1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 52 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 53 54 /* 55 * Maximum number of mirrors that can be available for all profiles counting 56 * the target device of dev-replace as one. During an active device replace 57 * procedure, the target device of the copy operation is a mirror for the 58 * filesystem data as well that can be used to read data in order to repair 59 * read errors on other disks. 60 * 61 * Current value is derived from RAID1C4 with 4 copies. 62 */ 63 #define BTRFS_MAX_MIRRORS (4 + 1) 64 65 #define BTRFS_MAX_LEVEL 8 66 67 #define BTRFS_OLDEST_GENERATION 0ULL 68 69 /* 70 * we can actually store much bigger names, but lets not confuse the rest 71 * of linux 72 */ 73 #define BTRFS_NAME_LEN 255 74 75 /* 76 * Theoretical limit is larger, but we keep this down to a sane 77 * value. That should limit greatly the possibility of collisions on 78 * inode ref items. 79 */ 80 #define BTRFS_LINK_MAX 65535U 81 82 #define BTRFS_EMPTY_DIR_SIZE 0 83 84 /* ioprio of readahead is set to idle */ 85 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 86 87 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 88 89 /* 90 * Use large batch size to reduce overhead of metadata updates. On the reader 91 * side, we only read it when we are close to ENOSPC and the read overhead is 92 * mostly related to the number of CPUs, so it is OK to use arbitrary large 93 * value here. 94 */ 95 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 96 97 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 98 99 /* 100 * Deltas are an effective way to populate global statistics. Give macro names 101 * to make it clear what we're doing. An example is discard_extents in 102 * btrfs_free_space_ctl. 103 */ 104 #define BTRFS_STAT_NR_ENTRIES 2 105 #define BTRFS_STAT_CURR 0 106 #define BTRFS_STAT_PREV 1 107 108 /* 109 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 110 */ 111 static inline u32 count_max_extents(u64 size) 112 { 113 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 114 } 115 116 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 117 { 118 BUG_ON(num_stripes == 0); 119 return sizeof(struct btrfs_chunk) + 120 sizeof(struct btrfs_stripe) * (num_stripes - 1); 121 } 122 123 /* 124 * Runtime (in-memory) states of filesystem 125 */ 126 enum { 127 /* Global indicator of serious filesystem errors */ 128 BTRFS_FS_STATE_ERROR, 129 /* 130 * Filesystem is being remounted, allow to skip some operations, like 131 * defrag 132 */ 133 BTRFS_FS_STATE_REMOUNTING, 134 /* Filesystem in RO mode */ 135 BTRFS_FS_STATE_RO, 136 /* Track if a transaction abort has been reported on this filesystem */ 137 BTRFS_FS_STATE_TRANS_ABORTED, 138 /* 139 * Bio operations should be blocked on this filesystem because a source 140 * or target device is being destroyed as part of a device replace 141 */ 142 BTRFS_FS_STATE_DEV_REPLACING, 143 /* The btrfs_fs_info created for self-tests */ 144 BTRFS_FS_STATE_DUMMY_FS_INFO, 145 }; 146 147 #define BTRFS_BACKREF_REV_MAX 256 148 #define BTRFS_BACKREF_REV_SHIFT 56 149 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 150 BTRFS_BACKREF_REV_SHIFT) 151 152 #define BTRFS_OLD_BACKREF_REV 0 153 #define BTRFS_MIXED_BACKREF_REV 1 154 155 /* 156 * every tree block (leaf or node) starts with this header. 157 */ 158 struct btrfs_header { 159 /* these first four must match the super block */ 160 u8 csum[BTRFS_CSUM_SIZE]; 161 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 162 __le64 bytenr; /* which block this node is supposed to live in */ 163 __le64 flags; 164 165 /* allowed to be different from the super from here on down */ 166 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 167 __le64 generation; 168 __le64 owner; 169 __le32 nritems; 170 u8 level; 171 } __attribute__ ((__packed__)); 172 173 /* 174 * this is a very generous portion of the super block, giving us 175 * room to translate 14 chunks with 3 stripes each. 176 */ 177 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 178 179 /* 180 * just in case we somehow lose the roots and are not able to mount, 181 * we store an array of the roots from previous transactions 182 * in the super. 183 */ 184 #define BTRFS_NUM_BACKUP_ROOTS 4 185 struct btrfs_root_backup { 186 __le64 tree_root; 187 __le64 tree_root_gen; 188 189 __le64 chunk_root; 190 __le64 chunk_root_gen; 191 192 __le64 extent_root; 193 __le64 extent_root_gen; 194 195 __le64 fs_root; 196 __le64 fs_root_gen; 197 198 __le64 dev_root; 199 __le64 dev_root_gen; 200 201 __le64 csum_root; 202 __le64 csum_root_gen; 203 204 __le64 total_bytes; 205 __le64 bytes_used; 206 __le64 num_devices; 207 /* future */ 208 __le64 unused_64[4]; 209 210 u8 tree_root_level; 211 u8 chunk_root_level; 212 u8 extent_root_level; 213 u8 fs_root_level; 214 u8 dev_root_level; 215 u8 csum_root_level; 216 /* future and to align */ 217 u8 unused_8[10]; 218 } __attribute__ ((__packed__)); 219 220 /* 221 * the super block basically lists the main trees of the FS 222 * it currently lacks any block count etc etc 223 */ 224 struct btrfs_super_block { 225 /* the first 4 fields must match struct btrfs_header */ 226 u8 csum[BTRFS_CSUM_SIZE]; 227 /* FS specific UUID, visible to user */ 228 u8 fsid[BTRFS_FSID_SIZE]; 229 __le64 bytenr; /* this block number */ 230 __le64 flags; 231 232 /* allowed to be different from the btrfs_header from here own down */ 233 __le64 magic; 234 __le64 generation; 235 __le64 root; 236 __le64 chunk_root; 237 __le64 log_root; 238 239 /* this will help find the new super based on the log root */ 240 __le64 log_root_transid; 241 __le64 total_bytes; 242 __le64 bytes_used; 243 __le64 root_dir_objectid; 244 __le64 num_devices; 245 __le32 sectorsize; 246 __le32 nodesize; 247 __le32 __unused_leafsize; 248 __le32 stripesize; 249 __le32 sys_chunk_array_size; 250 __le64 chunk_root_generation; 251 __le64 compat_flags; 252 __le64 compat_ro_flags; 253 __le64 incompat_flags; 254 __le16 csum_type; 255 u8 root_level; 256 u8 chunk_root_level; 257 u8 log_root_level; 258 struct btrfs_dev_item dev_item; 259 260 char label[BTRFS_LABEL_SIZE]; 261 262 __le64 cache_generation; 263 __le64 uuid_tree_generation; 264 265 /* the UUID written into btree blocks */ 266 u8 metadata_uuid[BTRFS_FSID_SIZE]; 267 268 /* future expansion */ 269 __le64 reserved[28]; 270 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 271 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 272 } __attribute__ ((__packed__)); 273 274 /* 275 * Compat flags that we support. If any incompat flags are set other than the 276 * ones specified below then we will fail to mount 277 */ 278 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 279 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 280 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 281 282 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 283 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 284 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID) 285 286 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 287 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 288 289 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 290 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 291 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 292 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 293 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 294 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 295 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 296 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 297 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 298 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 299 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 300 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 301 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 302 BTRFS_FEATURE_INCOMPAT_ZONED) 303 304 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 305 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 306 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 307 308 /* 309 * A leaf is full of items. offset and size tell us where to find 310 * the item in the leaf (relative to the start of the data area) 311 */ 312 struct btrfs_item { 313 struct btrfs_disk_key key; 314 __le32 offset; 315 __le32 size; 316 } __attribute__ ((__packed__)); 317 318 /* 319 * leaves have an item area and a data area: 320 * [item0, item1....itemN] [free space] [dataN...data1, data0] 321 * 322 * The data is separate from the items to get the keys closer together 323 * during searches. 324 */ 325 struct btrfs_leaf { 326 struct btrfs_header header; 327 struct btrfs_item items[]; 328 } __attribute__ ((__packed__)); 329 330 /* 331 * all non-leaf blocks are nodes, they hold only keys and pointers to 332 * other blocks 333 */ 334 struct btrfs_key_ptr { 335 struct btrfs_disk_key key; 336 __le64 blockptr; 337 __le64 generation; 338 } __attribute__ ((__packed__)); 339 340 struct btrfs_node { 341 struct btrfs_header header; 342 struct btrfs_key_ptr ptrs[]; 343 } __attribute__ ((__packed__)); 344 345 /* 346 * btrfs_paths remember the path taken from the root down to the leaf. 347 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 348 * to any other levels that are present. 349 * 350 * The slots array records the index of the item or block pointer 351 * used while walking the tree. 352 */ 353 enum { READA_NONE, READA_BACK, READA_FORWARD }; 354 struct btrfs_path { 355 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 356 int slots[BTRFS_MAX_LEVEL]; 357 /* if there is real range locking, this locks field will change */ 358 u8 locks[BTRFS_MAX_LEVEL]; 359 u8 reada; 360 /* keep some upper locks as we walk down */ 361 u8 lowest_level; 362 363 /* 364 * set by btrfs_split_item, tells search_slot to keep all locks 365 * and to force calls to keep space in the nodes 366 */ 367 unsigned int search_for_split:1; 368 unsigned int keep_locks:1; 369 unsigned int skip_locking:1; 370 unsigned int search_commit_root:1; 371 unsigned int need_commit_sem:1; 372 unsigned int skip_release_on_error:1; 373 /* 374 * Indicate that new item (btrfs_search_slot) is extending already 375 * existing item and ins_len contains only the data size and not item 376 * header (ie. sizeof(struct btrfs_item) is not included). 377 */ 378 unsigned int search_for_extension:1; 379 }; 380 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 381 sizeof(struct btrfs_item)) 382 struct btrfs_dev_replace { 383 u64 replace_state; /* see #define above */ 384 time64_t time_started; /* seconds since 1-Jan-1970 */ 385 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 386 atomic64_t num_write_errors; 387 atomic64_t num_uncorrectable_read_errors; 388 389 u64 cursor_left; 390 u64 committed_cursor_left; 391 u64 cursor_left_last_write_of_item; 392 u64 cursor_right; 393 394 u64 cont_reading_from_srcdev_mode; /* see #define above */ 395 396 int is_valid; 397 int item_needs_writeback; 398 struct btrfs_device *srcdev; 399 struct btrfs_device *tgtdev; 400 401 struct mutex lock_finishing_cancel_unmount; 402 struct rw_semaphore rwsem; 403 404 struct btrfs_scrub_progress scrub_progress; 405 406 struct percpu_counter bio_counter; 407 wait_queue_head_t replace_wait; 408 }; 409 410 /* 411 * free clusters are used to claim free space in relatively large chunks, 412 * allowing us to do less seeky writes. They are used for all metadata 413 * allocations. In ssd_spread mode they are also used for data allocations. 414 */ 415 struct btrfs_free_cluster { 416 spinlock_t lock; 417 spinlock_t refill_lock; 418 struct rb_root root; 419 420 /* largest extent in this cluster */ 421 u64 max_size; 422 423 /* first extent starting offset */ 424 u64 window_start; 425 426 /* We did a full search and couldn't create a cluster */ 427 bool fragmented; 428 429 struct btrfs_block_group *block_group; 430 /* 431 * when a cluster is allocated from a block group, we put the 432 * cluster onto a list in the block group so that it can 433 * be freed before the block group is freed. 434 */ 435 struct list_head block_group_list; 436 }; 437 438 enum btrfs_caching_type { 439 BTRFS_CACHE_NO, 440 BTRFS_CACHE_STARTED, 441 BTRFS_CACHE_FAST, 442 BTRFS_CACHE_FINISHED, 443 BTRFS_CACHE_ERROR, 444 }; 445 446 /* 447 * Tree to record all locked full stripes of a RAID5/6 block group 448 */ 449 struct btrfs_full_stripe_locks_tree { 450 struct rb_root root; 451 struct mutex lock; 452 }; 453 454 /* Discard control. */ 455 /* 456 * Async discard uses multiple lists to differentiate the discard filter 457 * parameters. Index 0 is for completely free block groups where we need to 458 * ensure the entire block group is trimmed without being lossy. Indices 459 * afterwards represent monotonically decreasing discard filter sizes to 460 * prioritize what should be discarded next. 461 */ 462 #define BTRFS_NR_DISCARD_LISTS 3 463 #define BTRFS_DISCARD_INDEX_UNUSED 0 464 #define BTRFS_DISCARD_INDEX_START 1 465 466 struct btrfs_discard_ctl { 467 struct workqueue_struct *discard_workers; 468 struct delayed_work work; 469 spinlock_t lock; 470 struct btrfs_block_group *block_group; 471 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 472 u64 prev_discard; 473 u64 prev_discard_time; 474 atomic_t discardable_extents; 475 atomic64_t discardable_bytes; 476 u64 max_discard_size; 477 u64 delay_ms; 478 u32 iops_limit; 479 u32 kbps_limit; 480 u64 discard_extent_bytes; 481 u64 discard_bitmap_bytes; 482 atomic64_t discard_bytes_saved; 483 }; 484 485 /* delayed seq elem */ 486 struct seq_list { 487 struct list_head list; 488 u64 seq; 489 }; 490 491 #define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 } 492 493 #define SEQ_LAST ((u64)-1) 494 495 enum btrfs_orphan_cleanup_state { 496 ORPHAN_CLEANUP_STARTED = 1, 497 ORPHAN_CLEANUP_DONE = 2, 498 }; 499 500 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 501 502 /* fs_info */ 503 struct reloc_control; 504 struct btrfs_device; 505 struct btrfs_fs_devices; 506 struct btrfs_balance_control; 507 struct btrfs_delayed_root; 508 509 /* 510 * Block group or device which contains an active swapfile. Used for preventing 511 * unsafe operations while a swapfile is active. 512 * 513 * These are sorted on (ptr, inode) (note that a block group or device can 514 * contain more than one swapfile). We compare the pointer values because we 515 * don't actually care what the object is, we just need a quick check whether 516 * the object exists in the rbtree. 517 */ 518 struct btrfs_swapfile_pin { 519 struct rb_node node; 520 void *ptr; 521 struct inode *inode; 522 /* 523 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 524 * points to a struct btrfs_device. 525 */ 526 bool is_block_group; 527 }; 528 529 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 530 531 enum { 532 BTRFS_FS_BARRIER, 533 BTRFS_FS_CLOSING_START, 534 BTRFS_FS_CLOSING_DONE, 535 BTRFS_FS_LOG_RECOVERING, 536 BTRFS_FS_OPEN, 537 BTRFS_FS_QUOTA_ENABLED, 538 BTRFS_FS_UPDATE_UUID_TREE_GEN, 539 BTRFS_FS_CREATING_FREE_SPACE_TREE, 540 BTRFS_FS_BTREE_ERR, 541 BTRFS_FS_LOG1_ERR, 542 BTRFS_FS_LOG2_ERR, 543 BTRFS_FS_QUOTA_OVERRIDE, 544 /* Used to record internally whether fs has been frozen */ 545 BTRFS_FS_FROZEN, 546 /* 547 * Indicate that balance has been set up from the ioctl and is in the 548 * main phase. The fs_info::balance_ctl is initialized. 549 * Set and cleared while holding fs_info::balance_mutex. 550 */ 551 BTRFS_FS_BALANCE_RUNNING, 552 553 /* Indicate that the cleaner thread is awake and doing something. */ 554 BTRFS_FS_CLEANER_RUNNING, 555 556 /* 557 * The checksumming has an optimized version and is considered fast, 558 * so we don't need to offload checksums to workqueues. 