1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 53 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 54 55 /* 56 * Maximum number of mirrors that can be available for all profiles counting 57 * the target device of dev-replace as one. During an active device replace 58 * procedure, the target device of the copy operation is a mirror for the 59 * filesystem data as well that can be used to read data in order to repair 60 * read errors on other disks. 61 * 62 * Current value is derived from RAID1C4 with 4 copies. 63 */ 64 #define BTRFS_MAX_MIRRORS (4 + 1) 65 66 #define BTRFS_MAX_LEVEL 8 67 68 #define BTRFS_OLDEST_GENERATION 0ULL 69 70 /* 71 * we can actually store much bigger names, but lets not confuse the rest 72 * of linux 73 */ 74 #define BTRFS_NAME_LEN 255 75 76 /* 77 * Theoretical limit is larger, but we keep this down to a sane 78 * value. That should limit greatly the possibility of collisions on 79 * inode ref items. 80 */ 81 #define BTRFS_LINK_MAX 65535U 82 83 #define BTRFS_EMPTY_DIR_SIZE 0 84 85 /* ioprio of readahead is set to idle */ 86 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 87 88 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 89 90 /* 91 * Use large batch size to reduce overhead of metadata updates. On the reader 92 * side, we only read it when we are close to ENOSPC and the read overhead is 93 * mostly related to the number of CPUs, so it is OK to use arbitrary large 94 * value here. 95 */ 96 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 97 98 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 99 100 /* 101 * Deltas are an effective way to populate global statistics. Give macro names 102 * to make it clear what we're doing. An example is discard_extents in 103 * btrfs_free_space_ctl. 104 */ 105 #define BTRFS_STAT_NR_ENTRIES 2 106 #define BTRFS_STAT_CURR 0 107 #define BTRFS_STAT_PREV 1 108 109 /* 110 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 111 */ 112 static inline u32 count_max_extents(u64 size) 113 { 114 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 115 } 116 117 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 118 { 119 BUG_ON(num_stripes == 0); 120 return sizeof(struct btrfs_chunk) + 121 sizeof(struct btrfs_stripe) * (num_stripes - 1); 122 } 123 124 /* 125 * Runtime (in-memory) states of filesystem 126 */ 127 enum { 128 /* Global indicator of serious filesystem errors */ 129 BTRFS_FS_STATE_ERROR, 130 /* 131 * Filesystem is being remounted, allow to skip some operations, like 132 * defrag 133 */ 134 BTRFS_FS_STATE_REMOUNTING, 135 /* Filesystem in RO mode */ 136 BTRFS_FS_STATE_RO, 137 /* Track if a transaction abort has been reported on this filesystem */ 138 BTRFS_FS_STATE_TRANS_ABORTED, 139 /* 140 * Bio operations should be blocked on this filesystem because a source 141 * or target device is being destroyed as part of a device replace 142 */ 143 BTRFS_FS_STATE_DEV_REPLACING, 144 /* The btrfs_fs_info created for self-tests */ 145 BTRFS_FS_STATE_DUMMY_FS_INFO, 146 }; 147 148 #define BTRFS_BACKREF_REV_MAX 256 149 #define BTRFS_BACKREF_REV_SHIFT 56 150 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 151 BTRFS_BACKREF_REV_SHIFT) 152 153 #define BTRFS_OLD_BACKREF_REV 0 154 #define BTRFS_MIXED_BACKREF_REV 1 155 156 /* 157 * every tree block (leaf or node) starts with this header. 158 */ 159 struct btrfs_header { 160 /* these first four must match the super block */ 161 u8 csum[BTRFS_CSUM_SIZE]; 162 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 163 __le64 bytenr; /* which block this node is supposed to live in */ 164 __le64 flags; 165 166 /* allowed to be different from the super from here on down */ 167 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 168 __le64 generation; 169 __le64 owner; 170 __le32 nritems; 171 u8 level; 172 } __attribute__ ((__packed__)); 173 174 /* 175 * this is a very generous portion of the super block, giving us 176 * room to translate 14 chunks with 3 stripes each. 177 */ 178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 179 180 /* 181 * just in case we somehow lose the roots and are not able to mount, 182 * we store an array of the roots from previous transactions 183 * in the super. 184 */ 185 #define BTRFS_NUM_BACKUP_ROOTS 4 186 struct btrfs_root_backup { 187 __le64 tree_root; 188 __le64 tree_root_gen; 189 190 __le64 chunk_root; 191 __le64 chunk_root_gen; 192 193 __le64 extent_root; 194 __le64 extent_root_gen; 195 196 __le64 fs_root; 197 __le64 fs_root_gen; 198 199 __le64 dev_root; 200 __le64 dev_root_gen; 201 202 __le64 csum_root; 203 __le64 csum_root_gen; 204 205 __le64 total_bytes; 206 __le64 bytes_used; 207 __le64 num_devices; 208 /* future */ 209 __le64 unused_64[4]; 210 211 u8 tree_root_level; 212 u8 chunk_root_level; 213 u8 extent_root_level; 214 u8 fs_root_level; 215 u8 dev_root_level; 216 u8 csum_root_level; 217 /* future and to align */ 218 u8 unused_8[10]; 219 } __attribute__ ((__packed__)); 220 221 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 222 #define BTRFS_SUPER_INFO_SIZE 4096 223 224 /* 225 * the super block basically lists the main trees of the FS 226 * it currently lacks any block count etc etc 227 */ 228 struct btrfs_super_block { 229 /* the first 4 fields must match struct btrfs_header */ 230 u8 csum[BTRFS_CSUM_SIZE]; 231 /* FS specific UUID, visible to user */ 232 u8 fsid[BTRFS_FSID_SIZE]; 233 __le64 bytenr; /* this block number */ 234 __le64 flags; 235 236 /* allowed to be different from the btrfs_header from here own down */ 237 __le64 magic; 238 __le64 generation; 239 __le64 root; 240 __le64 chunk_root; 241 __le64 log_root; 242 243 /* this will help find the new super based on the log root */ 244 __le64 log_root_transid; 245 __le64 total_bytes; 246 __le64 bytes_used; 247 __le64 root_dir_objectid; 248 __le64 num_devices; 249 __le32 sectorsize; 250 __le32 nodesize; 251 __le32 __unused_leafsize; 252 __le32 stripesize; 253 __le32 sys_chunk_array_size; 254 __le64 chunk_root_generation; 255 __le64 compat_flags; 256 __le64 compat_ro_flags; 257 __le64 incompat_flags; 258 __le16 csum_type; 259 u8 root_level; 260 u8 chunk_root_level; 261 u8 log_root_level; 262 struct btrfs_dev_item dev_item; 263 264 char label[BTRFS_LABEL_SIZE]; 265 266 __le64 cache_generation; 267 __le64 uuid_tree_generation; 268 269 /* the UUID written into btree blocks */ 270 u8 metadata_uuid[BTRFS_FSID_SIZE]; 271 272 /* future expansion */ 273 __le64 reserved[28]; 274 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 275 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 276 277 /* Padded to 4096 bytes */ 278 u8 padding[565]; 279 } __attribute__ ((__packed__)); 280 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 281 282 /* 283 * Compat flags that we support. If any incompat flags are set other than the 284 * ones specified below then we will fail to mount 285 */ 286 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 287 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 288 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 289 290 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 291 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 292 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 293 BTRFS_FEATURE_COMPAT_RO_VERITY) 294 295 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 296 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 297 298 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 299 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 300 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 301 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 302 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 303 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 304 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 305 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 306 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 307 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 308 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 309 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 310 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 311 BTRFS_FEATURE_INCOMPAT_ZONED) 312 313 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 314 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 315 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 316 317 /* 318 * A leaf is full of items. offset and size tell us where to find 319 * the item in the leaf (relative to the start of the data area) 320 */ 321 struct btrfs_item { 322 struct btrfs_disk_key key; 323 __le32 offset; 324 __le32 size; 325 } __attribute__ ((__packed__)); 326 327 /* 328 * leaves have an item area and a data area: 329 * [item0, item1....itemN] [free space] [dataN...data1, data0] 330 * 331 * The data is separate from the items to get the keys closer together 332 * during searches. 333 */ 334 struct btrfs_leaf { 335 struct btrfs_header header; 336 struct btrfs_item items[]; 337 } __attribute__ ((__packed__)); 338 339 /* 340 * all non-leaf blocks are nodes, they hold only keys and pointers to 341 * other blocks 342 */ 343 struct btrfs_key_ptr { 344 struct btrfs_disk_key key; 345 __le64 blockptr; 346 __le64 generation; 347 } __attribute__ ((__packed__)); 348 349 struct btrfs_node { 350 struct btrfs_header header; 351 struct btrfs_key_ptr ptrs[]; 352 } __attribute__ ((__packed__)); 353 354 /* Read ahead values for struct btrfs_path.reada */ 355 enum { 356 READA_NONE, 357 READA_BACK, 358 READA_FORWARD, 359 /* 360 * Similar to READA_FORWARD but unlike it: 361 * 362 * 1) It will trigger readahead even for leaves that are not close to 363 * each other on disk; 364 * 2) It also triggers readahead for nodes; 365 * 3) During a search, even when a node or leaf is already in memory, it 366 * will still trigger readahead for other nodes and leaves that follow 367 * it. 368 * 369 * This is meant to be used only when we know we are iterating over the 370 * entire tree or a very large part of it. 371 */ 372 READA_FORWARD_ALWAYS, 373 }; 374 375 /* 376 * btrfs_paths remember the path taken from the root down to the leaf. 377 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 378 * to any other levels that are present. 379 * 380 * The slots array records the index of the item or block pointer 381 * used while walking the tree. 382 */ 383 struct btrfs_path { 384 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 385 int slots[BTRFS_MAX_LEVEL]; 386 /* if there is real range locking, this locks field will change */ 387 u8 locks[BTRFS_MAX_LEVEL]; 388 u8 reada; 389 /* keep some upper locks as we walk down */ 390 u8 lowest_level; 391 392 /* 393 * set by btrfs_split_item, tells search_slot to keep all locks 394 * and to force calls to keep space in the nodes 395 */ 396 unsigned int search_for_split:1; 397 unsigned int keep_locks:1; 398 unsigned int skip_locking:1; 399 unsigned int search_commit_root:1; 400 unsigned int need_commit_sem:1; 401 unsigned int skip_release_on_error:1; 402 /* 403 * Indicate that new item (btrfs_search_slot) is extending already 404 * existing item and ins_len contains only the data size and not item 405 * header (ie. sizeof(struct btrfs_item) is not included). 406 */ 407 unsigned int search_for_extension:1; 408 }; 409 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 410 sizeof(struct btrfs_item)) 411 struct btrfs_dev_replace { 412 u64 replace_state; /* see #define above */ 413 time64_t time_started; /* seconds since 1-Jan-1970 */ 414 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 415 atomic64_t num_write_errors; 416 atomic64_t num_uncorrectable_read_errors; 417 418 u64 cursor_left; 419 u64 committed_cursor_left; 420 u64 cursor_left_last_write_of_item; 421 u64 cursor_right; 422 423 u64 cont_reading_from_srcdev_mode; /* see #define above */ 424 425 int is_valid; 426 int item_needs_writeback; 427 struct btrfs_device *srcdev; 428 struct btrfs_device *tgtdev; 429 430 struct mutex lock_finishing_cancel_unmount; 431 struct rw_semaphore rwsem; 432 433 struct btrfs_scrub_progress scrub_progress; 434 435 struct percpu_counter bio_counter; 436 wait_queue_head_t replace_wait; 437 }; 438 439 /* 440 * free clusters are used to claim free space in relatively large chunks, 441 * allowing us to do less seeky writes. They are used for all metadata 442 * allocations. In ssd_spread mode they are also used for data allocations. 443 */ 444 struct btrfs_free_cluster { 445 spinlock_t lock; 446 spinlock_t refill_lock; 447 struct rb_root root; 448 449 /* largest extent in this cluster */ 450 u64 max_size; 451 452 /* first extent starting offset */ 453 u64 window_start; 454 455 /* We did a full search and couldn't create a cluster */ 456 bool fragmented; 457 458 struct btrfs_block_group *block_group; 459 /* 460 * when a cluster is allocated from a block group, we put the 461 * cluster onto a list in the block group so that it can 462 * be freed before the block group is freed. 463 */ 464 struct list_head block_group_list; 465 }; 466 467 enum btrfs_caching_type { 468 BTRFS_CACHE_NO, 469 BTRFS_CACHE_STARTED, 470 BTRFS_CACHE_FAST, 471 BTRFS_CACHE_FINISHED, 472 BTRFS_CACHE_ERROR, 473 }; 474 475 /* 476 * Tree to record all locked full stripes of a RAID5/6 block group 477 */ 478 struct btrfs_full_stripe_locks_tree { 479 struct rb_root root; 480 struct mutex lock; 481 }; 482 483 /* Discard control. */ 484 /* 485 * Async discard uses multiple lists to differentiate the discard filter 486 * parameters. Index 0 is for completely free block groups where we need to 487 * ensure the entire block group is trimmed without being lossy. Indices 488 * afterwards represent monotonically decreasing discard filter sizes to 489 * prioritize what should be discarded next. 490 */ 491 #define BTRFS_NR_DISCARD_LISTS 3 492 #define BTRFS_DISCARD_INDEX_UNUSED 0 493 #define BTRFS_DISCARD_INDEX_START 1 494 495 struct btrfs_discard_ctl { 496 struct workqueue_struct *discard_workers; 497 struct delayed_work work; 498 spinlock_t lock; 499 struct btrfs_block_group *block_group; 500 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 501 u64 prev_discard; 502 u64 prev_discard_time; 503 atomic_t discardable_extents; 504 atomic64_t discardable_bytes; 505 u64 max_discard_size; 506 u64 delay_ms; 507 u32 iops_limit; 508 u32 kbps_limit; 509 u64 discard_extent_bytes; 510 u64 discard_bitmap_bytes; 511 atomic64_t discard_bytes_saved; 512 }; 513 514 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 515 516 /* fs_info */ 517 struct reloc_control; 518 struct btrfs_device; 519 struct btrfs_fs_devices; 520 struct btrfs_balance_control; 521 struct btrfs_delayed_root; 522 523 /* 524 * Block group or device which contains an active swapfile. Used for preventing 525 * unsafe operations while a swapfile is active. 526 * 527 * These are sorted on (ptr, inode) (note that a block group or device can 528 * contain more than one swapfile). We compare the pointer values because we 529 * don't actually care what the object is, we just need a quick check whether 530 * the object exists in the rbtree. 531 */ 532 struct btrfs_swapfile_pin { 533 struct rb_node node; 534 void *ptr; 535 struct inode *inode; 536 /* 537 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 538 * points to a struct btrfs_device. 539 */ 540 bool is_block_group; 541 /* 542 * Only used when 'is_block_group' is true and it is the number of 543 * extents used by a swapfile for this block group ('ptr' field). 544 */ 545 int bg_extent_count; 546 }; 547 548 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 549 550 enum { 551 BTRFS_FS_CLOSING_START, 552 BTRFS_FS_CLOSING_DONE, 553 BTRFS_FS_LOG_RECOVERING, 554 BTRFS_FS_OPEN, 555 BTRFS_FS_QUOTA_ENABLED, 556 BTRFS_FS_UPDATE_UUID_TREE_GEN, 557 BTRFS_FS_CREATING_FREE_SPACE_TREE, 558 BTRFS_FS_BTREE_ERR, 559 BTRFS_FS_LOG1_ERR, 560 BTRFS_FS_LOG2_ERR, 561 BTRFS_FS_QUOTA_OVERRIDE, 562 /* Used to record internally whether fs has been frozen */ 563 BTRFS_FS_FROZEN, 564 /* 565 * Indicate that balance has been set up from the ioctl and is in the 566 * main phase. The fs_info::balance_ctl is initialized. 567 */ 568 BTRFS_FS_BALANCE_RUNNING, 569 570 /* 571 * Indicate that relocation of a chunk has started, it's set per chunk 572 * and is toggled between chunks. 573 * Set, tested and cleared while holding fs_info::send_reloc_lock. 574 */ 575 BTRFS_FS_RELOC_RUNNING, 576 577 /* Indicate that the cleaner thread is awake and doing something. */ 578 BTRFS_FS_CLEANER_RUNNING, 579 580 /* 581 * The checksumming has an optimized version and is considered fast, 582 * so we don't need to offload checksums to workqueues. 