xref: /openbmc/linux/fs/btrfs/ctree.h (revision 6246ed09111fbb17168619006b4380103c6673c3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 struct btrfs_ioctl_encoded_io_args;
53 
54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
55 
56 /*
57  * Maximum number of mirrors that can be available for all profiles counting
58  * the target device of dev-replace as one. During an active device replace
59  * procedure, the target device of the copy operation is a mirror for the
60  * filesystem data as well that can be used to read data in order to repair
61  * read errors on other disks.
62  *
63  * Current value is derived from RAID1C4 with 4 copies.
64  */
65 #define BTRFS_MAX_MIRRORS (4 + 1)
66 
67 #define BTRFS_MAX_LEVEL 8
68 
69 #define BTRFS_OLDEST_GENERATION	0ULL
70 
71 /*
72  * we can actually store much bigger names, but lets not confuse the rest
73  * of linux
74  */
75 #define BTRFS_NAME_LEN 255
76 
77 /*
78  * Theoretical limit is larger, but we keep this down to a sane
79  * value. That should limit greatly the possibility of collisions on
80  * inode ref items.
81  */
82 #define BTRFS_LINK_MAX 65535U
83 
84 #define BTRFS_EMPTY_DIR_SIZE 0
85 
86 /* ioprio of readahead is set to idle */
87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
88 
89 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
90 
91 /*
92  * Use large batch size to reduce overhead of metadata updates.  On the reader
93  * side, we only read it when we are close to ENOSPC and the read overhead is
94  * mostly related to the number of CPUs, so it is OK to use arbitrary large
95  * value here.
96  */
97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
98 
99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
100 
101 /*
102  * Deltas are an effective way to populate global statistics.  Give macro names
103  * to make it clear what we're doing.  An example is discard_extents in
104  * btrfs_free_space_ctl.
105  */
106 #define BTRFS_STAT_NR_ENTRIES	2
107 #define BTRFS_STAT_CURR		0
108 #define BTRFS_STAT_PREV		1
109 
110 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
111 {
112 	BUG_ON(num_stripes == 0);
113 	return sizeof(struct btrfs_chunk) +
114 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
115 }
116 
117 /*
118  * Runtime (in-memory) states of filesystem
119  */
120 enum {
121 	/* Global indicator of serious filesystem errors */
122 	BTRFS_FS_STATE_ERROR,
123 	/*
124 	 * Filesystem is being remounted, allow to skip some operations, like
125 	 * defrag
126 	 */
127 	BTRFS_FS_STATE_REMOUNTING,
128 	/* Filesystem in RO mode */
129 	BTRFS_FS_STATE_RO,
130 	/* Track if a transaction abort has been reported on this filesystem */
131 	BTRFS_FS_STATE_TRANS_ABORTED,
132 	/*
133 	 * Bio operations should be blocked on this filesystem because a source
134 	 * or target device is being destroyed as part of a device replace
135 	 */
136 	BTRFS_FS_STATE_DEV_REPLACING,
137 	/* The btrfs_fs_info created for self-tests */
138 	BTRFS_FS_STATE_DUMMY_FS_INFO,
139 
140 	BTRFS_FS_STATE_NO_CSUMS,
141 
142 	/* Indicates there was an error cleaning up a log tree. */
143 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
144 
145 	BTRFS_FS_STATE_COUNT
146 };
147 
148 #define BTRFS_BACKREF_REV_MAX		256
149 #define BTRFS_BACKREF_REV_SHIFT		56
150 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
151 					 BTRFS_BACKREF_REV_SHIFT)
152 
153 #define BTRFS_OLD_BACKREF_REV		0
154 #define BTRFS_MIXED_BACKREF_REV		1
155 
156 /*
157  * every tree block (leaf or node) starts with this header.
158  */
159 struct btrfs_header {
160 	/* these first four must match the super block */
161 	u8 csum[BTRFS_CSUM_SIZE];
162 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
163 	__le64 bytenr; /* which block this node is supposed to live in */
164 	__le64 flags;
165 
166 	/* allowed to be different from the super from here on down */
167 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
168 	__le64 generation;
169 	__le64 owner;
170 	__le32 nritems;
171 	u8 level;
172 } __attribute__ ((__packed__));
173 
174 /*
175  * this is a very generous portion of the super block, giving us
176  * room to translate 14 chunks with 3 stripes each.
177  */
178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
179 
180 /*
181  * just in case we somehow lose the roots and are not able to mount,
182  * we store an array of the roots from previous transactions
183  * in the super.
184  */
185 #define BTRFS_NUM_BACKUP_ROOTS 4
186 struct btrfs_root_backup {
187 	__le64 tree_root;
188 	__le64 tree_root_gen;
189 
190 	__le64 chunk_root;
191 	__le64 chunk_root_gen;
192 
193 	__le64 extent_root;
194 	__le64 extent_root_gen;
195 
196 	__le64 fs_root;
197 	__le64 fs_root_gen;
198 
199 	__le64 dev_root;
200 	__le64 dev_root_gen;
201 
202 	__le64 csum_root;
203 	__le64 csum_root_gen;
204 
205 	__le64 total_bytes;
206 	__le64 bytes_used;
207 	__le64 num_devices;
208 	/* future */
209 	__le64 unused_64[4];
210 
211 	u8 tree_root_level;
212 	u8 chunk_root_level;
213 	u8 extent_root_level;
214 	u8 fs_root_level;
215 	u8 dev_root_level;
216 	u8 csum_root_level;
217 	/* future and to align */
218 	u8 unused_8[10];
219 } __attribute__ ((__packed__));
220 
221 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
222 #define BTRFS_SUPER_INFO_SIZE			4096
223 
224 /*
225  * The reserved space at the beginning of each device.
226  * It covers the primary super block and leaves space for potential use by other
227  * tools like bootloaders or to lower potential damage of accidental overwrite.
228  */
229 #define BTRFS_DEVICE_RANGE_RESERVED			(SZ_1M)
230 
231 /*
232  * the super block basically lists the main trees of the FS
233  * it currently lacks any block count etc etc
234  */
235 struct btrfs_super_block {
236 	/* the first 4 fields must match struct btrfs_header */
237 	u8 csum[BTRFS_CSUM_SIZE];
238 	/* FS specific UUID, visible to user */
239 	u8 fsid[BTRFS_FSID_SIZE];
240 	__le64 bytenr; /* this block number */
241 	__le64 flags;
242 
243 	/* allowed to be different from the btrfs_header from here own down */
244 	__le64 magic;
245 	__le64 generation;
246 	__le64 root;
247 	__le64 chunk_root;
248 	__le64 log_root;
249 
250 	/*
251 	 * This member has never been utilized since the very beginning, thus
252 	 * it's always 0 regardless of kernel version.  We always use
253 	 * generation + 1 to read log tree root.  So here we mark it deprecated.
254 	 */
255 	__le64 __unused_log_root_transid;
256 	__le64 total_bytes;
257 	__le64 bytes_used;
258 	__le64 root_dir_objectid;
259 	__le64 num_devices;
260 	__le32 sectorsize;
261 	__le32 nodesize;
262 	__le32 __unused_leafsize;
263 	__le32 stripesize;
264 	__le32 sys_chunk_array_size;
265 	__le64 chunk_root_generation;
266 	__le64 compat_flags;
267 	__le64 compat_ro_flags;
268 	__le64 incompat_flags;
269 	__le16 csum_type;
270 	u8 root_level;
271 	u8 chunk_root_level;
272 	u8 log_root_level;
273 	struct btrfs_dev_item dev_item;
274 
275 	char label[BTRFS_LABEL_SIZE];
276 
277 	__le64 cache_generation;
278 	__le64 uuid_tree_generation;
279 
280 	/* the UUID written into btree blocks */
281 	u8 metadata_uuid[BTRFS_FSID_SIZE];
282 
283 	/* Extent tree v2 */
284 	__le64 block_group_root;
285 	__le64 block_group_root_generation;
286 	u8 block_group_root_level;
287 
288 	/* future expansion */
289 	u8 reserved8[7];
290 	__le64 reserved[25];
291 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
292 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
293 
294 	/* Padded to 4096 bytes */
295 	u8 padding[565];
296 } __attribute__ ((__packed__));
297 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
298 
299 /*
300  * Compat flags that we support.  If any incompat flags are set other than the
301  * ones specified below then we will fail to mount
302  */
303 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
304 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
305 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
306 
307 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
308 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
309 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
310 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
311 
312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
314 
315 #ifdef CONFIG_BTRFS_DEBUG
316 /*
317  * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
318  */
319 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
320 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
321 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
322 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
323 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
324 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
325 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
326 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
327 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
328 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
329 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
330 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
331 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
332 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
333 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
334 #else
335 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
336 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
337 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
338 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
339 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
340 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
341 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
342 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
343 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
344 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
345 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
346 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
347 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
348 	 BTRFS_FEATURE_INCOMPAT_ZONED)
349 #endif
350 
351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
352 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
354 
355 /*
356  * A leaf is full of items. offset and size tell us where to find
357  * the item in the leaf (relative to the start of the data area)
358  */
359 struct btrfs_item {
360 	struct btrfs_disk_key key;
361 	__le32 offset;
362 	__le32 size;
363 } __attribute__ ((__packed__));
364 
365 /*
366  * leaves have an item area and a data area:
367  * [item0, item1....itemN] [free space] [dataN...data1, data0]
368  *
369  * The data is separate from the items to get the keys closer together
370  * during searches.
371  */
372 struct btrfs_leaf {
373 	struct btrfs_header header;
374 	struct btrfs_item items[];
375 } __attribute__ ((__packed__));
376 
377 /*
378  * all non-leaf blocks are nodes, they hold only keys and pointers to
379  * other blocks
380  */
381 struct btrfs_key_ptr {
382 	struct btrfs_disk_key key;
383 	__le64 blockptr;
384 	__le64 generation;
385 } __attribute__ ((__packed__));
386 
387 struct btrfs_node {
388 	struct btrfs_header header;
389 	struct btrfs_key_ptr ptrs[];
390 } __attribute__ ((__packed__));
391 
392 /* Read ahead values for struct btrfs_path.reada */
393 enum {
394 	READA_NONE,
395 	READA_BACK,
396 	READA_FORWARD,
397 	/*
398 	 * Similar to READA_FORWARD but unlike it:
399 	 *
400 	 * 1) It will trigger readahead even for leaves that are not close to
401 	 *    each other on disk;
402 	 * 2) It also triggers readahead for nodes;
403 	 * 3) During a search, even when a node or leaf is already in memory, it
404 	 *    will still trigger readahead for other nodes and leaves that follow
405 	 *    it.
406 	 *
407 	 * This is meant to be used only when we know we are iterating over the
408 	 * entire tree or a very large part of it.
409 	 */
410 	READA_FORWARD_ALWAYS,
411 };
412 
413 /*
414  * btrfs_paths remember the path taken from the root down to the leaf.
415  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
416  * to any other levels that are present.
417  *
418  * The slots array records the index of the item or block pointer
419  * used while walking the tree.
420  */
421 struct btrfs_path {
422 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
423 	int slots[BTRFS_MAX_LEVEL];
424 	/* if there is real range locking, this locks field will change */
425 	u8 locks[BTRFS_MAX_LEVEL];
426 	u8 reada;
427 	/* keep some upper locks as we walk down */
428 	u8 lowest_level;
429 
430 	/*
431 	 * set by btrfs_split_item, tells search_slot to keep all locks
432 	 * and to force calls to keep space in the nodes
433 	 */
434 	unsigned int search_for_split:1;
435 	unsigned int keep_locks:1;
436 	unsigned int skip_locking:1;
437 	unsigned int search_commit_root:1;
438 	unsigned int need_commit_sem:1;
439 	unsigned int skip_release_on_error:1;
440 	/*
441 	 * Indicate that new item (btrfs_search_slot) is extending already
442 	 * existing item and ins_len contains only the data size and not item
443 	 * header (ie. sizeof(struct btrfs_item) is not included).
444 	 */
445 	unsigned int search_for_extension:1;
446 };
447 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
448 					sizeof(struct btrfs_item))
449 struct btrfs_dev_replace {
450 	u64 replace_state;	/* see #define above */
451 	time64_t time_started;	/* seconds since 1-Jan-1970 */
452 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
453 	atomic64_t num_write_errors;
454 	atomic64_t num_uncorrectable_read_errors;
455 
456 	u64 cursor_left;
457 	u64 committed_cursor_left;
458 	u64 cursor_left_last_write_of_item;
459 	u64 cursor_right;
460 
461 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
462 
463 	int is_valid;
464 	int item_needs_writeback;
465 	struct btrfs_device *srcdev;
466 	struct btrfs_device *tgtdev;
467 
468 	struct mutex lock_finishing_cancel_unmount;
469 	struct rw_semaphore rwsem;
470 
471 	struct btrfs_scrub_progress scrub_progress;
472 
473 	struct percpu_counter bio_counter;
474 	wait_queue_head_t replace_wait;
475 };
476 
477 /*
478  * free clusters are used to claim free space in relatively large chunks,
479  * allowing us to do less seeky writes. They are used for all metadata
480  * allocations. In ssd_spread mode they are also used for data allocations.
481  */
482 struct btrfs_free_cluster {
483 	spinlock_t lock;
484 	spinlock_t refill_lock;
485 	struct rb_root root;
486 
487 	/* largest extent in this cluster */
488 	u64 max_size;
489 
490 	/* first extent starting offset */
491 	u64 window_start;
492 
493 	/* We did a full search and couldn't create a cluster */
494 	bool fragmented;
495 
496 	struct btrfs_block_group *block_group;
497 	/*
498 	 * when a cluster is allocated from a block group, we put the
499 	 * cluster onto a list in the block group so that it can
500 	 * be freed before the block group is freed.
501 	 */
502 	struct list_head block_group_list;
503 };
504 
505 enum btrfs_caching_type {
506 	BTRFS_CACHE_NO,
507 	BTRFS_CACHE_STARTED,
508 	BTRFS_CACHE_FINISHED,
509 	BTRFS_CACHE_ERROR,
510 };
511 
512 /*
513  * Tree to record all locked full stripes of a RAID5/6 block group
514  */
515 struct btrfs_full_stripe_locks_tree {
516 	struct rb_root root;
517 	struct mutex lock;
518 };
519 
520 /* Discard control. */
521 /*
522  * Async discard uses multiple lists to differentiate the discard filter
523  * parameters.  Index 0 is for completely free block groups where we need to
524  * ensure the entire block group is trimmed without being lossy.  Indices
525  * afterwards represent monotonically decreasing discard filter sizes to
526  * prioritize what should be discarded next.
