xref: /openbmc/linux/fs/btrfs/extent-io-tree.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/slab.h>
4 #include <trace/events/btrfs.h>
5 #include "messages.h"
6 #include "ctree.h"
7 #include "extent-io-tree.h"
8 #include "btrfs_inode.h"
9 #include "misc.h"
10 
11 static struct kmem_cache *extent_state_cache;
12 
extent_state_in_tree(const struct extent_state * state)13 static inline bool extent_state_in_tree(const struct extent_state *state)
14 {
15 	return !RB_EMPTY_NODE(&state->rb_node);
16 }
17 
18 #ifdef CONFIG_BTRFS_DEBUG
19 static LIST_HEAD(states);
20 static DEFINE_SPINLOCK(leak_lock);
21 
btrfs_leak_debug_add_state(struct extent_state * state)22 static inline void btrfs_leak_debug_add_state(struct extent_state *state)
23 {
24 	unsigned long flags;
25 
26 	spin_lock_irqsave(&leak_lock, flags);
27 	list_add(&state->leak_list, &states);
28 	spin_unlock_irqrestore(&leak_lock, flags);
29 }
30 
btrfs_leak_debug_del_state(struct extent_state * state)31 static inline void btrfs_leak_debug_del_state(struct extent_state *state)
32 {
33 	unsigned long flags;
34 
35 	spin_lock_irqsave(&leak_lock, flags);
36 	list_del(&state->leak_list);
37 	spin_unlock_irqrestore(&leak_lock, flags);
38 }
39 
btrfs_extent_state_leak_debug_check(void)40 static inline void btrfs_extent_state_leak_debug_check(void)
41 {
42 	struct extent_state *state;
43 
44 	while (!list_empty(&states)) {
45 		state = list_entry(states.next, struct extent_state, leak_list);
46 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
47 		       state->start, state->end, state->state,
48 		       extent_state_in_tree(state),
49 		       refcount_read(&state->refs));
50 		list_del(&state->leak_list);
51 		kmem_cache_free(extent_state_cache, state);
52 	}
53 }
54 
55 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
56 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)57 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
58 						       struct extent_io_tree *tree,
59 						       u64 start, u64 end)
60 {
61 	struct btrfs_inode *inode = tree->inode;
62 	u64 isize;
63 
64 	if (!inode)
65 		return;
66 
67 	isize = i_size_read(&inode->vfs_inode);
68 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
69 		btrfs_debug_rl(inode->root->fs_info,
70 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
71 			caller, btrfs_ino(inode), isize, start, end);
72 	}
73 }
74 #else
75 #define btrfs_leak_debug_add_state(state)		do {} while (0)
76 #define btrfs_leak_debug_del_state(state)		do {} while (0)
77 #define btrfs_extent_state_leak_debug_check()		do {} while (0)
78 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
79 #endif
80 
81 /*
82  * For the file_extent_tree, we want to hold the inode lock when we lookup and
83  * update the disk_i_size, but lockdep will complain because our io_tree we hold
84  * the tree lock and get the inode lock when setting delalloc.  These two things
85  * are unrelated, so make a class for the file_extent_tree so we don't get the
86  * two locking patterns mixed up.
87  */
88 static struct lock_class_key file_extent_tree_class;
89 
90 struct tree_entry {
91 	u64 start;
92 	u64 end;
93 	struct rb_node rb_node;
94 };
95 
extent_io_tree_init(struct btrfs_fs_info * fs_info,struct extent_io_tree * tree,unsigned int owner)96 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
97 			 struct extent_io_tree *tree, unsigned int owner)
98 {
99 	tree->fs_info = fs_info;
100 	tree->state = RB_ROOT;
101 	spin_lock_init(&tree->lock);
102 	tree->inode = NULL;
103 	tree->owner = owner;
104 	if (owner == IO_TREE_INODE_FILE_EXTENT)
105 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
106 }
107 
extent_io_tree_release(struct extent_io_tree * tree)108 void extent_io_tree_release(struct extent_io_tree *tree)
109 {
110 	spin_lock(&tree->lock);
111 	/*
112 	 * Do a single barrier for the waitqueue_active check here, the state
113 	 * of the waitqueue should not change once extent_io_tree_release is
114 	 * called.
115 	 */
116 	smp_mb();
117 	while (!RB_EMPTY_ROOT(&tree->state)) {
118 		struct rb_node *node;
119 		struct extent_state *state;
120 
121 		node = rb_first(&tree->state);
122 		state = rb_entry(node, struct extent_state, rb_node);
123 		rb_erase(&state->rb_node, &tree->state);
124 		RB_CLEAR_NODE(&state->rb_node);
125 		/*
126 		 * btree io trees aren't supposed to have tasks waiting for
127 		 * changes in the flags of extent states ever.
128 		 */
129 		ASSERT(!waitqueue_active(&state->wq));
130 		free_extent_state(state);
131 
132 		cond_resched_lock(&tree->lock);
133 	}
134 	spin_unlock(&tree->lock);
135 }
136 
alloc_extent_state(gfp_t mask)137 static struct extent_state *alloc_extent_state(gfp_t mask)
138 {
139 	struct extent_state *state;
140 
141 	/*
142 	 * The given mask might be not appropriate for the slab allocator,
143 	 * drop the unsupported bits
144 	 */
145 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
146 	state = kmem_cache_alloc(extent_state_cache, mask);
147 	if (!state)
148 		return state;
149 	state->state = 0;
150 	RB_CLEAR_NODE(&state->rb_node);
151 	btrfs_leak_debug_add_state(state);
152 	refcount_set(&state->refs, 1);
153 	init_waitqueue_head(&state->wq);
154 	trace_alloc_extent_state(state, mask, _RET_IP_);
155 	return state;
156 }
157 
alloc_extent_state_atomic(struct extent_state * prealloc)158 static struct extent_state *alloc_extent_state_atomic(struct extent_state *prealloc)
159 {
160 	if (!prealloc)
161 		prealloc = alloc_extent_state(GFP_ATOMIC);
162 
163 	return prealloc;
164 }
165 
free_extent_state(struct extent_state * state)166 void free_extent_state(struct extent_state *state)
167 {
168 	if (!state)
169 		return;
170 	if (refcount_dec_and_test(&state->refs)) {
171 		WARN_ON(extent_state_in_tree(state));
172 		btrfs_leak_debug_del_state(state);
173 		trace_free_extent_state(state, _RET_IP_);
174 		kmem_cache_free(extent_state_cache, state);
175 	}
176 }
177 
add_extent_changeset(struct extent_state * state,u32 bits,struct extent_changeset * changeset,int set)178 static int add_extent_changeset(struct extent_state *state, u32 bits,
179 				 struct extent_changeset *changeset,
180 				 int set)
181 {
182 	int ret;
183 
184 	if (!changeset)
185 		return 0;
186 	if (set && (state->state & bits) == bits)
187 		return 0;
188 	if (!set && (state->state & bits) == 0)
189 		return 0;
190 	changeset->bytes_changed += state->end - state->start + 1;
191 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
192 			GFP_ATOMIC);
193 	return ret;
194 }
195 
next_state(struct extent_state * state)196 static inline struct extent_state *next_state(struct extent_state *state)
197 {
198 	struct rb_node *next = rb_next(&state->rb_node);
199 
200 	if (next)
201 		return rb_entry(next, struct extent_state, rb_node);
202 	else
203 		return NULL;
204 }
205 
prev_state(struct extent_state * state)206 static inline struct extent_state *prev_state(struct extent_state *state)
207 {
208 	struct rb_node *next = rb_prev(&state->rb_node);
209 
210 	if (next)
211 		return rb_entry(next, struct extent_state, rb_node);
212 	else
213 		return NULL;
214 }
215 
216 /*
217  * Search @tree for an entry that contains @offset. Such entry would have
218  * entry->start <= offset && entry->end >= offset.