559 */ 560 BTRFS_FS_CSUM_IMPL_FAST, 561 562 /* Indicate that the discard workqueue can service discards. */ 563 BTRFS_FS_DISCARD_RUNNING, 564 565 /* Indicate that we need to cleanup space cache v1 */ 566 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 567 568 /* Indicate that we can't trust the free space tree for caching yet */ 569 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 570 }; 571 572 /* 573 * Exclusive operations (device replace, resize, device add/remove, balance) 574 */ 575 enum btrfs_exclusive_operation { 576 BTRFS_EXCLOP_NONE, 577 BTRFS_EXCLOP_BALANCE, 578 BTRFS_EXCLOP_DEV_ADD, 579 BTRFS_EXCLOP_DEV_REMOVE, 580 BTRFS_EXCLOP_DEV_REPLACE, 581 BTRFS_EXCLOP_RESIZE, 582 BTRFS_EXCLOP_SWAP_ACTIVATE, 583 }; 584 585 struct btrfs_fs_info { 586 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 587 unsigned long flags; 588 struct btrfs_root *extent_root; 589 struct btrfs_root *tree_root; 590 struct btrfs_root *chunk_root; 591 struct btrfs_root *dev_root; 592 struct btrfs_root *fs_root; 593 struct btrfs_root *csum_root; 594 struct btrfs_root *quota_root; 595 struct btrfs_root *uuid_root; 596 struct btrfs_root *free_space_root; 597 struct btrfs_root *data_reloc_root; 598 599 /* the log root tree is a directory of all the other log roots */ 600 struct btrfs_root *log_root_tree; 601 602 spinlock_t fs_roots_radix_lock; 603 struct radix_tree_root fs_roots_radix; 604 605 /* block group cache stuff */ 606 spinlock_t block_group_cache_lock; 607 u64 first_logical_byte; 608 struct rb_root block_group_cache_tree; 609 610 /* keep track of unallocated space */ 611 atomic64_t free_chunk_space; 612 613 /* Track ranges which are used by log trees blocks/logged data extents */ 614 struct extent_io_tree excluded_extents; 615 616 /* logical->physical extent mapping */ 617 struct extent_map_tree mapping_tree; 618 619 /* 620 * block reservation for extent, checksum, root tree and 621 * delayed dir index item 622 */ 623 struct btrfs_block_rsv global_block_rsv; 624 /* block reservation for metadata operations */ 625 struct btrfs_block_rsv trans_block_rsv; 626 /* block reservation for chunk tree */ 627 struct btrfs_block_rsv chunk_block_rsv; 628 /* block reservation for delayed operations */ 629 struct btrfs_block_rsv delayed_block_rsv; 630 /* block reservation for delayed refs */ 631 struct btrfs_block_rsv delayed_refs_rsv; 632 633 struct btrfs_block_rsv empty_block_rsv; 634 635 u64 generation; 636 u64 last_trans_committed; 637 u64 avg_delayed_ref_runtime; 638 639 /* 640 * this is updated to the current trans every time a full commit 641 * is required instead of the faster short fsync log commits 642 */ 643 u64 last_trans_log_full_commit; 644 unsigned long mount_opt; 645 /* 646 * Track requests for actions that need to be done during transaction 647 * commit (like for some mount options). 648 */ 649 unsigned long pending_changes; 650 unsigned long compress_type:4; 651 unsigned int compress_level; 652 u32 commit_interval; 653 /* 654 * It is a suggestive number, the read side is safe even it gets a 655 * wrong number because we will write out the data into a regular 656 * extent. The write side(mount/remount) is under ->s_umount lock, 657 * so it is also safe. 658 */ 659 u64 max_inline; 660 661 struct btrfs_transaction *running_transaction; 662 wait_queue_head_t transaction_throttle; 663 wait_queue_head_t transaction_wait; 664 wait_queue_head_t transaction_blocked_wait; 665 wait_queue_head_t async_submit_wait; 666 667 /* 668 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 669 * when they are updated. 670 * 671 * Because we do not clear the flags for ever, so we needn't use 672 * the lock on the read side. 673 * 674 * We also needn't use the lock when we mount the fs, because 675 * there is no other task which will update the flag. 676 */ 677 spinlock_t super_lock; 678 struct btrfs_super_block *super_copy; 679 struct btrfs_super_block *super_for_commit; 680 struct super_block *sb; 681 struct inode *btree_inode; 682 struct mutex tree_log_mutex; 683 struct mutex transaction_kthread_mutex; 684 struct mutex cleaner_mutex; 685 struct mutex chunk_mutex; 686 687 /* 688 * this is taken to make sure we don't set block groups ro after 689 * the free space cache has been allocated on them 690 */ 691 struct mutex ro_block_group_mutex; 692 693 /* this is used during read/modify/write to make sure 694 * no two ios are trying to mod the same stripe at the same 695 * time 696 */ 697 struct btrfs_stripe_hash_table *stripe_hash_table; 698 699 /* 700 * this protects the ordered operations list only while we are 701 * processing all of the entries on it. This way we make 702 * sure the commit code doesn't find the list temporarily empty 703 * because another function happens to be doing non-waiting preflush 704 * before jumping into the main commit. 705 */ 706 struct mutex ordered_operations_mutex; 707 708 struct rw_semaphore commit_root_sem; 709 710 struct rw_semaphore cleanup_work_sem; 711 712 struct rw_semaphore subvol_sem; 713 714 spinlock_t trans_lock; 715 /* 716 * the reloc mutex goes with the trans lock, it is taken 717 * during commit to protect us from the relocation code 718 */ 719 struct mutex reloc_mutex; 720 721 struct list_head trans_list; 722 struct list_head dead_roots; 723 struct list_head caching_block_groups; 724 725 spinlock_t delayed_iput_lock; 726 struct list_head delayed_iputs; 727 atomic_t nr_delayed_iputs; 728 wait_queue_head_t delayed_iputs_wait; 729 730 atomic64_t tree_mod_seq; 731 732 /* this protects tree_mod_log and tree_mod_seq_list */ 733 rwlock_t tree_mod_log_lock; 734 struct rb_root tree_mod_log; 735 struct list_head tree_mod_seq_list; 736 737 atomic_t async_delalloc_pages; 738 739 /* 740 * this is used to protect the following list -- ordered_roots. 741 */ 742 spinlock_t ordered_root_lock; 743 744 /* 745 * all fs/file tree roots in which there are data=ordered extents 746 * pending writeback are added into this list. 747 * 748 * these can span multiple transactions and basically include 749 * every dirty data page that isn't from nodatacow 750 */ 751 struct list_head ordered_roots; 752 753 struct mutex delalloc_root_mutex; 754 spinlock_t delalloc_root_lock; 755 /* all fs/file tree roots that have delalloc inodes. */ 756 struct list_head delalloc_roots; 757 758 /* 759 * there is a pool of worker threads for checksumming during writes 760 * and a pool for checksumming after reads. This is because readers 761 * can run with FS locks held, and the writers may be waiting for 762 * those locks. We don't want ordering in the pending list to cause 763 * deadlocks, and so the two are serviced separately. 764 * 765 * A third pool does submit_bio to avoid deadlocking with the other 766 * two 767 */ 768 struct btrfs_workqueue *workers; 769 struct btrfs_workqueue *delalloc_workers; 770 struct btrfs_workqueue *flush_workers; 771 struct btrfs_workqueue *endio_workers; 772 struct btrfs_workqueue *endio_meta_workers; 773 struct btrfs_workqueue *endio_raid56_workers; 774 struct btrfs_workqueue *rmw_workers; 775 struct btrfs_workqueue *endio_meta_write_workers; 776 struct btrfs_workqueue *endio_write_workers; 777 struct btrfs_workqueue *endio_freespace_worker; 778 struct btrfs_workqueue *caching_workers; 779 struct btrfs_workqueue *readahead_workers; 780 781 /* 782 * fixup workers take dirty pages that didn't properly go through 783 * the cow mechanism and make them safe to write. It happens 784 * for the sys_munmap function call path 785 */ 786 struct btrfs_workqueue *fixup_workers; 787 struct btrfs_workqueue *delayed_workers; 788 789 struct task_struct *transaction_kthread; 790 struct task_struct *cleaner_kthread; 791 u32 thread_pool_size; 792 793 struct kobject *space_info_kobj; 794 struct kobject *qgroups_kobj; 795 796 u64 total_pinned; 797 798 /* used to keep from writing metadata until there is a nice batch */ 799 struct percpu_counter dirty_metadata_bytes; 800 struct percpu_counter delalloc_bytes; 801 struct percpu_counter ordered_bytes; 802 s32 dirty_metadata_batch; 803 s32 delalloc_batch; 804 805 struct list_head dirty_cowonly_roots; 806 807 struct btrfs_fs_devices *fs_devices; 808 809 /* 810 * The space_info list is effectively read only after initial 811 * setup. It is populated at mount time and cleaned up after 812 * all block groups are removed. RCU is used to protect it. 813 */ 814 struct list_head space_info; 815 816 struct btrfs_space_info *data_sinfo; 817 818 struct reloc_control *reloc_ctl; 819 820 /* data_alloc_cluster is only used in ssd_spread mode */ 821 struct btrfs_free_cluster data_alloc_cluster; 822 823 /* all metadata allocations go through this cluster */ 824 struct btrfs_free_cluster meta_alloc_cluster; 825 826 /* auto defrag inodes go here */ 827 spinlock_t defrag_inodes_lock; 828 struct rb_root defrag_inodes; 829 atomic_t defrag_running; 830 831 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 832 seqlock_t profiles_lock; 833 /* 834 * these three are in extended format (availability of single 835 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 836 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 837 */ 838 u64 avail_data_alloc_bits; 839 u64 avail_metadata_alloc_bits; 840 u64 avail_system_alloc_bits; 841 842 /* restriper state */ 843 spinlock_t balance_lock; 844 struct mutex balance_mutex; 845 atomic_t balance_pause_req; 846 atomic_t balance_cancel_req; 847 struct btrfs_balance_control *balance_ctl; 848 wait_queue_head_t balance_wait_q; 849 850 u32 data_chunk_allocations; 851 u32 metadata_ratio; 852 853 void *bdev_holder; 854 855 /* private scrub information */ 856 struct mutex scrub_lock; 857 atomic_t scrubs_running; 858 atomic_t scrub_pause_req; 859 atomic_t scrubs_paused; 860 atomic_t scrub_cancel_req; 861 wait_queue_head_t scrub_pause_wait; 862 /* 863 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 864 * running. 865 */ 866 refcount_t scrub_workers_refcnt; 867 struct btrfs_workqueue *scrub_workers; 868 struct btrfs_workqueue *scrub_wr_completion_workers; 869 struct btrfs_workqueue *scrub_parity_workers; 870 871 struct btrfs_discard_ctl discard_ctl; 872 873 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 874 u32 check_integrity_print_mask; 875 #endif 876 /* is qgroup tracking in a consistent state? */ 877 u64 qgroup_flags; 878 879 /* holds configuration and tracking. Protected by qgroup_lock */ 880 struct rb_root qgroup_tree; 881 spinlock_t qgroup_lock; 882 883 /* 884 * used to avoid frequently calling ulist_alloc()/ulist_free() 885 * when doing qgroup accounting, it must be protected by qgroup_lock. 886 */ 887 struct ulist *qgroup_ulist; 888 889 /* 890 * Protect user change for quota operations. If a transaction is needed, 891 * it must be started before locking this lock. 892 */ 893 struct mutex qgroup_ioctl_lock; 894 895 /* list of dirty qgroups to be written at next commit */ 896 struct list_head dirty_qgroups; 897 898 /* used by qgroup for an efficient tree traversal */ 899 u64 qgroup_seq; 900 901 /* qgroup rescan items */ 902 struct mutex qgroup_rescan_lock; /* protects the progress item */ 903 struct btrfs_key qgroup_rescan_progress; 904 struct btrfs_workqueue *qgroup_rescan_workers; 905 struct completion qgroup_rescan_completion; 906 struct btrfs_work qgroup_rescan_work; 907 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 908 909 /* filesystem state */ 910 unsigned long fs_state; 911 912 struct btrfs_delayed_root *delayed_root; 913 914 /* readahead tree */ 915 spinlock_t reada_lock; 916 struct radix_tree_root reada_tree; 917 918 /* readahead works cnt */ 919 atomic_t reada_works_cnt; 920 921 /* Extent buffer radix tree */ 922 spinlock_t buffer_lock; 923 /* Entries are eb->start / sectorsize */ 924 struct radix_tree_root buffer_radix; 925 926 /* next backup root to be overwritten */ 927 int backup_root_index; 928 929 /* device replace state */ 930 struct btrfs_dev_replace dev_replace; 931 932 struct semaphore uuid_tree_rescan_sem; 933 934 /* Used to reclaim the metadata space in the background. */ 935 struct work_struct async_reclaim_work; 936 struct work_struct async_data_reclaim_work; 937 struct work_struct preempt_reclaim_work; 938 939 spinlock_t unused_bgs_lock; 940 struct list_head unused_bgs; 941 struct mutex unused_bg_unpin_mutex; 942 struct mutex delete_unused_bgs_mutex; 943 944 /* Cached block sizes */ 945 u32 nodesize; 946 u32 sectorsize; 947 /* ilog2 of sectorsize, use to avoid 64bit division */ 948 u32 sectorsize_bits; 949 u32 csum_size; 950 u32 csums_per_leaf; 951 u32 stripesize; 952 953 /* Block groups and devices containing active swapfiles. */ 954 spinlock_t swapfile_pins_lock; 955 struct rb_root swapfile_pins; 956 957 struct crypto_shash *csum_shash; 958 959 /* 960 * Number of send operations in progress. 961 * Updated while holding fs_info::balance_mutex. 962 */ 963 int send_in_progress; 964 965 /* Type of exclusive operation running */ 966 unsigned long exclusive_operation; 967 968 /* 969 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 970 * if the mode is enabled 971 */ 972 union { 973 u64 zone_size; 974 u64 zoned; 975 }; 976 977 /* Max size to emit ZONE_APPEND write command */ 978 u64 max_zone_append_size; 979 struct mutex zoned_meta_io_lock; 980 spinlock_t treelog_bg_lock; 981 u64 treelog_bg; 982 983 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 984 spinlock_t ref_verify_lock; 985 struct rb_root block_tree; 986 #endif 987 988 #ifdef CONFIG_BTRFS_DEBUG 989 struct kobject *debug_kobj; 990 struct kobject *discard_debug_kobj; 991 struct list_head allocated_roots; 992 993 spinlock_t eb_leak_lock; 994 struct list_head allocated_ebs; 995 #endif 996 }; 997 998 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 999 { 1000 return sb->s_fs_info; 1001 } 1002 1003 /* 1004 * The state of btrfs root 1005 */ 1006 enum { 1007 /* 1008 * btrfs_record_root_in_trans is a multi-step process, and it can race 1009 * with the balancing code. But the race is very small, and only the 1010 * first time the root is added to each transaction. So IN_TRANS_SETUP 1011 * is used to tell us when more checks are required 1012 */ 1013 BTRFS_ROOT_IN_TRANS_SETUP, 1014 1015 /* 1016 * Set if tree blocks of this root can be shared by other roots. 1017 * Only subvolume trees and their reloc trees have this bit set. 1018 * Conflicts with TRACK_DIRTY bit. 1019 * 1020 * This affects two things: 1021 * 1022 * - How balance works 1023 * For shareable roots, we need to use reloc tree and do path 1024 * replacement for balance, and need various pre/post hooks for 1025 * snapshot creation to handle them. 1026 * 1027 * While for non-shareable trees, we just simply do a tree search 1028 * with COW. 1029 * 1030 * - How dirty roots are tracked 1031 * For shareable roots, btrfs_record_root_in_trans() is needed to 1032 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1033 * don't need to set this manually. 