527  */
528 #define BTRFS_NR_DISCARD_LISTS		3
529 #define BTRFS_DISCARD_INDEX_UNUSED	0
530 #define BTRFS_DISCARD_INDEX_START	1
531 
532 struct btrfs_discard_ctl {
533 	struct workqueue_struct *discard_workers;
534 	struct delayed_work work;
535 	spinlock_t lock;
536 	struct btrfs_block_group *block_group;
537 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
538 	u64 prev_discard;
539 	u64 prev_discard_time;
540 	atomic_t discardable_extents;
541 	atomic64_t discardable_bytes;
542 	u64 max_discard_size;
543 	u64 delay_ms;
544 	u32 iops_limit;
545 	u32 kbps_limit;
546 	u64 discard_extent_bytes;
547 	u64 discard_bitmap_bytes;
548 	atomic64_t discard_bytes_saved;
549 };
550 
551 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
552 
553 /* fs_info */
554 struct reloc_control;
555 struct btrfs_device;
556 struct btrfs_fs_devices;
557 struct btrfs_balance_control;
558 struct btrfs_delayed_root;
559 
560 /*
561  * Block group or device which contains an active swapfile. Used for preventing
562  * unsafe operations while a swapfile is active.
563  *
564  * These are sorted on (ptr, inode) (note that a block group or device can
565  * contain more than one swapfile). We compare the pointer values because we
566  * don't actually care what the object is, we just need a quick check whether
567  * the object exists in the rbtree.
568  */
569 struct btrfs_swapfile_pin {
570 	struct rb_node node;
571 	void *ptr;
572 	struct inode *inode;
573 	/*
574 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
575 	 * points to a struct btrfs_device.
576 	 */
577 	bool is_block_group;
578 	/*
579 	 * Only used when 'is_block_group' is true and it is the number of
580 	 * extents used by a swapfile for this block group ('ptr' field).
581 	 */
582 	int bg_extent_count;
583 };
584 
585 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
586 
587 enum {
588 	BTRFS_FS_CLOSING_START,
589 	BTRFS_FS_CLOSING_DONE,
590 	BTRFS_FS_LOG_RECOVERING,
591 	BTRFS_FS_OPEN,
592 	BTRFS_FS_QUOTA_ENABLED,
593 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
594 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
595 	BTRFS_FS_BTREE_ERR,
596 	BTRFS_FS_LOG1_ERR,
597 	BTRFS_FS_LOG2_ERR,
598 	BTRFS_FS_QUOTA_OVERRIDE,
599 	/* Used to record internally whether fs has been frozen */
600 	BTRFS_FS_FROZEN,
601 	/*
602 	 * Indicate that balance has been set up from the ioctl and is in the
603 	 * main phase. The fs_info::balance_ctl is initialized.
604 	 */
605 	BTRFS_FS_BALANCE_RUNNING,
606 
607 	/*
608 	 * Indicate that relocation of a chunk has started, it's set per chunk
609 	 * and is toggled between chunks.
610 	 */
611 	BTRFS_FS_RELOC_RUNNING,
612 
613 	/* Indicate that the cleaner thread is awake and doing something. */
614 	BTRFS_FS_CLEANER_RUNNING,
615 
616 	/*
617 	 * The checksumming has an optimized version and is considered fast,
618 	 * so we don't need to offload checksums to workqueues.
619 	 */
620 	BTRFS_FS_CSUM_IMPL_FAST,
621 
622 	/* Indicate that the discard workqueue can service discards. */
623 	BTRFS_FS_DISCARD_RUNNING,
624 
625 	/* Indicate that we need to cleanup space cache v1 */
626 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
627 
628 	/* Indicate that we can't trust the free space tree for caching yet */
629 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
630 
631 	/* Indicate whether there are any tree modification log users */
632 	BTRFS_FS_TREE_MOD_LOG_USERS,
633 
634 	/* Indicate that we want the transaction kthread to commit right now. */
635 	BTRFS_FS_COMMIT_TRANS,
636 
637 	/* Indicate we have half completed snapshot deletions pending. */
638 	BTRFS_FS_UNFINISHED_DROPS,
639 
640 	/* Indicate we have to finish a zone to do next allocation. */
641 	BTRFS_FS_NEED_ZONE_FINISH,
642 
643 #if BITS_PER_LONG == 32
644 	/* Indicate if we have error/warn message printed on 32bit systems */
645 	BTRFS_FS_32BIT_ERROR,
646 	BTRFS_FS_32BIT_WARN,
647 #endif
648 };
649 
650 /*
651  * Exclusive operations (device replace, resize, device add/remove, balance)
652  */
653 enum btrfs_exclusive_operation {
654 	BTRFS_EXCLOP_NONE,
655 	BTRFS_EXCLOP_BALANCE_PAUSED,
656 	BTRFS_EXCLOP_BALANCE,
657 	BTRFS_EXCLOP_DEV_ADD,
658 	BTRFS_EXCLOP_DEV_REMOVE,
659 	BTRFS_EXCLOP_DEV_REPLACE,
660 	BTRFS_EXCLOP_RESIZE,
661 	BTRFS_EXCLOP_SWAP_ACTIVATE,
662 };
663 
664 /* Store data about transaction commits, exported via sysfs. */
665 struct btrfs_commit_stats {
666 	/* Total number of commits */
667 	u64 commit_count;
668 	/* The maximum commit duration so far in ns */
669 	u64 max_commit_dur;
670 	/* The last commit duration in ns */
671 	u64 last_commit_dur;
672 	/* The total commit duration in ns */
673 	u64 total_commit_dur;
674 };
675 
676 struct btrfs_fs_info {
677 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
678 	unsigned long flags;
679 	struct btrfs_root *tree_root;
680 	struct btrfs_root *chunk_root;
681 	struct btrfs_root *dev_root;
682 	struct btrfs_root *fs_root;
683 	struct btrfs_root *quota_root;
684 	struct btrfs_root *uuid_root;
685 	struct btrfs_root *data_reloc_root;
686 	struct btrfs_root *block_group_root;
687 
688 	/* the log root tree is a directory of all the other log roots */
689 	struct btrfs_root *log_root_tree;
690 
691 	/* The tree that holds the global roots (csum, extent, etc) */
692 	rwlock_t global_root_lock;
693 	struct rb_root global_root_tree;
694 
695 	spinlock_t fs_roots_radix_lock;
696 	struct radix_tree_root fs_roots_radix;
697 
698 	/* block group cache stuff */
699 	rwlock_t block_group_cache_lock;
700 	struct rb_root_cached block_group_cache_tree;
701 
702 	/* keep track of unallocated space */
703 	atomic64_t free_chunk_space;
704 
705 	/* Track ranges which are used by log trees blocks/logged data extents */
706 	struct extent_io_tree excluded_extents;
707 
708 	/* logical->physical extent mapping */
709 	struct extent_map_tree mapping_tree;
710 
711 	/*
712 	 * block reservation for extent, checksum, root tree and
713 	 * delayed dir index item
714 	 */
715 	struct btrfs_block_rsv global_block_rsv;
716 	/* block reservation for metadata operations */
717 	struct btrfs_block_rsv trans_block_rsv;
718 	/* block reservation for chunk tree */
719 	struct btrfs_block_rsv chunk_block_rsv;
720 	/* block reservation for delayed operations */
721 	struct btrfs_block_rsv delayed_block_rsv;
722 	/* block reservation for delayed refs */
723 	struct btrfs_block_rsv delayed_refs_rsv;
724 
725 	struct btrfs_block_rsv empty_block_rsv;
726 
727 	u64 generation;
728 	u64 last_trans_committed;
729 	/*
730 	 * Generation of the last transaction used for block group relocation
731 	 * since the filesystem was last mounted (or 0 if none happened yet).
732 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
733 	 */
734 	u64 last_reloc_trans;
735 	u64 avg_delayed_ref_runtime;
736 
737 	/*
738 	 * this is updated to the current trans every time a full commit
739 	 * is required instead of the faster short fsync log commits
740 	 */
741 	u64 last_trans_log_full_commit;
742 	unsigned long mount_opt;
743 	/*
744 	 * Track requests for actions that need to be done during transaction
745 	 * commit (like for some mount options).
746 	 */
747 	unsigned long pending_changes;
748 	unsigned long compress_type:4;
749 	unsigned int compress_level;
750 	u32 commit_interval;
751 	/*
752 	 * It is a suggestive number, the read side is safe even it gets a
753 	 * wrong number because we will write out the data into a regular
754 	 * extent. The write side(mount/remount) is under ->s_umount lock,
755 	 * so it is also safe.
756 	 */
757 	u64 max_inline;
758 
759 	struct btrfs_transaction *running_transaction;
760 	wait_queue_head_t transaction_throttle;
761 	wait_queue_head_t transaction_wait;
762 	wait_queue_head_t transaction_blocked_wait;
763 	wait_queue_head_t async_submit_wait;
764 
765 	/*
766 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
767 	 * when they are updated.
768 	 *
769 	 * Because we do not clear the flags for ever, so we needn't use
770 	 * the lock on the read side.
771 	 *
772 	 * We also needn't use the lock when we mount the fs, because
773 	 * there is no other task which will update the flag.
774 	 */
775 	spinlock_t super_lock;
776 	struct btrfs_super_block *super_copy;
777 	struct btrfs_super_block *super_for_commit;
778 	struct super_block *sb;
779 	struct inode *btree_inode;
780 	struct mutex tree_log_mutex;
781 	struct mutex transaction_kthread_mutex;
782 	struct mutex cleaner_mutex;
783 	struct mutex chunk_mutex;
784 
785 	/*
786 	 * this is taken to make sure we don't set block groups ro after
787 	 * the free space cache has been allocated on them
788 	 */
789 	struct mutex ro_block_group_mutex;
790 
791 	/* this is used during read/modify/write to make sure
792 	 * no two ios are trying to mod the same stripe at the same
793 	 * time
794 	 */
795 	struct btrfs_stripe_hash_table *stripe_hash_table;
796 
797 	/*
798 	 * this protects the ordered operations list only while we are
799 	 * processing all of the entries on it.  This way we make
800 	 * sure the commit code doesn't find the list temporarily empty
801 	 * because another function happens to be doing non-waiting preflush
802 	 * before jumping into the main commit.
803 	 */
804 	struct mutex ordered_operations_mutex;
805 
806 	struct rw_semaphore commit_root_sem;
807 
808 	struct rw_semaphore cleanup_work_sem;
809 
810 	struct rw_semaphore subvol_sem;
811 
812 	spinlock_t trans_lock;
813 	/*
814 	 * the reloc mutex goes with the trans lock, it is taken
815 	 * during commit to protect us from the relocation code
816 	 */
817 	struct mutex reloc_mutex;
818 
819 	struct list_head trans_list;
820 	struct list_head dead_roots;
821 	struct list_head caching_block_groups;
822 
823 	spinlock_t delayed_iput_lock;
824 	struct list_head delayed_iputs;
825 	atomic_t nr_delayed_iputs;
826 	wait_queue_head_t delayed_iputs_wait;
827 
828 	atomic64_t tree_mod_seq;
829 
830 	/* this protects tree_mod_log and tree_mod_seq_list */
831 	rwlock_t tree_mod_log_lock;
832 	struct rb_root tree_mod_log;
833 	struct list_head tree_mod_seq_list;
834 
835 	atomic_t async_delalloc_pages;
836 
837 	/*
838 	 * this is used to protect the following list -- ordered_roots.
839 	 */
840 	spinlock_t ordered_root_lock;
841 
842 	/*
843 	 * all fs/file tree roots in which there are data=ordered extents
844 	 * pending writeback are added into this list.
845 	 *
846 	 * these can span multiple transactions and basically include
847 	 * every dirty data page that isn't from nodatacow
848 	 */
849 	struct list_head ordered_roots;
850 
851 	struct mutex delalloc_root_mutex;
852 	spinlock_t delalloc_root_lock;
853 	/* all fs/file tree roots that have delalloc inodes. */
854 	struct list_head delalloc_roots;
855 
856 	/*
857 	 * there is a pool of worker threads for checksumming during writes
858 	 * and a pool for checksumming after reads.  This is because readers
859 	 * can run with FS locks held, and the writers may be waiting for
860 	 * those locks.  We don't want ordering in the pending list to cause
861 	 * deadlocks, and so the two are serviced separately.
862 	 *
863 	 * A third pool does submit_bio to avoid deadlocking with the other
864 	 * two
865 	 */
866 	struct btrfs_workqueue *workers;
867 	struct btrfs_workqueue *hipri_workers;
868 	struct btrfs_workqueue *delalloc_workers;
869 	struct btrfs_workqueue *flush_workers;
870 	struct workqueue_struct *endio_workers;
871 	struct workqueue_struct *endio_meta_workers;
872 	struct workqueue_struct *endio_raid56_workers;
873 	struct workqueue_struct *rmw_workers;
874 	struct workqueue_struct *compressed_write_workers;
875 	struct btrfs_workqueue *endio_write_workers;
876 	struct btrfs_workqueue *endio_freespace_worker;
877 	struct btrfs_workqueue *caching_workers;
878 
879 	/*
880 	 * fixup workers take dirty pages that didn't properly go through
881 	 * the cow mechanism and make them safe to write.  It happens
882 	 * for the sys_munmap function call path
883 	 */
884 	struct btrfs_workqueue *fixup_workers;
885 	struct btrfs_workqueue *delayed_workers;
886 
887 	struct task_struct *transaction_kthread;
888 	struct task_struct *cleaner_kthread;
889 	u32 thread_pool_size;
890 
891 	struct kobject *space_info_kobj;
892 	struct kobject *qgroups_kobj;
893 
894 	/* used to keep from writing metadata until there is a nice batch */
895 	struct percpu_counter dirty_metadata_bytes;
896 	struct percpu_counter delalloc_bytes;
897 	struct percpu_counter ordered_bytes;
898 	s32 dirty_metadata_batch;
899 	s32 delalloc_batch;
900 
901 	struct list_head dirty_cowonly_roots;
902 
903 	struct btrfs_fs_devices *fs_devices;
904 
905 	/*
906 	 * The space_info list is effectively read only after initial
907 	 * setup.  It is populated at mount time and cleaned up after
908 	 * all block groups are removed.  RCU is used to protect it.
909 	 */
910 	struct list_head space_info;
911 
912 	struct btrfs_space_info *data_sinfo;
913 
914 	struct reloc_control *reloc_ctl;
915 
916 	/* data_alloc_cluster is only used in ssd_spread mode */
917 	struct btrfs_free_cluster data_alloc_cluster;
918 
919 	/* all metadata allocations go through this cluster */
920 	struct btrfs_free_cluster meta_alloc_cluster;
921 
922 	/* auto defrag inodes go here */
923 	spinlock_t defrag_inodes_lock;
924 	struct rb_root defrag_inodes;
925 	atomic_t defrag_running;
926 
927 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
928 	seqlock_t profiles_lock;
929 	/*
930 	 * these three are in extended format (availability of single
931 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
932 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
933 	 */
934 	u64 avail_data_alloc_bits;
935 	u64 avail_metadata_alloc_bits;
936 	u64 avail_system_alloc_bits;
937 
938 	/* restriper state */
939 	spinlock_t balance_lock;
940 	struct mutex balance_mutex;
941 	atomic_t balance_pause_req;
942 	atomic_t balance_cancel_req;
943 	struct btrfs_balance_control *balance_ctl;
944 	wait_queue_head_t balance_wait_q;
945 
946 	/* Cancellation requests for chunk relocation */
947 	atomic_t reloc_cancel_req;
948 
949 	u32 data_chunk_allocations;
950 	u32 metadata_ratio;
951 
952 	void *bdev_holder;
953 
954 	/* private scrub information */
955 	struct mutex scrub_lock;
956 	atomic_t scrubs_running;
957 	atomic_t scrub_pause_req;
958 	atomic_t scrubs_paused;
959 	atomic_t scrub_cancel_req;
960 	wait_queue_head_t scrub_pause_wait;
961 	/*
962 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
963 	 * running.