583 */ 584 BTRFS_FS_CSUM_IMPL_FAST, 585 586 /* Indicate that the discard workqueue can service discards. */ 587 BTRFS_FS_DISCARD_RUNNING, 588 589 /* Indicate that we need to cleanup space cache v1 */ 590 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 591 592 /* Indicate that we can't trust the free space tree for caching yet */ 593 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 594 595 /* Indicate whether there are any tree modification log users */ 596 BTRFS_FS_TREE_MOD_LOG_USERS, 597 598 /* Indicate that we want the transaction kthread to commit right now. */ 599 BTRFS_FS_COMMIT_TRANS, 600 601 #if BITS_PER_LONG == 32 602 /* Indicate if we have error/warn message printed on 32bit systems */ 603 BTRFS_FS_32BIT_ERROR, 604 BTRFS_FS_32BIT_WARN, 605 #endif 606 }; 607 608 /* 609 * Exclusive operations (device replace, resize, device add/remove, balance) 610 */ 611 enum btrfs_exclusive_operation { 612 BTRFS_EXCLOP_NONE, 613 BTRFS_EXCLOP_BALANCE, 614 BTRFS_EXCLOP_DEV_ADD, 615 BTRFS_EXCLOP_DEV_REMOVE, 616 BTRFS_EXCLOP_DEV_REPLACE, 617 BTRFS_EXCLOP_RESIZE, 618 BTRFS_EXCLOP_SWAP_ACTIVATE, 619 }; 620 621 struct btrfs_fs_info { 622 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 623 unsigned long flags; 624 struct btrfs_root *extent_root; 625 struct btrfs_root *tree_root; 626 struct btrfs_root *chunk_root; 627 struct btrfs_root *dev_root; 628 struct btrfs_root *fs_root; 629 struct btrfs_root *csum_root; 630 struct btrfs_root *quota_root; 631 struct btrfs_root *uuid_root; 632 struct btrfs_root *free_space_root; 633 struct btrfs_root *data_reloc_root; 634 635 /* the log root tree is a directory of all the other log roots */ 636 struct btrfs_root *log_root_tree; 637 638 spinlock_t fs_roots_radix_lock; 639 struct radix_tree_root fs_roots_radix; 640 641 /* block group cache stuff */ 642 spinlock_t block_group_cache_lock; 643 u64 first_logical_byte; 644 struct rb_root block_group_cache_tree; 645 646 /* keep track of unallocated space */ 647 atomic64_t free_chunk_space; 648 649 /* Track ranges which are used by log trees blocks/logged data extents */ 650 struct extent_io_tree excluded_extents; 651 652 /* logical->physical extent mapping */ 653 struct extent_map_tree mapping_tree; 654 655 /* 656 * block reservation for extent, checksum, root tree and 657 * delayed dir index item 658 */ 659 struct btrfs_block_rsv global_block_rsv; 660 /* block reservation for metadata operations */ 661 struct btrfs_block_rsv trans_block_rsv; 662 /* block reservation for chunk tree */ 663 struct btrfs_block_rsv chunk_block_rsv; 664 /* block reservation for delayed operations */ 665 struct btrfs_block_rsv delayed_block_rsv; 666 /* block reservation for delayed refs */ 667 struct btrfs_block_rsv delayed_refs_rsv; 668 669 struct btrfs_block_rsv empty_block_rsv; 670 671 u64 generation; 672 u64 last_trans_committed; 673 u64 avg_delayed_ref_runtime; 674 675 /* 676 * this is updated to the current trans every time a full commit 677 * is required instead of the faster short fsync log commits 678 */ 679 u64 last_trans_log_full_commit; 680 unsigned long mount_opt; 681 /* 682 * Track requests for actions that need to be done during transaction 683 * commit (like for some mount options). 684 */ 685 unsigned long pending_changes; 686 unsigned long compress_type:4; 687 unsigned int compress_level; 688 u32 commit_interval; 689 /* 690 * It is a suggestive number, the read side is safe even it gets a 691 * wrong number because we will write out the data into a regular 692 * extent. The write side(mount/remount) is under ->s_umount lock, 693 * so it is also safe. 694 */ 695 u64 max_inline; 696 697 struct btrfs_transaction *running_transaction; 698 wait_queue_head_t transaction_throttle; 699 wait_queue_head_t transaction_wait; 700 wait_queue_head_t transaction_blocked_wait; 701 wait_queue_head_t async_submit_wait; 702 703 /* 704 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 705 * when they are updated. 706 * 707 * Because we do not clear the flags for ever, so we needn't use 708 * the lock on the read side. 709 * 710 * We also needn't use the lock when we mount the fs, because 711 * there is no other task which will update the flag. 712 */ 713 spinlock_t super_lock; 714 struct btrfs_super_block *super_copy; 715 struct btrfs_super_block *super_for_commit; 716 struct super_block *sb; 717 struct inode *btree_inode; 718 struct mutex tree_log_mutex; 719 struct mutex transaction_kthread_mutex; 720 struct mutex cleaner_mutex; 721 struct mutex chunk_mutex; 722 723 /* 724 * this is taken to make sure we don't set block groups ro after 725 * the free space cache has been allocated on them 726 */ 727 struct mutex ro_block_group_mutex; 728 729 /* this is used during read/modify/write to make sure 730 * no two ios are trying to mod the same stripe at the same 731 * time 732 */ 733 struct btrfs_stripe_hash_table *stripe_hash_table; 734 735 /* 736 * this protects the ordered operations list only while we are 737 * processing all of the entries on it. This way we make 738 * sure the commit code doesn't find the list temporarily empty 739 * because another function happens to be doing non-waiting preflush 740 * before jumping into the main commit. 741 */ 742 struct mutex ordered_operations_mutex; 743 744 struct rw_semaphore commit_root_sem; 745 746 struct rw_semaphore cleanup_work_sem; 747 748 struct rw_semaphore subvol_sem; 749 750 spinlock_t trans_lock; 751 /* 752 * the reloc mutex goes with the trans lock, it is taken 753 * during commit to protect us from the relocation code 754 */ 755 struct mutex reloc_mutex; 756 757 struct list_head trans_list; 758 struct list_head dead_roots; 759 struct list_head caching_block_groups; 760 761 spinlock_t delayed_iput_lock; 762 struct list_head delayed_iputs; 763 atomic_t nr_delayed_iputs; 764 wait_queue_head_t delayed_iputs_wait; 765 766 atomic64_t tree_mod_seq; 767 768 /* this protects tree_mod_log and tree_mod_seq_list */ 769 rwlock_t tree_mod_log_lock; 770 struct rb_root tree_mod_log; 771 struct list_head tree_mod_seq_list; 772 773 atomic_t async_delalloc_pages; 774 775 /* 776 * this is used to protect the following list -- ordered_roots. 777 */ 778 spinlock_t ordered_root_lock; 779 780 /* 781 * all fs/file tree roots in which there are data=ordered extents 782 * pending writeback are added into this list. 783 * 784 * these can span multiple transactions and basically include 785 * every dirty data page that isn't from nodatacow 786 */ 787 struct list_head ordered_roots; 788 789 struct mutex delalloc_root_mutex; 790 spinlock_t delalloc_root_lock; 791 /* all fs/file tree roots that have delalloc inodes. */ 792 struct list_head delalloc_roots; 793 794 /* 795 * there is a pool of worker threads for checksumming during writes 796 * and a pool for checksumming after reads. This is because readers 797 * can run with FS locks held, and the writers may be waiting for 798 * those locks. We don't want ordering in the pending list to cause 799 * deadlocks, and so the two are serviced separately. 800 * 801 * A third pool does submit_bio to avoid deadlocking with the other 802 * two 803 */ 804 struct btrfs_workqueue *workers; 805 struct btrfs_workqueue *delalloc_workers; 806 struct btrfs_workqueue *flush_workers; 807 struct btrfs_workqueue *endio_workers; 808 struct btrfs_workqueue *endio_meta_workers; 809 struct btrfs_workqueue *endio_raid56_workers; 810 struct btrfs_workqueue *rmw_workers; 811 struct btrfs_workqueue *endio_meta_write_workers; 812 struct btrfs_workqueue *endio_write_workers; 813 struct btrfs_workqueue *endio_freespace_worker; 814 struct btrfs_workqueue *caching_workers; 815 struct btrfs_workqueue *readahead_workers; 816 817 /* 818 * fixup workers take dirty pages that didn't properly go through 819 * the cow mechanism and make them safe to write. It happens 820 * for the sys_munmap function call path 821 */ 822 struct btrfs_workqueue *fixup_workers; 823 struct btrfs_workqueue *delayed_workers; 824 825 struct task_struct *transaction_kthread; 826 struct task_struct *cleaner_kthread; 827 u32 thread_pool_size; 828 829 struct kobject *space_info_kobj; 830 struct kobject *qgroups_kobj; 831 832 /* used to keep from writing metadata until there is a nice batch */ 833 struct percpu_counter dirty_metadata_bytes; 834 struct percpu_counter delalloc_bytes; 835 struct percpu_counter ordered_bytes; 836 s32 dirty_metadata_batch; 837 s32 delalloc_batch; 838 839 struct list_head dirty_cowonly_roots; 840 841 struct btrfs_fs_devices *fs_devices; 842 843 /* 844 * The space_info list is effectively read only after initial 845 * setup. It is populated at mount time and cleaned up after 846 * all block groups are removed. RCU is used to protect it. 847 */ 848 struct list_head space_info; 849 850 struct btrfs_space_info *data_sinfo; 851 852 struct reloc_control *reloc_ctl; 853 854 /* data_alloc_cluster is only used in ssd_spread mode */ 855 struct btrfs_free_cluster data_alloc_cluster; 856 857 /* all metadata allocations go through this cluster */ 858 struct btrfs_free_cluster meta_alloc_cluster; 859 860 /* auto defrag inodes go here */ 861 spinlock_t defrag_inodes_lock; 862 struct rb_root defrag_inodes; 863 atomic_t defrag_running; 864 865 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 866 seqlock_t profiles_lock; 867 /* 868 * these three are in extended format (availability of single 869 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 870 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 871 */ 872 u64 avail_data_alloc_bits; 873 u64 avail_metadata_alloc_bits; 874 u64 avail_system_alloc_bits; 875 876 /* restriper state */ 877 spinlock_t balance_lock; 878 struct mutex balance_mutex; 879 atomic_t balance_pause_req; 880 atomic_t balance_cancel_req; 881 struct btrfs_balance_control *balance_ctl; 882 wait_queue_head_t balance_wait_q; 883 884 /* Cancellation requests for chunk relocation */ 885 atomic_t reloc_cancel_req; 886 887 u32 data_chunk_allocations; 888 u32 metadata_ratio; 889 890 void *bdev_holder; 891 892 /* private scrub information */ 893 struct mutex scrub_lock; 894 atomic_t scrubs_running; 895 atomic_t scrub_pause_req; 896 atomic_t scrubs_paused; 897 atomic_t scrub_cancel_req; 898 wait_queue_head_t scrub_pause_wait; 899 /* 900 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 901 * running. 902 */ 903 refcount_t scrub_workers_refcnt; 904 struct btrfs_workqueue *scrub_workers; 905 struct btrfs_workqueue *scrub_wr_completion_workers; 906 struct btrfs_workqueue *scrub_parity_workers; 907 struct btrfs_subpage_info *subpage_info; 908 909 struct btrfs_discard_ctl discard_ctl; 910 911 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 912 u32 check_integrity_print_mask; 913 #endif 914 /* is qgroup tracking in a consistent state? */ 915 u64 qgroup_flags; 916 917 /* holds configuration and tracking. Protected by qgroup_lock */ 918 struct rb_root qgroup_tree; 919 spinlock_t qgroup_lock; 920 921 /* 922 * used to avoid frequently calling ulist_alloc()/ulist_free() 923 * when doing qgroup accounting, it must be protected by qgroup_lock. 924 */ 925 struct ulist *qgroup_ulist; 926 927 /* 928 * Protect user change for quota operations. If a transaction is needed, 929 * it must be started before locking this lock. 930 */ 931 struct mutex qgroup_ioctl_lock; 932 933 /* list of dirty qgroups to be written at next commit */ 934 struct list_head dirty_qgroups; 935 936 /* used by qgroup for an efficient tree traversal */ 937 u64 qgroup_seq; 938 939 /* qgroup rescan items */ 940 struct mutex qgroup_rescan_lock; /* protects the progress item */ 941 struct btrfs_key qgroup_rescan_progress; 942 struct btrfs_workqueue *qgroup_rescan_workers; 943 struct completion qgroup_rescan_completion; 944 struct btrfs_work qgroup_rescan_work; 945 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 946 947 /* filesystem state */ 948 unsigned long fs_state; 949 950 struct btrfs_delayed_root *delayed_root; 951 952 /* readahead tree */ 953 spinlock_t reada_lock; 954 struct radix_tree_root reada_tree; 955 956 /* readahead works cnt */ 957 atomic_t reada_works_cnt; 958 959 /* Extent buffer radix tree */ 960 spinlock_t buffer_lock; 961 /* Entries are eb->start / sectorsize */ 962 struct radix_tree_root buffer_radix; 963 964 /* next backup root to be overwritten */ 965 int backup_root_index; 966 967 /* device replace state */ 968 struct btrfs_dev_replace dev_replace; 969 970 struct semaphore uuid_tree_rescan_sem; 971 972 /* Used to reclaim the metadata space in the background. */ 973 struct work_struct async_reclaim_work; 974 struct work_struct async_data_reclaim_work; 975 struct work_struct preempt_reclaim_work; 976 977 /* Reclaim partially filled block groups in the background */ 978 struct work_struct reclaim_bgs_work; 979 struct list_head reclaim_bgs; 980 int bg_reclaim_threshold; 981 982 spinlock_t unused_bgs_lock; 983 struct list_head unused_bgs; 984 struct mutex unused_bg_unpin_mutex; 985 /* Protect block groups that are going to be deleted */ 986 struct mutex reclaim_bgs_lock; 987 988 /* Cached block sizes */ 989 u32 nodesize; 990 u32 sectorsize; 991 /* ilog2 of sectorsize, use to avoid 64bit division */ 992 u32 sectorsize_bits; 993 u32 csum_size; 994 u32 csums_per_leaf; 995 u32 stripesize; 996 997 /* Block groups and devices containing active swapfiles. */ 998 spinlock_t swapfile_pins_lock; 999 struct rb_root swapfile_pins; 1000 1001 struct crypto_shash *csum_shash; 1002 1003 spinlock_t send_reloc_lock; 1004 /* 1005 * Number of send operations in progress. 1006 * Updated while holding fs_info::send_reloc_lock. 1007 */ 1008 int send_in_progress; 1009 1010 /* Type of exclusive operation running, protected by super_lock */ 1011 enum btrfs_exclusive_operation exclusive_operation; 1012 1013 /* 1014 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1015 * if the mode is enabled 1016 */ 1017 union { 1018 u64 zone_size; 1019 u64 zoned; 1020 }; 1021 1022 struct mutex zoned_meta_io_lock; 1023 spinlock_t treelog_bg_lock; 1024 u64 treelog_bg; 1025 1026 /* 1027 * Start of the dedicated data relocation block group, protected by 1028 * relocation_bg_lock. 1029 */ 1030 spinlock_t relocation_bg_lock; 1031 u64 data_reloc_bg; 1032 1033 spinlock_t zone_active_bgs_lock; 1034 struct list_head zone_active_bgs; 1035 1036 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1037 spinlock_t ref_verify_lock; 1038 struct rb_root block_tree; 1039 #endif 1040 1041 #ifdef CONFIG_BTRFS_DEBUG 1042 struct kobject *debug_kobj; 1043 struct kobject *discard_debug_kobj; 1044 struct list_head allocated_roots; 1045 1046 spinlock_t eb_leak_lock; 1047 struct list_head allocated_ebs; 1048 #endif 1049 }; 1050 1051 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1052 { 1053 return sb->s_fs_info; 1054 } 1055 1056 /* 1057 * The state of btrfs root 1058 */ 1059 enum { 1060 /* 1061 * btrfs_record_root_in_trans is a multi-step process, and it can race 1062 * with the balancing code. But the race is very small, and only the 1063 * first time the root is added to each transaction. So IN_TRANS_SETUP 1064 * is used to tell us when more checks are required 1065 */ 1066 BTRFS_ROOT_IN_TRANS_SETUP, 1067 1068 /* 1069 * Set if tree blocks of this root can be shared by other roots. 1070 * Only subvolume trees and their reloc trees have this bit set. 1071 * Conflicts with TRACK_DIRTY bit. 1072 * 1073 * This affects two things: 1074 * 1075 * - How balance works 1076 * For shareable roots, we need to use reloc tree and do path 1077 * replacement for balance, and need various pre/post hooks for 1078 * snapshot creation to handle them. 1079 * 1080 * While for non-shareable trees, we just simply do a tree search 1081 * with COW. 1082 * 1083 * - How dirty roots are tracked 1084 * For shareable roots, btrfs_record_root_in_trans() is needed to 1085 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1086 * don't need to set this manually. 