xref: /openbmc/linux/fs/btrfs/ctree.h (revision 677074792a1d533232ec5517f23f78d64e6dffac)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include <linux/fscrypt.h>
32 #include "extent-io-tree.h"
33 #include "extent_io.h"
34 #include "extent_map.h"
35 #include "async-thread.h"
36 #include "block-rsv.h"
37 #include "locking.h"
38 #include "misc.h"
39 #include "fs.h"
40 
41 struct btrfs_trans_handle;
42 struct btrfs_transaction;
43 struct btrfs_pending_snapshot;
44 struct btrfs_delayed_ref_root;
45 struct btrfs_space_info;
46 struct btrfs_block_group;
47 struct btrfs_ordered_sum;
48 struct btrfs_ref;
49 struct btrfs_bio;
50 struct btrfs_ioctl_encoded_io_args;
51 struct btrfs_device;
52 struct btrfs_fs_devices;
53 struct btrfs_balance_control;
54 struct btrfs_delayed_root;
55 struct reloc_control;
56 
57 /* Read ahead values for struct btrfs_path.reada */
58 enum {
59 	READA_NONE,
60 	READA_BACK,
61 	READA_FORWARD,
62 	/*
63 	 * Similar to READA_FORWARD but unlike it:
64 	 *
65 	 * 1) It will trigger readahead even for leaves that are not close to
66 	 *    each other on disk;
67 	 * 2) It also triggers readahead for nodes;
68 	 * 3) During a search, even when a node or leaf is already in memory, it
69 	 *    will still trigger readahead for other nodes and leaves that follow
70 	 *    it.
71 	 *
72 	 * This is meant to be used only when we know we are iterating over the
73 	 * entire tree or a very large part of it.
74 	 */
75 	READA_FORWARD_ALWAYS,
76 };
77 
78 /*
79  * btrfs_paths remember the path taken from the root down to the leaf.
80  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
81  * to any other levels that are present.
82  *
83  * The slots array records the index of the item or block pointer
84  * used while walking the tree.
85  */
86 struct btrfs_path {
87 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
88 	int slots[BTRFS_MAX_LEVEL];
89 	/* if there is real range locking, this locks field will change */
90 	u8 locks[BTRFS_MAX_LEVEL];
91 	u8 reada;
92 	/* keep some upper locks as we walk down */
93 	u8 lowest_level;
94 
95 	/*
96 	 * set by btrfs_split_item, tells search_slot to keep all locks
97 	 * and to force calls to keep space in the nodes
98 	 */
99 	unsigned int search_for_split:1;
100 	unsigned int keep_locks:1;
101 	unsigned int skip_locking:1;
102 	unsigned int search_commit_root:1;
103 	unsigned int need_commit_sem:1;
104 	unsigned int skip_release_on_error:1;
105 	/*
106 	 * Indicate that new item (btrfs_search_slot) is extending already
107 	 * existing item and ins_len contains only the data size and not item
108 	 * header (ie. sizeof(struct btrfs_item) is not included).
109 	 */
110 	unsigned int search_for_extension:1;
111 	/* Stop search if any locks need to be taken (for read) */
112 	unsigned int nowait:1;
113 };
114 
115 /*
116  * The state of btrfs root
117  */
118 enum {
119 	/*
120 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
121 	 * with the balancing code.   But the race is very small, and only the
122 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
123 	 * is used to tell us when more checks are required
124 	 */
125 	BTRFS_ROOT_IN_TRANS_SETUP,
126 
127 	/*
128 	 * Set if tree blocks of this root can be shared by other roots.
129 	 * Only subvolume trees and their reloc trees have this bit set.
130 	 * Conflicts with TRACK_DIRTY bit.
131 	 *
132 	 * This affects two things:
133 	 *
134 	 * - How balance works
135 	 *   For shareable roots, we need to use reloc tree and do path
136 	 *   replacement for balance, and need various pre/post hooks for
137 	 *   snapshot creation to handle them.
138 	 *
139 	 *   While for non-shareable trees, we just simply do a tree search
140 	 *   with COW.
141 	 *
142 	 * - How dirty roots are tracked
143 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
144 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
145 	 *   don't need to set this manually.