964 	 */
965 	refcount_t scrub_workers_refcnt;
966 	struct workqueue_struct *scrub_workers;
967 	struct workqueue_struct *scrub_wr_completion_workers;
968 	struct workqueue_struct *scrub_parity_workers;
969 	struct btrfs_subpage_info *subpage_info;
970 
971 	struct btrfs_discard_ctl discard_ctl;
972 
973 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
974 	u32 check_integrity_print_mask;
975 #endif
976 	/* is qgroup tracking in a consistent state? */
977 	u64 qgroup_flags;
978 
979 	/* holds configuration and tracking. Protected by qgroup_lock */
980 	struct rb_root qgroup_tree;
981 	spinlock_t qgroup_lock;
982 
983 	/*
984 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
985 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
986 	 */
987 	struct ulist *qgroup_ulist;
988 
989 	/*
990 	 * Protect user change for quota operations. If a transaction is needed,
991 	 * it must be started before locking this lock.
992 	 */
993 	struct mutex qgroup_ioctl_lock;
994 
995 	/* list of dirty qgroups to be written at next commit */
996 	struct list_head dirty_qgroups;
997 
998 	/* used by qgroup for an efficient tree traversal */
999 	u64 qgroup_seq;
1000 
1001 	/* qgroup rescan items */
1002 	struct mutex qgroup_rescan_lock; /* protects the progress item */
1003 	struct btrfs_key qgroup_rescan_progress;
1004 	struct btrfs_workqueue *qgroup_rescan_workers;
1005 	struct completion qgroup_rescan_completion;
1006 	struct btrfs_work qgroup_rescan_work;
1007 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
1008 
1009 	/* filesystem state */
1010 	unsigned long fs_state;
1011 
1012 	struct btrfs_delayed_root *delayed_root;
1013 
1014 	/* Extent buffer radix tree */
1015 	spinlock_t buffer_lock;
1016 	/* Entries are eb->start / sectorsize */
1017 	struct radix_tree_root buffer_radix;
1018 
1019 	/* next backup root to be overwritten */
1020 	int backup_root_index;
1021 
1022 	/* device replace state */
1023 	struct btrfs_dev_replace dev_replace;
1024 
1025 	struct semaphore uuid_tree_rescan_sem;
1026 
1027 	/* Used to reclaim the metadata space in the background. */
1028 	struct work_struct async_reclaim_work;
1029 	struct work_struct async_data_reclaim_work;
1030 	struct work_struct preempt_reclaim_work;
1031 
1032 	/* Reclaim partially filled block groups in the background */
1033 	struct work_struct reclaim_bgs_work;
1034 	struct list_head reclaim_bgs;
1035 	int bg_reclaim_threshold;
1036 
1037 	spinlock_t unused_bgs_lock;
1038 	struct list_head unused_bgs;
1039 	struct mutex unused_bg_unpin_mutex;
1040 	/* Protect block groups that are going to be deleted */
1041 	struct mutex reclaim_bgs_lock;
1042 
1043 	/* Cached block sizes */
1044 	u32 nodesize;
1045 	u32 sectorsize;
1046 	/* ilog2 of sectorsize, use to avoid 64bit division */
1047 	u32 sectorsize_bits;
1048 	u32 csum_size;
1049 	u32 csums_per_leaf;
1050 	u32 stripesize;
1051 
1052 	/*
1053 	 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1054 	 * filesystem, on zoned it depends on the device constraints.
1055 	 */
1056 	u64 max_extent_size;
1057 
1058 	/* Block groups and devices containing active swapfiles. */
1059 	spinlock_t swapfile_pins_lock;
1060 	struct rb_root swapfile_pins;
1061 
1062 	struct crypto_shash *csum_shash;
1063 
1064 	/* Type of exclusive operation running, protected by super_lock */
1065 	enum btrfs_exclusive_operation exclusive_operation;
1066 
1067 	/*
1068 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1069 	 * if the mode is enabled
1070 	 */
1071 	u64 zone_size;
1072 
1073 	/* Max size to emit ZONE_APPEND write command */
1074 	u64 max_zone_append_size;
1075 	struct mutex zoned_meta_io_lock;
1076 	spinlock_t treelog_bg_lock;
1077 	u64 treelog_bg;
1078 
1079 	/*
1080 	 * Start of the dedicated data relocation block group, protected by
1081 	 * relocation_bg_lock.
1082 	 */
1083 	spinlock_t relocation_bg_lock;
1084 	u64 data_reloc_bg;
1085 	struct mutex zoned_data_reloc_io_lock;
1086 
1087 	u64 nr_global_roots;
1088 
1089 	spinlock_t zone_active_bgs_lock;
1090 	struct list_head zone_active_bgs;
1091 
1092 	/* Updates are not protected by any lock */
1093 	struct btrfs_commit_stats commit_stats;
1094 
1095 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1096 	spinlock_t ref_verify_lock;
1097 	struct rb_root block_tree;
1098 #endif
1099 
1100 #ifdef CONFIG_BTRFS_DEBUG
1101 	struct kobject *debug_kobj;
1102 	struct kobject *discard_debug_kobj;
1103 	struct list_head allocated_roots;
1104 
1105 	spinlock_t eb_leak_lock;
1106 	struct list_head allocated_ebs;
1107 #endif
1108 };
1109 
1110 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1111 {
1112 	return sb->s_fs_info;
1113 }
1114 
1115 /*
1116  * The state of btrfs root
1117  */
1118 enum {
1119 	/*
1120 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1121 	 * with the balancing code.   But the race is very small, and only the
1122 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1123 	 * is used to tell us when more checks are required
1124 	 */
1125 	BTRFS_ROOT_IN_TRANS_SETUP,
1126 
1127 	/*
1128 	 * Set if tree blocks of this root can be shared by other roots.
1129 	 * Only subvolume trees and their reloc trees have this bit set.
1130 	 * Conflicts with TRACK_DIRTY bit.
1131 	 *
1132 	 * This affects two things:
1133 	 *
1134 	 * - How balance works
1135 	 *   For shareable roots, we need to use reloc tree and do path
1136 	 *   replacement for balance, and need various pre/post hooks for
1137 	 *   snapshot creation to handle them.
1138 	 *
1139 	 *   While for non-shareable trees, we just simply do a tree search
1140 	 *   with COW.
1141 	 *
1142 	 * - How dirty roots are tracked
1143 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1144 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1145 	 *   don't need to set this manually.
1146 	 */
1147 	BTRFS_ROOT_SHAREABLE,
1148 	BTRFS_ROOT_TRACK_DIRTY,
1149 	BTRFS_ROOT_IN_RADIX,
1150 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1151 	BTRFS_ROOT_DEFRAG_RUNNING,
1152 	BTRFS_ROOT_FORCE_COW,
1153 	BTRFS_ROOT_MULTI_LOG_TASKS,
1154 	BTRFS_ROOT_DIRTY,
1155 	BTRFS_ROOT_DELETING,
1156 
1157 	/*
1158 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1159 	 *
1160 	 * Set for the subvolume tree owning the reloc tree.
1161 	 */
1162 	BTRFS_ROOT_DEAD_RELOC_TREE,
1163 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1164 	BTRFS_ROOT_DEAD_TREE,
1165 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1166 	BTRFS_ROOT_HAS_LOG_TREE,
1167 	/* Qgroup flushing is in progress */
1168 	BTRFS_ROOT_QGROUP_FLUSHING,
1169 	/* We started the orphan cleanup for this root. */
1170 	BTRFS_ROOT_ORPHAN_CLEANUP,
1171 	/* This root has a drop operation that was started previously. */
1172 	BTRFS_ROOT_UNFINISHED_DROP,
1173 	/* This reloc root needs to have its buffers lockdep class reset. */
1174 	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
1175 };
1176 
1177 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1178 {
1179 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1180 }
1181 
1182 /*
1183  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1184  * code. For detail check comment in fs/btrfs/qgroup.c.
1185  */
1186 struct btrfs_qgroup_swapped_blocks {
1187 	spinlock_t lock;
1188 	/* RM_EMPTY_ROOT() of above blocks[] */
1189 	bool swapped;
1190 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1191 };
1192 
1193 /*
1194  * in ram representation of the tree.  extent_root is used for all allocations
1195  * and for the extent tree extent_root root.
1196  */
1197 struct btrfs_root {
1198 	struct rb_node rb_node;
1199 
1200 	struct extent_buffer *node;
1201 
1202 	struct extent_buffer *commit_root;
1203 	struct btrfs_root *log_root;
1204 	struct btrfs_root *reloc_root;
1205 
1206 	unsigned long state;
1207 	struct btrfs_root_item root_item;
1208 	struct btrfs_key root_key;
1209 	struct btrfs_fs_info *fs_info;
1210 	struct extent_io_tree dirty_log_pages;
1211 
1212 	struct mutex objectid_mutex;
1213 
1214 	spinlock_t accounting_lock;
1215 	struct btrfs_block_rsv *block_rsv;
1216 
1217 	struct mutex log_mutex;
1218 	wait_queue_head_t log_writer_wait;
1219 	wait_queue_head_t log_commit_wait[2];
1220 	struct list_head log_ctxs[2];
1221 	/* Used only for log trees of subvolumes, not for the log root tree */
1222 	atomic_t log_writers;
1223 	atomic_t log_commit[2];
1224 	/* Used only for log trees of subvolumes, not for the log root tree */
1225 	atomic_t log_batch;
1226 	int log_transid;
1227 	/* No matter the commit succeeds or not*/
1228 	int log_transid_committed;
1229 	/* Just be updated when the commit succeeds. */
1230 	int last_log_commit;
1231 	pid_t log_start_pid;
1232 
1233 	u64 last_trans;
1234 
1235 	u32 type;
1236 
1237 	u64 free_objectid;
1238 
1239 	struct btrfs_key defrag_progress;
1240 	struct btrfs_key defrag_max;
1241 
1242 	/* The dirty list is only used by non-shareable roots */
1243 	struct list_head dirty_list;
1244 
1245 	struct list_head root_list;
1246 
1247 	spinlock_t log_extents_lock[2];
1248 	struct list_head logged_list[2];
1249 
1250 	spinlock_t inode_lock;
1251 	/* red-black tree that keeps track of in-memory inodes */
1252 	struct rb_root inode_tree;
1253 
1254 	/*
1255 	 * radix tree that keeps track of delayed nodes of every inode,
1256 	 * protected by inode_lock
1257 	 */
1258 	struct radix_tree_root delayed_nodes_tree;
1259 	/*
1260 	 * right now this just gets used so that a root has its own devid
1261 	 * for stat.  It may be used for more later
1262 	 */
1263 	dev_t anon_dev;
1264 
1265 	spinlock_t root_item_lock;
1266 	refcount_t refs;
1267 
1268 	struct mutex delalloc_mutex;
1269 	spinlock_t delalloc_lock;
1270 	/*
1271 	 * all of the inodes that have delalloc bytes.  It is possible for
1272 	 * this list to be empty even when there is still dirty data=ordered
1273 	 * extents waiting to finish IO.
1274 	 */
1275 	struct list_head delalloc_inodes;
1276 	struct list_head delalloc_root;
1277 	u64 nr_delalloc_inodes;
1278 
1279 	struct mutex ordered_extent_mutex;
1280 	/*
1281 	 * this is used by the balancing code to wait for all the pending
1282 	 * ordered extents
1283 	 */
1284 	spinlock_t ordered_extent_lock;
1285 
1286 	/*
1287 	 * all of the data=ordered extents pending writeback
1288 	 * these can span multiple transactions and basically include
1289 	 * every dirty data page that isn't from nodatacow
1290 	 */
1291 	struct list_head ordered_extents;
1292 	struct list_head ordered_root;
1293 	u64 nr_ordered_extents;
1294 
1295 	/*
1296 	 * Not empty if this subvolume root has gone through tree block swap
1297 	 * (relocation)
1298 	 *
1299 	 * Will be used by reloc_control::dirty_subvol_roots.
1300 	 */
1301 	struct list_head reloc_dirty_list;
1302 
1303 	/*
1304 	 * Number of currently running SEND ioctls to prevent
1305 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1306 	 */
1307 	int send_in_progress;
1308 	/*
1309 	 * Number of currently running deduplication operations that have a
1310 	 * destination inode belonging to this root. Protected by the lock
1311 	 * root_item_lock.
1312 	 */
1313 	int dedupe_in_progress;
1314 	/* For exclusion of snapshot creation and nocow writes */
1315 	struct btrfs_drew_lock snapshot_lock;
1316 
1317 	atomic_t snapshot_force_cow;
1318 
1319 	/* For qgroup metadata reserved space */
1320 	spinlock_t qgroup_meta_rsv_lock;
1321 	u64 qgroup_meta_rsv_pertrans;
1322 	u64 qgroup_meta_rsv_prealloc;
1323 	wait_queue_head_t qgroup_flush_wait;
1324 
1325 	/* Number of active swapfiles */
1326 	atomic_t nr_swapfiles;
1327 
1328 	/* Record pairs of swapped blocks for qgroup */
1329 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1330 
1331 	/* Used only by log trees, when logging csum items */
1332 	struct extent_io_tree log_csum_range;
1333 
1334 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1335 	u64 alloc_bytenr;
1336 #endif
1337 
1338 #ifdef CONFIG_BTRFS_DEBUG
1339 	struct list_head leak_list;
1340 #endif
1341 };
1342 
1343 /*
1344  * Structure that conveys information about an extent that is going to replace
1345  * all the extents in a file range.
1346  */
1347 struct btrfs_replace_extent_info {
1348 	u64 disk_offset;
1349 	u64 disk_len;
1350 	u64 data_offset;
1351 	u64 data_len;
1352 	u64 file_offset;
1353 	/* Pointer to a file extent item of type regular or prealloc. */
1354 	char *extent_buf;
1355 	/*
1356 	 * Set to true when attempting to replace a file range with a new extent
1357 	 * described by this structure, set to false when attempting to clone an
1358 	 * existing extent into a file range.
1359 	 */
1360 	bool is_new_extent;
1361 	/* Indicate if we should update the inode's mtime and ctime. */
1362 	bool update_times;
1363 	/* Meaningful only if is_new_extent is true. */
1364 	int qgroup_reserved;
1365 	/*
1366 	 * Meaningful only if is_new_extent is true.