1034 */ 1035 BTRFS_ROOT_SHAREABLE, 1036 BTRFS_ROOT_TRACK_DIRTY, 1037 BTRFS_ROOT_IN_RADIX, 1038 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1039 BTRFS_ROOT_DEFRAG_RUNNING, 1040 BTRFS_ROOT_FORCE_COW, 1041 BTRFS_ROOT_MULTI_LOG_TASKS, 1042 BTRFS_ROOT_DIRTY, 1043 BTRFS_ROOT_DELETING, 1044 1045 /* 1046 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1047 * 1048 * Set for the subvolume tree owning the reloc tree. 1049 */ 1050 BTRFS_ROOT_DEAD_RELOC_TREE, 1051 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1052 BTRFS_ROOT_DEAD_TREE, 1053 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1054 BTRFS_ROOT_HAS_LOG_TREE, 1055 /* Qgroup flushing is in progress */ 1056 BTRFS_ROOT_QGROUP_FLUSHING, 1057 }; 1058 1059 /* 1060 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1061 * code. For detail check comment in fs/btrfs/qgroup.c. 1062 */ 1063 struct btrfs_qgroup_swapped_blocks { 1064 spinlock_t lock; 1065 /* RM_EMPTY_ROOT() of above blocks[] */ 1066 bool swapped; 1067 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1068 }; 1069 1070 /* 1071 * in ram representation of the tree. extent_root is used for all allocations 1072 * and for the extent tree extent_root root. 1073 */ 1074 struct btrfs_root { 1075 struct extent_buffer *node; 1076 1077 struct extent_buffer *commit_root; 1078 struct btrfs_root *log_root; 1079 struct btrfs_root *reloc_root; 1080 1081 unsigned long state; 1082 struct btrfs_root_item root_item; 1083 struct btrfs_key root_key; 1084 struct btrfs_fs_info *fs_info; 1085 struct extent_io_tree dirty_log_pages; 1086 1087 struct mutex objectid_mutex; 1088 1089 spinlock_t accounting_lock; 1090 struct btrfs_block_rsv *block_rsv; 1091 1092 struct mutex log_mutex; 1093 wait_queue_head_t log_writer_wait; 1094 wait_queue_head_t log_commit_wait[2]; 1095 struct list_head log_ctxs[2]; 1096 /* Used only for log trees of subvolumes, not for the log root tree */ 1097 atomic_t log_writers; 1098 atomic_t log_commit[2]; 1099 /* Used only for log trees of subvolumes, not for the log root tree */ 1100 atomic_t log_batch; 1101 int log_transid; 1102 /* No matter the commit succeeds or not*/ 1103 int log_transid_committed; 1104 /* Just be updated when the commit succeeds. */ 1105 int last_log_commit; 1106 pid_t log_start_pid; 1107 1108 u64 last_trans; 1109 1110 u32 type; 1111 1112 u64 free_objectid; 1113 1114 struct btrfs_key defrag_progress; 1115 struct btrfs_key defrag_max; 1116 1117 /* The dirty list is only used by non-shareable roots */ 1118 struct list_head dirty_list; 1119 1120 struct list_head root_list; 1121 1122 spinlock_t log_extents_lock[2]; 1123 struct list_head logged_list[2]; 1124 1125 int orphan_cleanup_state; 1126 1127 spinlock_t inode_lock; 1128 /* red-black tree that keeps track of in-memory inodes */ 1129 struct rb_root inode_tree; 1130 1131 /* 1132 * radix tree that keeps track of delayed nodes of every inode, 1133 * protected by inode_lock 1134 */ 1135 struct radix_tree_root delayed_nodes_tree; 1136 /* 1137 * right now this just gets used so that a root has its own devid 1138 * for stat. It may be used for more later 1139 */ 1140 dev_t anon_dev; 1141 1142 spinlock_t root_item_lock; 1143 refcount_t refs; 1144 1145 struct mutex delalloc_mutex; 1146 spinlock_t delalloc_lock; 1147 /* 1148 * all of the inodes that have delalloc bytes. It is possible for 1149 * this list to be empty even when there is still dirty data=ordered 1150 * extents waiting to finish IO. 1151 */ 1152 struct list_head delalloc_inodes; 1153 struct list_head delalloc_root; 1154 u64 nr_delalloc_inodes; 1155 1156 struct mutex ordered_extent_mutex; 1157 /* 1158 * this is used by the balancing code to wait for all the pending 1159 * ordered extents 1160 */ 1161 spinlock_t ordered_extent_lock; 1162 1163 /* 1164 * all of the data=ordered extents pending writeback 1165 * these can span multiple transactions and basically include 1166 * every dirty data page that isn't from nodatacow 1167 */ 1168 struct list_head ordered_extents; 1169 struct list_head ordered_root; 1170 u64 nr_ordered_extents; 1171 1172 /* 1173 * Not empty if this subvolume root has gone through tree block swap 1174 * (relocation) 1175 * 1176 * Will be used by reloc_control::dirty_subvol_roots. 1177 */ 1178 struct list_head reloc_dirty_list; 1179 1180 /* 1181 * Number of currently running SEND ioctls to prevent 1182 * manipulation with the read-only status via SUBVOL_SETFLAGS 1183 */ 1184 int send_in_progress; 1185 /* 1186 * Number of currently running deduplication operations that have a 1187 * destination inode belonging to this root. Protected by the lock 1188 * root_item_lock. 1189 */ 1190 int dedupe_in_progress; 1191 /* For exclusion of snapshot creation and nocow writes */ 1192 struct btrfs_drew_lock snapshot_lock; 1193 1194 atomic_t snapshot_force_cow; 1195 1196 /* For qgroup metadata reserved space */ 1197 spinlock_t qgroup_meta_rsv_lock; 1198 u64 qgroup_meta_rsv_pertrans; 1199 u64 qgroup_meta_rsv_prealloc; 1200 wait_queue_head_t qgroup_flush_wait; 1201 1202 /* Number of active swapfiles */ 1203 atomic_t nr_swapfiles; 1204 1205 /* Record pairs of swapped blocks for qgroup */ 1206 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1207 1208 /* Used only by log trees, when logging csum items */ 1209 struct extent_io_tree log_csum_range; 1210 1211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1212 u64 alloc_bytenr; 1213 #endif 1214 1215 #ifdef CONFIG_BTRFS_DEBUG 1216 struct list_head leak_list; 1217 #endif 1218 }; 1219 1220 /* 1221 * Structure that conveys information about an extent that is going to replace 1222 * all the extents in a file range. 1223 */ 1224 struct btrfs_replace_extent_info { 1225 u64 disk_offset; 1226 u64 disk_len; 1227 u64 data_offset; 1228 u64 data_len; 1229 u64 file_offset; 1230 /* Pointer to a file extent item of type regular or prealloc. */ 1231 char *extent_buf; 1232 /* 1233 * Set to true when attempting to replace a file range with a new extent 1234 * described by this structure, set to false when attempting to clone an 1235 * existing extent into a file range. 1236 */ 1237 bool is_new_extent; 1238 /* Meaningful only if is_new_extent is true. */ 1239 int qgroup_reserved; 1240 /* 1241 * Meaningful only if is_new_extent is true. 1242 * Used to track how many extent items we have already inserted in a 1243 * subvolume tree that refer to the extent described by this structure, 1244 * so that we know when to create a new delayed ref or update an existing 1245 * one. 1246 */ 1247 int insertions; 1248 }; 1249 1250 /* Arguments for btrfs_drop_extents() */ 1251 struct btrfs_drop_extents_args { 1252 /* Input parameters */ 1253 1254 /* 1255 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1256 * If 'replace_extent' is true, this must not be NULL. Also the path 1257 * is always released except if 'replace_extent' is true and 1258 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1259 * the path is kept locked. 1260 */ 1261 struct btrfs_path *path; 1262 /* Start offset of the range to drop extents from */ 1263 u64 start; 1264 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1265 u64 end; 1266 /* If true drop all the extent maps in the range */ 1267 bool drop_cache; 1268 /* 1269 * If true it means we want to insert a new extent after dropping all 1270 * the extents in the range. If this is true, the 'extent_item_size' 1271 * parameter must be set as well and the 'extent_inserted' field will 1272 * be set to true by btrfs_drop_extents() if it could insert the new 1273 * extent. 1274 * Note: when this is set to true the path must not be NULL. 1275 */ 1276 bool replace_extent; 1277 /* 1278 * Used if 'replace_extent' is true. Size of the file extent item to 1279 * insert after dropping all existing extents in the range 1280 */ 1281 u32 extent_item_size; 1282 1283 /* Output parameters */ 1284 1285 /* 1286 * Set to the minimum between the input parameter 'end' and the end 1287 * (exclusive, last byte + 1) of the last dropped extent. This is always 1288 * set even if btrfs_drop_extents() returns an error. 1289 */ 1290 u64 drop_end; 1291 /* 1292 * The number of allocated bytes found in the range. This can be smaller 1293 * than the range's length when there are holes in the range. 1294 */ 1295 u64 bytes_found; 1296 /* 1297 * Only set if 'replace_extent' is true. Set to true if we were able 1298 * to insert a replacement extent after dropping all extents in the 1299 * range, otherwise set to false by btrfs_drop_extents(). 1300 * Also, if btrfs_drop_extents() has set this to true it means it 1301 * returned with the path locked, otherwise if it has set this to 1302 * false it has returned with the path released. 1303 */ 1304 bool extent_inserted; 1305 }; 1306 1307 struct btrfs_file_private { 1308 void *filldir_buf; 1309 }; 1310 1311 1312 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1313 { 1314 1315 return info->nodesize - sizeof(struct btrfs_header); 1316 } 1317 1318 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1319 1320 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1321 { 1322 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1323 } 1324 1325 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1326 { 1327 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1328 } 1329 1330 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1331 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1332 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1333 { 1334 return BTRFS_MAX_ITEM_SIZE(info) - 1335 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1336 } 1337 1338 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1339 { 1340 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1341 } 1342 1343 /* 1344 * Flags for mount options. 1345 * 1346 * Note: don't forget to add new options to btrfs_show_options() 1347 */ 1348 #define BTRFS_MOUNT_NODATASUM (1 << 0) 1349 #define BTRFS_MOUNT_NODATACOW (1 << 1) 1350 #define BTRFS_MOUNT_NOBARRIER (1 << 2) 1351 #define BTRFS_MOUNT_SSD (1 << 3) 1352 #define BTRFS_MOUNT_DEGRADED (1 << 4) 1353 #define BTRFS_MOUNT_COMPRESS (1 << 5) 1354 #define BTRFS_MOUNT_NOTREELOG (1 << 6) 1355 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7) 1356 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8) 1357 #define BTRFS_MOUNT_NOSSD (1 << 9) 1358 #define BTRFS_MOUNT_DISCARD_SYNC (1 << 10) 1359 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11) 1360 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12) 1361 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13) 1362 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14) 1363 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15) 1364 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16) 1365 /* bit 17 is free */ 1366 #define BTRFS_MOUNT_USEBACKUPROOT (1 << 18) 1367 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19) 1368 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20) 1369 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21) 1370 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22) 1371 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23) 1372 #define BTRFS_MOUNT_FRAGMENT_DATA (1 << 24) 1373 #define BTRFS_MOUNT_FRAGMENT_METADATA (1 << 25) 1374 #define BTRFS_MOUNT_FREE_SPACE_TREE (1 << 26) 1375 #define BTRFS_MOUNT_NOLOGREPLAY (1 << 27) 1376 #define BTRFS_MOUNT_REF_VERIFY (1 << 28) 1377 #define BTRFS_MOUNT_DISCARD_ASYNC (1 << 29) 1378 #define BTRFS_MOUNT_IGNOREBADROOTS (1 << 30) 1379 #define BTRFS_MOUNT_IGNOREDATACSUMS (1 << 31) 1380 1381 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1382 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1383 1384 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1385 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1386 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1387 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1388 BTRFS_MOUNT_##opt) 1389 1390 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1391 do { \ 1392 if (!btrfs_test_opt(fs_info, opt)) \ 1393 btrfs_info(fs_info, fmt, ##args); \ 1394 btrfs_set_opt(fs_info->mount_opt, opt); \ 1395 } while (0) 1396 1397 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1398 do { \ 1399 if (btrfs_test_opt(fs_info, opt)) \ 1400 btrfs_info(fs_info, fmt, ##args); \ 1401 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1402 } while (0) 1403 1404 /* 1405 * Requests for changes that need to be done during transaction commit. 1406 * 1407 * Internal mount options that are used for special handling of the real 1408 * mount options (eg. cannot be set during remount and have to be set during 1409 * transaction commit) 1410 */ 1411 1412 #define BTRFS_PENDING_COMMIT (0) 1413 1414 #define btrfs_test_pending(info, opt) \ 1415 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1416 #define btrfs_set_pending(info, opt) \ 1417 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1418 #define btrfs_clear_pending(info, opt) \ 1419 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1420 1421 /* 1422 * Helpers for setting pending mount option changes. 1423 * 1424 * Expects corresponding macros 1425 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1426 */ 1427 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1428 do { \ 1429 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1430 btrfs_info((info), fmt, ##args); \ 1431 btrfs_set_pending((info), SET_##opt); \ 1432 btrfs_clear_pending((info), CLEAR_##opt); \ 1433 } \ 1434 } while(0) 1435 1436 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1437 do { \ 1438 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1439 btrfs_info((info), fmt, ##args); \ 1440 btrfs_set_pending((info), CLEAR_##opt); \ 1441 btrfs_clear_pending((info), SET_##opt); \ 1442 } \ 1443 } while(0) 1444 1445 /* 1446 * Inode flags 1447 */ 1448 #define BTRFS_INODE_NODATASUM (1 << 0) 1449 #define BTRFS_INODE_NODATACOW (1 << 1) 1450 #define BTRFS_INODE_READONLY (1 << 2) 1451 #define BTRFS_INODE_NOCOMPRESS (1 << 3) 1452 #define BTRFS_INODE_PREALLOC (1 << 4) 1453 #define BTRFS_INODE_SYNC (1 << 5) 1454 #define BTRFS_INODE_IMMUTABLE (1 << 6) 1455 #define BTRFS_INODE_APPEND (1 << 7) 1456 #define BTRFS_INODE_NODUMP (1 << 8) 1457 #define BTRFS_INODE_NOATIME (1 << 9) 1458 #define BTRFS_INODE_DIRSYNC (1 << 10) 1459 #define BTRFS_INODE_COMPRESS (1 << 11) 1460 1461 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31) 1462 1463 #define BTRFS_INODE_FLAG_MASK \ 1464 (BTRFS_INODE_NODATASUM | \ 1465 BTRFS_INODE_NODATACOW | \ 1466 BTRFS_INODE_READONLY | \ 1467 BTRFS_INODE_NOCOMPRESS | \ 1468 BTRFS_INODE_PREALLOC | \ 1469 BTRFS_INODE_SYNC | \ 1470 BTRFS_INODE_IMMUTABLE | \ 1471 BTRFS_INODE_APPEND | \ 1472 BTRFS_INODE_NODUMP | \ 1473 BTRFS_INODE_NOATIME | \ 1474 BTRFS_INODE_DIRSYNC | \ 1475 BTRFS_INODE_COMPRESS | \ 1476 BTRFS_INODE_ROOT_ITEM_INIT) 1477 1478 struct btrfs_map_token { 1479 struct extent_buffer *eb; 1480 char *kaddr; 1481 unsigned long offset; 1482 }; 1483 1484 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1485 ((bytes) >> (fs_info)->sectorsize_bits) 1486 1487 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1488 struct extent_buffer *eb) 1489 { 1490 token->eb = eb; 1491 token->kaddr = page_address(eb->pages[0]); 1492 token->offset = 0; 1493 } 1494 1495 /* some macros to generate set/get functions for the struct fields. This 1496 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1497 * one for u8: 1498 */ 1499 #define le8_to_cpu(v) (v) 1500 #define cpu_to_le8(v) (v) 1501 #define __le8 u8 1502 1503 static inline u8 get_unaligned_le8(const void *p) 1504 { 1505 return *(u8 *)p; 1506 } 1507 1508 static inline void put_unaligned_le8(u8 val, void *p) 1509 { 1510 *(u8 *)p = val; 1511 } 1512 1513 #define read_eb_member(eb, ptr, type, member, result) (\ 1514 read_extent_buffer(eb, (char *)(result), \ 1515 ((unsigned long)(ptr)) + \ 1516 offsetof(type, member), \ 1517 sizeof(((type *)0)->member))) 1518 1519 #define write_eb_member(eb, ptr, type, member, result) (\ 1520 write_extent_buffer(eb, (char *)(result), \ 1521 ((unsigned long)(ptr)) + \ 1522 offsetof(type, member), \ 1523 sizeof(((type *)0)->member))) 1524 1525 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1526 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1527 const void *ptr, unsigned long off); \ 1528 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1529 const void *ptr, unsigned long off, \ 1530 u##bits val); \ 1531 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1532 const void *ptr, unsigned long off); \ 1533 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1534 unsigned long off, u##bits val); 1535 1536 DECLARE_BTRFS_SETGET_BITS(8) 1537 DECLARE_BTRFS_SETGET_BITS(16) 1538 DECLARE_BTRFS_SETGET_BITS(32) 1539 DECLARE_BTRFS_SETGET_BITS(64) 1540 1541 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1542 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1543 const type *s) \ 1544 { \ 1545 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1546 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1547 } \ 1548 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1549 u##bits val) \ 1550 { \ 1551 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1552 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1553 } \ 1554 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1555 const type *s) \ 1556 { \ 1557 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1558 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1559 } \ 1560 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1561 type *s, u##bits val) \ 1562 { \ 1563 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1564 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1565 } 1566 1567 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1568 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1569 { \ 1570 const type *p = page_address(eb->pages[0]) + \ 1571 