219  *
220  * @tree:       the tree to search
221  * @offset:     offset that should fall within an entry in @tree
222  * @node_ret:   pointer where new node should be anchored (used when inserting an
223  *	        entry in the tree)
224  * @parent_ret: points to entry which would have been the parent of the entry,
225  *               containing @offset
226  *
227  * Return a pointer to the entry that contains @offset byte address and don't change
228  * @node_ret and @parent_ret.
229  *
230  * If no such entry exists, return pointer to entry that ends before @offset
231  * and fill parameters @node_ret and @parent_ret, ie. does not return NULL.
232  */
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** node_ret,struct rb_node ** parent_ret)233 static inline struct extent_state *tree_search_for_insert(struct extent_io_tree *tree,
234 							  u64 offset,
235 							  struct rb_node ***node_ret,
236 							  struct rb_node **parent_ret)
237 {
238 	struct rb_root *root = &tree->state;
239 	struct rb_node **node = &root->rb_node;
240 	struct rb_node *prev = NULL;
241 	struct extent_state *entry = NULL;
242 
243 	while (*node) {
244 		prev = *node;
245 		entry = rb_entry(prev, struct extent_state, rb_node);
246 
247 		if (offset < entry->start)
248 			node = &(*node)->rb_left;
249 		else if (offset > entry->end)
250 			node = &(*node)->rb_right;
251 		else
252 			return entry;
253 	}
254 
255 	if (node_ret)
256 		*node_ret = node;
257 	if (parent_ret)
258 		*parent_ret = prev;
259 
260 	/* Search neighbors until we find the first one past the end */
261 	while (entry && offset > entry->end)
262 		entry = next_state(entry);
263 
264 	return entry;
265 }
266 
267 /*
268  * Search offset in the tree or fill neighbor rbtree node pointers.
269  *
270  * @tree:      the tree to search
271  * @offset:    offset that should fall within an entry in @tree
272  * @next_ret:  pointer to the first entry whose range ends after @offset
273  * @prev_ret:  pointer to the first entry whose range begins before @offset
274  *
275  * Return a pointer to the entry that contains @offset byte address. If no
276  * such entry exists, then return NULL and fill @prev_ret and @next_ret.
277  * Otherwise return the found entry and other pointers are left untouched.
278  */
tree_search_prev_next(struct extent_io_tree * tree,u64 offset,struct extent_state ** prev_ret,struct extent_state ** next_ret)279 static struct extent_state *tree_search_prev_next(struct extent_io_tree *tree,
280 						  u64 offset,
281 						  struct extent_state **prev_ret,
282 						  struct extent_state **next_ret)
283 {
284 	struct rb_root *root = &tree->state;
285 	struct rb_node **node = &root->rb_node;
286 	struct extent_state *orig_prev;
287 	struct extent_state *entry = NULL;
288 
289 	ASSERT(prev_ret);
290 	ASSERT(next_ret);
291 
292 	while (*node) {
293 		entry = rb_entry(*node, struct extent_state, rb_node);
294 
295 		if (offset < entry->start)
296 			node = &(*node)->rb_left;
297 		else if (offset > entry->end)
298 			node = &(*node)->rb_right;
299 		else
300 			return entry;
301 	}
302 
303 	orig_prev = entry;
304 	while (entry && offset > entry->end)
305 		entry = next_state(entry);
306 	*next_ret = entry;
307 	entry = orig_prev;
308 
309 	while (entry && offset < entry->start)
310 		entry = prev_state(entry);
311 	*prev_ret = entry;
312 
313 	return NULL;
314 }
315 
316 /*
317  * Inexact rb-tree search, return the next entry if @offset is not found
318  */
tree_search(struct extent_io_tree * tree,u64 offset)319 static inline struct extent_state *tree_search(struct extent_io_tree *tree, u64 offset)
320 {
321 	return tree_search_for_insert(tree, offset, NULL, NULL);
322 }
323 
extent_io_tree_panic(struct extent_io_tree * tree,int err)324 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
325 {
326 	btrfs_panic(tree->fs_info, err,
327 	"locking error: extent tree was modified by another thread while locked");
328 }
329 
330 /*
331  * Utility function to look for merge candidates inside a given range.  Any
332  * extents with matching state are merged together into a single extent in the
333  * tree.  Extents with EXTENT_IO in their state field are not merged because
334  * the end_io handlers need to be able to do operations on them without
335  * sleeping (or doing allocations/splits).
336  *
337  * This should be called with the tree lock held.
338  */
merge_state(struct extent_io_tree * tree,struct extent_state * state)339 static void merge_state(struct extent_io_tree *tree, struct extent_state *state)
340 {
341 	struct extent_state *other;
342 
343 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
344 		return;
345 
346 	other = prev_state(state);
347 	if (other && other->end == state->start - 1 &&
348 	    other->state == state->state) {
349 		if (tree->inode)
350 			btrfs_merge_delalloc_extent(tree->inode, state, other);
351 		state->start = other->start;
352 		rb_erase(&other->rb_node, &tree->state);
353 		RB_CLEAR_NODE(&other->rb_node);
354 		free_extent_state(other);
355 	}
356 	other = next_state(state);
357 	if (other && other->start == state->end + 1 &&
358 	    other->state == state->state) {
359 		if (tree->inode)
360 			btrfs_merge_delalloc_extent(tree->inode, state, other);
361 		state->end = other->end;
362 		rb_erase(&other->rb_node, &tree->state);
363 		RB_CLEAR_NODE(&other->rb_node);
364 		free_extent_state(other);
365 	}
366 }
367 
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,u32 bits,struct extent_changeset * changeset)368 static void set_state_bits(struct extent_io_tree *tree,
369 			   struct extent_state *state,
370 			   u32 bits, struct extent_changeset *changeset)
371 {
372 	u32 bits_to_set = bits & ~EXTENT_CTLBITS;
373 	int ret;
374 
375 	if (tree->inode)
376 		btrfs_set_delalloc_extent(tree->inode, state, bits);
377 
378 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
379 	BUG_ON(ret < 0);
380 	state->state |= bits_to_set;
381 }
382 
383 /*
384  * Insert an extent_state struct into the tree.  'bits' are set on the
385  * struct before it is inserted.
386  *
387  * This may return -EEXIST if the extent is already there, in which case the
388  * state struct is freed.
389  *
390  * The tree lock is not taken internally.  This is a utility function and
391  * probably isn't what you want to call (see set/clear_extent_bit).
392  */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u32 bits,struct extent_changeset * changeset)393 static int insert_state(struct extent_io_tree *tree,
394 			struct extent_state *state,
395 			u32 bits, struct extent_changeset *changeset)
396 {
397 	struct rb_node **node;
398 	struct rb_node *parent = NULL;
399 	const u64 end = state->end;
400 
401 	set_state_bits(tree, state, bits, changeset);
402 
403 	node = &tree->state.rb_node;
404 	while (*node) {
405 		struct extent_state *entry;
406 
407 		parent = *node;
408 		entry = rb_entry(parent, struct extent_state, rb_node);
409 
410 		if (end < entry->start) {
411 			node = &(*node)->rb_left;
412 		} else if (end > entry->end) {
413 			node = &(*node)->rb_right;
414 		} else {
415 			btrfs_err(tree->fs_info,
416 			       "found node %llu %llu on insert of %llu %llu",
417 			       entry->start, entry->end, state->start, end);
418 			return -EEXIST;
419 		}
420 	}
421 
422 	rb_link_node(&state->rb_node, parent, node);
423 	rb_insert_color(&state->rb_node, &tree->state);
424 
425 	merge_state(tree, state);
426 	return 0;
427 }
428 
429 /*
430  * Insert state to @tree to the location given by @node and @parent.
