xref: /openbmc/linux/fs/btrfs/ctree.h (revision 1e1d27017c5986c1ea81181506042cf9cba3f6ea)
1 #ifndef __BTRFS__
2 #define __BTRFS__
3 
4 #include "list.h"
5 #include "kerncompat.h"
6 
7 #define BTRFS_MAGIC "_BtRfS_M"
8 
9 #define BTRFS_ROOT_TREE_OBJECTID 1
10 #define BTRFS_EXTENT_TREE_OBJECTID 2
11 #define BTRFS_FS_TREE_OBJECTID 3
12 
13 /*
14  * the key defines the order in the tree, and so it also defines (optimal)
15  * block layout.  objectid corresonds to the inode number.  The flags
16  * tells us things about the object, and is a kind of stream selector.
17  * so for a given inode, keys with flags of 1 might refer to the inode
18  * data, flags of 2 may point to file data in the btree and flags == 3
19  * may point to extents.
20  *
21  * offset is the starting byte offset for this key in the stream.
22  *
23  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
24  * in cpu native order.  Otherwise they are identical and their sizes
25  * should be the same (ie both packed)
26  */
27 struct btrfs_disk_key {
28 	__le64 objectid;
29 	__le64 offset;
30 	__le32 flags;
31 } __attribute__ ((__packed__));
32 
33 struct btrfs_key {
34 	u64 objectid;
35 	u64 offset;
36 	u32 flags;
37 } __attribute__ ((__packed__));
38 
39 /*
40  * every tree block (leaf or node) starts with this header.
41  */
42 struct btrfs_header {
43 	u8 fsid[16]; /* FS specific uuid */
44 	__le64 blocknr; /* which block this node is supposed to live in */
45 	__le64 parentid; /* objectid of the tree root */
46 	__le32 csum;
47 	__le32 ham;
48 	__le16 nritems;
49 	__le16 flags;
50 	/* generation flags to be added */
51 } __attribute__ ((__packed__));
52 
53 #define BTRFS_MAX_LEVEL 8
54 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
55 			        sizeof(struct btrfs_header)) / \
56 			       (sizeof(struct btrfs_disk_key) + sizeof(u64)))
57 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
58 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
59 
60 struct btrfs_buffer;
61 /*
62  * the super block basically lists the main trees of the FS
63  * it currently lacks any block count etc etc
64  */
65 struct btrfs_super_block {
66 	u8 fsid[16];    /* FS specific uuid */
67 	__le64 blocknr; /* this block number */
68 	__le32 csum;
69 	__le64 magic;
70 	__le32 blocksize;
71 	__le64 generation;
72 	__le64 root;
73 	__le64 total_blocks;
74 	__le64 blocks_used;
75 } __attribute__ ((__packed__));
76 
77 /*
78  * A leaf is full of items. offset and size tell us where to find
79  * the item in the leaf (relative to the start of the data area)
80  */
81 struct btrfs_item {
82 	struct btrfs_disk_key key;
83 	__le32 offset;
84 	__le16 size;
85 } __attribute__ ((__packed__));
86 
87 /*
88  * leaves have an item area and a data area:
89  * [item0, item1....itemN] [free space] [dataN...data1, data0]
90  *
91  * The data is separate from the items to get the keys closer together
92  * during searches.
93  */
94 struct btrfs_leaf {
95 	struct btrfs_header header;
96 	struct btrfs_item items[];
97 } __attribute__ ((__packed__));
98 
99 /*
100  * all non-leaf blocks are nodes, they hold only keys and pointers to
101  * other blocks
102  */
103 struct btrfs_key_ptr {
104 	struct btrfs_disk_key key;
105 	__le64 blockptr;
106 } __attribute__ ((__packed__));
107 
108 struct btrfs_node {
109 	struct btrfs_header header;
110 	struct btrfs_key_ptr ptrs[];
111 } __attribute__ ((__packed__));
112 
113 /*
114  * btrfs_paths remember the path taken from the root down to the leaf.
