1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/posix_acl_xattr.h> 46 #include "compat.h" 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "ordered-data.h" 53 #include "xattr.h" 54 #include "tree-log.h" 55 #include "volumes.h" 56 #include "compression.h" 57 #include "locking.h" 58 #include "free-space-cache.h" 59 #include "inode-map.h" 60 #include "backref.h" 61 #include "hash.h" 62 63 struct btrfs_iget_args { 64 u64 ino; 65 struct btrfs_root *root; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_dir_ro_inode_operations; 71 static const struct inode_operations btrfs_special_inode_operations; 72 static const struct inode_operations btrfs_file_inode_operations; 73 static const struct address_space_operations btrfs_aops; 74 static const struct address_space_operations btrfs_symlink_aops; 75 static const struct file_operations btrfs_dir_file_operations; 76 static struct extent_io_ops btrfs_extent_io_ops; 77 78 static struct kmem_cache *btrfs_inode_cachep; 79 static struct kmem_cache *btrfs_delalloc_work_cachep; 80 struct kmem_cache *btrfs_trans_handle_cachep; 81 struct kmem_cache *btrfs_transaction_cachep; 82 struct kmem_cache *btrfs_path_cachep; 83 struct kmem_cache *btrfs_free_space_cachep; 84 85 #define S_SHIFT 12 86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 94 }; 95 96 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 97 static int btrfs_truncate(struct inode *inode); 98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 99 static noinline int cow_file_range(struct inode *inode, 100 struct page *locked_page, 101 u64 start, u64 end, int *page_started, 102 unsigned long *nr_written, int unlock); 103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 104 u64 len, u64 orig_start, 105 u64 block_start, u64 block_len, 106 u64 orig_block_len, u64 ram_bytes, 107 int type); 108 109 static int btrfs_dirty_inode(struct inode *inode); 110 111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 112 struct inode *inode, struct inode *dir, 113 const struct qstr *qstr) 114 { 115 int err; 116 117 err = btrfs_init_acl(trans, inode, dir); 118 if (!err) 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 120 return err; 121 } 122 123 /* 124 * this does all the hard work for inserting an inline extent into 125 * the btree. The caller should have done a btrfs_drop_extents so that 126 * no overlapping inline items exist in the btree 127 */ 128 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 129 struct btrfs_root *root, struct inode *inode, 130 u64 start, size_t size, size_t compressed_size, 131 int compress_type, 132 struct page **compressed_pages) 133 { 134 struct btrfs_key key; 135 struct btrfs_path *path; 136 struct extent_buffer *leaf; 137 struct page *page = NULL; 138 char *kaddr; 139 unsigned long ptr; 140 struct btrfs_file_extent_item *ei; 141 int err = 0; 142 int ret; 143 size_t cur_size = size; 144 size_t datasize; 145 unsigned long offset; 146 147 if (compressed_size && compressed_pages) 148 cur_size = compressed_size; 149 150 path = btrfs_alloc_path(); 151 if (!path) 152 return -ENOMEM; 153 154 path->leave_spinning = 1; 155 156 key.objectid = btrfs_ino(inode); 157 key.offset = start; 158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 159 datasize = btrfs_file_extent_calc_inline_size(cur_size); 160 161 inode_add_bytes(inode, size); 162 ret = btrfs_insert_empty_item(trans, root, path, &key, 163 datasize); 164 if (ret) { 165 err = ret; 166 goto fail; 167 } 168 leaf = path->nodes[0]; 169 ei = btrfs_item_ptr(leaf, path->slots[0], 170 struct btrfs_file_extent_item); 171 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 173 btrfs_set_file_extent_encryption(leaf, ei, 0); 174 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 175 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 176 ptr = btrfs_file_extent_inline_start(ei); 177 178 if (compress_type != BTRFS_COMPRESS_NONE) { 179 struct page *cpage; 180 int i = 0; 181 while (compressed_size > 0) { 182 cpage = compressed_pages[i]; 183 cur_size = min_t(unsigned long, compressed_size, 184 PAGE_CACHE_SIZE); 185 186 kaddr = kmap_atomic(cpage); 187 write_extent_buffer(leaf, kaddr, ptr, cur_size); 188 kunmap_atomic(kaddr); 189 190 i++; 191 ptr += cur_size; 192 compressed_size -= cur_size; 193 } 194 btrfs_set_file_extent_compression(leaf, ei, 195 compress_type); 196 } else { 197 page = find_get_page(inode->i_mapping, 198 start >> PAGE_CACHE_SHIFT); 199 btrfs_set_file_extent_compression(leaf, ei, 0); 200 kaddr = kmap_atomic(page); 201 offset = start & (PAGE_CACHE_SIZE - 1); 202 write_extent_buffer(leaf, kaddr + offset, ptr, size); 203 kunmap_atomic(kaddr); 204 page_cache_release(page); 205 } 206 btrfs_mark_buffer_dirty(leaf); 207 btrfs_free_path(path); 208 209 /* 210 * we're an inline extent, so nobody can 211 * extend the file past i_size without locking 212 * a page we already have locked. 213 * 214 * We must do any isize and inode updates 215 * before we unlock the pages. Otherwise we 216 * could end up racing with unlink. 217 */ 218 BTRFS_I(inode)->disk_i_size = inode->i_size; 219 ret = btrfs_update_inode(trans, root, inode); 220 221 return ret; 222 fail: 223 btrfs_free_path(path); 224 return err; 225 } 226 227 228 /* 229 * conditionally insert an inline extent into the file. This 230 * does the checks required to make sure the data is small enough 231 * to fit as an inline extent. 232 */ 233 static noinline int cow_file_range_inline(struct btrfs_root *root, 234 struct inode *inode, u64 start, 235 u64 end, size_t compressed_size, 236 int compress_type, 237 struct page **compressed_pages) 238 { 239 struct btrfs_trans_handle *trans; 240 u64 isize = i_size_read(inode); 241 u64 actual_end = min(end + 1, isize); 242 u64 inline_len = actual_end - start; 243 u64 aligned_end = ALIGN(end, root->sectorsize); 244 u64 data_len = inline_len; 245 int ret; 246 247 if (compressed_size) 248 data_len = compressed_size; 249 250 if (start > 0 || 251 actual_end >= PAGE_CACHE_SIZE || 252 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 253 (!compressed_size && 254 (actual_end & (root->sectorsize - 1)) == 0) || 255 end + 1 < isize || 256 data_len > root->fs_info->max_inline) { 257 return 1; 258 } 259 260 trans = btrfs_join_transaction(root); 261 if (IS_ERR(trans)) 262 return PTR_ERR(trans); 263 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 264 265 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 266 if (ret) { 267 btrfs_abort_transaction(trans, root, ret); 268 goto out; 269 } 270 271 if (isize > actual_end) 272 inline_len = min_t(u64, isize, actual_end); 273 ret = insert_inline_extent(trans, root, inode, start, 274 inline_len, compressed_size, 275 compress_type, compressed_pages); 276 if (ret && ret != -ENOSPC) { 277 btrfs_abort_transaction(trans, root, ret); 278 goto out; 279 } else if (ret == -ENOSPC) { 280 ret = 1; 281 goto out; 282 } 283 284 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 285 btrfs_delalloc_release_metadata(inode, end + 1 - start); 286 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 287 out: 288 btrfs_end_transaction(trans, root); 289 return ret; 290 } 291 292 struct async_extent { 293 u64 start; 294 u64 ram_size; 295 u64 compressed_size; 296 struct page **pages; 297 unsigned long nr_pages; 298 int compress_type; 299 struct list_head list; 300 }; 301 302 struct async_cow { 303 struct inode *inode; 304 struct btrfs_root *root; 305 struct page *locked_page; 306 u64 start; 307 u64 end; 308 struct list_head extents; 309 struct btrfs_work work; 310 }; 311 312 static noinline int add_async_extent(struct async_cow *cow, 313 u64 start, u64 ram_size, 314 u64 compressed_size, 315 struct page **pages, 316 unsigned long nr_pages, 317 int compress_type) 318 { 319 struct async_extent *async_extent; 320 321 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 322 BUG_ON(!async_extent); /* -ENOMEM */ 323 async_extent->start = start; 324 async_extent->ram_size = ram_size; 325 async_extent->compressed_size = compressed_size; 326 async_extent->pages = pages; 327 async_extent->nr_pages = nr_pages; 328 async_extent->compress_type = compress_type; 329 list_add_tail(&async_extent->list, &cow->extents); 330 return 0; 331 } 332 333 /* 334 * we create compressed extents in two phases. The first 335 * phase compresses a range of pages that have already been 336 * locked (both pages and state bits are locked). 337 * 338 * This is done inside an ordered work queue, and the compression 339 * is spread across many cpus. The actual IO submission is step 340 * two, and the ordered work queue takes care of making sure that 341 * happens in the same order things were put onto the queue by 342 * writepages and friends. 343 * 344 * If this code finds it can't get good compression, it puts an 345 * entry onto the work queue to write the uncompressed bytes. This 346 * makes sure that both compressed inodes and uncompressed inodes 347 * are written in the same order that the flusher thread sent them 348 * down. 349 */ 350 static noinline int compress_file_range(struct inode *inode, 351 struct page *locked_page, 352 u64 start, u64 end, 353 struct async_cow *async_cow, 354 int *num_added) 355 { 356 struct btrfs_root *root = BTRFS_I(inode)->root; 357 u64 num_bytes; 358 u64 blocksize = root->sectorsize; 359 u64 actual_end; 360 u64 isize = i_size_read(inode); 361 int ret = 0; 362 struct page **pages = NULL; 363 unsigned long nr_pages; 364 unsigned long nr_pages_ret = 0; 365 unsigned long total_compressed = 0; 366 unsigned long total_in = 0; 367 unsigned long max_compressed = 128 * 1024; 368 unsigned long max_uncompressed = 128 * 1024; 369 int i; 370 int will_compress; 371 int compress_type = root->fs_info->compress_type; 372 int redirty = 0; 373 374 /* if this is a small write inside eof, kick off a defrag */ 375 if ((end - start + 1) < 16 * 1024 && 376 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 377 btrfs_add_inode_defrag(NULL, inode); 378 379 actual_end = min_t(u64, isize, end + 1); 380 again: 381 will_compress = 0; 382 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 383 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 384 385 /* 386 * we don't want to send crud past the end of i_size through 387 * compression, that's just a waste of CPU time. So, if the 388 * end of the file is before the start of our current 389 * requested range of bytes, we bail out to the uncompressed 390 * cleanup code that can deal with all of this. 391 * 392 * It isn't really the fastest way to fix things, but this is a 393 * very uncommon corner. 394 */ 395 if (actual_end <= start) 396 goto cleanup_and_bail_uncompressed; 397 398 total_compressed = actual_end - start; 399 400 /* we want to make sure that amount of ram required to uncompress 401 * an extent is reasonable, so we limit the total size in ram 402 * of a compressed extent to 128k. This is a crucial number 403 * because it also controls how easily we can spread reads across 404 * cpus for decompression. 405 * 406 * We also want to make sure the amount of IO required to do 407 * a random read is reasonably small, so we limit the size of 408 * a compressed extent to 128k. 409 */ 410 total_compressed = min(total_compressed, max_uncompressed); 411 num_bytes = ALIGN(end - start + 1, blocksize); 412 num_bytes = max(blocksize, num_bytes); 413 total_in = 0; 414 ret = 0; 415 416 /* 417 * we do compression for mount -o compress and when the 418 * inode has not been flagged as nocompress. This flag can 419 * change at any time if we discover bad compression ratios. 420 */ 421 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 422 (btrfs_test_opt(root, COMPRESS) || 423 (BTRFS_I(inode)->force_compress) || 424 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 425 WARN_ON(pages); 426 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 427 if (!pages) { 428 /* just bail out to the uncompressed code */ 429 goto cont; 430 } 431 432 if (BTRFS_I(inode)->force_compress) 433 compress_type = BTRFS_I(inode)->force_compress; 434 435 /* 436 * we need to call clear_page_dirty_for_io on each 437 * page in the range. Otherwise applications with the file 438 * mmap'd can wander in and change the page contents while 439 * we are compressing them. 440 * 441 * If the compression fails for any reason, we set the pages 442 * dirty again later on. 443 */ 444 extent_range_clear_dirty_for_io(inode, start, end); 445 redirty = 1; 446 ret = btrfs_compress_pages(compress_type, 447 inode->i_mapping, start, 448 total_compressed, pages, 449 nr_pages, &nr_pages_ret, 450 &total_in, 451 &total_compressed, 452 max_compressed); 453 454 if (!ret) { 455 unsigned long offset = total_compressed & 456 (PAGE_CACHE_SIZE - 1); 457 struct page *page = pages[nr_pages_ret - 1]; 458 char *kaddr; 459 460 /* zero the tail end of the last page, we might be 461 * sending it down to disk 462 */ 463 if (offset) { 464 kaddr = kmap_atomic(page); 465 memset(kaddr + offset, 0, 466 PAGE_CACHE_SIZE - offset); 467 kunmap_atomic(kaddr); 468 } 469 will_compress = 1; 470 } 471 } 472 cont: 473 if (start == 0) { 474 /* lets try to make an inline extent */ 475 if (ret || total_in < (actual_end - start)) { 476 /* we didn't compress the entire range, try 477 * to make an uncompressed inline extent. 478 */ 479 ret = cow_file_range_inline(root, inode, start, end, 480 0, 0, NULL); 481 } else { 482 /* try making a compressed inline extent */ 483 ret = cow_file_range_inline(root, inode, start, end, 484 total_compressed, 485 compress_type, pages); 486 } 487 if (ret <= 0) { 488 unsigned long clear_flags = EXTENT_DELALLOC | 489 EXTENT_DEFRAG; 490 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 491 492 /* 493 * inline extent creation worked or returned error, 494 * we don't need to create any more async work items. 495 * Unlock and free up our temp pages. 496 */ 497 extent_clear_unlock_delalloc(inode, start, end, NULL, 498 clear_flags, PAGE_UNLOCK | 499 PAGE_CLEAR_DIRTY | 500 PAGE_SET_WRITEBACK | 501 PAGE_END_WRITEBACK); 502 goto free_pages_out; 503 } 504 } 505 506 if (will_compress) { 507 /* 508 * we aren't doing an inline extent round the compressed size 509 * up to a block size boundary so the allocator does sane 510 * things 511 */ 512 total_compressed = ALIGN(total_compressed, blocksize); 513 514 /* 515 * one last check to make sure the compression is really a 516 * win, compare the page count read with the blocks on disk 517 */ 518 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 519 if (total_compressed >= total_in) { 520 will_compress = 0; 521 } else { 522 num_bytes = total_in; 523 } 524 } 525 if (!will_compress && pages) { 526 /* 527 * the compression code ran but failed to make things smaller, 528 * free any pages it allocated and our page pointer array 529 */ 530 for (i = 0; i < nr_pages_ret; i++) { 531 WARN_ON(pages[i]->mapping); 532 page_cache_release(pages[i]); 533 } 534 kfree(pages); 535 pages = NULL; 536 total_compressed = 0; 537 nr_pages_ret = 0; 538 539 /* flag the file so we don't compress in the future */ 540 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 541 !(BTRFS_I(inode)->force_compress)) { 542 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 543 } 544 } 545 if (will_compress) { 546 *num_added += 1; 547 548 /* the async work queues will take care of doing actual 549 * allocation on disk for these compressed pages, 550 * and will submit them to the elevator. 551 */ 552 add_async_extent(async_cow, start, num_bytes, 553 total_compressed, pages, nr_pages_ret, 554 compress_type); 555 556 if (start + num_bytes < end) { 557 start += num_bytes; 558 pages = NULL; 559 cond_resched(); 560 goto again; 561 } 562 } else { 563 cleanup_and_bail_uncompressed: 564 /* 565 * No compression, but we still need to write the pages in 566 * the file we've been given so far. redirty the locked 567 * page if it corresponds to our extent and set things up 568 * for the async work queue to run cow_file_range to do 569 * the normal delalloc dance 570 */ 571 if (page_offset(locked_page) >= start && 572 page_offset(locked_page) <= end) { 573 __set_page_dirty_nobuffers(locked_page); 574 /* unlocked later on in the async handlers */ 575 } 576 if (redirty) 577 extent_range_redirty_for_io(inode, start, end); 578 add_async_extent(async_cow, start, end - start + 1, 579 0, NULL, 0, BTRFS_COMPRESS_NONE); 580 *num_added += 1; 581 } 582 583 out: 584 return ret; 585 586 free_pages_out: 587 for (i = 0; i < nr_pages_ret; i++) { 588 WARN_ON(pages[i]->mapping); 589 page_cache_release(pages[i]); 590 } 591 kfree(pages); 592 593 goto out; 594 } 595 596 /* 597 * phase two of compressed writeback. This is the ordered portion 598 * of the code, which only gets called in the order the work was 599 * queued. We walk all the async extents created by compress_file_range 600 * and send them down to the disk. 601 */ 602 static noinline int submit_compressed_extents(struct inode *inode, 603 struct async_cow *async_cow) 604 { 605 struct async_extent *async_extent; 606 u64 alloc_hint = 0; 607 struct btrfs_key ins; 608 struct extent_map *em; 609 struct btrfs_root *root = BTRFS_I(inode)->root; 610 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 611 struct extent_io_tree *io_tree; 612 int ret = 0; 613 614 if (list_empty(&async_cow->extents)) 615 return 0; 616 617 again: 618 while (!list_empty(&async_cow->extents)) { 619 async_extent = list_entry(async_cow->extents.next, 620 struct async_extent, list); 621 list_del(&async_extent->list); 622 623 io_tree = &BTRFS_I(inode)->io_tree; 624 625 retry: 626 /* did the compression code fall back to uncompressed IO? */ 627 if (!async_extent->pages) { 628 int page_started = 0; 629 unsigned long nr_written = 0; 630 631 lock_extent(io_tree, async_extent->start, 632 async_extent->start + 633 async_extent->ram_size - 1); 634 635 /* allocate blocks */ 636 ret = cow_file_range(inode, async_cow->locked_page, 637 async_extent->start, 638 async_extent->start + 639 async_extent->ram_size - 1, 640 &page_started, &nr_written, 0); 641 642 /* JDM XXX */ 643 644 /* 645 * if page_started, cow_file_range inserted an 646 * inline extent and took care of all the unlocking 647 * and IO for us. Otherwise, we need to submit 648 * all those pages down to the drive. 649 */ 650 if (!page_started && !ret) 651 extent_write_locked_range(io_tree, 652 inode, async_extent->start, 653 async_extent->start + 654 async_extent->ram_size - 1, 655 btrfs_get_extent, 656 WB_SYNC_ALL); 657 else if (ret) 658 unlock_page(async_cow->locked_page); 659 kfree(async_extent); 660 cond_resched(); 661 continue; 662 } 663 664 lock_extent(io_tree, async_extent->start, 665 async_extent->start + async_extent->ram_size - 1); 666 667 ret = btrfs_reserve_extent(root, 668 async_extent->compressed_size, 669 async_extent->compressed_size, 670 0, alloc_hint, &ins, 1); 671 if (ret) { 672 int i; 673 674 for (i = 0; i < async_extent->nr_pages; i++) { 675 WARN_ON(async_extent->pages[i]->mapping); 676 page_cache_release(async_extent->pages[i]); 677 } 678 kfree(async_extent->pages); 679 async_extent->nr_pages = 0; 680 async_extent->pages = NULL; 681 682 if (ret == -ENOSPC) { 683 unlock_extent(io_tree, async_extent->start, 684 async_extent->start + 685 async_extent->ram_size - 1); 686 goto retry; 687 } 688 goto out_free; 689 } 690 691 /* 692 * here we're doing allocation and writeback of the 693 * compressed pages 694 */ 695 btrfs_drop_extent_cache(inode, async_extent->start, 696 async_extent->start + 697 async_extent->ram_size - 1, 0); 698 699 em = alloc_extent_map(); 700 if (!em) { 701 ret = -ENOMEM; 702 goto out_free_reserve; 703 } 704 em->start = async_extent->start; 705 em->len = async_extent->ram_size; 706 em->orig_start = em->start; 707 em->mod_start = em->start; 708 em->mod_len = em->len; 709 710 em->block_start = ins.objectid; 711 em->block_len = ins.offset; 712 em->orig_block_len = ins.offset; 713 em->ram_bytes = async_extent->ram_size; 714 em->bdev = root->fs_info->fs_devices->latest_bdev; 715 em->compress_type = async_extent->compress_type; 716 set_bit(EXTENT_FLAG_PINNED, &em->flags); 717 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 718 em->generation = -1; 719 720 while (1) { 721 write_lock(&em_tree->lock); 722 ret = add_extent_mapping(em_tree, em, 1); 723 write_unlock(&em_tree->lock); 724 if (ret != -EEXIST) { 725 free_extent_map(em); 726 break; 727 } 728 btrfs_drop_extent_cache(inode, async_extent->start, 729 async_extent->start + 730 async_extent->ram_size - 1, 0); 731 } 732 733 if (ret) 734 goto out_free_reserve; 735 736 ret = btrfs_add_ordered_extent_compress(inode, 737 async_extent->start, 738 ins.objectid, 739 async_extent->ram_size, 740 ins.offset, 741 BTRFS_ORDERED_COMPRESSED, 742 async_extent->compress_type); 743 if (ret) 744 goto out_free_reserve; 745 746 /* 747 * clear dirty, set writeback and unlock the pages. 748 */ 749 extent_clear_unlock_delalloc(inode, async_extent->start, 750 async_extent->start + 751 async_extent->ram_size - 1, 752 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 753 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 754 PAGE_SET_WRITEBACK); 755 ret = btrfs_submit_compressed_write(inode, 756 async_extent->start, 757 async_extent->ram_size, 758 ins.objectid, 759 ins.offset, async_extent->pages, 760 async_extent->nr_pages); 761 alloc_hint = ins.objectid + ins.offset; 762 kfree(async_extent); 763 if (ret) 764 goto out; 765 cond_resched(); 766 } 767 ret = 0; 768 out: 769 return ret; 770 out_free_reserve: 771 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 772 out_free: 773 extent_clear_unlock_delalloc(inode, async_extent->start, 774 async_extent->start + 775 async_extent->ram_size - 1, 776 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 777 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 778 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 779 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 780 kfree(async_extent); 781 goto again; 782 } 783 784 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 785 u64 num_bytes) 786 { 787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 788 struct extent_map *em; 789 u64 alloc_hint = 0; 790 791 read_lock(&em_tree->lock); 792 em = search_extent_mapping(em_tree, start, num_bytes); 793 if (em) { 794 /* 795 * if block start isn't an actual block number then find the 796 * first block in this inode and use that as a hint. If that 797 * block is also bogus then just don't worry about it. 798 */ 799 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 800 free_extent_map(em); 801 em = search_extent_mapping(em_tree, 0, 0); 802 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 803 alloc_hint = em->block_start; 804 if (em) 805 free_extent_map(em); 806 } else { 807 alloc_hint = em->block_start; 808 free_extent_map(em); 809 } 810 } 811 read_unlock(&em_tree->lock); 812 813 return alloc_hint; 814 } 815 816 /* 817 * when extent_io.c finds a delayed allocation range in the file, 818 * the call backs end up in this code. The basic idea is to 819 * allocate extents on disk for the range, and create ordered data structs 820 * in ram to track those extents. 821 * 822 * locked_page is the page that writepage had locked already. We use 823 * it to make sure we don't do extra locks or unlocks. 824 * 825 * *page_started is set to one if we unlock locked_page and do everything 826 * required to start IO on it. It may be clean and already done with 827 * IO when we return. 828 */ 829 static noinline int cow_file_range(struct inode *inode, 830 struct page *locked_page, 831 u64 start, u64 end, int *page_started, 832 unsigned long *nr_written, 833 int unlock) 834 { 835 struct btrfs_root *root = BTRFS_I(inode)->root; 836 u64 alloc_hint = 0; 837 u64 num_bytes; 838 unsigned long ram_size; 839 u64 disk_num_bytes; 840 u64 cur_alloc_size; 841 u64 blocksize = root->sectorsize; 842 struct btrfs_key ins; 843 struct extent_map *em; 844 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 845 int ret = 0; 846 847 BUG_ON(btrfs_is_free_space_inode(inode)); 848 849 num_bytes = ALIGN(end - start + 1, blocksize); 850 num_bytes = max(blocksize, num_bytes); 851 disk_num_bytes = num_bytes; 852 853 /* if this is a small write inside eof, kick off defrag */ 854 if (num_bytes < 64 * 1024 && 855 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 856 btrfs_add_inode_defrag(NULL, inode); 857 858 if (start == 0) { 859 /* lets try to make an inline extent */ 860 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 861 NULL); 862 if (ret == 0) { 863 extent_clear_unlock_delalloc(inode, start, end, NULL, 864 EXTENT_LOCKED | EXTENT_DELALLOC | 865 EXTENT_DEFRAG, PAGE_UNLOCK | 866 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 867 PAGE_END_WRITEBACK); 868 869 *nr_written = *nr_written + 870 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 871 *page_started = 1; 872 goto out; 873 } else if (ret < 0) { 874 goto out_unlock; 875 } 876 } 877 878 BUG_ON(disk_num_bytes > 879 btrfs_super_total_bytes(root->fs_info->super_copy)); 880 881 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 882 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 883 884 while (disk_num_bytes > 0) { 885 unsigned long op; 886 887 cur_alloc_size = disk_num_bytes; 888 ret = btrfs_reserve_extent(root, cur_alloc_size, 889 root->sectorsize, 0, alloc_hint, 890 &ins, 1); 891 if (ret < 0) 892 goto out_unlock; 893 894 em = alloc_extent_map(); 895 if (!em) { 896 ret = -ENOMEM; 897 goto out_reserve; 898 } 899 em->start = start; 900 em->orig_start = em->start; 901 ram_size = ins.offset; 902 em->len = ins.offset; 903 em->mod_start = em->start; 904 em->mod_len = em->len; 905 906 em->block_start = ins.objectid; 907 em->block_len = ins.offset; 908 em->orig_block_len = ins.offset; 909 em->ram_bytes = ram_size; 910 em->bdev = root->fs_info->fs_devices->latest_bdev; 911 set_bit(EXTENT_FLAG_PINNED, &em->flags); 912 em->generation = -1; 913 914 while (1) { 915 write_lock(&em_tree->lock); 916 ret = add_extent_mapping(em_tree, em, 1); 917 write_unlock(&em_tree->lock); 918 if (ret != -EEXIST) { 919 free_extent_map(em); 920 break; 921 } 922 btrfs_drop_extent_cache(inode, start, 923 start + ram_size - 1, 0); 924 } 925 if (ret) 926 goto out_reserve; 927 928 cur_alloc_size = ins.offset; 929 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 930 ram_size, cur_alloc_size, 0); 931 if (ret) 932 goto out_reserve; 933 934 if (root->root_key.objectid == 935 BTRFS_DATA_RELOC_TREE_OBJECTID) { 936 ret = btrfs_reloc_clone_csums(inode, start, 937 cur_alloc_size); 938 if (ret) 939 goto out_reserve; 940 } 941 942 if (disk_num_bytes < cur_alloc_size) 943 break; 944 945 /* we're not doing compressed IO, don't unlock the first 946 * page (which the caller expects to stay locked), don't 947 * clear any dirty bits and don't set any writeback bits 948 * 949 * Do set the Private2 bit so we know this page was properly 950 * setup for writepage 951 */ 952 op = unlock ? PAGE_UNLOCK : 0; 953 op |= PAGE_SET_PRIVATE2; 954 955 extent_clear_unlock_delalloc(inode, start, 956 start + ram_size - 1, locked_page, 957 EXTENT_LOCKED | EXTENT_DELALLOC, 958 op); 959 disk_num_bytes -= cur_alloc_size; 960 num_bytes -= cur_alloc_size; 961 alloc_hint = ins.objectid + ins.offset; 962 start += cur_alloc_size; 963 } 964 out: 965 return ret; 966 967 out_reserve: 968 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 969 out_unlock: 970 extent_clear_unlock_delalloc(inode, start, end, locked_page, 971 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 972 EXTENT_DELALLOC | EXTENT_DEFRAG, 973 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 974 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 975 goto out; 976 } 977 978 /* 979 * work queue call back to started compression on a file and pages 980 */ 981 static noinline void async_cow_start(struct btrfs_work *work) 982 { 983 struct async_cow *async_cow; 984 int num_added = 0; 985 async_cow = container_of(work, struct async_cow, work); 986 987 compress_file_range(async_cow->inode, async_cow->locked_page, 988 async_cow->start, async_cow->end, async_cow, 989 &num_added); 990 if (num_added == 0) { 991 btrfs_add_delayed_iput(async_cow->inode); 992 async_cow->inode = NULL; 993 } 994 } 995 996 /* 997 * work queue call back to submit previously compressed pages 998 */ 999 static noinline void async_cow_submit(struct btrfs_work *work) 1000 { 1001 struct async_cow *async_cow; 1002 struct btrfs_root *root; 1003 unsigned long nr_pages; 1004 1005 async_cow = container_of(work, struct async_cow, work); 1006 1007 root = async_cow->root; 1008 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1009 PAGE_CACHE_SHIFT; 1010 1011 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1012 5 * 1024 * 1024 && 1013 waitqueue_active(&root->fs_info->async_submit_wait)) 1014 wake_up(&root->fs_info->async_submit_wait); 1015 1016 if (async_cow->inode) 1017 submit_compressed_extents(async_cow->inode, async_cow); 1018 } 1019 1020 static noinline void async_cow_free(struct btrfs_work *work) 1021 { 1022 struct async_cow *async_cow; 1023 async_cow = container_of(work, struct async_cow, work); 1024 if (async_cow->inode) 1025 btrfs_add_delayed_iput(async_cow->inode); 1026 kfree(async_cow); 1027 } 1028 1029 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1030 u64 start, u64 end, int *page_started, 1031 unsigned long *nr_written) 1032 { 1033 struct async_cow *async_cow; 1034 struct btrfs_root *root = BTRFS_I(inode)->root; 1035 unsigned long nr_pages; 1036 u64 cur_end; 1037 int limit = 10 * 1024 * 1024; 1038 1039 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1040 1, 0, NULL, GFP_NOFS); 1041 while (start < end) { 1042 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1043 BUG_ON(!async_cow); /* -ENOMEM */ 1044 async_cow->inode = igrab(inode); 1045 async_cow->root = root; 1046 async_cow->locked_page = locked_page; 1047 async_cow->start = start; 1048 1049 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1050 cur_end = end; 1051 else 1052 cur_end = min(end, start + 512 * 1024 - 1); 1053 1054 async_cow->end = cur_end; 1055 INIT_LIST_HEAD(&async_cow->extents); 1056 1057 async_cow->work.func = async_cow_start; 1058 async_cow->work.ordered_func = async_cow_submit; 1059 async_cow->work.ordered_free = async_cow_free; 1060 async_cow->work.flags = 0; 1061 1062 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1063 PAGE_CACHE_SHIFT; 1064 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1065 1066 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1067 &async_cow->work); 1068 1069 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1070 wait_event(root->fs_info->async_submit_wait, 1071 (atomic_read(&root->fs_info->async_delalloc_pages) < 1072 limit)); 1073 } 1074 1075 while (atomic_read(&root->fs_info->async_submit_draining) && 1076 atomic_read(&root->fs_info->async_delalloc_pages)) { 1077 wait_event(root->fs_info->async_submit_wait, 1078 (atomic_read(&root->fs_info->async_delalloc_pages) == 1079 0)); 1080 } 1081 1082 *nr_written += nr_pages; 1083 start = cur_end + 1; 1084 } 1085 *page_started = 1; 1086 return 0; 1087 } 1088 1089 static noinline int csum_exist_in_range(struct btrfs_root *root, 1090 u64 bytenr, u64 num_bytes) 1091 { 1092 int ret; 1093 struct btrfs_ordered_sum *sums; 1094 LIST_HEAD(list); 1095 1096 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1097 bytenr + num_bytes - 1, &list, 0); 1098 if (ret == 0 && list_empty(&list)) 1099 return 0; 1100 1101 while (!list_empty(&list)) { 1102 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1103 list_del(&sums->list); 1104 kfree(sums); 1105 } 1106 return 1; 1107 } 1108 1109 /* 1110 * when nowcow writeback call back. This checks for snapshots or COW copies 1111 * of the extents that exist in the file, and COWs the file as required. 