1087 */ 1088 BTRFS_ROOT_SHAREABLE, 1089 BTRFS_ROOT_TRACK_DIRTY, 1090 BTRFS_ROOT_IN_RADIX, 1091 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1092 BTRFS_ROOT_DEFRAG_RUNNING, 1093 BTRFS_ROOT_FORCE_COW, 1094 BTRFS_ROOT_MULTI_LOG_TASKS, 1095 BTRFS_ROOT_DIRTY, 1096 BTRFS_ROOT_DELETING, 1097 1098 /* 1099 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1100 * 1101 * Set for the subvolume tree owning the reloc tree. 1102 */ 1103 BTRFS_ROOT_DEAD_RELOC_TREE, 1104 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1105 BTRFS_ROOT_DEAD_TREE, 1106 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1107 BTRFS_ROOT_HAS_LOG_TREE, 1108 /* Qgroup flushing is in progress */ 1109 BTRFS_ROOT_QGROUP_FLUSHING, 1110 /* We started the orphan cleanup for this root. */ 1111 BTRFS_ROOT_ORPHAN_CLEANUP, 1112 }; 1113 1114 /* 1115 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1116 * code. For detail check comment in fs/btrfs/qgroup.c. 1117 */ 1118 struct btrfs_qgroup_swapped_blocks { 1119 spinlock_t lock; 1120 /* RM_EMPTY_ROOT() of above blocks[] */ 1121 bool swapped; 1122 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1123 }; 1124 1125 /* 1126 * in ram representation of the tree. extent_root is used for all allocations 1127 * and for the extent tree extent_root root. 1128 */ 1129 struct btrfs_root { 1130 struct extent_buffer *node; 1131 1132 struct extent_buffer *commit_root; 1133 struct btrfs_root *log_root; 1134 struct btrfs_root *reloc_root; 1135 1136 unsigned long state; 1137 struct btrfs_root_item root_item; 1138 struct btrfs_key root_key; 1139 struct btrfs_fs_info *fs_info; 1140 struct extent_io_tree dirty_log_pages; 1141 1142 struct mutex objectid_mutex; 1143 1144 spinlock_t accounting_lock; 1145 struct btrfs_block_rsv *block_rsv; 1146 1147 struct mutex log_mutex; 1148 wait_queue_head_t log_writer_wait; 1149 wait_queue_head_t log_commit_wait[2]; 1150 struct list_head log_ctxs[2]; 1151 /* Used only for log trees of subvolumes, not for the log root tree */ 1152 atomic_t log_writers; 1153 atomic_t log_commit[2]; 1154 /* Used only for log trees of subvolumes, not for the log root tree */ 1155 atomic_t log_batch; 1156 int log_transid; 1157 /* No matter the commit succeeds or not*/ 1158 int log_transid_committed; 1159 /* Just be updated when the commit succeeds. */ 1160 int last_log_commit; 1161 pid_t log_start_pid; 1162 1163 u64 last_trans; 1164 1165 u32 type; 1166 1167 u64 free_objectid; 1168 1169 struct btrfs_key defrag_progress; 1170 struct btrfs_key defrag_max; 1171 1172 /* The dirty list is only used by non-shareable roots */ 1173 struct list_head dirty_list; 1174 1175 struct list_head root_list; 1176 1177 spinlock_t log_extents_lock[2]; 1178 struct list_head logged_list[2]; 1179 1180 spinlock_t inode_lock; 1181 /* red-black tree that keeps track of in-memory inodes */ 1182 struct rb_root inode_tree; 1183 1184 /* 1185 * radix tree that keeps track of delayed nodes of every inode, 1186 * protected by inode_lock 1187 */ 1188 struct radix_tree_root delayed_nodes_tree; 1189 /* 1190 * right now this just gets used so that a root has its own devid 1191 * for stat. It may be used for more later 1192 */ 1193 dev_t anon_dev; 1194 1195 spinlock_t root_item_lock; 1196 refcount_t refs; 1197 1198 struct mutex delalloc_mutex; 1199 spinlock_t delalloc_lock; 1200 /* 1201 * all of the inodes that have delalloc bytes. It is possible for 1202 * this list to be empty even when there is still dirty data=ordered 1203 * extents waiting to finish IO. 1204 */ 1205 struct list_head delalloc_inodes; 1206 struct list_head delalloc_root; 1207 u64 nr_delalloc_inodes; 1208 1209 struct mutex ordered_extent_mutex; 1210 /* 1211 * this is used by the balancing code to wait for all the pending 1212 * ordered extents 1213 */ 1214 spinlock_t ordered_extent_lock; 1215 1216 /* 1217 * all of the data=ordered extents pending writeback 1218 * these can span multiple transactions and basically include 1219 * every dirty data page that isn't from nodatacow 1220 */ 1221 struct list_head ordered_extents; 1222 struct list_head ordered_root; 1223 u64 nr_ordered_extents; 1224 1225 /* 1226 * Not empty if this subvolume root has gone through tree block swap 1227 * (relocation) 1228 * 1229 * Will be used by reloc_control::dirty_subvol_roots. 1230 */ 1231 struct list_head reloc_dirty_list; 1232 1233 /* 1234 * Number of currently running SEND ioctls to prevent 1235 * manipulation with the read-only status via SUBVOL_SETFLAGS 1236 */ 1237 int send_in_progress; 1238 /* 1239 * Number of currently running deduplication operations that have a 1240 * destination inode belonging to this root. Protected by the lock 1241 * root_item_lock. 1242 */ 1243 int dedupe_in_progress; 1244 /* For exclusion of snapshot creation and nocow writes */ 1245 struct btrfs_drew_lock snapshot_lock; 1246 1247 atomic_t snapshot_force_cow; 1248 1249 /* For qgroup metadata reserved space */ 1250 spinlock_t qgroup_meta_rsv_lock; 1251 u64 qgroup_meta_rsv_pertrans; 1252 u64 qgroup_meta_rsv_prealloc; 1253 wait_queue_head_t qgroup_flush_wait; 1254 1255 /* Number of active swapfiles */ 1256 atomic_t nr_swapfiles; 1257 1258 /* Record pairs of swapped blocks for qgroup */ 1259 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1260 1261 /* Used only by log trees, when logging csum items */ 1262 struct extent_io_tree log_csum_range; 1263 1264 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1265 u64 alloc_bytenr; 1266 #endif 1267 1268 #ifdef CONFIG_BTRFS_DEBUG 1269 struct list_head leak_list; 1270 #endif 1271 }; 1272 1273 /* 1274 * Structure that conveys information about an extent that is going to replace 1275 * all the extents in a file range. 1276 */ 1277 struct btrfs_replace_extent_info { 1278 u64 disk_offset; 1279 u64 disk_len; 1280 u64 data_offset; 1281 u64 data_len; 1282 u64 file_offset; 1283 /* Pointer to a file extent item of type regular or prealloc. */ 1284 char *extent_buf; 1285 /* 1286 * Set to true when attempting to replace a file range with a new extent 1287 * described by this structure, set to false when attempting to clone an 1288 * existing extent into a file range. 1289 */ 1290 bool is_new_extent; 1291 /* Meaningful only if is_new_extent is true. */ 1292 int qgroup_reserved; 1293 /* 1294 * Meaningful only if is_new_extent is true. 1295 * Used to track how many extent items we have already inserted in a 1296 * subvolume tree that refer to the extent described by this structure, 1297 * so that we know when to create a new delayed ref or update an existing 1298 * one. 1299 */ 1300 int insertions; 1301 }; 1302 1303 /* Arguments for btrfs_drop_extents() */ 1304 struct btrfs_drop_extents_args { 1305 /* Input parameters */ 1306 1307 /* 1308 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1309 * If 'replace_extent' is true, this must not be NULL. Also the path 1310 * is always released except if 'replace_extent' is true and 1311 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1312 * the path is kept locked. 1313 */ 1314 struct btrfs_path *path; 1315 /* Start offset of the range to drop extents from */ 1316 u64 start; 1317 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1318 u64 end; 1319 /* If true drop all the extent maps in the range */ 1320 bool drop_cache; 1321 /* 1322 * If true it means we want to insert a new extent after dropping all 1323 * the extents in the range. If this is true, the 'extent_item_size' 1324 * parameter must be set as well and the 'extent_inserted' field will 1325 * be set to true by btrfs_drop_extents() if it could insert the new 1326 * extent. 1327 * Note: when this is set to true the path must not be NULL. 1328 */ 1329 bool replace_extent; 1330 /* 1331 * Used if 'replace_extent' is true. Size of the file extent item to 1332 * insert after dropping all existing extents in the range 1333 */ 1334 u32 extent_item_size; 1335 1336 /* Output parameters */ 1337 1338 /* 1339 * Set to the minimum between the input parameter 'end' and the end 1340 * (exclusive, last byte + 1) of the last dropped extent. This is always 1341 * set even if btrfs_drop_extents() returns an error. 1342 */ 1343 u64 drop_end; 1344 /* 1345 * The number of allocated bytes found in the range. This can be smaller 1346 * than the range's length when there are holes in the range. 1347 */ 1348 u64 bytes_found; 1349 /* 1350 * Only set if 'replace_extent' is true. Set to true if we were able 1351 * to insert a replacement extent after dropping all extents in the 1352 * range, otherwise set to false by btrfs_drop_extents(). 1353 * Also, if btrfs_drop_extents() has set this to true it means it 1354 * returned with the path locked, otherwise if it has set this to 1355 * false it has returned with the path released. 1356 */ 1357 bool extent_inserted; 1358 }; 1359 1360 struct btrfs_file_private { 1361 void *filldir_buf; 1362 }; 1363 1364 1365 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1366 { 1367 1368 return info->nodesize - sizeof(struct btrfs_header); 1369 } 1370 1371 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1372 1373 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1374 { 1375 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1376 } 1377 1378 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1379 { 1380 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1381 } 1382 1383 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1384 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1385 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1386 { 1387 return BTRFS_MAX_ITEM_SIZE(info) - 1388 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1389 } 1390 1391 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1392 { 1393 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1394 } 1395 1396 /* 1397 * Flags for mount options. 1398 * 1399 * Note: don't forget to add new options to btrfs_show_options() 1400 */ 1401 enum { 1402 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1403 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1404 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1405 BTRFS_MOUNT_SSD = (1UL << 3), 1406 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1407 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1408 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1409 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1410 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1411 BTRFS_MOUNT_NOSSD = (1UL << 9), 1412 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1413 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1414 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1415 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1416 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1417 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1418 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1419 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1420 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1421 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1422 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1423 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1424 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1425 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1426 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1427 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1428 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1429 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1430 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1431 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1432 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1433 }; 1434 1435 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1436 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1437 1438 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1439 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1440 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1441 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1442 BTRFS_MOUNT_##opt) 1443 1444 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1445 do { \ 1446 if (!btrfs_test_opt(fs_info, opt)) \ 1447 btrfs_info(fs_info, fmt, ##args); \ 1448 btrfs_set_opt(fs_info->mount_opt, opt); \ 1449 } while (0) 1450 1451 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1452 do { \ 1453 if (btrfs_test_opt(fs_info, opt)) \ 1454 btrfs_info(fs_info, fmt, ##args); \ 1455 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1456 } while (0) 1457 1458 /* 1459 * Requests for changes that need to be done during transaction commit. 1460 * 1461 * Internal mount options that are used for special handling of the real 1462 * mount options (eg. cannot be set during remount and have to be set during 1463 * transaction commit) 1464 */ 1465 1466 #define BTRFS_PENDING_COMMIT (0) 1467 1468 #define btrfs_test_pending(info, opt) \ 1469 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1470 #define btrfs_set_pending(info, opt) \ 1471 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1472 #define btrfs_clear_pending(info, opt) \ 1473 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1474 1475 /* 1476 * Helpers for setting pending mount option changes. 1477 * 1478 * Expects corresponding macros 1479 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1480 */ 1481 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1482 do { \ 1483 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1484 btrfs_info((info), fmt, ##args); \ 1485 btrfs_set_pending((info), SET_##opt); \ 1486 btrfs_clear_pending((info), CLEAR_##opt); \ 1487 } \ 1488 } while(0) 1489 1490 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1491 do { \ 1492 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1493 btrfs_info((info), fmt, ##args); \ 1494 btrfs_set_pending((info), CLEAR_##opt); \ 1495 btrfs_clear_pending((info), SET_##opt); \ 1496 } \ 1497 } while(0) 1498 1499 /* 1500 * Inode flags 1501 */ 1502 #define BTRFS_INODE_NODATASUM (1U << 0) 1503 #define BTRFS_INODE_NODATACOW (1U << 1) 1504 #define BTRFS_INODE_READONLY (1U << 2) 1505 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1506 #define BTRFS_INODE_PREALLOC (1U << 4) 1507 #define BTRFS_INODE_SYNC (1U << 5) 1508 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1509 #define BTRFS_INODE_APPEND (1U << 7) 1510 #define BTRFS_INODE_NODUMP (1U << 8) 1511 #define BTRFS_INODE_NOATIME (1U << 9) 1512 #define BTRFS_INODE_DIRSYNC (1U << 10) 1513 #define BTRFS_INODE_COMPRESS (1U << 11) 1514 1515 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1516 1517 #define BTRFS_INODE_FLAG_MASK \ 1518 (BTRFS_INODE_NODATASUM | \ 1519 BTRFS_INODE_NODATACOW | \ 1520 BTRFS_INODE_READONLY | \ 1521 BTRFS_INODE_NOCOMPRESS | \ 1522 BTRFS_INODE_PREALLOC | \ 1523 BTRFS_INODE_SYNC | \ 1524 BTRFS_INODE_IMMUTABLE | \ 1525 BTRFS_INODE_APPEND | \ 1526 BTRFS_INODE_NODUMP | \ 1527 BTRFS_INODE_NOATIME | \ 1528 BTRFS_INODE_DIRSYNC | \ 1529 BTRFS_INODE_COMPRESS | \ 1530 BTRFS_INODE_ROOT_ITEM_INIT) 1531 1532 #define BTRFS_INODE_RO_VERITY (1U << 0) 1533 1534 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1535 1536 struct btrfs_map_token { 1537 struct extent_buffer *eb; 1538 char *kaddr; 1539 unsigned long offset; 1540 }; 1541 1542 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1543 ((bytes) >> (fs_info)->sectorsize_bits) 1544 1545 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1546 struct extent_buffer *eb) 1547 { 1548 token->eb = eb; 1549 token->kaddr = page_address(eb->pages[0]); 1550 token->offset = 0; 1551 } 1552 1553 /* some macros to generate set/get functions for the struct fields. This 1554 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1555 * one for u8: 1556 */ 1557 #define le8_to_cpu(v) (v) 1558 #define cpu_to_le8(v) (v) 1559 #define __le8 u8 1560 1561 static inline u8 get_unaligned_le8(const void *p) 1562 { 1563 return *(u8 *)p; 1564 } 1565 1566 static inline void put_unaligned_le8(u8 val, void *p) 1567 { 1568 *(u8 *)p = val; 1569 } 1570 1571 #define read_eb_member(eb, ptr, type, member, result) (\ 1572 read_extent_buffer(eb, (char *)(result), \ 1573 ((unsigned long)(ptr)) + \ 1574 offsetof(type, member), \ 1575 sizeof(((type *)0)->member))) 1576 1577 #define write_eb_member(eb, ptr, type, member, result) (\ 1578 write_extent_buffer(eb, (char *)(result), \ 1579 ((unsigned long)(ptr)) + \ 1580 offsetof(type, member), \ 1581 sizeof(((type *)0)->member))) 1582 1583 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1584 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1585 const void *ptr, unsigned long off); \ 1586 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1587 const void *ptr, unsigned long off, \ 1588 u##bits val); \ 1589 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1590 const void *ptr, unsigned long off); \ 1591 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1592 unsigned long off, u##bits val); 1593 1594 DECLARE_BTRFS_SETGET_BITS(8) 1595 DECLARE_BTRFS_SETGET_BITS(16) 1596 DECLARE_BTRFS_SETGET_BITS(32) 1597 DECLARE_BTRFS_SETGET_BITS(64) 1598 1599 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1600 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1601 const type *s) \ 1602 { \ 1603 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1604 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1605 } \ 1606 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1607 u##bits val) \ 1608 { \ 1609 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1610 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1611 } \ 1612 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1613 const type *s) \ 1614 { \ 1615 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1616 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1617 } \ 1618 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1619 type *s, u##bits val) \ 1620 { \ 1621 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1622 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1623 } 1624 1625 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1626 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1627 { \ 1628 const type *p = page_address(eb->pages[0]) + \ 1629 offset_in_page(eb->start); \ 1630 