1374 1375 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1376 1377 /* already ordered? We're done */ 1378 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 1379 EXTENT_ORDERED, 0)) { 1380 goto out; 1381 } 1382 1383 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1384 if (ordered) { 1385 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1386 page_end, GFP_NOFS); 1387 unlock_page(page); 1388 btrfs_start_ordered_extent(inode, ordered, 1); 1389 goto again; 1390 } 1391 1392 btrfs_set_extent_delalloc(inode, page_start, page_end); 1393 ClearPageChecked(page); 1394 out: 1395 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1396 out_page: 1397 unlock_page(page); 1398 page_cache_release(page); 1399 } 1400 1401 /* 1402 * There are a few paths in the higher layers of the kernel that directly 1403 * set the page dirty bit without asking the filesystem if it is a 1404 * good idea. This causes problems because we want to make sure COW 1405 * properly happens and the data=ordered rules are followed. 1406 * 1407 * In our case any range that doesn't have the ORDERED bit set 1408 * hasn't been properly setup for IO. We kick off an async process 1409 * to fix it up. The async helper will wait for ordered extents, set 1410 * the delalloc bit and make it safe to write the page. 1411 */ 1412 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1413 { 1414 struct inode *inode = page->mapping->host; 1415 struct btrfs_writepage_fixup *fixup; 1416 struct btrfs_root *root = BTRFS_I(inode)->root; 1417 int ret; 1418 1419 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1420 EXTENT_ORDERED, 0); 1421 if (ret) 1422 return 0; 1423 1424 if (PageChecked(page)) 1425 return -EAGAIN; 1426 1427 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1428 if (!fixup) 1429 return -EAGAIN; 1430 1431 SetPageChecked(page); 1432 page_cache_get(page); 1433 fixup->work.func = btrfs_writepage_fixup_worker; 1434 fixup->page = page; 1435 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1436 return -EAGAIN; 1437 } 1438 1439 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1440 struct inode *inode, u64 file_pos, 1441 u64 disk_bytenr, u64 disk_num_bytes, 1442 u64 num_bytes, u64 ram_bytes, 1443 u8 compression, u8 encryption, 1444 u16 other_encoding, int extent_type) 1445 { 1446 struct btrfs_root *root = BTRFS_I(inode)->root; 1447 struct btrfs_file_extent_item *fi; 1448 struct btrfs_path *path; 1449 struct extent_buffer *leaf; 1450 struct btrfs_key ins; 1451 u64 hint; 1452 int ret; 1453 1454 path = btrfs_alloc_path(); 1455 BUG_ON(!path); 1456 1457 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1458 file_pos + num_bytes, file_pos, &hint); 1459 BUG_ON(ret); 1460 1461 ins.objectid = inode->i_ino; 1462 ins.offset = file_pos; 1463 ins.type = BTRFS_EXTENT_DATA_KEY; 1464 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1465 BUG_ON(ret); 1466 leaf = path->nodes[0]; 1467 fi = btrfs_item_ptr(leaf, path->slots[0], 1468 struct btrfs_file_extent_item); 1469 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1470 btrfs_set_file_extent_type(leaf, fi, extent_type); 1471 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1472 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1473 btrfs_set_file_extent_offset(leaf, fi, 0); 1474 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1475 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1476 btrfs_set_file_extent_compression(leaf, fi, compression); 1477 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1478 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1479 btrfs_mark_buffer_dirty(leaf); 1480 1481 inode_add_bytes(inode, num_bytes); 1482 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); 1483 1484 ins.objectid = disk_bytenr; 1485 ins.offset = disk_num_bytes; 1486 ins.type = BTRFS_EXTENT_ITEM_KEY; 1487 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start, 1488 root->root_key.objectid, 1489 trans->transid, inode->i_ino, &ins); 1490 BUG_ON(ret); 1491 1492 btrfs_free_path(path); 1493 return 0; 1494 } 1495 1496 /* as ordered data IO finishes, this gets called so we can finish 1497 * an ordered extent if the range of bytes in the file it covers are 1498 * fully written. 1499 */ 1500 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1501 { 1502 struct btrfs_root *root = BTRFS_I(inode)->root; 1503 struct btrfs_trans_handle *trans; 1504 struct btrfs_ordered_extent *ordered_extent; 1505 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1506 int compressed = 0; 1507 int ret; 1508 1509 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1510 if (!ret) 1511 return 0; 1512 1513 trans = btrfs_join_transaction(root, 1); 1514 1515 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1516 BUG_ON(!ordered_extent); 1517 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) 1518 goto nocow; 1519 1520 lock_extent(io_tree, ordered_extent->file_offset, 1521 ordered_extent->file_offset + ordered_extent->len - 1, 1522 GFP_NOFS); 1523 1524 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1525 compressed = 1; 1526 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1527 BUG_ON(compressed); 1528 ret = btrfs_mark_extent_written(trans, root, inode, 1529 ordered_extent->file_offset, 1530 ordered_extent->file_offset + 1531 ordered_extent->len); 1532 BUG_ON(ret); 1533 } else { 1534 ret = insert_reserved_file_extent(trans, inode, 1535 ordered_extent->file_offset, 1536 ordered_extent->start, 1537 ordered_extent->disk_len, 1538 ordered_extent->len, 1539 ordered_extent->len, 1540 compressed, 0, 0, 1541 BTRFS_FILE_EXTENT_REG); 1542 BUG_ON(ret); 1543 } 1544 unlock_extent(io_tree, ordered_extent->file_offset, 1545 ordered_extent->file_offset + ordered_extent->len - 1, 1546 GFP_NOFS); 1547 nocow: 1548 add_pending_csums(trans, inode, ordered_extent->file_offset, 1549 &ordered_extent->list); 1550 1551 mutex_lock(&BTRFS_I(inode)->extent_mutex); 1552 btrfs_ordered_update_i_size(inode, ordered_extent); 1553 btrfs_update_inode(trans, root, inode); 1554 btrfs_remove_ordered_extent(inode, ordered_extent); 1555 mutex_unlock(&BTRFS_I(inode)->extent_mutex); 1556 1557 /* once for us */ 1558 btrfs_put_ordered_extent(ordered_extent); 1559 /* once for the tree */ 1560 btrfs_put_ordered_extent(ordered_extent); 1561 1562 btrfs_end_transaction(trans, root); 1563 return 0; 1564 } 1565 1566 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1567 struct extent_state *state, int uptodate) 1568 { 1569 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1570 } 1571 1572 /* 1573 * When IO fails, either with EIO or csum verification fails, we 1574 * try other mirrors that might have a good copy of the data. This 1575 * io_failure_record is used to record state as we go through all the 1576 * mirrors. If another mirror has good data, the page is set up to date 1577 * and things continue. If a good mirror can't be found, the original 1578 * bio end_io callback is called to indicate things have failed. 1579 */ 1580 struct io_failure_record { 1581 struct page *page; 1582 u64 start; 1583 u64 len; 1584 u64 logical; 1585 unsigned long bio_flags; 1586 int last_mirror; 1587 }; 1588 1589 static int btrfs_io_failed_hook(struct bio *failed_bio, 1590 struct page *page, u64 start, u64 end, 1591 struct extent_state *state) 1592 { 1593 struct io_failure_record *failrec = NULL; 1594 u64 private; 1595 struct extent_map *em; 1596 struct inode *inode = page->mapping->host; 1597 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1598 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1599 struct bio *bio; 1600 int num_copies; 1601 int ret; 1602 int rw; 1603 u64 logical; 1604 1605 ret = get_state_private(failure_tree, start, &private); 1606 if (ret) { 1607 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1608 if (!failrec) 1609 return -ENOMEM; 1610 failrec->start = start; 1611 failrec->len = end - start + 1; 1612 failrec->last_mirror = 0; 1613 failrec->bio_flags = 0; 1614 1615 spin_lock(&em_tree->lock); 1616 em = lookup_extent_mapping(em_tree, start, failrec->len); 1617 if (em->start > start || em->start + em->len < start) { 1618 free_extent_map(em); 1619 em = NULL; 1620 } 1621 spin_unlock(&em_tree->lock); 1622 1623 if (!em || IS_ERR(em)) { 1624 kfree(failrec); 1625 return -EIO; 1626 } 1627 logical = start - em->start; 1628 logical = em->block_start + logical; 1629 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1630 logical = em->block_start; 1631 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1632 } 1633 failrec->logical = logical; 1634 free_extent_map(em); 1635 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1636 EXTENT_DIRTY, GFP_NOFS); 1637 set_state_private(failure_tree, start, 1638 (u64)(unsigned long)failrec); 1639 } else { 1640 failrec = (struct io_failure_record *)(unsigned long)private; 1641 } 1642 num_copies = btrfs_num_copies( 1643 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1644 failrec->logical, failrec->len); 1645 failrec->last_mirror++; 1646 if (!state) { 1647 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1648 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1649 failrec->start, 1650 EXTENT_LOCKED); 1651 if (state && state->start != failrec->start) 1652 state = NULL; 1653 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1654 } 1655 if (!state || failrec->last_mirror > num_copies) { 1656 set_state_private(failure_tree, failrec->start, 0); 1657 clear_extent_bits(failure_tree, failrec->start, 1658 failrec->start + failrec->len - 1, 1659 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1660 kfree(failrec); 1661 return -EIO; 1662 } 1663 bio = bio_alloc(GFP_NOFS, 1); 1664 bio->bi_private = state; 1665 bio->bi_end_io = failed_bio->bi_end_io; 1666 bio->bi_sector = failrec->logical >> 9; 1667 bio->bi_bdev = failed_bio->bi_bdev; 1668 bio->bi_size = 0; 1669 1670 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1671 if (failed_bio->bi_rw & (1 << BIO_RW)) 1672 rw = WRITE; 1673 else 1674 rw = READ; 1675 1676 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1677 failrec->last_mirror, 1678 failrec->bio_flags); 1679 return 0; 1680 } 1681 1682 /* 1683 * each time an IO finishes, we do a fast check in the IO failure tree 1684 * to see if we need to process or clean up an io_failure_record 1685 */ 1686 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1687 { 1688 u64 private; 1689 u64 private_failure; 1690 struct io_failure_record *failure; 1691 int ret; 1692 1693 private = 0; 1694 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1695 (u64)-1, 1, EXTENT_DIRTY)) { 1696 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1697 start, &private_failure); 1698 if (ret == 0) { 1699 failure = (struct io_failure_record *)(unsigned long) 1700 private_failure; 1701 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1702 failure->start, 0); 1703 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1704 failure->start, 1705 failure->start + failure->len - 1, 1706 EXTENT_DIRTY | EXTENT_LOCKED, 1707 GFP_NOFS); 1708 kfree(failure); 1709 } 1710 } 1711 return 0; 1712 } 1713 1714 /* 1715 * when reads are done, we need to check csums to verify the data is correct 1716 * if there's a match, we allow the bio to finish. If not, we go through 1717 * the io_failure_record routines to find good copies 1718 */ 1719 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1720 struct extent_state *state) 1721 { 1722 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1723 struct inode *inode = page->mapping->host; 1724 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1725 char *kaddr; 1726 u64 private = ~(u32)0; 1727 int ret; 1728 struct btrfs_root *root = BTRFS_I(inode)->root; 1729 u32 csum = ~(u32)0; 1730 unsigned long flags; 1731 1732 if (PageChecked(page)) { 1733 ClearPageChecked(page); 1734 goto good; 1735 } 1736 if (btrfs_test_flag(inode, NODATASUM)) 1737 return 0; 1738 1739 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1740 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { 1741 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1742 GFP_NOFS); 1743 return 0; 1744 } 1745 1746 if (state && state->start == start) { 1747 private = state->private; 1748 ret = 0; 1749 } else { 1750 ret = get_state_private(io_tree, start, &private); 1751 } 1752 local_irq_save(flags); 1753 kaddr = kmap_atomic(page, KM_IRQ0); 1754 if (ret) 1755 goto zeroit; 1756 1757 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1758 btrfs_csum_final(csum, (char *)&csum); 1759 if (csum != private) 1760 goto zeroit; 1761 1762 kunmap_atomic(kaddr, KM_IRQ0); 1763 local_irq_restore(flags); 1764 good: 1765 /* if the io failure tree for this inode is non-empty, 1766 * check to see if we've recovered from a failed IO 1767 */ 1768 btrfs_clean_io_failures(inode, start); 1769 return 0; 1770 1771 zeroit: 1772 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1773 "private %llu\n", page->mapping->host->i_ino, 1774 (unsigned long long)start, csum, 1775 (unsigned long long)private); 1776 memset(kaddr + offset, 1, end - start + 1); 1777 flush_dcache_page(page); 1778 kunmap_atomic(kaddr, KM_IRQ0); 1779 local_irq_restore(flags); 1780 if (private == 0) 1781 return 0; 1782 return -EIO; 1783 } 1784 1785 /* 1786 * This creates an orphan entry for the given inode in case something goes 1787 * wrong in the middle of an unlink/truncate. 