146 	 */
147 	BTRFS_ROOT_SHAREABLE,
148 	BTRFS_ROOT_TRACK_DIRTY,
149 	BTRFS_ROOT_IN_RADIX,
150 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151 	BTRFS_ROOT_DEFRAG_RUNNING,
152 	BTRFS_ROOT_FORCE_COW,
153 	BTRFS_ROOT_MULTI_LOG_TASKS,
154 	BTRFS_ROOT_DIRTY,
155 	BTRFS_ROOT_DELETING,
156 
157 	/*
158 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
159 	 *
160 	 * Set for the subvolume tree owning the reloc tree.
161 	 */
162 	BTRFS_ROOT_DEAD_RELOC_TREE,
163 	/* Mark dead root stored on device whose cleanup needs to be resumed */
164 	BTRFS_ROOT_DEAD_TREE,
165 	/* The root has a log tree. Used for subvolume roots and the tree root. */
166 	BTRFS_ROOT_HAS_LOG_TREE,
167 	/* Qgroup flushing is in progress */
168 	BTRFS_ROOT_QGROUP_FLUSHING,
169 	/* We started the orphan cleanup for this root. */
170 	BTRFS_ROOT_ORPHAN_CLEANUP,
171 	/* This root has a drop operation that was started previously. */
172 	BTRFS_ROOT_UNFINISHED_DROP,
173 	/* This reloc root needs to have its buffers lockdep class reset. */
174 	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
175 };
176 
177 /*
178  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179  * code. For detail check comment in fs/btrfs/qgroup.c.
180  */
181 struct btrfs_qgroup_swapped_blocks {
182 	spinlock_t lock;
183 	/* RM_EMPTY_ROOT() of above blocks[] */
184 	bool swapped;
185 	struct rb_root blocks[BTRFS_MAX_LEVEL];
186 };
187 
188 /*
189  * in ram representation of the tree.  extent_root is used for all allocations
190  * and for the extent tree extent_root root.
191  */
192 struct btrfs_root {
193 	struct rb_node rb_node;
194 
195 	struct extent_buffer *node;
196 
197 	struct extent_buffer *commit_root;
198 	struct btrfs_root *log_root;
199 	struct btrfs_root *reloc_root;
200 
201 	unsigned long state;
202 	struct btrfs_root_item root_item;
203 	struct btrfs_key root_key;
204 	struct btrfs_fs_info *fs_info;
205 	struct extent_io_tree dirty_log_pages;
206 
207 	struct mutex objectid_mutex;
208 
209 	spinlock_t accounting_lock;
210 	struct btrfs_block_rsv *block_rsv;
211 
212 	struct mutex log_mutex;
213 	wait_queue_head_t log_writer_wait;
214 	wait_queue_head_t log_commit_wait[2];
215 	struct list_head log_ctxs[2];
216 	/* Used only for log trees of subvolumes, not for the log root tree */
217 	atomic_t log_writers;
218 	atomic_t log_commit[2];
219 	/* Used only for log trees of subvolumes, not for the log root tree */
220 	atomic_t log_batch;
221 	int log_transid;
222 	/* No matter the commit succeeds or not*/
223 	int log_transid_committed;
224 	/* Just be updated when the commit succeeds. */
225 	int last_log_commit;
226 	pid_t log_start_pid;
227 
228 	u64 last_trans;
229 
230 	u32 type;
231 
232 	u64 free_objectid;
233 
234 	struct btrfs_key defrag_progress;
235 	struct btrfs_key defrag_max;
236 
237 	/* The dirty list is only used by non-shareable roots */
238 	struct list_head dirty_list;
239 
240 	struct list_head root_list;
241 
242 	spinlock_t log_extents_lock[2];
243 	struct list_head logged_list[2];
244 
245 	spinlock_t inode_lock;
246 	/* red-black tree that keeps track of in-memory inodes */
247 	struct rb_root inode_tree;
248 
249 	/*
250 	 * radix tree that keeps track of delayed nodes of every inode,
251 	 * protected by inode_lock
252 	 */
253 	struct radix_tree_root delayed_nodes_tree;
254 	/*
255 	 * right now this just gets used so that a root has its own devid
256 	 * for stat.  It may be used for more later
257 	 */
258 	dev_t anon_dev;
259 
260 	spinlock_t root_item_lock;
261 	refcount_t refs;
262 
263 	struct mutex delalloc_mutex;
264 	spinlock_t delalloc_lock;
265 	/*
266 	 * all of the inodes that have delalloc bytes.  It is possible for
267 	 * this list to be empty even when there is still dirty data=ordered
268 	 * extents waiting to finish IO.