return get_unaligned_le##bits(&p->member); \ 1631 } \ 1632 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1633 u##bits val) \ 1634 { \ 1635 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1636 put_unaligned_le##bits(val, &p->member); \ 1637 } 1638 1639 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1640 static inline u##bits btrfs_##name(const type *s) \ 1641 { \ 1642 return get_unaligned_le##bits(&s->member); \ 1643 } \ 1644 static inline void btrfs_set_##name(type *s, u##bits val) \ 1645 { \ 1646 put_unaligned_le##bits(val, &s->member); \ 1647 } 1648 1649 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1650 struct btrfs_dev_item *s) 1651 { 1652 BUILD_BUG_ON(sizeof(u64) != 1653 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1654 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1655 total_bytes)); 1656 } 1657 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1658 struct btrfs_dev_item *s, 1659 u64 val) 1660 { 1661 BUILD_BUG_ON(sizeof(u64) != 1662 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1663 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1664 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1665 } 1666 1667 1668 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1669 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1670 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1671 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1672 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1673 start_offset, 64); 1674 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1675 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1676 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1677 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1678 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1679 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1680 1681 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1682 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1683 total_bytes, 64); 1684 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1685 bytes_used, 64); 1686 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1687 io_align, 32); 1688 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1689 io_width, 32); 1690 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1691 sector_size, 32); 1692 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1693 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1694 dev_group, 32); 1695 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1696 seek_speed, 8); 1697 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1698 bandwidth, 8); 1699 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1700 generation, 64); 1701 1702 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1703 { 1704 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1705 } 1706 1707 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1708 { 1709 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1710 } 1711 1712 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1713 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1714 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1715 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1716 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1717 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1718 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1719 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1720 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1721 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1722 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1723 1724 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1725 { 1726 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1727 } 1728 1729 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1730 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1731 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1732 stripe_len, 64); 1733 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1734 io_align, 32); 1735 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1736 io_width, 32); 1737 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1738 sector_size, 32); 1739 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1740 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1741 num_stripes, 16); 1742 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1743 sub_stripes, 16); 1744 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1745 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1746 1747 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1748 int nr) 1749 { 1750 unsigned long offset = (unsigned long)c; 1751 offset += offsetof(struct btrfs_chunk, stripe); 1752 offset += nr * sizeof(struct btrfs_stripe); 1753 return (struct btrfs_stripe *)offset; 1754 } 1755 1756 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1757 { 1758 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1759 } 1760 1761 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1762 struct btrfs_chunk *c, int nr) 1763 { 1764 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1765 } 1766 1767 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1768 struct btrfs_chunk *c, int nr) 1769 { 1770 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1771 } 1772 1773 /* struct btrfs_block_group_item */ 1774 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1775 used, 64); 1776 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1777 used, 64); 1778 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1779 struct btrfs_block_group_item, chunk_objectid, 64); 1780 1781 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1782 struct btrfs_block_group_item, chunk_objectid, 64); 1783 BTRFS_SETGET_FUNCS(block_group_flags, 1784 struct btrfs_block_group_item, flags, 64); 1785 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1786 struct btrfs_block_group_item, flags, 64); 1787 1788 /* struct btrfs_free_space_info */ 1789 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1790 extent_count, 32); 1791 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1792 1793 /* struct btrfs_inode_ref */ 1794 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1795 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1796 1797 /* struct btrfs_inode_extref */ 1798 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1799 parent_objectid, 64); 1800 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1801 name_len, 16); 1802 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1803 1804 /* struct btrfs_inode_item */ 1805 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1806 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1807 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1808 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1809 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1810 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1811 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1812 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1813 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1814 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1815 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1816 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1817 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1818 generation, 64); 1819 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1820 sequence, 64); 1821 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1822 transid, 64); 1823 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1824 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1825 nbytes, 64); 1826 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1827 block_group, 64); 1828 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1829 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1830 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1831 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1832 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1833 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1834 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1835 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1836 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1837 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1838 1839 /* struct btrfs_dev_extent */ 1840 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1841 chunk_tree, 64); 1842 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1843 chunk_objectid, 64); 1844 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1845 chunk_offset, 64); 1846 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1847 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1848 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1849 generation, 64); 1850 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1851 1852 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1853 1854 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1855 struct btrfs_tree_block_info *item, 1856 struct btrfs_disk_key *key) 1857 { 1858 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1859 } 1860 1861 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1862 struct btrfs_tree_block_info *item, 1863 struct btrfs_disk_key *key) 1864 { 1865 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1866 } 1867 1868 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1869 root, 64); 1870 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1871 objectid, 64); 1872 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1873 offset, 64); 1874 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1875 count, 32); 1876 1877 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1878 count, 32); 1879 1880 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1881 type, 8); 1882 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1883 offset, 64); 1884 1885 static inline u32 btrfs_extent_inline_ref_size(int type) 1886 { 1887 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1888 type == BTRFS_SHARED_BLOCK_REF_KEY) 1889 return sizeof(struct btrfs_extent_inline_ref); 1890 if (type == BTRFS_SHARED_DATA_REF_KEY) 1891 return sizeof(struct btrfs_shared_data_ref) + 1892 sizeof(struct btrfs_extent_inline_ref); 1893 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1894 return sizeof(struct btrfs_extent_data_ref) + 1895 offsetof(struct btrfs_extent_inline_ref, offset); 1896 return 0; 1897 } 1898 1899 /* struct btrfs_node */ 1900 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1901 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1902 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1903 blockptr, 64); 1904 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1905 generation, 64); 1906 1907 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1908 { 1909 unsigned long ptr; 1910 ptr = offsetof(struct btrfs_node, ptrs) + 1911 sizeof(struct btrfs_key_ptr) * nr; 1912 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1913 } 1914 1915 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1916 int nr, u64 val) 1917 { 1918 unsigned long ptr; 1919 ptr = offsetof(struct btrfs_node, ptrs) + 1920 sizeof(struct btrfs_key_ptr) * nr; 1921 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1922 } 1923 1924 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1925 { 1926 unsigned long ptr; 1927 ptr = offsetof(struct btrfs_node, ptrs) + 1928 sizeof(struct btrfs_key_ptr) * nr; 1929 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1930 } 1931 1932 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1933 int nr, u64 val) 1934 { 1935 unsigned long ptr; 1936 ptr = offsetof(struct btrfs_node, ptrs) + 1937 sizeof(struct btrfs_key_ptr) * nr; 1938 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1939 } 1940 1941 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1942 { 1943 return offsetof(struct btrfs_node, ptrs) + 1944 sizeof(struct btrfs_key_ptr) * nr; 1945 } 1946 1947 void btrfs_node_key(const struct extent_buffer *eb, 1948 struct btrfs_disk_key *disk_key, int nr); 1949 1950 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1951 struct btrfs_disk_key *disk_key, int nr) 1952 { 1953 unsigned long ptr; 1954 ptr = btrfs_node_key_ptr_offset(nr); 1955 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1956 struct btrfs_key_ptr, key, disk_key); 1957 } 1958 1959 /* struct btrfs_item */ 1960 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 1961 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 1962 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 1963 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 1964 1965 static inline unsigned long btrfs_item_nr_offset(int nr) 1966 { 1967 return offsetof(struct btrfs_leaf, items) + 1968 sizeof(struct btrfs_item) * nr; 1969 } 1970 1971 static inline struct btrfs_item *btrfs_item_nr(int nr) 1972 { 1973 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 1974 } 1975 1976 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 1977 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 1978 int slot) \ 1979 { \ 1980 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 1981 } \ 1982 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 1983 int slot, u32 val) \ 1984 { \ 1985 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 1986 } \ 1987 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 1988 int slot) \ 1989 { \ 1990 struct btrfs_item *item = btrfs_item_nr(slot); \ 1991 return btrfs_token_raw_item_##member(token, item); \ 1992 } \ 1993 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 1994 int slot, u32 val) \ 1995 { \ 1996 struct btrfs_item *item = btrfs_item_nr(slot); \ 1997 btrfs_set_token_raw_item_##member(token, item, val); \ 1998 } 1999 2000 BTRFS_ITEM_SETGET_FUNCS(offset) 2001 BTRFS_ITEM_SETGET_FUNCS(size); 2002 2003 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2004 { 2005 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2006 } 2007 2008 static inline void btrfs_item_key(const struct extent_buffer *eb, 2009 struct btrfs_disk_key *disk_key, int nr) 2010 { 2011 struct btrfs_item *item = btrfs_item_nr(nr); 2012 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2013 } 2014 2015 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2016 struct btrfs_disk_key *disk_key, int nr) 2017 { 2018 struct btrfs_item *item = btrfs_item_nr(nr); 2019 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2020 } 2021 2022 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2023 2024 /* 2025 * struct btrfs_root_ref 2026 */ 2027 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2028 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2029 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2030 2031 /* struct btrfs_dir_item */ 2032 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2033 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2034 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2035 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2036 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2037 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2038 data_len, 16); 2039 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2040 name_len, 16); 2041 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2042 transid, 64); 2043 2044 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2045 const struct btrfs_dir_item *item, 2046 struct btrfs_disk_key *key) 2047 { 2048 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2049 } 2050 2051 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2052 struct btrfs_dir_item *item, 2053 const struct btrfs_disk_key *key) 2054 { 2055 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2056 } 2057 2058 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2059 num_entries, 64); 2060 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2061 num_bitmaps, 64); 2062 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2063 generation, 64); 2064 2065 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2066 const struct btrfs_free_space_header *h, 2067 struct btrfs_disk_key *key) 2068 { 2069 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2070 } 2071 2072 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2073 struct btrfs_free_space_header *h, 2074 const struct btrfs_disk_key *key) 2075 { 2076 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2077 } 2078 2079 /* struct btrfs_disk_key */ 2080 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2081 objectid, 64); 2082 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2083 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2084 2085 #ifdef __LITTLE_ENDIAN 2086 2087 /* 2088 * Optimized helpers for little-endian architectures where CPU and on-disk 2089 * structures have the same endianness and we can skip conversions. 