offset_in_page(eb->start); \ 1572 return get_unaligned_le##bits(&p->member); \ 1573 } \ 1574 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1575 u##bits val) \ 1576 { \ 1577 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1578 put_unaligned_le##bits(val, &p->member); \ 1579 } 1580 1581 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1582 static inline u##bits btrfs_##name(const type *s) \ 1583 { \ 1584 return get_unaligned_le##bits(&s->member); \ 1585 } \ 1586 static inline void btrfs_set_##name(type *s, u##bits val) \ 1587 { \ 1588 put_unaligned_le##bits(val, &s->member); \ 1589 } 1590 1591 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1592 struct btrfs_dev_item *s) 1593 { 1594 BUILD_BUG_ON(sizeof(u64) != 1595 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1596 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1597 total_bytes)); 1598 } 1599 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1600 struct btrfs_dev_item *s, 1601 u64 val) 1602 { 1603 BUILD_BUG_ON(sizeof(u64) != 1604 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1605 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1606 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1607 } 1608 1609 1610 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1611 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1612 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1613 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1614 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1615 start_offset, 64); 1616 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1617 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1618 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1619 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1620 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1621 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1622 1623 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1624 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1625 total_bytes, 64); 1626 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1627 bytes_used, 64); 1628 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1629 io_align, 32); 1630 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1631 io_width, 32); 1632 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1633 sector_size, 32); 1634 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1635 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1636 dev_group, 32); 1637 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1638 seek_speed, 8); 1639 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1640 bandwidth, 8); 1641 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1642 generation, 64); 1643 1644 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1645 { 1646 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1647 } 1648 1649 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1650 { 1651 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1652 } 1653 1654 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1655 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1656 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1657 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1658 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1659 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1660 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1661 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1662 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1663 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1664 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1665 1666 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1667 { 1668 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1669 } 1670 1671 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1672 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1673 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1674 stripe_len, 64); 1675 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1676 io_align, 32); 1677 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1678 io_width, 32); 1679 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1680 sector_size, 32); 1681 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1682 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1683 num_stripes, 16); 1684 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1685 sub_stripes, 16); 1686 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1687 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1688 1689 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1690 int nr) 1691 { 1692 unsigned long offset = (unsigned long)c; 1693 offset += offsetof(struct btrfs_chunk, stripe); 1694 offset += nr * sizeof(struct btrfs_stripe); 1695 return (struct btrfs_stripe *)offset; 1696 } 1697 1698 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1699 { 1700 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1701 } 1702 1703 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1704 struct btrfs_chunk *c, int nr) 1705 { 1706 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1707 } 1708 1709 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1710 struct btrfs_chunk *c, int nr) 1711 { 1712 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1713 } 1714 1715 /* struct btrfs_block_group_item */ 1716 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1717 used, 64); 1718 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1719 used, 64); 1720 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1721 struct btrfs_block_group_item, chunk_objectid, 64); 1722 1723 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1724 struct btrfs_block_group_item, chunk_objectid, 64); 1725 BTRFS_SETGET_FUNCS(block_group_flags, 1726 struct btrfs_block_group_item, flags, 64); 1727 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1728 struct btrfs_block_group_item, flags, 64); 1729 1730 /* struct btrfs_free_space_info */ 1731 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1732 extent_count, 32); 1733 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1734 1735 /* struct btrfs_inode_ref */ 1736 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1737 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1738 1739 /* struct btrfs_inode_extref */ 1740 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1741 parent_objectid, 64); 1742 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1743 name_len, 16); 1744 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1745 1746 /* struct btrfs_inode_item */ 1747 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1748 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1749 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1750 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1751 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1752 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1753 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1754 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1755 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1756 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1757 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1758 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1759 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1760 generation, 64); 1761 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1762 sequence, 64); 1763 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1764 transid, 64); 1765 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1766 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1767 nbytes, 64); 1768 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1769 block_group, 64); 1770 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1771 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1772 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1773 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1774 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1775 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1776 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1777 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1778 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1779 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1780 1781 /* struct btrfs_dev_extent */ 1782 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1783 chunk_tree, 64); 1784 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1785 chunk_objectid, 64); 1786 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1787 chunk_offset, 64); 1788 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1789 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1790 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1791 generation, 64); 1792 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1793 1794 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1795 1796 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1797 struct btrfs_tree_block_info *item, 1798 struct btrfs_disk_key *key) 1799 { 1800 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1801 } 1802 1803 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1804 struct btrfs_tree_block_info *item, 1805 struct btrfs_disk_key *key) 1806 { 1807 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1808 } 1809 1810 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1811 root, 64); 1812 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1813 objectid, 64); 1814 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1815 offset, 64); 1816 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1817 count, 32); 1818 1819 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1820 count, 32); 1821 1822 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1823 type, 8); 1824 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1825 offset, 64); 1826 1827 static inline u32 btrfs_extent_inline_ref_size(int type) 1828 { 1829 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1830 type == BTRFS_SHARED_BLOCK_REF_KEY) 1831 return sizeof(struct btrfs_extent_inline_ref); 1832 if (type == BTRFS_SHARED_DATA_REF_KEY) 1833 return sizeof(struct btrfs_shared_data_ref) + 1834 sizeof(struct btrfs_extent_inline_ref); 1835 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1836 return sizeof(struct btrfs_extent_data_ref) + 1837 offsetof(struct btrfs_extent_inline_ref, offset); 1838 return 0; 1839 } 1840 1841 /* struct btrfs_node */ 1842 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1843 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1844 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1845 blockptr, 64); 1846 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1847 generation, 64); 1848 1849 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1850 { 1851 unsigned long ptr; 1852 ptr = offsetof(struct btrfs_node, ptrs) + 1853 sizeof(struct btrfs_key_ptr) * nr; 1854 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1855 } 1856 1857 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1858 int nr, u64 val) 1859 { 1860 unsigned long ptr; 1861 ptr = offsetof(struct btrfs_node, ptrs) + 1862 sizeof(struct btrfs_key_ptr) * nr; 1863 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1864 } 1865 1866 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1867 { 1868 unsigned long ptr; 1869 ptr = offsetof(struct btrfs_node, ptrs) + 1870 sizeof(struct btrfs_key_ptr) * nr; 1871 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1872 } 1873 1874 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1875 int nr, u64 val) 1876 { 1877 unsigned long ptr; 1878 ptr = offsetof(struct btrfs_node, ptrs) + 1879 sizeof(struct btrfs_key_ptr) * nr; 1880 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1881 } 1882 1883 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1884 { 1885 return offsetof(struct btrfs_node, ptrs) + 1886 sizeof(struct btrfs_key_ptr) * nr; 1887 } 1888 1889 void btrfs_node_key(const struct extent_buffer *eb, 1890 struct btrfs_disk_key *disk_key, int nr); 1891 1892 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1893 struct btrfs_disk_key *disk_key, int nr) 1894 { 1895 unsigned long ptr; 1896 ptr = btrfs_node_key_ptr_offset(nr); 1897 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1898 struct btrfs_key_ptr, key, disk_key); 1899 } 1900 1901 /* struct btrfs_item */ 1902 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); 1903 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); 1904 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 1905 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 1906 1907 static inline unsigned long btrfs_item_nr_offset(int nr) 1908 { 1909 return offsetof(struct btrfs_leaf, items) + 1910 sizeof(struct btrfs_item) * nr; 1911 } 1912 1913 static inline struct btrfs_item *btrfs_item_nr(int nr) 1914 { 1915 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 1916 } 1917 1918 static inline u32 btrfs_item_end(const struct extent_buffer *eb, 1919 struct btrfs_item *item) 1920 { 1921 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); 1922 } 1923 1924 static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr) 1925 { 1926 return btrfs_item_end(eb, btrfs_item_nr(nr)); 1927 } 1928 1929 static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr) 1930 { 1931 return btrfs_item_offset(eb, btrfs_item_nr(nr)); 1932 } 1933 1934 static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr) 1935 { 1936 return btrfs_item_size(eb, btrfs_item_nr(nr)); 1937 } 1938 1939 static inline void btrfs_item_key(const struct extent_buffer *eb, 1940 struct btrfs_disk_key *disk_key, int nr) 1941 { 1942 struct btrfs_item *item = btrfs_item_nr(nr); 1943 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 1944 } 1945 1946 static inline void btrfs_set_item_key(struct extent_buffer *eb, 1947 struct btrfs_disk_key *disk_key, int nr) 1948 { 1949 struct btrfs_item *item = btrfs_item_nr(nr); 1950 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 1951 } 1952 1953 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 1954 1955 /* 1956 * struct btrfs_root_ref 1957 */ 1958 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 1959 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 1960 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 1961 1962 /* struct btrfs_dir_item */ 1963 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 1964 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 1965 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 1966 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 1967 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 1968 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 1969 data_len, 16); 1970 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 1971 name_len, 16); 1972 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 1973 transid, 64); 1974 1975 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 1976 const struct btrfs_dir_item *item, 1977 struct btrfs_disk_key *key) 1978 { 1979 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 1980 } 1981 1982 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 1983 struct btrfs_dir_item *item, 1984 const struct btrfs_disk_key *key) 1985 { 1986 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 1987 } 1988 1989 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 1990 num_entries, 64); 1991 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 1992 num_bitmaps, 64); 1993 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 1994 generation, 64); 1995 1996 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 1997 const struct btrfs_free_space_header *h, 1998 struct btrfs_disk_key *key) 1999 { 2000 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2001 } 2002 2003 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2004 struct btrfs_free_space_header *h, 2005 const struct btrfs_disk_key *key) 2006 { 2007 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2008 } 2009 2010 /* struct btrfs_disk_key */ 2011 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2012 objectid, 64); 2013 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2014 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2015 2016 #ifdef __LITTLE_ENDIAN 2017 2018 /* 2019 * Optimized helpers for little-endian architectures where CPU and on-disk 2020 * structures have the same endianness and we can skip conversions. 