1788 */ 1789 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1790 { 1791 struct btrfs_root *root = BTRFS_I(inode)->root; 1792 int ret = 0; 1793 1794 spin_lock(&root->list_lock); 1795 1796 /* already on the orphan list, we're good */ 1797 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 1798 spin_unlock(&root->list_lock); 1799 return 0; 1800 } 1801 1802 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1803 1804 spin_unlock(&root->list_lock); 1805 1806 /* 1807 * insert an orphan item to track this unlinked/truncated file 1808 */ 1809 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 1810 1811 return ret; 1812 } 1813 1814 /* 1815 * We have done the truncate/delete so we can go ahead and remove the orphan 1816 * item for this particular inode. 1817 */ 1818 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 1819 { 1820 struct btrfs_root *root = BTRFS_I(inode)->root; 1821 int ret = 0; 1822 1823 spin_lock(&root->list_lock); 1824 1825 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 1826 spin_unlock(&root->list_lock); 1827 return 0; 1828 } 1829 1830 list_del_init(&BTRFS_I(inode)->i_orphan); 1831 if (!trans) { 1832 spin_unlock(&root->list_lock); 1833 return 0; 1834 } 1835 1836 spin_unlock(&root->list_lock); 1837 1838 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 1839 1840 return ret; 1841 } 1842 1843 /* 1844 * this cleans up any orphans that may be left on the list from the last use 1845 * of this root. 1846 */ 1847 void btrfs_orphan_cleanup(struct btrfs_root *root) 1848 { 1849 struct btrfs_path *path; 1850 struct extent_buffer *leaf; 1851 struct btrfs_item *item; 1852 struct btrfs_key key, found_key; 1853 struct btrfs_trans_handle *trans; 1854 struct inode *inode; 1855 int ret = 0, nr_unlink = 0, nr_truncate = 0; 1856 1857 path = btrfs_alloc_path(); 1858 if (!path) 1859 return; 1860 path->reada = -1; 1861 1862 key.objectid = BTRFS_ORPHAN_OBJECTID; 1863 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1864 key.offset = (u64)-1; 1865 1866 1867 while (1) { 1868 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1869 if (ret < 0) { 1870 printk(KERN_ERR "Error searching slot for orphan: %d" 1871 "\n", ret); 1872 break; 1873 } 1874 1875 /* 1876 * if ret == 0 means we found what we were searching for, which 1877 * is weird, but possible, so only screw with path if we didnt 1878 * find the key and see if we have stuff that matches 1879 */ 1880 if (ret > 0) { 1881 if (path->slots[0] == 0) 1882 break; 1883 path->slots[0]--; 1884 } 1885 1886 /* pull out the item */ 1887 leaf = path->nodes[0]; 1888 item = btrfs_item_nr(leaf, path->slots[0]); 1889 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1890 1891 /* make sure the item matches what we want */ 1892 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 1893 break; 1894 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 1895 break; 1896 1897 /* release the path since we're done with it */ 1898 btrfs_release_path(root, path); 1899 1900 /* 1901 * this is where we are basically btrfs_lookup, without the 1902 * crossing root thing. we store the inode number in the 1903 * offset of the orphan item. 1904 */ 1905 inode = btrfs_iget_locked(root->fs_info->sb, 1906 found_key.offset, root); 1907 if (!inode) 1908 break; 1909 1910 if (inode->i_state & I_NEW) { 1911 BTRFS_I(inode)->root = root; 1912 1913 /* have to set the location manually */ 1914 BTRFS_I(inode)->location.objectid = inode->i_ino; 1915 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 1916 BTRFS_I(inode)->location.offset = 0; 1917 1918 btrfs_read_locked_inode(inode); 1919 unlock_new_inode(inode); 1920 } 1921 1922 /* 1923 * add this inode to the orphan list so btrfs_orphan_del does 1924 * the proper thing when we hit it 1925 */ 1926 spin_lock(&root->list_lock); 1927 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1928 spin_unlock(&root->list_lock); 1929 1930 /* 1931 * if this is a bad inode, means we actually succeeded in 1932 * removing the inode, but not the orphan record, which means 1933 * we need to manually delete the orphan since iput will just 1934 * do a destroy_inode 1935 */ 1936 if (is_bad_inode(inode)) { 1937 trans = btrfs_start_transaction(root, 1); 1938 btrfs_orphan_del(trans, inode); 1939 btrfs_end_transaction(trans, root); 1940 iput(inode); 1941 continue; 1942 } 1943 1944 /* if we have links, this was a truncate, lets do that */ 1945 if (inode->i_nlink) { 1946 nr_truncate++; 1947 btrfs_truncate(inode); 1948 } else { 1949 nr_unlink++; 1950 } 1951 1952 /* this will do delete_inode and everything for us */ 1953 iput(inode); 1954 } 1955 1956 if (nr_unlink) 1957 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 1958 if (nr_truncate) 1959 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 1960 1961 btrfs_free_path(path); 1962 } 1963 1964 /* 1965 * read an inode from the btree into the in-memory inode 1966 */ 1967 void btrfs_read_locked_inode(struct inode *inode) 1968 { 1969 struct btrfs_path *path; 1970 struct extent_buffer *leaf; 1971 struct btrfs_inode_item *inode_item; 1972 struct btrfs_timespec *tspec; 1973 struct btrfs_root *root = BTRFS_I(inode)->root; 1974 struct btrfs_key location; 1975 u64 alloc_group_block; 1976 u32 rdev; 1977 int ret; 1978 1979 path = btrfs_alloc_path(); 1980 BUG_ON(!path); 1981 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 1982 1983 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 1984 if (ret) 1985 goto make_bad; 1986 1987 leaf = path->nodes[0]; 1988 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1989 struct btrfs_inode_item); 1990 1991 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 1992 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 1993 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 1994 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 1995 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 1996 1997 tspec = btrfs_inode_atime(inode_item); 1998 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 1999 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2000 2001 tspec = btrfs_inode_mtime(inode_item); 2002 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2003 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2004 2005 tspec = btrfs_inode_ctime(inode_item); 2006 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2007 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2008 2009 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2010 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2011 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2012 inode->i_generation = BTRFS_I(inode)->generation; 2013 inode->i_rdev = 0; 2014 rdev = btrfs_inode_rdev(leaf, inode_item); 2015 2016 BTRFS_I(inode)->index_cnt = (u64)-1; 2017 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2018 2019 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2020 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2021 alloc_group_block, 0); 2022 btrfs_free_path(path); 2023 inode_item = NULL; 2024 2025 switch (inode->i_mode & S_IFMT) { 2026 case S_IFREG: 2027 inode->i_mapping->a_ops = &btrfs_aops; 2028 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2029 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2030 inode->i_fop = &btrfs_file_operations; 2031 inode->i_op = &btrfs_file_inode_operations; 2032 break; 2033 case S_IFDIR: 2034 inode->i_fop = &btrfs_dir_file_operations; 2035 if (root == root->fs_info->tree_root) 2036 inode->i_op = &btrfs_dir_ro_inode_operations; 2037 else 2038 inode->i_op = &btrfs_dir_inode_operations; 2039 break; 2040 case S_IFLNK: 2041 inode->i_op = &btrfs_symlink_inode_operations; 2042 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2043 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2044 break; 2045 default: 2046 init_special_inode(inode, inode->i_mode, rdev); 2047 break; 2048 } 2049 return; 2050 2051 make_bad: 2052 btrfs_free_path(path); 2053 make_bad_inode(inode); 2054 } 2055 2056 /* 2057 * given a leaf and an inode, copy the inode fields into the leaf 2058 */ 2059 static void fill_inode_item(struct btrfs_trans_handle *trans, 2060 struct extent_buffer *leaf, 2061 struct btrfs_inode_item *item, 2062 struct inode *inode) 2063 { 2064 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2065 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2066 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2067 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2068 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2069 2070 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2071 inode->i_atime.tv_sec); 2072 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2073 inode->i_atime.tv_nsec); 2074 2075 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2076 inode->i_mtime.tv_sec); 2077 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2078 inode->i_mtime.tv_nsec); 2079 2080 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2081 inode->i_ctime.tv_sec); 2082 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2083 inode->i_ctime.tv_nsec); 2084 2085 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2086 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2087 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2088 btrfs_set_inode_transid(leaf, item, trans->transid); 2089 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2090 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2091 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2092 } 2093 2094 /* 2095 * copy everything in the in-memory inode into the btree. 2096 */ 2097 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2098 struct btrfs_root *root, struct inode *inode) 2099 { 2100 struct btrfs_inode_item *inode_item; 2101 struct btrfs_path *path; 2102 struct extent_buffer *leaf; 2103 int ret; 2104 2105 path = btrfs_alloc_path(); 2106 BUG_ON(!path); 2107 ret = btrfs_lookup_inode(trans, root, path, 2108 &BTRFS_I(inode)->location, 1); 2109 if (ret) { 2110 if (ret > 0) 2111 ret = -ENOENT; 2112 goto failed; 2113 } 2114 2115 leaf = path->nodes[0]; 2116 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2117 struct btrfs_inode_item); 2118 2119 fill_inode_item(trans, leaf, inode_item, inode); 2120 btrfs_mark_buffer_dirty(leaf); 2121 btrfs_set_inode_last_trans(trans, inode); 2122 ret = 0; 2123 failed: 2124 btrfs_free_path(path); 2125 return ret; 2126 } 2127 2128 2129 /* 2130 * unlink helper that gets used here in inode.c and in the tree logging 2131 * recovery code. It remove a link in a directory with a given name, and 2132 * also drops the back refs in the inode to the directory 2133 */ 2134 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2135 struct btrfs_root *root, 2136 struct inode *dir, struct inode *inode, 2137 const char *name, int name_len) 2138 { 2139 struct btrfs_path *path; 2140 int ret = 0; 2141 struct extent_buffer *leaf; 2142 struct btrfs_dir_item *di; 2143 struct btrfs_key key; 2144 u64 index; 2145 2146 path = btrfs_alloc_path(); 2147 if (!path) { 2148 ret = -ENOMEM; 2149 goto err; 2150 } 2151 2152 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2153 name, name_len, -1); 2154 if (IS_ERR(di)) { 2155 ret = PTR_ERR(di); 2156 goto err; 2157 } 2158 if (!di) { 2159 ret = -ENOENT; 2160 goto err; 2161 } 2162 leaf = path->nodes[0]; 2163 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2164 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2165 if (ret) 2166 goto err; 2167 btrfs_release_path(root, path); 2168 2169 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2170 inode->i_ino, 2171 dir->i_ino, &index); 2172 if (ret) { 2173 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2174 "inode %lu parent %lu\n", name_len, name, 2175 inode->i_ino, dir->i_ino); 2176 goto err; 2177 } 2178 2179 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2180 index, name, name_len, -1); 2181 if (IS_ERR(di)) { 2182 ret = PTR_ERR(di); 2183 goto err; 2184 } 2185 if (!di) { 2186 ret = -ENOENT; 2187 goto err; 2188 } 2189 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2190 btrfs_release_path(root, path); 2191 2192 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2193 inode, dir->i_ino); 2194 BUG_ON(ret != 0 && ret != -ENOENT); 2195 if (ret != -ENOENT) 2196 BTRFS_I(dir)->log_dirty_trans = trans->transid; 2197 2198 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2199 dir, index); 2200 BUG_ON(ret); 2201 err: 2202 btrfs_free_path(path); 2203 if (ret) 2204 goto out; 2205 2206 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2207 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2208 btrfs_update_inode(trans, root, dir); 2209 btrfs_drop_nlink(inode); 2210 ret = btrfs_update_inode(trans, root, inode); 2211 dir->i_sb->s_dirt = 1; 2212 out: 2213 return ret; 2214 } 2215 2216 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2217 { 2218 struct btrfs_root *root; 2219 struct btrfs_trans_handle *trans; 2220 struct inode *inode = dentry->d_inode; 2221 int ret; 2222 unsigned long nr = 0; 2223 2224 root = BTRFS_I(dir)->root; 2225 2226 ret = btrfs_check_free_space(root, 1, 1); 2227 if (ret) 2228 goto fail; 2229 2230 trans = btrfs_start_transaction(root, 1); 2231 2232 btrfs_set_trans_block_group(trans, dir); 2233 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2234 dentry->d_name.name, dentry->d_name.len); 2235 2236 if (inode->i_nlink == 0) 2237 ret = btrfs_orphan_add(trans, inode); 2238 2239 nr = trans->blocks_used; 2240 2241 btrfs_end_transaction_throttle(trans, root); 2242 fail: 2243 btrfs_btree_balance_dirty(root, nr); 2244 return ret; 2245 } 2246 2247 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2248 { 2249 struct inode *inode = dentry->d_inode; 2250 int err = 0; 2251 int ret; 2252 struct btrfs_root *root = BTRFS_I(dir)->root; 2253 struct btrfs_trans_handle *trans; 2254 unsigned long nr = 0; 2255 2256 /* 2257 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir 2258 * the root of a subvolume or snapshot 2259 */ 2260 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2261 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { 2262 return -ENOTEMPTY; 2263 } 2264 2265 ret = btrfs_check_free_space(root, 1, 1); 2266 if (ret) 2267 goto fail; 2268 2269 trans = btrfs_start_transaction(root, 1); 2270 btrfs_set_trans_block_group(trans, dir); 2271 2272 err = btrfs_orphan_add(trans, inode); 2273 if (err) 2274 goto fail_trans; 2275 2276 /* now the directory is empty */ 2277 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2278 dentry->d_name.name, dentry->d_name.len); 2279 if (!err) 2280 btrfs_i_size_write(inode, 0); 2281 2282 fail_trans: 2283 nr = trans->blocks_used; 2284 ret = btrfs_end_transaction_throttle(trans, root); 2285 fail: 2286 btrfs_btree_balance_dirty(root, nr); 2287 2288 if (ret && !err) 2289 err = ret; 2290 return err; 2291 } 2292 2293 #if 0 2294 /* 2295 * when truncating bytes in a file, it is possible to avoid reading 2296 * the leaves that contain only checksum items. This can be the 2297 * majority of the IO required to delete a large file, but it must 2298 * be done carefully. 