2090 */ 2091 2092 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2093 const struct btrfs_disk_key *disk_key) 2094 { 2095 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2096 } 2097 2098 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2099 const struct btrfs_key *cpu_key) 2100 { 2101 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2102 } 2103 2104 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2105 struct btrfs_key *cpu_key, int nr) 2106 { 2107 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2108 2109 btrfs_node_key(eb, disk_key, nr); 2110 } 2111 2112 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2113 struct btrfs_key *cpu_key, int nr) 2114 { 2115 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2116 2117 btrfs_item_key(eb, disk_key, nr); 2118 } 2119 2120 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2121 const struct btrfs_dir_item *item, 2122 struct btrfs_key *cpu_key) 2123 { 2124 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2125 2126 btrfs_dir_item_key(eb, item, disk_key); 2127 } 2128 2129 #else 2130 2131 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2132 const struct btrfs_disk_key *disk) 2133 { 2134 cpu->offset = le64_to_cpu(disk->offset); 2135 cpu->type = disk->type; 2136 cpu->objectid = le64_to_cpu(disk->objectid); 2137 } 2138 2139 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2140 const struct btrfs_key *cpu) 2141 { 2142 disk->offset = cpu_to_le64(cpu->offset); 2143 disk->type = cpu->type; 2144 disk->objectid = cpu_to_le64(cpu->objectid); 2145 } 2146 2147 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2148 struct btrfs_key *key, int nr) 2149 { 2150 struct btrfs_disk_key disk_key; 2151 btrfs_node_key(eb, &disk_key, nr); 2152 btrfs_disk_key_to_cpu(key, &disk_key); 2153 } 2154 2155 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2156 struct btrfs_key *key, int nr) 2157 { 2158 struct btrfs_disk_key disk_key; 2159 btrfs_item_key(eb, &disk_key, nr); 2160 btrfs_disk_key_to_cpu(key, &disk_key); 2161 } 2162 2163 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2164 const struct btrfs_dir_item *item, 2165 struct btrfs_key *key) 2166 { 2167 struct btrfs_disk_key disk_key; 2168 btrfs_dir_item_key(eb, item, &disk_key); 2169 btrfs_disk_key_to_cpu(key, &disk_key); 2170 } 2171 2172 #endif 2173 2174 /* struct btrfs_header */ 2175 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2176 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2177 generation, 64); 2178 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2179 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2180 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2181 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2182 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2183 generation, 64); 2184 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2185 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2186 nritems, 32); 2187 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2188 2189 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2190 { 2191 return (btrfs_header_flags(eb) & flag) == flag; 2192 } 2193 2194 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2195 { 2196 u64 flags = btrfs_header_flags(eb); 2197 btrfs_set_header_flags(eb, flags | flag); 2198 } 2199 2200 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2201 { 2202 u64 flags = btrfs_header_flags(eb); 2203 btrfs_set_header_flags(eb, flags & ~flag); 2204 } 2205 2206 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2207 { 2208 u64 flags = btrfs_header_flags(eb); 2209 return flags >> BTRFS_BACKREF_REV_SHIFT; 2210 } 2211 2212 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2213 int rev) 2214 { 2215 u64 flags = btrfs_header_flags(eb); 2216 flags &= ~BTRFS_BACKREF_REV_MASK; 2217 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2218 btrfs_set_header_flags(eb, flags); 2219 } 2220 2221 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2222 { 2223 return btrfs_header_level(eb) == 0; 2224 } 2225 2226 /* struct btrfs_root_item */ 2227 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2228 generation, 64); 2229 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2230 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2231 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2232 2233 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2234 generation, 64); 2235 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2236 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2237 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2238 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2239 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2240 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2241 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2242 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2243 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2244 last_snapshot, 64); 2245 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2246 generation_v2, 64); 2247 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2248 ctransid, 64); 2249 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2250 otransid, 64); 2251 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2252 stransid, 64); 2253 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2254 rtransid, 64); 2255 2256 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2257 { 2258 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2259 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2260 } 2261 2262 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2263 { 2264 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2265 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2266 } 2267 2268 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2269 { 2270 return root->root_key.objectid; 2271 } 2272 2273 /* struct btrfs_root_backup */ 2274 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2275 tree_root, 64); 2276 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2277 tree_root_gen, 64); 2278 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2279 tree_root_level, 8); 2280 2281 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2282 chunk_root, 64); 2283 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2284 chunk_root_gen, 64); 2285 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2286 chunk_root_level, 8); 2287 2288 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2289 extent_root, 64); 2290 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2291 extent_root_gen, 64); 2292 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2293 extent_root_level, 8); 2294 2295 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2296 fs_root, 64); 2297 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2298 fs_root_gen, 64); 2299 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2300 fs_root_level, 8); 2301 2302 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2303 dev_root, 64); 2304 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2305 dev_root_gen, 64); 2306 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2307 dev_root_level, 8); 2308 2309 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2310 csum_root, 64); 2311 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2312 csum_root_gen, 64); 2313 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2314 csum_root_level, 8); 2315 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2316 total_bytes, 64); 2317 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2318 bytes_used, 64); 2319 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2320 num_devices, 64); 2321 2322 /* struct btrfs_balance_item */ 2323 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2324 2325 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2326 const struct btrfs_balance_item *bi, 2327 struct btrfs_disk_balance_args *ba) 2328 { 2329 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2330 } 2331 2332 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2333 struct btrfs_balance_item *bi, 2334 const struct btrfs_disk_balance_args *ba) 2335 { 2336 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2337 } 2338 2339 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2340 const struct btrfs_balance_item *bi, 2341 struct btrfs_disk_balance_args *ba) 2342 { 2343 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2344 } 2345 2346 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2347 struct btrfs_balance_item *bi, 2348 const struct btrfs_disk_balance_args *ba) 2349 { 2350 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2351 } 2352 2353 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2354 const struct btrfs_balance_item *bi, 2355 struct btrfs_disk_balance_args *ba) 2356 { 2357 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2358 } 2359 2360 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2361 struct btrfs_balance_item *bi, 2362 const struct btrfs_disk_balance_args *ba) 2363 { 2364 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2365 } 2366 2367 static inline void 2368 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2369 const struct btrfs_disk_balance_args *disk) 2370 { 2371 memset(cpu, 0, sizeof(*cpu)); 2372 2373 cpu->profiles = le64_to_cpu(disk->profiles); 2374 cpu->usage = le64_to_cpu(disk->usage); 2375 cpu->devid = le64_to_cpu(disk->devid); 2376 cpu->pstart = le64_to_cpu(disk->pstart); 2377 cpu->pend = le64_to_cpu(disk->pend); 2378 cpu->vstart = le64_to_cpu(disk->vstart); 2379 cpu->vend = le64_to_cpu(disk->vend); 2380 cpu->target = le64_to_cpu(disk->target); 2381 cpu->flags = le64_to_cpu(disk->flags); 2382 cpu->limit = le64_to_cpu(disk->limit); 2383 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2384 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2385 } 2386 2387 static inline void 2388 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2389 const struct btrfs_balance_args *cpu) 2390 { 2391 memset(disk, 0, sizeof(*disk)); 2392 2393 disk->profiles = cpu_to_le64(cpu->profiles); 2394 disk->usage = cpu_to_le64(cpu->usage); 2395 disk->devid = cpu_to_le64(cpu->devid); 2396 disk->pstart = cpu_to_le64(cpu->pstart); 2397 disk->pend = cpu_to_le64(cpu->pend); 2398 disk->vstart = cpu_to_le64(cpu->vstart); 2399 disk->vend = cpu_to_le64(cpu->vend); 2400 disk->target = cpu_to_le64(cpu->target); 2401 disk->flags = cpu_to_le64(cpu->flags); 2402 disk->limit = cpu_to_le64(cpu->limit); 2403 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2404 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2405 } 2406 2407 /* struct btrfs_super_block */ 2408 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2409 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2410 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2411 generation, 64); 2412 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2413 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2414 struct btrfs_super_block, sys_chunk_array_size, 32); 2415 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2416 struct btrfs_super_block, chunk_root_generation, 64); 2417 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2418 root_level, 8); 2419 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2420 chunk_root, 64); 2421 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2422 chunk_root_level, 8); 2423 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2424 log_root, 64); 2425 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2426 log_root_transid, 64); 2427 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2428 log_root_level, 8); 2429 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2430 total_bytes, 64); 2431 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2432 bytes_used, 64); 2433 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2434 sectorsize, 32); 2435 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2436 nodesize, 32); 2437 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2438 stripesize, 32); 2439 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2440 root_dir_objectid, 64); 2441 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2442 num_devices, 64); 2443 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2444 compat_flags, 64); 2445 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2446 compat_ro_flags, 64); 2447 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2448 incompat_flags, 64); 2449 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2450 csum_type, 16); 2451 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2452 cache_generation, 64); 2453 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2454 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2455 uuid_tree_generation, 64); 2456 2457 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2458 const char *btrfs_super_csum_name(u16 csum_type); 2459 const char *btrfs_super_csum_driver(u16 csum_type); 2460 size_t __attribute_const__ btrfs_get_num_csums(void); 2461 2462 2463 /* 2464 * The leaf data grows from end-to-front in the node. 2465 * this returns the address of the start of the last item, 2466 * which is the stop of the leaf data stack 2467 */ 2468 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2469 { 2470 u32 nr = btrfs_header_nritems(leaf); 2471 2472 if (nr == 0) 2473 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2474 return btrfs_item_offset(leaf, nr - 1); 2475 } 2476 2477 /* struct btrfs_file_extent_item */ 2478 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2479 type, 8); 2480 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2481 struct btrfs_file_extent_item, disk_bytenr, 64); 2482 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2483 struct btrfs_file_extent_item, offset, 64); 2484 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2485 struct btrfs_file_extent_item, generation, 64); 2486 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2487 struct btrfs_file_extent_item, num_bytes, 64); 2488 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2489 struct btrfs_file_extent_item, ram_bytes, 64); 2490 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2491 struct btrfs_file_extent_item, disk_num_bytes, 64); 2492 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2493 struct btrfs_file_extent_item, compression, 8); 2494 2495 static inline unsigned long 2496 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2497 { 2498 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2499 } 2500 2501 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2502 { 2503 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2504 } 2505 2506 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2507 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2508 disk_bytenr, 64); 2509 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2510 generation, 64); 2511 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2512 disk_num_bytes, 64); 2513 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2514 offset, 64); 2515 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2516 num_bytes, 64); 2517 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2518 ram_bytes, 64); 2519 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2520 compression, 8); 2521 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2522 encryption, 8); 2523 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2524 other_encoding, 16); 2525 2526 /* 2527 * this returns the number of bytes used by the item on disk, minus the 2528 * size of any extent headers. If a file is compressed on disk, this is 2529 * the compressed size 2530 */ 2531 static inline u32 btrfs_file_extent_inline_item_len( 2532 const struct extent_buffer *eb, 2533 int nr) 2534 { 2535 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2536 } 2537 2538 /* btrfs_qgroup_status_item */ 2539 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2540 generation, 64); 2541 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2542 version, 64); 2543 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2544 flags, 64); 2545 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2546 rescan, 64); 2547 2548 /* btrfs_qgroup_info_item */ 2549 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2550 generation, 64); 2551 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2552 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2553 rfer_cmpr, 64); 2554 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2555 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2556 excl_cmpr, 64); 2557 2558 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2559 struct btrfs_qgroup_info_item, generation, 64); 2560 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2561 rfer, 64); 2562 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2563 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2564 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2565 excl, 64); 2566 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2567 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2568 2569 /* btrfs_qgroup_limit_item */ 2570 