269 	 */
270 	struct list_head delalloc_inodes;
271 	struct list_head delalloc_root;
272 	u64 nr_delalloc_inodes;
273 
274 	struct mutex ordered_extent_mutex;
275 	/*
276 	 * this is used by the balancing code to wait for all the pending
277 	 * ordered extents
278 	 */
279 	spinlock_t ordered_extent_lock;
280 
281 	/*
282 	 * all of the data=ordered extents pending writeback
283 	 * these can span multiple transactions and basically include
284 	 * every dirty data page that isn't from nodatacow
285 	 */
286 	struct list_head ordered_extents;
287 	struct list_head ordered_root;
288 	u64 nr_ordered_extents;
289 
290 	/*
291 	 * Not empty if this subvolume root has gone through tree block swap
292 	 * (relocation)
293 	 *
294 	 * Will be used by reloc_control::dirty_subvol_roots.
295 	 */
296 	struct list_head reloc_dirty_list;
297 
298 	/*
299 	 * Number of currently running SEND ioctls to prevent
300 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
301 	 */
302 	int send_in_progress;
303 	/*
304 	 * Number of currently running deduplication operations that have a
305 	 * destination inode belonging to this root. Protected by the lock
306 	 * root_item_lock.
307 	 */
308 	int dedupe_in_progress;
309 	/* For exclusion of snapshot creation and nocow writes */
310 	struct btrfs_drew_lock snapshot_lock;
311 
312 	atomic_t snapshot_force_cow;
313 
314 	/* For qgroup metadata reserved space */
315 	spinlock_t qgroup_meta_rsv_lock;
316 	u64 qgroup_meta_rsv_pertrans;
317 	u64 qgroup_meta_rsv_prealloc;
318 	wait_queue_head_t qgroup_flush_wait;
319 
320 	/* Number of active swapfiles */
321 	atomic_t nr_swapfiles;
322 
323 	/* Record pairs of swapped blocks for qgroup */
324 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
325 
326 	/* Used only by log trees, when logging csum items */
327 	struct extent_io_tree log_csum_range;
328 
329 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330 	u64 alloc_bytenr;
331 #endif
332 
333 #ifdef CONFIG_BTRFS_DEBUG
334 	struct list_head leak_list;
335 #endif
336 };
337 
338 /*
339  * Structure that conveys information about an extent that is going to replace
340  * all the extents in a file range.
341  */
342 struct btrfs_replace_extent_info {
343 	u64 disk_offset;
344 	u64 disk_len;
345 	u64 data_offset;
346 	u64 data_len;
347 	u64 file_offset;
348 	/* Pointer to a file extent item of type regular or prealloc. */
349 	char *extent_buf;
350 	/*
351 	 * Set to true when attempting to replace a file range with a new extent
352 	 * described by this structure, set to false when attempting to clone an
353 	 * existing extent into a file range.
354 	 */
355 	bool is_new_extent;
356 	/* Indicate if we should update the inode's mtime and ctime. */
357 	bool update_times;
358 	/* Meaningful only if is_new_extent is true. */
359 	int qgroup_reserved;
360 	/*
361 	 * Meaningful only if is_new_extent is true.
362 	 * Used to track how many extent items we have already inserted in a
363 	 * subvolume tree that refer to the extent described by this structure,
364 	 * so that we know when to create a new delayed ref or update an existing
365 	 * one.
366 	 */
367 	int insertions;
368 };
369 
370 /* Arguments for btrfs_drop_extents() */
371 struct btrfs_drop_extents_args {
372 	/* Input parameters */
373 
374 	/*
375 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
376 	 * If 'replace_extent' is true, this must not be NULL. Also the path
377 	 * is always released except if 'replace_extent' is true and
378 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
379 	 * the path is kept locked.