115  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
116  * to any other levels that are present.
117  *
118  * The slots array records the index of the item or block pointer
119  * used while walking the tree.
120  */
121 struct btrfs_path {
122 	struct btrfs_buffer *nodes[BTRFS_MAX_LEVEL];
123 	int slots[BTRFS_MAX_LEVEL];
124 };
125 
126 /*
127  * items in the extent btree are used to record the objectid of the
128  * owner of the block and the number of references
129  */
130 struct btrfs_extent_item {
131 	__le32 refs;
132 	__le64 owner;
133 } __attribute__ ((__packed__));
134 
135 struct btrfs_inode_timespec {
136 	__le32 sec;
137 	__le32 nsec;
138 } __attribute__ ((__packed__));
139 
140 /*
141  * there is no padding here on purpose.  If you want to extent the inode,
142  * make a new item type
143  */
144 struct btrfs_inode_item {
145 	__le64 generation;
146 	__le64 size;
147 	__le64 nblocks;
148 	__le32 nlink;
149 	__le32 uid;
150 	__le32 gid;
151 	__le32 mode;
152 	__le32 rdev;
153 	__le16 flags;
154 	__le16 compat_flags;
155 	struct btrfs_inode_timespec atime;
156 	struct btrfs_inode_timespec ctime;
157 	struct btrfs_inode_timespec mtime;
158 	struct btrfs_inode_timespec otime;
159 } __attribute__ ((__packed__));
160 
161 /* inline data is just a blob of bytes */
162 struct btrfs_inline_data_item {
163 	u8 data;
164 } __attribute__ ((__packed__));
165 
166 struct btrfs_dir_item {
167 	__le64 objectid;
168 	__le16 flags;
169 	u8 type;
170 } __attribute__ ((__packed__));
171 
172 struct btrfs_root_item {
173 	__le64 blocknr;
174 	__le32 flags;
175 	__le64 block_limit;
176 	__le64 blocks_used;
177 	__le32 refs;
178 };
179 
180 /*
181  * in ram representation of the tree.  extent_root is used for all allocations
182  * and for the extent tree extent_root root.  current_insert is used
183  * only for the extent tree.
184  */
185 struct btrfs_root {
186 	struct btrfs_buffer *node;
187 	struct btrfs_buffer *commit_root;
188 	struct btrfs_root *extent_root;
189 	struct btrfs_root *tree_root;
190 	struct btrfs_key current_insert;
191 	struct btrfs_key last_insert;
192 	int fp;
193 	struct radix_tree_root cache_radix;
194 	struct radix_tree_root pinned_radix;
195 	struct list_head trans;
196 	struct list_head cache;
197 	int cache_size;
198 	int ref_cows;
199 	struct btrfs_root_item root_item;
200 	struct btrfs_key root_key;
201 	u32 blocksize;
202 };
203 
204 /* the lower bits in the key flags defines the item type */
205 #define BTRFS_KEY_TYPE_MAX	256
206 #define BTRFS_KEY_TYPE_MASK	(BTRFS_KEY_TYPE_MAX - 1)
207 
208 /*
209  * inode items have the data typically returned from stat and store other
210  * info about object characteristics.  There is one for every file and dir in
211  * the FS
212  */
213 #define BTRFS_INODE_ITEM_KEY	1
214 
215 /*
216  * dir items are the name -> inode pointers in a directory.  There is one
217  * for every name in a directory.
218  */
219 #define BTRFS_DIR_ITEM_KEY	2
220 /*
221  * inline data is file data that fits in the btree.