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2571 flags, 64); 2572 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2573 max_rfer, 64); 2574 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2575 max_excl, 64); 2576 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2577 rsv_rfer, 64); 2578 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2579 rsv_excl, 64); 2580 2581 /* btrfs_dev_replace_item */ 2582 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2583 struct btrfs_dev_replace_item, src_devid, 64); 2584 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2585 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2586 64); 2587 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2588 replace_state, 64); 2589 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2590 time_started, 64); 2591 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2592 time_stopped, 64); 2593 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2594 num_write_errors, 64); 2595 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2596 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2597 64); 2598 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2599 cursor_left, 64); 2600 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2601 cursor_right, 64); 2602 2603 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2604 struct btrfs_dev_replace_item, src_devid, 64); 2605 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2606 struct btrfs_dev_replace_item, 2607 cont_reading_from_srcdev_mode, 64); 2608 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2609 struct btrfs_dev_replace_item, replace_state, 64); 2610 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2611 struct btrfs_dev_replace_item, time_started, 64); 2612 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2613 struct btrfs_dev_replace_item, time_stopped, 64); 2614 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2615 struct btrfs_dev_replace_item, num_write_errors, 64); 2616 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2617 struct btrfs_dev_replace_item, 2618 num_uncorrectable_read_errors, 64); 2619 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2620 struct btrfs_dev_replace_item, cursor_left, 64); 2621 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2622 struct btrfs_dev_replace_item, cursor_right, 64); 2623 2624 /* helper function to cast into the data area of the leaf. */ 2625 #define btrfs_item_ptr(leaf, slot, type) \ 2626 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2627 btrfs_item_offset(leaf, slot))) 2628 2629 #define btrfs_item_ptr_offset(leaf, slot) \ 2630 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2631 btrfs_item_offset(leaf, slot))) 2632 2633 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2634 { 2635 return crc32c(crc, address, length); 2636 } 2637 2638 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2639 { 2640 put_unaligned_le32(~crc, result); 2641 } 2642 2643 static inline u64 btrfs_name_hash(const char *name, int len) 2644 { 2645 return crc32c((u32)~1, name, len); 2646 } 2647 2648 /* 2649 * Figure the key offset of an extended inode ref 2650 */ 2651 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2652 int len) 2653 { 2654 return (u64) crc32c(parent_objectid, name, len); 2655 } 2656 2657 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2658 { 2659 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2660 } 2661 2662 /* extent-tree.c */ 2663 2664 enum btrfs_inline_ref_type { 2665 BTRFS_REF_TYPE_INVALID, 2666 BTRFS_REF_TYPE_BLOCK, 2667 BTRFS_REF_TYPE_DATA, 2668 BTRFS_REF_TYPE_ANY, 2669 }; 2670 2671 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2672 struct btrfs_extent_inline_ref *iref, 2673 enum btrfs_inline_ref_type is_data); 2674 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2675 2676 /* 2677 * Take the number of bytes to be checksummmed and figure out how many leaves 2678 * it would require to store the csums for that many bytes. 2679 */ 2680 static inline u64 btrfs_csum_bytes_to_leaves( 2681 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2682 { 2683 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2684 2685 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2686 } 2687 2688 /* 2689 * Use this if we would be adding new items, as we could split nodes as we cow 2690 * down the tree. 2691 */ 2692 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2693 unsigned num_items) 2694 { 2695 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2696 } 2697 2698 /* 2699 * Doing a truncate or a modification won't result in new nodes or leaves, just 2700 * what we need for COW. 2701 */ 2702 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2703 unsigned num_items) 2704 { 2705 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2706 } 2707 2708 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2709 u64 start, u64 num_bytes); 2710 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2711 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2712 unsigned long count); 2713 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2714 struct btrfs_delayed_ref_root *delayed_refs, 2715 struct btrfs_delayed_ref_head *head); 2716 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2717 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2718 struct btrfs_fs_info *fs_info, u64 bytenr, 2719 u64 offset, int metadata, u64 *refs, u64 *flags); 2720 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2721 int reserved); 2722 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2723 u64 bytenr, u64 num_bytes); 2724 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2725 int btrfs_cross_ref_exist(struct btrfs_root *root, 2726 u64 objectid, u64 offset, u64 bytenr, bool strict); 2727 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2728 struct btrfs_root *root, 2729 u64 parent, u64 root_objectid, 2730 const struct btrfs_disk_key *key, 2731 int level, u64 hint, 2732 u64 empty_size, 2733 enum btrfs_lock_nesting nest); 2734 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2735 u64 root_id, 2736 struct extent_buffer *buf, 2737 u64 parent, int last_ref); 2738 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2739 struct btrfs_root *root, u64 owner, 2740 u64 offset, u64 ram_bytes, 2741 struct btrfs_key *ins); 2742 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2743 u64 root_objectid, u64 owner, u64 offset, 2744 struct btrfs_key *ins); 2745 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2746 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2747 struct btrfs_key *ins, int is_data, int delalloc); 2748 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2749 struct extent_buffer *buf, int full_backref); 2750 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2751 struct extent_buffer *buf, int full_backref); 2752 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2753 struct extent_buffer *eb, u64 flags, 2754 int level, int is_data); 2755 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2756 2757 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2758 u64 start, u64 len, int delalloc); 2759 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2760 u64 len); 2761 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2762 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2763 struct btrfs_ref *generic_ref); 2764 2765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2766 2767 /* 2768 * Different levels for to flush space when doing space reservations. 2769 * 2770 * The higher the level, the more methods we try to reclaim space. 2771 */ 2772 enum btrfs_reserve_flush_enum { 2773 /* If we are in the transaction, we can't flush anything.*/ 2774 BTRFS_RESERVE_NO_FLUSH, 2775 2776 /* 2777 * Flush space by: 2778 * - Running delayed inode items 2779 * - Allocating a new chunk 2780 */ 2781 BTRFS_RESERVE_FLUSH_LIMIT, 2782 2783 /* 2784 * Flush space by: 2785 * - Running delayed inode items 2786 * - Running delayed refs 2787 * - Running delalloc and waiting for ordered extents 2788 * - Allocating a new chunk 2789 */ 2790 BTRFS_RESERVE_FLUSH_EVICT, 2791 2792 /* 2793 * Flush space by above mentioned methods and by: 2794 * - Running delayed iputs 2795 * - Committing transaction 2796 * 2797 * Can be interrupted by a fatal signal. 2798 */ 2799 BTRFS_RESERVE_FLUSH_DATA, 2800 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2801 BTRFS_RESERVE_FLUSH_ALL, 2802 2803 /* 2804 * Pretty much the same as FLUSH_ALL, but can also steal space from 2805 * global rsv. 2806 * 2807 * Can be interrupted by a fatal signal. 2808 */ 2809 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2810 }; 2811 2812 enum btrfs_flush_state { 2813 FLUSH_DELAYED_ITEMS_NR = 1, 2814 FLUSH_DELAYED_ITEMS = 2, 2815 FLUSH_DELAYED_REFS_NR = 3, 2816 FLUSH_DELAYED_REFS = 4, 2817 FLUSH_DELALLOC = 5, 2818 FLUSH_DELALLOC_WAIT = 6, 2819 FLUSH_DELALLOC_FULL = 7, 2820 ALLOC_CHUNK = 8, 2821 ALLOC_CHUNK_FORCE = 9, 2822 RUN_DELAYED_IPUTS = 10, 2823 COMMIT_TRANS = 11, 2824 }; 2825 2826 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2827 struct btrfs_block_rsv *rsv, 2828 int nitems, bool use_global_rsv); 2829 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2830 struct btrfs_block_rsv *rsv); 2831 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2832 2833 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes); 2834 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2835 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2836 u64 start, u64 end); 2837 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2838 u64 num_bytes, u64 *actual_bytes); 2839 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2840 2841 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2842 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2843 struct btrfs_fs_info *fs_info); 2844 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2845 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2846 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2847 2848 /* ctree.c */ 2849 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2850 int *slot); 2851 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2852 int btrfs_previous_item(struct btrfs_root *root, 2853 struct btrfs_path *path, u64 min_objectid, 2854 int type); 2855 int btrfs_previous_extent_item(struct btrfs_root *root, 2856 struct btrfs_path *path, u64 min_objectid); 2857 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2858 struct btrfs_path *path, 2859 const struct btrfs_key *new_key); 2860 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2861 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2862 struct btrfs_key *key, int lowest_level, 2863 u64 min_trans); 2864 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2865 struct btrfs_path *path, 2866 u64 min_trans); 2867 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2868 int slot); 2869 2870 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2871 struct btrfs_root *root, struct extent_buffer *buf, 2872 struct extent_buffer *parent, int parent_slot, 2873 struct extent_buffer **cow_ret, 2874 enum btrfs_lock_nesting nest); 2875 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2876 struct btrfs_root *root, 2877 struct extent_buffer *buf, 2878 struct extent_buffer **cow_ret, u64 new_root_objectid); 2879 int btrfs_block_can_be_shared(struct btrfs_root *root, 2880 struct extent_buffer *buf); 2881 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2882 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2883 int btrfs_split_item(struct btrfs_trans_handle *trans, 2884 struct btrfs_root *root, 2885 struct btrfs_path *path, 2886 const struct btrfs_key *new_key, 2887 unsigned long split_offset); 2888 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2889 struct btrfs_root *root, 2890 struct btrfs_path *path, 2891 const struct btrfs_key *new_key); 2892 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2893 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2894 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2895 const struct btrfs_key *key, struct btrfs_path *p, 2896 int ins_len, int cow); 2897 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2898 struct btrfs_path *p, u64 time_seq); 2899 int btrfs_search_slot_for_read(struct btrfs_root *root, 2900 const struct btrfs_key *key, 2901 struct btrfs_path *p, int find_higher, 2902 int return_any); 2903 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2904 struct btrfs_root *root, struct extent_buffer *parent, 2905 int start_slot, u64 *last_ret, 2906 struct btrfs_key *progress); 2907 void btrfs_release_path(struct btrfs_path *p); 2908 struct btrfs_path *btrfs_alloc_path(void); 2909 void btrfs_free_path(struct btrfs_path *p); 2910 2911 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2912 struct btrfs_path *path, int slot, int nr); 2913 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2914 struct btrfs_root *root, 2915 struct btrfs_path *path) 2916 { 2917 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2918 } 2919 2920 /* 2921 * Describes a batch of items to insert in a btree. This is used by 2922 * btrfs_insert_empty_items(). 2923 */ 2924 struct btrfs_item_batch { 2925 /* 2926 * Pointer to an array containing the keys of the items to insert (in 2927 * sorted order). 2928 */ 2929 const struct btrfs_key *keys; 2930 /* Pointer to an array containing the data size for each item to insert. */ 2931 const u32 *data_sizes; 2932 /* 2933 * The sum of data sizes for all items. The caller can compute this while 2934 * setting up the data_sizes array, so it ends up being more efficient 2935 * than having btrfs_insert_empty_items() or setup_item_for_insert() 2936 * doing it, as it would avoid an extra loop over a potentially large 2937 * array, and in the case of setup_item_for_insert(), we would be doing 2938 * it while holding a write lock on a leaf and often on upper level nodes 2939 * too, unnecessarily increasing the size of a critical section. 2940 */ 2941 u32 total_data_size; 2942 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 2943 int nr; 2944 }; 2945 2946 void btrfs_setup_item_for_insert(struct btrfs_root *root, 2947 struct btrfs_path *path, 2948 const struct btrfs_key *key, 2949 u32 data_size); 2950 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2951 const struct btrfs_key *key, void *data, u32 data_size); 2952 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 2953 struct btrfs_root *root, 2954 struct btrfs_path *path, 2955 const struct btrfs_item_batch *batch); 2956 2957 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 2958 struct btrfs_root *root, 2959 struct btrfs_path *path, 2960 const struct btrfs_key *key, 2961 u32 data_size) 2962 { 2963 struct btrfs_item_batch batch; 2964 2965 batch.keys = key; 2966 batch.data_sizes = &data_size; 2967 batch.total_data_size = data_size; 2968 batch.nr = 1; 2969 2970 return btrfs_insert_empty_items(trans, root, path, &batch); 2971 } 2972 2973 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 2974 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 2975 u64 time_seq); 2976 2977 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2978 struct btrfs_path *path); 2979 2980 static inline int btrfs_next_old_item(struct btrfs_root *root, 2981 struct btrfs_path *p, u64 time_seq) 2982 { 2983 ++p->slots[0]; 2984 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 2985 return btrfs_next_old_leaf(root, p, time_seq); 2986 return 0; 2987 } 2988 2989 /* 2990 * Search the tree again to find a leaf with greater keys. 2991 * 2992 * Returns 0 if it found something or 1 if there are no greater leaves. 2993 * Returns < 0 on error. 2994 */ 2995 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 2996 { 2997 return btrfs_next_old_leaf(root, path, 0); 2998 } 2999 3000 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3001 { 3002 return btrfs_next_old_item(root, p, 0); 3003 } 3004 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3005 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3006 int for_reloc); 3007 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3008 struct btrfs_root *root, 3009 struct extent_buffer *node, 3010 struct extent_buffer *parent); 3011 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3012 { 3013 /* 3014 * Do it this way so we only ever do one test_bit in the normal case. 3015 */ 3016 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3017 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3018 return 2; 3019 return 1; 3020 } 3021 return 0; 3022 } 3023 3024 /* 3025 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3026 * anything except sleeping. This function is used to check the status of 3027 * the fs. 3028 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3029 * since setting and checking for SB_RDONLY in the superblock's flags is not 3030 * atomic. 