1112 * 1113 * If no cow copies or snapshots exist, we write directly to the existing 1114 * blocks on disk 1115 */ 1116 static noinline int run_delalloc_nocow(struct inode *inode, 1117 struct page *locked_page, 1118 u64 start, u64 end, int *page_started, int force, 1119 unsigned long *nr_written) 1120 { 1121 struct btrfs_root *root = BTRFS_I(inode)->root; 1122 struct btrfs_trans_handle *trans; 1123 struct extent_buffer *leaf; 1124 struct btrfs_path *path; 1125 struct btrfs_file_extent_item *fi; 1126 struct btrfs_key found_key; 1127 u64 cow_start; 1128 u64 cur_offset; 1129 u64 extent_end; 1130 u64 extent_offset; 1131 u64 disk_bytenr; 1132 u64 num_bytes; 1133 u64 disk_num_bytes; 1134 u64 ram_bytes; 1135 int extent_type; 1136 int ret, err; 1137 int type; 1138 int nocow; 1139 int check_prev = 1; 1140 bool nolock; 1141 u64 ino = btrfs_ino(inode); 1142 1143 path = btrfs_alloc_path(); 1144 if (!path) { 1145 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1146 EXTENT_LOCKED | EXTENT_DELALLOC | 1147 EXTENT_DO_ACCOUNTING | 1148 EXTENT_DEFRAG, PAGE_UNLOCK | 1149 PAGE_CLEAR_DIRTY | 1150 PAGE_SET_WRITEBACK | 1151 PAGE_END_WRITEBACK); 1152 return -ENOMEM; 1153 } 1154 1155 nolock = btrfs_is_free_space_inode(inode); 1156 1157 if (nolock) 1158 trans = btrfs_join_transaction_nolock(root); 1159 else 1160 trans = btrfs_join_transaction(root); 1161 1162 if (IS_ERR(trans)) { 1163 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1164 EXTENT_LOCKED | EXTENT_DELALLOC | 1165 EXTENT_DO_ACCOUNTING | 1166 EXTENT_DEFRAG, PAGE_UNLOCK | 1167 PAGE_CLEAR_DIRTY | 1168 PAGE_SET_WRITEBACK | 1169 PAGE_END_WRITEBACK); 1170 btrfs_free_path(path); 1171 return PTR_ERR(trans); 1172 } 1173 1174 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1175 1176 cow_start = (u64)-1; 1177 cur_offset = start; 1178 while (1) { 1179 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1180 cur_offset, 0); 1181 if (ret < 0) { 1182 btrfs_abort_transaction(trans, root, ret); 1183 goto error; 1184 } 1185 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1186 leaf = path->nodes[0]; 1187 btrfs_item_key_to_cpu(leaf, &found_key, 1188 path->slots[0] - 1); 1189 if (found_key.objectid == ino && 1190 found_key.type == BTRFS_EXTENT_DATA_KEY) 1191 path->slots[0]--; 1192 } 1193 check_prev = 0; 1194 next_slot: 1195 leaf = path->nodes[0]; 1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1197 ret = btrfs_next_leaf(root, path); 1198 if (ret < 0) { 1199 btrfs_abort_transaction(trans, root, ret); 1200 goto error; 1201 } 1202 if (ret > 0) 1203 break; 1204 leaf = path->nodes[0]; 1205 } 1206 1207 nocow = 0; 1208 disk_bytenr = 0; 1209 num_bytes = 0; 1210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1211 1212 if (found_key.objectid > ino || 1213 found_key.type > BTRFS_EXTENT_DATA_KEY || 1214 found_key.offset > end) 1215 break; 1216 1217 if (found_key.offset > cur_offset) { 1218 extent_end = found_key.offset; 1219 extent_type = 0; 1220 goto out_check; 1221 } 1222 1223 fi = btrfs_item_ptr(leaf, path->slots[0], 1224 struct btrfs_file_extent_item); 1225 extent_type = btrfs_file_extent_type(leaf, fi); 1226 1227 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1228 if (extent_type == BTRFS_FILE_EXTENT_REG || 1229 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1230 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1231 extent_offset = btrfs_file_extent_offset(leaf, fi); 1232 extent_end = found_key.offset + 1233 btrfs_file_extent_num_bytes(leaf, fi); 1234 disk_num_bytes = 1235 btrfs_file_extent_disk_num_bytes(leaf, fi); 1236 if (extent_end <= start) { 1237 path->slots[0]++; 1238 goto next_slot; 1239 } 1240 if (disk_bytenr == 0) 1241 goto out_check; 1242 if (btrfs_file_extent_compression(leaf, fi) || 1243 btrfs_file_extent_encryption(leaf, fi) || 1244 btrfs_file_extent_other_encoding(leaf, fi)) 1245 goto out_check; 1246 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1247 goto out_check; 1248 if (btrfs_extent_readonly(root, disk_bytenr)) 1249 goto out_check; 1250 if (btrfs_cross_ref_exist(trans, root, ino, 1251 found_key.offset - 1252 extent_offset, disk_bytenr)) 1253 goto out_check; 1254 disk_bytenr += extent_offset; 1255 disk_bytenr += cur_offset - found_key.offset; 1256 num_bytes = min(end + 1, extent_end) - cur_offset; 1257 /* 1258 * force cow if csum exists in the range. 1259 * this ensure that csum for a given extent are 1260 * either valid or do not exist. 1261 */ 1262 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1263 goto out_check; 1264 nocow = 1; 1265 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1266 extent_end = found_key.offset + 1267 btrfs_file_extent_inline_len(leaf, fi); 1268 extent_end = ALIGN(extent_end, root->sectorsize); 1269 } else { 1270 BUG_ON(1); 1271 } 1272 out_check: 1273 if (extent_end <= start) { 1274 path->slots[0]++; 1275 goto next_slot; 1276 } 1277 if (!nocow) { 1278 if (cow_start == (u64)-1) 1279 cow_start = cur_offset; 1280 cur_offset = extent_end; 1281 if (cur_offset > end) 1282 break; 1283 path->slots[0]++; 1284 goto next_slot; 1285 } 1286 1287 btrfs_release_path(path); 1288 if (cow_start != (u64)-1) { 1289 ret = cow_file_range(inode, locked_page, 1290 cow_start, found_key.offset - 1, 1291 page_started, nr_written, 1); 1292 if (ret) { 1293 btrfs_abort_transaction(trans, root, ret); 1294 goto error; 1295 } 1296 cow_start = (u64)-1; 1297 } 1298 1299 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1300 struct extent_map *em; 1301 struct extent_map_tree *em_tree; 1302 em_tree = &BTRFS_I(inode)->extent_tree; 1303 em = alloc_extent_map(); 1304 BUG_ON(!em); /* -ENOMEM */ 1305 em->start = cur_offset; 1306 em->orig_start = found_key.offset - extent_offset; 1307 em->len = num_bytes; 1308 em->block_len = num_bytes; 1309 em->block_start = disk_bytenr; 1310 em->orig_block_len = disk_num_bytes; 1311 em->ram_bytes = ram_bytes; 1312 em->bdev = root->fs_info->fs_devices->latest_bdev; 1313 em->mod_start = em->start; 1314 em->mod_len = em->len; 1315 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1316 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1317 em->generation = -1; 1318 while (1) { 1319 write_lock(&em_tree->lock); 1320 ret = add_extent_mapping(em_tree, em, 1); 1321 write_unlock(&em_tree->lock); 1322 if (ret != -EEXIST) { 1323 free_extent_map(em); 1324 break; 1325 } 1326 btrfs_drop_extent_cache(inode, em->start, 1327 em->start + em->len - 1, 0); 1328 } 1329 type = BTRFS_ORDERED_PREALLOC; 1330 } else { 1331 type = BTRFS_ORDERED_NOCOW; 1332 } 1333 1334 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1335 num_bytes, num_bytes, type); 1336 BUG_ON(ret); /* -ENOMEM */ 1337 1338 if (root->root_key.objectid == 1339 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1340 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1341 num_bytes); 1342 if (ret) { 1343 btrfs_abort_transaction(trans, root, ret); 1344 goto error; 1345 } 1346 } 1347 1348 extent_clear_unlock_delalloc(inode, cur_offset, 1349 cur_offset + num_bytes - 1, 1350 locked_page, EXTENT_LOCKED | 1351 EXTENT_DELALLOC, PAGE_UNLOCK | 1352 PAGE_SET_PRIVATE2); 1353 cur_offset = extent_end; 1354 if (cur_offset > end) 1355 break; 1356 } 1357 btrfs_release_path(path); 1358 1359 if (cur_offset <= end && cow_start == (u64)-1) { 1360 cow_start = cur_offset; 1361 cur_offset = end; 1362 } 1363 1364 if (cow_start != (u64)-1) { 1365 ret = cow_file_range(inode, locked_page, cow_start, end, 1366 page_started, nr_written, 1); 1367 if (ret) { 1368 btrfs_abort_transaction(trans, root, ret); 1369 goto error; 1370 } 1371 } 1372 1373 error: 1374 err = btrfs_end_transaction(trans, root); 1375 if (!ret) 1376 ret = err; 1377 1378 if (ret && cur_offset < end) 1379 extent_clear_unlock_delalloc(inode, cur_offset, end, 1380 locked_page, EXTENT_LOCKED | 1381 EXTENT_DELALLOC | EXTENT_DEFRAG | 1382 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1383 PAGE_CLEAR_DIRTY | 1384 PAGE_SET_WRITEBACK | 1385 PAGE_END_WRITEBACK); 1386 btrfs_free_path(path); 1387 return ret; 1388 } 1389 1390 /* 1391 * extent_io.c call back to do delayed allocation processing 1392 */ 1393 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1394 u64 start, u64 end, int *page_started, 1395 unsigned long *nr_written) 1396 { 1397 int ret; 1398 struct btrfs_root *root = BTRFS_I(inode)->root; 1399 1400 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1401 ret = run_delalloc_nocow(inode, locked_page, start, end, 1402 page_started, 1, nr_written); 1403 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1404 ret = run_delalloc_nocow(inode, locked_page, start, end, 1405 page_started, 0, nr_written); 1406 } else if (!btrfs_test_opt(root, COMPRESS) && 1407 !(BTRFS_I(inode)->force_compress) && 1408 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1409 ret = cow_file_range(inode, locked_page, start, end, 1410 page_started, nr_written, 1); 1411 } else { 1412 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1413 &BTRFS_I(inode)->runtime_flags); 1414 ret = cow_file_range_async(inode, locked_page, start, end, 1415 page_started, nr_written); 1416 } 1417 return ret; 1418 } 1419 1420 static void btrfs_split_extent_hook(struct inode *inode, 1421 struct extent_state *orig, u64 split) 1422 { 1423 /* not delalloc, ignore it */ 1424 if (!(orig->state & EXTENT_DELALLOC)) 1425 return; 1426 1427 spin_lock(&BTRFS_I(inode)->lock); 1428 BTRFS_I(inode)->outstanding_extents++; 1429 spin_unlock(&BTRFS_I(inode)->lock); 1430 } 1431 1432 /* 1433 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1434 * extents so we can keep track of new extents that are just merged onto old 1435 * extents, such as when we are doing sequential writes, so we can properly 1436 * account for the metadata space we'll need. 1437 */ 1438 static void btrfs_merge_extent_hook(struct inode *inode, 1439 struct extent_state *new, 1440 struct extent_state *other) 1441 { 1442 /* not delalloc, ignore it */ 1443 if (!(other->state & EXTENT_DELALLOC)) 1444 return; 1445 1446 spin_lock(&BTRFS_I(inode)->lock); 1447 BTRFS_I(inode)->outstanding_extents--; 1448 spin_unlock(&BTRFS_I(inode)->lock); 1449 } 1450 1451 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1452 struct inode *inode) 1453 { 1454 spin_lock(&root->delalloc_lock); 1455 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1456 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1457 &root->delalloc_inodes); 1458 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1459 &BTRFS_I(inode)->runtime_flags); 1460 root->nr_delalloc_inodes++; 1461 if (root->nr_delalloc_inodes == 1) { 1462 spin_lock(&root->fs_info->delalloc_root_lock); 1463 BUG_ON(!list_empty(&root->delalloc_root)); 1464 list_add_tail(&root->delalloc_root, 1465 &root->fs_info->delalloc_roots); 1466 spin_unlock(&root->fs_info->delalloc_root_lock); 1467 } 1468 } 1469 spin_unlock(&root->delalloc_lock); 1470 } 1471 1472 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1473 struct inode *inode) 1474 { 1475 spin_lock(&root->delalloc_lock); 1476 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1477 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1478 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1479 &BTRFS_I(inode)->runtime_flags); 1480 root->nr_delalloc_inodes--; 1481 if (!root->nr_delalloc_inodes) { 1482 spin_lock(&root->fs_info->delalloc_root_lock); 1483 BUG_ON(list_empty(&root->delalloc_root)); 1484 list_del_init(&root->delalloc_root); 1485 spin_unlock(&root->fs_info->delalloc_root_lock); 1486 } 1487 } 1488 spin_unlock(&root->delalloc_lock); 1489 } 1490 1491 /* 1492 * extent_io.c set_bit_hook, used to track delayed allocation 1493 * bytes in this file, and to maintain the list of inodes that 1494 * have pending delalloc work to be done. 1495 */ 1496 static void btrfs_set_bit_hook(struct inode *inode, 1497 struct extent_state *state, unsigned long *bits) 1498 { 1499 1500 /* 1501 * set_bit and clear bit hooks normally require _irqsave/restore 1502 * but in this case, we are only testing for the DELALLOC 1503 * bit, which is only set or cleared with irqs on 1504 */ 1505 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1506 struct btrfs_root *root = BTRFS_I(inode)->root; 1507 u64 len = state->end + 1 - state->start; 1508 bool do_list = !btrfs_is_free_space_inode(inode); 1509 1510 if (*bits & EXTENT_FIRST_DELALLOC) { 1511 *bits &= ~EXTENT_FIRST_DELALLOC; 1512 } else { 1513 spin_lock(&BTRFS_I(inode)->lock); 1514 BTRFS_I(inode)->outstanding_extents++; 1515 spin_unlock(&BTRFS_I(inode)->lock); 1516 } 1517 1518 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1519 root->fs_info->delalloc_batch); 1520 spin_lock(&BTRFS_I(inode)->lock); 1521 BTRFS_I(inode)->delalloc_bytes += len; 1522 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1523 &BTRFS_I(inode)->runtime_flags)) 1524 btrfs_add_delalloc_inodes(root, inode); 1525 spin_unlock(&BTRFS_I(inode)->lock); 1526 } 1527 } 1528 1529 /* 1530 * extent_io.c clear_bit_hook, see set_bit_hook for why 1531 */ 1532 static void btrfs_clear_bit_hook(struct inode *inode, 1533 struct extent_state *state, 1534 unsigned long *bits) 1535 { 1536 /* 1537 * set_bit and clear bit hooks normally require _irqsave/restore 1538 * but in this case, we are only testing for the DELALLOC 1539 * bit, which is only set or cleared with irqs on 1540 */ 1541 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1542 struct btrfs_root *root = BTRFS_I(inode)->root; 1543 u64 len = state->end + 1 - state->start; 1544 bool do_list = !btrfs_is_free_space_inode(inode); 1545 1546 if (*bits & EXTENT_FIRST_DELALLOC) { 1547 *bits &= ~EXTENT_FIRST_DELALLOC; 1548 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1549 spin_lock(&BTRFS_I(inode)->lock); 1550 BTRFS_I(inode)->outstanding_extents--; 1551 spin_unlock(&BTRFS_I(inode)->lock); 1552 } 1553 1554 if (*bits & EXTENT_DO_ACCOUNTING) 1555 btrfs_delalloc_release_metadata(inode, len); 1556 1557 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1558 && do_list && !(state->state & EXTENT_NORESERVE)) 1559 btrfs_free_reserved_data_space(inode, len); 1560 1561 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1562 root->fs_info->delalloc_batch); 1563 spin_lock(&BTRFS_I(inode)->lock); 1564 BTRFS_I(inode)->delalloc_bytes -= len; 1565 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1566 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1567 &BTRFS_I(inode)->runtime_flags)) 1568 btrfs_del_delalloc_inode(root, inode); 1569 spin_unlock(&BTRFS_I(inode)->lock); 1570 } 1571 } 1572 1573 /* 1574 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1575 * we don't create bios that span stripes or chunks 1576 */ 1577 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1578 size_t size, struct bio *bio, 1579 unsigned long bio_flags) 1580 { 1581 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1582 u64 logical = (u64)bio->bi_sector << 9; 1583 u64 length = 0; 1584 u64 map_length; 1585 int ret; 1586 1587 if (bio_flags & EXTENT_BIO_COMPRESSED) 1588 return 0; 1589 1590 length = bio->bi_size; 1591 map_length = length; 1592 ret = btrfs_map_block(root->fs_info, rw, logical, 1593 &map_length, NULL, 0); 1594 /* Will always return 0 with map_multi == NULL */ 1595 BUG_ON(ret < 0); 1596 if (map_length < length + size) 1597 return 1; 1598 return 0; 1599 } 1600 1601 /* 1602 * in order to insert checksums into the metadata in large chunks, 1603 * we wait until bio submission time. All the pages in the bio are 1604 * checksummed and sums are attached onto the ordered extent record. 1605 * 1606 * At IO completion time the cums attached on the ordered extent record 1607 * are inserted into the btree 1608 */ 1609 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1610 struct bio *bio, int mirror_num, 1611 unsigned long bio_flags, 1612 u64 bio_offset) 1613 { 1614 struct btrfs_root *root = BTRFS_I(inode)->root; 1615 int ret = 0; 1616 1617 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1618 BUG_ON(ret); /* -ENOMEM */ 1619 return 0; 1620 } 1621 1622 /* 1623 * in order to insert checksums into the metadata in large chunks, 1624 * we wait until bio submission time. All the pages in the bio are 1625 * checksummed and sums are attached onto the ordered extent record. 1626 * 1627 * At IO completion time the cums attached on the ordered extent record 1628 * are inserted into the btree 1629 */ 1630 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1631 int mirror_num, unsigned long bio_flags, 1632 u64 bio_offset) 1633 { 1634 struct btrfs_root *root = BTRFS_I(inode)->root; 1635 int ret; 1636 1637 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1638 if (ret) 1639 bio_endio(bio, ret); 1640 return ret; 1641 } 1642 1643 /* 1644 * extent_io.c submission hook. This does the right thing for csum calculation 1645 * on write, or reading the csums from the tree before a read 1646 */ 1647 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1648 int mirror_num, unsigned long bio_flags, 1649 u64 bio_offset) 1650 { 1651 struct btrfs_root *root = BTRFS_I(inode)->root; 1652 int ret = 0; 1653 int skip_sum; 1654 int metadata = 0; 1655 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1656 1657 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1658 1659 if (btrfs_is_free_space_inode(inode)) 1660 metadata = 2; 1661 1662 if (!(rw & REQ_WRITE)) { 1663 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1664 if (ret) 1665 goto out; 1666 1667 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1668 ret = btrfs_submit_compressed_read(inode, bio, 1669 mirror_num, 1670 bio_flags); 1671 goto out; 1672 } else if (!skip_sum) { 1673 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1674 if (ret) 1675 goto out; 1676 } 1677 goto mapit; 1678 } else if (async && !skip_sum) { 1679 /* csum items have already been cloned */ 1680 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1681 goto mapit; 1682 /* we're doing a write, do the async checksumming */ 1683 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1684 inode, rw, bio, mirror_num, 1685 bio_flags, bio_offset, 1686 __btrfs_submit_bio_start, 1687 __btrfs_submit_bio_done); 1688 goto out; 1689 } else if (!skip_sum) { 1690 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1691 if (ret) 1692 goto out; 1693 } 1694 1695 mapit: 1696 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1697 1698 out: 1699 if (ret < 0) 1700 bio_endio(bio, ret); 1701 return ret; 1702 } 1703 1704 /* 1705 * given a list of ordered sums record them in the inode. This happens 1706 * at IO completion time based on sums calculated at bio submission time. 1707 */ 1708 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1709 struct inode *inode, u64 file_offset, 1710 struct list_head *list) 1711 { 1712 struct btrfs_ordered_sum *sum; 1713 1714 list_for_each_entry(sum, list, list) { 1715 trans->adding_csums = 1; 1716 btrfs_csum_file_blocks(trans, 1717 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1718 trans->adding_csums = 0; 1719 } 1720 return 0; 1721 } 1722 1723 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1724 struct extent_state **cached_state) 1725 { 1726 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1727 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1728 cached_state, GFP_NOFS); 1729 } 1730 1731 /* see btrfs_writepage_start_hook for details on why this is required */ 1732 struct btrfs_writepage_fixup { 1733 struct page *page; 1734 struct btrfs_work work; 1735 }; 1736 1737 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1738 { 1739 struct btrfs_writepage_fixup *fixup; 1740 struct btrfs_ordered_extent *ordered; 1741 struct extent_state *cached_state = NULL; 1742 struct page *page; 1743 struct inode *inode; 1744 u64 page_start; 1745 u64 page_end; 1746 int ret; 1747 1748 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1749 page = fixup->page; 1750 again: 1751 lock_page(page); 1752 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1753 ClearPageChecked(page); 1754 goto out_page; 1755 } 1756 1757 inode = page->mapping->host; 1758 page_start = page_offset(page); 1759 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1760 1761 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1762 &cached_state); 1763 1764 /* already ordered? We're done */ 1765 if (PagePrivate2(page)) 1766 goto out; 1767 1768 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1769 if (ordered) { 1770 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1771 page_end, &cached_state, GFP_NOFS); 1772 unlock_page(page); 1773 btrfs_start_ordered_extent(inode, ordered, 1); 1774 btrfs_put_ordered_extent(ordered); 1775 goto again; 1776 } 1777 1778 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1779 if (ret) { 1780 mapping_set_error(page->mapping, ret); 1781 end_extent_writepage(page, ret, page_start, page_end); 1782 ClearPageChecked(page); 1783 goto out; 1784 } 1785 1786 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1787 ClearPageChecked(page); 1788 set_page_dirty(page); 1789 out: 1790 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1791 &cached_state, GFP_NOFS); 1792 out_page: 1793 unlock_page(page); 1794 page_cache_release(page); 1795 kfree(fixup); 1796 } 1797 1798 /* 1799 * There are a few paths in the higher layers of the kernel that directly 1800 * set the page dirty bit without asking the filesystem if it is a 1801 * good idea. This causes problems because we want to make sure COW 1802 * properly happens and the data=ordered rules are followed. 1803 * 1804 * In our case any range that doesn't have the ORDERED bit set 1805 * hasn't been properly setup for IO. We kick off an async process 1806 * to fix it up. The async helper will wait for ordered extents, set 1807 * the delalloc bit and make it safe to write the page. 1808 */ 1809 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1810 { 1811 struct inode *inode = page->mapping->host; 1812 struct btrfs_writepage_fixup *fixup; 1813 struct btrfs_root *root = BTRFS_I(inode)->root; 1814 1815 /* this page is properly in the ordered list */ 1816 if (TestClearPagePrivate2(page)) 1817 return 0; 1818 1819 if (PageChecked(page)) 1820 return -EAGAIN; 1821 1822 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1823 if (!fixup) 1824 return -EAGAIN; 1825 1826 SetPageChecked(page); 1827 page_cache_get(page); 1828 fixup->work.func = btrfs_writepage_fixup_worker; 1829 fixup->page = page; 1830 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1831 return -EBUSY; 1832 } 1833 1834 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1835 struct inode *inode, u64 file_pos, 1836 u64 disk_bytenr, u64 disk_num_bytes, 1837 u64 num_bytes, u64 ram_bytes, 1838 u8 compression, u8 encryption, 1839 u16 other_encoding, int extent_type) 1840 { 1841 struct btrfs_root *root = BTRFS_I(inode)->root; 1842 struct btrfs_file_extent_item *fi; 1843 struct btrfs_path *path; 1844 struct extent_buffer *leaf; 1845 struct btrfs_key ins; 1846 int ret; 1847 1848 path = btrfs_alloc_path(); 1849 if (!path) 1850 return -ENOMEM; 1851 1852 path->leave_spinning = 1; 1853 1854 /* 1855 * we may be replacing one extent in the tree with another. 1856 * The new extent is pinned in the extent map, and we don't want 1857 * to drop it from the cache until it is completely in the btree. 1858 * 1859 * So, tell btrfs_drop_extents to leave this extent in the cache. 1860 * the caller is expected to unpin it and allow it to be merged 1861 * with the others. 1862 */ 1863 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1864 file_pos + num_bytes, 0); 1865 if (ret) 1866 goto out; 1867 1868 ins.objectid = btrfs_ino(inode); 1869 ins.offset = file_pos; 1870 ins.type = BTRFS_EXTENT_DATA_KEY; 1871 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1872 if (ret) 1873 goto out; 1874 leaf = path->nodes[0]; 1875 fi = btrfs_item_ptr(leaf, path->slots[0], 1876 struct btrfs_file_extent_item); 1877 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1878 btrfs_set_file_extent_type(leaf, fi, extent_type); 1879 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1880 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1881 btrfs_set_file_extent_offset(leaf, fi, 0); 1882 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1883 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1884 btrfs_set_file_extent_compression(leaf, fi, compression); 1885 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1886 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1887 1888 btrfs_mark_buffer_dirty(leaf); 1889 btrfs_release_path(path); 1890 1891 inode_add_bytes(inode, num_bytes); 1892 1893 ins.objectid = disk_bytenr; 1894 ins.offset = disk_num_bytes; 1895 ins.type = BTRFS_EXTENT_ITEM_KEY; 1896 ret = btrfs_alloc_reserved_file_extent(trans, root, 1897 root->root_key.objectid, 1898 btrfs_ino(inode), file_pos, &ins); 1899 out: 1900 btrfs_free_path(path); 1901 1902 return ret; 1903 } 1904 1905 /* snapshot-aware defrag */ 1906 struct sa_defrag_extent_backref { 1907 struct rb_node node; 1908 struct old_sa_defrag_extent *old; 1909 u64 root_id; 1910 u64 inum; 1911 u64 file_pos; 1912 u64 extent_offset; 1913 u64 num_bytes; 1914 u64 generation; 1915 }; 1916 1917 struct old_sa_defrag_extent { 1918 struct list_head list; 1919 struct new_sa_defrag_extent *new; 1920 1921 u64 extent_offset; 1922 u64 bytenr; 1923 u64 offset; 1924 u64 len; 1925 int count; 1926 }; 1927 1928 struct new_sa_defrag_extent { 1929 struct rb_root root; 1930 struct list_head head; 1931 struct btrfs_path *path; 1932 struct inode *inode; 1933 u64 file_pos; 1934 u64 len; 1935 u64 bytenr; 1936 u64 disk_len; 1937 u8 compress_type; 1938 }; 1939 1940 static int backref_comp(struct sa_defrag_extent_backref *b1, 1941 struct sa_defrag_extent_backref *b2) 1942 { 1943 if (b1->root_id < b2->root_id) 1944 return -1; 1945 else if (b1->root_id > b2->root_id) 1946 return 1; 1947 1948 if (b1->inum < b2->inum) 1949 return -1; 1950 else if (b1->inum > b2->inum) 1951 return 1; 1952 1953 if (b1->file_pos < b2->file_pos) 1954 return -1; 1955 else if (b1->file_pos > b2->file_pos) 1956 return 1; 1957 1958 /* 1959 * [------------------------------] ===> (a range of space) 1960 * |<--->| |<---->| =============> (fs/file tree A) 1961 * |<---------------------------->| ===> (fs/file tree B) 1962 * 1963 * A range of space can refer to two file extents in one tree while 1964 * refer to only one file extent in another tree. 1965 * 1966 * So we may process a disk offset more than one time(two extents in A) 1967 * and locate at the same extent(one extent in B), then insert two same 1968 * backrefs(both refer to the extent in B). 1969 */ 1970 return 0; 1971 } 1972 1973 static void backref_insert(struct rb_root *root, 1974 struct sa_defrag_extent_backref *backref) 1975 { 1976 struct rb_node **p = &root->rb_node; 1977 struct rb_node *parent = NULL; 1978 struct sa_defrag_extent_backref *entry; 1979 int ret; 1980 1981 while (*p) { 1982 parent = *p; 1983 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 1984 1985 ret = backref_comp(backref, entry); 1986 if (ret < 0) 1987 p = &(*p)->rb_left; 1988 else 1989 p = &(*p)->rb_right; 1990 } 1991 1992 rb_link_node(&backref->node, parent, p); 1993 rb_insert_color(&backref->node, root); 1994 } 1995 1996 /* 1997 * Note the backref might has changed, and in this case we just return 0. 1998 */ 1999 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2000 void *ctx) 2001 { 2002 struct btrfs_file_extent_item *extent; 2003 struct btrfs_fs_info *fs_info; 2004 struct old_sa_defrag_extent *old = ctx; 2005 struct new_sa_defrag_extent *new = old->new; 2006 struct btrfs_path *path = new->path; 2007 struct btrfs_key key; 2008 struct btrfs_root *root; 2009 struct sa_defrag_extent_backref *backref; 2010 struct extent_buffer *leaf; 2011 struct inode *inode = new->inode; 2012 int slot; 2013 int ret; 2014 u64 extent_offset; 2015 u64 num_bytes; 2016 2017 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2018 inum == btrfs_ino(inode)) 2019 return 0; 2020 2021 key.objectid = root_id; 2022 key.type = BTRFS_ROOT_ITEM_KEY; 2023 key.offset = (u64)-1; 2024 2025 fs_info = BTRFS_I(inode)->root->fs_info; 2026 root = btrfs_read_fs_root_no_name(fs_info, &key); 2027 if (IS_ERR(root)) { 2028 if (PTR_ERR(root) == -ENOENT) 2029 return 0; 2030 WARN_ON(1); 2031 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2032 inum, offset, root_id); 2033 return PTR_ERR(root); 2034 } 2035 2036 key.objectid = inum; 2037 key.type = BTRFS_EXTENT_DATA_KEY; 2038 if (offset > (u64)-1 << 32) 2039 key.offset = 0; 2040 else 2041 key.offset = offset; 2042 2043 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2044 if (ret < 0) { 2045 WARN_ON(1); 2046 return ret; 2047 } 2048 ret = 0; 2049 2050 while (1) { 2051 cond_resched(); 2052 2053 leaf = path->nodes[0]; 2054 slot = path->slots[0]; 2055 2056 if (slot >= btrfs_header_nritems(leaf)) { 2057 ret = btrfs_next_leaf(root, path); 2058 if (ret < 0) { 2059 goto out; 2060 } else if (ret > 0) { 2061 ret = 0; 2062 goto out; 2063 } 2064 continue; 2065 } 2066 2067 path->slots[0]++; 2068 2069 btrfs_item_key_to_cpu(leaf, &key, slot); 2070 2071 if (key.objectid > inum) 2072 goto out; 2073 2074 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2075 continue; 2076 2077 extent = btrfs_item_ptr(leaf, slot, 2078 struct btrfs_file_extent_item); 2079 2080 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2081 continue; 2082 2083 /* 2084 * 'offset' refers to the exact key.offset, 2085 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2086 * (key.offset - extent_offset). 2087 */ 2088 if (key.offset != offset) 2089 continue; 2090 2091 extent_offset = btrfs_file_extent_offset(leaf, extent); 2092 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2093 2094 if (extent_offset >= old->extent_offset + old->offset + 2095 old->len || extent_offset + num_bytes <= 2096 old->extent_offset + old->offset) 2097 continue; 2098 break; 2099 } 2100 2101 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2102 if (!backref) { 2103 ret = -ENOENT; 2104 goto out; 2105 } 2106 2107 backref->root_id = root_id; 2108 backref->inum = inum; 2109 backref->file_pos = offset; 2110 backref->num_bytes = num_bytes; 2111 backref->extent_offset = extent_offset; 2112 backref->generation = btrfs_file_extent_generation(leaf, extent); 2113 backref->old = old; 2114 backref_insert(&new->root, backref); 2115 old->count++; 2116 out: 2117 btrfs_release_path(path); 2118 WARN_ON(ret); 2119 return ret; 2120 } 2121 2122 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2123 struct new_sa_defrag_extent *new) 2124 { 2125 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2126 struct old_sa_defrag_extent *old, *tmp; 2127 int ret; 2128 2129 new->path = path; 2130 2131 list_for_each_entry_safe(old, tmp, &new->head, list) { 2132 ret = iterate_inodes_from_logical(old->bytenr + 2133 old->extent_offset, fs_info, 2134 path, record_one_backref, 2135 old); 2136 BUG_ON(ret < 0 && ret != -ENOENT); 2137 2138 /* no backref to be processed for this extent */ 2139 if (!old->count) { 2140 list_del(&old->list); 2141 kfree(old); 2142 } 2143 } 2144 2145 if (list_empty(&new->head)) 2146 return false; 2147 2148 return true; 2149 } 2150 2151 static int relink_is_mergable(struct extent_buffer *leaf, 2152 struct btrfs_file_extent_item *fi, 2153 struct new_sa_defrag_extent *new) 2154 { 2155 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2156 return 0; 2157 2158 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2159 return 0; 2160 2161 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2162 return 0; 2163 2164 if (btrfs_file_extent_encryption(leaf, fi) || 2165 btrfs_file_extent_other_encoding(leaf, fi)) 2166 return 0; 2167 2168 return 1; 2169 } 2170 2171 /* 2172 * Note the backref might has changed, and in this case we just return 0. 