2299 * 2300 * The keys in the level just above the leaves are checked to make sure 2301 * the lowest key in a given leaf is a csum key, and starts at an offset 2302 * after the new size. 2303 * 2304 * Then the key for the next leaf is checked to make sure it also has 2305 * a checksum item for the same file. If it does, we know our target leaf 2306 * contains only checksum items, and it can be safely freed without reading 2307 * it. 2308 * 2309 * This is just an optimization targeted at large files. It may do 2310 * nothing. It will return 0 unless things went badly. 2311 */ 2312 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2313 struct btrfs_root *root, 2314 struct btrfs_path *path, 2315 struct inode *inode, u64 new_size) 2316 { 2317 struct btrfs_key key; 2318 int ret; 2319 int nritems; 2320 struct btrfs_key found_key; 2321 struct btrfs_key other_key; 2322 struct btrfs_leaf_ref *ref; 2323 u64 leaf_gen; 2324 u64 leaf_start; 2325 2326 path->lowest_level = 1; 2327 key.objectid = inode->i_ino; 2328 key.type = BTRFS_CSUM_ITEM_KEY; 2329 key.offset = new_size; 2330 again: 2331 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2332 if (ret < 0) 2333 goto out; 2334 2335 if (path->nodes[1] == NULL) { 2336 ret = 0; 2337 goto out; 2338 } 2339 ret = 0; 2340 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2341 nritems = btrfs_header_nritems(path->nodes[1]); 2342 2343 if (!nritems) 2344 goto out; 2345 2346 if (path->slots[1] >= nritems) 2347 goto next_node; 2348 2349 /* did we find a key greater than anything we want to delete? */ 2350 if (found_key.objectid > inode->i_ino || 2351 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2352 goto out; 2353 2354 /* we check the next key in the node to make sure the leave contains 2355 * only checksum items. This comparison doesn't work if our 2356 * leaf is the last one in the node 2357 */ 2358 if (path->slots[1] + 1 >= nritems) { 2359 next_node: 2360 /* search forward from the last key in the node, this 2361 * will bring us into the next node in the tree 2362 */ 2363 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2364 2365 /* unlikely, but we inc below, so check to be safe */ 2366 if (found_key.offset == (u64)-1) 2367 goto out; 2368 2369 /* search_forward needs a path with locks held, do the 2370 * search again for the original key. It is possible 2371 * this will race with a balance and return a path that 2372 * we could modify, but this drop is just an optimization 2373 * and is allowed to miss some leaves. 2374 */ 2375 btrfs_release_path(root, path); 2376 found_key.offset++; 2377 2378 /* setup a max key for search_forward */ 2379 other_key.offset = (u64)-1; 2380 other_key.type = key.type; 2381 other_key.objectid = key.objectid; 2382 2383 path->keep_locks = 1; 2384 ret = btrfs_search_forward(root, &found_key, &other_key, 2385 path, 0, 0); 2386 path->keep_locks = 0; 2387 if (ret || found_key.objectid != key.objectid || 2388 found_key.type != key.type) { 2389 ret = 0; 2390 goto out; 2391 } 2392 2393 key.offset = found_key.offset; 2394 btrfs_release_path(root, path); 2395 cond_resched(); 2396 goto again; 2397 } 2398 2399 /* we know there's one more slot after us in the tree, 2400 * read that key so we can verify it is also a checksum item 2401 */ 2402 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2403 2404 if (found_key.objectid < inode->i_ino) 2405 goto next_key; 2406 2407 if (found_key.type != key.type || found_key.offset < new_size) 2408 goto next_key; 2409 2410 /* 2411 * if the key for the next leaf isn't a csum key from this objectid, 2412 * we can't be sure there aren't good items inside this leaf. 2413 * Bail out 2414 */ 2415 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2416 goto out; 2417 2418 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2419 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2420 /* 2421 * it is safe to delete this leaf, it contains only 2422 * csum items from this inode at an offset >= new_size 2423 */ 2424 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2425 BUG_ON(ret); 2426 2427 if (root->ref_cows && leaf_gen < trans->transid) { 2428 ref = btrfs_alloc_leaf_ref(root, 0); 2429 if (ref) { 2430 ref->root_gen = root->root_key.offset; 2431 ref->bytenr = leaf_start; 2432 ref->owner = 0; 2433 ref->generation = leaf_gen; 2434 ref->nritems = 0; 2435 2436 ret = btrfs_add_leaf_ref(root, ref, 0); 2437 WARN_ON(ret); 2438 btrfs_free_leaf_ref(root, ref); 2439 } else { 2440 WARN_ON(1); 2441 } 2442 } 2443 next_key: 2444 btrfs_release_path(root, path); 2445 2446 if (other_key.objectid == inode->i_ino && 2447 other_key.type == key.type && other_key.offset > key.offset) { 2448 key.offset = other_key.offset; 2449 cond_resched(); 2450 goto again; 2451 } 2452 ret = 0; 2453 out: 2454 /* fixup any changes we've made to the path */ 2455 path->lowest_level = 0; 2456 path->keep_locks = 0; 2457 btrfs_release_path(root, path); 2458 return ret; 2459 } 2460 2461 #endif 2462 2463 /* 2464 * this can truncate away extent items, csum items and directory items. 2465 * It starts at a high offset and removes keys until it can't find 2466 * any higher than new_size 2467 * 2468 * csum items that cross the new i_size are truncated to the new size 2469 * as well. 2470 * 2471 * min_type is the minimum key type to truncate down to. If set to 0, this 2472 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2473 */ 2474 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2475 struct btrfs_root *root, 2476 struct inode *inode, 2477 u64 new_size, u32 min_type) 2478 { 2479 int ret; 2480 struct btrfs_path *path; 2481 struct btrfs_key key; 2482 struct btrfs_key found_key; 2483 u32 found_type; 2484 struct extent_buffer *leaf; 2485 struct btrfs_file_extent_item *fi; 2486 u64 extent_start = 0; 2487 u64 extent_num_bytes = 0; 2488 u64 item_end = 0; 2489 u64 root_gen = 0; 2490 u64 root_owner = 0; 2491 int found_extent; 2492 int del_item; 2493 int pending_del_nr = 0; 2494 int pending_del_slot = 0; 2495 int extent_type = -1; 2496 int encoding; 2497 u64 mask = root->sectorsize - 1; 2498 2499 if (root->ref_cows) 2500 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2501 path = btrfs_alloc_path(); 2502 path->reada = -1; 2503 BUG_ON(!path); 2504 2505 /* FIXME, add redo link to tree so we don't leak on crash */ 2506 key.objectid = inode->i_ino; 2507 key.offset = (u64)-1; 2508 key.type = (u8)-1; 2509 2510 btrfs_init_path(path); 2511 2512 search_again: 2513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2514 if (ret < 0) 2515 goto error; 2516 2517 if (ret > 0) { 2518 /* there are no items in the tree for us to truncate, we're 2519 * done 2520 */ 2521 if (path->slots[0] == 0) { 2522 ret = 0; 2523 goto error; 2524 } 2525 path->slots[0]--; 2526 } 2527 2528 while (1) { 2529 fi = NULL; 2530 leaf = path->nodes[0]; 2531 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2532 found_type = btrfs_key_type(&found_key); 2533 encoding = 0; 2534 2535 if (found_key.objectid != inode->i_ino) 2536 break; 2537 2538 if (found_type < min_type) 2539 break; 2540 2541 item_end = found_key.offset; 2542 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2543 fi = btrfs_item_ptr(leaf, path->slots[0], 2544 struct btrfs_file_extent_item); 2545 extent_type = btrfs_file_extent_type(leaf, fi); 2546 encoding = btrfs_file_extent_compression(leaf, fi); 2547 encoding |= btrfs_file_extent_encryption(leaf, fi); 2548 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2549 2550 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2551 item_end += 2552 btrfs_file_extent_num_bytes(leaf, fi); 2553 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2554 item_end += btrfs_file_extent_inline_len(leaf, 2555 fi); 2556 } 2557 item_end--; 2558 } 2559 if (item_end < new_size) { 2560 if (found_type == BTRFS_DIR_ITEM_KEY) 2561 found_type = BTRFS_INODE_ITEM_KEY; 2562 else if (found_type == BTRFS_EXTENT_ITEM_KEY) 2563 found_type = BTRFS_EXTENT_DATA_KEY; 2564 else if (found_type == BTRFS_EXTENT_DATA_KEY) 2565 found_type = BTRFS_XATTR_ITEM_KEY; 2566 else if (found_type == BTRFS_XATTR_ITEM_KEY) 2567 found_type = BTRFS_INODE_REF_KEY; 2568 else if (found_type) 2569 found_type--; 2570 else 2571 break; 2572 btrfs_set_key_type(&key, found_type); 2573 goto next; 2574 } 2575 if (found_key.offset >= new_size) 2576 del_item = 1; 2577 else 2578 del_item = 0; 2579 found_extent = 0; 2580 2581 /* FIXME, shrink the extent if the ref count is only 1 */ 2582 if (found_type != BTRFS_EXTENT_DATA_KEY) 2583 goto delete; 2584 2585 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2586 u64 num_dec; 2587 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 2588 if (!del_item && !encoding) { 2589 u64 orig_num_bytes = 2590 btrfs_file_extent_num_bytes(leaf, fi); 2591 extent_num_bytes = new_size - 2592 found_key.offset + root->sectorsize - 1; 2593 extent_num_bytes = extent_num_bytes & 2594 ~((u64)root->sectorsize - 1); 2595 btrfs_set_file_extent_num_bytes(leaf, fi, 2596 extent_num_bytes); 2597 num_dec = (orig_num_bytes - 2598 extent_num_bytes); 2599 if (root->ref_cows && extent_start != 0) 2600 inode_sub_bytes(inode, num_dec); 2601 btrfs_mark_buffer_dirty(leaf); 2602 } else { 2603 extent_num_bytes = 2604 btrfs_file_extent_disk_num_bytes(leaf, 2605 fi); 2606 /* FIXME blocksize != 4096 */ 2607 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 2608 if (extent_start != 0) { 2609 found_extent = 1; 2610 if (root->ref_cows) 2611 inode_sub_bytes(inode, num_dec); 2612 } 2613 root_gen = btrfs_header_generation(leaf); 2614 root_owner = btrfs_header_owner(leaf); 2615 } 2616 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2617 /* 2618 * we can't truncate inline items that have had 2619 * special encodings 2620 */ 2621 if (!del_item && 2622 btrfs_file_extent_compression(leaf, fi) == 0 && 2623 btrfs_file_extent_encryption(leaf, fi) == 0 && 2624 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 2625 u32 size = new_size - found_key.offset; 2626 2627 if (root->ref_cows) { 2628 inode_sub_bytes(inode, item_end + 1 - 2629 new_size); 2630 } 2631 size = 2632 btrfs_file_extent_calc_inline_size(size); 2633 ret = btrfs_truncate_item(trans, root, path, 2634 size, 1); 2635 BUG_ON(ret); 2636 } else if (root->ref_cows) { 2637 inode_sub_bytes(inode, item_end + 1 - 2638 found_key.offset); 2639 } 2640 } 2641 delete: 2642 if (del_item) { 2643 if (!pending_del_nr) { 2644 /* no pending yet, add ourselves */ 2645 pending_del_slot = path->slots[0]; 2646 pending_del_nr = 1; 2647 } else if (pending_del_nr && 2648 path->slots[0] + 1 == pending_del_slot) { 2649 /* hop on the pending chunk */ 2650 pending_del_nr++; 2651 pending_del_slot = path->slots[0]; 2652 } else { 2653 BUG(); 2654 } 2655 } else { 2656 break; 2657 } 2658 if (found_extent) { 2659 ret = btrfs_free_extent(trans, root, extent_start, 2660 extent_num_bytes, 2661 leaf->start, root_owner, 2662 root_gen, inode->i_ino, 0); 2663 BUG_ON(ret); 2664 } 2665 next: 2666 if (path->slots[0] == 0) { 2667 if (pending_del_nr) 2668 goto del_pending; 2669 btrfs_release_path(root, path); 2670 goto search_again; 2671 } 2672 2673 path->slots[0]--; 2674 if (pending_del_nr && 2675 path->slots[0] + 1 != pending_del_slot) { 2676 struct btrfs_key debug; 2677 del_pending: 2678 btrfs_item_key_to_cpu(path->nodes[0], &debug, 2679 pending_del_slot); 2680 ret = btrfs_del_items(trans, root, path, 2681 pending_del_slot, 2682 pending_del_nr); 2683 BUG_ON(ret); 2684 pending_del_nr = 0; 2685 btrfs_release_path(root, path); 2686 goto search_again; 2687 } 2688 } 2689 ret = 0; 2690 error: 2691 if (pending_del_nr) { 2692 ret = btrfs_del_items(trans, root, path, pending_del_slot, 2693 pending_del_nr); 2694 } 2695 btrfs_free_path(path); 2696 inode->i_sb->s_dirt = 1; 2697 return ret; 2698 } 2699 2700 /* 2701 * taken from block_truncate_page, but does cow as it zeros out 2702 * any bytes left in the last page in the file. 2703 */ 2704 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 2705 { 2706 struct inode *inode = mapping->host; 2707 struct btrfs_root *root = BTRFS_I(inode)->root; 2708 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2709 struct btrfs_ordered_extent *ordered; 2710 char *kaddr; 2711 u32 blocksize = root->sectorsize; 2712 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2713 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2714 struct page *page; 