1367 	 * Used to track how many extent items we have already inserted in a
1368 	 * subvolume tree that refer to the extent described by this structure,
1369 	 * so that we know when to create a new delayed ref or update an existing
1370 	 * one.
1371 	 */
1372 	int insertions;
1373 };
1374 
1375 /* Arguments for btrfs_drop_extents() */
1376 struct btrfs_drop_extents_args {
1377 	/* Input parameters */
1378 
1379 	/*
1380 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1381 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1382 	 * is always released except if 'replace_extent' is true and
1383 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1384 	 * the path is kept locked.
1385 	 */
1386 	struct btrfs_path *path;
1387 	/* Start offset of the range to drop extents from */
1388 	u64 start;
1389 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1390 	u64 end;
1391 	/* If true drop all the extent maps in the range */
1392 	bool drop_cache;
1393 	/*
1394 	 * If true it means we want to insert a new extent after dropping all
1395 	 * the extents in the range. If this is true, the 'extent_item_size'
1396 	 * parameter must be set as well and the 'extent_inserted' field will
1397 	 * be set to true by btrfs_drop_extents() if it could insert the new
1398 	 * extent.
1399 	 * Note: when this is set to true the path must not be NULL.
1400 	 */
1401 	bool replace_extent;
1402 	/*
1403 	 * Used if 'replace_extent' is true. Size of the file extent item to
1404 	 * insert after dropping all existing extents in the range
1405 	 */
1406 	u32 extent_item_size;
1407 
1408 	/* Output parameters */
1409 
1410 	/*
1411 	 * Set to the minimum between the input parameter 'end' and the end
1412 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1413 	 * set even if btrfs_drop_extents() returns an error.
1414 	 */
1415 	u64 drop_end;
1416 	/*
1417 	 * The number of allocated bytes found in the range. This can be smaller
1418 	 * than the range's length when there are holes in the range.
1419 	 */
1420 	u64 bytes_found;
1421 	/*
1422 	 * Only set if 'replace_extent' is true. Set to true if we were able
1423 	 * to insert a replacement extent after dropping all extents in the
1424 	 * range, otherwise set to false by btrfs_drop_extents().
1425 	 * Also, if btrfs_drop_extents() has set this to true it means it
1426 	 * returned with the path locked, otherwise if it has set this to
1427 	 * false it has returned with the path released.
1428 	 */
1429 	bool extent_inserted;
1430 };
1431 
1432 struct btrfs_file_private {
1433 	void *filldir_buf;
1434 };
1435 
1436 
1437 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1438 {
1439 
1440 	return info->nodesize - sizeof(struct btrfs_header);
1441 }
1442 
1443 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1444 
1445 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1446 {
1447 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1448 }
1449 
1450 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1451 {
1452 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1453 }
1454 
1455 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1456 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1457 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1458 {
1459 	return BTRFS_MAX_ITEM_SIZE(info) -
1460 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1461 }
1462 
1463 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1464 {
1465 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1466 }
1467 
1468 /*
1469  * Flags for mount options.
1470  *
1471  * Note: don't forget to add new options to btrfs_show_options()
1472  */
1473 enum {
1474 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1475 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1476 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1477 	BTRFS_MOUNT_SSD				= (1UL << 3),
1478 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1479 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1480 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1481 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1482 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1483 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1484 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1485 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1486 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1487 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1488 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1489 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1490 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1491 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1492 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1493 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1494 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1495 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1496 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1497 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1498 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1499 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1500 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1501 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1502 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1503 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1504 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1505 };
1506 
1507 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1508 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1509 
1510 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1511 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1512 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1513 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1514 					 BTRFS_MOUNT_##opt)
1515 
1516 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1517 do {									\
1518 	if (!btrfs_test_opt(fs_info, opt))				\
1519 		btrfs_info(fs_info, fmt, ##args);			\
1520 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1521 } while (0)
1522 
1523 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1524 do {									\
1525 	if (btrfs_test_opt(fs_info, opt))				\
1526 		btrfs_info(fs_info, fmt, ##args);			\
1527 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1528 } while (0)
1529 
1530 /*
1531  * Requests for changes that need to be done during transaction commit.
1532  *
1533  * Internal mount options that are used for special handling of the real
1534  * mount options (eg. cannot be set during remount and have to be set during
1535  * transaction commit)
1536  */
1537 
1538 #define BTRFS_PENDING_COMMIT			(0)
1539 
1540 #define btrfs_test_pending(info, opt)	\
1541 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1542 #define btrfs_set_pending(info, opt)	\
1543 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1544 #define btrfs_clear_pending(info, opt)	\
1545 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1546 
1547 /*
1548  * Helpers for setting pending mount option changes.
1549  *
1550  * Expects corresponding macros
1551  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1552  */
1553 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1554 do {                                                                   \
1555        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1556                btrfs_info((info), fmt, ##args);                        \
1557                btrfs_set_pending((info), SET_##opt);                   \
1558                btrfs_clear_pending((info), CLEAR_##opt);               \
1559        }                                                               \
1560 } while(0)
1561 
1562 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1563 do {                                                                   \
1564        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1565                btrfs_info((info), fmt, ##args);                        \
1566                btrfs_set_pending((info), CLEAR_##opt);                 \
1567                btrfs_clear_pending((info), SET_##opt);                 \
1568        }                                                               \
1569 } while(0)
1570 
1571 /*
1572  * Inode flags
1573  */
1574 #define BTRFS_INODE_NODATASUM		(1U << 0)
1575 #define BTRFS_INODE_NODATACOW		(1U << 1)
1576 #define BTRFS_INODE_READONLY		(1U << 2)
1577 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1578 #define BTRFS_INODE_PREALLOC		(1U << 4)
1579 #define BTRFS_INODE_SYNC		(1U << 5)
1580 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1581 #define BTRFS_INODE_APPEND		(1U << 7)
1582 #define BTRFS_INODE_NODUMP		(1U << 8)
1583 #define BTRFS_INODE_NOATIME		(1U << 9)
1584 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1585 #define BTRFS_INODE_COMPRESS		(1U << 11)
1586 
1587 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1588 
1589 #define BTRFS_INODE_FLAG_MASK						\
1590 	(BTRFS_INODE_NODATASUM |					\
1591 	 BTRFS_INODE_NODATACOW |					\
1592 	 BTRFS_INODE_READONLY |						\
1593 	 BTRFS_INODE_NOCOMPRESS |					\
1594 	 BTRFS_INODE_PREALLOC |						\
1595 	 BTRFS_INODE_SYNC |						\
1596 	 BTRFS_INODE_IMMUTABLE |					\
1597 	 BTRFS_INODE_APPEND |						\
1598 	 BTRFS_INODE_NODUMP |						\
1599 	 BTRFS_INODE_NOATIME |						\
1600 	 BTRFS_INODE_DIRSYNC |						\
1601 	 BTRFS_INODE_COMPRESS |						\
1602 	 BTRFS_INODE_ROOT_ITEM_INIT)
1603 
1604 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1605 
1606 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1607 
1608 struct btrfs_map_token {
1609 	struct extent_buffer *eb;
1610 	char *kaddr;
1611 	unsigned long offset;
1612 };
1613 
1614 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1615 				((bytes) >> (fs_info)->sectorsize_bits)
1616 
1617 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1618 					struct extent_buffer *eb)
1619 {
1620 	token->eb = eb;
1621 	token->kaddr = page_address(eb->pages[0]);
1622 	token->offset = 0;
1623 }
1624 
1625 /* some macros to generate set/get functions for the struct fields.  This
1626  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1627  * one for u8:
1628  */
1629 #define le8_to_cpu(v) (v)
1630 #define cpu_to_le8(v) (v)
1631 #define __le8 u8
1632 
1633 static inline u8 get_unaligned_le8(const void *p)
1634 {
1635        return *(u8 *)p;
1636 }
1637 
1638 static inline void put_unaligned_le8(u8 val, void *p)
1639 {
1640        *(u8 *)p = val;
1641 }
1642 
1643 #define read_eb_member(eb, ptr, type, member, result) (\
1644 	read_extent_buffer(eb, (char *)(result),			\
1645 			   ((unsigned long)(ptr)) +			\
1646 			    offsetof(type, member),			\
1647 			   sizeof(((type *)0)->member)))
1648 
1649 #define write_eb_member(eb, ptr, type, member, result) (\
1650 	write_extent_buffer(eb, (char *)(result),			\
1651 			   ((unsigned long)(ptr)) +			\
1652 			    offsetof(type, member),			\
1653 			   sizeof(((type *)0)->member)))
1654 
1655 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1656 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1657 			       const void *ptr, unsigned long off);	\
1658 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1659 			    const void *ptr, unsigned long off,		\
1660 			    u##bits val);				\
1661 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1662 			 const void *ptr, unsigned long off);		\
1663 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1664 		      unsigned long off, u##bits val);
1665 
1666 DECLARE_BTRFS_SETGET_BITS(8)
1667 DECLARE_BTRFS_SETGET_BITS(16)
1668 DECLARE_BTRFS_SETGET_BITS(32)
1669 DECLARE_BTRFS_SETGET_BITS(64)
1670 
1671 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1672 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1673 				   const type *s)			\
1674 {									\
1675 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1676 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1677 }									\
1678 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1679 				    u##bits val)			\
1680 {									\
1681 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1682 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1683 }									\
1684 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1685 					 const type *s)			\
1686 {									\
1687 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1688 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1689 }									\
1690 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1691 					  type *s, u##bits val)		\
1692 {									\
1693 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1694 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1695 }
1696 
1697 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1698 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1699 {									\
1700 	const type *p = page_address(eb->pages[0]) +			\
1701 			offset_in_page(eb->start);			\
1702 	return get_unaligned_le##bits(&p->member);			\
1703 }									\
1704 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1705 				    u##bits val)			\
1706 {									\
1707 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1708 	put_unaligned_le##bits(val, &p->member);			\
1709 }
1710 
1711 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1712 static inline u##bits btrfs_##name(const type *s)			\
1713 {									\
1714 	return get_unaligned_le##bits(&s->member);			\
1715 }									\
1716 static inline void btrfs_set_##name(type *s, u##bits val)		\
1717 {									\
1718 	put_unaligned_le##bits(val, &s->member);			\
1719 }
1720 
1721 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1722 					   struct btrfs_dev_item *s)
1723 {
1724 	static_assert(sizeof(u64) ==
1725 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1726 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1727 					    total_bytes));
1728 }
1729 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1730 						struct btrfs_dev_item *s,
1731 						u64 val)
1732 {
1733 	static_assert(sizeof(u64) ==
1734 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1735 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1736 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1737 }
1738 
1739 
1740 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1741 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1742 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1743 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1744 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1745 		   start_offset, 64);
1746 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1747 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1748 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1749 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1750 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1751 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1752 
1753 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1754 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1755 			 total_bytes, 64);
1756 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1757 			 bytes_used, 64);
1758 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1759 			 io_align, 32);
1760 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1761 			 io_width, 32);
1762 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1763 			 sector_size, 32);
1764 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1765 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1766 			 dev_group, 32);
1767 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1768 			 seek_speed, 8);
1769 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1770 			 bandwidth, 8);
1771 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1772 			 generation, 64);
1773 
1774 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1775 {
1776 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1777 }
1778 
1779 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1780 {
1781 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1782 }
1783 
1784 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1785 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1786 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1787 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1788 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1789 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1790 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1791 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1792 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1793 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1794 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1795 
1796 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1797 {
1798 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1799 }
1800 
1801 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1802 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1803 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1804 			 stripe_len, 64);
1805 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1806 			 io_align, 32);
1807 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1808 			 io_width, 32);
1809 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1810 			 sector_size, 32);
1811 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1812 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1813 			 num_stripes, 16);
1814 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1815 			 sub_stripes, 16);
1816 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1817 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1818 
1819 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1820 						   int nr)
1821 {
1822 	unsigned long offset = (unsigned long)c;
1823 	offset += offsetof(struct btrfs_chunk, stripe);
1824 	offset += nr * sizeof(struct btrfs_stripe);
1825 	return (struct btrfs_stripe *)offset;
1826 }
1827 
1828 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1829 {
1830 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1831 }
1832 
1833 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1834 					 struct btrfs_chunk *c, int nr)
1835 {
1836 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1837 }
1838 
1839 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1840 					 struct btrfs_chunk *c, int nr)
1841 {
1842 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1843 }
1844 
1845 /* struct btrfs_block_group_item */
1846 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1847 			 used, 64);
1848 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1849 			 used, 64);
1850 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1851 			struct btrfs_block_group_item, chunk_objectid, 64);
1852 
1853 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1854 		   struct btrfs_block_group_item, chunk_objectid, 64);
1855 BTRFS_SETGET_FUNCS(block_group_flags,
1856 		   struct btrfs_block_group_item, flags, 64);
1857 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1858 			struct btrfs_block_group_item, flags, 64);
1859 
1860 /* struct btrfs_free_space_info */
1861 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1862 		   extent_count, 32);
1863 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1864 
1865 /* struct btrfs_inode_ref */
1866 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1867 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1868 
1869 /* struct btrfs_inode_extref */
1870 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1871 		   parent_objectid, 64);
1872 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1873 		   name_len, 16);
1874 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1875 
1876 /* struct btrfs_inode_item */
1877 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1878 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1879 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1880 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1881 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1882 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1883 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1884 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1885 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1886 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1887 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1888 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1889 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1890 			 generation, 64);
1891 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1892 			 sequence, 64);
1893 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1894 			 transid, 64);
1895 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1896 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1897 			 nbytes, 64);
1898 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1899 			 block_group, 64);
1900 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1901 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1902 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1903 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1904 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1905 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1906 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1907 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1908 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1909 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1910 
1911 /* struct btrfs_dev_extent */
1912 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1913 		   chunk_tree, 64);
1914 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1915 		   chunk_objectid, 64);
1916 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1917 		   chunk_offset, 64);
1918 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1919 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1920 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1921 		   generation, 64);
1922 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1923 
1924 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1925 
1926 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1927 					struct btrfs_tree_block_info *item,
1928 					struct btrfs_disk_key *key)
1929 {
1930 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1931 }
1932 