431  */
insert_state_fast(struct extent_io_tree * tree,struct extent_state * state,struct rb_node ** node,struct rb_node * parent,unsigned bits,struct extent_changeset * changeset)432 static void insert_state_fast(struct extent_io_tree *tree,
433 			      struct extent_state *state, struct rb_node **node,
434 			      struct rb_node *parent, unsigned bits,
435 			      struct extent_changeset *changeset)
436 {
437 	set_state_bits(tree, state, bits, changeset);
438 	rb_link_node(&state->rb_node, parent, node);
439 	rb_insert_color(&state->rb_node, &tree->state);
440 	merge_state(tree, state);
441 }
442 
443 /*
444  * Split a given extent state struct in two, inserting the preallocated
445  * struct 'prealloc' as the newly created second half.  'split' indicates an
446  * offset inside 'orig' where it should be split.
447  *
448  * Before calling,
449  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
450  * are two extent state structs in the tree:
451  * prealloc: [orig->start, split - 1]
452  * orig: [ split, orig->end ]
453  *
454  * The tree locks are not taken by this function. They need to be held
455  * by the caller.
456  */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)457 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
458 		       struct extent_state *prealloc, u64 split)
459 {
460 	struct rb_node *parent = NULL;
461 	struct rb_node **node;
462 
463 	if (tree->inode)
464 		btrfs_split_delalloc_extent(tree->inode, orig, split);
465 
466 	prealloc->start = orig->start;
467 	prealloc->end = split - 1;
468 	prealloc->state = orig->state;
469 	orig->start = split;
470 
471 	parent = &orig->rb_node;
472 	node = &parent;
473 	while (*node) {
474 		struct extent_state *entry;
475 
476 		parent = *node;
477 		entry = rb_entry(parent, struct extent_state, rb_node);
478 
479 		if (prealloc->end < entry->start) {
480 			node = &(*node)->rb_left;
481 		} else if (prealloc->end > entry->end) {
482 			node = &(*node)->rb_right;
483 		} else {
484 			free_extent_state(prealloc);
485 			return -EEXIST;
486 		}
487 	}
488 
489 	rb_link_node(&prealloc->rb_node, parent, node);
490 	rb_insert_color(&prealloc->rb_node, &tree->state);
491 
492 	return 0;
493 }
494 
495 /*
496  * Utility function to clear some bits in an extent state struct.  It will
497  * optionally wake up anyone waiting on this state (wake == 1).
498  *
499  * If no bits are set on the state struct after clearing things, the
500  * struct is freed and removed from the tree
501  */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,u32 bits,int wake,struct extent_changeset * changeset)502 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
503 					    struct extent_state *state,
504 					    u32 bits, int wake,
505 					    struct extent_changeset *changeset)
506 {
507 	struct extent_state *next;
508 	u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
509 	int ret;
510 
511 	if (tree->inode)
512 		btrfs_clear_delalloc_extent(tree->inode, state, bits);
513 
514 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
515 	BUG_ON(ret < 0);
516 	state->state &= ~bits_to_clear;
517 	if (wake)
518 		wake_up(&state->wq);
519 	if (state->state == 0) {
520 		next = next_state(state);
521 		if (extent_state_in_tree(state)) {
522 			rb_erase(&state->rb_node, &tree->state);
523 			RB_CLEAR_NODE(&state->rb_node);
524 			free_extent_state(state);
525 		} else {
526 			WARN_ON(1);
527 		}
528 	} else {
529 		merge_state(tree, state);
530 		next = next_state(state);
531 	}
532 	return next;
533 }
534 
535 /*
536  * Detect if extent bits request NOWAIT semantics and set the gfp mask accordingly,
537  * unset the EXTENT_NOWAIT bit.
538  */
set_gfp_mask_from_bits(u32 * bits,gfp_t * mask)539 static void set_gfp_mask_from_bits(u32 *bits, gfp_t *mask)
540 {
541 	*mask = (*bits & EXTENT_NOWAIT ? GFP_NOWAIT : GFP_NOFS);
542 	*bits &= EXTENT_NOWAIT - 1;
543 }
544 
545 /*
546  * Clear some bits on a range in the tree.  This may require splitting or
547  * inserting elements in the tree, so the gfp mask is used to indicate which
548  * allocations or sleeping are allowed.
549  *
550  * Pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove the given
551  * range from the tree regardless of state (ie for truncate).
552  *
553  * The range [start, end] is inclusive.
554  *
555  * This takes the tree lock, and returns 0 on success and < 0 on error.
556  */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_state ** cached_state,struct extent_changeset * changeset)557 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
558 		       u32 bits, struct extent_state **cached_state,
559 		       struct extent_changeset *changeset)
560 {
561 	struct extent_state *state;
562 	struct extent_state *cached;
563 	struct extent_state *prealloc = NULL;
564 	u64 last_end;
565 	int err;
566 	int clear = 0;
567 	int wake;
568 	int delete = (bits & EXTENT_CLEAR_ALL_BITS);
569 	gfp_t mask;
570 
571 	set_gfp_mask_from_bits(&bits, &mask);
572 	btrfs_debug_check_extent_io_range(tree, start, end);
573 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
574 
575 	if (delete)
576 		bits |= ~EXTENT_CTLBITS;
577 
578 	if (bits & EXTENT_DELALLOC)
579 		bits |= EXTENT_NORESERVE;
580 
581 	wake = (bits & EXTENT_LOCKED) ? 1 : 0;
582 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
583 		clear = 1;
584 again:
585 	if (!prealloc) {
586 		/*
587 		 * Don't care for allocation failure here because we might end
588 		 * up not needing the pre-allocated extent state at all, which
589 		 * is the case if we only have in the tree extent states that
590 		 * cover our input range and don't cover too any other range.
591 		 * If we end up needing a new extent state we allocate it later.
592 		 */
593 		prealloc = alloc_extent_state(mask);
594 	}
595 
596 	spin_lock(&tree->lock);
597 	if (cached_state) {
598 		cached = *cached_state;
599 
600 		if (clear) {
601 			*cached_state = NULL;
602 			cached_state = NULL;
603 		}
604 
605 		if (cached && extent_state_in_tree(cached) &&
606 		    cached->start <= start && cached->end > start) {
607 			if (clear)
608 				refcount_dec(&cached->refs);
609 			state = cached;
610 			goto hit_next;
611 		}
612 		if (clear)
613 			free_extent_state(cached);
614 	}
615 
616 	/* This search will find the extents that end after our range starts. */
617 	state = tree_search(tree, start);
618 	if (!state)
619 		goto out;
620 hit_next:
621 	if (state->start > end)
622 		goto out;
623 	WARN_ON(state->end < start);
624 	last_end = state->end;
625 
626 	/* The state doesn't have the wanted bits, go ahead. */
627 	if (!(state->state & bits)) {
628 		state = next_state(state);
629 		goto next;
630 	}
631 
632 	/*
633 	 *     | ---- desired range ---- |
634 	 *  | state | or
635 	 *  | ------------- state -------------- |
636 	 *
637 	 * We need to split the extent we found, and may flip bits on second
638 	 * half.