2715 int ret = 0; 2716 u64 page_start; 2717 u64 page_end; 2718 2719 if ((offset & (blocksize - 1)) == 0) 2720 goto out; 2721 2722 ret = -ENOMEM; 2723 again: 2724 page = grab_cache_page(mapping, index); 2725 if (!page) 2726 goto out; 2727 2728 page_start = page_offset(page); 2729 page_end = page_start + PAGE_CACHE_SIZE - 1; 2730 2731 if (!PageUptodate(page)) { 2732 ret = btrfs_readpage(NULL, page); 2733 lock_page(page); 2734 if (page->mapping != mapping) { 2735 unlock_page(page); 2736 page_cache_release(page); 2737 goto again; 2738 } 2739 if (!PageUptodate(page)) { 2740 ret = -EIO; 2741 goto out_unlock; 2742 } 2743 } 2744 wait_on_page_writeback(page); 2745 2746 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 2747 set_page_extent_mapped(page); 2748 2749 ordered = btrfs_lookup_ordered_extent(inode, page_start); 2750 if (ordered) { 2751 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2752 unlock_page(page); 2753 page_cache_release(page); 2754 btrfs_start_ordered_extent(inode, ordered, 1); 2755 btrfs_put_ordered_extent(ordered); 2756 goto again; 2757 } 2758 2759 btrfs_set_extent_delalloc(inode, page_start, page_end); 2760 ret = 0; 2761 if (offset != PAGE_CACHE_SIZE) { 2762 kaddr = kmap(page); 2763 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2764 flush_dcache_page(page); 2765 kunmap(page); 2766 } 2767 ClearPageChecked(page); 2768 set_page_dirty(page); 2769 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2770 2771 out_unlock: 2772 unlock_page(page); 2773 page_cache_release(page); 2774 out: 2775 return ret; 2776 } 2777 2778 int btrfs_cont_expand(struct inode *inode, loff_t size) 2779 { 2780 struct btrfs_trans_handle *trans; 2781 struct btrfs_root *root = BTRFS_I(inode)->root; 2782 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2783 struct extent_map *em; 2784 u64 mask = root->sectorsize - 1; 2785 u64 hole_start = (inode->i_size + mask) & ~mask; 2786 u64 block_end = (size + mask) & ~mask; 2787 u64 last_byte; 2788 u64 cur_offset; 2789 u64 hole_size; 2790 int err; 2791 2792 if (size <= hole_start) 2793 return 0; 2794 2795 err = btrfs_check_free_space(root, 1, 0); 2796 if (err) 2797 return err; 2798 2799 btrfs_truncate_page(inode->i_mapping, inode->i_size); 2800 2801 while (1) { 2802 struct btrfs_ordered_extent *ordered; 2803 btrfs_wait_ordered_range(inode, hole_start, 2804 block_end - hole_start); 2805 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2806 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 2807 if (!ordered) 2808 break; 2809 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2810 btrfs_put_ordered_extent(ordered); 2811 } 2812 2813 trans = btrfs_start_transaction(root, 1); 2814 btrfs_set_trans_block_group(trans, inode); 2815 2816 cur_offset = hole_start; 2817 while (1) { 2818 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2819 block_end - cur_offset, 0); 2820 BUG_ON(IS_ERR(em) || !em); 2821 last_byte = min(extent_map_end(em), block_end); 2822 last_byte = (last_byte + mask) & ~mask; 2823 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2824 u64 hint_byte = 0; 2825 hole_size = last_byte - cur_offset; 2826 err = btrfs_drop_extents(trans, root, inode, 2827 cur_offset, 2828 cur_offset + hole_size, 2829 cur_offset, &hint_byte); 2830 if (err) 2831 break; 2832 err = btrfs_insert_file_extent(trans, root, 2833 inode->i_ino, cur_offset, 0, 2834 0, hole_size, 0, hole_size, 2835 0, 0, 0); 2836 btrfs_drop_extent_cache(inode, hole_start, 2837 last_byte - 1, 0); 2838 } 2839 free_extent_map(em); 2840 cur_offset = last_byte; 2841 if (err || cur_offset >= block_end) 2842 break; 2843 } 2844 2845 btrfs_end_transaction(trans, root); 2846 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2847 return err; 2848 } 2849 2850 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 2851 { 2852 struct inode *inode = dentry->d_inode; 2853 int err; 2854 2855 err = inode_change_ok(inode, attr); 2856 if (err) 2857 return err; 2858 2859 if (S_ISREG(inode->i_mode) && 2860 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) { 2861 err = btrfs_cont_expand(inode, attr->ia_size); 2862 if (err) 2863 return err; 2864 } 2865 2866 err = inode_setattr(inode, attr); 2867 2868 if (!err && ((attr->ia_valid & ATTR_MODE))) 2869 err = btrfs_acl_chmod(inode); 2870 return err; 2871 } 2872 2873 void btrfs_delete_inode(struct inode *inode) 2874 { 2875 struct btrfs_trans_handle *trans; 2876 struct btrfs_root *root = BTRFS_I(inode)->root; 2877 unsigned long nr; 2878 int ret; 2879 2880 truncate_inode_pages(&inode->i_data, 0); 2881 if (is_bad_inode(inode)) { 2882 btrfs_orphan_del(NULL, inode); 2883 goto no_delete; 2884 } 2885 btrfs_wait_ordered_range(inode, 0, (u64)-1); 2886 2887 btrfs_i_size_write(inode, 0); 2888 trans = btrfs_join_transaction(root, 1); 2889 2890 btrfs_set_trans_block_group(trans, inode); 2891 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); 2892 if (ret) { 2893 btrfs_orphan_del(NULL, inode); 2894 goto no_delete_lock; 2895 } 2896 2897 btrfs_orphan_del(trans, inode); 2898 2899 nr = trans->blocks_used; 2900 clear_inode(inode); 2901 2902 btrfs_end_transaction(trans, root); 2903 btrfs_btree_balance_dirty(root, nr); 2904 return; 2905 2906 no_delete_lock: 2907 nr = trans->blocks_used; 2908 btrfs_end_transaction(trans, root); 2909 btrfs_btree_balance_dirty(root, nr); 2910 no_delete: 2911 clear_inode(inode); 2912 } 2913 2914 /* 2915 * this returns the key found in the dir entry in the location pointer. 2916 * If no dir entries were found, location->objectid is 0. 2917 */ 2918 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 2919 struct btrfs_key *location) 2920 { 2921 const char *name = dentry->d_name.name; 2922 int namelen = dentry->d_name.len; 2923 struct btrfs_dir_item *di; 2924 struct btrfs_path *path; 2925 struct btrfs_root *root = BTRFS_I(dir)->root; 2926 int ret = 0; 2927 2928 path = btrfs_alloc_path(); 2929 BUG_ON(!path); 2930 2931 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 2932 namelen, 0); 2933 if (IS_ERR(di)) 2934 ret = PTR_ERR(di); 2935 2936 if (!di || IS_ERR(di)) 2937 goto out_err; 2938 2939 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 2940 out: 2941 btrfs_free_path(path); 2942 return ret; 2943 out_err: 2944 location->objectid = 0; 2945 goto out; 2946 } 2947 2948 /* 2949 * when we hit a tree root in a directory, the btrfs part of the inode 2950 * needs to be changed to reflect the root directory of the tree root. This 2951 * is kind of like crossing a mount point. 2952 */ 2953 static int fixup_tree_root_location(struct btrfs_root *root, 2954 struct btrfs_key *location, 2955 struct btrfs_root **sub_root, 2956 struct dentry *dentry) 2957 { 2958 struct btrfs_root_item *ri; 2959 2960 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) 2961 return 0; 2962 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 2963 return 0; 2964 2965 *sub_root = btrfs_read_fs_root(root->fs_info, location, 2966 dentry->d_name.name, 2967 dentry->d_name.len); 2968 if (IS_ERR(*sub_root)) 2969 return PTR_ERR(*sub_root); 2970 2971 ri = &(*sub_root)->root_item; 2972 location->objectid = btrfs_root_dirid(ri); 2973 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 2974 location->offset = 0; 2975 2976 return 0; 2977 } 2978 2979 static noinline void init_btrfs_i(struct inode *inode) 2980 { 2981 struct btrfs_inode *bi = BTRFS_I(inode); 2982 2983 bi->i_acl = NULL; 2984 bi->i_default_acl = NULL; 2985 2986 bi->generation = 0; 2987 bi->sequence = 0; 2988 bi->last_trans = 0; 2989 bi->logged_trans = 0; 2990 bi->delalloc_bytes = 0; 2991 bi->disk_i_size = 0; 2992 bi->flags = 0; 2993 bi->index_cnt = (u64)-1; 2994 bi->log_dirty_trans = 0; 2995 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 2996 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 2997 inode->i_mapping, GFP_NOFS); 2998 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 2999 inode->i_mapping, GFP_NOFS); 3000 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3001 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3002 mutex_init(&BTRFS_I(inode)->extent_mutex); 3003 mutex_init(&BTRFS_I(inode)->log_mutex); 3004 } 3005 3006 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3007 { 3008 struct btrfs_iget_args *args = p; 3009 inode->i_ino = args->ino; 3010 init_btrfs_i(inode); 3011 BTRFS_I(inode)->root = args->root; 3012 return 0; 3013 } 3014 3015 static int btrfs_find_actor(struct inode *inode, void *opaque) 3016 { 3017 struct btrfs_iget_args *args = opaque; 3018 return args->ino == inode->i_ino && 3019 args->root == BTRFS_I(inode)->root; 3020 } 3021 3022 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid, 3023 struct btrfs_root *root, int wait) 3024 { 3025 struct inode *inode; 3026 struct btrfs_iget_args args; 3027 args.ino = objectid; 3028 args.root = root; 3029 3030 if (wait) { 3031 inode = ilookup5(s, objectid, btrfs_find_actor, 3032 (void *)&args); 3033 } else { 3034 inode = ilookup5_nowait(s, objectid, btrfs_find_actor, 3035 (void *)&args); 3036 } 3037 return inode; 3038 } 3039 3040 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid, 3041 struct btrfs_root *root) 3042 { 3043 struct inode *inode; 3044 struct btrfs_iget_args args; 3045 args.ino = objectid; 3046 args.root = root; 3047 3048 inode = iget5_locked(s, objectid, btrfs_find_actor, 3049 btrfs_init_locked_inode, 3050 (void *)&args); 3051 return inode; 3052 } 3053 3054 /* Get an inode object given its location and corresponding root. 3055 * Returns in *is_new if the inode was read from disk 3056 */ 3057 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3058 struct btrfs_root *root, int *is_new) 3059 { 3060 struct inode *inode; 3061 3062 inode = btrfs_iget_locked(s, location->objectid, root); 3063 if (!inode) 3064 return ERR_PTR(-EACCES); 3065 3066 if (inode->i_state & I_NEW) { 3067 BTRFS_I(inode)->root = root; 3068 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3069 btrfs_read_locked_inode(inode); 3070 unlock_new_inode(inode); 3071 if (is_new) 3072 *is_new = 1; 3073 } else { 3074 if (is_new) 3075 *is_new = 0; 3076 } 3077 3078 return inode; 3079 } 3080 3081 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3082 { 3083 struct inode *inode; 3084 struct btrfs_inode *bi = BTRFS_I(dir); 3085 struct btrfs_root *root = bi->root; 3086 struct btrfs_root *sub_root = root; 3087 struct btrfs_key location; 3088 int ret, new; 3089 3090 if (dentry->d_name.len > BTRFS_NAME_LEN) 3091 return ERR_PTR(-ENAMETOOLONG); 3092 3093 ret = btrfs_inode_by_name(dir, dentry, &location); 3094 3095 if (ret < 0) 3096 return ERR_PTR(ret); 3097 3098 inode = NULL; 3099 if (location.objectid) { 3100 ret = fixup_tree_root_location(root, &location, &sub_root, 3101 dentry); 3102 if (ret < 0) 3103 return ERR_PTR(ret); 3104 if (ret > 0) 3105 return ERR_PTR(-ENOENT); 3106 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new); 3107 if (IS_ERR(inode)) 3108 return ERR_CAST(inode); 3109 } 3110 return inode; 3111 } 3112 3113 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3114 struct nameidata *nd) 3115 { 3116 struct inode *inode; 3117 3118 if (dentry->d_name.len > BTRFS_NAME_LEN) 3119 return ERR_PTR(-ENAMETOOLONG); 3120 3121 inode = btrfs_lookup_dentry(dir, dentry); 3122 if (IS_ERR(inode)) 3123 return ERR_CAST(inode); 3124 3125 return d_splice_alias(inode, dentry); 3126 } 3127 3128 static unsigned char btrfs_filetype_table[] = { 3129 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3130 }; 3131 3132 static int btrfs_real_readdir(struct file *filp, void *dirent, 3133 filldir_t filldir) 3134 { 3135 struct inode *inode = filp->f_dentry->d_inode; 3136 struct btrfs_root *root = BTRFS_I(inode)->root; 3137 struct btrfs_item *item; 3138 struct btrfs_dir_item *di; 3139 struct btrfs_key key; 3140 struct btrfs_key found_key; 3141 struct btrfs_path *path; 3142 int ret; 3143 u32 nritems; 3144 struct extent_buffer *leaf; 3145 int slot; 3146 int advance; 3147 unsigned char d_type; 3148 int over = 0; 3149 u32 di_cur; 3150 u32 di_total; 3151 u32 di_len; 3152 int key_type = BTRFS_DIR_INDEX_KEY; 3153 char tmp_name[32]; 3154 char *name_ptr; 3155 int name_len; 3156 3157 /* FIXME, use a real flag for deciding about the key type */ 3158 if (root->fs_info->tree_root == root) 3159 key_type = BTRFS_DIR_ITEM_KEY; 3160 3161 /* special case for "." */ 3162 if (filp->f_pos == 0) { 3163 over = filldir(dirent, ".", 1, 3164 1, inode->i_ino, 3165 DT_DIR); 3166 if (over) 3167 return 0; 3168 filp->f_pos = 1; 3169 } 3170 /* special case for .., just use the back ref */ 3171 if (filp->f_pos == 1) { 3172 u64 pino = parent_ino(filp->f_path.dentry); 3173 over = filldir(dirent, "..", 2, 3174 2, pino, DT_DIR); 3175 if (over) 3176 return 0; 3177 filp->f_pos = 2; 3178 } 3179 path = btrfs_alloc_path(); 3180 path->reada = 2; 3181 3182 btrfs_set_key_type(&key, key_type); 3183 key.offset = filp->f_pos; 3184 key.objectid = inode->i_ino; 3185 3186 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3187 if (ret < 0) 3188 goto err; 3189 advance = 0; 3190 3191 while (1) { 3192 leaf = path->nodes[0]; 3193 nritems = btrfs_header_nritems(leaf); 3194 slot = path->slots[0]; 3195 if (advance || slot >= nritems) { 3196 if (slot >= nritems - 1) { 3197 ret = btrfs_next_leaf(root, path); 3198 if (ret) 3199 break; 3200 leaf = path->nodes[0]; 3201 nritems = btrfs_header_nritems(leaf); 3202 slot = path->slots[0]; 3203 } else { 3204 slot++; 3205 path->slots[0]++; 3206 } 3207 } 3208 3209 advance = 1; 3210 item = btrfs_item_nr(leaf, slot); 3211 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3212 3213 if (found_key.objectid != key.objectid) 3214 break; 3215 if (btrfs_key_type(&found_key) != key_type) 3216 break; 3217 if (found_key.offset < filp->f_pos) 3218 continue; 3219 3220 filp->f_pos = found_key.offset; 3221 3222 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3223 di_cur = 0; 3224 di_total = btrfs_item_size(leaf, item); 3225 3226 while (di_cur < di_total) { 3227 struct btrfs_key location; 3228 3229 name_len = btrfs_dir_name_len(leaf, di); 3230 if (name_len <= sizeof(tmp_name)) { 3231 name_ptr = tmp_name; 3232 } else { 3233 name_ptr = kmalloc(name_len, GFP_NOFS); 3234 if (!name_ptr) { 3235 ret = -ENOMEM; 3236 goto err; 3237 } 3238 } 3239 read_extent_buffer(leaf, name_ptr, 3240 (unsigned long)(di + 1), name_len); 3241 3242 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3243 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3244 3245 /* is this a reference to our own snapshot? If so 3246 * skip it 3247 */ 3248 if (location.type == BTRFS_ROOT_ITEM_KEY && 3249 location.objectid == root->root_key.objectid) { 3250 over = 0; 3251 goto skip; 3252 } 3253 over = filldir(dirent, name_ptr, name_len, 3254 found_key.offset, location.objectid, 3255 d_type); 3256 3257 skip: 3258 if (name_ptr != tmp_name) 3259 kfree(name_ptr); 3260 3261 if (over) 3262 goto nopos; 3263 di_len = btrfs_dir_name_len(leaf, di) + 3264 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3265 di_cur += di_len; 3266 di = (struct btrfs_dir_item *)((char *)di + di_len); 3267 } 3268 } 3269 3270 /* Reached end of directory/root. Bump pos past the last item. */ 3271 if (key_type == BTRFS_DIR_INDEX_KEY) 3272 filp->f_pos = INT_LIMIT(typeof(filp->f_pos)); 3273 else 3274 filp->f_pos++; 3275 nopos: 3276 ret = 0; 3277 err: 3278 btrfs_free_path(path); 3279 return ret; 3280 } 3281 3282 int btrfs_write_inode(struct inode *inode, int wait) 3283 { 3284 struct btrfs_root *root = BTRFS_I(inode)->root; 3285 struct btrfs_trans_handle *trans; 3286 int ret = 0; 3287 3288 if (root->fs_info->btree_inode == inode) 3289 return 0; 3290 3291 if (wait) { 3292 trans = btrfs_join_transaction(root, 1); 3293 btrfs_set_trans_block_group(trans, inode); 3294 ret = btrfs_commit_transaction(trans, root); 3295 } 3296 return ret; 3297 } 3298 3299 /* 3300 * This is somewhat expensive, updating the tree every time the 3301 * inode changes. But, it is most likely to find the inode in cache. 3302 * FIXME, needs more benchmarking...there are no reasons other than performance 3303 * to keep or drop this code. 3304 */ 3305 void btrfs_dirty_inode(struct inode *inode) 3306 { 3307 struct btrfs_root *root = BTRFS_I(inode)->root; 3308 struct btrfs_trans_handle *trans; 3309 3310 trans = btrfs_join_transaction(root, 1); 3311 btrfs_set_trans_block_group(trans, inode); 3312 btrfs_update_inode(trans, root, inode); 3313 btrfs_end_transaction(trans, root); 3314 } 3315 3316 /* 3317 * find the highest existing sequence number in a directory 3318 * and then set the in-memory index_cnt variable to reflect 3319 * free sequence numbers 3320 */ 3321 static int btrfs_set_inode_index_count(struct inode *inode) 3322 { 3323 struct btrfs_root *root = BTRFS_I(inode)->root; 3324 struct btrfs_key key, found_key; 3325 struct btrfs_path *path; 3326 struct extent_buffer *leaf; 3327 int ret; 3328 3329 key.objectid = inode->i_ino; 3330 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 3331 key.offset = (u64)-1; 3332 3333 path = btrfs_alloc_path(); 3334 if (!path) 3335 return -ENOMEM; 3336 3337 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3338 if (ret < 0) 3339 goto out; 3340 /* FIXME: we should be able to handle this */ 3341 if (ret == 0) 3342 goto out; 3343 ret = 0; 3344 3345 /* 3346 * MAGIC NUMBER EXPLANATION: 3347 * since we search a directory based on f_pos we have to start at 2 3348 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 3349 * else has to start at 2 3350 */ 3351 if (path->slots[0] == 0) { 3352 BTRFS_I(inode)->index_cnt = 2; 3353 goto out; 3354 } 3355 3356 path->slots[0]--; 3357 3358 leaf = path->nodes[0]; 3359 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3360 3361 if (found_key.objectid != inode->i_ino || 3362 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 3363 BTRFS_I(inode)->index_cnt = 2; 3364 goto out; 3365 } 3366 3367 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 3368 out: 3369 btrfs_free_path(path); 3370 return ret; 3371 } 3372 3373 /* 3374 * helper to find a free sequence number in a given directory. This current 3375 * code is very simple, later versions will do smarter things in the btree 3376 */ 3377 int btrfs_set_inode_index(struct inode *dir, u64 *index) 3378 { 3379 int ret = 0; 3380 3381 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 3382 ret = btrfs_set_inode_index_count(dir); 3383 if (ret) 3384 return ret; 3385 } 3386 3387 *index = BTRFS_I(dir)->index_cnt; 3388 BTRFS_I(dir)->index_cnt++; 3389 3390 return ret; 3391 } 3392 3393 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 3394 struct btrfs_root *root, 3395 struct inode *dir, 3396 const char *name, int name_len, 3397 u64 ref_objectid, u64 objectid, 3398 u64 alloc_hint, int mode, u64 *index) 3399 { 3400 struct inode *inode; 3401 struct btrfs_inode_item *inode_item; 3402 struct btrfs_key *location; 3403 struct btrfs_path *path; 3404 struct btrfs_inode_ref *ref; 3405 struct btrfs_key key[2]; 3406 u32 sizes[2]; 3407 unsigned long ptr; 3408 int ret; 3409 int owner; 3410 3411 path = btrfs_alloc_path(); 3412 BUG_ON(!path); 3413 3414 inode = new_inode(root->fs_info->sb); 3415 if (!inode) 3416 return ERR_PTR(-ENOMEM); 3417 3418 if (dir) { 3419 ret = btrfs_set_inode_index(dir, index); 3420 if (ret) 3421 return ERR_PTR(ret); 3422 } 3423 /* 3424 * index_cnt is ignored for everything but a dir, 3425 * btrfs_get_inode_index_count has an explanation for the magic 3426 * number 3427 */ 3428 init_btrfs_i(inode); 3429 BTRFS_I(inode)->index_cnt = 2; 3430 BTRFS_I(inode)->root = root; 3431 BTRFS_I(inode)->generation = trans->transid; 3432 3433 if (mode & S_IFDIR) 3434 owner = 0; 3435 else 3436 owner = 1; 3437 BTRFS_I(inode)->block_group = 3438 btrfs_find_block_group(root, 0, alloc_hint, owner); 3439 if ((mode & S_IFREG)) { 3440 if (btrfs_test_opt(root, NODATASUM)) 3441 btrfs_set_flag(inode, NODATASUM); 3442 if (btrfs_test_opt(root, NODATACOW)) 3443 btrfs_set_flag(inode, NODATACOW); 3444 } 3445 3446 key[0].objectid = objectid; 3447 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 3448 key[0].offset = 0; 3449 3450 key[1].objectid = objectid; 3451 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 3452 key[1].offset = ref_objectid; 3453 3454 sizes[0] = sizeof(struct btrfs_inode_item); 3455 sizes[1] = name_len + sizeof(*ref); 3456 3457 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 3458 if (ret != 0) 3459 goto fail; 3460 3461 if (objectid > root->highest_inode) 3462 root->highest_inode = objectid; 3463 3464 inode->i_uid = current_fsuid(); 3465 inode->i_gid = current_fsgid(); 3466 inode->i_mode = mode; 3467 inode->i_ino = objectid; 3468 inode_set_bytes(inode, 0); 3469 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3470 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3471 struct btrfs_inode_item); 3472 fill_inode_item(trans, path->nodes[0], inode_item, inode); 3473 3474 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3475 struct btrfs_inode_ref); 3476 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 3477 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 3478 ptr = (unsigned long)(ref + 1); 3479 write_extent_buffer(path->nodes[0], name, ptr, name_len); 3480 3481 btrfs_mark_buffer_dirty(path->nodes[0]); 3482 btrfs_free_path(path); 3483 3484 location = &BTRFS_I(inode)->location; 3485 location->objectid = objectid; 3486 location->offset = 0; 3487 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3488 3489 insert_inode_hash(inode); 3490 return inode; 3491 fail: 3492 if (dir) 3493 BTRFS_I(dir)->index_cnt--; 3494 btrfs_free_path(path); 3495 return ERR_PTR(ret); 3496 } 3497 3498 static inline u8 btrfs_inode_type(struct inode *inode) 3499 { 3500 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 3501 } 3502 3503 /* 3504 * utility function to add 'inode' into 'parent_inode' with 3505 * a give name and a given sequence number. 3506 * if 'add_backref' is true, also insert a backref from the 3507 * inode to the parent directory. 3508 */ 3509 int btrfs_add_link(struct btrfs_trans_handle *trans, 3510 struct inode *parent_inode, struct inode *inode, 3511 const char *name, int name_len, int add_backref, u64 index) 3512 { 3513 int ret; 3514 struct btrfs_key key; 3515 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 3516 3517 key.objectid = inode->i_ino; 3518 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 3519 key.offset = 0; 3520 3521 ret = btrfs_insert_dir_item(trans, root, name, name_len, 3522 parent_inode->i_ino, 3523 &key, btrfs_inode_type(inode), 3524 index); 3525 if (ret == 0) { 3526 if (add_backref) { 3527 ret = btrfs_insert_inode_ref(trans, root, 3528 name, name_len, 3529 inode->i_ino, 3530 parent_inode->i_ino, 3531 index); 3532 } 3533 btrfs_i_size_write(parent_inode, parent_inode->i_size + 3534 name_len * 2); 3535 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 3536 ret = btrfs_update_inode(trans, root, parent_inode); 3537 } 3538 return ret; 3539 } 3540 3541 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 3542 struct dentry *dentry, struct inode *inode, 3543 int backref, u64 index) 3544 { 3545 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3546 inode, dentry->d_name.name, 3547 dentry->d_name.len, backref, index); 3548 if (!err) { 3549 d_instantiate(dentry, inode); 3550 return 0; 3551 } 3552 if (err > 0) 3553 err = -EEXIST; 3554 return err; 3555 } 3556 3557 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 3558 int mode, dev_t rdev) 3559 { 3560 struct btrfs_trans_handle *trans; 3561 struct btrfs_root *root = BTRFS_I(dir)->root; 3562 struct inode *inode = NULL; 3563 int err; 3564 int drop_inode = 0; 3565 u64 objectid; 3566 unsigned long nr = 0; 3567 u64 index = 0; 3568 3569 if (!new_valid_dev(rdev)) 3570 return -EINVAL; 3571 3572 err = btrfs_check_free_space(root, 1, 0); 3573 if (err) 3574 goto fail; 3575 3576 trans = btrfs_start_transaction(root, 1); 3577 btrfs_set_trans_block_group(trans, dir); 3578 3579 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3580 if (err) { 3581 err = -ENOSPC; 3582 goto out_unlock; 3583 } 3584 3585 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3586 dentry->d_name.len, 3587 dentry->d_parent->d_inode->i_ino, objectid, 3588 BTRFS_I(dir)->block_group, mode, &index); 3589 err = PTR_ERR(inode); 3590 if (IS_ERR(inode)) 3591 goto out_unlock; 3592 3593 err = btrfs_init_acl(inode, dir); 3594 if (err) { 3595 drop_inode = 1; 3596 goto out_unlock; 3597 } 3598 3599 btrfs_set_trans_block_group(trans, inode); 3600 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3601 if (err) 3602 drop_inode = 1; 3603 else { 3604 inode->i_op = &btrfs_special_inode_operations; 3605 init_special_inode(inode, inode->i_mode, rdev); 3606 btrfs_update_inode(trans, root, inode); 3607 } 3608 dir->i_sb->s_dirt = 1; 3609 btrfs_update_inode_block_group(trans, inode); 3610 btrfs_update_inode_block_group(trans, dir); 3611 out_unlock: 3612 nr = trans->blocks_used; 3613 btrfs_end_transaction_throttle(trans, root); 3614 fail: 3615 if (drop_inode) { 3616 inode_dec_link_count(inode); 3617 iput(inode); 3618 } 3619 btrfs_btree_balance_dirty(root, nr); 3620 return err; 3621 } 3622 3623 static int btrfs_create(struct inode *dir, struct dentry *dentry, 3624 int mode, struct nameidata *nd) 3625 { 3626 struct btrfs_trans_handle *trans; 3627 struct btrfs_root *root = BTRFS_I(dir)->root; 3628 struct inode *inode = NULL; 3629 int err; 3630 int drop_inode = 0; 3631 unsigned long nr = 0; 3632 u64 objectid; 3633 u64 index = 0; 3634 3635 err = btrfs_check_free_space(root, 1, 0); 3636 if (err) 3637 goto fail; 3638 trans = btrfs_start_transaction(root, 1); 3639 btrfs_set_trans_block_group(trans, dir); 3640 3641 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3642 if (err) { 3643 err = -ENOSPC; 3644 goto out_unlock; 3645 } 3646 3647 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3648 dentry->d_name.len, 3649 dentry->d_parent->d_inode->i_ino, 3650 objectid, BTRFS_I(dir)->block_group, mode, 3651 &index); 3652 err = PTR_ERR(inode); 3653 if (IS_ERR(inode)) 3654 goto out_unlock; 3655 3656 err = btrfs_init_acl(inode, dir); 3657 if (err) { 3658 drop_inode = 1; 3659 goto out_unlock; 3660 } 3661 3662 btrfs_set_trans_block_group(trans, inode); 3663 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3664 if (err) 3665 drop_inode = 1; 3666 else { 3667 inode->i_mapping->a_ops = &btrfs_aops; 3668 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3669 inode->i_fop = &btrfs_file_operations; 3670 inode->i_op = &btrfs_file_inode_operations; 3671 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3672 } 3673 dir->i_sb->s_dirt = 1; 3674 btrfs_update_inode_block_group(trans, inode); 3675 btrfs_update_inode_block_group(trans, dir); 3676 out_unlock: 3677 nr = trans->blocks_used; 3678 btrfs_end_transaction_throttle(trans, root); 3679 fail: 3680 if (drop_inode) { 3681 inode_dec_link_count(inode); 3682 iput(inode); 3683 } 3684 btrfs_btree_balance_dirty(root, nr); 3685 return err; 3686 } 3687 3688 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 3689 struct dentry *dentry) 3690 { 3691 struct btrfs_trans_handle *trans; 3692 struct btrfs_root *root = BTRFS_I(dir)->root; 3693 struct inode *inode = old_dentry->d_inode; 3694 u64 index; 3695 unsigned