1933 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1934 					    struct btrfs_tree_block_info *item,
1935 					    struct btrfs_disk_key *key)
1936 {
1937 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1938 }
1939 
1940 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1941 		   root, 64);
1942 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1943 		   objectid, 64);
1944 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1945 		   offset, 64);
1946 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1947 		   count, 32);
1948 
1949 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1950 		   count, 32);
1951 
1952 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1953 		   type, 8);
1954 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1955 		   offset, 64);
1956 
1957 static inline u32 btrfs_extent_inline_ref_size(int type)
1958 {
1959 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1960 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1961 		return sizeof(struct btrfs_extent_inline_ref);
1962 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1963 		return sizeof(struct btrfs_shared_data_ref) +
1964 		       sizeof(struct btrfs_extent_inline_ref);
1965 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1966 		return sizeof(struct btrfs_extent_data_ref) +
1967 		       offsetof(struct btrfs_extent_inline_ref, offset);
1968 	return 0;
1969 }
1970 
1971 /* struct btrfs_node */
1972 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1973 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1974 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1975 			 blockptr, 64);
1976 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1977 			 generation, 64);
1978 
1979 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1980 {
1981 	unsigned long ptr;
1982 	ptr = offsetof(struct btrfs_node, ptrs) +
1983 		sizeof(struct btrfs_key_ptr) * nr;
1984 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1985 }
1986 
1987 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1988 					   int nr, u64 val)
1989 {
1990 	unsigned long ptr;
1991 	ptr = offsetof(struct btrfs_node, ptrs) +
1992 		sizeof(struct btrfs_key_ptr) * nr;
1993 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1994 }
1995 
1996 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1997 {
1998 	unsigned long ptr;
1999 	ptr = offsetof(struct btrfs_node, ptrs) +
2000 		sizeof(struct btrfs_key_ptr) * nr;
2001 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2002 }
2003 
2004 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
2005 						 int nr, u64 val)
2006 {
2007 	unsigned long ptr;
2008 	ptr = offsetof(struct btrfs_node, ptrs) +
2009 		sizeof(struct btrfs_key_ptr) * nr;
2010 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2011 }
2012 
2013 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2014 {
2015 	return offsetof(struct btrfs_node, ptrs) +
2016 		sizeof(struct btrfs_key_ptr) * nr;
2017 }
2018 
2019 void btrfs_node_key(const struct extent_buffer *eb,
2020 		    struct btrfs_disk_key *disk_key, int nr);
2021 
2022 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
2023 				      struct btrfs_disk_key *disk_key, int nr)
2024 {
2025 	unsigned long ptr;
2026 	ptr = btrfs_node_key_ptr_offset(nr);
2027 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2028 		       struct btrfs_key_ptr, key, disk_key);
2029 }
2030 
2031 /* struct btrfs_item */
2032 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2033 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2034 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2035 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2036 
2037 static inline unsigned long btrfs_item_nr_offset(int nr)
2038 {
2039 	return offsetof(struct btrfs_leaf, items) +
2040 		sizeof(struct btrfs_item) * nr;
2041 }
2042 
2043 static inline struct btrfs_item *btrfs_item_nr(int nr)
2044 {
2045 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2046 }
2047 
2048 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
2049 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
2050 				      int slot)					\
2051 {										\
2052 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
2053 }										\
2054 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
2055 					   int slot, u32 val)			\
2056 {										\
2057 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
2058 }										\
2059 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
2060 					    int slot)				\
2061 {										\
2062 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2063 	return btrfs_token_raw_item_##member(token, item);			\
2064 }										\
2065 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2066 						 int slot, u32 val)		\
2067 {										\
2068 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2069 	btrfs_set_token_raw_item_##member(token, item, val);			\
2070 }
2071 
2072 BTRFS_ITEM_SETGET_FUNCS(offset)
2073 BTRFS_ITEM_SETGET_FUNCS(size);
2074 
2075 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2076 {
2077 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2078 }
2079 
2080 static inline void btrfs_item_key(const struct extent_buffer *eb,
2081 			   struct btrfs_disk_key *disk_key, int nr)
2082 {
2083 	struct btrfs_item *item = btrfs_item_nr(nr);
2084 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2085 }
2086 
2087 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2088 			       struct btrfs_disk_key *disk_key, int nr)
2089 {
2090 	struct btrfs_item *item = btrfs_item_nr(nr);
2091 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2092 }
2093 
2094 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2095 
2096 /*
2097  * struct btrfs_root_ref
2098  */
2099 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2100 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2101 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2102 
2103 /* struct btrfs_dir_item */
2104 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2105 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2106 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2107 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2108 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2109 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2110 			 data_len, 16);
2111 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2112 			 name_len, 16);
2113 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2114 			 transid, 64);
2115 
2116 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2117 				      const struct btrfs_dir_item *item,
2118 				      struct btrfs_disk_key *key)
2119 {
2120 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2121 }
2122 
2123 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2124 					  struct btrfs_dir_item *item,
2125 					  const struct btrfs_disk_key *key)
2126 {
2127 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2128 }
2129 
2130 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2131 		   num_entries, 64);
2132 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2133 		   num_bitmaps, 64);
2134 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2135 		   generation, 64);
2136 
2137 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2138 					const struct btrfs_free_space_header *h,
2139 					struct btrfs_disk_key *key)
2140 {
2141 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2142 }
2143 
2144 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2145 					    struct btrfs_free_space_header *h,
2146 					    const struct btrfs_disk_key *key)
2147 {
2148 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2149 }
2150 
2151 /* struct btrfs_disk_key */
2152 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2153 			 objectid, 64);
2154 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2155 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2156 
2157 #ifdef __LITTLE_ENDIAN
2158 
2159 /*
2160  * Optimized helpers for little-endian architectures where CPU and on-disk
2161  * structures have the same endianness and we can skip conversions.
2162  */
2163 
2164 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2165 					 const struct btrfs_disk_key *disk_key)
2166 {
2167 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2168 }
2169 
2170 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2171 					 const struct btrfs_key *cpu_key)
2172 {
2173 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2174 }
2175 
2176 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2177 					 struct btrfs_key *cpu_key, int nr)
2178 {
2179 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2180 
2181 	btrfs_node_key(eb, disk_key, nr);
2182 }
2183 
2184 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2185 					 struct btrfs_key *cpu_key, int nr)
2186 {
2187 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2188 
2189 	btrfs_item_key(eb, disk_key, nr);
2190 }
2191 
2192 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2193 					     const struct btrfs_dir_item *item,
2194 					     struct btrfs_key *cpu_key)
2195 {
2196 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2197 
2198 	btrfs_dir_item_key(eb, item, disk_key);
2199 }
2200 
2201 #else
2202 
2203 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2204 					 const struct btrfs_disk_key *disk)
2205 {
2206 	cpu->offset = le64_to_cpu(disk->offset);
2207 	cpu->type = disk->type;
2208 	cpu->objectid = le64_to_cpu(disk->objectid);
2209 }
2210 
2211 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2212 					 const struct btrfs_key *cpu)
2213 {
2214 	disk->offset = cpu_to_le64(cpu->offset);
2215 	disk->type = cpu->type;
2216 	disk->objectid = cpu_to_le64(cpu->objectid);
2217 }
2218 
2219 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2220 					 struct btrfs_key *key, int nr)
2221 {
2222 	struct btrfs_disk_key disk_key;
2223 	btrfs_node_key(eb, &disk_key, nr);
2224 	btrfs_disk_key_to_cpu(key, &disk_key);
2225 }
2226 
2227 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2228 					 struct btrfs_key *key, int nr)
2229 {
2230 	struct btrfs_disk_key disk_key;
2231 	btrfs_item_key(eb, &disk_key, nr);
2232 	btrfs_disk_key_to_cpu(key, &disk_key);
2233 }
2234 
2235 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2236 					     const struct btrfs_dir_item *item,
2237 					     struct btrfs_key *key)
2238 {
2239 	struct btrfs_disk_key disk_key;
2240 	btrfs_dir_item_key(eb, item, &disk_key);
2241 	btrfs_disk_key_to_cpu(key, &disk_key);
2242 }
2243 
2244 #endif
2245 
2246 /* struct btrfs_header */
2247 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2248 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2249 			  generation, 64);
2250 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2251 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2252 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2253 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2254 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2255 			 generation, 64);
2256 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2257 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2258 			 nritems, 32);
2259 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2260 
2261 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2262 {
2263 	return (btrfs_header_flags(eb) & flag) == flag;
2264 }
2265 
2266 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2267 {
2268 	u64 flags = btrfs_header_flags(eb);
2269 	btrfs_set_header_flags(eb, flags | flag);
2270 }
2271 
2272 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2273 {
2274 	u64 flags = btrfs_header_flags(eb);
2275 	btrfs_set_header_flags(eb, flags & ~flag);
2276 }
2277 
2278 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2279 {
2280 	u64 flags = btrfs_header_flags(eb);
2281 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2282 }
2283 
2284 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2285 						int rev)
2286 {
2287 	u64 flags = btrfs_header_flags(eb);
2288 	flags &= ~BTRFS_BACKREF_REV_MASK;
2289 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2290 	btrfs_set_header_flags(eb, flags);
2291 }
2292 
2293 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2294 {
2295 	return btrfs_header_level(eb) == 0;
2296 }
2297 
2298 /* struct btrfs_root_item */
2299 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2300 		   generation, 64);
2301 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2302 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2303 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2304 
2305 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2306 			 generation, 64);
2307 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2308 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2309 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2310 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2311 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2312 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2313 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2314 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2315 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2316 			 last_snapshot, 64);
2317 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2318 			 generation_v2, 64);
2319 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2320 			 ctransid, 64);
2321 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2322 			 otransid, 64);
2323 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2324 			 stransid, 64);
2325 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2326 			 rtransid, 64);
2327 
2328 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2329 {
2330 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2331 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2332 }
2333 
2334 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2335 {
2336 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2337 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2338 }
2339 
2340 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2341 {
2342 	return root->root_key.objectid;
2343 }
2344 
2345 /* struct btrfs_root_backup */
2346 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2347 		   tree_root, 64);
2348 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2349 		   tree_root_gen, 64);
2350 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2351 		   tree_root_level, 8);
2352 
2353 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2354 		   chunk_root, 64);
2355 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2356 		   chunk_root_gen, 64);
2357 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2358 		   chunk_root_level, 8);
2359 
2360 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2361 		   extent_root, 64);
2362 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2363 		   extent_root_gen, 64);
2364 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2365 		   extent_root_level, 8);
2366 
2367 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2368 		   fs_root, 64);
2369 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2370 		   fs_root_gen, 64);
2371 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2372 		   fs_root_level, 8);
2373 
2374 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2375 		   dev_root, 64);
2376 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2377 		   dev_root_gen, 64);
2378 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2379 		   dev_root_level, 8);
2380 
2381 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2382 		   csum_root, 64);
2383 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2384 		   csum_root_gen, 64);
2385 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2386 		   csum_root_level, 8);
2387 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2388 		   total_bytes, 64);
2389 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2390 		   bytes_used, 64);
2391 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2392 		   num_devices, 64);
2393 
2394 /*
2395  * For extent tree v2 we overload the extent root with the block group root, as
2396  * we will have multiple extent roots.
2397  */
2398 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup,
2399 			 extent_root, 64);
2400 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup,
2401 			 extent_root_gen, 64);
2402 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level,
2403 			 struct btrfs_root_backup, extent_root_level, 8);
2404 
2405 /* struct btrfs_balance_item */
2406 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2407 
2408 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2409 				      const struct btrfs_balance_item *bi,
2410 				      struct btrfs_disk_balance_args *ba)
2411 {
2412 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2413 }
2414 
2415 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2416 				  struct btrfs_balance_item *bi,
2417 				  const struct btrfs_disk_balance_args *ba)
2418 {
2419 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2420 }
2421 
2422 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2423 				      const struct btrfs_balance_item *bi,
2424 				      struct btrfs_disk_balance_args *ba)
2425 {
2426 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2427 }
2428 
2429 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2430 				  struct btrfs_balance_item *bi,
2431 				  const struct btrfs_disk_balance_args *ba)
2432 {
2433 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2434 }
2435 
2436 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2437 				     const struct btrfs_balance_item *bi,
2438 				     struct btrfs_disk_balance_args *ba)
2439 {
2440 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2441 }
2442 
2443 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2444 				 struct btrfs_balance_item *bi,
2445 				 const struct btrfs_disk_balance_args *ba)
2446 {
2447 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2448 }
2449 
2450 static inline void
2451 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2452 			       const struct btrfs_disk_balance_args *disk)
2453 {
2454 	memset(cpu, 0, sizeof(*cpu));
2455 
2456 	cpu->profiles = le64_to_cpu(disk->profiles);
2457 	cpu->usage = le64_to_cpu(disk->usage);
2458 	cpu->devid = le64_to_cpu(disk->devid);
2459 	cpu->pstart = le64_to_cpu(disk->pstart);
2460 	cpu->pend = le64_to_cpu(disk->pend);
2461 	cpu->vstart = le64_to_cpu(disk->vstart);
2462 	cpu->vend = le64_to_cpu(disk->vend);
2463 	cpu->target = le64_to_cpu(disk->target);
2464 	cpu->flags = le64_to_cpu(disk->flags);
2465 	cpu->limit = le64_to_cpu(disk->limit);
2466 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2467 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2468 }
2469 
2470 static inline void
2471 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2472 			       const struct btrfs_balance_args *cpu)
2473 {
2474 	memset(disk, 0, sizeof(*disk));
2475 
2476 	disk->profiles = cpu_to_le64(cpu->profiles);
2477 	disk->usage = cpu_to_le64(cpu->usage);
2478 	disk->devid = cpu_to_le64(cpu->devid);
2479 	disk->pstart = cpu_to_le64(cpu->pstart);
2480 	disk->pend = cpu_to_le64(cpu->pend);
2481 	disk->vstart = cpu_to_le64(cpu->vstart);
2482 	disk->vend = cpu_to_le64(cpu->vend);
2483 	disk->target = cpu_to_le64(cpu->target);
2484 	disk->flags = cpu_to_le64(cpu->flags);
2485 	disk->limit = cpu_to_le64(cpu->limit);
2486 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2487 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2488 }
2489 
2490 /* struct btrfs_super_block */
2491 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2492 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2493 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2494 			 generation, 64);
2495 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2496 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2497 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2498 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2499 			 struct btrfs_super_block, chunk_root_generation, 64);
2500 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2501 			 root_level, 8);
2502 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2503 			 chunk_root, 64);
2504 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2505 			 chunk_root_level, 8);
2506 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2507 			 log_root, 64);
2508 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2509 			 log_root_level, 8);
2510 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2511 			 total_bytes, 64);
2512 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2513 			 bytes_used, 64);
2514 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2515 			 sectorsize, 32);
2516 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2517 			 nodesize, 32);
2518 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2519 			 stripesize, 32);
2520 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2521 			 root_dir_objectid, 64);
2522 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2523 			 num_devices, 64);
2524 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2525 			 compat_flags, 64);
2526 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2527 			 compat_ro_flags, 64);
2528 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2529 			 incompat_flags, 64);
2530 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2531 			 csum_type, 16);
2532 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2533 			 cache_generation, 64);
2534 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2535 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2536 			 uuid_tree_generation, 64);
2537 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block,
2538 			 block_group_root, 64);
2539 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation,
2540 			 struct btrfs_super_block,
2541 			 block_group_root_generation, 64);
2542 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block,
2543 			 block_group_root_level, 8);
2544 
2545 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2546 const char *btrfs_super_csum_name(u16 csum_type);
2547 const char *btrfs_super_csum_driver(u16 csum_type);
2548 size_t __attribute_const__ btrfs_get_num_csums(void);
2549 
2550 
2551 /*
2552  * The leaf data grows from end-to-front in the node.