2173 */ 2174 static noinline int relink_extent_backref(struct btrfs_path *path, 2175 struct sa_defrag_extent_backref *prev, 2176 struct sa_defrag_extent_backref *backref) 2177 { 2178 struct btrfs_file_extent_item *extent; 2179 struct btrfs_file_extent_item *item; 2180 struct btrfs_ordered_extent *ordered; 2181 struct btrfs_trans_handle *trans; 2182 struct btrfs_fs_info *fs_info; 2183 struct btrfs_root *root; 2184 struct btrfs_key key; 2185 struct extent_buffer *leaf; 2186 struct old_sa_defrag_extent *old = backref->old; 2187 struct new_sa_defrag_extent *new = old->new; 2188 struct inode *src_inode = new->inode; 2189 struct inode *inode; 2190 struct extent_state *cached = NULL; 2191 int ret = 0; 2192 u64 start; 2193 u64 len; 2194 u64 lock_start; 2195 u64 lock_end; 2196 bool merge = false; 2197 int index; 2198 2199 if (prev && prev->root_id == backref->root_id && 2200 prev->inum == backref->inum && 2201 prev->file_pos + prev->num_bytes == backref->file_pos) 2202 merge = true; 2203 2204 /* step 1: get root */ 2205 key.objectid = backref->root_id; 2206 key.type = BTRFS_ROOT_ITEM_KEY; 2207 key.offset = (u64)-1; 2208 2209 fs_info = BTRFS_I(src_inode)->root->fs_info; 2210 index = srcu_read_lock(&fs_info->subvol_srcu); 2211 2212 root = btrfs_read_fs_root_no_name(fs_info, &key); 2213 if (IS_ERR(root)) { 2214 srcu_read_unlock(&fs_info->subvol_srcu, index); 2215 if (PTR_ERR(root) == -ENOENT) 2216 return 0; 2217 return PTR_ERR(root); 2218 } 2219 2220 /* step 2: get inode */ 2221 key.objectid = backref->inum; 2222 key.type = BTRFS_INODE_ITEM_KEY; 2223 key.offset = 0; 2224 2225 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2226 if (IS_ERR(inode)) { 2227 srcu_read_unlock(&fs_info->subvol_srcu, index); 2228 return 0; 2229 } 2230 2231 srcu_read_unlock(&fs_info->subvol_srcu, index); 2232 2233 /* step 3: relink backref */ 2234 lock_start = backref->file_pos; 2235 lock_end = backref->file_pos + backref->num_bytes - 1; 2236 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2237 0, &cached); 2238 2239 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2240 if (ordered) { 2241 btrfs_put_ordered_extent(ordered); 2242 goto out_unlock; 2243 } 2244 2245 trans = btrfs_join_transaction(root); 2246 if (IS_ERR(trans)) { 2247 ret = PTR_ERR(trans); 2248 goto out_unlock; 2249 } 2250 2251 key.objectid = backref->inum; 2252 key.type = BTRFS_EXTENT_DATA_KEY; 2253 key.offset = backref->file_pos; 2254 2255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2256 if (ret < 0) { 2257 goto out_free_path; 2258 } else if (ret > 0) { 2259 ret = 0; 2260 goto out_free_path; 2261 } 2262 2263 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2264 struct btrfs_file_extent_item); 2265 2266 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2267 backref->generation) 2268 goto out_free_path; 2269 2270 btrfs_release_path(path); 2271 2272 start = backref->file_pos; 2273 if (backref->extent_offset < old->extent_offset + old->offset) 2274 start += old->extent_offset + old->offset - 2275 backref->extent_offset; 2276 2277 len = min(backref->extent_offset + backref->num_bytes, 2278 old->extent_offset + old->offset + old->len); 2279 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2280 2281 ret = btrfs_drop_extents(trans, root, inode, start, 2282 start + len, 1); 2283 if (ret) 2284 goto out_free_path; 2285 again: 2286 key.objectid = btrfs_ino(inode); 2287 key.type = BTRFS_EXTENT_DATA_KEY; 2288 key.offset = start; 2289 2290 path->leave_spinning = 1; 2291 if (merge) { 2292 struct btrfs_file_extent_item *fi; 2293 u64 extent_len; 2294 struct btrfs_key found_key; 2295 2296 ret = btrfs_search_slot(trans, root, &key, path, 1, 1); 2297 if (ret < 0) 2298 goto out_free_path; 2299 2300 path->slots[0]--; 2301 leaf = path->nodes[0]; 2302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2303 2304 fi = btrfs_item_ptr(leaf, path->slots[0], 2305 struct btrfs_file_extent_item); 2306 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2307 2308 if (extent_len + found_key.offset == start && 2309 relink_is_mergable(leaf, fi, new)) { 2310 btrfs_set_file_extent_num_bytes(leaf, fi, 2311 extent_len + len); 2312 btrfs_mark_buffer_dirty(leaf); 2313 inode_add_bytes(inode, len); 2314 2315 ret = 1; 2316 goto out_free_path; 2317 } else { 2318 merge = false; 2319 btrfs_release_path(path); 2320 goto again; 2321 } 2322 } 2323 2324 ret = btrfs_insert_empty_item(trans, root, path, &key, 2325 sizeof(*extent)); 2326 if (ret) { 2327 btrfs_abort_transaction(trans, root, ret); 2328 goto out_free_path; 2329 } 2330 2331 leaf = path->nodes[0]; 2332 item = btrfs_item_ptr(leaf, path->slots[0], 2333 struct btrfs_file_extent_item); 2334 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2335 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2336 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2337 btrfs_set_file_extent_num_bytes(leaf, item, len); 2338 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2339 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2340 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2341 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2342 btrfs_set_file_extent_encryption(leaf, item, 0); 2343 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2344 2345 btrfs_mark_buffer_dirty(leaf); 2346 inode_add_bytes(inode, len); 2347 btrfs_release_path(path); 2348 2349 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2350 new->disk_len, 0, 2351 backref->root_id, backref->inum, 2352 new->file_pos, 0); /* start - extent_offset */ 2353 if (ret) { 2354 btrfs_abort_transaction(trans, root, ret); 2355 goto out_free_path; 2356 } 2357 2358 ret = 1; 2359 out_free_path: 2360 btrfs_release_path(path); 2361 path->leave_spinning = 0; 2362 btrfs_end_transaction(trans, root); 2363 out_unlock: 2364 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2365 &cached, GFP_NOFS); 2366 iput(inode); 2367 return ret; 2368 } 2369 2370 static void relink_file_extents(struct new_sa_defrag_extent *new) 2371 { 2372 struct btrfs_path *path; 2373 struct old_sa_defrag_extent *old, *tmp; 2374 struct sa_defrag_extent_backref *backref; 2375 struct sa_defrag_extent_backref *prev = NULL; 2376 struct inode *inode; 2377 struct btrfs_root *root; 2378 struct rb_node *node; 2379 int ret; 2380 2381 inode = new->inode; 2382 root = BTRFS_I(inode)->root; 2383 2384 path = btrfs_alloc_path(); 2385 if (!path) 2386 return; 2387 2388 if (!record_extent_backrefs(path, new)) { 2389 btrfs_free_path(path); 2390 goto out; 2391 } 2392 btrfs_release_path(path); 2393 2394 while (1) { 2395 node = rb_first(&new->root); 2396 if (!node) 2397 break; 2398 rb_erase(node, &new->root); 2399 2400 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2401 2402 ret = relink_extent_backref(path, prev, backref); 2403 WARN_ON(ret < 0); 2404 2405 kfree(prev); 2406 2407 if (ret == 1) 2408 prev = backref; 2409 else 2410 prev = NULL; 2411 cond_resched(); 2412 } 2413 kfree(prev); 2414 2415 btrfs_free_path(path); 2416 2417 list_for_each_entry_safe(old, tmp, &new->head, list) { 2418 list_del(&old->list); 2419 kfree(old); 2420 } 2421 out: 2422 atomic_dec(&root->fs_info->defrag_running); 2423 wake_up(&root->fs_info->transaction_wait); 2424 2425 kfree(new); 2426 } 2427 2428 static struct new_sa_defrag_extent * 2429 record_old_file_extents(struct inode *inode, 2430 struct btrfs_ordered_extent *ordered) 2431 { 2432 struct btrfs_root *root = BTRFS_I(inode)->root; 2433 struct btrfs_path *path; 2434 struct btrfs_key key; 2435 struct old_sa_defrag_extent *old, *tmp; 2436 struct new_sa_defrag_extent *new; 2437 int ret; 2438 2439 new = kmalloc(sizeof(*new), GFP_NOFS); 2440 if (!new) 2441 return NULL; 2442 2443 new->inode = inode; 2444 new->file_pos = ordered->file_offset; 2445 new->len = ordered->len; 2446 new->bytenr = ordered->start; 2447 new->disk_len = ordered->disk_len; 2448 new->compress_type = ordered->compress_type; 2449 new->root = RB_ROOT; 2450 INIT_LIST_HEAD(&new->head); 2451 2452 path = btrfs_alloc_path(); 2453 if (!path) 2454 goto out_kfree; 2455 2456 key.objectid = btrfs_ino(inode); 2457 key.type = BTRFS_EXTENT_DATA_KEY; 2458 key.offset = new->file_pos; 2459 2460 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2461 if (ret < 0) 2462 goto out_free_path; 2463 if (ret > 0 && path->slots[0] > 0) 2464 path->slots[0]--; 2465 2466 /* find out all the old extents for the file range */ 2467 while (1) { 2468 struct btrfs_file_extent_item *extent; 2469 struct extent_buffer *l; 2470 int slot; 2471 u64 num_bytes; 2472 u64 offset; 2473 u64 end; 2474 u64 disk_bytenr; 2475 u64 extent_offset; 2476 2477 l = path->nodes[0]; 2478 slot = path->slots[0]; 2479 2480 if (slot >= btrfs_header_nritems(l)) { 2481 ret = btrfs_next_leaf(root, path); 2482 if (ret < 0) 2483 goto out_free_list; 2484 else if (ret > 0) 2485 break; 2486 continue; 2487 } 2488 2489 btrfs_item_key_to_cpu(l, &key, slot); 2490 2491 if (key.objectid != btrfs_ino(inode)) 2492 break; 2493 if (key.type != BTRFS_EXTENT_DATA_KEY) 2494 break; 2495 if (key.offset >= new->file_pos + new->len) 2496 break; 2497 2498 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2499 2500 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2501 if (key.offset + num_bytes < new->file_pos) 2502 goto next; 2503 2504 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2505 if (!disk_bytenr) 2506 goto next; 2507 2508 extent_offset = btrfs_file_extent_offset(l, extent); 2509 2510 old = kmalloc(sizeof(*old), GFP_NOFS); 2511 if (!old) 2512 goto out_free_list; 2513 2514 offset = max(new->file_pos, key.offset); 2515 end = min(new->file_pos + new->len, key.offset + num_bytes); 2516 2517 old->bytenr = disk_bytenr; 2518 old->extent_offset = extent_offset; 2519 old->offset = offset - key.offset; 2520 old->len = end - offset; 2521 old->new = new; 2522 old->count = 0; 2523 list_add_tail(&old->list, &new->head); 2524 next: 2525 path->slots[0]++; 2526 cond_resched(); 2527 } 2528 2529 btrfs_free_path(path); 2530 atomic_inc(&root->fs_info->defrag_running); 2531 2532 return new; 2533 2534 out_free_list: 2535 list_for_each_entry_safe(old, tmp, &new->head, list) { 2536 list_del(&old->list); 2537 kfree(old); 2538 } 2539 out_free_path: 2540 btrfs_free_path(path); 2541 out_kfree: 2542 kfree(new); 2543 return NULL; 2544 } 2545 2546 /* 2547 * helper function for btrfs_finish_ordered_io, this 2548 * just reads in some of the csum leaves to prime them into ram 2549 * before we start the transaction. It limits the amount of btree 2550 * reads required while inside the transaction. 2551 */ 2552 /* as ordered data IO finishes, this gets called so we can finish 2553 * an ordered extent if the range of bytes in the file it covers are 2554 * fully written. 2555 */ 2556 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2557 { 2558 struct inode *inode = ordered_extent->inode; 2559 struct btrfs_root *root = BTRFS_I(inode)->root; 2560 struct btrfs_trans_handle *trans = NULL; 2561 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2562 struct extent_state *cached_state = NULL; 2563 struct new_sa_defrag_extent *new = NULL; 2564 int compress_type = 0; 2565 int ret; 2566 bool nolock; 2567 2568 nolock = btrfs_is_free_space_inode(inode); 2569 2570 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2571 ret = -EIO; 2572 goto out; 2573 } 2574 2575 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2576 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2577 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2578 if (nolock) 2579 trans = btrfs_join_transaction_nolock(root); 2580 else 2581 trans = btrfs_join_transaction(root); 2582 if (IS_ERR(trans)) { 2583 ret = PTR_ERR(trans); 2584 trans = NULL; 2585 goto out; 2586 } 2587 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2588 ret = btrfs_update_inode_fallback(trans, root, inode); 2589 if (ret) /* -ENOMEM or corruption */ 2590 btrfs_abort_transaction(trans, root, ret); 2591 goto out; 2592 } 2593 2594 lock_extent_bits(io_tree, ordered_extent->file_offset, 2595 ordered_extent->file_offset + ordered_extent->len - 1, 2596 0, &cached_state); 2597 2598 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2599 ordered_extent->file_offset + ordered_extent->len - 1, 2600 EXTENT_DEFRAG, 1, cached_state); 2601 if (ret) { 2602 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2603 if (last_snapshot >= BTRFS_I(inode)->generation) 2604 /* the inode is shared */ 2605 new = record_old_file_extents(inode, ordered_extent); 2606 2607 clear_extent_bit(io_tree, ordered_extent->file_offset, 2608 ordered_extent->file_offset + ordered_extent->len - 1, 2609 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2610 } 2611 2612 if (nolock) 2613 trans = btrfs_join_transaction_nolock(root); 2614 else 2615 trans = btrfs_join_transaction(root); 2616 if (IS_ERR(trans)) { 2617 ret = PTR_ERR(trans); 2618 trans = NULL; 2619 goto out_unlock; 2620 } 2621 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2622 2623 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2624 compress_type = ordered_extent->compress_type; 2625 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2626 BUG_ON(compress_type); 2627 ret = btrfs_mark_extent_written(trans, inode, 2628 ordered_extent->file_offset, 2629 ordered_extent->file_offset + 2630 ordered_extent->len); 2631 } else { 2632 BUG_ON(root == root->fs_info->tree_root); 2633 ret = insert_reserved_file_extent(trans, inode, 2634 ordered_extent->file_offset, 2635 ordered_extent->start, 2636 ordered_extent->disk_len, 2637 ordered_extent->len, 2638 ordered_extent->len, 2639 compress_type, 0, 0, 2640 BTRFS_FILE_EXTENT_REG); 2641 } 2642 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2643 ordered_extent->file_offset, ordered_extent->len, 2644 trans->transid); 2645 if (ret < 0) { 2646 btrfs_abort_transaction(trans, root, ret); 2647 goto out_unlock; 2648 } 2649 2650 add_pending_csums(trans, inode, ordered_extent->file_offset, 2651 &ordered_extent->list); 2652 2653 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2654 ret = btrfs_update_inode_fallback(trans, root, inode); 2655 if (ret) { /* -ENOMEM or corruption */ 2656 btrfs_abort_transaction(trans, root, ret); 2657 goto out_unlock; 2658 } 2659 ret = 0; 2660 out_unlock: 2661 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2662 ordered_extent->file_offset + 2663 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2664 out: 2665 if (root != root->fs_info->tree_root) 2666 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2667 if (trans) 2668 btrfs_end_transaction(trans, root); 2669 2670 if (ret) { 2671 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 2672 ordered_extent->file_offset + 2673 ordered_extent->len - 1, NULL, GFP_NOFS); 2674 2675 /* 2676 * If the ordered extent had an IOERR or something else went 2677 * wrong we need to return the space for this ordered extent 2678 * back to the allocator. 2679 */ 2680 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2681 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2682 btrfs_free_reserved_extent(root, ordered_extent->start, 2683 ordered_extent->disk_len); 2684 } 2685 2686 2687 /* 2688 * This needs to be done to make sure anybody waiting knows we are done 2689 * updating everything for this ordered extent. 2690 */ 2691 btrfs_remove_ordered_extent(inode, ordered_extent); 2692 2693 /* for snapshot-aware defrag */ 2694 if (new) 2695 relink_file_extents(new); 2696 2697 /* once for us */ 2698 btrfs_put_ordered_extent(ordered_extent); 2699 /* once for the tree */ 2700 btrfs_put_ordered_extent(ordered_extent); 2701 2702 return ret; 2703 } 2704 2705 static void finish_ordered_fn(struct btrfs_work *work) 2706 { 2707 struct btrfs_ordered_extent *ordered_extent; 2708 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2709 btrfs_finish_ordered_io(ordered_extent); 2710 } 2711 2712 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2713 struct extent_state *state, int uptodate) 2714 { 2715 struct inode *inode = page->mapping->host; 2716 struct btrfs_root *root = BTRFS_I(inode)->root; 2717 struct btrfs_ordered_extent *ordered_extent = NULL; 2718 struct btrfs_workers *workers; 2719 2720 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2721 2722 ClearPagePrivate2(page); 2723 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2724 end - start + 1, uptodate)) 2725 return 0; 2726 2727 ordered_extent->work.func = finish_ordered_fn; 2728 ordered_extent->work.flags = 0; 2729 2730 if (btrfs_is_free_space_inode(inode)) 2731 workers = &root->fs_info->endio_freespace_worker; 2732 else 2733 workers = &root->fs_info->endio_write_workers; 2734 btrfs_queue_worker(workers, &ordered_extent->work); 2735 2736 return 0; 2737 } 2738 2739 /* 2740 * when reads are done, we need to check csums to verify the data is correct 2741 * if there's a match, we allow the bio to finish. If not, the code in 2742 * extent_io.c will try to find good copies for us. 2743 */ 2744 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2745 u64 phy_offset, struct page *page, 2746 u64 start, u64 end, int mirror) 2747 { 2748 size_t offset = start - page_offset(page); 2749 struct inode *inode = page->mapping->host; 2750 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2751 char *kaddr; 2752 struct btrfs_root *root = BTRFS_I(inode)->root; 2753 u32 csum_expected; 2754 u32 csum = ~(u32)0; 2755 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2756 DEFAULT_RATELIMIT_BURST); 2757 2758 if (PageChecked(page)) { 2759 ClearPageChecked(page); 2760 goto good; 2761 } 2762 2763 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2764 goto good; 2765 2766 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2767 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2768 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2769 GFP_NOFS); 2770 return 0; 2771 } 2772 2773 phy_offset >>= inode->i_sb->s_blocksize_bits; 2774 csum_expected = *(((u32 *)io_bio->csum) + phy_offset); 2775 2776 kaddr = kmap_atomic(page); 2777 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1); 2778 btrfs_csum_final(csum, (char *)&csum); 2779 if (csum != csum_expected) 2780 goto zeroit; 2781 2782 kunmap_atomic(kaddr); 2783 good: 2784 return 0; 2785 2786 zeroit: 2787 if (__ratelimit(&_rs)) 2788 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 2789 (unsigned long long)btrfs_ino(page->mapping->host), 2790 (unsigned long long)start, csum, csum_expected); 2791 memset(kaddr + offset, 1, end - start + 1); 2792 flush_dcache_page(page); 2793 kunmap_atomic(kaddr); 2794 if (csum_expected == 0) 2795 return 0; 2796 return -EIO; 2797 } 2798 2799 struct delayed_iput { 2800 struct list_head list; 2801 struct inode *inode; 2802 }; 2803 2804 /* JDM: If this is fs-wide, why can't we add a pointer to 2805 * btrfs_inode instead and avoid the allocation? */ 2806 void btrfs_add_delayed_iput(struct inode *inode) 2807 { 2808 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2809 struct delayed_iput *delayed; 2810 2811 if (atomic_add_unless(&inode->i_count, -1, 1)) 2812 return; 2813 2814 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2815 delayed->inode = inode; 2816 2817 spin_lock(&fs_info->delayed_iput_lock); 2818 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2819 spin_unlock(&fs_info->delayed_iput_lock); 2820 } 2821 2822 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2823 { 2824 LIST_HEAD(list); 2825 struct btrfs_fs_info *fs_info = root->fs_info; 2826 struct delayed_iput *delayed; 2827 int empty; 2828 2829 spin_lock(&fs_info->delayed_iput_lock); 2830 empty = list_empty(&fs_info->delayed_iputs); 2831 spin_unlock(&fs_info->delayed_iput_lock); 2832 if (empty) 2833 return; 2834 2835 spin_lock(&fs_info->delayed_iput_lock); 2836 list_splice_init(&fs_info->delayed_iputs, &list); 2837 spin_unlock(&fs_info->delayed_iput_lock); 2838 2839 while (!list_empty(&list)) { 2840 delayed = list_entry(list.next, struct delayed_iput, list); 2841 list_del(&delayed->list); 2842 iput(delayed->inode); 2843 kfree(delayed); 2844 } 2845 } 2846 2847 /* 2848 * This is called in transaction commit time. If there are no orphan 2849 * files in the subvolume, it removes orphan item and frees block_rsv 2850 * structure. 2851 */ 2852 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2853 struct btrfs_root *root) 2854 { 2855 struct btrfs_block_rsv *block_rsv; 2856 int ret; 2857 2858 if (atomic_read(&root->orphan_inodes) || 2859 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2860 return; 2861 2862 spin_lock(&root->orphan_lock); 2863 if (atomic_read(&root->orphan_inodes)) { 2864 spin_unlock(&root->orphan_lock); 2865 return; 2866 } 2867 2868 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2869 spin_unlock(&root->orphan_lock); 2870 return; 2871 } 2872 2873 block_rsv = root->orphan_block_rsv; 2874 root->orphan_block_rsv = NULL; 2875 spin_unlock(&root->orphan_lock); 2876 2877 if (root->orphan_item_inserted && 2878 btrfs_root_refs(&root->root_item) > 0) { 2879 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2880 root->root_key.objectid); 2881 if (ret) 2882 btrfs_abort_transaction(trans, root, ret); 2883 else 2884 root->orphan_item_inserted = 0; 2885 } 2886 2887 if (block_rsv) { 2888 WARN_ON(block_rsv->size > 0); 2889 btrfs_free_block_rsv(root, block_rsv); 2890 } 2891 } 2892 2893 /* 2894 * This creates an orphan entry for the given inode in case something goes 2895 * wrong in the middle of an unlink/truncate. 2896 * 2897 * NOTE: caller of this function should reserve 5 units of metadata for 2898 * this function. 2899 */ 2900 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2901 { 2902 struct btrfs_root *root = BTRFS_I(inode)->root; 2903 struct btrfs_block_rsv *block_rsv = NULL; 2904 int reserve = 0; 2905 int insert = 0; 2906 int ret; 2907 2908 if (!root->orphan_block_rsv) { 2909 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2910 if (!block_rsv) 2911 return -ENOMEM; 2912 } 2913 2914 spin_lock(&root->orphan_lock); 2915 if (!root->orphan_block_rsv) { 2916 root->orphan_block_rsv = block_rsv; 2917 } else if (block_rsv) { 2918 btrfs_free_block_rsv(root, block_rsv); 2919 block_rsv = NULL; 2920 } 2921 2922 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2923 &BTRFS_I(inode)->runtime_flags)) { 2924 #if 0 2925 /* 2926 * For proper ENOSPC handling, we should do orphan 2927 * cleanup when mounting. But this introduces backward 2928 * compatibility issue. 2929 */ 2930 if (!xchg(&root->orphan_item_inserted, 1)) 2931 insert = 2; 2932 else 2933 insert = 1; 2934 #endif 2935 insert = 1; 2936 atomic_inc(&root->orphan_inodes); 2937 } 2938 2939 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2940 &BTRFS_I(inode)->runtime_flags)) 2941 reserve = 1; 2942 spin_unlock(&root->orphan_lock); 2943 2944 /* grab metadata reservation from transaction handle */ 2945 if (reserve) { 2946 ret = btrfs_orphan_reserve_metadata(trans, inode); 2947 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 2948 } 2949 2950 /* insert an orphan item to track this unlinked/truncated file */ 2951 if (insert >= 1) { 2952 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2953 if (ret) { 2954 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2955 &BTRFS_I(inode)->runtime_flags); 2956 if (reserve) { 2957 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2958 &BTRFS_I(inode)->runtime_flags); 2959 btrfs_orphan_release_metadata(inode); 2960 } 2961 if (ret != -EEXIST) { 2962 btrfs_abort_transaction(trans, root, ret); 2963 return ret; 2964 } 2965 } 2966 ret = 0; 2967 } 2968 2969 /* insert an orphan item to track subvolume contains orphan files */ 2970 if (insert >= 2) { 2971 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2972 root->root_key.objectid); 2973 if (ret && ret != -EEXIST) { 2974 btrfs_abort_transaction(trans, root, ret); 2975 return ret; 2976 } 2977 } 2978 return 0; 2979 } 2980 2981 /* 2982 * We have done the truncate/delete so we can go ahead and remove the orphan 2983 * item for this particular inode. 2984 */ 2985 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2986 struct inode *inode) 2987 { 2988 struct btrfs_root *root = BTRFS_I(inode)->root; 2989 int delete_item = 0; 2990 int release_rsv = 0; 2991 int ret = 0; 2992 2993 spin_lock(&root->orphan_lock); 2994 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2995 &BTRFS_I(inode)->runtime_flags)) 2996 delete_item = 1; 2997 2998 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2999 &BTRFS_I(inode)->runtime_flags)) 3000 release_rsv = 1; 3001 spin_unlock(&root->orphan_lock); 3002 3003 if (trans && delete_item) 3004 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3005 3006 if (release_rsv) { 3007 btrfs_orphan_release_metadata(inode); 3008 atomic_dec(&root->orphan_inodes); 3009 } 3010 3011 return ret; 3012 } 3013 3014 /* 3015 * this cleans up any orphans that may be left on the list from the last use 3016 * of this root. 3017 */ 3018 int btrfs_orphan_cleanup(struct btrfs_root *root) 3019 { 3020 struct btrfs_path *path; 3021 struct extent_buffer *leaf; 3022 struct btrfs_key key, found_key; 3023 struct btrfs_trans_handle *trans; 3024 struct inode *inode; 3025 u64 last_objectid = 0; 3026 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3027 3028 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3029 return 0; 3030 3031 path = btrfs_alloc_path(); 3032 if (!path) { 3033 ret = -ENOMEM; 3034 goto out; 3035 } 3036 path->reada = -1; 3037 3038 key.objectid = BTRFS_ORPHAN_OBJECTID; 3039 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3040 key.offset = (u64)-1; 3041 3042 while (1) { 3043 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3044 if (ret < 0) 3045 goto out; 3046 3047 /* 3048 * if ret == 0 means we found what we were searching for, which 3049 * is weird, but possible, so only screw with path if we didn't 3050 * find the key and see if we have stuff that matches 3051 */ 3052 if (ret > 0) { 3053 ret = 0; 3054 if (path->slots[0] == 0) 3055 break; 3056 path->slots[0]--; 3057 } 3058 3059 /* pull out the item */ 3060 leaf = path->nodes[0]; 3061 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3062 3063 /* make sure the item matches what we want */ 3064 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3065 break; 3066 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3067 break; 3068 3069 /* release the path since we're done with it */ 3070 btrfs_release_path(path); 3071 3072 /* 3073 * this is where we are basically btrfs_lookup, without the 3074 * crossing root thing. we store the inode number in the 3075 * offset of the orphan item. 3076 */ 3077 3078 if (found_key.offset == last_objectid) { 3079 btrfs_err(root->fs_info, 3080 "Error removing orphan entry, stopping orphan cleanup"); 3081 ret = -EINVAL; 3082 goto out; 3083 } 3084 3085 last_objectid = found_key.offset; 3086 3087 found_key.objectid = found_key.offset; 3088 found_key.type = BTRFS_INODE_ITEM_KEY; 3089 found_key.offset = 0; 3090 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3091 ret = PTR_RET(inode); 3092 if (ret && ret != -ESTALE) 3093 goto out; 3094 3095 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3096 struct btrfs_root *dead_root; 3097 struct btrfs_fs_info *fs_info = root->fs_info; 3098 int is_dead_root = 0; 3099 3100 /* 3101 * this is an orphan in the tree root. Currently these 3102 * could come from 2 sources: 3103 * a) a snapshot deletion in progress 3104 * b) a free space cache inode 3105 * We need to distinguish those two, as the snapshot 3106 * orphan must not get deleted. 3107 * find_dead_roots already ran before us, so if this 3108 * is a snapshot deletion, we should find the root 3109 * in the dead_roots list 3110 */ 3111 spin_lock(&fs_info->trans_lock); 3112 list_for_each_entry(dead_root, &fs_info->dead_roots, 3113 root_list) { 3114 if (dead_root->root_key.objectid == 3115 found_key.objectid) { 3116 is_dead_root = 1; 3117 break; 3118 } 3119 } 3120 spin_unlock(&fs_info->trans_lock); 3121 if (is_dead_root) { 3122 /* prevent this orphan from being found again */ 3123 key.offset = found_key.objectid - 1; 3124 continue; 3125 } 3126 } 3127 /* 3128 * Inode is already gone but the orphan item is still there, 3129 * kill the orphan item. 3130 */ 3131 if (ret == -ESTALE) { 3132 trans = btrfs_start_transaction(root, 1); 3133 if (IS_ERR(trans)) { 3134 ret = PTR_ERR(trans); 3135 goto out; 3136 } 3137 btrfs_debug(root->fs_info, "auto deleting %Lu", 3138 found_key.objectid); 3139 ret = btrfs_del_orphan_item(trans, root, 3140 found_key.objectid); 3141 btrfs_end_transaction(trans, root); 3142 if (ret) 3143 goto out; 3144 continue; 3145 } 3146 3147 /* 3148 * add this inode to the orphan list so btrfs_orphan_del does 3149 * the proper thing when we hit it 3150 */ 3151 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3152 &BTRFS_I(inode)->runtime_flags); 3153 atomic_inc(&root->orphan_inodes); 3154 3155 /* if we have links, this was a truncate, lets do that */ 3156 if (inode->i_nlink) { 3157 if (!S_ISREG(inode->i_mode)) { 3158 WARN_ON(1); 3159 iput(inode); 3160 continue; 3161 } 3162 nr_truncate++; 3163 3164 /* 1 for the orphan item deletion. */ 3165 trans = btrfs_start_transaction(root, 1); 3166 if (IS_ERR(trans)) { 3167 iput(inode); 3168 ret = PTR_ERR(trans); 3169 goto out; 3170 } 3171 ret = btrfs_orphan_add(trans, inode); 3172 btrfs_end_transaction(trans, root); 3173 if (ret) { 3174 iput(inode); 3175 goto out; 3176 } 3177 3178 ret = btrfs_truncate(inode); 3179 if (ret) 3180 btrfs_orphan_del(NULL, inode); 3181 } else { 3182 nr_unlink++; 3183 } 3184 3185 /* this will do delete_inode and everything for us */ 3186 iput(inode); 3187 if (ret) 3188 goto out; 3189 } 3190 /* release the path since we're done with it */ 3191 btrfs_release_path(path); 3192 3193 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3194 3195 if (root->orphan_block_rsv) 3196 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3197 (u64)-1); 3198 3199 if (root->orphan_block_rsv || root->orphan_item_inserted) { 3200 trans = btrfs_join_transaction(root); 3201 if (!IS_ERR(trans)) 3202 btrfs_end_transaction(trans, root); 3203 } 3204 3205 if (nr_unlink) 3206 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3207 if (nr_truncate) 3208 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3209 3210 out: 3211 if (ret) 3212 btrfs_crit(root->fs_info, 3213 "could not do orphan cleanup %d", ret); 3214 btrfs_free_path(path); 3215 return ret; 3216 } 3217 3218 /* 3219 * very simple check to peek ahead in the leaf looking for xattrs. If we 3220 * don't find any xattrs, we know there can't be any acls. 3221 * 3222 * slot is the slot the inode is in, objectid is the objectid of the inode 3223 */ 3224 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3225 int slot, u64 objectid) 3226 { 3227 u32 nritems = btrfs_header_nritems(leaf); 3228 struct btrfs_key found_key; 3229 static u64 xattr_access = 0; 3230 static u64 xattr_default = 0; 3231 int scanned = 0; 3232 3233 if (!xattr_access) { 3234 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3235 strlen(POSIX_ACL_XATTR_ACCESS)); 3236 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3237 strlen(POSIX_ACL_XATTR_DEFAULT)); 3238 } 3239 3240 slot++; 3241 while (slot < nritems) { 3242 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3243 3244 /* we found a different objectid, there must not be acls */ 3245 if (found_key.objectid != objectid) 3246 return 0; 3247 3248 /* we found an xattr, assume we've got an acl */ 3249 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3250 if (found_key.offset == xattr_access || 3251 found_key.offset == xattr_default) 3252 return 1; 3253 } 3254 3255 /* 3256 * we found a key greater than an xattr key, there can't 3257 * be any acls later on 3258 */ 3259 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3260 return 0; 3261 3262 slot++; 3263 scanned++; 3264 3265 /* 3266 * it goes inode, inode backrefs, xattrs, extents, 3267 * so if there are a ton of hard links to an inode there can 3268 * be a lot of backrefs. Don't waste time searching too hard, 3269 * this is just an optimization 3270 */ 3271 if (scanned >= 8) 3272 break; 3273 } 3274 /* we hit the end of the leaf before we found an xattr or 3275 * something larger than an xattr. We have to assume the inode 3276 * has acls 3277 */ 3278 return 1; 3279 } 3280 3281 /* 3282 * read an inode from the btree into the in-memory inode 3283 */ 3284 static void btrfs_read_locked_inode(struct inode *inode) 3285 { 3286 struct btrfs_path *path; 3287 struct extent_buffer *leaf; 3288 struct btrfs_inode_item *inode_item; 3289 struct btrfs_timespec *tspec; 3290 struct btrfs_root *root = BTRFS_I(inode)->root; 3291 struct btrfs_key location; 3292 int maybe_acls; 3293 u32 rdev; 3294 int ret; 3295 bool filled = false; 3296 3297 ret = btrfs_fill_inode(inode, &rdev); 3298 if (!ret) 3299 filled = true; 3300 3301 path = btrfs_alloc_path(); 3302 if (!path) 3303 goto make_bad; 3304 3305 path->leave_spinning = 1; 3306 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3307 3308 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3309 if (ret) 3310 goto make_bad; 3311 3312 leaf = path->nodes[0]; 3313 3314 if (filled) 3315 goto cache_acl; 3316 3317 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3318 struct btrfs_inode_item); 3319 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3320 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3321 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3322 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3323 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3324 3325 tspec = btrfs_inode_atime(inode_item); 3326 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3327 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3328 3329 tspec = btrfs_inode_mtime(inode_item); 3330 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3331 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3332 3333 tspec = btrfs_inode_ctime(inode_item); 3334 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3335 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3336 3337 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3338 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3339 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3340 3341 /* 3342 * If we were modified in the current generation and evicted from memory 3343 * and then re-read we need to do a full sync since we don't have any 3344 * idea about which extents were modified before we were evicted from 3345 * cache. 