380 	 */
381 	struct btrfs_path *path;
382 	/* Start offset of the range to drop extents from */
383 	u64 start;
384 	/* End (exclusive, last byte + 1) of the range to drop extents from */
385 	u64 end;
386 	/* If true drop all the extent maps in the range */
387 	bool drop_cache;
388 	/*
389 	 * If true it means we want to insert a new extent after dropping all
390 	 * the extents in the range. If this is true, the 'extent_item_size'
391 	 * parameter must be set as well and the 'extent_inserted' field will
392 	 * be set to true by btrfs_drop_extents() if it could insert the new
393 	 * extent.
394 	 * Note: when this is set to true the path must not be NULL.
395 	 */
396 	bool replace_extent;
397 	/*
398 	 * Used if 'replace_extent' is true. Size of the file extent item to
399 	 * insert after dropping all existing extents in the range
400 	 */
401 	u32 extent_item_size;
402 
403 	/* Output parameters */
404 
405 	/*
406 	 * Set to the minimum between the input parameter 'end' and the end
407 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
408 	 * set even if btrfs_drop_extents() returns an error.
409 	 */
410 	u64 drop_end;
411 	/*
412 	 * The number of allocated bytes found in the range. This can be smaller
413 	 * than the range's length when there are holes in the range.
414 	 */
415 	u64 bytes_found;
416 	/*
417 	 * Only set if 'replace_extent' is true. Set to true if we were able
418 	 * to insert a replacement extent after dropping all extents in the
419 	 * range, otherwise set to false by btrfs_drop_extents().
420 	 * Also, if btrfs_drop_extents() has set this to true it means it
421 	 * returned with the path locked, otherwise if it has set this to
422 	 * false it has returned with the path released.
423 	 */
424 	bool extent_inserted;
425 };
426 
427 struct btrfs_file_private {
428 	void *filldir_buf;
429 };
430 
431 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
432 {
433 	return info->nodesize - sizeof(struct btrfs_header);
434 }
435 
436 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
437 {
438 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
439 }
440 
441 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
442 {
443 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
444 }
445 
446 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
447 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
448 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
449 {
450 	return BTRFS_MAX_ITEM_SIZE(info) -
451 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
452 }
453 
454 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
455 {
456 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
457 }
458 
459 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
460 				((bytes) >> (fs_info)->sectorsize_bits)
461 
462 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
463 {
464 	return crc32c(crc, address, length);
465 }
466 
467 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
468 {
469 	put_unaligned_le32(~crc, result);
470 }
471 
472 static inline u64 btrfs_name_hash(const char *name, int len)
473 {
474        return crc32c((u32)~1, name, len);
475 }
476 
477 /*
478  * Figure the key offset of an extended inode ref
479  */
480 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
481                                    int len)
482 {
483        return (u64) crc32c(parent_objectid, name, len);
484 }
485 
486 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
487 {
488 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
489 }
490 
491 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
492 				   u64 start, u64 end);
493 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
494 			 u64 num_bytes, u64 *actual_bytes);
495 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
496 
497 /* ctree.c */
498 int __init btrfs_ctree_init(void);
499 void __cold btrfs_ctree_exit(void);
500 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
501 		     int *slot);
502 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
503 int btrfs_previous_item(struct btrfs_root *root,
504 			struct btrfs_path *path, u64 min_objectid,
505 			int type);
506 int btrfs_previous_extent_item(struct btrfs_root *root,
507 			struct btrfs_path *path, u64 min_objectid);
508 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
509 			     struct btrfs_path *path,
510 			     const struct btrfs_key *new_key);
511 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
512 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
513 			struct btrfs_key *key, int lowest_level,
514 			u64 min_trans);
515 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
516 			 struct btrfs_path *path,
517 			 u64 min_trans);
518 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
519 					   int slot);
520 
521 int btrfs_cow_block(struct btrfs_trans_handle *trans,
522 		    struct btrfs_root *root, struct extent_buffer *buf,