2553  * this returns the address of the start of the last item,
2554  * which is the stop of the leaf data stack
2555  */
2556 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2557 {
2558 	u32 nr = btrfs_header_nritems(leaf);
2559 
2560 	if (nr == 0)
2561 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2562 	return btrfs_item_offset(leaf, nr - 1);
2563 }
2564 
2565 /* struct btrfs_file_extent_item */
2566 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2567 			 type, 8);
2568 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2569 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2570 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2571 			 struct btrfs_file_extent_item, offset, 64);
2572 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2573 			 struct btrfs_file_extent_item, generation, 64);
2574 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2575 			 struct btrfs_file_extent_item, num_bytes, 64);
2576 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2577 			 struct btrfs_file_extent_item, ram_bytes, 64);
2578 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2579 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2580 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2581 			 struct btrfs_file_extent_item, compression, 8);
2582 
2583 static inline unsigned long
2584 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2585 {
2586 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2587 }
2588 
2589 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2590 {
2591 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2592 }
2593 
2594 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2595 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2596 		   disk_bytenr, 64);
2597 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2598 		   generation, 64);
2599 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2600 		   disk_num_bytes, 64);
2601 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2602 		  offset, 64);
2603 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2604 		   num_bytes, 64);
2605 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2606 		   ram_bytes, 64);
2607 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2608 		   compression, 8);
2609 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2610 		   encryption, 8);
2611 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2612 		   other_encoding, 16);
2613 
2614 /*
2615  * this returns the number of bytes used by the item on disk, minus the
2616  * size of any extent headers.  If a file is compressed on disk, this is
2617  * the compressed size
2618  */
2619 static inline u32 btrfs_file_extent_inline_item_len(
2620 						const struct extent_buffer *eb,
2621 						int nr)
2622 {
2623 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2624 }
2625 
2626 /* btrfs_qgroup_status_item */
2627 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2628 		   generation, 64);
2629 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2630 		   version, 64);
2631 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2632 		   flags, 64);
2633 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2634 		   rescan, 64);
2635 
2636 /* btrfs_qgroup_info_item */
2637 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2638 		   generation, 64);
2639 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2640 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2641 		   rfer_cmpr, 64);
2642 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2643 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2644 		   excl_cmpr, 64);
2645 
2646 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2647 			 struct btrfs_qgroup_info_item, generation, 64);
2648 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2649 			 rfer, 64);
2650 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2651 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2652 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2653 			 excl, 64);
2654 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2655 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2656 
2657 /* btrfs_qgroup_limit_item */
2658 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2659 		   flags, 64);
2660 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2661 		   max_rfer, 64);
2662 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2663 		   max_excl, 64);
2664 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2665 		   rsv_rfer, 64);
2666 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2667 		   rsv_excl, 64);
2668 
2669 /* btrfs_dev_replace_item */
2670 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2671 		   struct btrfs_dev_replace_item, src_devid, 64);
2672 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2673 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2674 		   64);
2675 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2676 		   replace_state, 64);
2677 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2678 		   time_started, 64);
2679 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2680 		   time_stopped, 64);
2681 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2682 		   num_write_errors, 64);
2683 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2684 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2685 		   64);
2686 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2687 		   cursor_left, 64);
2688 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2689 		   cursor_right, 64);
2690 
2691 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2692 			 struct btrfs_dev_replace_item, src_devid, 64);
2693 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2694 			 struct btrfs_dev_replace_item,
2695 			 cont_reading_from_srcdev_mode, 64);
2696 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2697 			 struct btrfs_dev_replace_item, replace_state, 64);
2698 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2699 			 struct btrfs_dev_replace_item, time_started, 64);
2700 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2701 			 struct btrfs_dev_replace_item, time_stopped, 64);
2702 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2703 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2704 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2705 			 struct btrfs_dev_replace_item,
2706 			 num_uncorrectable_read_errors, 64);
2707 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2708 			 struct btrfs_dev_replace_item, cursor_left, 64);
2709 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2710 			 struct btrfs_dev_replace_item, cursor_right, 64);
2711 
2712 /* helper function to cast into the data area of the leaf. */
2713 #define btrfs_item_ptr(leaf, slot, type) \
2714 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2715 	btrfs_item_offset(leaf, slot)))
2716 
2717 #define btrfs_item_ptr_offset(leaf, slot) \
2718 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2719 	btrfs_item_offset(leaf, slot)))
2720 
2721 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2722 {
2723 	return crc32c(crc, address, length);
2724 }
2725 
2726 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2727 {
2728 	put_unaligned_le32(~crc, result);
2729 }
2730 
2731 static inline u64 btrfs_name_hash(const char *name, int len)
2732 {
2733        return crc32c((u32)~1, name, len);
2734 }
2735 
2736 /*
2737  * Figure the key offset of an extended inode ref
2738  */
2739 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2740                                    int len)
2741 {
2742        return (u64) crc32c(parent_objectid, name, len);
2743 }
2744 
2745 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2746 {
2747 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2748 }
2749 
2750 /* extent-tree.c */
2751 
2752 enum btrfs_inline_ref_type {
2753 	BTRFS_REF_TYPE_INVALID,
2754 	BTRFS_REF_TYPE_BLOCK,
2755 	BTRFS_REF_TYPE_DATA,
2756 	BTRFS_REF_TYPE_ANY,
2757 };
2758 
2759 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2760 				     struct btrfs_extent_inline_ref *iref,
2761 				     enum btrfs_inline_ref_type is_data);
2762 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2763 
2764 static inline u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums,
2765 				 u64 offset)
2766 {
2767 	u64 offset_in_sectors = offset >> fs_info->sectorsize_bits;
2768 
2769 	return csums + offset_in_sectors * fs_info->csum_size;
2770 }
2771 
2772 /*
2773  * Take the number of bytes to be checksummed and figure out how many leaves
2774  * it would require to store the csums for that many bytes.
2775  */
2776 static inline u64 btrfs_csum_bytes_to_leaves(
2777 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2778 {
2779 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2780 
2781 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2782 }
2783 
2784 /*
2785  * Use this if we would be adding new items, as we could split nodes as we cow
2786  * down the tree.
2787  */
2788 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2789 						  unsigned num_items)
2790 {
2791 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2792 }
2793 
2794 /*
2795  * Doing a truncate or a modification won't result in new nodes or leaves, just
2796  * what we need for COW.
2797  */
2798 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2799 						 unsigned num_items)
2800 {
2801 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2802 }
2803 
2804 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2805 			      u64 start, u64 num_bytes);
2806 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2807 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2808 			   unsigned long count);
2809 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2810 				  struct btrfs_delayed_ref_root *delayed_refs,
2811 				  struct btrfs_delayed_ref_head *head);
2812 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2813 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2814 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2815 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2816 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2817 		     int reserved);
2818 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2819 				    u64 bytenr, u64 num_bytes);
2820 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2821 int btrfs_cross_ref_exist(struct btrfs_root *root,
2822 			  u64 objectid, u64 offset, u64 bytenr, bool strict,
2823 			  struct btrfs_path *path);
2824 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2825 					     struct btrfs_root *root,
2826 					     u64 parent, u64 root_objectid,
2827 					     const struct btrfs_disk_key *key,
2828 					     int level, u64 hint,
2829 					     u64 empty_size,
2830 					     enum btrfs_lock_nesting nest);
2831 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2832 			   u64 root_id,
2833 			   struct extent_buffer *buf,
2834 			   u64 parent, int last_ref);
2835 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2836 				     struct btrfs_root *root, u64 owner,
2837 				     u64 offset, u64 ram_bytes,
2838 				     struct btrfs_key *ins);
2839 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2840 				   u64 root_objectid, u64 owner, u64 offset,
2841 				   struct btrfs_key *ins);
2842 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2843 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2844 			 struct btrfs_key *ins, int is_data, int delalloc);
2845 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2846 		  struct extent_buffer *buf, int full_backref);
2847 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2848 		  struct extent_buffer *buf, int full_backref);
2849 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2850 				struct extent_buffer *eb, u64 flags, int level);
2851 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2852 
2853 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2854 			       u64 start, u64 len, int delalloc);
2855 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2856 			      u64 len);
2857 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2858 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2859 			 struct btrfs_ref *generic_ref);
2860 
2861 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2862 
2863 /*
2864  * Different levels for to flush space when doing space reservations.
2865  *
2866  * The higher the level, the more methods we try to reclaim space.
2867  */
2868 enum btrfs_reserve_flush_enum {
2869 	/* If we are in the transaction, we can't flush anything.*/
2870 	BTRFS_RESERVE_NO_FLUSH,
2871 
2872 	/*
2873 	 * Flush space by:
2874 	 * - Running delayed inode items
2875 	 * - Allocating a new chunk
2876 	 */
2877 	BTRFS_RESERVE_FLUSH_LIMIT,
2878 
2879 	/*
2880 	 * Flush space by:
2881 	 * - Running delayed inode items
2882 	 * - Running delayed refs
2883 	 * - Running delalloc and waiting for ordered extents
2884 	 * - Allocating a new chunk
2885 	 */
2886 	BTRFS_RESERVE_FLUSH_EVICT,
2887 
2888 	/*
2889 	 * Flush space by above mentioned methods and by:
2890 	 * - Running delayed iputs
2891 	 * - Committing transaction
2892 	 *
2893 	 * Can be interrupted by a fatal signal.
2894 	 */
2895 	BTRFS_RESERVE_FLUSH_DATA,
2896 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2897 	BTRFS_RESERVE_FLUSH_ALL,
2898 
2899 	/*
2900 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2901 	 * global rsv.
2902 	 *
2903 	 * Can be interrupted by a fatal signal.
2904 	 */
2905 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2906 };
2907 
2908 enum btrfs_flush_state {
2909 	FLUSH_DELAYED_ITEMS_NR	=	1,
2910 	FLUSH_DELAYED_ITEMS	=	2,
2911 	FLUSH_DELAYED_REFS_NR	=	3,
2912 	FLUSH_DELAYED_REFS	=	4,
2913 	FLUSH_DELALLOC		=	5,
2914 	FLUSH_DELALLOC_WAIT	=	6,
2915 	FLUSH_DELALLOC_FULL	=	7,
2916 	ALLOC_CHUNK		=	8,
2917 	ALLOC_CHUNK_FORCE	=	9,
2918 	RUN_DELAYED_IPUTS	=	10,
2919 	COMMIT_TRANS		=	11,
2920 };
2921 
2922 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2923 				     struct btrfs_block_rsv *rsv,
2924 				     int nitems, bool use_global_rsv);
2925 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2926 				      struct btrfs_block_rsv *rsv);
2927 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2928 
2929 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2930 				    u64 disk_num_bytes, bool noflush);
2931 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2932 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2933 				   u64 start, u64 end);
2934 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2935 			 u64 num_bytes, u64 *actual_bytes);
2936 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2937 
2938 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2939 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2940 					 struct btrfs_fs_info *fs_info);
2941 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2942 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2943 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2944 
2945 /* ctree.c */
2946 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2947 		     int *slot);
2948 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2949 int btrfs_previous_item(struct btrfs_root *root,
2950 			struct btrfs_path *path, u64 min_objectid,
2951 			int type);
2952 int btrfs_previous_extent_item(struct btrfs_root *root,
2953 			struct btrfs_path *path, u64 min_objectid);
2954 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2955 			     struct btrfs_path *path,
2956 			     const struct btrfs_key *new_key);
2957 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2958 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2959 			struct btrfs_key *key, int lowest_level,
2960 			u64 min_trans);
2961 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2962 			 struct btrfs_path *path,
2963 			 u64 min_trans);
2964 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2965 					   int slot);
2966 
2967 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2968 		    struct btrfs_root *root, struct extent_buffer *buf,
2969 		    struct extent_buffer *parent, int parent_slot,
2970 		    struct extent_buffer **cow_ret,
2971 		    enum btrfs_lock_nesting nest);
2972 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2973 		      struct btrfs_root *root,
2974 		      struct extent_buffer *buf,
2975 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2976 int btrfs_block_can_be_shared(struct btrfs_root *root,
2977 			      struct extent_buffer *buf);
2978 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2979 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2980 int btrfs_split_item(struct btrfs_trans_handle *trans,
2981 		     struct btrfs_root *root,
2982 		     struct btrfs_path *path,
2983 		     const struct btrfs_key *new_key,
2984 		     unsigned long split_offset);
2985 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2986 			 struct btrfs_root *root,
2987 			 struct btrfs_path *path,
2988 			 const struct btrfs_key *new_key);
2989 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2990 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2991 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2992 		      const struct btrfs_key *key, struct btrfs_path *p,
2993 		      int ins_len, int cow);
2994 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2995 			  struct btrfs_path *p, u64 time_seq);
2996 int btrfs_search_slot_for_read(struct btrfs_root *root,
2997 			       const struct btrfs_key *key,
2998 			       struct btrfs_path *p, int find_higher,
2999 			       int return_any);
3000 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3001 		       struct btrfs_root *root, struct extent_buffer *parent,
3002 		       int start_slot, u64 *last_ret,
3003 		       struct btrfs_key *progress);
3004 void btrfs_release_path(struct btrfs_path *p);
3005 struct btrfs_path *btrfs_alloc_path(void);
3006 void btrfs_free_path(struct btrfs_path *p);
3007 
3008 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3009 		   struct btrfs_path *path, int slot, int nr);
3010 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3011 				 struct btrfs_root *root,
3012 				 struct btrfs_path *path)
3013 {
3014 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
3015 }
3016 
3017 /*
3018  * Describes a batch of items to insert in a btree. This is used by
3019  * btrfs_insert_empty_items().
3020  */
3021 struct btrfs_item_batch {
3022 	/*
3023 	 * Pointer to an array containing the keys of the items to insert (in
3024 	 * sorted order).
3025 	 */
3026 	const struct btrfs_key *keys;
3027 	/* Pointer to an array containing the data size for each item to insert. */
3028 	const u32 *data_sizes;
3029 	/*
3030 	 * The sum of data sizes for all items. The caller can compute this while
3031 	 * setting up the data_sizes array, so it ends up being more efficient
3032 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3033 	 * doing it, as it would avoid an extra loop over a potentially large
3034 	 * array, and in the case of setup_item_for_insert(), we would be doing
3035 	 * it while holding a write lock on a leaf and often on upper level nodes
3036 	 * too, unnecessarily increasing the size of a critical section.