3346 */ 3347 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3349 &BTRFS_I(inode)->runtime_flags); 3350 3351 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3352 inode->i_generation = BTRFS_I(inode)->generation; 3353 inode->i_rdev = 0; 3354 rdev = btrfs_inode_rdev(leaf, inode_item); 3355 3356 BTRFS_I(inode)->index_cnt = (u64)-1; 3357 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3358 cache_acl: 3359 /* 3360 * try to precache a NULL acl entry for files that don't have 3361 * any xattrs or acls 3362 */ 3363 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3364 btrfs_ino(inode)); 3365 if (!maybe_acls) 3366 cache_no_acl(inode); 3367 3368 btrfs_free_path(path); 3369 3370 switch (inode->i_mode & S_IFMT) { 3371 case S_IFREG: 3372 inode->i_mapping->a_ops = &btrfs_aops; 3373 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3374 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3375 inode->i_fop = &btrfs_file_operations; 3376 inode->i_op = &btrfs_file_inode_operations; 3377 break; 3378 case S_IFDIR: 3379 inode->i_fop = &btrfs_dir_file_operations; 3380 if (root == root->fs_info->tree_root) 3381 inode->i_op = &btrfs_dir_ro_inode_operations; 3382 else 3383 inode->i_op = &btrfs_dir_inode_operations; 3384 break; 3385 case S_IFLNK: 3386 inode->i_op = &btrfs_symlink_inode_operations; 3387 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3388 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3389 break; 3390 default: 3391 inode->i_op = &btrfs_special_inode_operations; 3392 init_special_inode(inode, inode->i_mode, rdev); 3393 break; 3394 } 3395 3396 btrfs_update_iflags(inode); 3397 return; 3398 3399 make_bad: 3400 btrfs_free_path(path); 3401 make_bad_inode(inode); 3402 } 3403 3404 /* 3405 * given a leaf and an inode, copy the inode fields into the leaf 3406 */ 3407 static void fill_inode_item(struct btrfs_trans_handle *trans, 3408 struct extent_buffer *leaf, 3409 struct btrfs_inode_item *item, 3410 struct inode *inode) 3411 { 3412 struct btrfs_map_token token; 3413 3414 btrfs_init_map_token(&token); 3415 3416 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3417 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3418 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3419 &token); 3420 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3421 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3422 3423 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3424 inode->i_atime.tv_sec, &token); 3425 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3426 inode->i_atime.tv_nsec, &token); 3427 3428 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3429 inode->i_mtime.tv_sec, &token); 3430 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3431 inode->i_mtime.tv_nsec, &token); 3432 3433 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3434 inode->i_ctime.tv_sec, &token); 3435 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3436 inode->i_ctime.tv_nsec, &token); 3437 3438 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3439 &token); 3440 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3441 &token); 3442 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3443 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3444 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3445 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3446 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3447 } 3448 3449 /* 3450 * copy everything in the in-memory inode into the btree. 3451 */ 3452 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3453 struct btrfs_root *root, struct inode *inode) 3454 { 3455 struct btrfs_inode_item *inode_item; 3456 struct btrfs_path *path; 3457 struct extent_buffer *leaf; 3458 int ret; 3459 3460 path = btrfs_alloc_path(); 3461 if (!path) 3462 return -ENOMEM; 3463 3464 path->leave_spinning = 1; 3465 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3466 1); 3467 if (ret) { 3468 if (ret > 0) 3469 ret = -ENOENT; 3470 goto failed; 3471 } 3472 3473 btrfs_unlock_up_safe(path, 1); 3474 leaf = path->nodes[0]; 3475 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3476 struct btrfs_inode_item); 3477 3478 fill_inode_item(trans, leaf, inode_item, inode); 3479 btrfs_mark_buffer_dirty(leaf); 3480 btrfs_set_inode_last_trans(trans, inode); 3481 ret = 0; 3482 failed: 3483 btrfs_free_path(path); 3484 return ret; 3485 } 3486 3487 /* 3488 * copy everything in the in-memory inode into the btree. 3489 */ 3490 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3491 struct btrfs_root *root, struct inode *inode) 3492 { 3493 int ret; 3494 3495 /* 3496 * If the inode is a free space inode, we can deadlock during commit 3497 * if we put it into the delayed code. 3498 * 3499 * The data relocation inode should also be directly updated 3500 * without delay 3501 */ 3502 if (!btrfs_is_free_space_inode(inode) 3503 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3504 btrfs_update_root_times(trans, root); 3505 3506 ret = btrfs_delayed_update_inode(trans, root, inode); 3507 if (!ret) 3508 btrfs_set_inode_last_trans(trans, inode); 3509 return ret; 3510 } 3511 3512 return btrfs_update_inode_item(trans, root, inode); 3513 } 3514 3515 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3516 struct btrfs_root *root, 3517 struct inode *inode) 3518 { 3519 int ret; 3520 3521 ret = btrfs_update_inode(trans, root, inode); 3522 if (ret == -ENOSPC) 3523 return btrfs_update_inode_item(trans, root, inode); 3524 return ret; 3525 } 3526 3527 /* 3528 * unlink helper that gets used here in inode.c and in the tree logging 3529 * recovery code. It remove a link in a directory with a given name, and 3530 * also drops the back refs in the inode to the directory 3531 */ 3532 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3533 struct btrfs_root *root, 3534 struct inode *dir, struct inode *inode, 3535 const char *name, int name_len) 3536 { 3537 struct btrfs_path *path; 3538 int ret = 0; 3539 struct extent_buffer *leaf; 3540 struct btrfs_dir_item *di; 3541 struct btrfs_key key; 3542 u64 index; 3543 u64 ino = btrfs_ino(inode); 3544 u64 dir_ino = btrfs_ino(dir); 3545 3546 path = btrfs_alloc_path(); 3547 if (!path) { 3548 ret = -ENOMEM; 3549 goto out; 3550 } 3551 3552 path->leave_spinning = 1; 3553 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3554 name, name_len, -1); 3555 if (IS_ERR(di)) { 3556 ret = PTR_ERR(di); 3557 goto err; 3558 } 3559 if (!di) { 3560 ret = -ENOENT; 3561 goto err; 3562 } 3563 leaf = path->nodes[0]; 3564 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3565 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3566 if (ret) 3567 goto err; 3568 btrfs_release_path(path); 3569 3570 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3571 dir_ino, &index); 3572 if (ret) { 3573 btrfs_info(root->fs_info, 3574 "failed to delete reference to %.*s, inode %llu parent %llu", 3575 name_len, name, 3576 (unsigned long long)ino, (unsigned long long)dir_ino); 3577 btrfs_abort_transaction(trans, root, ret); 3578 goto err; 3579 } 3580 3581 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3582 if (ret) { 3583 btrfs_abort_transaction(trans, root, ret); 3584 goto err; 3585 } 3586 3587 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3588 inode, dir_ino); 3589 if (ret != 0 && ret != -ENOENT) { 3590 btrfs_abort_transaction(trans, root, ret); 3591 goto err; 3592 } 3593 3594 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3595 dir, index); 3596 if (ret == -ENOENT) 3597 ret = 0; 3598 else if (ret) 3599 btrfs_abort_transaction(trans, root, ret); 3600 err: 3601 btrfs_free_path(path); 3602 if (ret) 3603 goto out; 3604 3605 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3606 inode_inc_iversion(inode); 3607 inode_inc_iversion(dir); 3608 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3609 ret = btrfs_update_inode(trans, root, dir); 3610 out: 3611 return ret; 3612 } 3613 3614 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3615 struct btrfs_root *root, 3616 struct inode *dir, struct inode *inode, 3617 const char *name, int name_len) 3618 { 3619 int ret; 3620 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3621 if (!ret) { 3622 btrfs_drop_nlink(inode); 3623 ret = btrfs_update_inode(trans, root, inode); 3624 } 3625 return ret; 3626 } 3627 3628 /* 3629 * helper to start transaction for unlink and rmdir. 3630 * 3631 * unlink and rmdir are special in btrfs, they do not always free space, so 3632 * if we cannot make our reservations the normal way try and see if there is 3633 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3634 * allow the unlink to occur. 3635 */ 3636 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3637 { 3638 struct btrfs_trans_handle *trans; 3639 struct btrfs_root *root = BTRFS_I(dir)->root; 3640 int ret; 3641 3642 /* 3643 * 1 for the possible orphan item 3644 * 1 for the dir item 3645 * 1 for the dir index 3646 * 1 for the inode ref 3647 * 1 for the inode 3648 */ 3649 trans = btrfs_start_transaction(root, 5); 3650 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3651 return trans; 3652 3653 if (PTR_ERR(trans) == -ENOSPC) { 3654 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3655 3656 trans = btrfs_start_transaction(root, 0); 3657 if (IS_ERR(trans)) 3658 return trans; 3659 ret = btrfs_cond_migrate_bytes(root->fs_info, 3660 &root->fs_info->trans_block_rsv, 3661 num_bytes, 5); 3662 if (ret) { 3663 btrfs_end_transaction(trans, root); 3664 return ERR_PTR(ret); 3665 } 3666 trans->block_rsv = &root->fs_info->trans_block_rsv; 3667 trans->bytes_reserved = num_bytes; 3668 } 3669 return trans; 3670 } 3671 3672 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3673 { 3674 struct btrfs_root *root = BTRFS_I(dir)->root; 3675 struct btrfs_trans_handle *trans; 3676 struct inode *inode = dentry->d_inode; 3677 int ret; 3678 3679 trans = __unlink_start_trans(dir); 3680 if (IS_ERR(trans)) 3681 return PTR_ERR(trans); 3682 3683 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3684 3685 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3686 dentry->d_name.name, dentry->d_name.len); 3687 if (ret) 3688 goto out; 3689 3690 if (inode->i_nlink == 0) { 3691 ret = btrfs_orphan_add(trans, inode); 3692 if (ret) 3693 goto out; 3694 } 3695 3696 out: 3697 btrfs_end_transaction(trans, root); 3698 btrfs_btree_balance_dirty(root); 3699 return ret; 3700 } 3701 3702 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3703 struct btrfs_root *root, 3704 struct inode *dir, u64 objectid, 3705 const char *name, int name_len) 3706 { 3707 struct btrfs_path *path; 3708 struct extent_buffer *leaf; 3709 struct btrfs_dir_item *di; 3710 struct btrfs_key key; 3711 u64 index; 3712 int ret; 3713 u64 dir_ino = btrfs_ino(dir); 3714 3715 path = btrfs_alloc_path(); 3716 if (!path) 3717 return -ENOMEM; 3718 3719 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3720 name, name_len, -1); 3721 if (IS_ERR_OR_NULL(di)) { 3722 if (!di) 3723 ret = -ENOENT; 3724 else 3725 ret = PTR_ERR(di); 3726 goto out; 3727 } 3728 3729 leaf = path->nodes[0]; 3730 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3731 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3732 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3733 if (ret) { 3734 btrfs_abort_transaction(trans, root, ret); 3735 goto out; 3736 } 3737 btrfs_release_path(path); 3738 3739 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3740 objectid, root->root_key.objectid, 3741 dir_ino, &index, name, name_len); 3742 if (ret < 0) { 3743 if (ret != -ENOENT) { 3744 btrfs_abort_transaction(trans, root, ret); 3745 goto out; 3746 } 3747 di = btrfs_search_dir_index_item(root, path, dir_ino, 3748 name, name_len); 3749 if (IS_ERR_OR_NULL(di)) { 3750 if (!di) 3751 ret = -ENOENT; 3752 else 3753 ret = PTR_ERR(di); 3754 btrfs_abort_transaction(trans, root, ret); 3755 goto out; 3756 } 3757 3758 leaf = path->nodes[0]; 3759 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3760 btrfs_release_path(path); 3761 index = key.offset; 3762 } 3763 btrfs_release_path(path); 3764 3765 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3766 if (ret) { 3767 btrfs_abort_transaction(trans, root, ret); 3768 goto out; 3769 } 3770 3771 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3772 inode_inc_iversion(dir); 3773 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3774 ret = btrfs_update_inode_fallback(trans, root, dir); 3775 if (ret) 3776 btrfs_abort_transaction(trans, root, ret); 3777 out: 3778 btrfs_free_path(path); 3779 return ret; 3780 } 3781 3782 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3783 { 3784 struct inode *inode = dentry->d_inode; 3785 int err = 0; 3786 struct btrfs_root *root = BTRFS_I(dir)->root; 3787 struct btrfs_trans_handle *trans; 3788 3789 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3790 return -ENOTEMPTY; 3791 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3792 return -EPERM; 3793 3794 trans = __unlink_start_trans(dir); 3795 if (IS_ERR(trans)) 3796 return PTR_ERR(trans); 3797 3798 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3799 err = btrfs_unlink_subvol(trans, root, dir, 3800 BTRFS_I(inode)->location.objectid, 3801 dentry->d_name.name, 3802 dentry->d_name.len); 3803 goto out; 3804 } 3805 3806 err = btrfs_orphan_add(trans, inode); 3807 if (err) 3808 goto out; 3809 3810 /* now the directory is empty */ 3811 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3812 dentry->d_name.name, dentry->d_name.len); 3813 if (!err) 3814 btrfs_i_size_write(inode, 0); 3815 out: 3816 btrfs_end_transaction(trans, root); 3817 btrfs_btree_balance_dirty(root); 3818 3819 return err; 3820 } 3821 3822 /* 3823 * this can truncate away extent items, csum items and directory items. 3824 * It starts at a high offset and removes keys until it can't find 3825 * any higher than new_size 3826 * 3827 * csum items that cross the new i_size are truncated to the new size 3828 * as well. 3829 * 3830 * min_type is the minimum key type to truncate down to. If set to 0, this 3831 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3832 */ 3833 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3834 struct btrfs_root *root, 3835 struct inode *inode, 3836 u64 new_size, u32 min_type) 3837 { 3838 struct btrfs_path *path; 3839 struct extent_buffer *leaf; 3840 struct btrfs_file_extent_item *fi; 3841 struct btrfs_key key; 3842 struct btrfs_key found_key; 3843 u64 extent_start = 0; 3844 u64 extent_num_bytes = 0; 3845 u64 extent_offset = 0; 3846 u64 item_end = 0; 3847 u32 found_type = (u8)-1; 3848 int found_extent; 3849 int del_item; 3850 int pending_del_nr = 0; 3851 int pending_del_slot = 0; 3852 int extent_type = -1; 3853 int ret; 3854 int err = 0; 3855 u64 ino = btrfs_ino(inode); 3856 3857 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3858 3859 path = btrfs_alloc_path(); 3860 if (!path) 3861 return -ENOMEM; 3862 path->reada = -1; 3863 3864 /* 3865 * We want to drop from the next block forward in case this new size is 3866 * not block aligned since we will be keeping the last block of the 3867 * extent just the way it is. 3868 */ 3869 if (root->ref_cows || root == root->fs_info->tree_root) 3870 btrfs_drop_extent_cache(inode, ALIGN(new_size, 3871 root->sectorsize), (u64)-1, 0); 3872 3873 /* 3874 * This function is also used to drop the items in the log tree before 3875 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3876 * it is used to drop the loged items. So we shouldn't kill the delayed 3877 * items. 3878 */ 3879 if (min_type == 0 && root == BTRFS_I(inode)->root) 3880 btrfs_kill_delayed_inode_items(inode); 3881 3882 key.objectid = ino; 3883 key.offset = (u64)-1; 3884 key.type = (u8)-1; 3885 3886 search_again: 3887 path->leave_spinning = 1; 3888 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3889 if (ret < 0) { 3890 err = ret; 3891 goto out; 3892 } 3893 3894 if (ret > 0) { 3895 /* there are no items in the tree for us to truncate, we're 3896 * done 3897 */ 3898 if (path->slots[0] == 0) 3899 goto out; 3900 path->slots[0]--; 3901 } 3902 3903 while (1) { 3904 fi = NULL; 3905 leaf = path->nodes[0]; 3906 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3907 found_type = btrfs_key_type(&found_key); 3908 3909 if (found_key.objectid != ino) 3910 break; 3911 3912 if (found_type < min_type) 3913 break; 3914 3915 item_end = found_key.offset; 3916 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3917 fi = btrfs_item_ptr(leaf, path->slots[0], 3918 struct btrfs_file_extent_item); 3919 extent_type = btrfs_file_extent_type(leaf, fi); 3920 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3921 item_end += 3922 btrfs_file_extent_num_bytes(leaf, fi); 3923 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3924 item_end += btrfs_file_extent_inline_len(leaf, 3925 fi); 3926 } 3927 item_end--; 3928 } 3929 if (found_type > min_type) { 3930 del_item = 1; 3931 } else { 3932 if (item_end < new_size) 3933 break; 3934 if (found_key.offset >= new_size) 3935 del_item = 1; 3936 else 3937 del_item = 0; 3938 } 3939 found_extent = 0; 3940 /* FIXME, shrink the extent if the ref count is only 1 */ 3941 if (found_type != BTRFS_EXTENT_DATA_KEY) 3942 goto delete; 3943 3944 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3945 u64 num_dec; 3946 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3947 if (!del_item) { 3948 u64 orig_num_bytes = 3949 btrfs_file_extent_num_bytes(leaf, fi); 3950 extent_num_bytes = ALIGN(new_size - 3951 found_key.offset, 3952 root->sectorsize); 3953 btrfs_set_file_extent_num_bytes(leaf, fi, 3954 extent_num_bytes); 3955 num_dec = (orig_num_bytes - 3956 extent_num_bytes); 3957 if (root->ref_cows && extent_start != 0) 3958 inode_sub_bytes(inode, num_dec); 3959 btrfs_mark_buffer_dirty(leaf); 3960 } else { 3961 extent_num_bytes = 3962 btrfs_file_extent_disk_num_bytes(leaf, 3963 fi); 3964 extent_offset = found_key.offset - 3965 btrfs_file_extent_offset(leaf, fi); 3966 3967 /* FIXME blocksize != 4096 */ 3968 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3969 if (extent_start != 0) { 3970 found_extent = 1; 3971 if (root->ref_cows) 3972 inode_sub_bytes(inode, num_dec); 3973 } 3974 } 3975 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3976 /* 3977 * we can't truncate inline items that have had 3978 * special encodings 3979 */ 3980 if (!del_item && 3981 btrfs_file_extent_compression(leaf, fi) == 0 && 3982 btrfs_file_extent_encryption(leaf, fi) == 0 && 3983 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3984 u32 size = new_size - found_key.offset; 3985 3986 if (root->ref_cows) { 3987 inode_sub_bytes(inode, item_end + 1 - 3988 new_size); 3989 } 3990 size = 3991 btrfs_file_extent_calc_inline_size(size); 3992 btrfs_truncate_item(root, path, size, 1); 3993 } else if (root->ref_cows) { 3994 inode_sub_bytes(inode, item_end + 1 - 3995 found_key.offset); 3996 } 3997 } 3998 delete: 3999 if (del_item) { 4000 if (!pending_del_nr) { 4001 /* no pending yet, add ourselves */ 4002 pending_del_slot = path->slots[0]; 4003 pending_del_nr = 1; 4004 } else if (pending_del_nr && 4005 path->slots[0] + 1 == pending_del_slot) { 4006 /* hop on the pending chunk */ 4007 pending_del_nr++; 4008 pending_del_slot = path->slots[0]; 4009 } else { 4010 BUG(); 4011 } 4012 } else { 4013 break; 4014 } 4015 if (found_extent && (root->ref_cows || 4016 root == root->fs_info->tree_root)) { 4017 btrfs_set_path_blocking(path); 4018 ret = btrfs_free_extent(trans, root, extent_start, 4019 extent_num_bytes, 0, 4020 btrfs_header_owner(leaf), 4021 ino, extent_offset, 0); 4022 BUG_ON(ret); 4023 } 4024 4025 if (found_type == BTRFS_INODE_ITEM_KEY) 4026 break; 4027 4028 if (path->slots[0] == 0 || 4029 path->slots[0] != pending_del_slot) { 4030 if (pending_del_nr) { 4031 ret = btrfs_del_items(trans, root, path, 4032 pending_del_slot, 4033 pending_del_nr); 4034 if (ret) { 4035 btrfs_abort_transaction(trans, 4036 root, ret); 4037 goto error; 4038 } 4039 pending_del_nr = 0; 4040 } 4041 btrfs_release_path(path); 4042 goto search_again; 4043 } else { 4044 path->slots[0]--; 4045 } 4046 } 4047 out: 4048 if (pending_del_nr) { 4049 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4050 pending_del_nr); 4051 if (ret) 4052 btrfs_abort_transaction(trans, root, ret); 4053 } 4054 error: 4055 btrfs_free_path(path); 4056 return err; 4057 } 4058 4059 /* 4060 * btrfs_truncate_page - read, zero a chunk and write a page 4061 * @inode - inode that we're zeroing 4062 * @from - the offset to start zeroing 4063 * @len - the length to zero, 0 to zero the entire range respective to the 4064 * offset 4065 * @front - zero up to the offset instead of from the offset on 4066 * 4067 * This will find the page for the "from" offset and cow the page and zero the 4068 * part we want to zero. This is used with truncate and hole punching. 4069 */ 4070 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4071 int front) 4072 { 4073 struct address_space *mapping = inode->i_mapping; 4074 struct btrfs_root *root = BTRFS_I(inode)->root; 4075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4076 struct btrfs_ordered_extent *ordered; 4077 struct extent_state *cached_state = NULL; 4078 char *kaddr; 4079 u32 blocksize = root->sectorsize; 4080 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4081 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4082 struct page *page; 4083 gfp_t mask = btrfs_alloc_write_mask(mapping); 4084 int ret = 0; 4085 u64 page_start; 4086 u64 page_end; 4087 4088 if ((offset & (blocksize - 1)) == 0 && 4089 (!len || ((len & (blocksize - 1)) == 0))) 4090 goto out; 4091 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4092 if (ret) 4093 goto out; 4094 4095 again: 4096 page = find_or_create_page(mapping, index, mask); 4097 if (!page) { 4098 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4099 ret = -ENOMEM; 4100 goto out; 4101 } 4102 4103 page_start = page_offset(page); 4104 page_end = page_start + PAGE_CACHE_SIZE - 1; 4105 4106 if (!PageUptodate(page)) { 4107 ret = btrfs_readpage(NULL, page); 4108 lock_page(page); 4109 if (page->mapping != mapping) { 4110 unlock_page(page); 4111 page_cache_release(page); 4112 goto again; 4113 } 4114 if (!PageUptodate(page)) { 4115 ret = -EIO; 4116 goto out_unlock; 4117 } 4118 } 4119 wait_on_page_writeback(page); 4120 4121 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4122 set_page_extent_mapped(page); 4123 4124 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4125 if (ordered) { 4126 unlock_extent_cached(io_tree, page_start, page_end, 4127 &cached_state, GFP_NOFS); 4128 unlock_page(page); 4129 page_cache_release(page); 4130 btrfs_start_ordered_extent(inode, ordered, 1); 4131 btrfs_put_ordered_extent(ordered); 4132 goto again; 4133 } 4134 4135 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4136 EXTENT_DIRTY | EXTENT_DELALLOC | 4137 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4138 0, 0, &cached_state, GFP_NOFS); 4139 4140 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4141 &cached_state); 4142 if (ret) { 4143 unlock_extent_cached(io_tree, page_start, page_end, 4144 &cached_state, GFP_NOFS); 4145 goto out_unlock; 4146 } 4147 4148 if (offset != PAGE_CACHE_SIZE) { 4149 if (!len) 4150 len = PAGE_CACHE_SIZE - offset; 4151 kaddr = kmap(page); 4152 if (front) 4153 memset(kaddr, 0, offset); 4154 else 4155 memset(kaddr + offset, 0, len); 4156 flush_dcache_page(page); 4157 kunmap(page); 4158 } 4159 ClearPageChecked(page); 4160 set_page_dirty(page); 4161 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4162 GFP_NOFS); 4163 4164 out_unlock: 4165 if (ret) 4166 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4167 unlock_page(page); 4168 page_cache_release(page); 4169 out: 4170 return ret; 4171 } 4172 4173 /* 4174 * This function puts in dummy file extents for the area we're creating a hole 4175 * for. So if we are truncating this file to a larger size we need to insert 4176 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4177 * the range between oldsize and size 4178 */ 4179 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4180 { 4181 struct btrfs_trans_handle *trans; 4182 struct btrfs_root *root = BTRFS_I(inode)->root; 4183 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4184 struct extent_map *em = NULL; 4185 struct extent_state *cached_state = NULL; 4186 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4187 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4188 u64 block_end = ALIGN(size, root->sectorsize); 4189 u64 last_byte; 4190 u64 cur_offset; 4191 u64 hole_size; 4192 int err = 0; 4193 4194 /* 4195 * If our size started in the middle of a page we need to zero out the 4196 * rest of the page before we expand the i_size, otherwise we could 4197 * expose stale data. 4198 */ 4199 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4200 if (err) 4201 return err; 4202 4203 if (size <= hole_start) 4204 return 0; 4205 4206 while (1) { 4207 struct btrfs_ordered_extent *ordered; 4208 btrfs_wait_ordered_range(inode, hole_start, 4209 block_end - hole_start); 4210 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4211 &cached_state); 4212 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 4213 if (!ordered) 4214 break; 4215 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4216 &cached_state, GFP_NOFS); 4217 btrfs_put_ordered_extent(ordered); 4218 } 4219 4220 cur_offset = hole_start; 4221 while (1) { 4222 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4223 block_end - cur_offset, 0); 4224 if (IS_ERR(em)) { 4225 err = PTR_ERR(em); 4226 em = NULL; 4227 break; 4228 } 4229 last_byte = min(extent_map_end(em), block_end); 4230 last_byte = ALIGN(last_byte , root->sectorsize); 4231 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4232 struct extent_map *hole_em; 4233 hole_size = last_byte - cur_offset; 4234 4235 trans = btrfs_start_transaction(root, 3); 4236 if (IS_ERR(trans)) { 4237 err = PTR_ERR(trans); 4238 break; 4239 } 4240 4241 err = btrfs_drop_extents(trans, root, inode, 4242 cur_offset, 4243 cur_offset + hole_size, 1); 4244 if (err) { 4245 btrfs_abort_transaction(trans, root, err); 4246 btrfs_end_transaction(trans, root); 4247 break; 4248 } 4249 4250 err = btrfs_insert_file_extent(trans, root, 4251 btrfs_ino(inode), cur_offset, 0, 4252 0, hole_size, 0, hole_size, 4253 0, 0, 0); 4254 if (err) { 4255 btrfs_abort_transaction(trans, root, err); 4256 btrfs_end_transaction(trans, root); 4257 break; 4258 } 4259 4260 btrfs_drop_extent_cache(inode, cur_offset, 4261 cur_offset + hole_size - 1, 0); 4262 hole_em = alloc_extent_map(); 4263 if (!hole_em) { 4264 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4265 &BTRFS_I(inode)->runtime_flags); 4266 goto next; 4267 } 4268 hole_em->start = cur_offset; 4269 hole_em->len = hole_size; 4270 hole_em->orig_start = cur_offset; 4271 4272 hole_em->block_start = EXTENT_MAP_HOLE; 4273 hole_em->block_len = 0; 4274 hole_em->orig_block_len = 0; 4275 hole_em->ram_bytes = hole_size; 4276 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4277 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4278 hole_em->generation = trans->transid; 4279 4280 while (1) { 4281 write_lock(&em_tree->lock); 4282 err = add_extent_mapping(em_tree, hole_em, 1); 4283 write_unlock(&em_tree->lock); 4284 if (err != -EEXIST) 4285 break; 4286 btrfs_drop_extent_cache(inode, cur_offset, 4287 cur_offset + 4288 hole_size - 1, 0); 4289 } 4290 free_extent_map(hole_em); 4291 next: 4292 btrfs_update_inode(trans, root, inode); 4293 btrfs_end_transaction(trans, root); 4294 } 4295 free_extent_map(em); 4296 em = NULL; 4297 cur_offset = last_byte; 4298 if (cur_offset >= block_end) 4299 break; 4300 } 4301 4302 free_extent_map(em); 4303 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4304 GFP_NOFS); 4305 return err; 4306 } 4307 4308 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4309 { 4310 struct btrfs_root *root = BTRFS_I(inode)->root; 4311 struct btrfs_trans_handle *trans; 4312 loff_t oldsize = i_size_read(inode); 4313 loff_t newsize = attr->ia_size; 4314 int mask = attr->ia_valid; 4315 int ret; 4316 4317 /* 4318 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4319 * special case where we need to update the times despite not having 4320 * these flags set. For all other operations the VFS set these flags 4321 * explicitly if it wants a timestamp update. 4322 */ 4323 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME)))) 4324 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb); 4325 4326 if (newsize > oldsize) { 4327 truncate_pagecache(inode, oldsize, newsize); 4328 ret = btrfs_cont_expand(inode, oldsize, newsize); 4329 if (ret) 4330 return ret; 4331 4332 trans = btrfs_start_transaction(root, 1); 4333 if (IS_ERR(trans)) 4334 return PTR_ERR(trans); 4335 4336 i_size_write(inode, newsize); 4337 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4338 ret = btrfs_update_inode(trans, root, inode); 4339 btrfs_end_transaction(trans, root); 4340 } else { 4341 4342 /* 4343 * We're truncating a file that used to have good data down to 4344 * zero. Make sure it gets into the ordered flush list so that 4345 * any new writes get down to disk quickly. 