523 		    struct extent_buffer *parent, int parent_slot,
524 		    struct extent_buffer **cow_ret,
525 		    enum btrfs_lock_nesting nest);
526 int btrfs_copy_root(struct btrfs_trans_handle *trans,
527 		      struct btrfs_root *root,
528 		      struct extent_buffer *buf,
529 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
530 int btrfs_block_can_be_shared(struct btrfs_root *root,
531 			      struct extent_buffer *buf);
532 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
533 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
534 int btrfs_split_item(struct btrfs_trans_handle *trans,
535 		     struct btrfs_root *root,
536 		     struct btrfs_path *path,
537 		     const struct btrfs_key *new_key,
538 		     unsigned long split_offset);
539 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
540 			 struct btrfs_root *root,
541 			 struct btrfs_path *path,
542 			 const struct btrfs_key *new_key);
543 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
544 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
545 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
546 		      const struct btrfs_key *key, struct btrfs_path *p,
547 		      int ins_len, int cow);
548 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
549 			  struct btrfs_path *p, u64 time_seq);
550 int btrfs_search_slot_for_read(struct btrfs_root *root,
551 			       const struct btrfs_key *key,
552 			       struct btrfs_path *p, int find_higher,
553 			       int return_any);
554 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
555 		       struct btrfs_root *root, struct extent_buffer *parent,
556 		       int start_slot, u64 *last_ret,
557 		       struct btrfs_key *progress);
558 void btrfs_release_path(struct btrfs_path *p);
559 struct btrfs_path *btrfs_alloc_path(void);
560 void btrfs_free_path(struct btrfs_path *p);
561 
562 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
563 		   struct btrfs_path *path, int slot, int nr);
564 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
565 				 struct btrfs_root *root,
566 				 struct btrfs_path *path)
567 {
568 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
569 }
570 
571 /*
572  * Describes a batch of items to insert in a btree. This is used by
573  * btrfs_insert_empty_items().
574  */
575 struct btrfs_item_batch {
576 	/*
577 	 * Pointer to an array containing the keys of the items to insert (in
578 	 * sorted order).
579 	 */
580 	const struct btrfs_key *keys;
581 	/* Pointer to an array containing the data size for each item to insert. */
582 	const u32 *data_sizes;
583 	/*
584 	 * The sum of data sizes for all items. The caller can compute this while
585 	 * setting up the data_sizes array, so it ends up being more efficient
586 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
587 	 * doing it, as it would avoid an extra loop over a potentially large
588 	 * array, and in the case of setup_item_for_insert(), we would be doing
589 	 * it while holding a write lock on a leaf and often on upper level nodes
590 	 * too, unnecessarily increasing the size of a critical section.
591 	 */
592 	u32 total_data_size;
593 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
594 	int nr;
595 };
596 
597 void btrfs_setup_item_for_insert(struct btrfs_root *root,
598 				 struct btrfs_path *path,
599 				 const struct btrfs_key *key,
600 				 u32 data_size);
601 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
602 		      const struct btrfs_key *key, void *data, u32 data_size);
603 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
604 			     struct btrfs_root *root,
605 			     struct btrfs_path *path,
606 			     const struct btrfs_item_batch *batch);
607 
608 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
609 					  struct btrfs_root *root,
610 					  struct btrfs_path *path,
611 					  const struct btrfs_key *key,
612 					  u32 data_size)
613 {
614 	struct btrfs_item_batch batch;
615 
616 	batch.keys = key;
617 	batch.data_sizes = &data_size;
618 	batch.total_data_size = data_size;
619 	batch.nr = 1;
620 
621 	return btrfs_insert_empty_items(trans, root, path, &batch);
622 }
623 
624 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
625 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
626 			u64 time_seq);
627 
628 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
629 			   struct btrfs_path *path);
630 
631 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
632 			      struct btrfs_path *path);
633 
634 /*
635  * Search in @root for a given @key, and store the slot found in @found_key.
636  *
637  * @root:	The root node of the tree.
638  * @key:	The key we are looking for.
639  * @found_key:	Will hold the found item.
640  * @path:	Holds the current slot/leaf.
641  * @iter_ret:	Contains the value returned from btrfs_search_slot or
642  * 		btrfs_get_next_valid_item, whichever was executed last.