3037 	 */
3038 	u32 total_data_size;
3039 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
3040 	int nr;
3041 };
3042 
3043 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3044 				 struct btrfs_path *path,
3045 				 const struct btrfs_key *key,
3046 				 u32 data_size);
3047 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3048 		      const struct btrfs_key *key, void *data, u32 data_size);
3049 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3050 			     struct btrfs_root *root,
3051 			     struct btrfs_path *path,
3052 			     const struct btrfs_item_batch *batch);
3053 
3054 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3055 					  struct btrfs_root *root,
3056 					  struct btrfs_path *path,
3057 					  const struct btrfs_key *key,
3058 					  u32 data_size)
3059 {
3060 	struct btrfs_item_batch batch;
3061 
3062 	batch.keys = key;
3063 	batch.data_sizes = &data_size;
3064 	batch.total_data_size = data_size;
3065 	batch.nr = 1;
3066 
3067 	return btrfs_insert_empty_items(trans, root, path, &batch);
3068 }
3069 
3070 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3071 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3072 			u64 time_seq);
3073 
3074 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3075 			   struct btrfs_path *path);
3076 
3077 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3078 			      struct btrfs_path *path);
3079 
3080 /*
3081  * Search in @root for a given @key, and store the slot found in @found_key.
3082  *
3083  * @root:	The root node of the tree.
3084  * @key:	The key we are looking for.
3085  * @found_key:	Will hold the found item.
3086  * @path:	Holds the current slot/leaf.
3087  * @iter_ret:	Contains the value returned from btrfs_search_slot or
3088  * 		btrfs_get_next_valid_item, whichever was executed last.
3089  *
3090  * The @iter_ret is an output variable that will contain the return value of
3091  * btrfs_search_slot, if it encountered an error, or the value returned from
3092  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3093  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3094  *
3095  * It's recommended to use a separate variable for iter_ret and then use it to
3096  * set the function return value so there's no confusion of the 0/1/errno
3097  * values stemming from btrfs_search_slot.
3098  */
3099 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
3100 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
3101 		(iter_ret) >= 0 &&						\
3102 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3103 		(path)->slots[0]++						\
3104 	)
3105 
3106 static inline int btrfs_next_old_item(struct btrfs_root *root,
3107 				      struct btrfs_path *p, u64 time_seq)
3108 {
3109 	++p->slots[0];
3110 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3111 		return btrfs_next_old_leaf(root, p, time_seq);
3112 	return 0;
3113 }
3114 
3115 /*
3116  * Search the tree again to find a leaf with greater keys.
3117  *
3118  * Returns 0 if it found something or 1 if there are no greater leaves.
3119  * Returns < 0 on error.
3120  */
3121 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3122 {
3123 	return btrfs_next_old_leaf(root, path, 0);
3124 }
3125 
3126 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3127 {
3128 	return btrfs_next_old_item(root, p, 0);
3129 }
3130 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3131 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3132 				     int for_reloc);
3133 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3134 			struct btrfs_root *root,
3135 			struct extent_buffer *node,
3136 			struct extent_buffer *parent);
3137 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3138 {
3139 	/*
3140 	 * Do it this way so we only ever do one test_bit in the normal case.
3141 	 */
3142 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3143 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3144 			return 2;
3145 		return 1;
3146 	}
3147 	return 0;
3148 }
3149 
3150 /*
3151  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3152  * anything except sleeping. This function is used to check the status of
3153  * the fs.
3154  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3155  * since setting and checking for SB_RDONLY in the superblock's flags is not
3156  * atomic.
3157  */
3158 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3159 {
3160 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3161 		btrfs_fs_closing(fs_info);
3162 }
3163 
3164 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3165 {
3166 	sb->s_flags |= SB_RDONLY;
3167 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3168 }
3169 
3170 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3171 {
3172 	sb->s_flags &= ~SB_RDONLY;
3173 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3174 }
3175 
3176 /* root-item.c */
3177 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3178 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3179 		       int name_len);
3180 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3181 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3182 		       int name_len);
3183 int btrfs_del_root(struct btrfs_trans_handle *trans,
3184 		   const struct btrfs_key *key);
3185 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3186 		      const struct btrfs_key *key,
3187 		      struct btrfs_root_item *item);
3188 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3189 				   struct btrfs_root *root,
3190 				   struct btrfs_key *key,
3191 				   struct btrfs_root_item *item);
3192 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3193 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3194 		    struct btrfs_key *root_key);
3195 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3196 void btrfs_set_root_node(struct btrfs_root_item *item,
3197 			 struct extent_buffer *node);
3198 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3199 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3200 			     struct btrfs_root *root);
3201 
3202 /* uuid-tree.c */
3203 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3204 			u64 subid);
3205 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3206 			u64 subid);
3207 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3208 
3209 /* dir-item.c */
3210 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3211 			  const char *name, int name_len);
3212 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3213 			  int name_len, struct btrfs_inode *dir,
3214 			  struct btrfs_key *location, u8 type, u64 index);
3215 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3216 					     struct btrfs_root *root,
3217 					     struct btrfs_path *path, u64 dir,
3218 					     const char *name, int name_len,
3219 					     int mod);
3220 struct btrfs_dir_item *
3221 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3222 			    struct btrfs_root *root,
3223 			    struct btrfs_path *path, u64 dir,
3224 			    u64 index, const char *name, int name_len,
3225 			    int mod);
3226 struct btrfs_dir_item *
3227 btrfs_search_dir_index_item(struct btrfs_root *root,
3228 			    struct btrfs_path *path, u64 dirid,
3229 			    const char *name, int name_len);
3230 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3231 			      struct btrfs_root *root,
3232 			      struct btrfs_path *path,
3233 			      struct btrfs_dir_item *di);
3234 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3235 			    struct btrfs_root *root,
3236 			    struct btrfs_path *path, u64 objectid,
3237 			    const char *name, u16 name_len,
3238 			    const void *data, u16 data_len);
3239 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3240 					  struct btrfs_root *root,
3241 					  struct btrfs_path *path, u64 dir,
3242 					  const char *name, u16 name_len,
3243 					  int mod);
3244 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3245 						 struct btrfs_path *path,
3246 						 const char *name,
3247 						 int name_len);
3248 
3249 /* orphan.c */
3250 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3251 			     struct btrfs_root *root, u64 offset);
3252 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3253 			  struct btrfs_root *root, u64 offset);
3254 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3255 
3256 /* file-item.c */
3257 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3258 		    struct btrfs_root *root, u64 bytenr, u64 len);
3259 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3260 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3261 			     struct btrfs_root *root,
3262 			     u64 objectid, u64 pos,
3263 			     u64 disk_offset, u64 disk_num_bytes,
3264 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3265 			     u8 compression, u8 encryption, u16 other_encoding);
3266 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3267 			     struct btrfs_root *root,
3268 			     struct btrfs_path *path, u64 objectid,
3269 			     u64 bytenr, int mod);
3270 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3271 			   struct btrfs_root *root,
3272 			   struct btrfs_ordered_sum *sums);
3273 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3274 				u64 offset, bool one_ordered);
3275 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3276 			     struct list_head *list, int search_commit);
3277 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3278 				     const struct btrfs_path *path,
3279 				     struct btrfs_file_extent_item *fi,
3280 				     const bool new_inline,
3281 				     struct extent_map *em);
3282 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3283 					u64 len);
3284 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3285 				      u64 len);
3286 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3287 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3288 
3289 /* inode.c */
3290 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num);
3291 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
3292 			int mirror_num, enum btrfs_compression_type compress_type);
3293 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3294 			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
3295 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3296 			  u32 bio_offset, struct page *page, u32 pgoff);
3297 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3298 				    u32 bio_offset, struct page *page,
3299 				    u64 start, u64 end);
3300 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3301 			  u32 bio_offset, struct page *page, u32 pgoff);
3302 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3303 					   u64 start, u64 len);
3304 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3305 			      u64 *orig_start, u64 *orig_block_len,
3306 			      u64 *ram_bytes, bool strict);
3307 
3308 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3309 				struct btrfs_inode *inode);
3310 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3311 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3312 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3313 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3314 		       const char *name, int name_len);
3315 int btrfs_add_link(struct btrfs_trans_handle *trans,
3316 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3317 		   const char *name, int name_len, int add_backref, u64 index);
3318 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3319 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3320 			 int front);
3321 
3322 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3323 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3324 			       bool in_reclaim_context);
3325 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3326 			      unsigned int extra_bits,
3327 			      struct extent_state **cached_state);
3328 struct btrfs_new_inode_args {
3329 	/* Input */
3330 	struct inode *dir;
3331 	struct dentry *dentry;
3332 	struct inode *inode;
3333 	bool orphan;
3334 	bool subvol;
3335 
3336 	/*
3337 	 * Output from btrfs_new_inode_prepare(), input to
3338 	 * btrfs_create_new_inode().
3339 	 */
3340 	struct posix_acl *default_acl;
3341 	struct posix_acl *acl;
3342 };
3343 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3344 			    unsigned int *trans_num_items);
3345 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3346 			   struct btrfs_new_inode_args *args);
3347 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3348 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3349 				     struct inode *dir);
3350  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3351 			        u32 bits);
3352 void btrfs_clear_delalloc_extent(struct inode *inode,
3353 				 struct extent_state *state, u32 bits);
3354 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3355 				 struct extent_state *other);
3356 void btrfs_split_delalloc_extent(struct inode *inode,
3357 				 struct extent_state *orig, u64 split);
3358 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3359 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3360 void btrfs_evict_inode(struct inode *inode);
3361 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3362 struct inode *btrfs_alloc_inode(struct super_block *sb);
3363 void btrfs_destroy_inode(struct inode *inode);
3364 void btrfs_free_inode(struct inode *inode);
3365 int btrfs_drop_inode(struct inode *inode);
3366 int __init btrfs_init_cachep(void);
3367 void __cold btrfs_destroy_cachep(void);
3368 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3369 			      struct btrfs_root *root, struct btrfs_path *path);
3370 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3371 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3372 				    struct page *page, size_t pg_offset,
3373 				    u64 start, u64 end);
3374 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3375 		       struct btrfs_root *root, struct btrfs_inode *inode);
3376 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3377 				struct btrfs_root *root, struct btrfs_inode *inode);
3378 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3379 		struct btrfs_inode *inode);
3380 int btrfs_orphan_cleanup(struct btrfs_root *root);
3381 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3382 void btrfs_add_delayed_iput(struct inode *inode);
3383 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3384 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3385 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3386 			      u64 start, u64 num_bytes, u64 min_size,
3387 			      loff_t actual_len, u64 *alloc_hint);
3388 int btrfs_prealloc_file_range_trans(struct inode *inode,
3389 				    struct btrfs_trans_handle *trans, int mode,
3390 				    u64 start, u64 num_bytes, u64 min_size,
3391 				    loff_t actual_len, u64 *alloc_hint);
3392 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3393 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3394 		struct writeback_control *wbc);
3395 int btrfs_writepage_cow_fixup(struct page *page);
3396 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3397 					  struct page *page, u64 start,
3398 					  u64 end, bool uptodate);
3399 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
3400 					     int compress_type);
3401 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
3402 					  u64 file_offset, u64 disk_bytenr,
3403 					  u64 disk_io_size,
3404 					  struct page **pages);
3405 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3406 			   struct btrfs_ioctl_encoded_io_args *encoded);
3407 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3408 			     const struct btrfs_ioctl_encoded_io_args *encoded);
3409 
3410 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before);
3411 
3412 extern const struct dentry_operations btrfs_dentry_operations;
3413 
3414 /* Inode locking type flags, by default the exclusive lock is taken */
3415 #define BTRFS_ILOCK_SHARED	(1U << 0)
3416 #define BTRFS_ILOCK_TRY 	(1U << 1)
3417 #define BTRFS_ILOCK_MMAP	(1U << 2)
3418 
3419 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3420 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3421 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3422 			      const u64 add_bytes,
3423 			      const u64 del_bytes);
3424 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3425 
3426 /* ioctl.c */
3427 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3428 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3429 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3430 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3431 		       struct dentry *dentry, struct fileattr *fa);
3432 int btrfs_ioctl_get_supported_features(void __user *arg);
3433 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3434 int __pure btrfs_is_empty_uuid(u8 *uuid);
3435 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3436 		      struct btrfs_ioctl_defrag_range_args *range,
3437 		      u64 newer_than, unsigned long max_to_defrag);
3438 void btrfs_get_block_group_info(struct list_head *groups_list,
3439 				struct btrfs_ioctl_space_info *space);
3440 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3441 			       struct btrfs_ioctl_balance_args *bargs);
3442 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3443 			enum btrfs_exclusive_operation type);
3444 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3445 				 enum btrfs_exclusive_operation type);
3446 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3447 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3448 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3449 			  enum btrfs_exclusive_operation op);
3450 
3451 
3452 /* file.c */
3453 int __init btrfs_auto_defrag_init(void);
3454 void __cold btrfs_auto_defrag_exit(void);
3455 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3456 			   struct btrfs_inode *inode, u32 extent_thresh);
3457 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3458 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3459 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3460 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3461 			     int skip_pinned);
3462 extern const struct file_operations btrfs_file_operations;
3463 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3464 		       struct btrfs_root *root, struct btrfs_inode *inode,
3465 		       struct btrfs_drop_extents_args *args);
3466 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3467 			   struct btrfs_path *path, const u64 start,
3468 			   const u64 end,
3469 			   struct btrfs_replace_extent_info *extent_info,
3470 			   struct btrfs_trans_handle **trans_out);
3471 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3472 			      struct btrfs_inode *inode, u64 start, u64 end);
3473 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3474 			    const struct btrfs_ioctl_encoded_io_args *encoded);
3475 int btrfs_release_file(struct inode *inode, struct file *file);
3476 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3477 		      size_t num_pages, loff_t pos, size_t write_bytes,
3478 		      struct extent_state **cached, bool noreserve);
3479 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3480 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3481 			   size_t *write_bytes);
3482 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3483 
3484 /* tree-defrag.c */
3485 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3486 			struct btrfs_root *root);
3487 
3488 /* super.c */
3489 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3490 			unsigned long new_flags);
3491 int btrfs_sync_fs(struct super_block *sb, int wait);
3492 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3493 					  u64 subvol_objectid);
3494 
3495 static inline __printf(2, 3) __cold
3496 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3497 {
3498 }
3499 
3500 #ifdef CONFIG_PRINTK_INDEX
3501 
3502 #define btrfs_printk(fs_info, fmt, args...)					\
3503 do {										\
3504 	printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);	\
3505 	_btrfs_printk(fs_info, fmt, ##args);					\
3506 } while (0)
3507 
3508 __printf(2, 3)
3509 __cold
3510 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3511 
3512 #elif defined(CONFIG_PRINTK)
3513 
3514 #define btrfs_printk(fs_info, fmt, args...)				\
3515 	_btrfs_printk(fs_info, fmt, ##args)
3516 
3517 __printf(2, 3)
3518 __cold
3519 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3520 
3521 #else
3522 
3523 #define btrfs_printk(fs_info, fmt, args...) \
3524 	btrfs_no_printk(fs_info, fmt, ##args)
3525 #endif
3526 
3527 #define btrfs_emerg(fs_info, fmt, args...) \
3528 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3529 #define btrfs_alert(fs_info, fmt, args...) \
3530 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3531 #define btrfs_crit(fs_info, fmt, args...) \
3532 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3533 #define btrfs_err(fs_info, fmt, args...) \
3534 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3535 #define btrfs_warn(fs_info, fmt, args...) \
3536 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3537 #define btrfs_notice(fs_info, fmt, args...) \
3538 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3539 #define btrfs_info(fs_info, fmt, args...) \
3540 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3541 
3542 /*
3543  * Wrappers that use printk_in_rcu
3544  */
3545 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3546 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3547 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3548 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3549 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3550 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3551 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3552 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3553 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3554 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3555 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3556 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3557 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3558 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3559 
3560 /*
3561  * Wrappers that use a ratelimited printk_in_rcu
3562  */
3563 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3564 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3565 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3566 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3567 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3568 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3569 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3570 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3571 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3572 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3573 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3574 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3575 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3576 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3577 
3578 /*
3579  * Wrappers that use a ratelimited printk
3580  */
3581 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3582 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3583 #define btrfs_alert_rl(fs_info, fmt, args...) \
3584 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3585 #define btrfs_crit_rl(fs_info, fmt, args...) \
3586 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3587 #define btrfs_err_rl(fs_info, fmt, args...) \
3588 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3589 #define btrfs_warn_rl(fs_info, fmt, args...) \
3590 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3591 #define btrfs_notice_rl(fs_info, fmt, args...) \
3592 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3593 #define btrfs_info_rl(fs_info, fmt, args...) \
3594 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3595 
3596 #if defined(CONFIG_DYNAMIC_DEBUG)
3597 #define btrfs_debug(fs_info, fmt, args...)				\
3598 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3599 				   fs_info, KERN_DEBUG fmt, ##args)
3600 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3601 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3602 				   fs_info, KERN_DEBUG fmt, ##args)
3603 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3604 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3605 				   fs_info, KERN_DEBUG fmt, ##args)
3606 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3607 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3608 				   fs_info, KERN_DEBUG fmt, ##args)
3609 #elif defined(DEBUG)
3610 #define btrfs_debug(fs_info, fmt, args...) \
3611 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3612 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3613 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3614 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3615 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3616 #define btrfs_debug_rl(fs_info, fmt, args...) \
3617 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3618 #else
3619 #define btrfs_debug(fs_info, fmt, args...) \
3620 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3621 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3622 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3623 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3624 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3625 #define btrfs_debug_rl(fs_info, fmt, args...) \
3626 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3627 #endif
3628 
3629 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3630 do {							\
3631 	rcu_read_lock();				\
3632 	btrfs_printk(fs_info, fmt, ##args);		\
3633 	rcu_read_unlock();				\
3634 } while (0)
3635 
3636 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3637 do {							\
3638 	rcu_read_lock();				\
3639 	btrfs_no_printk(fs_info, fmt, ##args);		\
3640 	rcu_read_unlock();				\
3641 } while (0)
3642 
3643 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3644 do {								\
3645 	static DEFINE_RATELIMIT_STATE(_rs,			\
3646 		DEFAULT_RATELIMIT_INTERVAL,			\
3647 		DEFAULT_RATELIMIT_BURST);       		\
3648 	if (__ratelimit(&_rs))					\
3649 		btrfs_printk(fs_info, fmt, ##args);		\
3650 } while (0)
3651 
3652 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3653 do {								\
3654 	rcu_read_lock();					\
3655 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3656 	rcu_read_unlock();					\
3657 } while (0)
3658 
3659 #ifdef CONFIG_BTRFS_ASSERT
3660 __cold __noreturn
3661 static inline void assertfail(const char *expr, const char *file, int line)
3662 {
3663 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3664 	BUG();
3665 }
3666 
3667 #define ASSERT(expr)						\
3668 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3669 
3670 #else
3671 static inline void assertfail(const char *expr, const char* file, int line) { }
3672 #define ASSERT(expr)	(void)(expr)
3673 #endif
3674 
3675 #if BITS_PER_LONG == 32
3676 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3677 /*
3678  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3679  * addresses of extents.