4346 */ 4347 if (newsize == 0) 4348 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4349 &BTRFS_I(inode)->runtime_flags); 4350 4351 /* 4352 * 1 for the orphan item we're going to add 4353 * 1 for the orphan item deletion. 4354 */ 4355 trans = btrfs_start_transaction(root, 2); 4356 if (IS_ERR(trans)) 4357 return PTR_ERR(trans); 4358 4359 /* 4360 * We need to do this in case we fail at _any_ point during the 4361 * actual truncate. Once we do the truncate_setsize we could 4362 * invalidate pages which forces any outstanding ordered io to 4363 * be instantly completed which will give us extents that need 4364 * to be truncated. If we fail to get an orphan inode down we 4365 * could have left over extents that were never meant to live, 4366 * so we need to garuntee from this point on that everything 4367 * will be consistent. 4368 */ 4369 ret = btrfs_orphan_add(trans, inode); 4370 btrfs_end_transaction(trans, root); 4371 if (ret) 4372 return ret; 4373 4374 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4375 truncate_setsize(inode, newsize); 4376 4377 /* Disable nonlocked read DIO to avoid the end less truncate */ 4378 btrfs_inode_block_unlocked_dio(inode); 4379 inode_dio_wait(inode); 4380 btrfs_inode_resume_unlocked_dio(inode); 4381 4382 ret = btrfs_truncate(inode); 4383 if (ret && inode->i_nlink) 4384 btrfs_orphan_del(NULL, inode); 4385 } 4386 4387 return ret; 4388 } 4389 4390 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4391 { 4392 struct inode *inode = dentry->d_inode; 4393 struct btrfs_root *root = BTRFS_I(inode)->root; 4394 int err; 4395 4396 if (btrfs_root_readonly(root)) 4397 return -EROFS; 4398 4399 err = inode_change_ok(inode, attr); 4400 if (err) 4401 return err; 4402 4403 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4404 err = btrfs_setsize(inode, attr); 4405 if (err) 4406 return err; 4407 } 4408 4409 if (attr->ia_valid) { 4410 setattr_copy(inode, attr); 4411 inode_inc_iversion(inode); 4412 err = btrfs_dirty_inode(inode); 4413 4414 if (!err && attr->ia_valid & ATTR_MODE) 4415 err = btrfs_acl_chmod(inode); 4416 } 4417 4418 return err; 4419 } 4420 4421 void btrfs_evict_inode(struct inode *inode) 4422 { 4423 struct btrfs_trans_handle *trans; 4424 struct btrfs_root *root = BTRFS_I(inode)->root; 4425 struct btrfs_block_rsv *rsv, *global_rsv; 4426 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4427 int ret; 4428 4429 trace_btrfs_inode_evict(inode); 4430 4431 truncate_inode_pages(&inode->i_data, 0); 4432 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 4433 btrfs_is_free_space_inode(inode))) 4434 goto no_delete; 4435 4436 if (is_bad_inode(inode)) { 4437 btrfs_orphan_del(NULL, inode); 4438 goto no_delete; 4439 } 4440 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4441 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4442 4443 if (root->fs_info->log_root_recovering) { 4444 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4445 &BTRFS_I(inode)->runtime_flags)); 4446 goto no_delete; 4447 } 4448 4449 if (inode->i_nlink > 0) { 4450 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 4451 goto no_delete; 4452 } 4453 4454 ret = btrfs_commit_inode_delayed_inode(inode); 4455 if (ret) { 4456 btrfs_orphan_del(NULL, inode); 4457 goto no_delete; 4458 } 4459 4460 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4461 if (!rsv) { 4462 btrfs_orphan_del(NULL, inode); 4463 goto no_delete; 4464 } 4465 rsv->size = min_size; 4466 rsv->failfast = 1; 4467 global_rsv = &root->fs_info->global_block_rsv; 4468 4469 btrfs_i_size_write(inode, 0); 4470 4471 /* 4472 * This is a bit simpler than btrfs_truncate since we've already 4473 * reserved our space for our orphan item in the unlink, so we just 4474 * need to reserve some slack space in case we add bytes and update 4475 * inode item when doing the truncate. 4476 */ 4477 while (1) { 4478 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4479 BTRFS_RESERVE_FLUSH_LIMIT); 4480 4481 /* 4482 * Try and steal from the global reserve since we will 4483 * likely not use this space anyway, we want to try as 4484 * hard as possible to get this to work. 4485 */ 4486 if (ret) 4487 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4488 4489 if (ret) { 4490 btrfs_warn(root->fs_info, 4491 "Could not get space for a delete, will truncate on mount %d", 4492 ret); 4493 btrfs_orphan_del(NULL, inode); 4494 btrfs_free_block_rsv(root, rsv); 4495 goto no_delete; 4496 } 4497 4498 trans = btrfs_join_transaction(root); 4499 if (IS_ERR(trans)) { 4500 btrfs_orphan_del(NULL, inode); 4501 btrfs_free_block_rsv(root, rsv); 4502 goto no_delete; 4503 } 4504 4505 trans->block_rsv = rsv; 4506 4507 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4508 if (ret != -ENOSPC) 4509 break; 4510 4511 trans->block_rsv = &root->fs_info->trans_block_rsv; 4512 btrfs_end_transaction(trans, root); 4513 trans = NULL; 4514 btrfs_btree_balance_dirty(root); 4515 } 4516 4517 btrfs_free_block_rsv(root, rsv); 4518 4519 /* 4520 * Errors here aren't a big deal, it just means we leave orphan items 4521 * in the tree. They will be cleaned up on the next mount. 4522 */ 4523 if (ret == 0) { 4524 trans->block_rsv = root->orphan_block_rsv; 4525 btrfs_orphan_del(trans, inode); 4526 } else { 4527 btrfs_orphan_del(NULL, inode); 4528 } 4529 4530 trans->block_rsv = &root->fs_info->trans_block_rsv; 4531 if (!(root == root->fs_info->tree_root || 4532 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4533 btrfs_return_ino(root, btrfs_ino(inode)); 4534 4535 btrfs_end_transaction(trans, root); 4536 btrfs_btree_balance_dirty(root); 4537 no_delete: 4538 btrfs_remove_delayed_node(inode); 4539 clear_inode(inode); 4540 return; 4541 } 4542 4543 /* 4544 * this returns the key found in the dir entry in the location pointer. 4545 * If no dir entries were found, location->objectid is 0. 4546 */ 4547 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4548 struct btrfs_key *location) 4549 { 4550 const char *name = dentry->d_name.name; 4551 int namelen = dentry->d_name.len; 4552 struct btrfs_dir_item *di; 4553 struct btrfs_path *path; 4554 struct btrfs_root *root = BTRFS_I(dir)->root; 4555 int ret = 0; 4556 4557 path = btrfs_alloc_path(); 4558 if (!path) 4559 return -ENOMEM; 4560 4561 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4562 namelen, 0); 4563 if (IS_ERR(di)) 4564 ret = PTR_ERR(di); 4565 4566 if (IS_ERR_OR_NULL(di)) 4567 goto out_err; 4568 4569 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4570 out: 4571 btrfs_free_path(path); 4572 return ret; 4573 out_err: 4574 location->objectid = 0; 4575 goto out; 4576 } 4577 4578 /* 4579 * when we hit a tree root in a directory, the btrfs part of the inode 4580 * needs to be changed to reflect the root directory of the tree root. This 4581 * is kind of like crossing a mount point. 4582 */ 4583 static int fixup_tree_root_location(struct btrfs_root *root, 4584 struct inode *dir, 4585 struct dentry *dentry, 4586 struct btrfs_key *location, 4587 struct btrfs_root **sub_root) 4588 { 4589 struct btrfs_path *path; 4590 struct btrfs_root *new_root; 4591 struct btrfs_root_ref *ref; 4592 struct extent_buffer *leaf; 4593 int ret; 4594 int err = 0; 4595 4596 path = btrfs_alloc_path(); 4597 if (!path) { 4598 err = -ENOMEM; 4599 goto out; 4600 } 4601 4602 err = -ENOENT; 4603 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 4604 BTRFS_I(dir)->root->root_key.objectid, 4605 location->objectid); 4606 if (ret) { 4607 if (ret < 0) 4608 err = ret; 4609 goto out; 4610 } 4611 4612 leaf = path->nodes[0]; 4613 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4614 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4615 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4616 goto out; 4617 4618 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4619 (unsigned long)(ref + 1), 4620 dentry->d_name.len); 4621 if (ret) 4622 goto out; 4623 4624 btrfs_release_path(path); 4625 4626 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4627 if (IS_ERR(new_root)) { 4628 err = PTR_ERR(new_root); 4629 goto out; 4630 } 4631 4632 *sub_root = new_root; 4633 location->objectid = btrfs_root_dirid(&new_root->root_item); 4634 location->type = BTRFS_INODE_ITEM_KEY; 4635 location->offset = 0; 4636 err = 0; 4637 out: 4638 btrfs_free_path(path); 4639 return err; 4640 } 4641 4642 static void inode_tree_add(struct inode *inode) 4643 { 4644 struct btrfs_root *root = BTRFS_I(inode)->root; 4645 struct btrfs_inode *entry; 4646 struct rb_node **p; 4647 struct rb_node *parent; 4648 u64 ino = btrfs_ino(inode); 4649 4650 if (inode_unhashed(inode)) 4651 return; 4652 again: 4653 parent = NULL; 4654 spin_lock(&root->inode_lock); 4655 p = &root->inode_tree.rb_node; 4656 while (*p) { 4657 parent = *p; 4658 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4659 4660 if (ino < btrfs_ino(&entry->vfs_inode)) 4661 p = &parent->rb_left; 4662 else if (ino > btrfs_ino(&entry->vfs_inode)) 4663 p = &parent->rb_right; 4664 else { 4665 WARN_ON(!(entry->vfs_inode.i_state & 4666 (I_WILL_FREE | I_FREEING))); 4667 rb_erase(parent, &root->inode_tree); 4668 RB_CLEAR_NODE(parent); 4669 spin_unlock(&root->inode_lock); 4670 goto again; 4671 } 4672 } 4673 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4674 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4675 spin_unlock(&root->inode_lock); 4676 } 4677 4678 static void inode_tree_del(struct inode *inode) 4679 { 4680 struct btrfs_root *root = BTRFS_I(inode)->root; 4681 int empty = 0; 4682 4683 spin_lock(&root->inode_lock); 4684 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4685 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4686 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4687 empty = RB_EMPTY_ROOT(&root->inode_tree); 4688 } 4689 spin_unlock(&root->inode_lock); 4690 4691 /* 4692 * Free space cache has inodes in the tree root, but the tree root has a 4693 * root_refs of 0, so this could end up dropping the tree root as a 4694 * snapshot, so we need the extra !root->fs_info->tree_root check to 4695 * make sure we don't drop it. 4696 */ 4697 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4698 root != root->fs_info->tree_root) { 4699 synchronize_srcu(&root->fs_info->subvol_srcu); 4700 spin_lock(&root->inode_lock); 4701 empty = RB_EMPTY_ROOT(&root->inode_tree); 4702 spin_unlock(&root->inode_lock); 4703 if (empty) 4704 btrfs_add_dead_root(root); 4705 } 4706 } 4707 4708 void btrfs_invalidate_inodes(struct btrfs_root *root) 4709 { 4710 struct rb_node *node; 4711 struct rb_node *prev; 4712 struct btrfs_inode *entry; 4713 struct inode *inode; 4714 u64 objectid = 0; 4715 4716 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4717 4718 spin_lock(&root->inode_lock); 4719 again: 4720 node = root->inode_tree.rb_node; 4721 prev = NULL; 4722 while (node) { 4723 prev = node; 4724 entry = rb_entry(node, struct btrfs_inode, rb_node); 4725 4726 if (objectid < btrfs_ino(&entry->vfs_inode)) 4727 node = node->rb_left; 4728 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4729 node = node->rb_right; 4730 else 4731 break; 4732 } 4733 if (!node) { 4734 while (prev) { 4735 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4736 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4737 node = prev; 4738 break; 4739 } 4740 prev = rb_next(prev); 4741 } 4742 } 4743 while (node) { 4744 entry = rb_entry(node, struct btrfs_inode, rb_node); 4745 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4746 inode = igrab(&entry->vfs_inode); 4747 if (inode) { 4748 spin_unlock(&root->inode_lock); 4749 if (atomic_read(&inode->i_count) > 1) 4750 d_prune_aliases(inode); 4751 /* 4752 * btrfs_drop_inode will have it removed from 4753 * the inode cache when its usage count 4754 * hits zero. 4755 */ 4756 iput(inode); 4757 cond_resched(); 4758 spin_lock(&root->inode_lock); 4759 goto again; 4760 } 4761 4762 if (cond_resched_lock(&root->inode_lock)) 4763 goto again; 4764 4765 node = rb_next(node); 4766 } 4767 spin_unlock(&root->inode_lock); 4768 } 4769 4770 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4771 { 4772 struct btrfs_iget_args *args = p; 4773 inode->i_ino = args->ino; 4774 BTRFS_I(inode)->root = args->root; 4775 return 0; 4776 } 4777 4778 static int btrfs_find_actor(struct inode *inode, void *opaque) 4779 { 4780 struct btrfs_iget_args *args = opaque; 4781 return args->ino == btrfs_ino(inode) && 4782 args->root == BTRFS_I(inode)->root; 4783 } 4784 4785 static struct inode *btrfs_iget_locked(struct super_block *s, 4786 u64 objectid, 4787 struct btrfs_root *root) 4788 { 4789 struct inode *inode; 4790 struct btrfs_iget_args args; 4791 args.ino = objectid; 4792 args.root = root; 4793 4794 inode = iget5_locked(s, objectid, btrfs_find_actor, 4795 btrfs_init_locked_inode, 4796 (void *)&args); 4797 return inode; 4798 } 4799 4800 /* Get an inode object given its location and corresponding root. 4801 * Returns in *is_new if the inode was read from disk 4802 */ 4803 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4804 struct btrfs_root *root, int *new) 4805 { 4806 struct inode *inode; 4807 4808 inode = btrfs_iget_locked(s, location->objectid, root); 4809 if (!inode) 4810 return ERR_PTR(-ENOMEM); 4811 4812 if (inode->i_state & I_NEW) { 4813 BTRFS_I(inode)->root = root; 4814 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4815 btrfs_read_locked_inode(inode); 4816 if (!is_bad_inode(inode)) { 4817 inode_tree_add(inode); 4818 unlock_new_inode(inode); 4819 if (new) 4820 *new = 1; 4821 } else { 4822 unlock_new_inode(inode); 4823 iput(inode); 4824 inode = ERR_PTR(-ESTALE); 4825 } 4826 } 4827 4828 return inode; 4829 } 4830 4831 static struct inode *new_simple_dir(struct super_block *s, 4832 struct btrfs_key *key, 4833 struct btrfs_root *root) 4834 { 4835 struct inode *inode = new_inode(s); 4836 4837 if (!inode) 4838 return ERR_PTR(-ENOMEM); 4839 4840 BTRFS_I(inode)->root = root; 4841 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4842 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 4843 4844 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4845 inode->i_op = &btrfs_dir_ro_inode_operations; 4846 inode->i_fop = &simple_dir_operations; 4847 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4848 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4849 4850 return inode; 4851 } 4852 4853 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4854 { 4855 struct inode *inode; 4856 struct btrfs_root *root = BTRFS_I(dir)->root; 4857 struct btrfs_root *sub_root = root; 4858 struct btrfs_key location; 4859 int index; 4860 int ret = 0; 4861 4862 if (dentry->d_name.len > BTRFS_NAME_LEN) 4863 return ERR_PTR(-ENAMETOOLONG); 4864 4865 ret = btrfs_inode_by_name(dir, dentry, &location); 4866 if (ret < 0) 4867 return ERR_PTR(ret); 4868 4869 if (location.objectid == 0) 4870 return NULL; 4871 4872 if (location.type == BTRFS_INODE_ITEM_KEY) { 4873 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4874 return inode; 4875 } 4876 4877 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4878 4879 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4880 ret = fixup_tree_root_location(root, dir, dentry, 4881 &location, &sub_root); 4882 if (ret < 0) { 4883 if (ret != -ENOENT) 4884 inode = ERR_PTR(ret); 4885 else 4886 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4887 } else { 4888 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4889 } 4890 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4891 4892 if (!IS_ERR(inode) && root != sub_root) { 4893 down_read(&root->fs_info->cleanup_work_sem); 4894 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4895 ret = btrfs_orphan_cleanup(sub_root); 4896 up_read(&root->fs_info->cleanup_work_sem); 4897 if (ret) { 4898 iput(inode); 4899 inode = ERR_PTR(ret); 4900 } 4901 } 4902 4903 return inode; 4904 } 4905 4906 static int btrfs_dentry_delete(const struct dentry *dentry) 4907 { 4908 struct btrfs_root *root; 4909 struct inode *inode = dentry->d_inode; 4910 4911 if (!inode && !IS_ROOT(dentry)) 4912 inode = dentry->d_parent->d_inode; 4913 4914 if (inode) { 4915 root = BTRFS_I(inode)->root; 4916 if (btrfs_root_refs(&root->root_item) == 0) 4917 return 1; 4918 4919 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 4920 return 1; 4921 } 4922 return 0; 4923 } 4924 4925 static void btrfs_dentry_release(struct dentry *dentry) 4926 { 4927 if (dentry->d_fsdata) 4928 kfree(dentry->d_fsdata); 4929 } 4930 4931 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4932 unsigned int flags) 4933 { 4934 struct dentry *ret; 4935 4936 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4937 return ret; 4938 } 4939 4940 unsigned char btrfs_filetype_table[] = { 4941 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4942 }; 4943 4944 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 4945 { 4946 struct inode *inode = file_inode(file); 4947 struct btrfs_root *root = BTRFS_I(inode)->root; 4948 struct btrfs_item *item; 4949 struct btrfs_dir_item *di; 4950 struct btrfs_key key; 4951 struct btrfs_key found_key; 4952 struct btrfs_path *path; 4953 struct list_head ins_list; 4954 struct list_head del_list; 4955 int ret; 4956 struct extent_buffer *leaf; 4957 int slot; 4958 unsigned char d_type; 4959 int over = 0; 4960 u32 di_cur; 4961 u32 di_total; 4962 u32 di_len; 4963 int key_type = BTRFS_DIR_INDEX_KEY; 4964 char tmp_name[32]; 4965 char *name_ptr; 4966 int name_len; 4967 int is_curr = 0; /* ctx->pos points to the current index? */ 4968 4969 /* FIXME, use a real flag for deciding about the key type */ 4970 if (root->fs_info->tree_root == root) 4971 key_type = BTRFS_DIR_ITEM_KEY; 4972 4973 if (!dir_emit_dots(file, ctx)) 4974 return 0; 4975 4976 path = btrfs_alloc_path(); 4977 if (!path) 4978 return -ENOMEM; 4979 4980 path->reada = 1; 4981 4982 if (key_type == BTRFS_DIR_INDEX_KEY) { 4983 INIT_LIST_HEAD(&ins_list); 4984 INIT_LIST_HEAD(&del_list); 4985 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4986 } 4987 4988 btrfs_set_key_type(&key, key_type); 4989 key.offset = ctx->pos; 4990 key.objectid = btrfs_ino(inode); 4991 4992 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4993 if (ret < 0) 4994 goto err; 4995 4996 while (1) { 4997 leaf = path->nodes[0]; 4998 slot = path->slots[0]; 4999 if (slot >= btrfs_header_nritems(leaf)) { 5000 ret = btrfs_next_leaf(root, path); 5001 if (ret < 0) 5002 goto err; 5003 else if (ret > 0) 5004 break; 5005 continue; 5006 } 5007 5008 item = btrfs_item_nr(leaf, slot); 5009 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5010 5011 if (found_key.objectid != key.objectid) 5012 break; 5013 if (btrfs_key_type(&found_key) != key_type) 5014 break; 5015 if (found_key.offset < ctx->pos) 5016 goto next; 5017 if (key_type == BTRFS_DIR_INDEX_KEY && 5018 btrfs_should_delete_dir_index(&del_list, 5019 found_key.offset)) 5020 goto next; 5021 5022 ctx->pos = found_key.offset; 5023 is_curr = 1; 5024 5025 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5026 di_cur = 0; 5027 di_total = btrfs_item_size(leaf, item); 5028 5029 while (di_cur < di_total) { 5030 struct btrfs_key location; 5031 5032 if (verify_dir_item(root, leaf, di)) 5033 break; 5034 5035 name_len = btrfs_dir_name_len(leaf, di); 5036 if (name_len <= sizeof(tmp_name)) { 5037 name_ptr = tmp_name; 5038 } else { 5039 name_ptr = kmalloc(name_len, GFP_NOFS); 5040 if (!name_ptr) { 5041 ret = -ENOMEM; 5042 goto err; 5043 } 5044 } 5045 read_extent_buffer(leaf, name_ptr, 5046 (unsigned long)(di + 1), name_len); 5047 5048 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5049 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5050 5051 5052 /* is this a reference to our own snapshot? If so 5053 * skip it. 5054 * 5055 * In contrast to old kernels, we insert the snapshot's 5056 * dir item and dir index after it has been created, so 5057 * we won't find a reference to our own snapshot. We 5058 * still keep the following code for backward 5059 * compatibility. 5060 */ 5061 if (location.type == BTRFS_ROOT_ITEM_KEY && 5062 location.objectid == root->root_key.objectid) { 5063 over = 0; 5064 goto skip; 5065 } 5066 over = !dir_emit(ctx, name_ptr, name_len, 5067 location.objectid, d_type); 5068 5069 skip: 5070 if (name_ptr != tmp_name) 5071 kfree(name_ptr); 5072 5073 if (over) 5074 goto nopos; 5075 di_len = btrfs_dir_name_len(leaf, di) + 5076 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5077 di_cur += di_len; 5078 di = (struct btrfs_dir_item *)((char *)di + di_len); 5079 } 5080 next: 5081 path->slots[0]++; 5082 } 5083 5084 if (key_type == BTRFS_DIR_INDEX_KEY) { 5085 if (is_curr) 5086 ctx->pos++; 5087 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5088 if (ret) 5089 goto nopos; 5090 } 5091 5092 /* Reached end of directory/root. Bump pos past the last item. */ 5093 ctx->pos++; 5094 5095 /* 5096 * Stop new entries from being returned after we return the last 5097 * entry. 5098 * 5099 * New directory entries are assigned a strictly increasing 5100 * offset. This means that new entries created during readdir 5101 * are *guaranteed* to be seen in the future by that readdir. 5102 * This has broken buggy programs which operate on names as 5103 * they're returned by readdir. Until we re-use freed offsets 5104 * we have this hack to stop new entries from being returned 5105 * under the assumption that they'll never reach this huge 5106 * offset. 5107 * 5108 * This is being careful not to overflow 32bit loff_t unless the 5109 * last entry requires it because doing so has broken 32bit apps 5110 * in the past. 5111 */ 5112 if (key_type == BTRFS_DIR_INDEX_KEY) { 5113 if (ctx->pos >= INT_MAX) 5114 ctx->pos = LLONG_MAX; 5115 else 5116 ctx->pos = INT_MAX; 5117 } 5118 nopos: 5119 ret = 0; 5120 err: 5121 if (key_type == BTRFS_DIR_INDEX_KEY) 5122 btrfs_put_delayed_items(&ins_list, &del_list); 5123 btrfs_free_path(path); 5124 return ret; 5125 } 5126 5127 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5128 { 5129 struct btrfs_root *root = BTRFS_I(inode)->root; 5130 struct btrfs_trans_handle *trans; 5131 int ret = 0; 5132 bool nolock = false; 5133 5134 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5135 return 0; 5136 5137 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5138 nolock = true; 5139 5140 if (wbc->sync_mode == WB_SYNC_ALL) { 5141 if (nolock) 5142 trans = btrfs_join_transaction_nolock(root); 5143 else 5144 trans = btrfs_join_transaction(root); 5145 if (IS_ERR(trans)) 5146 return PTR_ERR(trans); 5147 ret = btrfs_commit_transaction(trans, root); 5148 } 5149 return ret; 5150 } 5151 5152 /* 5153 * This is somewhat expensive, updating the tree every time the 5154 * inode changes. But, it is most likely to find the inode in cache. 5155 * FIXME, needs more benchmarking...there are no reasons other than performance 5156 * to keep or drop this code. 5157 */ 5158 static int btrfs_dirty_inode(struct inode *inode) 5159 { 5160 struct btrfs_root *root = BTRFS_I(inode)->root; 5161 struct btrfs_trans_handle *trans; 5162 int ret; 5163 5164 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5165 return 0; 5166 5167 trans = btrfs_join_transaction(root); 5168 if (IS_ERR(trans)) 5169 return PTR_ERR(trans); 5170 5171 ret = btrfs_update_inode(trans, root, inode); 5172 if (ret && ret == -ENOSPC) { 5173 /* whoops, lets try again with the full transaction */ 5174 btrfs_end_transaction(trans, root); 5175 trans = btrfs_start_transaction(root, 1); 5176 if (IS_ERR(trans)) 5177 return PTR_ERR(trans); 5178 5179 ret = btrfs_update_inode(trans, root, inode); 5180 } 5181 btrfs_end_transaction(trans, root); 5182 if (BTRFS_I(inode)->delayed_node) 5183 btrfs_balance_delayed_items(root); 5184 5185 return ret; 5186 } 5187 5188 /* 5189 * This is a copy of file_update_time. We need this so we can return error on 5190 * ENOSPC for updating the inode in the case of file write and mmap writes. 5191 */ 5192 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5193 int flags) 5194 { 5195 struct btrfs_root *root = BTRFS_I(inode)->root; 5196 5197 if (btrfs_root_readonly(root)) 5198 return -EROFS; 5199 5200 if (flags & S_VERSION) 5201 inode_inc_iversion(inode); 5202 if (flags & S_CTIME) 5203 inode->i_ctime = *now; 5204 if (flags & S_MTIME) 5205 inode->i_mtime = *now; 5206 if (flags & S_ATIME) 5207 inode->i_atime = *now; 5208 return btrfs_dirty_inode(inode); 5209 } 5210 5211 /* 5212 * find the highest existing sequence number in a directory 5213 * and then set the in-memory index_cnt variable to reflect 5214 * free sequence numbers 5215 */ 5216 static int btrfs_set_inode_index_count(struct inode *inode) 5217 { 5218 struct btrfs_root *root = BTRFS_I(inode)->root; 5219 struct btrfs_key key, found_key; 5220 struct btrfs_path *path; 5221 struct extent_buffer *leaf; 5222 int ret; 5223 5224 key.objectid = btrfs_ino(inode); 5225 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5226 key.offset = (u64)-1; 5227 5228 path = btrfs_alloc_path(); 5229 if (!path) 5230 return -ENOMEM; 5231 5232 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5233 if (ret < 0) 5234 goto out; 5235 /* FIXME: we should be able to handle this */ 5236 if (ret == 0) 5237 goto out; 5238 ret = 0; 5239 5240 /* 5241 * MAGIC NUMBER EXPLANATION: 5242 * since we search a directory based on f_pos we have to start at 2 5243 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5244 * else has to start at 2 5245 */ 5246 if (path->slots[0] == 0) { 5247 BTRFS_I(inode)->index_cnt = 2; 5248 goto out; 5249 } 5250 5251 path->slots[0]--; 5252 5253 leaf = path->nodes[0]; 5254 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5255 5256 if (found_key.objectid != btrfs_ino(inode) || 5257 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5258 BTRFS_I(inode)->index_cnt = 2; 5259 goto out; 5260 } 5261 5262 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5263 out: 5264 btrfs_free_path(path); 5265 return ret; 5266 } 5267 5268 /* 5269 * helper to find a free sequence number in a given directory. This current 5270 * code is very simple, later versions will do smarter things in the btree 5271 */ 5272 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5273 { 5274 int ret = 0; 5275 5276 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5277 ret = btrfs_inode_delayed_dir_index_count(dir); 5278 if (ret) { 5279 ret = btrfs_set_inode_index_count(dir); 5280 if (ret) 5281 return ret; 5282 } 5283 } 5284 5285 *index = BTRFS_I(dir)->index_cnt; 5286 BTRFS_I(dir)->index_cnt++; 5287 5288 return ret; 5289 } 5290 5291 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5292 struct btrfs_root *root, 5293 struct inode *dir, 5294 const char *name, int name_len, 5295 u64 ref_objectid, u64 objectid, 5296 umode_t mode, u64 *index) 5297 { 5298 struct inode *inode; 5299 struct btrfs_inode_item *inode_item; 5300 struct btrfs_key *location; 5301 struct btrfs_path *path; 5302 struct btrfs_inode_ref *ref; 5303 struct btrfs_key key[2]; 5304 u32 sizes[2]; 5305 unsigned long ptr; 5306 int ret; 5307 int owner; 5308 5309 path = btrfs_alloc_path(); 5310 if (!path) 5311 return ERR_PTR(-ENOMEM); 5312 5313 inode = new_inode(root->fs_info->sb); 5314 if (!inode) { 5315 btrfs_free_path(path); 5316 return ERR_PTR(-ENOMEM); 5317 } 5318 5319 /* 5320 * we have to initialize this early, so we can reclaim the inode 5321 * number if we fail afterwards in this function. 5322 */ 5323 inode->i_ino = objectid; 5324 5325 if (dir) { 5326 trace_btrfs_inode_request(dir); 5327 5328 ret = btrfs_set_inode_index(dir, index); 5329 if (ret) { 5330 btrfs_free_path(path); 5331 iput(inode); 5332 return ERR_PTR(ret); 5333 } 5334 } 5335 /* 5336 * index_cnt is ignored for everything but a dir, 5337 * btrfs_get_inode_index_count has an explanation for the magic 5338 * number 5339 */ 5340 BTRFS_I(inode)->index_cnt = 2; 5341 BTRFS_I(inode)->root = root; 5342 BTRFS_I(inode)->generation = trans->transid; 5343 inode->i_generation = BTRFS_I(inode)->generation; 5344 5345 /* 5346 * We could have gotten an inode number from somebody who was fsynced 5347 * and then removed in this same transaction, so let's just set full 5348 * sync since it will be a full sync anyway and this will blow away the 5349 * old info in the log. 5350 */ 5351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5352 5353 if (S_ISDIR(mode)) 5354 owner = 0; 5355 else 5356 owner = 1; 5357 5358 key[0].objectid = objectid; 5359 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5360 key[0].offset = 0; 5361 5362 /* 5363 * Start new inodes with an inode_ref. This is slightly more 5364 * efficient for small numbers of hard links since they will 5365 * be packed into one item. Extended refs will kick in if we 5366 * add more hard links than can fit in the ref item. 5367 */ 5368 key[1].objectid = objectid; 5369 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5370 key[1].offset = ref_objectid; 5371 5372 sizes[0] = sizeof(struct btrfs_inode_item); 5373 sizes[1] = name_len + sizeof(*ref); 5374 5375 path->leave_spinning = 1; 5376 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 5377 if (ret != 0) 5378 goto fail; 5379 5380 inode_init_owner(inode, dir, mode); 5381 inode_set_bytes(inode, 0); 5382 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5383 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5384 struct btrfs_inode_item); 5385 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5386 sizeof(*inode_item)); 5387 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5388 5389 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5390 struct btrfs_inode_ref); 5391 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5392 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5393 ptr = (unsigned long)(ref + 1); 5394 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5395 5396 btrfs_mark_buffer_dirty(path->nodes[0]); 5397 btrfs_free_path(path); 5398 5399 location = &BTRFS_I(inode)->location; 5400 location->objectid = objectid; 5401 location->offset = 0; 5402 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5403 5404 btrfs_inherit_iflags(inode, dir); 5405 5406 if (S_ISREG(mode)) { 5407 if (btrfs_test_opt(root, NODATASUM)) 5408 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5409 if (btrfs_test_opt(root, NODATACOW)) 5410 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5411 BTRFS_INODE_NODATASUM; 5412 } 5413 5414 insert_inode_hash(inode); 5415 inode_tree_add(inode); 5416 5417 trace_btrfs_inode_new(inode); 5418 btrfs_set_inode_last_trans(trans, inode); 5419 5420 btrfs_update_root_times(trans, root); 5421 5422 return inode; 5423 fail: 5424 if (dir) 5425 BTRFS_I(dir)->index_cnt--; 5426 btrfs_free_path(path); 5427 iput(inode); 5428 return ERR_PTR(ret); 5429 } 5430 5431 static inline u8 btrfs_inode_type(struct inode *inode) 5432 { 5433 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5434 } 5435 5436 /* 5437 * utility function to add 'inode' into 'parent_inode' with 5438 * a give name and a given sequence number. 5439 * if 'add_backref' is true, also insert a backref from the 5440 * inode to the parent directory. 