639 	 *
640 	 * If the extent we found extends past our range, we just split and
641 	 * search again.  It'll get split again the next time though.
642 	 *
643 	 * If the extent we found is inside our range, we clear the desired bit
644 	 * on it.
645 	 */
646 
647 	if (state->start < start) {
648 		prealloc = alloc_extent_state_atomic(prealloc);
649 		if (!prealloc)
650 			goto search_again;
651 		err = split_state(tree, state, prealloc, start);
652 		if (err)
653 			extent_io_tree_panic(tree, err);
654 
655 		prealloc = NULL;
656 		if (err)
657 			goto out;
658 		if (state->end <= end) {
659 			state = clear_state_bit(tree, state, bits, wake, changeset);
660 			goto next;
661 		}
662 		goto search_again;
663 	}
664 	/*
665 	 * | ---- desired range ---- |
666 	 *                        | state |
667 	 * We need to split the extent, and clear the bit on the first half.
668 	 */
669 	if (state->start <= end && state->end > end) {
670 		prealloc = alloc_extent_state_atomic(prealloc);
671 		if (!prealloc)
672 			goto search_again;
673 		err = split_state(tree, state, prealloc, end + 1);
674 		if (err)
675 			extent_io_tree_panic(tree, err);
676 
677 		if (wake)
678 			wake_up(&state->wq);
679 
680 		clear_state_bit(tree, prealloc, bits, wake, changeset);
681 
682 		prealloc = NULL;
683 		goto out;
684 	}
685 
686 	state = clear_state_bit(tree, state, bits, wake, changeset);
687 next:
688 	if (last_end == (u64)-1)
689 		goto out;
690 	start = last_end + 1;
691 	if (start <= end && state && !need_resched())
692 		goto hit_next;
693 
694 search_again:
695 	if (start > end)
696 		goto out;
697 	spin_unlock(&tree->lock);
698 	if (gfpflags_allow_blocking(mask))
699 		cond_resched();
700 	goto again;
701 
702 out:
703 	spin_unlock(&tree->lock);
704 	if (prealloc)
705 		free_extent_state(prealloc);
706 
707 	return 0;
708 
709 }
710 
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)711 static void wait_on_state(struct extent_io_tree *tree,
712 			  struct extent_state *state)
713 		__releases(tree->lock)
714 		__acquires(tree->lock)
715 {
716 	DEFINE_WAIT(wait);
717 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
718 	spin_unlock(&tree->lock);
719 	schedule();
720 	spin_lock(&tree->lock);
721 	finish_wait(&state->wq, &wait);
722 }
723 
724 /*
725  * Wait for one or more bits to clear on a range in the state tree.
726  * The range [start, end] is inclusive.
727  * The tree lock is taken by this function
728  */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_state ** cached_state)729 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
730 		     struct extent_state **cached_state)
731 {
732 	struct extent_state *state;
733 
734 	btrfs_debug_check_extent_io_range(tree, start, end);
735 
736 	spin_lock(&tree->lock);
737 again:
738 	/*
739 	 * Maintain cached_state, as we may not remove it from the tree if there
740 	 * are more bits than the bits we're waiting on set on this state.
741 	 */
742 	if (cached_state && *cached_state) {
743 		state = *cached_state;
744 		if (extent_state_in_tree(state) &&
745 		    state->start <= start && start < state->end)
746 			goto process_node;
747 	}
748 	while (1) {
749 		/*
750 		 * This search will find all the extents that end after our
751 		 * range starts.
752 		 */
753 		state = tree_search(tree, start);
754 process_node:
755 		if (!state)
756 			break;
757 		if (state->start > end)
758 			goto out;
759 
760 		if (state->state & bits) {
761 			start = state->start;
762 			refcount_inc(&state->refs);
763 			wait_on_state(tree, state);
764 			free_extent_state(state);
765 			goto again;
766 		}
767 		start = state->end + 1;
768 
769 		if (start > end)
770 			break;
771 
772 		if (!cond_resched_lock(&tree->lock)) {
773 			state = next_state(state);
774 			goto process_node;
775 		}
776 	}
777 out:
778 	/* This state is no longer useful, clear it and free it up. */
779 	if (cached_state && *cached_state) {
780 		state = *cached_state;
781 		*cached_state = NULL;
782 		free_extent_state(state);
783 	}
784 	spin_unlock(&tree->lock);
785 }
786 
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)787 static void cache_state_if_flags(struct extent_state *state,
788 				 struct extent_state **cached_ptr,
789 				 unsigned flags)
790 {
791 	if (cached_ptr && !(*cached_ptr)) {
792 		if (!flags || (state->state & flags)) {
793 			*cached_ptr = state;
794 			refcount_inc(&state->refs);
795 		}
796 	}
797 }
798 
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)799 static void cache_state(struct extent_state *state,
800 			struct extent_state **cached_ptr)
801 {
802 	return cache_state_if_flags(state, cached_ptr,
803 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
804 }
805 
806 /*
807  * Find the first state struct with 'bits' set after 'start', and return it.
808  * tree->lock must be held.  NULL will returned if nothing was found after
809  * 'start'.
810  */
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,u32 bits)811 static struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
812 							u64 start, u32 bits)
813 {
814 	struct extent_state *state;
815 
816 	/*
817 	 * This search will find all the extents that end after our range
818 	 * starts.
819 	 */
820 	state = tree_search(tree, start);
821 	while (state) {
822 		if (state->end >= start && (state->state & bits))
823 			return state;
824 		state = next_state(state);
825 	}
826 	return NULL;
827 }
828 
829 /*
830  * Find the first offset in the io tree with one or more @bits set.
831  *
832  * Note: If there are multiple bits set in @bits, any of them will match.
833  *
834  * Return true if we find something, and update @start_ret and @end_ret.
835  * Return false if we found nothing.
836  */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits,struct extent_state ** cached_state)837 bool find_first_extent_bit(struct extent_io_tree *tree, u64 start,
838 			   u64 *start_ret, u64 *end_ret, u32 bits,
839 			   struct extent_state **cached_state)
840 {
841 	struct extent_state *state;
842 	bool ret = false;
843 
844 	spin_lock(&tree->lock);
845 	if (cached_state && *cached_state) {
846 		state = *cached_state;
847 		if (state->end == start - 1 && extent_state_in_tree(state)) {
848 			while ((state = next_state(state)) != NULL) {
849 				if (state->state & bits)
850 					goto got_it;
851 			}
852 			free_extent_state(*cached_state);
853 			*cached_state = NULL;
854 			goto out;
855 		}
856 		free_extent_state(*cached_state);
857 		*cached_state = NULL;
858 	}
859 
860 	state = find_first_extent_bit_state(tree, start, bits);
861 got_it:
862 	if (state) {
863 		cache_state_if_flags(state, cached_state, 0);
864 		*start_ret = state->start;
865 		*end_ret = state->end;
866 		ret = true;
867 	}
868 out:
869 	spin_unlock(&tree->lock);
870 	return ret;
871 }
872 
873 /*
874  * Find a contiguous area of bits
875  *
876  * @tree:      io tree to check
877  * @start:     offset to start the search from
878  * @start_ret: the first offset we found with the bits set
879  * @end_ret:   the final contiguous range of the bits that were set
880  * @bits:      bits to look for
881  *
882  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
883  * to set bits appropriately, and then merge them again.  During this time it
884  * will drop the tree->lock, so use this helper if you want to find the actual
885  * contiguous area for given bits.  We will search to the first bit we find, and
886  * then walk down the tree until we find a non-contiguous area.  The area
887  * returned will be the full contiguous area with the bits set.