long nr = 0; 3696 int err; 3697 int drop_inode = 0; 3698 3699 if (inode->i_nlink == 0) 3700 return -ENOENT; 3701 3702 btrfs_inc_nlink(inode); 3703 err = btrfs_check_free_space(root, 1, 0); 3704 if (err) 3705 goto fail; 3706 err = btrfs_set_inode_index(dir, &index); 3707 if (err) 3708 goto fail; 3709 3710 trans = btrfs_start_transaction(root, 1); 3711 3712 btrfs_set_trans_block_group(trans, dir); 3713 atomic_inc(&inode->i_count); 3714 3715 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 3716 3717 if (err) 3718 drop_inode = 1; 3719 3720 dir->i_sb->s_dirt = 1; 3721 btrfs_update_inode_block_group(trans, dir); 3722 err = btrfs_update_inode(trans, root, inode); 3723 3724 if (err) 3725 drop_inode = 1; 3726 3727 nr = trans->blocks_used; 3728 btrfs_end_transaction_throttle(trans, root); 3729 fail: 3730 if (drop_inode) { 3731 inode_dec_link_count(inode); 3732 iput(inode); 3733 } 3734 btrfs_btree_balance_dirty(root, nr); 3735 return err; 3736 } 3737 3738 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 3739 { 3740 struct inode *inode = NULL; 3741 struct btrfs_trans_handle *trans; 3742 struct btrfs_root *root = BTRFS_I(dir)->root; 3743 int err = 0; 3744 int drop_on_err = 0; 3745 u64 objectid = 0; 3746 u64 index = 0; 3747 unsigned long nr = 1; 3748 3749 err = btrfs_check_free_space(root, 1, 0); 3750 if (err) 3751 goto out_unlock; 3752 3753 trans = btrfs_start_transaction(root, 1); 3754 btrfs_set_trans_block_group(trans, dir); 3755 3756 if (IS_ERR(trans)) { 3757 err = PTR_ERR(trans); 3758 goto out_unlock; 3759 } 3760 3761 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3762 if (err) { 3763 err = -ENOSPC; 3764 goto out_unlock; 3765 } 3766 3767 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3768 dentry->d_name.len, 3769 dentry->d_parent->d_inode->i_ino, objectid, 3770 BTRFS_I(dir)->block_group, S_IFDIR | mode, 3771 &index); 3772 if (IS_ERR(inode)) { 3773 err = PTR_ERR(inode); 3774 goto out_fail; 3775 } 3776 3777 drop_on_err = 1; 3778 3779 err = btrfs_init_acl(inode, dir); 3780 if (err) 3781 goto out_fail; 3782 3783 inode->i_op = &btrfs_dir_inode_operations; 3784 inode->i_fop = &btrfs_dir_file_operations; 3785 btrfs_set_trans_block_group(trans, inode); 3786 3787 btrfs_i_size_write(inode, 0); 3788 err = btrfs_update_inode(trans, root, inode); 3789 if (err) 3790 goto out_fail; 3791 3792 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3793 inode, dentry->d_name.name, 3794 dentry->d_name.len, 0, index); 3795 if (err) 3796 goto out_fail; 3797 3798 d_instantiate(dentry, inode); 3799 drop_on_err = 0; 3800 dir->i_sb->s_dirt = 1; 3801 btrfs_update_inode_block_group(trans, inode); 3802 btrfs_update_inode_block_group(trans, dir); 3803 3804 out_fail: 3805 nr = trans->blocks_used; 3806 btrfs_end_transaction_throttle(trans, root); 3807 3808 out_unlock: 3809 if (drop_on_err) 3810 iput(inode); 3811 btrfs_btree_balance_dirty(root, nr); 3812 return err; 3813 } 3814 3815 /* helper for btfs_get_extent. Given an existing extent in the tree, 3816 * and an extent that you want to insert, deal with overlap and insert 3817 * the new extent into the tree. 3818 */ 3819 static int merge_extent_mapping(struct extent_map_tree *em_tree, 3820 struct extent_map *existing, 3821 struct extent_map *em, 3822 u64 map_start, u64 map_len) 3823 { 3824 u64 start_diff; 3825 3826 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 3827 start_diff = map_start - em->start; 3828 em->start = map_start; 3829 em->len = map_len; 3830 if (em->block_start < EXTENT_MAP_LAST_BYTE && 3831 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3832 em->block_start += start_diff; 3833 em->block_len -= start_diff; 3834 } 3835 return add_extent_mapping(em_tree, em); 3836 } 3837 3838 static noinline int uncompress_inline(struct btrfs_path *path, 3839 struct inode *inode, struct page *page, 3840 size_t pg_offset, u64 extent_offset, 3841 struct btrfs_file_extent_item *item) 3842 { 3843 int ret; 3844 struct extent_buffer *leaf = path->nodes[0]; 3845 char *tmp; 3846 size_t max_size; 3847 unsigned long inline_size; 3848 unsigned long ptr; 3849 3850 WARN_ON(pg_offset != 0); 3851 max_size = btrfs_file_extent_ram_bytes(leaf, item); 3852 inline_size = btrfs_file_extent_inline_item_len(leaf, 3853 btrfs_item_nr(leaf, path->slots[0])); 3854 tmp = kmalloc(inline_size, GFP_NOFS); 3855 ptr = btrfs_file_extent_inline_start(item); 3856 3857 read_extent_buffer(leaf, tmp, ptr, inline_size); 3858 3859 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 3860 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 3861 inline_size, max_size); 3862 if (ret) { 3863 char *kaddr = kmap_atomic(page, KM_USER0); 3864 unsigned long copy_size = min_t(u64, 3865 PAGE_CACHE_SIZE - pg_offset, 3866 max_size - extent_offset); 3867 memset(kaddr + pg_offset, 0, copy_size); 3868 kunmap_atomic(kaddr, KM_USER0); 3869 } 3870 kfree(tmp); 3871 return 0; 3872 } 3873 3874 /* 3875 * a bit scary, this does extent mapping from logical file offset to the disk. 3876 * the ugly parts come from merging extents from the disk with the in-ram 3877 * representation. This gets more complex because of the data=ordered code, 3878 * where the in-ram extents might be locked pending data=ordered completion. 3879 * 3880 * This also copies inline extents directly into the page. 3881 */ 3882 3883 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 3884 size_t pg_offset, u64 start, u64 len, 3885 int create) 3886 { 3887 int ret; 3888 int err = 0; 3889 u64 bytenr; 3890 u64 extent_start = 0; 3891 u64 extent_end = 0; 3892 u64 objectid = inode->i_ino; 3893 u32 found_type; 3894 struct btrfs_path *path = NULL; 3895 struct btrfs_root *root = BTRFS_I(inode)->root; 3896 struct btrfs_file_extent_item *item; 3897 struct extent_buffer *leaf; 3898 struct btrfs_key found_key; 3899 struct extent_map *em = NULL; 3900 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3901 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3902 struct btrfs_trans_handle *trans = NULL; 3903 int compressed; 3904 3905 again: 3906 spin_lock(&em_tree->lock); 3907 em = lookup_extent_mapping(em_tree, start, len); 3908 if (em) 3909 em->bdev = root->fs_info->fs_devices->latest_bdev; 3910 spin_unlock(&em_tree->lock); 3911 3912 if (em) { 3913 if (em->start > start || em->start + em->len <= start) 3914 free_extent_map(em); 3915 else if (em->block_start == EXTENT_MAP_INLINE && page) 3916 free_extent_map(em); 3917 else 3918 goto out; 3919 } 3920 em = alloc_extent_map(GFP_NOFS); 3921 if (!em) { 3922 err = -ENOMEM; 3923 goto out; 3924 } 3925 em->bdev = root->fs_info->fs_devices->latest_bdev; 3926 em->start = EXTENT_MAP_HOLE; 3927 em->orig_start = EXTENT_MAP_HOLE; 3928 em->len = (u64)-1; 3929 em->block_len = (u64)-1; 3930 3931 if (!path) { 3932 path = btrfs_alloc_path(); 3933 BUG_ON(!path); 3934 } 3935 3936 ret = btrfs_lookup_file_extent(trans, root, path, 3937 objectid, start, trans != NULL); 3938 if (ret < 0) { 3939 err = ret; 3940 goto out; 3941 } 3942 3943 if (ret != 0) { 3944 if (path->slots[0] == 0) 3945 goto not_found; 3946 path->slots[0]--; 3947 } 3948 3949 leaf = path->nodes[0]; 3950 item = btrfs_item_ptr(leaf, path->slots[0], 3951 struct btrfs_file_extent_item); 3952 /* are we inside the extent that was found? */ 3953 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3954 found_type = btrfs_key_type(&found_key); 3955 if (found_key.objectid != objectid || 3956 found_type != BTRFS_EXTENT_DATA_KEY) { 3957 goto not_found; 3958 } 3959 3960 found_type = btrfs_file_extent_type(leaf, item); 3961 extent_start = found_key.offset; 3962 compressed = btrfs_file_extent_compression(leaf, item); 3963 if (found_type == BTRFS_FILE_EXTENT_REG || 3964 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 3965 extent_end = extent_start + 3966 btrfs_file_extent_num_bytes(leaf, item); 3967 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 3968 size_t size; 3969 size = btrfs_file_extent_inline_len(leaf, item); 3970 extent_end = (extent_start + size + root->sectorsize - 1) & 3971 ~((u64)root->sectorsize - 1); 3972 } 3973 3974 if (start >= extent_end) { 3975 path->slots[0]++; 3976 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3977 ret = btrfs_next_leaf(root, path); 3978 if (ret < 0) { 3979 err = ret; 3980 goto out; 3981 } 3982 if (ret > 0) 3983 goto not_found; 3984 leaf = path->nodes[0]; 3985 } 3986 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3987 if (found_key.objectid != objectid || 3988 found_key.type != BTRFS_EXTENT_DATA_KEY) 3989 goto not_found; 3990 if (start + len <= found_key.offset) 3991 goto not_found; 3992 em->start = start; 3993 em->len = found_key.offset - start; 3994 goto not_found_em; 3995 } 3996 3997 if (found_type == BTRFS_FILE_EXTENT_REG || 3998 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 3999 em->start = extent_start; 4000 em->len = extent_end - extent_start; 4001 em->orig_start = extent_start - 4002 btrfs_file_extent_offset(leaf, item); 4003 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4004 if (bytenr == 0) { 4005 em->block_start = EXTENT_MAP_HOLE; 4006 goto insert; 4007 } 4008 if (compressed) { 4009 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4010 em->block_start = bytenr; 4011 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4012 item); 4013 } else { 4014 bytenr += btrfs_file_extent_offset(leaf, item); 4015 em->block_start = bytenr; 4016 em->block_len = em->len; 4017 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4018 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4019 } 4020 goto insert; 4021 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4022 unsigned long ptr; 4023 char *map; 4024 size_t size; 4025 size_t extent_offset; 4026 size_t copy_size; 4027 4028 em->block_start = EXTENT_MAP_INLINE; 4029 if (!page || create) { 4030 em->start = extent_start; 4031 em->len = extent_end - extent_start; 4032 goto out; 4033 } 4034 4035 size = btrfs_file_extent_inline_len(leaf, item); 4036 extent_offset = page_offset(page) + pg_offset - extent_start; 4037 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4038 size - extent_offset); 4039 em->start = extent_start + extent_offset; 4040 em->len = (copy_size + root->sectorsize - 1) & 4041 ~((u64)root->sectorsize - 1); 4042 em->orig_start = EXTENT_MAP_INLINE; 4043 if (compressed) 4044 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4045 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4046 if (create == 0 && !PageUptodate(page)) { 4047 if (btrfs_file_extent_compression(leaf, item) == 4048 BTRFS_COMPRESS_ZLIB) { 4049 ret = uncompress_inline(path, inode, page, 4050 pg_offset, 4051 extent_offset, item); 4052 BUG_ON(ret); 4053 } else { 4054 map = kmap(page); 4055 read_extent_buffer(leaf, map + pg_offset, ptr, 4056 copy_size); 4057 kunmap(page); 4058 } 4059 flush_dcache_page(page); 4060 } else if (create && PageUptodate(page)) { 4061 if (!trans) { 4062 kunmap(page); 4063 free_extent_map(em); 4064 em = NULL; 4065 btrfs_release_path(root, path); 4066 trans = btrfs_join_transaction(root, 1); 4067 goto again; 4068 } 4069 map = kmap(page); 4070 write_extent_buffer(leaf, map + pg_offset, ptr, 4071 copy_size); 4072 kunmap(page); 4073 btrfs_mark_buffer_dirty(leaf); 4074 } 4075 set_extent_uptodate(io_tree, em->start, 4076 extent_map_end(em) - 1, GFP_NOFS); 4077 goto insert; 4078 } else { 4079 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4080 WARN_ON(1); 4081 } 4082 not_found: 4083 em->start = start; 4084 em->len = len; 4085 not_found_em: 4086 em->block_start = EXTENT_MAP_HOLE; 4087 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4088 insert: 4089 btrfs_release_path(root, path); 4090 if (em->start > start || extent_map_end(em) <= start) { 4091 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4092 "[%llu %llu]\n", (unsigned long long)em->start, 4093 (unsigned long long)em->len, 4094 (unsigned long long)start, 4095 (unsigned long long)len); 4096 err = -EIO; 4097 goto out; 4098 } 4099 4100 err = 0; 4101 spin_lock(&em_tree->lock); 4102 ret = add_extent_mapping(em_tree, em); 4103 /* it is possible that someone inserted the extent into the tree 4104 * while we had the lock dropped. It is also possible that 4105 * an overlapping map exists in the tree 4106 */ 4107 if (ret == -EEXIST) { 4108 struct extent_map *existing; 4109 4110 ret = 0; 4111 4112 existing = lookup_extent_mapping(em_tree, start, len); 4113 if (existing && (existing->start > start || 4114 existing->start + existing->len <= start)) { 4115 free_extent_map(existing); 4116 existing = NULL; 4117 } 4118 if (!existing) { 4119 existing = lookup_extent_mapping(em_tree, em->start, 4120 em->len); 4121 if (existing) { 4122 err = merge_extent_mapping(em_tree, existing, 4123 em, start, 4124 root->sectorsize); 4125 free_extent_map(existing); 4126 if (err) { 4127 free_extent_map(em); 4128 em = NULL; 4129 } 4130 } else { 4131 err = -EIO; 4132 free_extent_map(em); 4133 em = NULL; 4134 } 4135 } else { 4136 free_extent_map(em); 4137 em = existing; 4138 err = 0; 4139 } 4140 } 4141 spin_unlock(&em_tree->lock); 4142 out: 4143 if (path) 4144 btrfs_free_path(path); 4145 if (trans) { 4146 ret = btrfs_end_transaction(trans, root); 4147 if (!err) 4148 err = ret; 4149 } 4150 if (err) { 4151 free_extent_map(em); 4152 WARN_ON(1); 4153 return ERR_PTR(err); 4154 } 4155 return em; 4156 } 4157 4158 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4159 const struct iovec *iov, loff_t offset, 4160 unsigned long nr_segs) 4161 { 4162 return -EINVAL; 4163 } 4164 4165 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock) 4166 { 4167 return