643  *
644  * The @iter_ret is an output variable that will contain the return value of
645  * btrfs_search_slot, if it encountered an error, or the value returned from
646  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
647  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
648  *
649  * It's recommended to use a separate variable for iter_ret and then use it to
650  * set the function return value so there's no confusion of the 0/1/errno
651  * values stemming from btrfs_search_slot.
652  */
653 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
654 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
655 		(iter_ret) >= 0 &&						\
656 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
657 		(path)->slots[0]++						\
658 	)
659 
660 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
661 
662 /*
663  * Search the tree again to find a leaf with greater keys.
664  *
665  * Returns 0 if it found something or 1 if there are no greater leaves.
666  * Returns < 0 on error.
667  */
668 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
669 {
670 	return btrfs_next_old_leaf(root, path, 0);
671 }
672 
673 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
674 {
675 	return btrfs_next_old_item(root, p, 0);
676 }
677 int btrfs_leaf_free_space(struct extent_buffer *leaf);
678 
679 /* orphan.c */
680 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
681 			     struct btrfs_root *root, u64 offset);
682 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
683 			  struct btrfs_root *root, u64 offset);
684 
685 /* super.c */
686 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
687 			unsigned long new_flags);
688 int btrfs_sync_fs(struct super_block *sb, int wait);
689 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
690 					  u64 subvol_objectid);
691 
692 /*
693  * Get the correct offset inside the page of extent buffer.
694  *
695  * @eb:		target extent buffer
696  * @start:	offset inside the extent buffer
697  *
698  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
699  */
700 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
701 					   unsigned long offset)
702 {
703 	/*
704 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
705 	 * to PAGE_SIZE, thus adding it won't cause any difference.
706 	 *
707 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
708 	 * to the eb, thus we have to take the eb->start into consideration.
709 	 */
710 	return offset_in_page(offset + eb->start);
711 }
712 
713 static inline unsigned long get_eb_page_index(unsigned long offset)
714 {
715 	/*
716 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
717 	 *
718 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
719 	 * and have ensured that all tree blocks are contained in one page,
720 	 * thus we always get index == 0.
721 	 */
722 	return offset >> PAGE_SHIFT;
723 }
724 
725 /*
726  * Use that for functions that are conditionally exported for sanity tests but
727  * otherwise static
728  */
729 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
730 #define EXPORT_FOR_TESTS static
731 #else
732 #define EXPORT_FOR_TESTS
733 #endif
734 
735 /* scrub.c */
736 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
737 		    u64 end, struct btrfs_scrub_progress *progress,
738 		    int readonly, int is_dev_replace);
739 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
740 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
741 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
742 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
743 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
744 			 struct btrfs_scrub_progress *progress);
745 
746 /* dev-replace.c */
747 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
748 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
749 
750 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
751 {
752 	btrfs_bio_counter_sub(fs_info, 1);
753 }
754 
755 static inline int is_fstree(u64 rootid)
756 {
757 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
758 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
759 	      !btrfs_qgroup_level(rootid)))
760 		return 1;
761 	return 0;
762 }
763 
764 /* verity.c */
765 #ifdef CONFIG_FS_VERITY
766 
767 extern const struct fsverity_operations btrfs_verityops;
768 int btrfs_drop_verity_items(struct btrfs_inode *inode);
769 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size);
770 
771 #else
772 
773 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
774 {
775 	return 0;
776 }
777 
778 static inline int btrfs_get_verity_descriptor(struct inode *inode, void *buf,
779 					      size_t buf_size)
780 {
781 	return -EPERM;
782 }
783 
784 #endif
785 
786 /* Sanity test specific functions */
787 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
788 void btrfs_test_destroy_inode(struct inode *inode);
789 #endif
790 
791 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
792 {
793 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
794 }
795 
796 /*
797  * We use page status Private2 to indicate there is an ordered extent with
798  * unfinished IO.
799  *
800  * Rename the Private2 accessors to Ordered, to improve readability.
801  */
802 #define PageOrdered(page)		PagePrivate2(page)
803 #define SetPageOrdered(page)		SetPagePrivate2(page)
804 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
805 #define folio_test_ordered(folio)	folio_test_private_2(folio)
806 #define folio_set_ordered(folio)	folio_set_private_2(folio)
807 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
808 
809 #endif
810