5441 */ 5442 int btrfs_add_link(struct btrfs_trans_handle *trans, 5443 struct inode *parent_inode, struct inode *inode, 5444 const char *name, int name_len, int add_backref, u64 index) 5445 { 5446 int ret = 0; 5447 struct btrfs_key key; 5448 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5449 u64 ino = btrfs_ino(inode); 5450 u64 parent_ino = btrfs_ino(parent_inode); 5451 5452 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5453 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5454 } else { 5455 key.objectid = ino; 5456 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5457 key.offset = 0; 5458 } 5459 5460 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5461 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5462 key.objectid, root->root_key.objectid, 5463 parent_ino, index, name, name_len); 5464 } else if (add_backref) { 5465 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5466 parent_ino, index); 5467 } 5468 5469 /* Nothing to clean up yet */ 5470 if (ret) 5471 return ret; 5472 5473 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5474 parent_inode, &key, 5475 btrfs_inode_type(inode), index); 5476 if (ret == -EEXIST || ret == -EOVERFLOW) 5477 goto fail_dir_item; 5478 else if (ret) { 5479 btrfs_abort_transaction(trans, root, ret); 5480 return ret; 5481 } 5482 5483 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5484 name_len * 2); 5485 inode_inc_iversion(parent_inode); 5486 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5487 ret = btrfs_update_inode(trans, root, parent_inode); 5488 if (ret) 5489 btrfs_abort_transaction(trans, root, ret); 5490 return ret; 5491 5492 fail_dir_item: 5493 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5494 u64 local_index; 5495 int err; 5496 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5497 key.objectid, root->root_key.objectid, 5498 parent_ino, &local_index, name, name_len); 5499 5500 } else if (add_backref) { 5501 u64 local_index; 5502 int err; 5503 5504 err = btrfs_del_inode_ref(trans, root, name, name_len, 5505 ino, parent_ino, &local_index); 5506 } 5507 return ret; 5508 } 5509 5510 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5511 struct inode *dir, struct dentry *dentry, 5512 struct inode *inode, int backref, u64 index) 5513 { 5514 int err = btrfs_add_link(trans, dir, inode, 5515 dentry->d_name.name, dentry->d_name.len, 5516 backref, index); 5517 if (err > 0) 5518 err = -EEXIST; 5519 return err; 5520 } 5521 5522 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5523 umode_t mode, dev_t rdev) 5524 { 5525 struct btrfs_trans_handle *trans; 5526 struct btrfs_root *root = BTRFS_I(dir)->root; 5527 struct inode *inode = NULL; 5528 int err; 5529 int drop_inode = 0; 5530 u64 objectid; 5531 u64 index = 0; 5532 5533 if (!new_valid_dev(rdev)) 5534 return -EINVAL; 5535 5536 /* 5537 * 2 for inode item and ref 5538 * 2 for dir items 5539 * 1 for xattr if selinux is on 5540 */ 5541 trans = btrfs_start_transaction(root, 5); 5542 if (IS_ERR(trans)) 5543 return PTR_ERR(trans); 5544 5545 err = btrfs_find_free_ino(root, &objectid); 5546 if (err) 5547 goto out_unlock; 5548 5549 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5550 dentry->d_name.len, btrfs_ino(dir), objectid, 5551 mode, &index); 5552 if (IS_ERR(inode)) { 5553 err = PTR_ERR(inode); 5554 goto out_unlock; 5555 } 5556 5557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5558 if (err) { 5559 drop_inode = 1; 5560 goto out_unlock; 5561 } 5562 5563 /* 5564 * If the active LSM wants to access the inode during 5565 * d_instantiate it needs these. Smack checks to see 5566 * if the filesystem supports xattrs by looking at the 5567 * ops vector. 5568 */ 5569 5570 inode->i_op = &btrfs_special_inode_operations; 5571 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5572 if (err) 5573 drop_inode = 1; 5574 else { 5575 init_special_inode(inode, inode->i_mode, rdev); 5576 btrfs_update_inode(trans, root, inode); 5577 d_instantiate(dentry, inode); 5578 } 5579 out_unlock: 5580 btrfs_end_transaction(trans, root); 5581 btrfs_btree_balance_dirty(root); 5582 if (drop_inode) { 5583 inode_dec_link_count(inode); 5584 iput(inode); 5585 } 5586 return err; 5587 } 5588 5589 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5590 umode_t mode, bool excl) 5591 { 5592 struct btrfs_trans_handle *trans; 5593 struct btrfs_root *root = BTRFS_I(dir)->root; 5594 struct inode *inode = NULL; 5595 int drop_inode_on_err = 0; 5596 int err; 5597 u64 objectid; 5598 u64 index = 0; 5599 5600 /* 5601 * 2 for inode item and ref 5602 * 2 for dir items 5603 * 1 for xattr if selinux is on 5604 */ 5605 trans = btrfs_start_transaction(root, 5); 5606 if (IS_ERR(trans)) 5607 return PTR_ERR(trans); 5608 5609 err = btrfs_find_free_ino(root, &objectid); 5610 if (err) 5611 goto out_unlock; 5612 5613 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5614 dentry->d_name.len, btrfs_ino(dir), objectid, 5615 mode, &index); 5616 if (IS_ERR(inode)) { 5617 err = PTR_ERR(inode); 5618 goto out_unlock; 5619 } 5620 drop_inode_on_err = 1; 5621 5622 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5623 if (err) 5624 goto out_unlock; 5625 5626 err = btrfs_update_inode(trans, root, inode); 5627 if (err) 5628 goto out_unlock; 5629 5630 /* 5631 * If the active LSM wants to access the inode during 5632 * d_instantiate it needs these. Smack checks to see 5633 * if the filesystem supports xattrs by looking at the 5634 * ops vector. 5635 */ 5636 inode->i_fop = &btrfs_file_operations; 5637 inode->i_op = &btrfs_file_inode_operations; 5638 5639 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5640 if (err) 5641 goto out_unlock; 5642 5643 inode->i_mapping->a_ops = &btrfs_aops; 5644 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5645 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5646 d_instantiate(dentry, inode); 5647 5648 out_unlock: 5649 btrfs_end_transaction(trans, root); 5650 if (err && drop_inode_on_err) { 5651 inode_dec_link_count(inode); 5652 iput(inode); 5653 } 5654 btrfs_btree_balance_dirty(root); 5655 return err; 5656 } 5657 5658 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5659 struct dentry *dentry) 5660 { 5661 struct btrfs_trans_handle *trans; 5662 struct btrfs_root *root = BTRFS_I(dir)->root; 5663 struct inode *inode = old_dentry->d_inode; 5664 u64 index; 5665 int err; 5666 int drop_inode = 0; 5667 5668 /* do not allow sys_link's with other subvols of the same device */ 5669 if (root->objectid != BTRFS_I(inode)->root->objectid) 5670 return -EXDEV; 5671 5672 if (inode->i_nlink >= BTRFS_LINK_MAX) 5673 return -EMLINK; 5674 5675 err = btrfs_set_inode_index(dir, &index); 5676 if (err) 5677 goto fail; 5678 5679 /* 5680 * 2 items for inode and inode ref 5681 * 2 items for dir items 5682 * 1 item for parent inode 5683 */ 5684 trans = btrfs_start_transaction(root, 5); 5685 if (IS_ERR(trans)) { 5686 err = PTR_ERR(trans); 5687 goto fail; 5688 } 5689 5690 btrfs_inc_nlink(inode); 5691 inode_inc_iversion(inode); 5692 inode->i_ctime = CURRENT_TIME; 5693 ihold(inode); 5694 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5695 5696 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5697 5698 if (err) { 5699 drop_inode = 1; 5700 } else { 5701 struct dentry *parent = dentry->d_parent; 5702 err = btrfs_update_inode(trans, root, inode); 5703 if (err) 5704 goto fail; 5705 d_instantiate(dentry, inode); 5706 btrfs_log_new_name(trans, inode, NULL, parent); 5707 } 5708 5709 btrfs_end_transaction(trans, root); 5710 fail: 5711 if (drop_inode) { 5712 inode_dec_link_count(inode); 5713 iput(inode); 5714 } 5715 btrfs_btree_balance_dirty(root); 5716 return err; 5717 } 5718 5719 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5720 { 5721 struct inode *inode = NULL; 5722 struct btrfs_trans_handle *trans; 5723 struct btrfs_root *root = BTRFS_I(dir)->root; 5724 int err = 0; 5725 int drop_on_err = 0; 5726 u64 objectid = 0; 5727 u64 index = 0; 5728 5729 /* 5730 * 2 items for inode and ref 5731 * 2 items for dir items 5732 * 1 for xattr if selinux is on 5733 */ 5734 trans = btrfs_start_transaction(root, 5); 5735 if (IS_ERR(trans)) 5736 return PTR_ERR(trans); 5737 5738 err = btrfs_find_free_ino(root, &objectid); 5739 if (err) 5740 goto out_fail; 5741 5742 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5743 dentry->d_name.len, btrfs_ino(dir), objectid, 5744 S_IFDIR | mode, &index); 5745 if (IS_ERR(inode)) { 5746 err = PTR_ERR(inode); 5747 goto out_fail; 5748 } 5749 5750 drop_on_err = 1; 5751 5752 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5753 if (err) 5754 goto out_fail; 5755 5756 inode->i_op = &btrfs_dir_inode_operations; 5757 inode->i_fop = &btrfs_dir_file_operations; 5758 5759 btrfs_i_size_write(inode, 0); 5760 err = btrfs_update_inode(trans, root, inode); 5761 if (err) 5762 goto out_fail; 5763 5764 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5765 dentry->d_name.len, 0, index); 5766 if (err) 5767 goto out_fail; 5768 5769 d_instantiate(dentry, inode); 5770 drop_on_err = 0; 5771 5772 out_fail: 5773 btrfs_end_transaction(trans, root); 5774 if (drop_on_err) 5775 iput(inode); 5776 btrfs_btree_balance_dirty(root); 5777 return err; 5778 } 5779 5780 /* helper for btfs_get_extent. Given an existing extent in the tree, 5781 * and an extent that you want to insert, deal with overlap and insert 5782 * the new extent into the tree. 5783 */ 5784 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5785 struct extent_map *existing, 5786 struct extent_map *em, 5787 u64 map_start, u64 map_len) 5788 { 5789 u64 start_diff; 5790 5791 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5792 start_diff = map_start - em->start; 5793 em->start = map_start; 5794 em->len = map_len; 5795 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5796 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5797 em->block_start += start_diff; 5798 em->block_len -= start_diff; 5799 } 5800 return add_extent_mapping(em_tree, em, 0); 5801 } 5802 5803 static noinline int uncompress_inline(struct btrfs_path *path, 5804 struct inode *inode, struct page *page, 5805 size_t pg_offset, u64 extent_offset, 5806 struct btrfs_file_extent_item *item) 5807 { 5808 int ret; 5809 struct extent_buffer *leaf = path->nodes[0]; 5810 char *tmp; 5811 size_t max_size; 5812 unsigned long inline_size; 5813 unsigned long ptr; 5814 int compress_type; 5815 5816 WARN_ON(pg_offset != 0); 5817 compress_type = btrfs_file_extent_compression(leaf, item); 5818 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5819 inline_size = btrfs_file_extent_inline_item_len(leaf, 5820 btrfs_item_nr(leaf, path->slots[0])); 5821 tmp = kmalloc(inline_size, GFP_NOFS); 5822 if (!tmp) 5823 return -ENOMEM; 5824 ptr = btrfs_file_extent_inline_start(item); 5825 5826 read_extent_buffer(leaf, tmp, ptr, inline_size); 5827 5828 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 5829 ret = btrfs_decompress(compress_type, tmp, page, 5830 extent_offset, inline_size, max_size); 5831 if (ret) { 5832 char *kaddr = kmap_atomic(page); 5833 unsigned long copy_size = min_t(u64, 5834 PAGE_CACHE_SIZE - pg_offset, 5835 max_size - extent_offset); 5836 memset(kaddr + pg_offset, 0, copy_size); 5837 kunmap_atomic(kaddr); 5838 } 5839 kfree(tmp); 5840 return 0; 5841 } 5842 5843 /* 5844 * a bit scary, this does extent mapping from logical file offset to the disk. 5845 * the ugly parts come from merging extents from the disk with the in-ram 5846 * representation. This gets more complex because of the data=ordered code, 5847 * where the in-ram extents might be locked pending data=ordered completion. 5848 * 5849 * This also copies inline extents directly into the page. 5850 */ 5851 5852 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 5853 size_t pg_offset, u64 start, u64 len, 5854 int create) 5855 { 5856 int ret; 5857 int err = 0; 5858 u64 bytenr; 5859 u64 extent_start = 0; 5860 u64 extent_end = 0; 5861 u64 objectid = btrfs_ino(inode); 5862 u32 found_type; 5863 struct btrfs_path *path = NULL; 5864 struct btrfs_root *root = BTRFS_I(inode)->root; 5865 struct btrfs_file_extent_item *item; 5866 struct extent_buffer *leaf; 5867 struct btrfs_key found_key; 5868 struct extent_map *em = NULL; 5869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5870 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5871 struct btrfs_trans_handle *trans = NULL; 5872 int compress_type; 5873 5874 again: 5875 read_lock(&em_tree->lock); 5876 em = lookup_extent_mapping(em_tree, start, len); 5877 if (em) 5878 em->bdev = root->fs_info->fs_devices->latest_bdev; 5879 read_unlock(&em_tree->lock); 5880 5881 if (em) { 5882 if (em->start > start || em->start + em->len <= start) 5883 free_extent_map(em); 5884 else if (em->block_start == EXTENT_MAP_INLINE && page) 5885 free_extent_map(em); 5886 else 5887 goto out; 5888 } 5889 em = alloc_extent_map(); 5890 if (!em) { 5891 err = -ENOMEM; 5892 goto out; 5893 } 5894 em->bdev = root->fs_info->fs_devices->latest_bdev; 5895 em->start = EXTENT_MAP_HOLE; 5896 em->orig_start = EXTENT_MAP_HOLE; 5897 em->len = (u64)-1; 5898 em->block_len = (u64)-1; 5899 5900 if (!path) { 5901 path = btrfs_alloc_path(); 5902 if (!path) { 5903 err = -ENOMEM; 5904 goto out; 5905 } 5906 /* 5907 * Chances are we'll be called again, so go ahead and do 5908 * readahead 5909 */ 5910 path->reada = 1; 5911 } 5912 5913 ret = btrfs_lookup_file_extent(trans, root, path, 5914 objectid, start, trans != NULL); 5915 if (ret < 0) { 5916 err = ret; 5917 goto out; 5918 } 5919 5920 if (ret != 0) { 5921 if (path->slots[0] == 0) 5922 goto not_found; 5923 path->slots[0]--; 5924 } 5925 5926 leaf = path->nodes[0]; 5927 item = btrfs_item_ptr(leaf, path->slots[0], 5928 struct btrfs_file_extent_item); 5929 /* are we inside the extent that was found? */ 5930 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5931 found_type = btrfs_key_type(&found_key); 5932 if (found_key.objectid != objectid || 5933 found_type != BTRFS_EXTENT_DATA_KEY) { 5934 goto not_found; 5935 } 5936 5937 found_type = btrfs_file_extent_type(leaf, item); 5938 extent_start = found_key.offset; 5939 compress_type = btrfs_file_extent_compression(leaf, item); 5940 if (found_type == BTRFS_FILE_EXTENT_REG || 5941 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5942 extent_end = extent_start + 5943 btrfs_file_extent_num_bytes(leaf, item); 5944 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5945 size_t size; 5946 size = btrfs_file_extent_inline_len(leaf, item); 5947 extent_end = ALIGN(extent_start + size, root->sectorsize); 5948 } 5949 5950 if (start >= extent_end) { 5951 path->slots[0]++; 5952 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5953 ret = btrfs_next_leaf(root, path); 5954 if (ret < 0) { 5955 err = ret; 5956 goto out; 5957 } 5958 if (ret > 0) 5959 goto not_found; 5960 leaf = path->nodes[0]; 5961 } 5962 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5963 if (found_key.objectid != objectid || 5964 found_key.type != BTRFS_EXTENT_DATA_KEY) 5965 goto not_found; 5966 if (start + len <= found_key.offset) 5967 goto not_found; 5968 em->start = start; 5969 em->orig_start = start; 5970 em->len = found_key.offset - start; 5971 goto not_found_em; 5972 } 5973 5974 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 5975 if (found_type == BTRFS_FILE_EXTENT_REG || 5976 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5977 em->start = extent_start; 5978 em->len = extent_end - extent_start; 5979 em->orig_start = extent_start - 5980 btrfs_file_extent_offset(leaf, item); 5981 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 5982 item); 5983 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5984 if (bytenr == 0) { 5985 em->block_start = EXTENT_MAP_HOLE; 5986 goto insert; 5987 } 5988 if (compress_type != BTRFS_COMPRESS_NONE) { 5989 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5990 em->compress_type = compress_type; 5991 em->block_start = bytenr; 5992 em->block_len = em->orig_block_len; 5993 } else { 5994 bytenr += btrfs_file_extent_offset(leaf, item); 5995 em->block_start = bytenr; 5996 em->block_len = em->len; 5997 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5998 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5999 } 6000 goto insert; 6001 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6002 unsigned long ptr; 6003 char *map; 6004 size_t size; 6005 size_t extent_offset; 6006 size_t copy_size; 6007 6008 em->block_start = EXTENT_MAP_INLINE; 6009 if (!page || create) { 6010 em->start = extent_start; 6011 em->len = extent_end - extent_start; 6012 goto out; 6013 } 6014 6015 size = btrfs_file_extent_inline_len(leaf, item); 6016 extent_offset = page_offset(page) + pg_offset - extent_start; 6017 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6018 size - extent_offset); 6019 em->start = extent_start + extent_offset; 6020 em->len = ALIGN(copy_size, root->sectorsize); 6021 em->orig_block_len = em->len; 6022 em->orig_start = em->start; 6023 if (compress_type) { 6024 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6025 em->compress_type = compress_type; 6026 } 6027 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6028 if (create == 0 && !PageUptodate(page)) { 6029 if (btrfs_file_extent_compression(leaf, item) != 6030 BTRFS_COMPRESS_NONE) { 6031 ret = uncompress_inline(path, inode, page, 6032 pg_offset, 6033 extent_offset, item); 6034 BUG_ON(ret); /* -ENOMEM */ 6035 } else { 6036 map = kmap(page); 6037 read_extent_buffer(leaf, map + pg_offset, ptr, 6038 copy_size); 6039 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6040 memset(map + pg_offset + copy_size, 0, 6041 PAGE_CACHE_SIZE - pg_offset - 6042 copy_size); 6043 } 6044 kunmap(page); 6045 } 6046 flush_dcache_page(page); 6047 } else if (create && PageUptodate(page)) { 6048 BUG(); 6049 if (!trans) { 6050 kunmap(page); 6051 free_extent_map(em); 6052 em = NULL; 6053 6054 btrfs_release_path(path); 6055 trans = btrfs_join_transaction(root); 6056 6057 if (IS_ERR(trans)) 6058 return ERR_CAST(trans); 6059 goto again; 6060 } 6061 map = kmap(page); 6062 write_extent_buffer(leaf, map + pg_offset, ptr, 6063 copy_size); 6064 kunmap(page); 6065 btrfs_mark_buffer_dirty(leaf); 6066 } 6067 set_extent_uptodate(io_tree, em->start, 6068 extent_map_end(em) - 1, NULL, GFP_NOFS); 6069 goto insert; 6070 } else { 6071 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 6072 } 6073 not_found: 6074 em->start = start; 6075 em->orig_start = start; 6076 em->len = len; 6077 not_found_em: 6078 em->block_start = EXTENT_MAP_HOLE; 6079 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6080 insert: 6081 btrfs_release_path(path); 6082 if (em->start > start || extent_map_end(em) <= start) { 6083 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6084 (unsigned long long)em->start, 6085 (unsigned long long)em->len, 6086 (unsigned long long)start, 6087 (unsigned long long)len); 6088 err = -EIO; 6089 goto out; 6090 } 6091 6092 err = 0; 6093 write_lock(&em_tree->lock); 6094 ret = add_extent_mapping(em_tree, em, 0); 6095 /* it is possible that someone inserted the extent into the tree 6096 * while we had the lock dropped. It is also possible that 6097 * an overlapping map exists in the tree 6098 */ 6099 if (ret == -EEXIST) { 6100 struct extent_map *existing; 6101 6102 ret = 0; 6103 6104 existing = lookup_extent_mapping(em_tree, start, len); 6105 if (existing && (existing->start > start || 6106 existing->start + existing->len <= start)) { 6107 free_extent_map(existing); 6108 existing = NULL; 6109 } 6110 if (!existing) { 6111 existing = lookup_extent_mapping(em_tree, em->start, 6112 em->len); 6113 if (existing) { 6114 err = merge_extent_mapping(em_tree, existing, 6115 em, start, 6116 root->sectorsize); 6117 free_extent_map(existing); 6118 if (err) { 6119 free_extent_map(em); 6120 em = NULL; 6121 } 6122 } else { 6123 err = -EIO; 6124 free_extent_map(em); 6125 em = NULL; 6126 } 6127 } else { 6128 free_extent_map(em); 6129 em = existing; 6130 err = 0; 6131 } 6132 } 6133 write_unlock(&em_tree->lock); 6134 out: 6135 6136 if (em) 6137 trace_btrfs_get_extent(root, em); 6138 6139 if (path) 6140 btrfs_free_path(path); 6141 if (trans) { 6142 ret = btrfs_end_transaction(trans, root); 6143 if (!err) 6144 err = ret; 6145 } 6146 if (err) { 6147 free_extent_map(em); 6148 return ERR_PTR(err); 6149 } 6150 BUG_ON(!em); /* Error is always set */ 6151 return em; 6152 } 6153 6154 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6155 size_t pg_offset, u64 start, u64 len, 6156 int create) 6157 { 6158 struct extent_map *em; 6159 struct extent_map *hole_em = NULL; 6160 u64 range_start = start; 6161 u64 end; 6162 u64 found; 6163 u64 found_end; 6164 int err = 0; 6165 6166 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6167 if (IS_ERR(em)) 6168 return em; 6169 if (em) { 6170 /* 6171 * if our em maps to 6172 * - a hole or 6173 * - a pre-alloc extent, 6174 * there might actually be delalloc bytes behind it. 6175 */ 6176 if (em->block_start != EXTENT_MAP_HOLE && 6177 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6178 return em; 6179 else 6180 hole_em = em; 6181 } 6182 6183 /* check to see if we've wrapped (len == -1 or similar) */ 6184 end = start + len; 6185 if (end < start) 6186 end = (u64)-1; 6187 else 6188 end -= 1; 6189 6190 em = NULL; 6191 6192 /* ok, we didn't find anything, lets look for delalloc */ 6193 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6194 end, len, EXTENT_DELALLOC, 1); 6195 found_end = range_start + found; 6196 if (found_end < range_start) 6197 found_end = (u64)-1; 6198 6199 /* 6200 * we didn't find anything useful, return 6201 * the original results from get_extent() 6202 */ 6203 if (range_start > end || found_end <= start) { 6204 em = hole_em; 6205 hole_em = NULL; 6206 goto out; 6207 } 6208 6209 /* adjust the range_start to make sure it doesn't 6210 * go backwards from the start they passed in 6211 */ 6212 range_start = max(start,range_start); 6213 found = found_end - range_start; 6214 6215 if (found > 0) { 6216 u64 hole_start = start; 6217 u64 hole_len = len; 6218 6219 em = alloc_extent_map(); 6220 if (!em) { 6221 err = -ENOMEM; 6222 goto out; 6223 } 6224 /* 6225 * when btrfs_get_extent can't find anything it 6226 * returns one huge hole 6227 * 6228 * make sure what it found really fits our range, and 6229 * adjust to make sure it is based on the start from 6230 * the caller 6231 */ 6232 if (hole_em) { 6233 u64 calc_end = extent_map_end(hole_em); 6234 6235 if (calc_end <= start || (hole_em->start > end)) { 6236 free_extent_map(hole_em); 6237 hole_em = NULL; 6238 } else { 6239 hole_start = max(hole_em->start, start); 6240 hole_len = calc_end - hole_start; 6241 } 6242 } 6243 em->bdev = NULL; 6244 if (hole_em && range_start > hole_start) { 6245 /* our hole starts before our delalloc, so we 6246 * have to return just the parts of the hole 6247 * that go until the delalloc starts 6248 */ 6249 em->len = min(hole_len, 6250 range_start - hole_start); 6251 em->start = hole_start; 6252 em->orig_start = hole_start; 6253 /* 6254 * don't adjust block start at all, 6255 * it is fixed at EXTENT_MAP_HOLE 6256 */ 6257 em->block_start = hole_em->block_start; 6258 em->block_len = hole_len; 6259 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6260 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6261 } else { 6262 em->start = range_start; 6263 em->len = found; 6264 em->orig_start = range_start; 6265 em->block_start = EXTENT_MAP_DELALLOC; 6266 em->block_len = found; 6267 } 6268 } else if (hole_em) { 6269 return hole_em; 6270 } 6271 out: 6272 6273 free_extent_map(hole_em); 6274 if (err) { 6275 free_extent_map(em); 6276 return ERR_PTR(err); 6277 } 6278 return em; 6279 } 6280 6281 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6282 u64 start, u64 len) 6283 { 6284 struct btrfs_root *root = BTRFS_I(inode)->root; 6285 struct extent_map *em; 6286 struct btrfs_key ins; 6287 u64 alloc_hint; 6288 int ret; 6289 6290 alloc_hint = get_extent_allocation_hint(inode, start, len); 6291 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 6292 alloc_hint, &ins, 1); 6293 if (ret) 6294 return ERR_PTR(ret); 6295 6296 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6297 ins.offset, ins.offset, ins.offset, 0); 6298 if (IS_ERR(em)) { 6299 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6300 return em; 6301 } 6302 6303 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6304 ins.offset, ins.offset, 0); 6305 if (ret) { 6306 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6307 free_extent_map(em); 6308 return ERR_PTR(ret); 6309 } 6310 6311 return em; 6312 } 6313 6314 /* 6315 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6316 * block must be cow'd 6317 */ 6318 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6319 u64 *orig_start, u64 *orig_block_len, 6320 u64 *ram_bytes) 6321 { 6322 struct btrfs_trans_handle *trans; 6323 struct btrfs_path *path; 6324 int ret; 6325 struct extent_buffer *leaf; 6326 struct btrfs_root *root = BTRFS_I(inode)->root; 6327 struct btrfs_file_extent_item *fi; 6328 struct btrfs_key key; 6329 u64 disk_bytenr; 6330 u64 backref_offset; 6331 u64 extent_end; 6332 u64 num_bytes; 6333 int slot; 6334 int found_type; 6335 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6336 path = btrfs_alloc_path(); 6337 if (!path) 6338 return -ENOMEM; 6339 6340 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 6341 offset, 0); 6342 if (ret < 0) 6343 goto out; 6344 6345 slot = path->slots[0]; 6346 if (ret == 1) { 6347 if (slot == 0) { 6348 /* can't find the item, must cow */ 6349 ret = 0; 6350 goto out; 6351 } 6352 slot--; 6353 } 6354 ret = 0; 6355 leaf = path->nodes[0]; 6356 btrfs_item_key_to_cpu(leaf, &key, slot); 6357 if (key.objectid != btrfs_ino(inode) || 6358 key.type != BTRFS_EXTENT_DATA_KEY) { 6359 /* not our file or wrong item type, must cow */ 6360 goto out; 6361 } 6362 6363 if (key.offset > offset) { 6364 /* Wrong offset, must cow */ 6365 goto out; 6366 } 6367 6368 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6369 found_type = btrfs_file_extent_type(leaf, fi); 6370 if (found_type != BTRFS_FILE_EXTENT_REG && 6371 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6372 /* not a regular extent, must cow */ 6373 goto out; 6374 } 6375 6376 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6377 goto out; 6378 6379 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6380 if (disk_bytenr == 0) 6381 goto out; 6382 6383 if (btrfs_file_extent_compression(leaf, fi) || 6384 btrfs_file_extent_encryption(leaf, fi) || 6385 btrfs_file_extent_other_encoding(leaf, fi)) 6386 goto out; 6387 6388 backref_offset = btrfs_file_extent_offset(leaf, fi); 6389 6390 if (orig_start) { 6391 *orig_start = key.offset - backref_offset; 6392 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6393 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6394 } 6395 6396 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6397 6398 if (btrfs_extent_readonly(root, disk_bytenr)) 6399 goto out; 6400 6401 /* 6402 * look for other files referencing this extent, if we 6403 * find any we must cow 6404 */ 6405 trans = btrfs_join_transaction(root); 6406 if (IS_ERR(trans)) { 6407 ret = 0; 6408 goto out; 6409 } 6410 6411 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6412 key.offset - backref_offset, disk_bytenr); 6413 btrfs_end_transaction(trans, root); 6414 if (ret) { 6415 ret = 0; 6416 goto out; 6417 } 6418 6419 /* 6420 * adjust disk_bytenr and num_bytes to cover just the bytes 6421 * in this extent we are about to write. If there 6422 * are any csums in that range we have to cow in order 6423 * to keep the csums correct 6424 */ 6425 disk_bytenr += backref_offset; 6426 disk_bytenr += offset - key.offset; 6427 num_bytes = min(offset + *len, extent_end) - offset; 6428 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6429 goto out; 6430 /* 6431 * all of the above have passed, it is safe to overwrite this extent 6432 * without cow 6433 */ 6434 *len = num_bytes; 6435 ret = 1; 6436 out: 6437 btrfs_free_path(path); 6438 return ret; 6439 } 6440 6441 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6442 struct extent_state **cached_state, int writing) 6443 { 6444 struct btrfs_ordered_extent *ordered; 6445 int ret = 0; 6446 6447 while (1) { 6448 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6449 0, cached_state); 6450 /* 6451 * We're concerned with the entire range that we're going to be 6452 * doing DIO to, so we need to make sure theres no ordered 6453 * extents in this range. 6454 */ 6455 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6456 lockend - lockstart + 1); 6457 6458 /* 6459 * We need to make sure there are no buffered pages in this 6460 * range either, we could have raced between the invalidate in 6461 * generic_file_direct_write and locking the extent. The 6462 * invalidate needs to happen so that reads after a write do not 6463 * get stale data. 6464 */ 6465 if (!ordered && (!writing || 6466 !test_range_bit(&BTRFS_I(inode)->io_tree, 6467 lockstart, lockend, EXTENT_UPTODATE, 0, 6468 *cached_state))) 6469 break; 6470 6471 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6472 cached_state, GFP_NOFS); 6473 6474 if (ordered) { 6475 btrfs_start_ordered_extent(inode, ordered, 1); 6476 btrfs_put_ordered_extent(ordered); 6477 } else { 6478 /* Screw you mmap */ 6479 ret = filemap_write_and_wait_range(inode->i_mapping, 6480 lockstart, 6481 lockend); 6482 if (ret) 6483 break; 6484 6485 /* 6486 * If we found a page that couldn't be invalidated just 6487 * fall back to buffered. 6488 */ 6489 ret = invalidate_inode_pages2_range(inode->i_mapping, 6490 lockstart >> PAGE_CACHE_SHIFT, 6491 lockend >> PAGE_CACHE_SHIFT); 6492 if (ret) 6493 break; 6494 } 6495 6496 cond_resched(); 6497 } 6498 6499 return ret; 6500 } 6501 6502 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6503 u64 len, u64 orig_start, 6504 u64 block_start, u64 block_len, 6505 u64 orig_block_len, u64 ram_bytes, 6506 int type) 6507 { 6508 struct extent_map_tree *em_tree; 6509 struct extent_map *em; 6510 struct btrfs_root *root = BTRFS_I(inode)->root; 6511 int ret; 6512 6513 em_tree = &BTRFS_I(inode)->extent_tree; 6514 em = alloc_extent_map(); 6515 if (!em) 6516 return ERR_PTR(-ENOMEM); 6517 6518 em->start = start; 6519 em->orig_start = orig_start; 6520 em->mod_start = start; 6521 em->mod_len = len; 6522 em->len = len; 6523 em->block_len = block_len; 6524 em->block_start = block_start; 6525 em->bdev = root->fs_info->fs_devices->latest_bdev; 6526 em->orig_block_len = orig_block_len; 6527 em->ram_bytes = ram_bytes; 6528 em->generation = -1; 6529 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6530 if (type == BTRFS_ORDERED_PREALLOC) 6531 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6532 6533 do { 6534 btrfs_drop_extent_cache(inode, em->start, 6535 em->start + em->len - 1, 0); 6536 write_lock(&em_tree->lock); 6537 ret = add_extent_mapping(em_tree, em, 1); 6538 write_unlock(&em_tree->lock); 6539 } while (ret == -EEXIST); 6540 6541 if (ret) { 6542 free_extent_map(em); 6543 return ERR_PTR(ret); 6544 } 6545 6546 return em; 6547 } 6548 6549 6550 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6551 struct buffer_head *bh_result, int create) 6552 { 6553 struct extent_map *em; 6554 struct btrfs_root *root = BTRFS_I(inode)->root; 6555 struct extent_state *cached_state = NULL; 6556 u64 start = iblock << inode->i_blkbits; 6557 u64 lockstart, lockend; 6558 u64 len = bh_result->b_size; 6559 int unlock_bits = EXTENT_LOCKED; 6560 int ret = 0; 6561 6562 if (create) 6563 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6564 else 6565 len = min_t(u64, len, root->sectorsize); 6566 6567 lockstart = start; 6568 lockend = start + len - 1; 6569 6570 /* 6571 * If this errors out it's because we couldn't invalidate pagecache for 6572 * this range and we need to fallback to buffered. 6573 */ 6574 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6575 return -ENOTBLK; 6576 6577 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6578 if (IS_ERR(em)) { 6579 ret = PTR_ERR(em); 6580 goto unlock_err; 6581 } 6582 6583 /* 6584 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6585 * io. INLINE is special, and we could probably kludge it in here, but 6586 * it's still buffered so for safety lets just fall back to the generic 6587 * buffered path. 6588 * 6589 * For COMPRESSED we _have_ to read the entire extent in so we can 6590 * decompress it, so there will be buffering required no matter what we 6591 * do, so go ahead and fallback to buffered. 