3680  *
3681  * For 4K page size it's about 10T, for 64K it's 160T.
3682  */
3683 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3684 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3685 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3686 #endif
3687 
3688 /*
3689  * Get the correct offset inside the page of extent buffer.
3690  *
3691  * @eb:		target extent buffer
3692  * @start:	offset inside the extent buffer
3693  *
3694  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3695  */
3696 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3697 					   unsigned long offset)
3698 {
3699 	/*
3700 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3701 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3702 	 *
3703 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3704 	 * to the eb, thus we have to take the eb->start into consideration.
3705 	 */
3706 	return offset_in_page(offset + eb->start);
3707 }
3708 
3709 static inline unsigned long get_eb_page_index(unsigned long offset)
3710 {
3711 	/*
3712 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3713 	 *
3714 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3715 	 * and have ensured that all tree blocks are contained in one page,
3716 	 * thus we always get index == 0.
3717 	 */
3718 	return offset >> PAGE_SHIFT;
3719 }
3720 
3721 /*
3722  * Use that for functions that are conditionally exported for sanity tests but
3723  * otherwise static
3724  */
3725 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3726 #define EXPORT_FOR_TESTS static
3727 #else
3728 #define EXPORT_FOR_TESTS
3729 #endif
3730 
3731 __cold
3732 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3733 {
3734 	btrfs_err(fs_info,
3735 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3736 }
3737 
3738 __printf(5, 6)
3739 __cold
3740 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3741 		     unsigned int line, int errno, const char *fmt, ...);
3742 
3743 const char * __attribute_const__ btrfs_decode_error(int errno);
3744 
3745 __cold
3746 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3747 			       const char *function,
3748 			       unsigned int line, int errno);
3749 
3750 /*
3751  * Call btrfs_abort_transaction as early as possible when an error condition is
3752  * detected, that way the exact line number is reported.
3753  */
3754 #define btrfs_abort_transaction(trans, errno)		\
3755 do {								\
3756 	/* Report first abort since mount */			\
3757 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3758 			&((trans)->fs_info->fs_state))) {	\
3759 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3760 			WARN(1, KERN_DEBUG				\
3761 			"BTRFS: Transaction aborted (error %d)\n",	\
3762 			(errno));					\
3763 		} else {						\
3764 			btrfs_debug((trans)->fs_info,			\
3765 				    "Transaction aborted (error %d)", \
3766 				  (errno));			\
3767 		}						\
3768 	}							\
3769 	__btrfs_abort_transaction((trans), __func__,		\
3770 				  __LINE__, (errno));		\
3771 } while (0)
3772 
3773 #ifdef CONFIG_PRINTK_INDEX
3774 
3775 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3776 do {									\
3777 	printk_index_subsys_emit(					\
3778 		"BTRFS: error (device %s%s) in %s:%d: errno=%d %s",	\
3779 		KERN_CRIT, fmt);					\
3780 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3781 				(errno), fmt, ##args);			\
3782 } while (0)
3783 
3784 #else
3785 
3786 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3787 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3788 				(errno), fmt, ##args)
3789 
3790 #endif
3791 
3792 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3793 						   &(fs_info)->fs_state)))
3794 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3795 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3796 			   &(fs_info)->fs_state)))
3797 
3798 __printf(5, 6)
3799 __cold
3800 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3801 		   unsigned int line, int errno, const char *fmt, ...);
3802 /*
3803  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3804  * will panic().  Otherwise we BUG() here.
3805  */
3806 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3807 do {									\
3808 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3809 	BUG();								\
3810 } while (0)
3811 
3812 
3813 /* compatibility and incompatibility defines */
3814 
3815 #define btrfs_set_fs_incompat(__fs_info, opt) \
3816 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3817 				#opt)
3818 
3819 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3820 					   u64 flag, const char* name)
3821 {
3822 	struct btrfs_super_block *disk_super;
3823 	u64 features;
3824 
3825 	disk_super = fs_info->super_copy;
3826 	features = btrfs_super_incompat_flags(disk_super);
3827 	if (!(features & flag)) {
3828 		spin_lock(&fs_info->super_lock);
3829 		features = btrfs_super_incompat_flags(disk_super);
3830 		if (!(features & flag)) {
3831 			features |= flag;
3832 			btrfs_set_super_incompat_flags(disk_super, features);
3833 			btrfs_info(fs_info,
3834 				"setting incompat feature flag for %s (0x%llx)",
3835 				name, flag);
3836 		}
3837 		spin_unlock(&fs_info->super_lock);
3838 	}
3839 }
3840 
3841 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3842 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3843 				  #opt)
3844 
3845 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3846 					     u64 flag, const char* name)
3847 {
3848 	struct btrfs_super_block *disk_super;
3849 	u64 features;
3850 
3851 	disk_super = fs_info->super_copy;
3852 	features = btrfs_super_incompat_flags(disk_super);
3853 	if (features & flag) {
3854 		spin_lock(&fs_info->super_lock);
3855 		features = btrfs_super_incompat_flags(disk_super);
3856 		if (features & flag) {
3857 			features &= ~flag;
3858 			btrfs_set_super_incompat_flags(disk_super, features);
3859 			btrfs_info(fs_info,
3860 				"clearing incompat feature flag for %s (0x%llx)",
3861 				name, flag);
3862 		}
3863 		spin_unlock(&fs_info->super_lock);
3864 	}
3865 }
3866 
3867 #define btrfs_fs_incompat(fs_info, opt) \
3868 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3869 
3870 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3871 {
3872 	struct btrfs_super_block *disk_super;
3873 	disk_super = fs_info->super_copy;
3874 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3875 }
3876 
3877 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3878 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3879 				 #opt)
3880 
3881 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3882 					    u64 flag, const char *name)
3883 {
3884 	struct btrfs_super_block *disk_super;
3885 	u64 features;
3886 
3887 	disk_super = fs_info->super_copy;
3888 	features = btrfs_super_compat_ro_flags(disk_super);
3889 	if (!(features & flag)) {
3890 		spin_lock(&fs_info->super_lock);
3891 		features = btrfs_super_compat_ro_flags(disk_super);
3892 		if (!(features & flag)) {
3893 			features |= flag;
3894 			btrfs_set_super_compat_ro_flags(disk_super, features);
3895 			btrfs_info(fs_info,
3896 				"setting compat-ro feature flag for %s (0x%llx)",
3897 				name, flag);
3898 		}
3899 		spin_unlock(&fs_info->super_lock);
3900 	}
3901 }
3902 
3903 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3904 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3905 				   #opt)
3906 
3907 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3908 					      u64 flag, const char *name)
3909 {
3910 	struct btrfs_super_block *disk_super;
3911 	u64 features;
3912 
3913 	disk_super = fs_info->super_copy;
3914 	features = btrfs_super_compat_ro_flags(disk_super);
3915 	if (features & flag) {
3916 		spin_lock(&fs_info->super_lock);
3917 		features = btrfs_super_compat_ro_flags(disk_super);
3918 		if (features & flag) {
3919 			features &= ~flag;
3920 			btrfs_set_super_compat_ro_flags(disk_super, features);
3921 			btrfs_info(fs_info,
3922 				"clearing compat-ro feature flag for %s (0x%llx)",
3923 				name, flag);
3924 		}
3925 		spin_unlock(&fs_info->super_lock);
3926 	}
3927 }
3928 
3929 #define btrfs_fs_compat_ro(fs_info, opt) \
3930 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3931 
3932 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3933 {
3934 	struct btrfs_super_block *disk_super;
3935 	disk_super = fs_info->super_copy;
3936 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3937 }
3938 
3939 /* acl.c */
3940 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3941 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3942 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3943 		  struct posix_acl *acl, int type);
3944 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
3945 		    struct posix_acl *acl, int type);
3946 #else
3947 #define btrfs_get_acl NULL
3948 #define btrfs_set_acl NULL
3949 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
3950 				  struct inode *inode, struct posix_acl *acl,
3951 				  int type)
3952 {
3953 	return -EOPNOTSUPP;
3954 }
3955 #endif
3956 
3957 /* relocation.c */
3958 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3959 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3960 			  struct btrfs_root *root);
3961 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3962 			    struct btrfs_root *root);
3963 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
3964 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3965 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3966 			  struct btrfs_root *root, struct extent_buffer *buf,
3967 			  struct extent_buffer *cow);
3968 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3969 			      u64 *bytes_to_reserve);
3970 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3971 			      struct btrfs_pending_snapshot *pending);
3972 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3973 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3974 				   u64 bytenr);
3975 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3976 
3977 /* scrub.c */
3978 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3979 		    u64 end, struct btrfs_scrub_progress *progress,
3980 		    int readonly, int is_dev_replace);
3981 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3982 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3983 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3984 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3985 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3986 			 struct btrfs_scrub_progress *progress);
3987 static inline void btrfs_init_full_stripe_locks_tree(
3988 			struct btrfs_full_stripe_locks_tree *locks_root)
3989 {
3990 	locks_root->root = RB_ROOT;
3991 	mutex_init(&locks_root->lock);
3992 }
3993 
3994 /* dev-replace.c */
3995 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3996 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3997 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3998 
3999 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4000 {
4001 	btrfs_bio_counter_sub(fs_info, 1);
4002 }
4003 
4004 static inline int is_fstree(u64 rootid)
4005 {
4006 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
4007 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4008 	      !btrfs_qgroup_level(rootid)))
4009 		return 1;
4010 	return 0;
4011 }
4012 
4013 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4014 {
4015 	return signal_pending(current);
4016 }
4017 
4018 /* verity.c */
4019 #ifdef CONFIG_FS_VERITY
4020 
4021 extern const struct fsverity_operations btrfs_verityops;
4022 int btrfs_drop_verity_items(struct btrfs_inode *inode);
4023 
4024 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
4025 		   encryption, 8);
4026 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
4027 		   size, 64);
4028 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
4029 			 struct btrfs_verity_descriptor_item, encryption, 8);
4030 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
4031 			 struct btrfs_verity_descriptor_item, size, 64);
4032 
4033 #else
4034 
4035 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
4036 {
4037 	return 0;
4038 }
4039 
4040 #endif
4041 
4042 /* Sanity test specific functions */
4043 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4044 void btrfs_test_destroy_inode(struct inode *inode);
4045 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4046 {
4047 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4048 }
4049 #else
4050 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4051 {
4052 	return 0;
4053 }
4054 #endif
4055 
4056 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
4057 {
4058 	return fs_info->zone_size > 0;
4059 }
4060 
4061 /*
4062  * Count how many fs_info->max_extent_size cover the @size
4063  */
4064 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
4065 {
4066 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4067 	if (!fs_info)
4068 		return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
4069 #endif
4070 
4071 	return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
4072 }
4073 
4074 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4075 {
4076 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4077 }
4078 
4079 /*
4080  * We use page status Private2 to indicate there is an ordered extent with
4081  * unfinished IO.
4082  *
4083  * Rename the Private2 accessors to Ordered, to improve readability.
4084  */
4085 #define PageOrdered(page)		PagePrivate2(page)
4086 #define SetPageOrdered(page)		SetPagePrivate2(page)
4087 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
4088 #define folio_test_ordered(folio)	folio_test_private_2(folio)
4089 #define folio_set_ordered(folio)	folio_set_private_2(folio)
4090 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
4091 
4092 #endif
4093