888  */
find_contiguous_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits)889 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
890 			       u64 *start_ret, u64 *end_ret, u32 bits)
891 {
892 	struct extent_state *state;
893 	int ret = 1;
894 
895 	spin_lock(&tree->lock);
896 	state = find_first_extent_bit_state(tree, start, bits);
897 	if (state) {
898 		*start_ret = state->start;
899 		*end_ret = state->end;
900 		while ((state = next_state(state)) != NULL) {
901 			if (state->start > (*end_ret + 1))
902 				break;
903 			*end_ret = state->end;
904 		}
905 		ret = 0;
906 	}
907 	spin_unlock(&tree->lock);
908 	return ret;
909 }
910 
911 /*
912  * Find a contiguous range of bytes in the file marked as delalloc, not more
913  * than 'max_bytes'.  start and end are used to return the range,
914  *
915  * True is returned if we find something, false if nothing was in the tree.
916  */
btrfs_find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)917 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
918 			       u64 *end, u64 max_bytes,
919 			       struct extent_state **cached_state)
920 {
921 	struct extent_state *state;
922 	u64 cur_start = *start;
923 	bool found = false;
924 	u64 total_bytes = 0;
925 
926 	spin_lock(&tree->lock);
927 
928 	/*
929 	 * This search will find all the extents that end after our range
930 	 * starts.
931 	 */
932 	state = tree_search(tree, cur_start);
933 	if (!state) {
934 		*end = (u64)-1;
935 		goto out;
936 	}
937 
938 	while (state) {
939 		if (found && (state->start != cur_start ||
940 			      (state->state & EXTENT_BOUNDARY))) {
941 			goto out;
942 		}
943 		if (!(state->state & EXTENT_DELALLOC)) {
944 			if (!found)
945 				*end = state->end;
946 			goto out;
947 		}
948 		if (!found) {
949 			*start = state->start;
950 			*cached_state = state;
951 			refcount_inc(&state->refs);
952 		}
953 		found = true;
954 		*end = state->end;
955 		cur_start = state->end + 1;
956 		total_bytes += state->end - state->start + 1;
957 		if (total_bytes >= max_bytes)
958 			break;
959 		state = next_state(state);
960 	}
961 out:
962 	spin_unlock(&tree->lock);
963 	return found;
964 }
965 
966 /*
967  * Set some bits on a range in the tree.  This may require allocations or
968  * sleeping. By default all allocations use GFP_NOFS, use EXTENT_NOWAIT for
969  * GFP_NOWAIT.
970  *
971  * If any of the exclusive bits are set, this will fail with -EEXIST if some
972  * part of the range already has the desired bits set.  The extent_state of the
973  * existing range is returned in failed_state in this case, and the start of the
974  * existing range is returned in failed_start.  failed_state is used as an
975  * optimization for wait_extent_bit, failed_start must be used as the source of
976  * truth as failed_state may have changed since we returned.
977  *
978  * [start, end] is inclusive This takes the tree lock.
979  */
__set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,u64 * failed_start,struct extent_state ** failed_state,struct extent_state ** cached_state,struct extent_changeset * changeset)980 static int __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
981 			    u32 bits, u64 *failed_start,
982 			    struct extent_state **failed_state,
983 			    struct extent_state **cached_state,
984 			    struct extent_changeset *changeset)
985 {
986 	struct extent_state *state;
987 	struct extent_state *prealloc = NULL;
988 	struct rb_node **p = NULL;
989 	struct rb_node *parent = NULL;
990 	int err = 0;
991 	u64 last_start;
992 	u64 last_end;
993 	u32 exclusive_bits = (bits & EXTENT_LOCKED);
994 	gfp_t mask;
995 
996 	set_gfp_mask_from_bits(&bits, &mask);
997 	btrfs_debug_check_extent_io_range(tree, start, end);
998 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
999 
1000 	if (exclusive_bits)
1001 		ASSERT(failed_start);
1002 	else
1003 		ASSERT(failed_start == NULL && failed_state == NULL);
1004 again:
1005 	if (!prealloc) {
1006 		/*
1007 		 * Don't care for allocation failure here because we might end
1008 		 * up not needing the pre-allocated extent state at all, which
1009 		 * is the case if we only have in the tree extent states that
1010 		 * cover our input range and don't cover too any other range.
1011 		 * If we end up needing a new extent state we allocate it later.
1012 		 */
1013 		prealloc = alloc_extent_state(mask);
1014 	}
1015 
1016 	spin_lock(&tree->lock);
1017 	if (cached_state && *cached_state) {
1018 		state = *cached_state;
1019 		if (state->start <= start && state->end > start &&
1020 		    extent_state_in_tree(state))
1021 			goto hit_next;
1022 	}
1023 	/*
1024 	 * This search will find all the extents that end after our range
1025 	 * starts.
1026 	 */
1027 	state = tree_search_for_insert(tree, start, &p, &parent);
1028 	if (!state) {
1029 		prealloc = alloc_extent_state_atomic(prealloc);
1030 		if (!prealloc)
1031 			goto search_again;
1032 		prealloc->start = start;
1033 		prealloc->end = end;
1034 		insert_state_fast(tree, prealloc, p, parent, bits, changeset);
1035 		cache_state(prealloc, cached_state);
1036 		prealloc = NULL;
1037 		goto out;
1038 	}
1039 hit_next:
1040 	last_start = state->start;
1041 	last_end = state->end;
1042 
1043 	/*
1044 	 * | ---- desired range ---- |
1045 	 * | state |
1046 	 *
1047 	 * Just lock what we found and keep going
1048 	 */
1049 	if (state->start == start && state->end <= end) {
1050 		if (state->state & exclusive_bits) {
1051 			*failed_start = state->start;
1052 			cache_state(state, failed_state);
1053 			err = -EEXIST;
1054 			goto out;
1055 		}
1056 
1057 		set_state_bits(tree, state, bits, changeset);
1058 		cache_state(state, cached_state);
1059 		merge_state(tree, state);
1060 		if (last_end == (u64)-1)
1061 			goto out;
1062 		start = last_end + 1;
1063 		state = next_state(state);
1064 		if (start < end && state && state->start == start &&
1065 		    !need_resched())
1066 			goto hit_next;
1067 		goto search_again;
1068 	}
1069 
1070 	/*
1071 	 *     | ---- desired range ---- |
1072 	 * | state |
1073 	 *   or
1074 	 * | ------------- state -------------- |
1075 	 *
1076 	 * We need to split the extent we found, and may flip bits on second
1077 	 * half.
1078 	 *
1079 	 * If the extent we found extends past our range, we just split and
1080 	 * search again.  It'll get split again the next time though.
1081 	 *
1082 	 * If the extent we found is inside our range, we set the desired bit
1083 	 * on it.
1084 	 */
1085 	if (state->start < start) {
1086 		if (state->state & exclusive_bits) {
1087 			*failed_start = start;
1088 			cache_state(state, failed_state);
1089 			err = -EEXIST;
1090 			goto out;
1091 		}
1092 
1093 		/*
1094 		 * If this extent already has all the bits we want set, then
1095 		 * skip it, not necessary to split it or do anything with it.