6592 * 6593 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6594 * to buffered IO. Don't blame me, this is the price we pay for using 6595 * the generic code. 6596 */ 6597 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6598 em->block_start == EXTENT_MAP_INLINE) { 6599 free_extent_map(em); 6600 ret = -ENOTBLK; 6601 goto unlock_err; 6602 } 6603 6604 /* Just a good old fashioned hole, return */ 6605 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6606 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6607 free_extent_map(em); 6608 goto unlock_err; 6609 } 6610 6611 /* 6612 * We don't allocate a new extent in the following cases 6613 * 6614 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6615 * existing extent. 6616 * 2) The extent is marked as PREALLOC. We're good to go here and can 6617 * just use the extent. 6618 * 6619 */ 6620 if (!create) { 6621 len = min(len, em->len - (start - em->start)); 6622 lockstart = start + len; 6623 goto unlock; 6624 } 6625 6626 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6627 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6628 em->block_start != EXTENT_MAP_HOLE)) { 6629 int type; 6630 int ret; 6631 u64 block_start, orig_start, orig_block_len, ram_bytes; 6632 6633 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6634 type = BTRFS_ORDERED_PREALLOC; 6635 else 6636 type = BTRFS_ORDERED_NOCOW; 6637 len = min(len, em->len - (start - em->start)); 6638 block_start = em->block_start + (start - em->start); 6639 6640 if (can_nocow_extent(inode, start, &len, &orig_start, 6641 &orig_block_len, &ram_bytes) == 1) { 6642 if (type == BTRFS_ORDERED_PREALLOC) { 6643 free_extent_map(em); 6644 em = create_pinned_em(inode, start, len, 6645 orig_start, 6646 block_start, len, 6647 orig_block_len, 6648 ram_bytes, type); 6649 if (IS_ERR(em)) 6650 goto unlock_err; 6651 } 6652 6653 ret = btrfs_add_ordered_extent_dio(inode, start, 6654 block_start, len, len, type); 6655 if (ret) { 6656 free_extent_map(em); 6657 goto unlock_err; 6658 } 6659 goto unlock; 6660 } 6661 } 6662 6663 /* 6664 * this will cow the extent, reset the len in case we changed 6665 * it above 6666 */ 6667 len = bh_result->b_size; 6668 free_extent_map(em); 6669 em = btrfs_new_extent_direct(inode, start, len); 6670 if (IS_ERR(em)) { 6671 ret = PTR_ERR(em); 6672 goto unlock_err; 6673 } 6674 len = min(len, em->len - (start - em->start)); 6675 unlock: 6676 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6677 inode->i_blkbits; 6678 bh_result->b_size = len; 6679 bh_result->b_bdev = em->bdev; 6680 set_buffer_mapped(bh_result); 6681 if (create) { 6682 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6683 set_buffer_new(bh_result); 6684 6685 /* 6686 * Need to update the i_size under the extent lock so buffered 6687 * readers will get the updated i_size when we unlock. 6688 */ 6689 if (start + len > i_size_read(inode)) 6690 i_size_write(inode, start + len); 6691 6692 spin_lock(&BTRFS_I(inode)->lock); 6693 BTRFS_I(inode)->outstanding_extents++; 6694 spin_unlock(&BTRFS_I(inode)->lock); 6695 6696 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6697 lockstart + len - 1, EXTENT_DELALLOC, NULL, 6698 &cached_state, GFP_NOFS); 6699 BUG_ON(ret); 6700 } 6701 6702 /* 6703 * In the case of write we need to clear and unlock the entire range, 6704 * in the case of read we need to unlock only the end area that we 6705 * aren't using if there is any left over space. 6706 */ 6707 if (lockstart < lockend) { 6708 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6709 lockend, unlock_bits, 1, 0, 6710 &cached_state, GFP_NOFS); 6711 } else { 6712 free_extent_state(cached_state); 6713 } 6714 6715 free_extent_map(em); 6716 6717 return 0; 6718 6719 unlock_err: 6720 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6721 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6722 return ret; 6723 } 6724 6725 static void btrfs_endio_direct_read(struct bio *bio, int err) 6726 { 6727 struct btrfs_dio_private *dip = bio->bi_private; 6728 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6729 struct bio_vec *bvec = bio->bi_io_vec; 6730 struct inode *inode = dip->inode; 6731 struct btrfs_root *root = BTRFS_I(inode)->root; 6732 struct bio *dio_bio; 6733 u32 *csums = (u32 *)dip->csum; 6734 int index = 0; 6735 u64 start; 6736 6737 start = dip->logical_offset; 6738 do { 6739 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6740 struct page *page = bvec->bv_page; 6741 char *kaddr; 6742 u32 csum = ~(u32)0; 6743 unsigned long flags; 6744 6745 local_irq_save(flags); 6746 kaddr = kmap_atomic(page); 6747 csum = btrfs_csum_data(kaddr + bvec->bv_offset, 6748 csum, bvec->bv_len); 6749 btrfs_csum_final(csum, (char *)&csum); 6750 kunmap_atomic(kaddr); 6751 local_irq_restore(flags); 6752 6753 flush_dcache_page(bvec->bv_page); 6754 if (csum != csums[index]) { 6755 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 6756 (unsigned long long)btrfs_ino(inode), 6757 (unsigned long long)start, 6758 csum, csums[index]); 6759 err = -EIO; 6760 } 6761 } 6762 6763 start += bvec->bv_len; 6764 bvec++; 6765 index++; 6766 } while (bvec <= bvec_end); 6767 6768 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6769 dip->logical_offset + dip->bytes - 1); 6770 dio_bio = dip->dio_bio; 6771 6772 kfree(dip); 6773 6774 /* If we had a csum failure make sure to clear the uptodate flag */ 6775 if (err) 6776 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6777 dio_end_io(dio_bio, err); 6778 bio_put(bio); 6779 } 6780 6781 static void btrfs_endio_direct_write(struct bio *bio, int err) 6782 { 6783 struct btrfs_dio_private *dip = bio->bi_private; 6784 struct inode *inode = dip->inode; 6785 struct btrfs_root *root = BTRFS_I(inode)->root; 6786 struct btrfs_ordered_extent *ordered = NULL; 6787 u64 ordered_offset = dip->logical_offset; 6788 u64 ordered_bytes = dip->bytes; 6789 struct bio *dio_bio; 6790 int ret; 6791 6792 if (err) 6793 goto out_done; 6794 again: 6795 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6796 &ordered_offset, 6797 ordered_bytes, !err); 6798 if (!ret) 6799 goto out_test; 6800 6801 ordered->work.func = finish_ordered_fn; 6802 ordered->work.flags = 0; 6803 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6804 &ordered->work); 6805 out_test: 6806 /* 6807 * our bio might span multiple ordered extents. If we haven't 6808 * completed the accounting for the whole dio, go back and try again 6809 */ 6810 if (ordered_offset < dip->logical_offset + dip->bytes) { 6811 ordered_bytes = dip->logical_offset + dip->bytes - 6812 ordered_offset; 6813 ordered = NULL; 6814 goto again; 6815 } 6816 out_done: 6817 dio_bio = dip->dio_bio; 6818 6819 kfree(dip); 6820 6821 /* If we had an error make sure to clear the uptodate flag */ 6822 if (err) 6823 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 6824 dio_end_io(dio_bio, err); 6825 bio_put(bio); 6826 } 6827 6828 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 6829 struct bio *bio, int mirror_num, 6830 unsigned long bio_flags, u64 offset) 6831 { 6832 int ret; 6833 struct btrfs_root *root = BTRFS_I(inode)->root; 6834 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 6835 BUG_ON(ret); /* -ENOMEM */ 6836 return 0; 6837 } 6838 6839 static void btrfs_end_dio_bio(struct bio *bio, int err) 6840 { 6841 struct btrfs_dio_private *dip = bio->bi_private; 6842 6843 if (err) { 6844 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 6845 "sector %#Lx len %u err no %d\n", 6846 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 6847 (unsigned long long)bio->bi_sector, bio->bi_size, err); 6848 dip->errors = 1; 6849 6850 /* 6851 * before atomic variable goto zero, we must make sure 6852 * dip->errors is perceived to be set. 6853 */ 6854 smp_mb__before_atomic_dec(); 6855 } 6856 6857 /* if there are more bios still pending for this dio, just exit */ 6858 if (!atomic_dec_and_test(&dip->pending_bios)) 6859 goto out; 6860 6861 if (dip->errors) { 6862 bio_io_error(dip->orig_bio); 6863 } else { 6864 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 6865 bio_endio(dip->orig_bio, 0); 6866 } 6867 out: 6868 bio_put(bio); 6869 } 6870 6871 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 6872 u64 first_sector, gfp_t gfp_flags) 6873 { 6874 int nr_vecs = bio_get_nr_vecs(bdev); 6875 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 6876 } 6877 6878 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 6879 int rw, u64 file_offset, int skip_sum, 6880 int async_submit) 6881 { 6882 struct btrfs_dio_private *dip = bio->bi_private; 6883 int write = rw & REQ_WRITE; 6884 struct btrfs_root *root = BTRFS_I(inode)->root; 6885 int ret; 6886 6887 if (async_submit) 6888 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 6889 6890 bio_get(bio); 6891 6892 if (!write) { 6893 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 6894 if (ret) 6895 goto err; 6896 } 6897 6898 if (skip_sum) 6899 goto map; 6900 6901 if (write && async_submit) { 6902 ret = btrfs_wq_submit_bio(root->fs_info, 6903 inode, rw, bio, 0, 0, 6904 file_offset, 6905 __btrfs_submit_bio_start_direct_io, 6906 __btrfs_submit_bio_done); 6907 goto err; 6908 } else if (write) { 6909 /* 6910 * If we aren't doing async submit, calculate the csum of the 6911 * bio now. 6912 */ 6913 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 6914 if (ret) 6915 goto err; 6916 } else if (!skip_sum) { 6917 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio, 6918 file_offset); 6919 if (ret) 6920 goto err; 6921 } 6922 6923 map: 6924 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 6925 err: 6926 bio_put(bio); 6927 return ret; 6928 } 6929 6930 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 6931 int skip_sum) 6932 { 6933 struct inode *inode = dip->inode; 6934 struct btrfs_root *root = BTRFS_I(inode)->root; 6935 struct bio *bio; 6936 struct bio *orig_bio = dip->orig_bio; 6937 struct bio_vec *bvec = orig_bio->bi_io_vec; 6938 u64 start_sector = orig_bio->bi_sector; 6939 u64 file_offset = dip->logical_offset; 6940 u64 submit_len = 0; 6941 u64 map_length; 6942 int nr_pages = 0; 6943 int ret = 0; 6944 int async_submit = 0; 6945 6946 map_length = orig_bio->bi_size; 6947 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 6948 &map_length, NULL, 0); 6949 if (ret) { 6950 bio_put(orig_bio); 6951 return -EIO; 6952 } 6953 6954 if (map_length >= orig_bio->bi_size) { 6955 bio = orig_bio; 6956 goto submit; 6957 } 6958 6959 /* async crcs make it difficult to collect full stripe writes. */ 6960 if (btrfs_get_alloc_profile(root, 1) & 6961 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 6962 async_submit = 0; 6963 else 6964 async_submit = 1; 6965 6966 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 6967 if (!bio) 6968 return -ENOMEM; 6969 bio->bi_private = dip; 6970 bio->bi_end_io = btrfs_end_dio_bio; 6971 atomic_inc(&dip->pending_bios); 6972 6973 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 6974 if (unlikely(map_length < submit_len + bvec->bv_len || 6975 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 6976 bvec->bv_offset) < bvec->bv_len)) { 6977 /* 6978 * inc the count before we submit the bio so 6979 * we know the end IO handler won't happen before 6980 * we inc the count. Otherwise, the dip might get freed 6981 * before we're done setting it up 6982 */ 6983 atomic_inc(&dip->pending_bios); 6984 ret = __btrfs_submit_dio_bio(bio, inode, rw, 6985 file_offset, skip_sum, 6986 async_submit); 6987 if (ret) { 6988 bio_put(bio); 6989 atomic_dec(&dip->pending_bios); 6990 goto out_err; 6991 } 6992 6993 start_sector += submit_len >> 9; 6994 file_offset += submit_len; 6995 6996 submit_len = 0; 6997 nr_pages = 0; 6998 6999 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7000 start_sector, GFP_NOFS); 7001 if (!bio) 7002 goto out_err; 7003 bio->bi_private = dip; 7004 bio->bi_end_io = btrfs_end_dio_bio; 7005 7006 map_length = orig_bio->bi_size; 7007 ret = btrfs_map_block(root->fs_info, rw, 7008 start_sector << 9, 7009 &map_length, NULL, 0); 7010 if (ret) { 7011 bio_put(bio); 7012 goto out_err; 7013 } 7014 } else { 7015 submit_len += bvec->bv_len; 7016 nr_pages ++; 7017 bvec++; 7018 } 7019 } 7020 7021 submit: 7022 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7023 async_submit); 7024 if (!ret) 7025 return 0; 7026 7027 bio_put(bio); 7028 out_err: 7029 dip->errors = 1; 7030 /* 7031 * before atomic variable goto zero, we must 7032 * make sure dip->errors is perceived to be set. 7033 */ 7034 smp_mb__before_atomic_dec(); 7035 if (atomic_dec_and_test(&dip->pending_bios)) 7036 bio_io_error(dip->orig_bio); 7037 7038 /* bio_end_io() will handle error, so we needn't return it */ 7039 return 0; 7040 } 7041 7042 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7043 struct inode *inode, loff_t file_offset) 7044 { 7045 struct btrfs_root *root = BTRFS_I(inode)->root; 7046 struct btrfs_dio_private *dip; 7047 struct bio *io_bio; 7048 int skip_sum; 7049 int sum_len; 7050 int write = rw & REQ_WRITE; 7051 int ret = 0; 7052 u16 csum_size; 7053 7054 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7055 7056 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7057 if (!io_bio) { 7058 ret = -ENOMEM; 7059 goto free_ordered; 7060 } 7061 7062 if (!skip_sum && !write) { 7063 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 7064 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits; 7065 sum_len *= csum_size; 7066 } else { 7067 sum_len = 0; 7068 } 7069 7070 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS); 7071 if (!dip) { 7072 ret = -ENOMEM; 7073 goto free_io_bio; 7074 } 7075 7076 dip->private = dio_bio->bi_private; 7077 dip->inode = inode; 7078 dip->logical_offset = file_offset; 7079 dip->bytes = dio_bio->bi_size; 7080 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9; 7081 io_bio->bi_private = dip; 7082 dip->errors = 0; 7083 dip->orig_bio = io_bio; 7084 dip->dio_bio = dio_bio; 7085 atomic_set(&dip->pending_bios, 0); 7086 7087 if (write) 7088 io_bio->bi_end_io = btrfs_endio_direct_write; 7089 else 7090 io_bio->bi_end_io = btrfs_endio_direct_read; 7091 7092 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7093 if (!ret) 7094 return; 7095 7096 free_io_bio: 7097 bio_put(io_bio); 7098 7099 free_ordered: 7100 /* 7101 * If this is a write, we need to clean up the reserved space and kill 7102 * the ordered extent. 7103 */ 7104 if (write) { 7105 struct btrfs_ordered_extent *ordered; 7106 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7107 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7108 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7109 btrfs_free_reserved_extent(root, ordered->start, 7110 ordered->disk_len); 7111 btrfs_put_ordered_extent(ordered); 7112 btrfs_put_ordered_extent(ordered); 7113 } 7114 bio_endio(dio_bio, ret); 7115 } 7116 7117 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7118 const struct iovec *iov, loff_t offset, 7119 unsigned long nr_segs) 7120 { 7121 int seg; 7122 int i; 7123 size_t size; 7124 unsigned long addr; 7125 unsigned blocksize_mask = root->sectorsize - 1; 7126 ssize_t retval = -EINVAL; 7127 loff_t end = offset; 7128 7129 if (offset & blocksize_mask) 7130 goto out; 7131 7132 /* Check the memory alignment. Blocks cannot straddle pages */ 7133 for (seg = 0; seg < nr_segs; seg++) { 7134 addr = (unsigned long)iov[seg].iov_base; 7135 size = iov[seg].iov_len; 7136 end += size; 7137 if ((addr & blocksize_mask) || (size & blocksize_mask)) 7138 goto out; 7139 7140 /* If this is a write we don't need to check anymore */ 7141 if (rw & WRITE) 7142 continue; 7143 7144 /* 7145 * Check to make sure we don't have duplicate iov_base's in this 7146 * iovec, if so return EINVAL, otherwise we'll get csum errors 7147 * when reading back. 7148 */ 7149 for (i = seg + 1; i < nr_segs; i++) { 7150 if (iov[seg].iov_base == iov[i].iov_base) 7151 goto out; 7152 } 7153 } 7154 retval = 0; 7155 out: 7156 return retval; 7157 } 7158 7159 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7160 const struct iovec *iov, loff_t offset, 7161 unsigned long nr_segs) 7162 { 7163 struct file *file = iocb->ki_filp; 7164 struct inode *inode = file->f_mapping->host; 7165 size_t count = 0; 7166 int flags = 0; 7167 bool wakeup = true; 7168 bool relock = false; 7169 ssize_t ret; 7170 7171 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 7172 offset, nr_segs)) 7173 return 0; 7174 7175 atomic_inc(&inode->i_dio_count); 7176 smp_mb__after_atomic_inc(); 7177 7178 /* 7179 * The generic stuff only does filemap_write_and_wait_range, which isn't 7180 * enough if we've written compressed pages to this area, so we need to 7181 * call btrfs_wait_ordered_range to make absolutely sure that any 7182 * outstanding dirty pages are on disk. 7183 */ 7184 count = iov_length(iov, nr_segs); 7185 btrfs_wait_ordered_range(inode, offset, count); 7186 7187 if (rw & WRITE) { 7188 /* 7189 * If the write DIO is beyond the EOF, we need update 7190 * the isize, but it is protected by i_mutex. So we can 7191 * not unlock the i_mutex at this case. 7192 */ 7193 if (offset + count <= inode->i_size) { 7194 mutex_unlock(&inode->i_mutex); 7195 relock = true; 7196 } 7197 ret = btrfs_delalloc_reserve_space(inode, count); 7198 if (ret) 7199 goto out; 7200 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7201 &BTRFS_I(inode)->runtime_flags))) { 7202 inode_dio_done(inode); 7203 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7204 wakeup = false; 7205 } 7206 7207 ret = __blockdev_direct_IO(rw, iocb, inode, 7208 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7209 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 7210 btrfs_submit_direct, flags); 7211 if (rw & WRITE) { 7212 if (ret < 0 && ret != -EIOCBQUEUED) 7213 btrfs_delalloc_release_space(inode, count); 7214 else if (ret >= 0 && (size_t)ret < count) 7215 btrfs_delalloc_release_space(inode, 7216 count - (size_t)ret); 7217 else 7218 btrfs_delalloc_release_metadata(inode, 0); 7219 } 7220 out: 7221 if (wakeup) 7222 inode_dio_done(inode); 7223 if (relock) 7224 mutex_lock(&inode->i_mutex); 7225 7226 return ret; 7227 } 7228 7229 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7230 7231 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7232 __u64 start, __u64 len) 7233 { 7234 int ret; 7235 7236 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7237 if (ret) 7238 return ret; 7239 7240 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7241 } 7242 7243 int btrfs_readpage(struct file *file, struct page *page) 7244 { 7245 struct extent_io_tree *tree; 7246 tree = &BTRFS_I(page->mapping->host)->io_tree; 7247 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7248 } 7249 7250 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7251 { 7252 struct extent_io_tree *tree; 7253 7254 7255 if (current->flags & PF_MEMALLOC) { 7256 redirty_page_for_writepage(wbc, page); 7257 unlock_page(page); 7258 return 0; 7259 } 7260 tree = &BTRFS_I(page->mapping->host)->io_tree; 7261 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7262 } 7263 7264 static int btrfs_writepages(struct address_space *mapping, 7265 struct writeback_control *wbc) 7266 { 7267 struct extent_io_tree *tree; 7268 7269 tree = &BTRFS_I(mapping->host)->io_tree; 7270 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7271 } 7272 7273 static int 7274 btrfs_readpages(struct file *file, struct address_space *mapping, 7275 struct list_head *pages, unsigned nr_pages) 7276 { 7277 struct extent_io_tree *tree; 7278 tree = &BTRFS_I(mapping->host)->io_tree; 7279 return extent_readpages(tree, mapping, pages, nr_pages, 7280 btrfs_get_extent); 7281 } 7282 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7283 { 7284 struct extent_io_tree *tree; 7285 struct extent_map_tree *map; 7286 int ret; 7287 7288 tree = &BTRFS_I(page->mapping->host)->io_tree; 7289 map = &BTRFS_I(page->mapping->host)->extent_tree; 7290 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7291 if (ret == 1) { 7292 ClearPagePrivate(page); 7293 set_page_private(page, 0); 7294 page_cache_release(page); 7295 } 7296 return ret; 7297 } 7298 7299 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7300 { 7301 if (PageWriteback(page) || PageDirty(page)) 7302 return 0; 7303 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7304 } 7305 7306 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 7307 unsigned int length) 7308 { 7309 struct inode *inode = page->mapping->host; 7310 struct extent_io_tree *tree; 7311 struct btrfs_ordered_extent *ordered; 7312 struct extent_state *cached_state = NULL; 7313 u64 page_start = page_offset(page); 7314 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7315 7316 /* 7317 * we have the page locked, so new writeback can't start, 7318 * and the dirty bit won't be cleared while we are here. 7319 * 7320 * Wait for IO on this page so that we can safely clear 7321 * the PagePrivate2 bit and do ordered accounting 7322 */ 7323 wait_on_page_writeback(page); 7324 7325 tree = &BTRFS_I(inode)->io_tree; 7326 if (offset) { 7327 btrfs_releasepage(page, GFP_NOFS); 7328 return; 7329 } 7330 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7331 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 7332 if (ordered) { 7333 /* 7334 * IO on this page will never be started, so we need 7335 * to account for any ordered extents now 7336 */ 7337 clear_extent_bit(tree, page_start, page_end, 7338 EXTENT_DIRTY | EXTENT_DELALLOC | 7339 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7340 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 7341 /* 7342 * whoever cleared the private bit is responsible 7343 * for the finish_ordered_io 7344 */ 7345 if (TestClearPagePrivate2(page) && 7346 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 7347 PAGE_CACHE_SIZE, 1)) { 7348 btrfs_finish_ordered_io(ordered); 7349 } 7350 btrfs_put_ordered_extent(ordered); 7351 cached_state = NULL; 7352 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7353 } 7354 clear_extent_bit(tree, page_start, page_end, 7355 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 7356 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 7357 &cached_state, GFP_NOFS); 7358 __btrfs_releasepage(page, GFP_NOFS); 7359 7360 ClearPageChecked(page); 7361 if (PagePrivate(page)) { 7362 ClearPagePrivate(page); 7363 set_page_private(page, 0); 7364 page_cache_release(page); 7365 } 7366 } 7367 7368 /* 7369 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7370 * called from a page fault handler when a page is first dirtied. Hence we must 7371 * be careful to check for EOF conditions here. We set the page up correctly 7372 * for a written page which means we get ENOSPC checking when writing into 7373 * holes and correct delalloc and unwritten extent mapping on filesystems that 7374 * support these features. 7375 * 7376 * We are not allowed to take the i_mutex here so we have to play games to 7377 * protect against truncate races as the page could now be beyond EOF. Because 7378 * vmtruncate() writes the inode size before removing pages, once we have the 7379 * page lock we can determine safely if the page is beyond EOF. If it is not 7380 * beyond EOF, then the page is guaranteed safe against truncation until we 7381 * unlock the page. 7382 */ 7383 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7384 { 7385 struct page *page = vmf->page; 7386 struct inode *inode = file_inode(vma->vm_file); 7387 struct btrfs_root *root = BTRFS_I(inode)->root; 7388 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7389 struct btrfs_ordered_extent *ordered; 7390 struct extent_state *cached_state = NULL; 7391 char *kaddr; 7392 unsigned long zero_start; 7393 loff_t size; 7394 int ret; 7395 int reserved = 0; 7396 u64 page_start; 7397 u64 page_end; 7398 7399 sb_start_pagefault(inode->i_sb); 7400 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7401 if (!ret) { 7402 ret = file_update_time(vma->vm_file); 7403 reserved = 1; 7404 } 7405 if (ret) { 7406 if (ret == -ENOMEM) 7407 ret = VM_FAULT_OOM; 7408 else /* -ENOSPC, -EIO, etc */ 7409 ret = VM_FAULT_SIGBUS; 7410 if (reserved) 7411 goto out; 7412 goto out_noreserve; 7413 } 7414 7415 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7416 again: 7417 lock_page(page); 7418 size = i_size_read(inode); 7419 page_start = page_offset(page); 7420 page_end = page_start + PAGE_CACHE_SIZE - 1; 7421 7422 if ((page->mapping != inode->i_mapping) || 7423 (page_start >= size)) { 7424 /* page got truncated out from underneath us */ 7425 goto out_unlock; 7426 } 7427 wait_on_page_writeback(page); 7428 7429 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7430 set_page_extent_mapped(page); 7431 7432 /* 7433 * we can't set the delalloc bits if there are pending ordered 7434 * extents. Drop our locks and wait for them to finish 7435 */ 7436 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7437 if (ordered) { 7438 unlock_extent_cached(io_tree, page_start, page_end, 7439 &cached_state, GFP_NOFS); 7440 unlock_page(page); 7441 btrfs_start_ordered_extent(inode, ordered, 1); 7442 btrfs_put_ordered_extent(ordered); 7443 goto again; 7444 } 7445 7446 /* 7447 * XXX - page_mkwrite gets called every time the page is dirtied, even 7448 * if it was already dirty, so for space accounting reasons we need to 7449 * clear any delalloc bits for the range we are fixing to save. There 7450 * is probably a better way to do this, but for now keep consistent with 7451 * prepare_pages in the normal write path. 7452 */ 7453 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7454 EXTENT_DIRTY | EXTENT_DELALLOC | 7455 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7456 0, 0, &cached_state, GFP_NOFS); 7457 7458 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7459 &cached_state); 7460 if (ret) { 7461 unlock_extent_cached(io_tree, page_start, page_end, 7462 &cached_state, GFP_NOFS); 7463 ret = VM_FAULT_SIGBUS; 7464 goto out_unlock; 7465 } 7466 ret = 0; 7467 7468 /* page is wholly or partially inside EOF */ 7469 if (page_start + PAGE_CACHE_SIZE > size) 7470 zero_start = size & ~PAGE_CACHE_MASK; 7471 else 7472 zero_start = PAGE_CACHE_SIZE; 7473 7474 if (zero_start != PAGE_CACHE_SIZE) { 7475 kaddr = kmap(page); 7476 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7477 flush_dcache_page(page); 7478 kunmap(page); 7479 } 7480 ClearPageChecked(page); 7481 set_page_dirty(page); 7482 SetPageUptodate(page); 7483 7484 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7485 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7486 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7487 7488 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7489 7490 out_unlock: 7491 if (!ret) { 7492 sb_end_pagefault(inode->i_sb); 7493 return VM_FAULT_LOCKED; 7494 } 7495 unlock_page(page); 7496 out: 7497 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7498 out_noreserve: 7499 sb_end_pagefault(inode->i_sb); 7500 return ret; 7501 } 7502 7503 static int btrfs_truncate(struct inode *inode) 7504 { 7505 struct btrfs_root *root = BTRFS_I(inode)->root; 7506 struct btrfs_block_rsv *rsv; 7507 int ret = 0; 7508 int err = 0; 7509 struct btrfs_trans_handle *trans; 7510 u64 mask = root->sectorsize - 1; 7511 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7512 7513 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 7514 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 7515 7516 /* 7517 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7518 * 3 things going on here 7519 * 7520 * 1) We need to reserve space for our orphan item and the space to 7521 * delete our orphan item. Lord knows we don't want to have a dangling 7522 * orphan item because we didn't reserve space to remove it. 7523 * 7524 * 2) We need to reserve space to update our inode. 7525 * 7526 * 3) We need to have something to cache all the space that is going to 7527 * be free'd up by the truncate operation, but also have some slack 7528 * space reserved in case it uses space during the truncate (thank you 7529 * very much snapshotting). 7530 * 7531 * And we need these to all be seperate. The fact is we can use alot of 7532 * space doing the truncate, and we have no earthly idea how much space 7533 * we will use, so we need the truncate reservation to be seperate so it 7534 * doesn't end up using space reserved for updating the inode or 7535 * removing the orphan item. We also need to be able to stop the 7536 * transaction and start a new one, which means we need to be able to 7537 * update the inode several times, and we have no idea of knowing how 7538 * many times that will be, so we can't just reserve 1 item for the 7539 * entirety of the opration, so that has to be done seperately as well. 7540 * Then there is the orphan item, which does indeed need to be held on 7541 * to for the whole operation, and we need nobody to touch this reserved 7542 * space except the orphan code. 7543 * 7544 * So that leaves us with 7545 * 7546 * 1) root->orphan_block_rsv - for the orphan deletion. 7547 * 2) rsv - for the truncate reservation, which we will steal from the 7548 * transaction reservation. 7549 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7550 * updating the inode. 7551 */ 7552 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7553 if (!rsv) 7554 return -ENOMEM; 7555 rsv->size = min_size; 7556 rsv->failfast = 1; 7557 7558 /* 7559 * 1 for the truncate slack space 7560 * 1 for updating the inode. 7561 */ 7562 trans = btrfs_start_transaction(root, 2); 7563 if (IS_ERR(trans)) { 7564 err = PTR_ERR(trans); 7565 goto out; 7566 } 7567 7568 /* Migrate the slack space for the truncate to our reserve */ 7569 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7570 min_size); 7571 BUG_ON(ret); 7572 7573 /* 7574 * setattr is responsible for setting the ordered_data_close flag, 7575 * but that is only tested during the last file release. That 7576 * could happen well after the next commit, leaving a great big 7577 * window where new writes may get lost if someone chooses to write 7578 * to this file after truncating to zero 7579 * 7580 * The inode doesn't have any dirty data here, and so if we commit 7581 * this is a noop. If someone immediately starts writing to the inode 7582 * it is very likely we'll catch some of their writes in this 7583 * transaction, and the commit will find this file on the ordered 7584 * data list with good things to send down. 7585 * 7586 * This is a best effort solution, there is still a window where 7587 * using truncate to replace the contents of the file will 7588 * end up with a zero length file after a crash. 7589 */ 7590 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7591 &BTRFS_I(inode)->runtime_flags)) 7592 btrfs_add_ordered_operation(trans, root, inode); 7593 7594 /* 7595 * So if we truncate and then write and fsync we normally would just 7596 * write the extents that changed, which is a problem if we need to 7597 * first truncate that entire inode. So set this flag so we write out 7598 * all of the extents in the inode to the sync log so we're completely 7599 * safe. 7600 */ 7601 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7602 trans->block_rsv = rsv; 7603 7604 while (1) { 7605 ret = btrfs_truncate_inode_items(trans, root, inode, 7606 inode->i_size, 7607 BTRFS_EXTENT_DATA_KEY); 7608 if (ret != -ENOSPC) { 7609 err = ret; 7610 break; 7611 } 7612 7613 trans->block_rsv = &root->fs_info->trans_block_rsv; 7614 ret = btrfs_update_inode(trans, root, inode); 7615 if (ret) { 7616 err = ret; 7617 break; 7618 } 7619 7620 btrfs_end_transaction(trans, root); 7621 btrfs_btree_balance_dirty(root); 7622 7623 trans = btrfs_start_transaction(root, 2); 7624 if (IS_ERR(trans)) { 7625 ret = err = PTR_ERR(trans); 7626 trans = NULL; 7627 break; 7628 } 7629 7630 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7631 rsv, min_size); 7632 BUG_ON(ret); /* shouldn't happen */ 7633 trans->block_rsv = rsv; 7634 } 7635 7636 if (ret == 0 && inode->i_nlink > 0) { 7637 trans->block_rsv = root->orphan_block_rsv; 7638 ret = btrfs_orphan_del(trans, inode); 7639 if (ret) 7640 err = ret; 7641 } 7642 7643 if (trans) { 7644 trans->block_rsv = &root->fs_info->trans_block_rsv; 7645 ret = btrfs_update_inode(trans, root, inode); 7646 if (ret && !err) 7647 err = ret; 7648 7649 ret = btrfs_end_transaction(trans, root); 7650 btrfs_btree_balance_dirty(root); 7651 } 7652 7653 out: 7654 btrfs_free_block_rsv(root, rsv); 7655 7656 if (ret && !err) 7657 err = ret; 7658 7659 return err; 7660 } 7661 7662 /* 7663 * create a new subvolume directory/inode (helper for the ioctl). 