extent_bmap(mapping, iblock, btrfs_get_extent); 4168 } 4169 4170 int btrfs_readpage(struct file *file, struct page *page) 4171 { 4172 struct extent_io_tree *tree; 4173 tree = &BTRFS_I(page->mapping->host)->io_tree; 4174 return extent_read_full_page(tree, page, btrfs_get_extent); 4175 } 4176 4177 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4178 { 4179 struct extent_io_tree *tree; 4180 4181 4182 if (current->flags & PF_MEMALLOC) { 4183 redirty_page_for_writepage(wbc, page); 4184 unlock_page(page); 4185 return 0; 4186 } 4187 tree = &BTRFS_I(page->mapping->host)->io_tree; 4188 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4189 } 4190 4191 int btrfs_writepages(struct address_space *mapping, 4192 struct writeback_control *wbc) 4193 { 4194 struct extent_io_tree *tree; 4195 4196 tree = &BTRFS_I(mapping->host)->io_tree; 4197 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4198 } 4199 4200 static int 4201 btrfs_readpages(struct file *file, struct address_space *mapping, 4202 struct list_head *pages, unsigned nr_pages) 4203 { 4204 struct extent_io_tree *tree; 4205 tree = &BTRFS_I(mapping->host)->io_tree; 4206 return extent_readpages(tree, mapping, pages, nr_pages, 4207 btrfs_get_extent); 4208 } 4209 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4210 { 4211 struct extent_io_tree *tree; 4212 struct extent_map_tree *map; 4213 int ret; 4214 4215 tree = &BTRFS_I(page->mapping->host)->io_tree; 4216 map = &BTRFS_I(page->mapping->host)->extent_tree; 4217 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 4218 if (ret == 1) { 4219 ClearPagePrivate(page); 4220 set_page_private(page, 0); 4221 page_cache_release(page); 4222 } 4223 return ret; 4224 } 4225 4226 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4227 { 4228 if (PageWriteback(page) || PageDirty(page)) 4229 return 0; 4230 return __btrfs_releasepage(page, gfp_flags); 4231 } 4232 4233 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 4234 { 4235 struct extent_io_tree *tree; 4236 struct btrfs_ordered_extent *ordered; 4237 u64 page_start = page_offset(page); 4238 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 4239 4240 wait_on_page_writeback(page); 4241 tree = &BTRFS_I(page->mapping->host)->io_tree; 4242 if (offset) { 4243 btrfs_releasepage(page, GFP_NOFS); 4244 return; 4245 } 4246 4247 lock_extent(tree, page_start, page_end, GFP_NOFS); 4248 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 4249 page_offset(page)); 4250 if (ordered) { 4251 /* 4252 * IO on this page will never be started, so we need 4253 * to account for any ordered extents now 4254 */ 4255 clear_extent_bit(tree, page_start, page_end, 4256 EXTENT_DIRTY | EXTENT_DELALLOC | 4257 EXTENT_LOCKED, 1, 0, GFP_NOFS); 4258 btrfs_finish_ordered_io(page->mapping->host, 4259 page_start, page_end); 4260 btrfs_put_ordered_extent(ordered); 4261 lock_extent(tree, page_start, page_end, GFP_NOFS); 4262 } 4263 clear_extent_bit(tree, page_start, page_end, 4264 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4265 EXTENT_ORDERED, 4266 1, 1, GFP_NOFS); 4267 __btrfs_releasepage(page, GFP_NOFS); 4268 4269 ClearPageChecked(page); 4270 if (PagePrivate(page)) { 4271 ClearPagePrivate(page); 4272 set_page_private(page, 0); 4273 page_cache_release(page); 4274 } 4275 } 4276 4277 /* 4278 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 4279 * called from a page fault handler when a page is first dirtied. Hence we must 4280 * be careful to check for EOF conditions here. We set the page up correctly 4281 * for a written page which means we get ENOSPC checking when writing into 4282 * holes and correct delalloc and unwritten extent mapping on filesystems that 4283 * support these features. 4284 * 4285 * We are not allowed to take the i_mutex here so we have to play games to 4286 * protect against truncate races as the page could now be beyond EOF. Because 4287 * vmtruncate() writes the inode size before removing pages, once we have the 4288 * page lock we can determine safely if the page is beyond EOF. If it is not 4289 * beyond EOF, then the page is guaranteed safe against truncation until we 4290 * unlock the page. 4291 */ 4292 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4293 { 4294 struct inode *inode = fdentry(vma->vm_file)->d_inode; 4295 struct btrfs_root *root = BTRFS_I(inode)->root; 4296 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4297 struct btrfs_ordered_extent *ordered; 4298 char *kaddr; 4299 unsigned long zero_start; 4300 loff_t size; 4301 int ret; 4302 u64 page_start; 4303 u64 page_end; 4304 4305 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0); 4306 if (ret) 4307 goto out; 4308 4309 ret = -EINVAL; 4310 again: 4311 lock_page(page); 4312 size = i_size_read(inode); 4313 page_start = page_offset(page); 4314 page_end = page_start + PAGE_CACHE_SIZE - 1; 4315 4316 if ((page->mapping != inode->i_mapping) || 4317 (page_start >= size)) { 4318 /* page got truncated out from underneath us */ 4319 goto out_unlock; 4320 } 4321 wait_on_page_writeback(page); 4322 4323 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4324 set_page_extent_mapped(page); 4325 4326 /* 4327 * we can't set the delalloc bits if there are pending ordered 4328 * extents. Drop our locks and wait for them to finish 4329 */ 4330 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4331 if (ordered) { 4332 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4333 unlock_page(page); 4334 btrfs_start_ordered_extent(inode, ordered, 1); 4335 btrfs_put_ordered_extent(ordered); 4336 goto again; 4337 } 4338 4339 btrfs_set_extent_delalloc(inode, page_start, page_end); 4340 ret = 0; 4341 4342 /* page is wholly or partially inside EOF */ 4343 if (page_start + PAGE_CACHE_SIZE > size) 4344 zero_start = size & ~PAGE_CACHE_MASK; 4345 else 4346 zero_start = PAGE_CACHE_SIZE; 4347 4348 if (zero_start != PAGE_CACHE_SIZE) { 4349 kaddr = kmap(page); 4350 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 4351 flush_dcache_page(page); 4352 kunmap(page); 4353 } 4354 ClearPageChecked(page); 4355 set_page_dirty(page); 4356 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4357 4358 out_unlock: 4359 unlock_page(page); 4360 out: 4361 return ret; 4362 } 4363 4364 static void btrfs_truncate(struct inode *inode) 4365 { 4366 struct btrfs_root *root = BTRFS_I(inode)->root; 4367 int ret; 4368 struct btrfs_trans_handle *trans; 4369 unsigned long nr; 4370 u64 mask = root->sectorsize - 1; 4371 4372 if (!S_ISREG(inode->i_mode)) 4373 return; 4374 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4375 return; 4376 4377 btrfs_truncate_page(inode->i_mapping, inode->i_size); 4378 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 4379 4380 trans = btrfs_start_transaction(root, 1); 4381 btrfs_set_trans_block_group(trans, inode); 4382 btrfs_i_size_write(inode, inode->i_size); 4383 4384 ret = btrfs_orphan_add(trans, inode); 4385 if (ret) 4386 goto out; 4387 /* FIXME, add redo link to tree so we don't leak on crash */ 4388 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 4389 BTRFS_EXTENT_DATA_KEY); 4390 btrfs_update_inode(trans, root, inode); 4391 4392 ret = btrfs_orphan_del(trans, inode); 4393 BUG_ON(ret); 4394 4395 out: 4396 nr = trans->blocks_used; 4397 ret = btrfs_end_transaction_throttle(trans, root); 4398 BUG_ON(ret); 4399 btrfs_btree_balance_dirty(root, nr); 4400 } 4401 4402 /* 4403 * create a new subvolume directory/inode (helper for the ioctl). 4404 */ 4405 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 4406 struct btrfs_root *new_root, struct dentry *dentry, 4407 u64 new_dirid, u64 alloc_hint) 4408 { 4409 struct inode *inode; 4410 int error; 4411 u64 index = 0; 4412 4413 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 4414 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 4415 if (IS_ERR(inode)) 4416 return PTR_ERR(inode); 4417 inode->i_op = &btrfs_dir_inode_operations; 4418 inode->i_fop = &btrfs_dir_file_operations; 4419 4420 inode->i_nlink = 1; 4421 btrfs_i_size_write(inode, 0); 4422 4423 error = btrfs_update_inode(trans, new_root, inode); 4424 if (error) 4425 return error; 4426 4427 d_instantiate(dentry, inode); 4428 return 0; 4429 } 4430 4431 /* helper function for file defrag and space balancing. This 4432 * forces readahead on a given range of bytes in an inode 4433 */ 4434 unsigned long btrfs_force_ra(struct address_space *mapping, 4435 struct file_ra_state *ra, struct file *file, 4436 pgoff_t offset, pgoff_t last_index) 4437 { 4438 pgoff_t req_size = last_index - offset + 1; 4439 4440 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 4441 return offset + req_size; 4442 } 4443 4444 struct inode *btrfs_alloc_inode(struct super_block *sb) 4445 { 4446 struct btrfs_inode *ei; 4447 4448 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 4449 if (!ei) 4450 return NULL; 4451 ei->last_trans = 0; 4452 ei->logged_trans = 0; 4453 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 4454 ei->i_acl = BTRFS_ACL_NOT_CACHED; 4455 ei->i_default_acl = BTRFS_ACL_NOT_CACHED; 4456 INIT_LIST_HEAD(&ei->i_orphan); 4457 return &ei->vfs_inode; 4458 } 4459 4460 void btrfs_destroy_inode(struct inode *inode) 4461 { 4462 struct btrfs_ordered_extent *ordered; 4463 WARN_ON(!list_empty(&inode->i_dentry)); 4464 WARN_ON(inode->i_data.nrpages); 4465 4466 if (BTRFS_I(inode)->i_acl && 4467 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) 4468 posix_acl_release(BTRFS_I(inode)->i_acl); 4469 if (BTRFS_I(inode)->i_default_acl && 4470 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) 4471 posix_acl_release(BTRFS_I(inode)->i_default_acl); 4472 4473 spin_lock(&BTRFS_I(inode)->root->list_lock); 4474 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 4475 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" 4476 " list\n", inode->i_ino); 4477 dump_stack(); 4478 } 4479 spin_unlock(&BTRFS_I(inode)->root->list_lock); 4480 4481 while (1) { 4482 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 4483 if (!ordered) 4484 break; 4485 else { 4486 printk(KERN_ERR "btrfs found ordered " 4487 "extent %llu %llu on inode cleanup\n", 4488 (unsigned long long)ordered->file_offset, 4489 (unsigned long long)ordered->len); 4490 btrfs_remove_ordered_extent(inode, ordered); 4491 btrfs_put_ordered_extent(ordered); 4492 btrfs_put_ordered_extent(ordered); 4493 } 4494 } 4495 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 4496 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 4497 } 4498 4499 static void init_once(void *foo) 4500 { 4501 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 4502 4503 inode_init_once(&ei->vfs_inode); 4504 } 4505 4506 void btrfs_destroy_cachep(void) 4507 { 4508 if (btrfs_inode_cachep) 4509 kmem_cache_destroy(btrfs_inode_cachep); 4510 if (btrfs_trans_handle_cachep) 4511 kmem_cache_destroy(btrfs_trans_handle_cachep); 4512 if (btrfs_transaction_cachep) 4513 kmem_cache_destroy(btrfs_transaction_cachep); 4514 if (btrfs_bit_radix_cachep) 4515 kmem_cache_destroy(btrfs_bit_radix_cachep); 4516 if (btrfs_path_cachep) 4517 kmem_cache_destroy(btrfs_path_cachep); 4518 } 4519 4520 struct kmem_cache *btrfs_cache_create(const char *name, size_t size, 4521 unsigned long extra_flags, 4522 void (*ctor)(void *)) 4523 { 4524 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT | 4525 SLAB_MEM_SPREAD | extra_flags), ctor); 4526 } 4527 4528 int btrfs_init_cachep(void) 4529 { 4530 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache", 4531 sizeof(struct btrfs_inode), 4532 0, init_once); 4533 if (!btrfs_inode_cachep) 4534 goto fail; 4535 btrfs_trans_handle_cachep = 4536 btrfs_cache_create("btrfs_trans_handle_cache", 4537 sizeof(struct btrfs_trans_handle), 4538 0, NULL); 4539 if (!btrfs_trans_handle_cachep) 4540 goto fail; 4541 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache", 4542 sizeof(struct btrfs_transaction), 4543 0, NULL); 4544 if (!btrfs_transaction_cachep) 4545 goto fail; 4546 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache", 4547 sizeof(struct btrfs_path), 4548 0, NULL); 4549 if (!btrfs_path_cachep) 4550 goto fail; 4551 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256, 4552 SLAB_DESTROY_BY_RCU, NULL); 4553 if (!btrfs_bit_radix_cachep) 4554 goto fail; 4555 return 0; 4556 fail: 4557 btrfs_destroy_cachep(); 4558 return -ENOMEM; 4559 } 4560 4561 static int btrfs_getattr(struct vfsmount *mnt, 4562 struct dentry *dentry, struct kstat *stat) 4563 { 4564 struct inode *inode = dentry->d_inode; 4565 generic_fillattr(inode, stat); 4566 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 4567 stat->blksize = PAGE_CACHE_SIZE; 4568 stat->blocks = (inode_get_bytes(inode) + 4569 BTRFS_I(inode)->delalloc_bytes) >> 9; 4570 return 0; 4571 } 4572 4573 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4574 struct inode *new_dir, struct dentry *new_dentry) 4575 { 4576 struct btrfs_trans_handle *trans; 4577 struct btrfs_root *root = BTRFS_I(old_dir)->root; 4578 struct inode *new_inode = new_dentry->d_inode; 4579 struct inode *old_inode = old_dentry->d_inode; 4580 struct timespec ctime = CURRENT_TIME; 4581 u64 index = 0; 4582 int ret; 4583 4584 /* we're not allowed to rename between subvolumes */ 4585 if (BTRFS_I(old_inode)->root->root_key.objectid != 4586 BTRFS_I(new_dir)->root->root_key.objectid) 4587 return -EXDEV; 4588 4589 if (S_ISDIR(old_inode->i_mode) && new_inode && 4590 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { 4591 return -ENOTEMPTY; 4592 } 4593 4594 /* to rename a snapshot or subvolume, we need to juggle the 4595 * backrefs. This isn't coded yet 4596 */ 4597 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 