3031 */ 3032 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3033 { 3034 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3035 btrfs_fs_closing(fs_info); 3036 } 3037 3038 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3039 { 3040 sb->s_flags |= SB_RDONLY; 3041 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3042 } 3043 3044 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3045 { 3046 sb->s_flags &= ~SB_RDONLY; 3047 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3048 } 3049 3050 /* root-item.c */ 3051 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3052 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3053 int name_len); 3054 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3055 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3056 int name_len); 3057 int btrfs_del_root(struct btrfs_trans_handle *trans, 3058 const struct btrfs_key *key); 3059 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3060 const struct btrfs_key *key, 3061 struct btrfs_root_item *item); 3062 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3063 struct btrfs_root *root, 3064 struct btrfs_key *key, 3065 struct btrfs_root_item *item); 3066 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3067 struct btrfs_path *path, struct btrfs_root_item *root_item, 3068 struct btrfs_key *root_key); 3069 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3070 void btrfs_set_root_node(struct btrfs_root_item *item, 3071 struct extent_buffer *node); 3072 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3073 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3074 struct btrfs_root *root); 3075 3076 /* uuid-tree.c */ 3077 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3078 u64 subid); 3079 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3080 u64 subid); 3081 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3082 3083 /* dir-item.c */ 3084 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3085 const char *name, int name_len); 3086 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3087 int name_len, struct btrfs_inode *dir, 3088 struct btrfs_key *location, u8 type, u64 index); 3089 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3090 struct btrfs_root *root, 3091 struct btrfs_path *path, u64 dir, 3092 const char *name, int name_len, 3093 int mod); 3094 struct btrfs_dir_item * 3095 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3096 struct btrfs_root *root, 3097 struct btrfs_path *path, u64 dir, 3098 u64 index, const char *name, int name_len, 3099 int mod); 3100 struct btrfs_dir_item * 3101 btrfs_search_dir_index_item(struct btrfs_root *root, 3102 struct btrfs_path *path, u64 dirid, 3103 const char *name, int name_len); 3104 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3105 struct btrfs_root *root, 3106 struct btrfs_path *path, 3107 struct btrfs_dir_item *di); 3108 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3109 struct btrfs_root *root, 3110 struct btrfs_path *path, u64 objectid, 3111 const char *name, u16 name_len, 3112 const void *data, u16 data_len); 3113 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3114 struct btrfs_root *root, 3115 struct btrfs_path *path, u64 dir, 3116 const char *name, u16 name_len, 3117 int mod); 3118 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3119 struct btrfs_path *path, 3120 const char *name, 3121 int name_len); 3122 3123 /* orphan.c */ 3124 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3125 struct btrfs_root *root, u64 offset); 3126 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3127 struct btrfs_root *root, u64 offset); 3128 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3129 3130 /* inode-item.c */ 3131 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, 3132 struct btrfs_root *root, 3133 const char *name, int name_len, 3134 u64 inode_objectid, u64 ref_objectid, u64 index); 3135 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, 3136 struct btrfs_root *root, 3137 const char *name, int name_len, 3138 u64 inode_objectid, u64 ref_objectid, u64 *index); 3139 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, 3140 struct btrfs_root *root, 3141 struct btrfs_path *path, u64 objectid); 3142 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root 3143 *root, struct btrfs_path *path, 3144 struct btrfs_key *location, int mod); 3145 3146 struct btrfs_inode_extref * 3147 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, 3148 struct btrfs_root *root, 3149 struct btrfs_path *path, 3150 const char *name, int name_len, 3151 u64 inode_objectid, u64 ref_objectid, int ins_len, 3152 int cow); 3153 3154 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf, 3155 int slot, const char *name, 3156 int name_len); 3157 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref( 3158 struct extent_buffer *leaf, int slot, u64 ref_objectid, 3159 const char *name, int name_len); 3160 /* file-item.c */ 3161 struct btrfs_dio_private; 3162 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3163 struct btrfs_root *root, u64 bytenr, u64 len); 3164 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3165 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3166 struct btrfs_root *root, 3167 u64 objectid, u64 pos, 3168 u64 disk_offset, u64 disk_num_bytes, 3169 u64 num_bytes, u64 offset, u64 ram_bytes, 3170 u8 compression, u8 encryption, u16 other_encoding); 3171 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3172 struct btrfs_root *root, 3173 struct btrfs_path *path, u64 objectid, 3174 u64 bytenr, int mod); 3175 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3176 struct btrfs_root *root, 3177 struct btrfs_ordered_sum *sums); 3178 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3179 u64 file_start, int contig); 3180 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3181 struct list_head *list, int search_commit); 3182 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3183 const struct btrfs_path *path, 3184 struct btrfs_file_extent_item *fi, 3185 const bool new_inline, 3186 struct extent_map *em); 3187 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3188 u64 len); 3189 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3190 u64 len); 3191 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3192 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3193 3194 /* inode.c */ 3195 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3196 int mirror_num, unsigned long bio_flags); 3197 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3198 u32 bio_offset, struct page *page, 3199 u64 start, u64 end); 3200 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3201 u64 start, u64 len); 3202 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3203 u64 *orig_start, u64 *orig_block_len, 3204 u64 *ram_bytes, bool strict); 3205 3206 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3207 struct btrfs_inode *inode); 3208 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3209 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3210 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3211 struct btrfs_inode *dir, struct btrfs_inode *inode, 3212 const char *name, int name_len); 3213 int btrfs_add_link(struct btrfs_trans_handle *trans, 3214 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3215 const char *name, int name_len, int add_backref, u64 index); 3216 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3217 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3218 int front); 3219 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3220 struct btrfs_root *root, 3221 struct btrfs_inode *inode, u64 new_size, 3222 u32 min_type, u64 *extents_found); 3223 3224 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3225 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3226 bool in_reclaim_context); 3227 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3228 unsigned int extra_bits, 3229 struct extent_state **cached_state); 3230 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3231 struct btrfs_root *new_root, 3232 struct btrfs_root *parent_root, 3233 struct user_namespace *mnt_userns); 3234 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3235 unsigned *bits); 3236 void btrfs_clear_delalloc_extent(struct inode *inode, 3237 struct extent_state *state, unsigned *bits); 3238 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3239 struct extent_state *other); 3240 void btrfs_split_delalloc_extent(struct inode *inode, 3241 struct extent_state *orig, u64 split); 3242 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3243 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3244 int btrfs_readpage(struct file *file, struct page *page); 3245 void btrfs_evict_inode(struct inode *inode); 3246 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3247 struct inode *btrfs_alloc_inode(struct super_block *sb); 3248 void btrfs_destroy_inode(struct inode *inode); 3249 void btrfs_free_inode(struct inode *inode); 3250 int btrfs_drop_inode(struct inode *inode); 3251 int __init btrfs_init_cachep(void); 3252 void __cold btrfs_destroy_cachep(void); 3253 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3254 struct btrfs_root *root, struct btrfs_path *path); 3255 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3256 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3257 struct page *page, size_t pg_offset, 3258 u64 start, u64 end); 3259 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3260 struct btrfs_root *root, struct btrfs_inode *inode); 3261 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3262 struct btrfs_root *root, struct btrfs_inode *inode); 3263 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3264 struct btrfs_inode *inode); 3265 int btrfs_orphan_cleanup(struct btrfs_root *root); 3266 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3267 void btrfs_add_delayed_iput(struct inode *inode); 3268 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3269 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3270 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3271 u64 start, u64 num_bytes, u64 min_size, 3272 loff_t actual_len, u64 *alloc_hint); 3273 int btrfs_prealloc_file_range_trans(struct inode *inode, 3274 struct btrfs_trans_handle *trans, int mode, 3275 u64 start, u64 num_bytes, u64 min_size, 3276 loff_t actual_len, u64 *alloc_hint); 3277 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3278 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3279 struct writeback_control *wbc); 3280 int btrfs_writepage_cow_fixup(struct page *page); 3281 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3282 struct page *page, u64 start, 3283 u64 end, bool uptodate); 3284 extern const struct dentry_operations btrfs_dentry_operations; 3285 extern const struct iomap_ops btrfs_dio_iomap_ops; 3286 extern const struct iomap_dio_ops btrfs_dio_ops; 3287 3288 /* Inode locking type flags, by default the exclusive lock is taken */ 3289 #define BTRFS_ILOCK_SHARED (1U << 0) 3290 #define BTRFS_ILOCK_TRY (1U << 1) 3291 #define BTRFS_ILOCK_MMAP (1U << 2) 3292 3293 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3294 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3295 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3296 const u64 add_bytes, 3297 const u64 del_bytes); 3298 3299 /* ioctl.c */ 3300 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3301 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3302 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3303 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3304 struct dentry *dentry, struct fileattr *fa); 3305 int btrfs_ioctl_get_supported_features(void __user *arg); 3306 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3307 int __pure btrfs_is_empty_uuid(u8 *uuid); 3308 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3309 struct btrfs_ioctl_defrag_range_args *range, 3310 u64 newer_than, unsigned long max_to_defrag); 3311 void btrfs_get_block_group_info(struct list_head *groups_list, 3312 struct btrfs_ioctl_space_info *space); 3313 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3314 struct btrfs_ioctl_balance_args *bargs); 3315 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3316 enum btrfs_exclusive_operation type); 3317 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3318 enum btrfs_exclusive_operation type); 3319 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3320 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3321 3322 /* file.c */ 3323 int __init btrfs_auto_defrag_init(void); 3324 void __cold btrfs_auto_defrag_exit(void); 3325 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3326 struct btrfs_inode *inode); 3327 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3328 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3329 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3330 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3331 int skip_pinned); 3332 extern const struct file_operations btrfs_file_operations; 3333 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3334 struct btrfs_root *root, struct btrfs_inode *inode, 3335 struct btrfs_drop_extents_args *args); 3336 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3337 struct btrfs_path *path, const u64 start, 3338 const u64 end, 3339 struct btrfs_replace_extent_info *extent_info, 3340 struct btrfs_trans_handle **trans_out); 3341 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3342 struct btrfs_inode *inode, u64 start, u64 end); 3343 int btrfs_release_file(struct inode *inode, struct file *file); 3344 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3345 size_t num_pages, loff_t pos, size_t write_bytes, 3346 struct extent_state **cached, bool noreserve); 3347 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3348 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3349 size_t *write_bytes); 3350 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3351 3352 /* tree-defrag.c */ 3353 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3354 struct btrfs_root *root); 3355 3356 /* super.c */ 3357 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3358 unsigned long new_flags); 3359 int btrfs_sync_fs(struct super_block *sb, int wait); 3360 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3361 u64 subvol_objectid); 3362 3363 static inline __printf(2, 3) __cold 3364 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3365 { 3366 } 3367 3368 #ifdef CONFIG_PRINTK 3369 __printf(2, 3) 3370 __cold 3371 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3372 #else 3373 #define btrfs_printk(fs_info, fmt, args...) \ 3374 btrfs_no_printk(fs_info, fmt, ##args) 3375 #endif 3376 3377 #define btrfs_emerg(fs_info, fmt, args...) \ 3378 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3379 #define btrfs_alert(fs_info, fmt, args...) \ 3380 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3381 #define btrfs_crit(fs_info, fmt, args...) \ 3382 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3383 #define btrfs_err(fs_info, fmt, args...) \ 3384 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3385 #define btrfs_warn(fs_info, fmt, args...) \ 3386 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3387 #define btrfs_notice(fs_info, fmt, args...) \ 3388 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3389 #define btrfs_info(fs_info, fmt, args...) \ 3390 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3391 3392 /* 3393 * Wrappers that use printk_in_rcu 3394 */ 3395 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3396 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3397 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3398 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3399 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3400 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3401 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3402 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3403 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3404 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3405 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3406 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3407 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3408 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3409 3410 /* 3411 * Wrappers that use a ratelimited printk_in_rcu 3412 */ 3413 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3414 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3415 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3416 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3417 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3418 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3419 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3420 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3421 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3422 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3423 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3424 