1096 		 */
1097 		if ((state->state & bits) == bits) {
1098 			start = state->end + 1;
1099 			cache_state(state, cached_state);
1100 			goto search_again;
1101 		}
1102 
1103 		prealloc = alloc_extent_state_atomic(prealloc);
1104 		if (!prealloc)
1105 			goto search_again;
1106 		err = split_state(tree, state, prealloc, start);
1107 		if (err)
1108 			extent_io_tree_panic(tree, err);
1109 
1110 		prealloc = NULL;
1111 		if (err)
1112 			goto out;
1113 		if (state->end <= end) {
1114 			set_state_bits(tree, state, bits, changeset);
1115 			cache_state(state, cached_state);
1116 			merge_state(tree, state);
1117 			if (last_end == (u64)-1)
1118 				goto out;
1119 			start = last_end + 1;
1120 			state = next_state(state);
1121 			if (start < end && state && state->start == start &&
1122 			    !need_resched())
1123 				goto hit_next;
1124 		}
1125 		goto search_again;
1126 	}
1127 	/*
1128 	 * | ---- desired range ---- |
1129 	 *     | state | or               | state |
1130 	 *
1131 	 * There's a hole, we need to insert something in it and ignore the
1132 	 * extent we found.
1133 	 */
1134 	if (state->start > start) {
1135 		u64 this_end;
1136 		if (end < last_start)
1137 			this_end = end;
1138 		else
1139 			this_end = last_start - 1;
1140 
1141 		prealloc = alloc_extent_state_atomic(prealloc);
1142 		if (!prealloc)
1143 			goto search_again;
1144 
1145 		/*
1146 		 * Avoid to free 'prealloc' if it can be merged with the later
1147 		 * extent.
1148 		 */
1149 		prealloc->start = start;
1150 		prealloc->end = this_end;
1151 		err = insert_state(tree, prealloc, bits, changeset);
1152 		if (err)
1153 			extent_io_tree_panic(tree, err);
1154 
1155 		cache_state(prealloc, cached_state);
1156 		prealloc = NULL;
1157 		start = this_end + 1;
1158 		goto search_again;
1159 	}
1160 	/*
1161 	 * | ---- desired range ---- |
1162 	 *                        | state |
1163 	 *
1164 	 * We need to split the extent, and set the bit on the first half
1165 	 */
1166 	if (state->start <= end && state->end > end) {
1167 		if (state->state & exclusive_bits) {
1168 			*failed_start = start;
1169 			cache_state(state, failed_state);
1170 			err = -EEXIST;
1171 			goto out;
1172 		}
1173 
1174 		prealloc = alloc_extent_state_atomic(prealloc);
1175 		if (!prealloc)
1176 			goto search_again;
1177 		err = split_state(tree, state, prealloc, end + 1);
1178 		if (err)
1179 			extent_io_tree_panic(tree, err);
1180 
1181 		set_state_bits(tree, prealloc, bits, changeset);
1182 		cache_state(prealloc, cached_state);
1183 		merge_state(tree, prealloc);
1184 		prealloc = NULL;
1185 		goto out;
1186 	}
1187 
1188 search_again:
1189 	if (start > end)
1190 		goto out;
1191 	spin_unlock(&tree->lock);
1192 	if (gfpflags_allow_blocking(mask))
1193 		cond_resched();
1194 	goto again;
1195 
1196 out:
1197 	spin_unlock(&tree->lock);
1198 	if (prealloc)
1199 		free_extent_state(prealloc);
1200 
1201 	return err;
1202 
1203 }
1204 
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_state ** cached_state)1205 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1206 		   u32 bits, struct extent_state **cached_state)
1207 {
1208 	return __set_extent_bit(tree, start, end, bits, NULL, NULL,
1209 				cached_state, NULL);
1210 }
1211 
1212 /*
1213  * Convert all bits in a given range from one bit to another
1214  *
1215  * @tree:	the io tree to search
1216  * @start:	the start offset in bytes
1217  * @end:	the end offset in bytes (inclusive)
1218  * @bits:	the bits to set in this range
1219  * @clear_bits:	the bits to clear in this range
1220  * @cached_state:	state that we're going to cache
1221  *
1222  * This will go through and set bits for the given range.  If any states exist
1223  * already in this range they are set with the given bit and cleared of the
1224  * clear_bits.  This is only meant to be used by things that are mergeable, ie.
1225  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1226  * boundary bits like LOCK.
1227  *
1228  * All allocations are done with GFP_NOFS.
1229  */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,u32 clear_bits,struct extent_state ** cached_state)1230 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1231 		       u32 bits, u32 clear_bits,
1232 		       struct extent_state **cached_state)
1233 {
1234 	struct extent_state *state;
1235 	struct extent_state *prealloc = NULL;
1236 	struct rb_node **p = NULL;
1237 	struct rb_node *parent = NULL;
1238 	int err = 0;
1239 	u64 last_start;
1240 	u64 last_end;
1241 	bool first_iteration = true;
1242 
1243 	btrfs_debug_check_extent_io_range(tree, start, end);
1244 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1245 				       clear_bits);
1246 
1247 again:
1248 	if (!prealloc) {
1249 		/*
1250 		 * Best effort, don't worry if extent state allocation fails
1251 		 * here for the first iteration. We might have a cached state
1252 		 * that matches exactly the target range, in which case no
1253 		 * extent state allocations are needed. We'll only know this
1254 		 * after locking the tree.
1255 		 */
1256 		prealloc = alloc_extent_state(GFP_NOFS);
1257 		if (!prealloc && !first_iteration)
1258 			return -ENOMEM;
1259 	}
1260 
1261 	spin_lock(&tree->lock);
1262 	if (cached_state && *cached_state) {
1263 		state = *cached_state;
1264 		if (state->start <= start && state->end > start &&
1265 		    extent_state_in_tree(state))
1266 			goto hit_next;
1267 	}
1268 
1269 	/*
1270 	 * This search will find all the extents that end after our range
1271 	 * starts.
1272 	 */
1273 	state = tree_search_for_insert(tree, start, &p, &parent);
1274 	if (!state) {
1275 		prealloc = alloc_extent_state_atomic(prealloc);
1276 		if (!prealloc) {
1277 			err = -ENOMEM;
1278 			goto out;
1279 		}
1280 		prealloc->start = start;
1281 		prealloc->end = end;
1282 		insert_state_fast(tree, prealloc, p, parent, bits, NULL);
1283 		cache_state(prealloc, cached_state);
1284 		prealloc = NULL;
1285 		goto out;
1286 	}
1287 hit_next:
1288 	last_start = state->start;
1289 	last_end = state->end;
1290 
1291 	/*
1292 	 * | ---- desired range ---- |
1293 	 * | state |
1294 	 *
1295 	 * Just lock what we found and keep going.
1296 	 */
1297 	if (state->start == start && state->end <= end) {
1298 		set_state_bits(tree, state, bits, NULL);
1299 		cache_state(state, cached_state);
1300 		state = clear_state_bit(tree, state, clear_bits, 0, NULL);
1301 		if (last_end == (u64)-1)
1302 			goto out;
1303 		start = last_end + 1;
1304 		if (start < end && state && state->start == start &&
1305 		    !need_resched())
1306 			goto hit_next;
1307 		goto search_again;
1308 	}
1309 
1310 	/*
1311 	 *     | ---- desired range ---- |
1312 	 * | state |
1313 	 *   or
1314 	 * | ------------- state -------------- |
1315 	 *
1316 	 * We need to split the extent we found, and may flip bits on second
1317 	 * half.
1318 	 *
1319 	 * If the extent we found extends past our range, we just split and
1320 	 * search again.  It'll get split again the next time though.