7664 */ 7665 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7666 struct btrfs_root *new_root, u64 new_dirid) 7667 { 7668 struct inode *inode; 7669 int err; 7670 u64 index = 0; 7671 7672 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7673 new_dirid, new_dirid, 7674 S_IFDIR | (~current_umask() & S_IRWXUGO), 7675 &index); 7676 if (IS_ERR(inode)) 7677 return PTR_ERR(inode); 7678 inode->i_op = &btrfs_dir_inode_operations; 7679 inode->i_fop = &btrfs_dir_file_operations; 7680 7681 set_nlink(inode, 1); 7682 btrfs_i_size_write(inode, 0); 7683 7684 err = btrfs_update_inode(trans, new_root, inode); 7685 7686 iput(inode); 7687 return err; 7688 } 7689 7690 struct inode *btrfs_alloc_inode(struct super_block *sb) 7691 { 7692 struct btrfs_inode *ei; 7693 struct inode *inode; 7694 7695 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7696 if (!ei) 7697 return NULL; 7698 7699 ei->root = NULL; 7700 ei->generation = 0; 7701 ei->last_trans = 0; 7702 ei->last_sub_trans = 0; 7703 ei->logged_trans = 0; 7704 ei->delalloc_bytes = 0; 7705 ei->disk_i_size = 0; 7706 ei->flags = 0; 7707 ei->csum_bytes = 0; 7708 ei->index_cnt = (u64)-1; 7709 ei->last_unlink_trans = 0; 7710 ei->last_log_commit = 0; 7711 7712 spin_lock_init(&ei->lock); 7713 ei->outstanding_extents = 0; 7714 ei->reserved_extents = 0; 7715 7716 ei->runtime_flags = 0; 7717 ei->force_compress = BTRFS_COMPRESS_NONE; 7718 7719 ei->delayed_node = NULL; 7720 7721 inode = &ei->vfs_inode; 7722 extent_map_tree_init(&ei->extent_tree); 7723 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7724 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7725 ei->io_tree.track_uptodate = 1; 7726 ei->io_failure_tree.track_uptodate = 1; 7727 atomic_set(&ei->sync_writers, 0); 7728 mutex_init(&ei->log_mutex); 7729 mutex_init(&ei->delalloc_mutex); 7730 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7731 INIT_LIST_HEAD(&ei->delalloc_inodes); 7732 INIT_LIST_HEAD(&ei->ordered_operations); 7733 RB_CLEAR_NODE(&ei->rb_node); 7734 7735 return inode; 7736 } 7737 7738 static void btrfs_i_callback(struct rcu_head *head) 7739 { 7740 struct inode *inode = container_of(head, struct inode, i_rcu); 7741 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7742 } 7743 7744 void btrfs_destroy_inode(struct inode *inode) 7745 { 7746 struct btrfs_ordered_extent *ordered; 7747 struct btrfs_root *root = BTRFS_I(inode)->root; 7748 7749 WARN_ON(!hlist_empty(&inode->i_dentry)); 7750 WARN_ON(inode->i_data.nrpages); 7751 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7752 WARN_ON(BTRFS_I(inode)->reserved_extents); 7753 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7754 WARN_ON(BTRFS_I(inode)->csum_bytes); 7755 7756 /* 7757 * This can happen where we create an inode, but somebody else also 7758 * created the same inode and we need to destroy the one we already 7759 * created. 7760 */ 7761 if (!root) 7762 goto free; 7763 7764 /* 7765 * Make sure we're properly removed from the ordered operation 7766 * lists. 7767 */ 7768 smp_mb(); 7769 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7770 spin_lock(&root->fs_info->ordered_root_lock); 7771 list_del_init(&BTRFS_I(inode)->ordered_operations); 7772 spin_unlock(&root->fs_info->ordered_root_lock); 7773 } 7774 7775 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7776 &BTRFS_I(inode)->runtime_flags)) { 7777 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 7778 (unsigned long long)btrfs_ino(inode)); 7779 atomic_dec(&root->orphan_inodes); 7780 } 7781 7782 while (1) { 7783 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7784 if (!ordered) 7785 break; 7786 else { 7787 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 7788 (unsigned long long)ordered->file_offset, 7789 (unsigned long long)ordered->len); 7790 btrfs_remove_ordered_extent(inode, ordered); 7791 btrfs_put_ordered_extent(ordered); 7792 btrfs_put_ordered_extent(ordered); 7793 } 7794 } 7795 inode_tree_del(inode); 7796 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7797 free: 7798 call_rcu(&inode->i_rcu, btrfs_i_callback); 7799 } 7800 7801 int btrfs_drop_inode(struct inode *inode) 7802 { 7803 struct btrfs_root *root = BTRFS_I(inode)->root; 7804 7805 if (root == NULL) 7806 return 1; 7807 7808 /* the snap/subvol tree is on deleting */ 7809 if (btrfs_root_refs(&root->root_item) == 0 && 7810 root != root->fs_info->tree_root) 7811 return 1; 7812 else 7813 return generic_drop_inode(inode); 7814 } 7815 7816 static void init_once(void *foo) 7817 { 7818 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7819 7820 inode_init_once(&ei->vfs_inode); 7821 } 7822 7823 void btrfs_destroy_cachep(void) 7824 { 7825 /* 7826 * Make sure all delayed rcu free inodes are flushed before we 7827 * destroy cache. 7828 */ 7829 rcu_barrier(); 7830 if (btrfs_inode_cachep) 7831 kmem_cache_destroy(btrfs_inode_cachep); 7832 if (btrfs_trans_handle_cachep) 7833 kmem_cache_destroy(btrfs_trans_handle_cachep); 7834 if (btrfs_transaction_cachep) 7835 kmem_cache_destroy(btrfs_transaction_cachep); 7836 if (btrfs_path_cachep) 7837 kmem_cache_destroy(btrfs_path_cachep); 7838 if (btrfs_free_space_cachep) 7839 kmem_cache_destroy(btrfs_free_space_cachep); 7840 if (btrfs_delalloc_work_cachep) 7841 kmem_cache_destroy(btrfs_delalloc_work_cachep); 7842 } 7843 7844 int btrfs_init_cachep(void) 7845 { 7846 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7847 sizeof(struct btrfs_inode), 0, 7848 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 7849 if (!btrfs_inode_cachep) 7850 goto fail; 7851 7852 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 7853 sizeof(struct btrfs_trans_handle), 0, 7854 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7855 if (!btrfs_trans_handle_cachep) 7856 goto fail; 7857 7858 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 7859 sizeof(struct btrfs_transaction), 0, 7860 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7861 if (!btrfs_transaction_cachep) 7862 goto fail; 7863 7864 btrfs_path_cachep = kmem_cache_create("btrfs_path", 7865 sizeof(struct btrfs_path), 0, 7866 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7867 if (!btrfs_path_cachep) 7868 goto fail; 7869 7870 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 7871 sizeof(struct btrfs_free_space), 0, 7872 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7873 if (!btrfs_free_space_cachep) 7874 goto fail; 7875 7876 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 7877 sizeof(struct btrfs_delalloc_work), 0, 7878 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 7879 NULL); 7880 if (!btrfs_delalloc_work_cachep) 7881 goto fail; 7882 7883 return 0; 7884 fail: 7885 btrfs_destroy_cachep(); 7886 return -ENOMEM; 7887 } 7888 7889 static int btrfs_getattr(struct vfsmount *mnt, 7890 struct dentry *dentry, struct kstat *stat) 7891 { 7892 u64 delalloc_bytes; 7893 struct inode *inode = dentry->d_inode; 7894 u32 blocksize = inode->i_sb->s_blocksize; 7895 7896 generic_fillattr(inode, stat); 7897 stat->dev = BTRFS_I(inode)->root->anon_dev; 7898 stat->blksize = PAGE_CACHE_SIZE; 7899 7900 spin_lock(&BTRFS_I(inode)->lock); 7901 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 7902 spin_unlock(&BTRFS_I(inode)->lock); 7903 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 7904 ALIGN(delalloc_bytes, blocksize)) >> 9; 7905 return 0; 7906 } 7907 7908 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 7909 struct inode *new_dir, struct dentry *new_dentry) 7910 { 7911 struct btrfs_trans_handle *trans; 7912 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7913 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7914 struct inode *new_inode = new_dentry->d_inode; 7915 struct inode *old_inode = old_dentry->d_inode; 7916 struct timespec ctime = CURRENT_TIME; 7917 u64 index = 0; 7918 u64 root_objectid; 7919 int ret; 7920 u64 old_ino = btrfs_ino(old_inode); 7921 7922 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 7923 return -EPERM; 7924 7925 /* we only allow rename subvolume link between subvolumes */ 7926 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 7927 return -EXDEV; 7928 7929 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 7930 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 7931 return -ENOTEMPTY; 7932 7933 if (S_ISDIR(old_inode->i_mode) && new_inode && 7934 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 7935 return -ENOTEMPTY; 7936 7937 7938 /* check for collisions, even if the name isn't there */ 7939 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino, 7940 new_dentry->d_name.name, 7941 new_dentry->d_name.len); 7942 7943 if (ret) { 7944 if (ret == -EEXIST) { 7945 /* we shouldn't get 7946 * eexist without a new_inode */ 7947 if (!new_inode) { 7948 WARN_ON(1); 7949 return ret; 7950 } 7951 } else { 7952 /* maybe -EOVERFLOW */ 7953 return ret; 7954 } 7955 } 7956 ret = 0; 7957 7958 /* 7959 * we're using rename to replace one file with another. 7960 * and the replacement file is large. Start IO on it now so 7961 * we don't add too much work to the end of the transaction 7962 */ 7963 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 7964 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 7965 filemap_flush(old_inode->i_mapping); 7966 7967 /* close the racy window with snapshot create/destroy ioctl */ 7968 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7969 down_read(&root->fs_info->subvol_sem); 7970 /* 7971 * We want to reserve the absolute worst case amount of items. So if 7972 * both inodes are subvols and we need to unlink them then that would 7973 * require 4 item modifications, but if they are both normal inodes it 7974 * would require 5 item modifications, so we'll assume their normal 7975 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 7976 * should cover the worst case number of items we'll modify. 7977 */ 7978 trans = btrfs_start_transaction(root, 11); 7979 if (IS_ERR(trans)) { 7980 ret = PTR_ERR(trans); 7981 goto out_notrans; 7982 } 7983 7984 if (dest != root) 7985 btrfs_record_root_in_trans(trans, dest); 7986 7987 ret = btrfs_set_inode_index(new_dir, &index); 7988 if (ret) 7989 goto out_fail; 7990 7991 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7992 /* force full log commit if subvolume involved. */ 7993 root->fs_info->last_trans_log_full_commit = trans->transid; 7994 } else { 7995 ret = btrfs_insert_inode_ref(trans, dest, 7996 new_dentry->d_name.name, 7997 new_dentry->d_name.len, 7998 old_ino, 7999 btrfs_ino(new_dir), index); 8000 if (ret) 8001 goto out_fail; 8002 /* 8003 * this is an ugly little race, but the rename is required 8004 * to make sure that if we crash, the inode is either at the 8005 * old name or the new one. pinning the log transaction lets 8006 * us make sure we don't allow a log commit to come in after 8007 * we unlink the name but before we add the new name back in. 8008 */ 8009 btrfs_pin_log_trans(root); 8010 } 8011 /* 8012 * make sure the inode gets flushed if it is replacing 8013 * something. 8014 */ 8015 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8016 btrfs_add_ordered_operation(trans, root, old_inode); 8017 8018 inode_inc_iversion(old_dir); 8019 inode_inc_iversion(new_dir); 8020 inode_inc_iversion(old_inode); 8021 old_dir->i_ctime = old_dir->i_mtime = ctime; 8022 new_dir->i_ctime = new_dir->i_mtime = ctime; 8023 old_inode->i_ctime = ctime; 8024 8025 if (old_dentry->d_parent != new_dentry->d_parent) 8026 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8027 8028 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8029 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8030 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8031 old_dentry->d_name.name, 8032 old_dentry->d_name.len); 8033 } else { 8034 ret = __btrfs_unlink_inode(trans, root, old_dir, 8035 old_dentry->d_inode, 8036 old_dentry->d_name.name, 8037 old_dentry->d_name.len); 8038 if (!ret) 8039 ret = btrfs_update_inode(trans, root, old_inode); 8040 } 8041 if (ret) { 8042 btrfs_abort_transaction(trans, root, ret); 8043 goto out_fail; 8044 } 8045 8046 if (new_inode) { 8047 inode_inc_iversion(new_inode); 8048 new_inode->i_ctime = CURRENT_TIME; 8049 if (unlikely(btrfs_ino(new_inode) == 8050 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8051 root_objectid = BTRFS_I(new_inode)->location.objectid; 8052 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8053 root_objectid, 8054 new_dentry->d_name.name, 8055 new_dentry->d_name.len); 8056 BUG_ON(new_inode->i_nlink == 0); 8057 } else { 8058 ret = btrfs_unlink_inode(trans, dest, new_dir, 8059 new_dentry->d_inode, 8060 new_dentry->d_name.name, 8061 new_dentry->d_name.len); 8062 } 8063 if (!ret && new_inode->i_nlink == 0) 8064 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8065 if (ret) { 8066 btrfs_abort_transaction(trans, root, ret); 8067 goto out_fail; 8068 } 8069 } 8070 8071 ret = btrfs_add_link(trans, new_dir, old_inode, 8072 new_dentry->d_name.name, 8073 new_dentry->d_name.len, 0, index); 8074 if (ret) { 8075 btrfs_abort_transaction(trans, root, ret); 8076 goto out_fail; 8077 } 8078 8079 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8080 struct dentry *parent = new_dentry->d_parent; 8081 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8082 btrfs_end_log_trans(root); 8083 } 8084 out_fail: 8085 btrfs_end_transaction(trans, root); 8086 out_notrans: 8087 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8088 up_read(&root->fs_info->subvol_sem); 8089 8090 return ret; 8091 } 8092 8093 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8094 { 8095 struct btrfs_delalloc_work *delalloc_work; 8096 8097 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8098 work); 8099 if (delalloc_work->wait) 8100 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1); 8101 else 8102 filemap_flush(delalloc_work->inode->i_mapping); 8103 8104 if (delalloc_work->delay_iput) 8105 btrfs_add_delayed_iput(delalloc_work->inode); 8106 else 8107 iput(delalloc_work->inode); 8108 complete(&delalloc_work->completion); 8109 } 8110 8111 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8112 int wait, int delay_iput) 8113 { 8114 struct btrfs_delalloc_work *work; 8115 8116 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8117 if (!work) 8118 return NULL; 8119 8120 init_completion(&work->completion); 8121 INIT_LIST_HEAD(&work->list); 8122 work->inode = inode; 8123 work->wait = wait; 8124 work->delay_iput = delay_iput; 8125 work->work.func = btrfs_run_delalloc_work; 8126 8127 return work; 8128 } 8129 8130 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8131 { 8132 wait_for_completion(&work->completion); 8133 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8134 } 8135 8136 /* 8137 * some fairly slow code that needs optimization. This walks the list 8138 * of all the inodes with pending delalloc and forces them to disk. 8139 */ 8140 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8141 { 8142 struct btrfs_inode *binode; 8143 struct inode *inode; 8144 struct btrfs_delalloc_work *work, *next; 8145 struct list_head works; 8146 struct list_head splice; 8147 int ret = 0; 8148 8149 INIT_LIST_HEAD(&works); 8150 INIT_LIST_HEAD(&splice); 8151 8152 spin_lock(&root->delalloc_lock); 8153 list_splice_init(&root->delalloc_inodes, &splice); 8154 while (!list_empty(&splice)) { 8155 binode = list_entry(splice.next, struct btrfs_inode, 8156 delalloc_inodes); 8157 8158 list_move_tail(&binode->delalloc_inodes, 8159 &root->delalloc_inodes); 8160 inode = igrab(&binode->vfs_inode); 8161 if (!inode) { 8162 cond_resched_lock(&root->delalloc_lock); 8163 continue; 8164 } 8165 spin_unlock(&root->delalloc_lock); 8166 8167 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8168 if (unlikely(!work)) { 8169 ret = -ENOMEM; 8170 goto out; 8171 } 8172 list_add_tail(&work->list, &works); 8173 btrfs_queue_worker(&root->fs_info->flush_workers, 8174 &work->work); 8175 8176 cond_resched(); 8177 spin_lock(&root->delalloc_lock); 8178 } 8179 spin_unlock(&root->delalloc_lock); 8180 8181 list_for_each_entry_safe(work, next, &works, list) { 8182 list_del_init(&work->list); 8183 btrfs_wait_and_free_delalloc_work(work); 8184 } 8185 return 0; 8186 out: 8187 list_for_each_entry_safe(work, next, &works, list) { 8188 list_del_init(&work->list); 8189 btrfs_wait_and_free_delalloc_work(work); 8190 } 8191 8192 if (!list_empty_careful(&splice)) { 8193 spin_lock(&root->delalloc_lock); 8194 list_splice_tail(&splice, &root->delalloc_inodes); 8195 spin_unlock(&root->delalloc_lock); 8196 } 8197 return ret; 8198 } 8199 8200 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8201 { 8202 int ret; 8203 8204 if (root->fs_info->sb->s_flags & MS_RDONLY) 8205 return -EROFS; 8206 8207 ret = __start_delalloc_inodes(root, delay_iput); 8208 /* 8209 * the filemap_flush will queue IO into the worker threads, but 8210 * we have to make sure the IO is actually started and that 8211 * ordered extents get created before we return 8212 */ 8213 atomic_inc(&root->fs_info->async_submit_draining); 8214 while (atomic_read(&root->fs_info->nr_async_submits) || 8215 atomic_read(&root->fs_info->async_delalloc_pages)) { 8216 wait_event(root->fs_info->async_submit_wait, 8217 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8218 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8219 } 8220 atomic_dec(&root->fs_info->async_submit_draining); 8221 return ret; 8222 } 8223 8224 int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info, 8225 int delay_iput) 8226 { 8227 struct btrfs_root *root; 8228 struct list_head splice; 8229 int ret; 8230 8231 if (fs_info->sb->s_flags & MS_RDONLY) 8232 return -EROFS; 8233 8234 INIT_LIST_HEAD(&splice); 8235 8236 spin_lock(&fs_info->delalloc_root_lock); 8237 list_splice_init(&fs_info->delalloc_roots, &splice); 8238 while (!list_empty(&splice)) { 8239 root = list_first_entry(&splice, struct btrfs_root, 8240 delalloc_root); 8241 root = btrfs_grab_fs_root(root); 8242 BUG_ON(!root); 8243 list_move_tail(&root->delalloc_root, 8244 &fs_info->delalloc_roots); 8245 spin_unlock(&fs_info->delalloc_root_lock); 8246 8247 ret = __start_delalloc_inodes(root, delay_iput); 8248 btrfs_put_fs_root(root); 8249 if (ret) 8250 goto out; 8251 8252 spin_lock(&fs_info->delalloc_root_lock); 8253 } 8254 spin_unlock(&fs_info->delalloc_root_lock); 8255 8256 atomic_inc(&fs_info->async_submit_draining); 8257 while (atomic_read(&fs_info->nr_async_submits) || 8258 atomic_read(&fs_info->async_delalloc_pages)) { 8259 wait_event(fs_info->async_submit_wait, 8260 (atomic_read(&fs_info->nr_async_submits) == 0 && 8261 atomic_read(&fs_info->async_delalloc_pages) == 0)); 8262 } 8263 atomic_dec(&fs_info->async_submit_draining); 8264 return 0; 8265 out: 8266 if (!list_empty_careful(&splice)) { 8267 spin_lock(&fs_info->delalloc_root_lock); 8268 list_splice_tail(&splice, &fs_info->delalloc_roots); 8269 spin_unlock(&fs_info->delalloc_root_lock); 8270 } 8271 return ret; 8272 } 8273 8274 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8275 const char *symname) 8276 { 8277 struct btrfs_trans_handle *trans; 8278 struct btrfs_root *root = BTRFS_I(dir)->root; 8279 struct btrfs_path *path; 8280 struct btrfs_key key; 8281 struct inode *inode = NULL; 8282 int err; 8283 int drop_inode = 0; 8284 u64 objectid; 8285 u64 index = 0 ; 8286 int name_len; 8287 int datasize; 8288 unsigned long ptr; 8289 struct btrfs_file_extent_item *ei; 8290 struct extent_buffer *leaf; 8291 8292 name_len = strlen(symname) + 1; 8293 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8294 return -ENAMETOOLONG; 8295 8296 /* 8297 * 2 items for inode item and ref 8298 * 2 items for dir items 8299 * 1 item for xattr if selinux is on 8300 */ 8301 trans = btrfs_start_transaction(root, 5); 8302 if (IS_ERR(trans)) 8303 return PTR_ERR(trans); 8304 8305 err = btrfs_find_free_ino(root, &objectid); 8306 if (err) 8307 goto out_unlock; 8308 8309 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8310 dentry->d_name.len, btrfs_ino(dir), objectid, 8311 S_IFLNK|S_IRWXUGO, &index); 8312 if (IS_ERR(inode)) { 8313 err = PTR_ERR(inode); 8314 goto out_unlock; 8315 } 8316 8317 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8318 if (err) { 8319 drop_inode = 1; 8320 goto out_unlock; 8321 } 8322 8323 /* 8324 * If the active LSM wants to access the inode during 8325 * d_instantiate it needs these. Smack checks to see 8326 * if the filesystem supports xattrs by looking at the 8327 * ops vector. 8328 */ 8329 inode->i_fop = &btrfs_file_operations; 8330 inode->i_op = &btrfs_file_inode_operations; 8331 8332 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8333 if (err) 8334 drop_inode = 1; 8335 else { 8336 inode->i_mapping->a_ops = &btrfs_aops; 8337 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8338 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8339 } 8340 if (drop_inode) 8341 goto out_unlock; 8342 8343 path = btrfs_alloc_path(); 8344 if (!path) { 8345 err = -ENOMEM; 8346 drop_inode = 1; 8347 goto out_unlock; 8348 } 8349 key.objectid = btrfs_ino(inode); 8350 key.offset = 0; 8351 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8352 datasize = btrfs_file_extent_calc_inline_size(name_len); 8353 err = btrfs_insert_empty_item(trans, root, path, &key, 8354 datasize); 8355 if (err) { 8356 drop_inode = 1; 8357 btrfs_free_path(path); 8358 goto out_unlock; 8359 } 8360 leaf = path->nodes[0]; 8361 ei = btrfs_item_ptr(leaf, path->slots[0], 8362 struct btrfs_file_extent_item); 8363 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8364 btrfs_set_file_extent_type(leaf, ei, 8365 BTRFS_FILE_EXTENT_INLINE); 8366 btrfs_set_file_extent_encryption(leaf, ei, 0); 8367 btrfs_set_file_extent_compression(leaf, ei, 0); 8368 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8369 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8370 8371 ptr = btrfs_file_extent_inline_start(ei); 8372 write_extent_buffer(leaf, symname, ptr, name_len); 8373 btrfs_mark_buffer_dirty(leaf); 8374 btrfs_free_path(path); 8375 8376 inode->i_op = &btrfs_symlink_inode_operations; 8377 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8378 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8379 inode_set_bytes(inode, name_len); 8380 btrfs_i_size_write(inode, name_len - 1); 8381 err = btrfs_update_inode(trans, root, inode); 8382 if (err) 8383 drop_inode = 1; 8384 8385 out_unlock: 8386 if (!err) 8387 d_instantiate(dentry, inode); 8388 btrfs_end_transaction(trans, root); 8389 if (drop_inode) { 8390 inode_dec_link_count(inode); 8391 iput(inode); 8392 } 8393 btrfs_btree_balance_dirty(root); 8394 return err; 8395 } 8396 8397 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8398 u64 start, u64 num_bytes, u64 min_size, 8399 loff_t actual_len, u64 *alloc_hint, 8400 struct btrfs_trans_handle *trans) 8401 { 8402 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8403 struct extent_map *em; 8404 struct btrfs_root *root = BTRFS_I(inode)->root; 8405 struct btrfs_key ins; 8406 u64 cur_offset = start; 8407 u64 i_size; 8408 u64 cur_bytes; 8409 int ret = 0; 8410 bool own_trans = true; 8411 8412 if (trans) 8413 own_trans = false; 8414 while (num_bytes > 0) { 8415 if (own_trans) { 8416 trans = btrfs_start_transaction(root, 3); 8417 if (IS_ERR(trans)) { 8418 ret = PTR_ERR(trans); 8419 break; 8420 } 8421 } 8422 8423 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8424 cur_bytes = max(cur_bytes, min_size); 8425 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 8426 *alloc_hint, &ins, 1); 8427 if (ret) { 8428 if (own_trans) 8429 btrfs_end_transaction(trans, root); 8430 break; 8431 } 8432 8433 ret = insert_reserved_file_extent(trans, inode, 8434 cur_offset, ins.objectid, 8435 ins.offset, ins.offset, 8436 ins.offset, 0, 0, 0, 8437 BTRFS_FILE_EXTENT_PREALLOC); 8438 if (ret) { 8439 btrfs_abort_transaction(trans, root, ret); 8440 if (own_trans) 8441 btrfs_end_transaction(trans, root); 8442 break; 8443 } 8444 btrfs_drop_extent_cache(inode, cur_offset, 8445 cur_offset + ins.offset -1, 0); 8446 8447 em = alloc_extent_map(); 8448 if (!em) { 8449 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8450 &BTRFS_I(inode)->runtime_flags); 8451 goto next; 8452 } 8453 8454 em->start = cur_offset; 8455 em->orig_start = cur_offset; 8456 em->len = ins.offset; 8457 em->block_start = ins.objectid; 8458 em->block_len = ins.offset; 8459 em->orig_block_len = ins.offset; 8460 em->ram_bytes = ins.offset; 8461 em->bdev = root->fs_info->fs_devices->latest_bdev; 8462 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8463 em->generation = trans->transid; 8464 8465 while (1) { 8466 write_lock(&em_tree->lock); 8467 ret = add_extent_mapping(em_tree, em, 1); 8468 write_unlock(&em_tree->lock); 8469 if (ret != -EEXIST) 8470 break; 8471 btrfs_drop_extent_cache(inode, cur_offset, 8472 cur_offset + ins.offset - 1, 8473 0); 8474 } 8475 free_extent_map(em); 8476 next: 8477 num_bytes -= ins.offset; 8478 cur_offset += ins.offset; 8479 *alloc_hint = ins.objectid + ins.offset; 8480 8481 inode_inc_iversion(inode); 8482 inode->i_ctime = CURRENT_TIME; 8483 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8484 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8485 (actual_len > inode->i_size) && 8486 (cur_offset > inode->i_size)) { 8487 if (cur_offset > actual_len) 8488 i_size = actual_len; 8489 else 8490 i_size = cur_offset; 8491 i_size_write(inode, i_size); 8492 btrfs_ordered_update_i_size(inode, i_size, NULL); 8493 } 8494 8495 ret = btrfs_update_inode(trans, root, inode); 8496 8497 if (ret) { 8498 btrfs_abort_transaction(trans, root, ret); 8499 if (own_trans) 8500 btrfs_end_transaction(trans, root); 8501 break; 8502 } 8503 8504 if (own_trans) 8505 btrfs_end_transaction(trans, root); 8506 } 8507 return ret; 8508 } 8509 8510 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8511 u64 start, u64 num_bytes, u64 min_size, 8512 loff_t actual_len, u64 *alloc_hint) 8513 { 8514 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8515 min_size, actual_len, alloc_hint, 8516 NULL); 8517 } 8518 8519 int btrfs_prealloc_file_range_trans(struct inode *inode, 8520 struct btrfs_trans_handle *trans, int mode, 8521 u64 start, u64 num_bytes, u64 min_size, 8522 loff_t actual_len, u64 *alloc_hint) 8523 { 8524 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8525 min_size, actual_len, alloc_hint, trans); 8526 } 8527 8528 static int btrfs_set_page_dirty(struct page *page) 8529 { 8530 return __set_page_dirty_nobuffers(page); 8531 } 8532 8533 static int btrfs_permission(struct inode *inode, int mask) 8534 { 8535 struct btrfs_root *root = BTRFS_I(inode)->root; 8536 umode_t mode = inode->i_mode; 8537 8538 if (mask & MAY_WRITE && 8539 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8540 if (btrfs_root_readonly(root)) 8541 return -EROFS; 8542 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8543 return -EACCES; 8544 } 8545 return generic_permission(inode, mask); 8546 } 8547 8548 static const struct inode_operations btrfs_dir_inode_operations = { 8549 .getattr = btrfs_getattr, 8550 .lookup = btrfs_lookup, 8551 .create = btrfs_create, 8552 .unlink = btrfs_unlink, 8553 .link = btrfs_link, 8554 .mkdir = btrfs_mkdir, 8555 .rmdir = btrfs_rmdir, 8556 .rename = btrfs_rename, 8557 .symlink = btrfs_symlink, 8558 .setattr = btrfs_setattr, 8559 .mknod = btrfs_mknod, 8560 .setxattr = btrfs_setxattr, 8561 .getxattr = btrfs_getxattr, 8562 .listxattr = btrfs_listxattr, 8563 .removexattr = btrfs_removexattr, 8564 .permission = btrfs_permission, 8565 .get_acl = btrfs_get_acl, 8566 }; 8567 static const struct inode_operations btrfs_dir_ro_inode_operations = { 8568 .lookup = btrfs_lookup, 8569 .permission = btrfs_permission, 8570 .get_acl = btrfs_get_acl, 8571 }; 8572 8573 static const struct file_operations btrfs_dir_file_operations = { 8574 .llseek = generic_file_llseek, 8575 .read = generic_read_dir, 8576 .iterate = btrfs_real_readdir, 8577 .unlocked_ioctl = btrfs_ioctl, 8578 #ifdef CONFIG_COMPAT 8579 .compat_ioctl = btrfs_ioctl, 8580 #endif 8581 .release = btrfs_release_file, 8582 .fsync = btrfs_sync_file, 8583 }; 8584 8585 static struct extent_io_ops btrfs_extent_io_ops = { 8586 .fill_delalloc = run_delalloc_range, 8587 .submit_bio_hook = btrfs_submit_bio_hook, 8588 .merge_bio_hook = btrfs_merge_bio_hook, 8589 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 8590 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 8591 .writepage_start_hook = btrfs_writepage_start_hook, 8592 .set_bit_hook = btrfs_set_bit_hook, 8593 .clear_bit_hook = btrfs_clear_bit_hook, 8594 .merge_extent_hook = btrfs_merge_extent_hook, 8595 .split_extent_hook = btrfs_split_extent_hook, 8596 }; 8597 8598 /* 8599 * btrfs doesn't support the bmap operation because swapfiles 8600 * use bmap to make a mapping of extents in the file. They assume 8601 * these extents won't change over the life of the file and they 8602 * use the bmap result to do IO directly to the drive. 8603 * 8604 * the btrfs bmap call would return logical addresses that aren't 8605 * suitable for IO and they also will change frequently as COW 8606 * operations happen. So, swapfile + btrfs == corruption. 8607 * 8608 * For now we're avoiding this by dropping bmap. 8609 */ 8610 static const struct address_space_operations btrfs_aops = { 8611 .readpage = btrfs_readpage, 8612 .writepage = btrfs_writepage, 8613 .writepages = btrfs_writepages, 8614 .readpages = btrfs_readpages, 8615 .direct_IO = btrfs_direct_IO, 8616 .invalidatepage = btrfs_invalidatepage, 8617 .releasepage = btrfs_releasepage, 8618 .set_page_dirty = btrfs_set_page_dirty, 8619 .error_remove_page = generic_error_remove_page, 8620 }; 8621 8622 static const struct address_space_operations btrfs_symlink_aops = { 8623 .readpage = btrfs_readpage, 8624 .writepage = btrfs_writepage, 8625 .invalidatepage = btrfs_invalidatepage, 8626 .releasepage = btrfs_releasepage, 8627 }; 8628 8629 static const struct inode_operations btrfs_file_inode_operations = { 8630 .getattr = btrfs_getattr, 8631 .setattr = btrfs_setattr, 8632 .setxattr = btrfs_setxattr, 8633 .getxattr = btrfs_getxattr, 8634 .listxattr = btrfs_listxattr, 8635 .removexattr = btrfs_removexattr, 8636 .permission = btrfs_permission, 8637 .fiemap = btrfs_fiemap, 8638 .get_acl = btrfs_get_acl, 8639 .update_time = btrfs_update_time, 8640 }; 8641 static const struct inode_operations btrfs_special_inode_operations = { 8642 .getattr = btrfs_getattr, 8643 .setattr = btrfs_setattr, 8644 .permission = btrfs_permission, 8645 .setxattr = btrfs_setxattr, 8646 .getxattr = btrfs_getxattr, 8647 .listxattr = btrfs_listxattr, 8648 .removexattr = btrfs_removexattr, 8649 .get_acl = btrfs_get_acl, 8650 .update_time = btrfs_update_time, 8651 }; 8652 static const struct inode_operations btrfs_symlink_inode_operations = { 8653 .readlink = generic_readlink, 8654 .follow_link = page_follow_link_light, 8655 .put_link = page_put_link, 8656 .getattr = btrfs_getattr, 8657 .setattr = btrfs_setattr, 8658 .permission = btrfs_permission, 8659 .setxattr = btrfs_setxattr, 8660 .getxattr = btrfs_getxattr, 8661 .listxattr = btrfs_listxattr, 8662 .removexattr = btrfs_removexattr, 8663 .get_acl = btrfs_get_acl, 8664 .update_time = btrfs_update_time, 8665 }; 8666 8667 const struct dentry_operations btrfs_dentry_operations = { 8668 .d_delete = btrfs_dentry_delete, 8669 .d_release = btrfs_dentry_release, 8670 }; 8671