2021 */ 2022 2023 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2024 const struct btrfs_disk_key *disk_key) 2025 { 2026 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2027 } 2028 2029 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2030 const struct btrfs_key *cpu_key) 2031 { 2032 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2033 } 2034 2035 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2036 struct btrfs_key *cpu_key, int nr) 2037 { 2038 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2039 2040 btrfs_node_key(eb, disk_key, nr); 2041 } 2042 2043 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2044 struct btrfs_key *cpu_key, int nr) 2045 { 2046 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2047 2048 btrfs_item_key(eb, disk_key, nr); 2049 } 2050 2051 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2052 const struct btrfs_dir_item *item, 2053 struct btrfs_key *cpu_key) 2054 { 2055 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2056 2057 btrfs_dir_item_key(eb, item, disk_key); 2058 } 2059 2060 #else 2061 2062 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2063 const struct btrfs_disk_key *disk) 2064 { 2065 cpu->offset = le64_to_cpu(disk->offset); 2066 cpu->type = disk->type; 2067 cpu->objectid = le64_to_cpu(disk->objectid); 2068 } 2069 2070 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2071 const struct btrfs_key *cpu) 2072 { 2073 disk->offset = cpu_to_le64(cpu->offset); 2074 disk->type = cpu->type; 2075 disk->objectid = cpu_to_le64(cpu->objectid); 2076 } 2077 2078 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2079 struct btrfs_key *key, int nr) 2080 { 2081 struct btrfs_disk_key disk_key; 2082 btrfs_node_key(eb, &disk_key, nr); 2083 btrfs_disk_key_to_cpu(key, &disk_key); 2084 } 2085 2086 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2087 struct btrfs_key *key, int nr) 2088 { 2089 struct btrfs_disk_key disk_key; 2090 btrfs_item_key(eb, &disk_key, nr); 2091 btrfs_disk_key_to_cpu(key, &disk_key); 2092 } 2093 2094 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2095 const struct btrfs_dir_item *item, 2096 struct btrfs_key *key) 2097 { 2098 struct btrfs_disk_key disk_key; 2099 btrfs_dir_item_key(eb, item, &disk_key); 2100 btrfs_disk_key_to_cpu(key, &disk_key); 2101 } 2102 2103 #endif 2104 2105 /* struct btrfs_header */ 2106 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2107 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2108 generation, 64); 2109 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2110 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2111 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2112 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2113 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2114 generation, 64); 2115 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2116 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2117 nritems, 32); 2118 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2119 2120 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2121 { 2122 return (btrfs_header_flags(eb) & flag) == flag; 2123 } 2124 2125 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2126 { 2127 u64 flags = btrfs_header_flags(eb); 2128 btrfs_set_header_flags(eb, flags | flag); 2129 } 2130 2131 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2132 { 2133 u64 flags = btrfs_header_flags(eb); 2134 btrfs_set_header_flags(eb, flags & ~flag); 2135 } 2136 2137 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2138 { 2139 u64 flags = btrfs_header_flags(eb); 2140 return flags >> BTRFS_BACKREF_REV_SHIFT; 2141 } 2142 2143 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2144 int rev) 2145 { 2146 u64 flags = btrfs_header_flags(eb); 2147 flags &= ~BTRFS_BACKREF_REV_MASK; 2148 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2149 btrfs_set_header_flags(eb, flags); 2150 } 2151 2152 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2153 { 2154 return btrfs_header_level(eb) == 0; 2155 } 2156 2157 /* struct btrfs_root_item */ 2158 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2159 generation, 64); 2160 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2161 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2162 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2163 2164 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2165 generation, 64); 2166 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2167 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2168 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2169 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2170 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2171 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2172 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2173 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2174 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2175 last_snapshot, 64); 2176 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2177 generation_v2, 64); 2178 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2179 ctransid, 64); 2180 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2181 otransid, 64); 2182 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2183 stransid, 64); 2184 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2185 rtransid, 64); 2186 2187 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2188 { 2189 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2190 } 2191 2192 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2193 { 2194 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2195 } 2196 2197 /* struct btrfs_root_backup */ 2198 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2199 tree_root, 64); 2200 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2201 tree_root_gen, 64); 2202 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2203 tree_root_level, 8); 2204 2205 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2206 chunk_root, 64); 2207 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2208 chunk_root_gen, 64); 2209 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2210 chunk_root_level, 8); 2211 2212 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2213 extent_root, 64); 2214 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2215 extent_root_gen, 64); 2216 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2217 extent_root_level, 8); 2218 2219 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2220 fs_root, 64); 2221 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2222 fs_root_gen, 64); 2223 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2224 fs_root_level, 8); 2225 2226 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2227 dev_root, 64); 2228 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2229 dev_root_gen, 64); 2230 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2231 dev_root_level, 8); 2232 2233 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2234 csum_root, 64); 2235 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2236 csum_root_gen, 64); 2237 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2238 csum_root_level, 8); 2239 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2240 total_bytes, 64); 2241 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2242 bytes_used, 64); 2243 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2244 num_devices, 64); 2245 2246 /* struct btrfs_balance_item */ 2247 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2248 2249 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2250 const struct btrfs_balance_item *bi, 2251 struct btrfs_disk_balance_args *ba) 2252 { 2253 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2254 } 2255 2256 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2257 struct btrfs_balance_item *bi, 2258 const struct btrfs_disk_balance_args *ba) 2259 { 2260 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2261 } 2262 2263 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2264 const struct btrfs_balance_item *bi, 2265 struct btrfs_disk_balance_args *ba) 2266 { 2267 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2268 } 2269 2270 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2271 struct btrfs_balance_item *bi, 2272 const struct btrfs_disk_balance_args *ba) 2273 { 2274 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2275 } 2276 2277 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2278 const struct btrfs_balance_item *bi, 2279 struct btrfs_disk_balance_args *ba) 2280 { 2281 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2282 } 2283 2284 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2285 struct btrfs_balance_item *bi, 2286 const struct btrfs_disk_balance_args *ba) 2287 { 2288 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2289 } 2290 2291 static inline void 2292 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2293 const struct btrfs_disk_balance_args *disk) 2294 { 2295 memset(cpu, 0, sizeof(*cpu)); 2296 2297 cpu->profiles = le64_to_cpu(disk->profiles); 2298 cpu->usage = le64_to_cpu(disk->usage); 2299 cpu->devid = le64_to_cpu(disk->devid); 2300 cpu->pstart = le64_to_cpu(disk->pstart); 2301 cpu->pend = le64_to_cpu(disk->pend); 2302 cpu->vstart = le64_to_cpu(disk->vstart); 2303 cpu->vend = le64_to_cpu(disk->vend); 2304 cpu->target = le64_to_cpu(disk->target); 2305 cpu->flags = le64_to_cpu(disk->flags); 2306 cpu->limit = le64_to_cpu(disk->limit); 2307 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2308 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2309 } 2310 2311 static inline void 2312 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2313 const struct btrfs_balance_args *cpu) 2314 { 2315 memset(disk, 0, sizeof(*disk)); 2316 2317 disk->profiles = cpu_to_le64(cpu->profiles); 2318 disk->usage = cpu_to_le64(cpu->usage); 2319 disk->devid = cpu_to_le64(cpu->devid); 2320 disk->pstart = cpu_to_le64(cpu->pstart); 2321 disk->pend = cpu_to_le64(cpu->pend); 2322 disk->vstart = cpu_to_le64(cpu->vstart); 2323 disk->vend = cpu_to_le64(cpu->vend); 2324 disk->target = cpu_to_le64(cpu->target); 2325 disk->flags = cpu_to_le64(cpu->flags); 2326 disk->limit = cpu_to_le64(cpu->limit); 2327 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2328 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2329 } 2330 2331 /* struct btrfs_super_block */ 2332 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2333 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2334 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2335 generation, 64); 2336 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2337 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2338 struct btrfs_super_block, sys_chunk_array_size, 32); 2339 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2340 struct btrfs_super_block, chunk_root_generation, 64); 2341 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2342 root_level, 8); 2343 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2344 chunk_root, 64); 2345 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2346 chunk_root_level, 8); 2347 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2348 log_root, 64); 2349 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2350 log_root_transid, 64); 2351 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2352 log_root_level, 8); 2353 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2354 total_bytes, 64); 2355 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2356 bytes_used, 64); 2357 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2358 sectorsize, 32); 2359 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2360 nodesize, 32); 2361 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2362 stripesize, 32); 2363 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2364 root_dir_objectid, 64); 2365 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2366 num_devices, 64); 2367 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2368 compat_flags, 64); 2369 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2370 compat_ro_flags, 64); 2371 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2372 incompat_flags, 64); 2373 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2374 csum_type, 16); 2375 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2376 cache_generation, 64); 2377 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2378 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2379 uuid_tree_generation, 64); 2380 2381 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2382 const char *btrfs_super_csum_name(u16 csum_type); 2383 const char *btrfs_super_csum_driver(u16 csum_type); 2384 size_t __attribute_const__ btrfs_get_num_csums(void); 2385 2386 2387 /* 2388 * The leaf data grows from end-to-front in the node. 2389 * this returns the address of the start of the last item, 2390 * which is the stop of the leaf data stack 2391 */ 2392 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2393 { 2394 u32 nr = btrfs_header_nritems(leaf); 2395 2396 if (nr == 0) 2397 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2398 return btrfs_item_offset_nr(leaf, nr - 1); 2399 } 2400 2401 /* struct btrfs_file_extent_item */ 2402 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2403 type, 8); 2404 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2405 struct btrfs_file_extent_item, disk_bytenr, 64); 2406 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2407 struct btrfs_file_extent_item, offset, 64); 2408 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2409 struct btrfs_file_extent_item, generation, 64); 2410 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2411 struct btrfs_file_extent_item, num_bytes, 64); 2412 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2413 struct btrfs_file_extent_item, ram_bytes, 64); 2414 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2415 struct btrfs_file_extent_item, disk_num_bytes, 64); 2416 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2417 struct btrfs_file_extent_item, compression, 8); 2418 2419 static inline unsigned long 2420 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2421 { 2422 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2423 } 2424 2425 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2426 { 2427 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2428 } 2429 2430 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2431 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2432 disk_bytenr, 64); 2433 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2434 generation, 64); 2435 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2436 disk_num_bytes, 64); 2437 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2438 offset, 64); 2439 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2440 num_bytes, 64); 2441 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2442 ram_bytes, 64); 2443 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2444 compression, 8); 2445 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2446 encryption, 8); 2447 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2448 other_encoding, 16); 2449 2450 /* 2451 * this returns the number of bytes used by the item on disk, minus the 2452 * size of any extent headers. If a file is compressed on disk, this is 2453 * the compressed size 2454 */ 2455 static inline u32 btrfs_file_extent_inline_item_len( 2456 const struct extent_buffer *eb, 2457 struct btrfs_item *e) 2458 { 2459 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2460 } 2461 2462 /* btrfs_qgroup_status_item */ 2463 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2464 generation, 64); 2465 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2466 version, 64); 2467 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2468 flags, 64); 2469 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2470 rescan, 64); 2471 2472 /* btrfs_qgroup_info_item */ 2473 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2474 generation, 64); 2475 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2476 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2477 rfer_cmpr, 64); 2478 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2479 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2480 excl_cmpr, 64); 2481 2482 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2483 struct btrfs_qgroup_info_item, generation, 64); 2484 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2485 rfer, 64); 2486 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2487 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2488 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2489 excl, 64); 2490 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2491 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2492 2493 /* btrfs_qgroup_limit_item */ 2494 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2495 flags, 64); 2496 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2497 max_rfer, 64); 2498 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2499 max_excl, 64); 2500 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2501 rsv_rfer, 64); 2502 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2503 rsv_excl, 64); 2504 2505 /* btrfs_dev_replace_item */ 2506 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2507 struct btrfs_dev_replace_item, src_devid, 64); 2508 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2509 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2510 64); 2511 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2512 replace_state, 64); 2513 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2514 time_started, 64); 2515 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2516 time_stopped, 64); 2517 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2518 num_write_errors, 64); 2519 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2520 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2521 64); 2522 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2523 cursor_left, 64); 2524 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2525 cursor_right, 64); 2526 2527 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2528 struct btrfs_dev_replace_item, src_devid, 64); 2529 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2530 struct btrfs_dev_replace_item, 2531 cont_reading_from_srcdev_mode, 64); 2532 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2533 struct btrfs_dev_replace_item, replace_state, 64); 2534 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2535 struct btrfs_dev_replace_item, time_started, 64); 2536 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2537 struct btrfs_dev_replace_item, time_stopped, 64); 2538 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2539 struct btrfs_dev_replace_item, num_write_errors, 64); 2540 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2541 struct btrfs_dev_replace_item, 2542 num_uncorrectable_read_errors, 64); 2543 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2544 struct btrfs_dev_replace_item, cursor_left, 64); 2545 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2546 struct btrfs_dev_replace_item, cursor_right, 64); 2547 2548 /* helper function to cast into the data area of the leaf. */ 2549 #define btrfs_item_ptr(leaf, slot, type) \ 2550 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2551 btrfs_item_offset_nr(leaf, slot))) 2552 2553 #define btrfs_item_ptr_offset(leaf, slot) \ 2554 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2555 btrfs_item_offset_nr(leaf, slot))) 2556 2557 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2558 { 2559 return crc32c(crc, address, length); 2560 } 2561 2562 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2563 { 2564 put_unaligned_le32(~crc, result); 2565 } 2566 2567 static inline u64 btrfs_name_hash(const char *name, int len) 2568 { 2569 return crc32c((u32)~1, name, len); 2570 } 2571 2572 /* 2573 * Figure the key offset of an extended inode ref 2574 */ 2575 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2576 int len) 2577 { 2578 return (u64) crc32c(parent_objectid, name, len); 2579 } 2580 2581 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2582 { 2583 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2584 } 2585 2586 /* extent-tree.c */ 2587 2588 enum btrfs_inline_ref_type { 2589 BTRFS_REF_TYPE_INVALID, 2590 BTRFS_REF_TYPE_BLOCK, 2591 BTRFS_REF_TYPE_DATA, 2592 BTRFS_REF_TYPE_ANY, 2593 }; 2594 2595 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2596 struct btrfs_extent_inline_ref *iref, 2597 enum btrfs_inline_ref_type is_data); 2598 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2599 2600 /* 2601 * Take the number of bytes to be checksummmed and figure out how many leaves 2602 * it would require to store the csums for that many bytes. 2603 */ 2604 static inline u64 btrfs_csum_bytes_to_leaves( 2605 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2606 { 2607 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2608 2609 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2610 } 2611 2612 /* 2613 * Use this if we would be adding new items, as we could split nodes as we cow 2614 * down the tree. 2615 */ 2616 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2617 unsigned num_items) 2618 { 2619 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2620 } 2621 2622 /* 2623 * Doing a truncate or a modification won't result in new nodes or leaves, just 2624 * what we need for COW. 2625 */ 2626 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2627 unsigned num_items) 2628 { 2629 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2630 } 2631 2632 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2633 u64 start, u64 num_bytes); 2634 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2635 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2636 unsigned long count); 2637 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2638 struct btrfs_delayed_ref_root *delayed_refs, 2639 struct btrfs_delayed_ref_head *head); 2640 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2641 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2642 struct btrfs_fs_info *fs_info, u64 bytenr, 2643 u64 offset, int metadata, u64 *refs, u64 *flags); 2644 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2645 int reserved); 2646 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2647 u64 bytenr, u64 num_bytes); 2648 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2649 int btrfs_cross_ref_exist(struct btrfs_root *root, 2650 u64 objectid, u64 offset, u64 bytenr, bool strict); 2651 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2652 struct btrfs_root *root, 2653 u64 parent, u64 root_objectid, 2654 const struct btrfs_disk_key *key, 2655 int level, u64 hint, 2656 u64 empty_size, 2657 enum btrfs_lock_nesting nest); 2658 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2659 struct btrfs_root *root, 2660 struct extent_buffer *buf, 2661 u64 parent, int last_ref); 2662 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2663 struct btrfs_root *root, u64 owner, 2664 u64 offset, u64 ram_bytes, 2665 struct btrfs_key *ins); 2666 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2667 u64 root_objectid, u64 owner, u64 offset, 2668 struct btrfs_key *ins); 2669 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2670 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2671 struct btrfs_key *ins, int is_data, int delalloc); 2672 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2673 struct extent_buffer *buf, int full_backref); 2674 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2675 struct extent_buffer *buf, int full_backref); 2676 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2677 struct extent_buffer *eb, u64 flags, 2678 int level, int is_data); 2679 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2680 2681 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2682 u64 start, u64 len, int delalloc); 2683 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2684 u64 len); 2685 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2686 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2687 struct btrfs_ref *generic_ref); 2688 2689 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr); 2690 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2691 2692 /* 2693 * Different levels for to flush space when doing space reservations. 2694 * 2695 * The higher the level, the more methods we try to reclaim space. 2696 */ 2697 enum btrfs_reserve_flush_enum { 2698 /* If we are in the transaction, we can't flush anything.*/ 2699 BTRFS_RESERVE_NO_FLUSH, 2700 2701 /* 2702 * Flush space by: 2703 * - Running delayed inode items 2704 * - Allocating a new chunk 2705 */ 2706 BTRFS_RESERVE_FLUSH_LIMIT, 2707 2708 /* 2709 * Flush space by: 2710 * - Running delayed inode items 2711 * - Running delayed refs 2712 * - Running delalloc and waiting for ordered extents 2713 * - Allocating a new chunk 2714 */ 2715 BTRFS_RESERVE_FLUSH_EVICT, 2716 2717 /* 2718 * Flush space by above mentioned methods and by: 2719 * - Running delayed iputs 2720 * - Commiting transaction 2721 * 2722 * Can be interruped by fatal signal. 2723 */ 2724 BTRFS_RESERVE_FLUSH_DATA, 2725 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2726 BTRFS_RESERVE_FLUSH_ALL, 2727 2728 /* 2729 * Pretty much the same as FLUSH_ALL, but can also steal space from 2730 * global rsv. 2731 * 2732 * Can be interruped by fatal signal. 2733 */ 2734 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2735 }; 2736 2737 enum btrfs_flush_state { 2738 FLUSH_DELAYED_ITEMS_NR = 1, 2739 FLUSH_DELAYED_ITEMS = 2, 2740 FLUSH_DELAYED_REFS_NR = 3, 2741 FLUSH_DELAYED_REFS = 4, 2742 FLUSH_DELALLOC = 5, 2743 FLUSH_DELALLOC_WAIT = 6, 2744 ALLOC_CHUNK = 7, 2745 ALLOC_CHUNK_FORCE = 8, 2746 RUN_DELAYED_IPUTS = 9, 2747 COMMIT_TRANS = 10, 2748 FORCE_COMMIT_TRANS = 11, 2749 }; 2750 2751 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2752 struct btrfs_block_rsv *rsv, 2753 int nitems, bool use_global_rsv); 2754 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2755 struct btrfs_block_rsv *rsv); 2756 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2757 2758 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes); 2759 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2760 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2761 u64 start, u64 end); 2762 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2763 u64 num_bytes, u64 *actual_bytes); 2764 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2765 2766 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2767 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2768 struct btrfs_fs_info *fs_info); 2769 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2770 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2771 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2772 2773 /* ctree.c */ 2774 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2775 int *slot); 2776 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2777 int btrfs_previous_item(struct btrfs_root *root, 2778 struct btrfs_path *path, u64 min_objectid, 2779 int type); 2780 int btrfs_previous_extent_item(struct btrfs_root *root, 2781 struct btrfs_path *path, u64 min_objectid); 2782 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2783 struct btrfs_path *path, 2784 const struct btrfs_key *new_key); 2785 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2786 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2787 struct btrfs_key *key, int lowest_level, 2788 u64 min_trans); 2789 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2790 struct btrfs_path *path, 2791 u64 min_trans); 2792 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2793 int slot); 2794 2795 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2796 struct btrfs_root *root, struct extent_buffer *buf, 2797 struct extent_buffer *parent, int parent_slot, 2798 struct extent_buffer **cow_ret, 2799 enum btrfs_lock_nesting nest); 2800 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2801 struct btrfs_root *root, 2802 struct extent_buffer *buf, 2803 struct extent_buffer **cow_ret, u64 new_root_objectid); 2804 int btrfs_block_can_be_shared(struct btrfs_root *root, 2805 struct extent_buffer *buf); 2806 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2807 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2808 int btrfs_split_item(struct btrfs_trans_handle *trans, 2809 struct btrfs_root *root, 2810 struct btrfs_path *path, 2811 const struct btrfs_key *new_key, 2812 unsigned long split_offset); 2813 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2814 struct btrfs_root *root, 2815 struct btrfs_path *path, 2816 const struct btrfs_key *new_key); 2817 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2818 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2819 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2820 const struct btrfs_key *key, struct btrfs_path *p, 2821 int ins_len, int cow); 2822 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2823 struct btrfs_path *p, u64 time_seq); 2824 int btrfs_search_slot_for_read(struct btrfs_root *root, 2825 const struct btrfs_key *key, 2826 struct btrfs_path *p, int find_higher, 2827 int return_any); 2828 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2829 struct btrfs_root *root, struct extent_buffer *parent, 2830 int start_slot, u64 *last_ret, 2831 struct btrfs_key *progress); 2832 void btrfs_release_path(struct btrfs_path *p); 2833 struct btrfs_path *btrfs_alloc_path(void); 2834 void btrfs_free_path(struct btrfs_path *p); 2835 2836 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2837 struct btrfs_path *path, int slot, int nr); 2838 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2839 struct btrfs_root *root, 2840 struct btrfs_path *path) 2841 { 2842 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2843 } 2844 2845 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 2846 const struct btrfs_key *cpu_key, u32 *data_size, 2847 int nr); 2848 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2849 const struct btrfs_key *key, void *data, u32 data_size); 2850 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 2851 struct btrfs_root *root, 2852 struct btrfs_path *path, 2853 const struct btrfs_key *cpu_key, u32 *data_size, 2854 int nr); 2855 2856 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 2857 struct btrfs_root *root, 2858 struct btrfs_path *path, 2859 const struct btrfs_key *key, 2860 u32 data_size) 2861 { 2862 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); 2863 } 2864 2865 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); 2866 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 2867 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 2868 u64 time_seq); 2869 static inline int btrfs_next_old_item(struct btrfs_root *root, 2870 struct btrfs_path *p, u64 time_seq) 2871 { 2872 ++p->slots[0]; 2873 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 2874 return btrfs_next_old_leaf(root, p, time_seq); 2875 return 0; 2876 } 2877 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 2878 { 2879 return btrfs_next_old_item(root, p, 0); 2880 } 2881 int btrfs_leaf_free_space(struct extent_buffer *leaf); 2882 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 2883 int for_reloc); 2884 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 2885 struct btrfs_root *root, 2886 struct extent_buffer *node, 2887 struct extent_buffer *parent); 2888 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 2889 { 2890 /* 2891 * Do it this way so we only ever do one test_bit in the normal case. 2892 */ 2893 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 2894 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 2895 return 2; 2896 return 1; 2897 } 2898 return 0; 2899 } 2900 2901 /* 2902 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 2903 * anything except sleeping. This function is used to check the status of 2904 * the fs. 2905 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 2906 * since setting and checking for SB_RDONLY in the superblock's flags is not 2907 * atomic. 