1321 	 *
1322 	 * If the extent we found is inside our range, we set the desired bit
1323 	 * on it.
1324 	 */
1325 	if (state->start < start) {
1326 		prealloc = alloc_extent_state_atomic(prealloc);
1327 		if (!prealloc) {
1328 			err = -ENOMEM;
1329 			goto out;
1330 		}
1331 		err = split_state(tree, state, prealloc, start);
1332 		if (err)
1333 			extent_io_tree_panic(tree, err);
1334 		prealloc = NULL;
1335 		if (err)
1336 			goto out;
1337 		if (state->end <= end) {
1338 			set_state_bits(tree, state, bits, NULL);
1339 			cache_state(state, cached_state);
1340 			state = clear_state_bit(tree, state, clear_bits, 0, NULL);
1341 			if (last_end == (u64)-1)
1342 				goto out;
1343 			start = last_end + 1;
1344 			if (start < end && state && state->start == start &&
1345 			    !need_resched())
1346 				goto hit_next;
1347 		}
1348 		goto search_again;
1349 	}
1350 	/*
1351 	 * | ---- desired range ---- |
1352 	 *     | state | or               | state |
1353 	 *
1354 	 * There's a hole, we need to insert something in it and ignore the
1355 	 * extent we found.
1356 	 */
1357 	if (state->start > start) {
1358 		u64 this_end;
1359 		if (end < last_start)
1360 			this_end = end;
1361 		else
1362 			this_end = last_start - 1;
1363 
1364 		prealloc = alloc_extent_state_atomic(prealloc);
1365 		if (!prealloc) {
1366 			err = -ENOMEM;
1367 			goto out;
1368 		}
1369 
1370 		/*
1371 		 * Avoid to free 'prealloc' if it can be merged with the later
1372 		 * extent.
1373 		 */
1374 		prealloc->start = start;
1375 		prealloc->end = this_end;
1376 		err = insert_state(tree, prealloc, bits, NULL);
1377 		if (err)
1378 			extent_io_tree_panic(tree, err);
1379 		cache_state(prealloc, cached_state);
1380 		prealloc = NULL;
1381 		start = this_end + 1;
1382 		goto search_again;
1383 	}
1384 	/*
1385 	 * | ---- desired range ---- |
1386 	 *                        | state |
1387 	 *
1388 	 * We need to split the extent, and set the bit on the first half.
1389 	 */
1390 	if (state->start <= end && state->end > end) {
1391 		prealloc = alloc_extent_state_atomic(prealloc);
1392 		if (!prealloc) {
1393 			err = -ENOMEM;
1394 			goto out;
1395 		}
1396 
1397 		err = split_state(tree, state, prealloc, end + 1);
1398 		if (err)
1399 			extent_io_tree_panic(tree, err);
1400 
1401 		set_state_bits(tree, prealloc, bits, NULL);
1402 		cache_state(prealloc, cached_state);
1403 		clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
1404 		prealloc = NULL;
1405 		goto out;
1406 	}
1407 
1408 search_again:
1409 	if (start > end)
1410 		goto out;
1411 	spin_unlock(&tree->lock);
1412 	cond_resched();
1413 	first_iteration = false;
1414 	goto again;
1415 
1416 out:
1417 	spin_unlock(&tree->lock);
1418 	if (prealloc)
1419 		free_extent_state(prealloc);
1420 
1421 	return err;
1422 }
1423 
1424 /*
1425  * Find the first range that has @bits not set. This range could start before
1426  * @start.
1427  *
1428  * @tree:      the tree to search
1429  * @start:     offset at/after which the found extent should start
1430  * @start_ret: records the beginning of the range
1431  * @end_ret:   records the end of the range (inclusive)
1432  * @bits:      the set of bits which must be unset
1433  *
1434  * Since unallocated range is also considered one which doesn't have the bits
1435  * set it's possible that @end_ret contains -1, this happens in case the range
1436  * spans (last_range_end, end of device]. In this case it's up to the caller to
1437  * trim @end_ret to the appropriate size.
1438  */
find_first_clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits)1439 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1440 				 u64 *start_ret, u64 *end_ret, u32 bits)
1441 {
1442 	struct extent_state *state;
1443 	struct extent_state *prev = NULL, *next = NULL;
1444 
1445 	spin_lock(&tree->lock);
1446 
1447 	/* Find first extent with bits cleared */
1448 	while (1) {
1449 		state = tree_search_prev_next(tree, start, &prev, &next);
1450 		if (!state && !next && !prev) {
1451 			/*
1452 			 * Tree is completely empty, send full range and let
1453 			 * caller deal with it
1454 			 */
1455 			*start_ret = 0;
1456 			*end_ret = -1;
1457 			goto out;
1458 		} else if (!state && !next) {
1459 			/*
1460 			 * We are past the last allocated chunk, set start at
1461 			 * the end of the last extent.
1462 			 */
1463 			*start_ret = prev->end + 1;
1464 			*end_ret = -1;
1465 			goto out;
1466 		} else if (!state) {
1467 			state = next;
1468 		}
1469 
1470 		/*
1471 		 * At this point 'state' either contains 'start' or start is
1472 		 * before 'state'
1473 		 */
1474 		if (in_range(start, state->start, state->end - state->start + 1)) {
1475 			if (state->state & bits) {
1476 				/*
1477 				 * |--range with bits sets--|
1478 				 *    |
1479 				 *    start
1480 				 */
1481 				start = state->end + 1;
1482 			} else {
1483 				/*
1484 				 * 'start' falls within a range that doesn't
1485 				 * have the bits set, so take its start as the
1486 				 * beginning of the desired range
1487 				 *
1488 				 * |--range with bits cleared----|
1489 				 *      |
1490 				 *      start
1491 				 */
1492 				*start_ret = state->start;
1493 				break;
1494 			}
1495 		} else {
1496 			/*
1497 			 * |---prev range---|---hole/unset---|---node range---|
1498 			 *                          |
1499 			 *                        start
1500 			 *
1501 			 *                        or
1502 			 *
1503 			 * |---hole/unset--||--first node--|
1504 			 * 0   |
1505 			 *    start
1506 			 */
1507 			if (prev)
1508 				*start_ret = prev->end + 1;
1509 			else
1510 				*start_ret = 0;
1511 			break;
1512 		}
1513 	}
1514 
1515 	/*
1516 	 * Find the longest stretch from start until an entry which has the
1517 	 * bits set
1518 	 */
1519 	while (state) {
1520 		if (state->end >= start && !(state->state & bits)) {
1521 			*end_ret = state->end;
1522 		} else {
1523 			*end_ret = state->start - 1;
1524 			break;
1525 		}
1526 		state = next_state(state);
1527 	}
1528 out:
1529 	spin_unlock(&tree->lock);
1530 }
1531 
1532 /*
1533  * Count the number of bytes in the tree that have a given bit(s) set for a
1534  * given range.
1535  *
1536  * @tree:         The io tree to search.
1537  * @start:        The start offset of the range. This value is updated to the
1538  *                offset of the first byte found with the given bit(s), so it
1539  *                can end up being bigger than the initial value.
1540  * @search_end:   The end offset (inclusive value) of the search range.
1541  * @max_bytes:    The maximum byte count we are interested. The search stops
1542  *                once it reaches this count.
1543  * @bits:         The bits the range must have in order to be accounted for.
1544  *                If multiple bits are set, then only subranges that have all
1545  *                the bits set are accounted for.