4598 return -EXDEV; 4599 4600 ret = btrfs_check_free_space(root, 1, 0); 4601 if (ret) 4602 goto out_unlock; 4603 4604 trans = btrfs_start_transaction(root, 1); 4605 4606 btrfs_set_trans_block_group(trans, new_dir); 4607 4608 btrfs_inc_nlink(old_dentry->d_inode); 4609 old_dir->i_ctime = old_dir->i_mtime = ctime; 4610 new_dir->i_ctime = new_dir->i_mtime = ctime; 4611 old_inode->i_ctime = ctime; 4612 4613 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, 4614 old_dentry->d_name.name, 4615 old_dentry->d_name.len); 4616 if (ret) 4617 goto out_fail; 4618 4619 if (new_inode) { 4620 new_inode->i_ctime = CURRENT_TIME; 4621 ret = btrfs_unlink_inode(trans, root, new_dir, 4622 new_dentry->d_inode, 4623 new_dentry->d_name.name, 4624 new_dentry->d_name.len); 4625 if (ret) 4626 goto out_fail; 4627 if (new_inode->i_nlink == 0) { 4628 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 4629 if (ret) 4630 goto out_fail; 4631 } 4632 4633 } 4634 ret = btrfs_set_inode_index(new_dir, &index); 4635 if (ret) 4636 goto out_fail; 4637 4638 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, 4639 old_inode, new_dentry->d_name.name, 4640 new_dentry->d_name.len, 1, index); 4641 if (ret) 4642 goto out_fail; 4643 4644 out_fail: 4645 btrfs_end_transaction_throttle(trans, root); 4646 out_unlock: 4647 return ret; 4648 } 4649 4650 /* 4651 * some fairly slow code that needs optimization. This walks the list 4652 * of all the inodes with pending delalloc and forces them to disk. 4653 */ 4654 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 4655 { 4656 struct list_head *head = &root->fs_info->delalloc_inodes; 4657 struct btrfs_inode *binode; 4658 struct inode *inode; 4659 4660 if (root->fs_info->sb->s_flags & MS_RDONLY) 4661 return -EROFS; 4662 4663 spin_lock(&root->fs_info->delalloc_lock); 4664 while (!list_empty(head)) { 4665 binode = list_entry(head->next, struct btrfs_inode, 4666 delalloc_inodes); 4667 inode = igrab(&binode->vfs_inode); 4668 if (!inode) 4669 list_del_init(&binode->delalloc_inodes); 4670 spin_unlock(&root->fs_info->delalloc_lock); 4671 if (inode) { 4672 filemap_flush(inode->i_mapping); 4673 iput(inode); 4674 } 4675 cond_resched(); 4676 spin_lock(&root->fs_info->delalloc_lock); 4677 } 4678 spin_unlock(&root->fs_info->delalloc_lock); 4679 4680 /* the filemap_flush will queue IO into the worker threads, but 4681 * we have to make sure the IO is actually started and that 4682 * ordered extents get created before we return 4683 */ 4684 atomic_inc(&root->fs_info->async_submit_draining); 4685 while (atomic_read(&root->fs_info->nr_async_submits) || 4686 atomic_read(&root->fs_info->async_delalloc_pages)) { 4687 wait_event(root->fs_info->async_submit_wait, 4688 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 4689 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 4690 } 4691 atomic_dec(&root->fs_info->async_submit_draining); 4692 return 0; 4693 } 4694 4695 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 4696 const char *symname) 4697 { 4698 struct btrfs_trans_handle *trans; 4699 struct btrfs_root *root = BTRFS_I(dir)->root; 4700 struct btrfs_path *path; 4701 struct btrfs_key key; 4702 struct inode *inode = NULL; 4703 int err; 4704 int drop_inode = 0; 4705 u64 objectid; 4706 u64 index = 0 ; 4707 int name_len; 4708 int datasize; 4709 unsigned long ptr; 4710 struct btrfs_file_extent_item *ei; 4711 struct extent_buffer *leaf; 4712 unsigned long nr = 0; 4713 4714 name_len = strlen(symname) + 1; 4715 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 4716 return -ENAMETOOLONG; 4717 4718 err = btrfs_check_free_space(root, 1, 0); 4719 if (err) 4720 goto out_fail; 4721 4722 trans = btrfs_start_transaction(root, 1); 4723 btrfs_set_trans_block_group(trans, dir); 4724 4725 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4726 if (err) { 4727 err = -ENOSPC; 4728 goto out_unlock; 4729 } 4730 4731 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4732 dentry->d_name.len, 4733 dentry->d_parent->d_inode->i_ino, objectid, 4734 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 4735 &index); 4736 err = PTR_ERR(inode); 4737 if (IS_ERR(inode)) 4738 goto out_unlock; 4739 4740 err = btrfs_init_acl(inode, dir); 4741 if (err) { 4742 drop_inode = 1; 4743 goto out_unlock; 4744 } 4745 4746 btrfs_set_trans_block_group(trans, inode); 4747 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4748 if (err) 4749 drop_inode = 1; 4750 else { 4751 inode->i_mapping->a_ops = &btrfs_aops; 4752 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4753 inode->i_fop = &btrfs_file_operations; 4754 inode->i_op = &btrfs_file_inode_operations; 4755 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4756 } 4757 dir->i_sb->s_dirt = 1; 4758 btrfs_update_inode_block_group(trans, inode); 4759 btrfs_update_inode_block_group(trans, dir); 4760 if (drop_inode) 4761 goto out_unlock; 4762 4763 path = btrfs_alloc_path(); 4764 BUG_ON(!path); 4765 key.objectid = inode->i_ino; 4766 key.offset = 0; 4767 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 4768 datasize = btrfs_file_extent_calc_inline_size(name_len); 4769 err = btrfs_insert_empty_item(trans, root, path, &key, 4770 datasize); 4771 if (err) { 4772 drop_inode = 1; 4773 goto out_unlock; 4774 } 4775 leaf = path->nodes[0]; 4776 ei = btrfs_item_ptr(leaf, path->slots[0], 4777 struct btrfs_file_extent_item); 4778 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 4779 btrfs_set_file_extent_type(leaf, ei, 4780 BTRFS_FILE_EXTENT_INLINE); 4781 btrfs_set_file_extent_encryption(leaf, ei, 0); 4782 btrfs_set_file_extent_compression(leaf, ei, 0); 4783 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 4784 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 4785 4786 ptr = btrfs_file_extent_inline_start(ei); 4787 write_extent_buffer(leaf, symname, ptr, name_len); 4788 btrfs_mark_buffer_dirty(leaf); 4789 btrfs_free_path(path); 4790 4791 inode->i_op = &btrfs_symlink_inode_operations; 4792 inode->i_mapping->a_ops = &btrfs_symlink_aops; 4793 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4794 inode_set_bytes(inode, name_len); 4795 btrfs_i_size_write(inode, name_len - 1); 4796 err = btrfs_update_inode(trans, root, inode); 4797 if (err) 4798 drop_inode = 1; 4799 4800 out_unlock: 4801 nr = trans->blocks_used; 4802 btrfs_end_transaction_throttle(trans, root); 4803 out_fail: 4804 if (drop_inode) { 4805 inode_dec_link_count(inode); 4806 iput(inode); 4807 } 4808 btrfs_btree_balance_dirty(root, nr); 4809 return err; 4810 } 4811 4812 static int prealloc_file_range(struct inode *inode, u64 start, u64 end, 4813 u64 alloc_hint, int mode) 4814 { 4815 struct btrfs_trans_handle *trans; 4816 struct btrfs_root *root = BTRFS_I(inode)->root; 4817 struct btrfs_key ins; 4818 u64 alloc_size; 4819 u64 cur_offset = start; 4820 u64 num_bytes = end - start; 4821 int ret = 0; 4822 4823 trans = btrfs_join_transaction(root, 1); 4824 BUG_ON(!trans); 4825 btrfs_set_trans_block_group(trans, inode); 4826 4827 while (num_bytes > 0) { 4828 alloc_size = min(num_bytes, root->fs_info->max_extent); 4829 ret = btrfs_reserve_extent(trans, root, alloc_size, 4830 root->sectorsize, 0, alloc_hint, 4831 (u64)-1, &ins, 1); 4832 if (ret) { 4833 WARN_ON(1); 4834 goto out; 4835 } 4836 ret = insert_reserved_file_extent(trans, inode, 4837 cur_offset, ins.objectid, 4838 ins.offset, ins.offset, 4839 ins.offset, 0, 0, 0, 4840 BTRFS_FILE_EXTENT_PREALLOC); 4841 BUG_ON(ret); 4842 num_bytes -= ins.offset; 4843 cur_offset += ins.offset; 4844 alloc_hint = ins.objectid + ins.offset; 4845 } 4846 out: 4847 if (cur_offset > start) { 4848 inode->i_ctime = CURRENT_TIME; 4849 btrfs_set_flag(inode, PREALLOC); 4850 if (!(mode & FALLOC_FL_KEEP_SIZE) && 4851 cur_offset > i_size_read(inode)) 4852 btrfs_i_size_write(inode, cur_offset); 4853 ret = btrfs_update_inode(trans, root, inode); 4854 BUG_ON(ret); 4855 } 4856 4857 btrfs_end_transaction(trans, root); 4858 return ret; 4859 } 4860 4861 static long btrfs_fallocate(struct inode *inode, int mode, 4862 loff_t offset, loff_t len) 4863 { 4864 u64 cur_offset; 4865 u64 last_byte; 4866 u64 alloc_start; 4867 u64 alloc_end; 4868 u64 alloc_hint = 0; 4869 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 4870 struct extent_map *em; 4871 int ret; 4872 4873 alloc_start = offset & ~mask; 4874 alloc_end = (offset + len + mask) & ~mask; 4875 4876 mutex_lock(&inode->i_mutex); 4877 if (alloc_start > inode->i_size) { 4878 ret = btrfs_cont_expand(inode, alloc_start); 4879 if (ret) 4880 goto out; 4881 } 4882 4883 while (1) { 4884 struct btrfs_ordered_extent *ordered; 4885 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, 4886 alloc_end - 1, GFP_NOFS); 4887 ordered = btrfs_lookup_first_ordered_extent(inode, 4888 alloc_end - 1); 4889 if (ordered && 4890 ordered->file_offset + ordered->len > alloc_start && 4891 ordered->file_offset < alloc_end) { 4892 btrfs_put_ordered_extent(ordered); 4893 unlock_extent(&BTRFS_I(inode)->io_tree, 4894 alloc_start, alloc_end - 1, GFP_NOFS); 4895 btrfs_wait_ordered_range(inode, alloc_start, 4896 alloc_end - alloc_start); 4897 } else { 4898 if (ordered) 4899 btrfs_put_ordered_extent(ordered); 4900 break; 4901 } 4902 } 4903 4904 cur_offset = alloc_start; 4905 while (1) { 4906 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4907 alloc_end - cur_offset, 0); 4908 BUG_ON(IS_ERR(em) || !em); 4909 last_byte = min(extent_map_end(em), alloc_end); 4910 last_byte = (last_byte + mask) & ~mask; 4911 if (em->block_start == EXTENT_MAP_HOLE) { 4912 ret = prealloc_file_range(inode, cur_offset, 4913 last_byte, alloc_hint, mode); 4914 if (ret < 0) { 4915 free_extent_map(em); 4916 break; 4917 } 4918 } 4919 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 4920 alloc_hint = em->block_start; 4921 free_extent_map(em); 4922 4923 cur_offset = last_byte; 4924 if (cur_offset >= alloc_end) { 4925 ret = 0; 4926 break; 4927 } 4928 } 4929 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1, 4930 GFP_NOFS); 4931 out: 4932 mutex_unlock(&inode->i_mutex); 4933 return ret; 4934 } 4935 4936 static int btrfs_set_page_dirty(struct page *page) 4937 { 4938 return __set_page_dirty_nobuffers(page); 4939 } 4940 4941 static int btrfs_permission(struct inode *inode, int mask) 4942 { 4943 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE)) 4944 return -EACCES; 4945 return generic_permission(inode, mask, btrfs_check_acl); 4946 } 4947 4948 static struct inode_operations btrfs_dir_inode_operations = { 4949 .getattr = btrfs_getattr, 4950 .lookup = btrfs_lookup, 4951 .create = btrfs_create, 4952 .unlink = btrfs_unlink, 4953 .link = btrfs_link, 4954 .mkdir = btrfs_mkdir, 4955 .rmdir = btrfs_rmdir, 4956 .rename = btrfs_rename, 4957 .symlink = btrfs_symlink, 4958 .setattr = btrfs_setattr, 4959 .mknod = btrfs_mknod, 4960 .setxattr = btrfs_setxattr, 4961 .getxattr = btrfs_getxattr, 4962 .listxattr = btrfs_listxattr, 4963 .removexattr = btrfs_removexattr, 4964 .permission = btrfs_permission, 4965 }; 4966 static struct inode_operations btrfs_dir_ro_inode_operations = { 4967 .lookup = btrfs_lookup, 4968 .permission = btrfs_permission, 4969 }; 4970 static struct file_operations btrfs_dir_file_operations = { 4971 .llseek = generic_file_llseek, 4972 .read = generic_read_dir, 4973 .readdir = btrfs_real_readdir, 4974 .unlocked_ioctl = btrfs_ioctl, 4975 #ifdef CONFIG_COMPAT 4976 .compat_ioctl = btrfs_ioctl, 4977 #endif 4978 .release = btrfs_release_file, 4979 .fsync = btrfs_sync_file, 4980 }; 4981 4982 static struct extent_io_ops btrfs_extent_io_ops = { 4983 .fill_delalloc = run_delalloc_range, 4984 .submit_bio_hook = btrfs_submit_bio_hook, 4985 .merge_bio_hook = btrfs_merge_bio_hook, 4986 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 4987 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 4988 .writepage_start_hook = btrfs_writepage_start_hook, 4989 .readpage_io_failed_hook = btrfs_io_failed_hook, 4990 .set_bit_hook = btrfs_set_bit_hook, 4991 .clear_bit_hook = btrfs_clear_bit_hook, 4992 }; 4993 4994 static struct address_space_operations btrfs_aops = { 4995 .readpage = btrfs_readpage, 4996 .writepage = btrfs_writepage, 4997 .writepages = btrfs_writepages, 4998 .readpages = btrfs_readpages, 4999 .sync_page = block_sync_page, 5000 .bmap = btrfs_bmap, 5001 .direct_IO = btrfs_direct_IO, 5002 .invalidatepage = btrfs_invalidatepage, 5003 .releasepage = btrfs_releasepage, 5004 .set_page_dirty = btrfs_set_page_dirty, 5005 }; 5006 5007 static struct address_space_operations btrfs_symlink_aops = { 5008 .readpage = btrfs_readpage, 5009 .writepage = btrfs_writepage, 5010 .invalidatepage = btrfs_invalidatepage, 5011 .releasepage = btrfs_releasepage, 5012 }; 5013 5014 static struct inode_operations btrfs_file_inode_operations = { 5015 .truncate = btrfs_truncate, 5016 .getattr = btrfs_getattr, 5017 .setattr = btrfs_setattr, 5018 .setxattr = btrfs_setxattr, 5019 .getxattr = btrfs_getxattr, 5020 .listxattr = btrfs_listxattr, 5021 .removexattr = btrfs_removexattr, 5022 .permission = btrfs_permission, 5023 .fallocate = btrfs_fallocate, 5024 }; 5025 static struct inode_operations btrfs_special_inode_operations = { 5026 .getattr = btrfs_getattr, 5027 .setattr = btrfs_setattr, 5028 .permission = btrfs_permission, 5029 .setxattr = btrfs_setxattr, 5030 .getxattr = btrfs_getxattr, 5031 .listxattr = btrfs_listxattr, 5032 .removexattr = btrfs_removexattr, 5033 }; 5034 static struct inode_operations btrfs_symlink_inode_operations = { 5035 .readlink = generic_readlink, 5036 .follow_link = page_follow_link_light, 5037 .put_link = page_put_link, 5038 .permission = btrfs_permission, 5039 }; 5040