2908 */ 2909 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 2910 { 2911 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 2912 btrfs_fs_closing(fs_info); 2913 } 2914 2915 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 2916 { 2917 sb->s_flags |= SB_RDONLY; 2918 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 2919 } 2920 2921 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 2922 { 2923 sb->s_flags &= ~SB_RDONLY; 2924 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 2925 } 2926 2927 /* tree mod log functions from ctree.c */ 2928 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 2929 struct seq_list *elem); 2930 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 2931 struct seq_list *elem); 2932 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq); 2933 2934 /* root-item.c */ 2935 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 2936 u64 ref_id, u64 dirid, u64 sequence, const char *name, 2937 int name_len); 2938 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 2939 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 2940 int name_len); 2941 int btrfs_del_root(struct btrfs_trans_handle *trans, 2942 const struct btrfs_key *key); 2943 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2944 const struct btrfs_key *key, 2945 struct btrfs_root_item *item); 2946 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 2947 struct btrfs_root *root, 2948 struct btrfs_key *key, 2949 struct btrfs_root_item *item); 2950 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 2951 struct btrfs_path *path, struct btrfs_root_item *root_item, 2952 struct btrfs_key *root_key); 2953 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 2954 void btrfs_set_root_node(struct btrfs_root_item *item, 2955 struct extent_buffer *node); 2956 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 2957 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 2958 struct btrfs_root *root); 2959 2960 /* uuid-tree.c */ 2961 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 2962 u64 subid); 2963 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 2964 u64 subid); 2965 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 2966 2967 /* dir-item.c */ 2968 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 2969 const char *name, int name_len); 2970 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 2971 int name_len, struct btrfs_inode *dir, 2972 struct btrfs_key *location, u8 type, u64 index); 2973 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 2974 struct btrfs_root *root, 2975 struct btrfs_path *path, u64 dir, 2976 const char *name, int name_len, 2977 int mod); 2978 struct btrfs_dir_item * 2979 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 2980 struct btrfs_root *root, 2981 struct btrfs_path *path, u64 dir, 2982 u64 objectid, const char *name, int name_len, 2983 int mod); 2984 struct btrfs_dir_item * 2985 btrfs_search_dir_index_item(struct btrfs_root *root, 2986 struct btrfs_path *path, u64 dirid, 2987 const char *name, int name_len); 2988 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 2989 struct btrfs_root *root, 2990 struct btrfs_path *path, 2991 struct btrfs_dir_item *di); 2992 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 2993 struct btrfs_root *root, 2994 struct btrfs_path *path, u64 objectid, 2995 const char *name, u16 name_len, 2996 const void *data, u16 data_len); 2997 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 2998 struct btrfs_root *root, 2999 struct btrfs_path *path, u64 dir, 3000 const char *name, u16 name_len, 3001 int mod); 3002 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3003 struct btrfs_path *path, 3004 const char *name, 3005 int name_len); 3006 3007 /* orphan.c */ 3008 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3009 struct btrfs_root *root, u64 offset); 3010 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3011 struct btrfs_root *root, u64 offset); 3012 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3013 3014 /* inode-item.c */ 3015 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, 3016 struct btrfs_root *root, 3017 const char *name, int name_len, 3018 u64 inode_objectid, u64 ref_objectid, u64 index); 3019 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, 3020 struct btrfs_root *root, 3021 const char *name, int name_len, 3022 u64 inode_objectid, u64 ref_objectid, u64 *index); 3023 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, 3024 struct btrfs_root *root, 3025 struct btrfs_path *path, u64 objectid); 3026 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root 3027 *root, struct btrfs_path *path, 3028 struct btrfs_key *location, int mod); 3029 3030 struct btrfs_inode_extref * 3031 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, 3032 struct btrfs_root *root, 3033 struct btrfs_path *path, 3034 const char *name, int name_len, 3035 u64 inode_objectid, u64 ref_objectid, int ins_len, 3036 int cow); 3037 3038 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf, 3039 int slot, const char *name, 3040 int name_len); 3041 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref( 3042 struct extent_buffer *leaf, int slot, u64 ref_objectid, 3043 const char *name, int name_len); 3044 /* file-item.c */ 3045 struct btrfs_dio_private; 3046 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3047 struct btrfs_root *root, u64 bytenr, u64 len); 3048 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3049 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3050 struct btrfs_root *root, 3051 u64 objectid, u64 pos, 3052 u64 disk_offset, u64 disk_num_bytes, 3053 u64 num_bytes, u64 offset, u64 ram_bytes, 3054 u8 compression, u8 encryption, u16 other_encoding); 3055 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3056 struct btrfs_root *root, 3057 struct btrfs_path *path, u64 objectid, 3058 u64 bytenr, int mod); 3059 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3060 struct btrfs_root *root, 3061 struct btrfs_ordered_sum *sums); 3062 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3063 u64 file_start, int contig); 3064 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3065 struct list_head *list, int search_commit); 3066 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3067 const struct btrfs_path *path, 3068 struct btrfs_file_extent_item *fi, 3069 const bool new_inline, 3070 struct extent_map *em); 3071 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3072 u64 len); 3073 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3074 u64 len); 3075 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3076 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3077 3078 /* inode.c */ 3079 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3080 int mirror_num, unsigned long bio_flags); 3081 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3082 struct page *page, u64 start, u64 end, int mirror); 3083 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3084 u64 start, u64 len); 3085 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3086 u64 *orig_start, u64 *orig_block_len, 3087 u64 *ram_bytes, bool strict); 3088 3089 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3090 struct btrfs_inode *inode); 3091 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3092 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3093 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3094 struct btrfs_root *root, 3095 struct btrfs_inode *dir, struct btrfs_inode *inode, 3096 const char *name, int name_len); 3097 int btrfs_add_link(struct btrfs_trans_handle *trans, 3098 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3099 const char *name, int name_len, int add_backref, u64 index); 3100 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3101 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3102 int front); 3103 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3104 struct btrfs_root *root, 3105 struct btrfs_inode *inode, u64 new_size, 3106 u32 min_type); 3107 3108 int btrfs_start_delalloc_snapshot(struct btrfs_root *root); 3109 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3110 bool in_reclaim_context); 3111 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3112 unsigned int extra_bits, 3113 struct extent_state **cached_state); 3114 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3115 struct btrfs_root *new_root, 3116 struct btrfs_root *parent_root); 3117 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3118 unsigned *bits); 3119 void btrfs_clear_delalloc_extent(struct inode *inode, 3120 struct extent_state *state, unsigned *bits); 3121 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3122 struct extent_state *other); 3123 void btrfs_split_delalloc_extent(struct inode *inode, 3124 struct extent_state *orig, u64 split); 3125 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 3126 unsigned long bio_flags); 3127 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio, 3128 unsigned int size); 3129 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end); 3130 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3131 int btrfs_readpage(struct file *file, struct page *page); 3132 void btrfs_evict_inode(struct inode *inode); 3133 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3134 struct inode *btrfs_alloc_inode(struct super_block *sb); 3135 void btrfs_destroy_inode(struct inode *inode); 3136 void btrfs_free_inode(struct inode *inode); 3137 int btrfs_drop_inode(struct inode *inode); 3138 int __init btrfs_init_cachep(void); 3139 void __cold btrfs_destroy_cachep(void); 3140 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3141 struct btrfs_root *root, struct btrfs_path *path); 3142 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3143 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3144 struct page *page, size_t pg_offset, 3145 u64 start, u64 end); 3146 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3147 struct btrfs_root *root, struct btrfs_inode *inode); 3148 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3149 struct btrfs_root *root, struct btrfs_inode *inode); 3150 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3151 struct btrfs_inode *inode); 3152 int btrfs_orphan_cleanup(struct btrfs_root *root); 3153 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3154 void btrfs_add_delayed_iput(struct inode *inode); 3155 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3156 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3157 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3158 u64 start, u64 num_bytes, u64 min_size, 3159 loff_t actual_len, u64 *alloc_hint); 3160 int btrfs_prealloc_file_range_trans(struct inode *inode, 3161 struct btrfs_trans_handle *trans, int mode, 3162 u64 start, u64 num_bytes, u64 min_size, 3163 loff_t actual_len, u64 *alloc_hint); 3164 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3165 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3166 struct writeback_control *wbc); 3167 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end); 3168 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3169 u64 end, int uptodate); 3170 extern const struct dentry_operations btrfs_dentry_operations; 3171 extern const struct iomap_ops btrfs_dio_iomap_ops; 3172 extern const struct iomap_dio_ops btrfs_dio_ops; 3173 3174 /* Inode locking type flags, by default the exclusive lock is taken */ 3175 #define BTRFS_ILOCK_SHARED (1U << 0) 3176 #define BTRFS_ILOCK_TRY (1U << 1) 3177 3178 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3179 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3180 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3181 const u64 add_bytes, 3182 const u64 del_bytes); 3183 3184 /* ioctl.c */ 3185 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3186 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3187 int btrfs_ioctl_get_supported_features(void __user *arg); 3188 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3189 int __pure btrfs_is_empty_uuid(u8 *uuid); 3190 int btrfs_defrag_file(struct inode *inode, struct file *file, 3191 struct btrfs_ioctl_defrag_range_args *range, 3192 u64 newer_than, unsigned long max_pages); 3193 void btrfs_get_block_group_info(struct list_head *groups_list, 3194 struct btrfs_ioctl_space_info *space); 3195 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3196 struct btrfs_ioctl_balance_args *bargs); 3197 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3198 enum btrfs_exclusive_operation type); 3199 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3200 3201 /* file.c */ 3202 int __init btrfs_auto_defrag_init(void); 3203 void __cold btrfs_auto_defrag_exit(void); 3204 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3205 struct btrfs_inode *inode); 3206 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3207 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3208 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3209 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3210 int skip_pinned); 3211 extern const struct file_operations btrfs_file_operations; 3212 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3213 struct btrfs_root *root, struct btrfs_inode *inode, 3214 struct btrfs_drop_extents_args *args); 3215 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path, 3216 const u64 start, const u64 end, 3217 struct btrfs_replace_extent_info *extent_info, 3218 struct btrfs_trans_handle **trans_out); 3219 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3220 struct btrfs_inode *inode, u64 start, u64 end); 3221 int btrfs_release_file(struct inode *inode, struct file *file); 3222 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3223 size_t num_pages, loff_t pos, size_t write_bytes, 3224 struct extent_state **cached, bool noreserve); 3225 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3226 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3227 size_t *write_bytes); 3228 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3229 3230 /* tree-defrag.c */ 3231 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3232 struct btrfs_root *root); 3233 3234 /* super.c */ 3235 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3236 unsigned long new_flags); 3237 int btrfs_sync_fs(struct super_block *sb, int wait); 3238 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3239 u64 subvol_objectid); 3240 3241 static inline __printf(2, 3) __cold 3242 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3243 { 3244 } 3245 3246 #ifdef CONFIG_PRINTK 3247 __printf(2, 3) 3248 __cold 3249 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3250 #else 3251 #define btrfs_printk(fs_info, fmt, args...) \ 3252 btrfs_no_printk(fs_info, fmt, ##args) 3253 #endif 3254 3255 #define btrfs_emerg(fs_info, fmt, args...) \ 3256 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3257 #define btrfs_alert(fs_info, fmt, args...) \ 3258 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3259 #define btrfs_crit(fs_info, fmt, args...) \ 3260 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3261 #define btrfs_err(fs_info, fmt, args...) \ 3262 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3263 #define btrfs_warn(fs_info, fmt, args...) \ 3264 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3265 #define btrfs_notice(fs_info, fmt, args...) \ 3266 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3267 #define btrfs_info(fs_info, fmt, args...) \ 3268 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3269 3270 /* 3271 * Wrappers that use printk_in_rcu 3272 */ 3273 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3274 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3275 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3276 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3277 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3278 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3279 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3280 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3281 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3282 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3283 