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3425 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3426 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3427 3428 /* 3429 * Wrappers that use a ratelimited printk 3430 */ 3431 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3432 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3433 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3434 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3435 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3436 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3437 #define btrfs_err_rl(fs_info, fmt, args...) \ 3438 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3439 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3440 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3441 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3442 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3443 #define btrfs_info_rl(fs_info, fmt, args...) \ 3444 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3445 3446 #if defined(CONFIG_DYNAMIC_DEBUG) 3447 #define btrfs_debug(fs_info, fmt, args...) \ 3448 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3449 fs_info, KERN_DEBUG fmt, ##args) 3450 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3451 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3452 fs_info, KERN_DEBUG fmt, ##args) 3453 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3454 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3455 fs_info, KERN_DEBUG fmt, ##args) 3456 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3457 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3458 fs_info, KERN_DEBUG fmt, ##args) 3459 #elif defined(DEBUG) 3460 #define btrfs_debug(fs_info, fmt, args...) \ 3461 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3462 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3463 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3464 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3465 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3466 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3467 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3468 #else 3469 #define btrfs_debug(fs_info, fmt, args...) \ 3470 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3471 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3472 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3473 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3474 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3475 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3476 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3477 #endif 3478 3479 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3480 do { \ 3481 rcu_read_lock(); \ 3482 btrfs_printk(fs_info, fmt, ##args); \ 3483 rcu_read_unlock(); \ 3484 } while (0) 3485 3486 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3487 do { \ 3488 rcu_read_lock(); \ 3489 btrfs_no_printk(fs_info, fmt, ##args); \ 3490 rcu_read_unlock(); \ 3491 } while (0) 3492 3493 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3494 do { \ 3495 static DEFINE_RATELIMIT_STATE(_rs, \ 3496 DEFAULT_RATELIMIT_INTERVAL, \ 3497 DEFAULT_RATELIMIT_BURST); \ 3498 if (__ratelimit(&_rs)) \ 3499 btrfs_printk(fs_info, fmt, ##args); \ 3500 } while (0) 3501 3502 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3503 do { \ 3504 rcu_read_lock(); \ 3505 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3506 rcu_read_unlock(); \ 3507 } while (0) 3508 3509 #ifdef CONFIG_BTRFS_ASSERT 3510 __cold __noreturn 3511 static inline void assertfail(const char *expr, const char *file, int line) 3512 { 3513 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3514 BUG(); 3515 } 3516 3517 #define ASSERT(expr) \ 3518 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3519 3520 #else 3521 static inline void assertfail(const char *expr, const char* file, int line) { } 3522 #define ASSERT(expr) (void)(expr) 3523 #endif 3524 3525 #if BITS_PER_LONG == 32 3526 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3527 /* 3528 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3529 * addresses of extents. 3530 * 3531 * For 4K page size it's about 10T, for 64K it's 160T. 3532 */ 3533 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3534 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3535 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3536 #endif 3537 3538 /* 3539 * Get the correct offset inside the page of extent buffer. 3540 * 3541 * @eb: target extent buffer 3542 * @start: offset inside the extent buffer 3543 * 3544 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3545 */ 3546 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3547 unsigned long offset) 3548 { 3549 /* 3550 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3551 * to PAGE_SIZE, thus adding it won't cause any difference. 3552 * 3553 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3554 * to the eb, thus we have to take the eb->start into consideration. 3555 */ 3556 return offset_in_page(offset + eb->start); 3557 } 3558 3559 static inline unsigned long get_eb_page_index(unsigned long offset) 3560 { 3561 /* 3562 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3563 * 3564 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3565 * and have ensured that all tree blocks are contained in one page, 3566 * thus we always get index == 0. 3567 */ 3568 return offset >> PAGE_SHIFT; 3569 } 3570 3571 /* 3572 * Use that for functions that are conditionally exported for sanity tests but 3573 * otherwise static 3574 */ 3575 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3576 #define EXPORT_FOR_TESTS static 3577 #else 3578 #define EXPORT_FOR_TESTS 3579 #endif 3580 3581 __cold 3582 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3583 { 3584 btrfs_err(fs_info, 3585 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3586 } 3587 3588 __printf(5, 6) 3589 __cold 3590 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3591 unsigned int line, int errno, const char *fmt, ...); 3592 3593 const char * __attribute_const__ btrfs_decode_error(int errno); 3594 3595 __cold 3596 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3597 const char *function, 3598 unsigned int line, int errno); 3599 3600 /* 3601 * Call btrfs_abort_transaction as early as possible when an error condition is 3602 * detected, that way the exact line number is reported. 3603 */ 3604 #define btrfs_abort_transaction(trans, errno) \ 3605 do { \ 3606 /* Report first abort since mount */ \ 3607 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3608 &((trans)->fs_info->fs_state))) { \ 3609 if ((errno) != -EIO && (errno) != -EROFS) { \ 3610 WARN(1, KERN_DEBUG \ 3611 "BTRFS: Transaction aborted (error %d)\n", \ 3612 (errno)); \ 3613 } else { \ 3614 btrfs_debug((trans)->fs_info, \ 3615 "Transaction aborted (error %d)", \ 3616 (errno)); \ 3617 } \ 3618 } \ 3619 __btrfs_abort_transaction((trans), __func__, \ 3620 __LINE__, (errno)); \ 3621 } while (0) 3622 3623 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3624 do { \ 3625 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3626 (errno), fmt, ##args); \ 3627 } while (0) 3628 3629 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3630 &(fs_info)->fs_state))) 3631 3632 __printf(5, 6) 3633 __cold 3634 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3635 unsigned int line, int errno, const char *fmt, ...); 3636 /* 3637 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3638 * will panic(). Otherwise we BUG() here. 3639 */ 3640 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3641 do { \ 3642 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3643 BUG(); \ 3644 } while (0) 3645 3646 3647 /* compatibility and incompatibility defines */ 3648 3649 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3650 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3651 #opt) 3652 3653 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3654 u64 flag, const char* name) 3655 { 3656 struct btrfs_super_block *disk_super; 3657 u64 features; 3658 3659 disk_super = fs_info->super_copy; 3660 features = btrfs_super_incompat_flags(disk_super); 3661 if (!(features & flag)) { 3662 spin_lock(&fs_info->super_lock); 3663 features = btrfs_super_incompat_flags(disk_super); 3664 if (!(features & flag)) { 3665 features |= flag; 3666 btrfs_set_super_incompat_flags(disk_super, features); 3667 btrfs_info(fs_info, 3668 "setting incompat feature flag for %s (0x%llx)", 3669 name, flag); 3670 } 3671 spin_unlock(&fs_info->super_lock); 3672 } 3673 } 3674 3675 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3676 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3677 #opt) 3678 3679 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3680 u64 flag, const char* name) 3681 { 3682 struct btrfs_super_block *disk_super; 3683 u64 features; 3684 3685 disk_super = fs_info->super_copy; 3686 features = btrfs_super_incompat_flags(disk_super); 3687 if (features & flag) { 3688 spin_lock(&fs_info->super_lock); 3689 features = btrfs_super_incompat_flags(disk_super); 3690 if (features & flag) { 3691 features &= ~flag; 3692 btrfs_set_super_incompat_flags(disk_super, features); 3693 btrfs_info(fs_info, 3694 "clearing incompat feature flag for %s (0x%llx)", 3695 name, flag); 3696 } 3697 spin_unlock(&fs_info->super_lock); 3698 } 3699 } 3700 3701 #define btrfs_fs_incompat(fs_info, opt) \ 3702 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3703 3704 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3705 { 3706 struct btrfs_super_block *disk_super; 3707 disk_super = fs_info->super_copy; 3708 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3709 } 3710 3711 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3712 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3713 #opt) 3714 3715 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3716 u64 flag, const char *name) 3717 { 3718 struct btrfs_super_block *disk_super; 3719 u64 features; 3720 3721 disk_super = fs_info->super_copy; 3722 features = btrfs_super_compat_ro_flags(disk_super); 3723 if (!(features & flag)) { 3724 spin_lock(&fs_info->super_lock); 3725 features = btrfs_super_compat_ro_flags(disk_super); 3726 if (!(features & flag)) { 3727 features |= flag; 3728 btrfs_set_super_compat_ro_flags(disk_super, features); 3729 btrfs_info(fs_info, 3730 "setting compat-ro feature flag for %s (0x%llx)", 3731 name, flag); 3732 } 3733 spin_unlock(&fs_info->super_lock); 3734 } 3735 } 3736 3737 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3738 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3739 #opt) 3740 3741 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3742 u64 flag, const char *name) 3743 { 3744 struct btrfs_super_block *disk_super; 3745 u64 features; 3746 3747 disk_super = fs_info->super_copy; 3748 features = btrfs_super_compat_ro_flags(disk_super); 3749 if (features & flag) { 3750 spin_lock(&fs_info->super_lock); 3751 features = btrfs_super_compat_ro_flags(disk_super); 3752 if (features & flag) { 3753 features &= ~flag; 3754 btrfs_set_super_compat_ro_flags(disk_super, features); 3755 btrfs_info(fs_info, 3756 "clearing compat-ro feature flag for %s (0x%llx)", 3757 name, flag); 3758 } 3759 spin_unlock(&fs_info->super_lock); 3760 } 3761 } 3762 3763 #define btrfs_fs_compat_ro(fs_info, opt) \ 3764 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3765 3766 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3767 { 3768 struct btrfs_super_block *disk_super; 3769 disk_super = fs_info->super_copy; 3770 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3771 } 3772 3773 /* acl.c */ 3774 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3775 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3776 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3777 struct posix_acl *acl, int type); 3778 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3779 struct inode *inode, struct inode *dir); 3780 #else 3781 #define btrfs_get_acl NULL 3782 #define btrfs_set_acl NULL 3783 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3784 struct inode *inode, struct inode *dir) 3785 { 3786 return 0; 3787 } 3788 #endif 3789 3790 /* relocation.c */ 3791 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3792 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3793 struct btrfs_root *root); 3794 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3795 struct btrfs_root *root); 3796 int btrfs_recover_relocation(struct btrfs_root *root); 3797 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3798 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3799 struct btrfs_root *root, struct extent_buffer *buf, 3800 struct extent_buffer *cow); 3801 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3802 u64 *bytes_to_reserve); 3803 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3804 struct btrfs_pending_snapshot *pending); 3805 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3806 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3807 u64 bytenr); 3808 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3809 3810 /* scrub.c */ 3811 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3812 u64 end, struct btrfs_scrub_progress *progress, 3813 int readonly, int is_dev_replace); 3814 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3815 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3816 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3817 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3818 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3819 struct btrfs_scrub_progress *progress); 3820 static inline void btrfs_init_full_stripe_locks_tree( 3821 struct btrfs_full_stripe_locks_tree *locks_root) 3822 { 3823 locks_root->root = RB_ROOT; 3824 mutex_init(&locks_root->lock); 3825 } 3826 3827 /* dev-replace.c */ 3828 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3829 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3830 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3831 3832 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3833 { 3834 btrfs_bio_counter_sub(fs_info, 1); 3835 } 3836 3837 /* reada.c */ 3838 struct reada_control { 3839 struct btrfs_fs_info *fs_info; /* tree to prefetch */ 3840 struct btrfs_key key_start; 3841 struct btrfs_key key_end; /* exclusive */ 3842 atomic_t elems; 3843 struct kref refcnt; 3844 wait_queue_head_t wait; 3845 }; 3846 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 3847 struct btrfs_key *start, struct btrfs_key *end); 3848 int btrfs_reada_wait(void *handle); 3849 void btrfs_reada_detach(void *handle); 3850 int btree_readahead_hook(struct extent_buffer *eb, int err); 3851 void btrfs_reada_remove_dev(struct btrfs_device *dev); 3852 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev); 3853 3854 static inline int is_fstree(u64 rootid) 3855 { 3856 if (rootid == BTRFS_FS_TREE_OBJECTID || 3857 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3858 !btrfs_qgroup_level(rootid))) 3859 return 1; 3860 return 0; 3861 } 3862 3863 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3864 { 3865 return signal_pending(current); 3866 } 3867 3868 /* verity.c */ 3869 #ifdef CONFIG_FS_VERITY 3870 3871 extern const struct fsverity_operations btrfs_verityops; 3872 int btrfs_drop_verity_items(struct btrfs_inode *inode); 3873 3874 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 3875 encryption, 8); 3876 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 3877 size, 64); 3878 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 3879 struct btrfs_verity_descriptor_item, encryption, 8); 3880 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 3881 struct btrfs_verity_descriptor_item, size, 64); 3882 3883 #else 3884 3885 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 3886 { 3887 return 0; 3888 } 3889 3890 #endif 3891 3892 /* Sanity test specific functions */ 3893 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3894 void btrfs_test_destroy_inode(struct inode *inode); 3895 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3896 { 3897 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3898 } 3899 #else 3900 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3901 { 3902 return 0; 3903 } 3904 #endif 3905 3906 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3907 { 3908 return fs_info->zoned != 0; 3909 } 3910 3911 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 3912 { 3913 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 3914 } 3915 3916 /* 3917 * We use page status Private2 to indicate there is an ordered extent with 3918 * unfinished IO. 3919 * 3920 * Rename the Private2 accessors to Ordered, to improve readability. 3921 */ 3922 #define PageOrdered(page) PagePrivate2(page) 3923 #define SetPageOrdered(page) SetPagePrivate2(page) 3924 #define ClearPageOrdered(page) ClearPagePrivate2(page) 3925 3926 #endif 3927