1546  * @contig:       Indicate if we should ignore holes in the range or not. If
1547  *                this is true, then stop once we find a hole.
1548  * @cached_state: A cached state to be used across multiple calls to this
1549  *                function in order to speedup searches. Use NULL if this is
1550  *                called only once or if each call does not start where the
1551  *                previous one ended.
1552  *
1553  * Returns the total number of bytes found within the given range that have
1554  * all given bits set. If the returned number of bytes is greater than zero
1555  * then @start is updated with the offset of the first byte with the bits set.
1556  */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,u32 bits,int contig,struct extent_state ** cached_state)1557 u64 count_range_bits(struct extent_io_tree *tree,
1558 		     u64 *start, u64 search_end, u64 max_bytes,
1559 		     u32 bits, int contig,
1560 		     struct extent_state **cached_state)
1561 {
1562 	struct extent_state *state = NULL;
1563 	struct extent_state *cached;
1564 	u64 cur_start = *start;
1565 	u64 total_bytes = 0;
1566 	u64 last = 0;
1567 	int found = 0;
1568 
1569 	if (WARN_ON(search_end < cur_start))
1570 		return 0;
1571 
1572 	spin_lock(&tree->lock);
1573 
1574 	if (!cached_state || !*cached_state)
1575 		goto search;
1576 
1577 	cached = *cached_state;
1578 
1579 	if (!extent_state_in_tree(cached))
1580 		goto search;
1581 
1582 	if (cached->start <= cur_start && cur_start <= cached->end) {
1583 		state = cached;
1584 	} else if (cached->start > cur_start) {
1585 		struct extent_state *prev;
1586 
1587 		/*
1588 		 * The cached state starts after our search range's start. Check
1589 		 * if the previous state record starts at or before the range we
1590 		 * are looking for, and if so, use it - this is a common case
1591 		 * when there are holes between records in the tree. If there is
1592 		 * no previous state record, we can start from our cached state.
1593 		 */
1594 		prev = prev_state(cached);
1595 		if (!prev)
1596 			state = cached;
1597 		else if (prev->start <= cur_start && cur_start <= prev->end)
1598 			state = prev;
1599 	}
1600 
1601 	/*
1602 	 * This search will find all the extents that end after our range
1603 	 * starts.
1604 	 */
1605 search:
1606 	if (!state)
1607 		state = tree_search(tree, cur_start);
1608 
1609 	while (state) {
1610 		if (state->start > search_end)
1611 			break;
1612 		if (contig && found && state->start > last + 1)
1613 			break;
1614 		if (state->end >= cur_start && (state->state & bits) == bits) {
1615 			total_bytes += min(search_end, state->end) + 1 -
1616 				       max(cur_start, state->start);
1617 			if (total_bytes >= max_bytes)
1618 				break;
1619 			if (!found) {
1620 				*start = max(cur_start, state->start);
1621 				found = 1;
1622 			}
1623 			last = state->end;
1624 		} else if (contig && found) {
1625 			break;
1626 		}
1627 		state = next_state(state);
1628 	}
1629 
1630 	if (cached_state) {
1631 		free_extent_state(*cached_state);
1632 		*cached_state = state;
1633 		if (state)
1634 			refcount_inc(&state->refs);
1635 	}
1636 
1637 	spin_unlock(&tree->lock);
1638 
1639 	return total_bytes;
1640 }
1641 
1642 /*
1643  * Search a range in the state tree for a given mask.  If 'filled' == 1, this
1644  * returns 1 only if every extent in the tree has the bits set.  Otherwise, 1
1645  * is returned if any bit in the range is found set.
1646  */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int filled,struct extent_state * cached)1647 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1648 		   u32 bits, int filled, struct extent_state *cached)
1649 {
1650 	struct extent_state *state = NULL;
1651 	int bitset = 0;
1652 
1653 	spin_lock(&tree->lock);
1654 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1655 	    cached->end > start)
1656 		state = cached;
1657 	else
1658 		state = tree_search(tree, start);
1659 	while (state && start <= end) {
1660 		if (filled && state->start > start) {
1661 			bitset = 0;
1662 			break;
1663 		}
1664 
1665 		if (state->start > end)
1666 			break;
1667 
1668 		if (state->state & bits) {
1669 			bitset = 1;
1670 			if (!filled)
1671 				break;
1672 		} else if (filled) {
1673 			bitset = 0;
1674 			break;
1675 		}
1676 
1677 		if (state->end == (u64)-1)
1678 			break;
1679 
1680 		start = state->end + 1;
1681 		if (start > end)
1682 			break;
1683 		state = next_state(state);
1684 	}
1685 
1686 	/* We ran out of states and were still inside of our range. */
1687 	if (filled && !state)
1688 		bitset = 0;
1689 	spin_unlock(&tree->lock);
1690 	return bitset;
1691 }
1692 
1693 /* Wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_changeset * changeset)1694 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1695 			   u32 bits, struct extent_changeset *changeset)
1696 {
1697 	/*
1698 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1699 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1700 	 * either fail with -EEXIST or changeset will record the whole
1701 	 * range.
1702 	 */
1703 	ASSERT(!(bits & EXTENT_LOCKED));
1704 
1705 	return __set_extent_bit(tree, start, end, bits, NULL, NULL, NULL, changeset);
1706 }
1707 
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_changeset * changeset)1708 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1709 			     u32 bits, struct extent_changeset *changeset)
1710 {
1711 	/*
1712 	 * Don't support EXTENT_LOCKED case, same reason as
1713 	 * set_record_extent_bits().
1714 	 */
1715 	ASSERT(!(bits & EXTENT_LOCKED));
1716 
1717 	return __clear_extent_bit(tree, start, end, bits, NULL, changeset);
1718 }
1719 
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached)1720 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1721 		    struct extent_state **cached)
1722 {
1723 	int err;
1724 	u64 failed_start;
1725 
1726 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start,
1727 			       NULL, cached, NULL);
1728 	if (err == -EEXIST) {
1729 		if (failed_start > start)
1730 			clear_extent_bit(tree, start, failed_start - 1,
1731 					 EXTENT_LOCKED, cached);
1732 		return 0;
1733 	}
1734 	return 1;
1735 }
1736 
1737 /*
1738  * Either insert or lock state struct between start and end use mask to tell
1739  * us if waiting is desired.
1740  */
lock_extent(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1741 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1742 		struct extent_state **cached_state)
1743 {
1744 	struct extent_state *failed_state = NULL;
1745 	int err;
1746 	u64 failed_start;
1747 
1748 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start,
1749 			       &failed_state, cached_state, NULL);
1750 	while (err == -EEXIST) {
1751 		if (failed_start != start)
1752 			clear_extent_bit(tree, start, failed_start - 1,
1753 					 EXTENT_LOCKED, cached_state);
1754 
1755 		wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED,
1756 				&failed_state);
1757 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1758 				       &failed_start, &failed_state,
1759 				       cached_state, NULL);
1760 	}
1761 	return err;
1762 }
1763 
extent_state_free_cachep(void)1764 void __cold extent_state_free_cachep(void)
1765 {
1766 	btrfs_extent_state_leak_debug_check();
1767 	kmem_cache_destroy(extent_state_cache);
1768 }
1769 
extent_state_init_cachep(void)1770 int __init extent_state_init_cachep(void)
1771 {
1772 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
1773 			sizeof(struct extent_state), 0,
1774 			SLAB_MEM_SPREAD, NULL);
1775 	if (!extent_state_cache)
1776 		return -ENOMEM;
1777 
1778 	return 0;
1779 }
1780