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3284 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3285 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3286 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3287 3288 /* 3289 * Wrappers that use a ratelimited printk_in_rcu 3290 */ 3291 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3292 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3293 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3294 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3295 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3296 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3297 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3298 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3299 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3300 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3301 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3302 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3303 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3304 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3305 3306 /* 3307 * Wrappers that use a ratelimited printk 3308 */ 3309 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3310 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3311 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3312 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3313 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3314 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3315 #define btrfs_err_rl(fs_info, fmt, args...) \ 3316 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3317 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3318 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3319 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3320 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3321 #define btrfs_info_rl(fs_info, fmt, args...) \ 3322 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3323 3324 #if defined(CONFIG_DYNAMIC_DEBUG) 3325 #define btrfs_debug(fs_info, fmt, args...) \ 3326 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3327 fs_info, KERN_DEBUG fmt, ##args) 3328 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3329 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3330 fs_info, KERN_DEBUG fmt, ##args) 3331 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3332 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3333 fs_info, KERN_DEBUG fmt, ##args) 3334 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3335 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3336 fs_info, KERN_DEBUG fmt, ##args) 3337 #elif defined(DEBUG) 3338 #define btrfs_debug(fs_info, fmt, args...) \ 3339 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3340 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3341 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3342 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3343 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3344 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3345 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3346 #else 3347 #define btrfs_debug(fs_info, fmt, args...) \ 3348 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3349 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3350 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3351 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3352 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3353 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3354 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3355 #endif 3356 3357 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3358 do { \ 3359 rcu_read_lock(); \ 3360 btrfs_printk(fs_info, fmt, ##args); \ 3361 rcu_read_unlock(); \ 3362 } while (0) 3363 3364 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3365 do { \ 3366 rcu_read_lock(); \ 3367 btrfs_no_printk(fs_info, fmt, ##args); \ 3368 rcu_read_unlock(); \ 3369 } while (0) 3370 3371 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3372 do { \ 3373 static DEFINE_RATELIMIT_STATE(_rs, \ 3374 DEFAULT_RATELIMIT_INTERVAL, \ 3375 DEFAULT_RATELIMIT_BURST); \ 3376 if (__ratelimit(&_rs)) \ 3377 btrfs_printk(fs_info, fmt, ##args); \ 3378 } while (0) 3379 3380 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3381 do { \ 3382 rcu_read_lock(); \ 3383 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3384 rcu_read_unlock(); \ 3385 } while (0) 3386 3387 #ifdef CONFIG_BTRFS_ASSERT 3388 __cold __noreturn 3389 static inline void assertfail(const char *expr, const char *file, int line) 3390 { 3391 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3392 BUG(); 3393 } 3394 3395 #define ASSERT(expr) \ 3396 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3397 3398 #else 3399 static inline void assertfail(const char *expr, const char* file, int line) { } 3400 #define ASSERT(expr) (void)(expr) 3401 #endif 3402 3403 /* 3404 * Get the correct offset inside the page of extent buffer. 3405 * 3406 * @eb: target extent buffer 3407 * @start: offset inside the extent buffer 3408 * 3409 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3410 */ 3411 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3412 unsigned long offset) 3413 { 3414 /* 3415 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3416 * to PAGE_SIZE, thus adding it won't cause any difference. 3417 * 3418 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3419 * to the eb, thus we have to take the eb->start into consideration. 3420 */ 3421 return offset_in_page(offset + eb->start); 3422 } 3423 3424 static inline unsigned long get_eb_page_index(unsigned long offset) 3425 { 3426 /* 3427 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3428 * 3429 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3430 * and have ensured that all tree blocks are contained in one page, 3431 * thus we always get index == 0. 3432 */ 3433 return offset >> PAGE_SHIFT; 3434 } 3435 3436 /* 3437 * Use that for functions that are conditionally exported for sanity tests but 3438 * otherwise static 3439 */ 3440 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3441 #define EXPORT_FOR_TESTS static 3442 #else 3443 #define EXPORT_FOR_TESTS 3444 #endif 3445 3446 __cold 3447 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3448 { 3449 btrfs_err(fs_info, 3450 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3451 } 3452 3453 __printf(5, 6) 3454 __cold 3455 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3456 unsigned int line, int errno, const char *fmt, ...); 3457 3458 const char * __attribute_const__ btrfs_decode_error(int errno); 3459 3460 __cold 3461 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3462 const char *function, 3463 unsigned int line, int errno); 3464 3465 /* 3466 * Call btrfs_abort_transaction as early as possible when an error condition is 3467 * detected, that way the exact line number is reported. 3468 */ 3469 #define btrfs_abort_transaction(trans, errno) \ 3470 do { \ 3471 /* Report first abort since mount */ \ 3472 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3473 &((trans)->fs_info->fs_state))) { \ 3474 if ((errno) != -EIO && (errno) != -EROFS) { \ 3475 WARN(1, KERN_DEBUG \ 3476 "BTRFS: Transaction aborted (error %d)\n", \ 3477 (errno)); \ 3478 } else { \ 3479 btrfs_debug((trans)->fs_info, \ 3480 "Transaction aborted (error %d)", \ 3481 (errno)); \ 3482 } \ 3483 } \ 3484 __btrfs_abort_transaction((trans), __func__, \ 3485 __LINE__, (errno)); \ 3486 } while (0) 3487 3488 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3489 do { \ 3490 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3491 (errno), fmt, ##args); \ 3492 } while (0) 3493 3494 __printf(5, 6) 3495 __cold 3496 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3497 unsigned int line, int errno, const char *fmt, ...); 3498 /* 3499 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3500 * will panic(). Otherwise we BUG() here. 3501 */ 3502 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3503 do { \ 3504 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3505 BUG(); \ 3506 } while (0) 3507 3508 3509 /* compatibility and incompatibility defines */ 3510 3511 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3512 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3513 #opt) 3514 3515 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3516 u64 flag, const char* name) 3517 { 3518 struct btrfs_super_block *disk_super; 3519 u64 features; 3520 3521 disk_super = fs_info->super_copy; 3522 features = btrfs_super_incompat_flags(disk_super); 3523 if (!(features & flag)) { 3524 spin_lock(&fs_info->super_lock); 3525 features = btrfs_super_incompat_flags(disk_super); 3526 if (!(features & flag)) { 3527 features |= flag; 3528 btrfs_set_super_incompat_flags(disk_super, features); 3529 btrfs_info(fs_info, 3530 "setting incompat feature flag for %s (0x%llx)", 3531 name, flag); 3532 } 3533 spin_unlock(&fs_info->super_lock); 3534 } 3535 } 3536 3537 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3538 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3539 #opt) 3540 3541 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3542 u64 flag, const char* name) 3543 { 3544 struct btrfs_super_block *disk_super; 3545 u64 features; 3546 3547 disk_super = fs_info->super_copy; 3548 features = btrfs_super_incompat_flags(disk_super); 3549 if (features & flag) { 3550 spin_lock(&fs_info->super_lock); 3551 features = btrfs_super_incompat_flags(disk_super); 3552 if (features & flag) { 3553 features &= ~flag; 3554 btrfs_set_super_incompat_flags(disk_super, features); 3555 btrfs_info(fs_info, 3556 "clearing incompat feature flag for %s (0x%llx)", 3557 name, flag); 3558 } 3559 spin_unlock(&fs_info->super_lock); 3560 } 3561 } 3562 3563 #define btrfs_fs_incompat(fs_info, opt) \ 3564 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3565 3566 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3567 { 3568 struct btrfs_super_block *disk_super; 3569 disk_super = fs_info->super_copy; 3570 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3571 } 3572 3573 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3574 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3575 #opt) 3576 3577 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3578 u64 flag, const char *name) 3579 { 3580 struct btrfs_super_block *disk_super; 3581 u64 features; 3582 3583 disk_super = fs_info->super_copy; 3584 features = btrfs_super_compat_ro_flags(disk_super); 3585 if (!(features & flag)) { 3586 spin_lock(&fs_info->super_lock); 3587 features = btrfs_super_compat_ro_flags(disk_super); 3588 if (!(features & flag)) { 3589 features |= flag; 3590 btrfs_set_super_compat_ro_flags(disk_super, features); 3591 btrfs_info(fs_info, 3592 "setting compat-ro feature flag for %s (0x%llx)", 3593 name, flag); 3594 } 3595 spin_unlock(&fs_info->super_lock); 3596 } 3597 } 3598 3599 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3600 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3601 #opt) 3602 3603 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3604 u64 flag, const char *name) 3605 { 3606 struct btrfs_super_block *disk_super; 3607 u64 features; 3608 3609 disk_super = fs_info->super_copy; 3610 features = btrfs_super_compat_ro_flags(disk_super); 3611 if (features & flag) { 3612 spin_lock(&fs_info->super_lock); 3613 features = btrfs_super_compat_ro_flags(disk_super); 3614 if (features & flag) { 3615 features &= ~flag; 3616 btrfs_set_super_compat_ro_flags(disk_super, features); 3617 btrfs_info(fs_info, 3618 "clearing compat-ro feature flag for %s (0x%llx)", 3619 name, flag); 3620 } 3621 spin_unlock(&fs_info->super_lock); 3622 } 3623 } 3624 3625 #define btrfs_fs_compat_ro(fs_info, opt) \ 3626 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3627 3628 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3629 { 3630 struct btrfs_super_block *disk_super; 3631 disk_super = fs_info->super_copy; 3632 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3633 } 3634 3635 /* acl.c */ 3636 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3637 struct posix_acl *btrfs_get_acl(struct inode *inode, int type); 3638 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type); 3639 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3640 struct inode *inode, struct inode *dir); 3641 #else 3642 #define btrfs_get_acl NULL 3643 #define btrfs_set_acl NULL 3644 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3645 struct inode *inode, struct inode *dir) 3646 { 3647 return 0; 3648 } 3649 #endif 3650 3651 /* relocation.c */ 3652 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3653 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3654 struct btrfs_root *root); 3655 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3656 struct btrfs_root *root); 3657 int btrfs_recover_relocation(struct btrfs_root *root); 3658 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3659 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3660 struct btrfs_root *root, struct extent_buffer *buf, 3661 struct extent_buffer *cow); 3662 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3663 u64 *bytes_to_reserve); 3664 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3665 struct btrfs_pending_snapshot *pending); 3666 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3667 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3668 u64 bytenr); 3669 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3670 3671 /* scrub.c */ 3672 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3673 u64 end, struct btrfs_scrub_progress *progress, 3674 int readonly, int is_dev_replace); 3675 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3676 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3677 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3678 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3679 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3680 struct btrfs_scrub_progress *progress); 3681 static inline void btrfs_init_full_stripe_locks_tree( 3682 struct btrfs_full_stripe_locks_tree *locks_root) 3683 { 3684 locks_root->root = RB_ROOT; 3685 mutex_init(&locks_root->lock); 3686 } 3687 3688 /* dev-replace.c */ 3689 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3690 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3691 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3692 3693 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3694 { 3695 btrfs_bio_counter_sub(fs_info, 1); 3696 } 3697 3698 /* reada.c */ 3699 struct reada_control { 3700 struct btrfs_fs_info *fs_info; /* tree to prefetch */ 3701 struct btrfs_key key_start; 3702 struct btrfs_key key_end; /* exclusive */ 3703 atomic_t elems; 3704 struct kref refcnt; 3705 wait_queue_head_t wait; 3706 }; 3707 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 3708 struct btrfs_key *start, struct btrfs_key *end); 3709 int btrfs_reada_wait(void *handle); 3710 void btrfs_reada_detach(void *handle); 3711 int btree_readahead_hook(struct extent_buffer *eb, int err); 3712 void btrfs_reada_remove_dev(struct btrfs_device *dev); 3713 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev); 3714 3715 static inline int is_fstree(u64 rootid) 3716 { 3717 if (rootid == BTRFS_FS_TREE_OBJECTID || 3718 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3719 !btrfs_qgroup_level(rootid))) 3720 return 1; 3721 return 0; 3722 } 3723 3724 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3725 { 3726 return signal_pending(current); 3727 } 3728 3729 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 3730 3731 /* Sanity test specific functions */ 3732 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3733 void btrfs_test_destroy_inode(struct inode *inode); 3734 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3735 { 3736 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3737 } 3738 #else 3739 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3740 { 3741 return 0; 3742 } 3743 #endif 3744 3745 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3746 { 3747 return fs_info->zoned != 0; 3748 } 3749 3750 #endif 3751