222  */
223 #define BTRFS_INLINE_DATA_KEY	3
224 /*
225  * extent data is for data that can't fit in the btree.  It points to
226  * a (hopefully) huge chunk of disk
227  */
228 #define BTRFS_EXTENT_DATA_KEY	4
229 /*
230  * root items point to tree roots.  There are typically in the root
231  * tree used by the super block to find all the other trees
232  */
233 #define BTRFS_ROOT_ITEM_KEY	5
234 /*
235  * extent items are in the extent map tree.  These record which blocks
236  * are used, and how many references there are to each block
237  */
238 #define BTRFS_EXTENT_ITEM_KEY	6
239 /*
240  * string items are for debugging.  They just store a short string of
241  * data in the FS
242  */
243 #define BTRFS_STRING_ITEM_KEY	7
244 
245 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
246 {
247 	return le64_to_cpu(i->generation);
248 }
249 
250 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
251 					      u64 val)
252 {
253 	i->generation = cpu_to_le64(val);
254 }
255 
256 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
257 {
258 	return le64_to_cpu(i->size);
259 }
260 
261 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
262 {
263 	i->size = cpu_to_le64(val);
264 }
265 
266 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
267 {
268 	return le64_to_cpu(i->nblocks);
269 }
270 
271 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
272 {
273 	i->nblocks = cpu_to_le64(val);
274 }
275 
276 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
277 {
278 	return le32_to_cpu(i->nlink);
279 }
280 
281 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
282 {
283 	i->nlink = cpu_to_le32(val);
284 }
285 
286 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
287 {
288 	return le32_to_cpu(i->uid);
289 }
290 
291 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
292 {
293 	i->uid = cpu_to_le32(val);
294 }
295 
296 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
297 {
298 	return le32_to_cpu(i->gid);
299 }
300 
301 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
302 {
303 	i->gid = cpu_to_le32(val);
304 }
305 
306 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
307 {
308 	return le32_to_cpu(i->mode);
309 }
310 
311 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
312 {
313 	i->mode = cpu_to_le32(val);
314 }
315 
316 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
317 {
318 	return le32_to_cpu(i->rdev);
319 }
320 
321 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
322 {
323 	i->rdev = cpu_to_le32(val);
324 }
325 
326 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
327 {
328 	return le16_to_cpu(i->flags);
329 }
330 
331 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
332 {
333 	i->flags = cpu_to_le16(val);
334 }
335 
336 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
337 {
338 	return le16_to_cpu(i->compat_flags);
339 }
340 
341 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
342 						u16 val)
343 {
344 	i->compat_flags = cpu_to_le16(val);
345 }
346 
347 
348 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
349 {
350 	return le64_to_cpu(ei->owner);
351 }
352 
353 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
354 {
355 	ei->owner = cpu_to_le64(val);
356 }
357 
358 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
359 {
360 	return le32_to_cpu(ei->refs);
361 }
362 
363 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
364 {
365 	ei->refs = cpu_to_le32(val);
366 }
367 
368 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
369 {
370 	return le64_to_cpu(n->ptrs[nr].blockptr);
371 }
372 
373 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
374 					   u64 val)
375 {
376 	n->ptrs[nr].blockptr = cpu_to_le64(val);
377 }
378 
379 static inline u32 btrfs_item_offset(struct btrfs_item *item)
380 {
381 	return le32_to_cpu(item->offset);
382 }
383 
384 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
385 {
386 	item->offset = cpu_to_le32(val);
387 }
388 
389 static inline u32 btrfs_item_end(struct btrfs_item *item)
390 {
391 	return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
392 }
393 
394 static inline u16 btrfs_item_size(struct btrfs_item *item)
395 {
396 	return le16_to_cpu(item->size);
397 }
398 
399 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
400 {
401 	item->size = cpu_to_le16(val);
402 }
403 
404 static inline u64 btrfs_dir_objectid(struct btrfs_dir_item *d)
405 {
406 	return le64_to_cpu(d->objectid);
407 }
408 
409 static inline void btrfs_set_dir_objectid(struct btrfs_dir_item *d, u64 val)
410 {
411 	d->objectid = cpu_to_le64(val);
412 }
413 
414 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
415 {
416 	return le16_to_cpu(d->flags);
417 }
418 
419 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
420 {
421 	d->flags = cpu_to_le16(val);
422 }
423 
424 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
425 {
426 	return d->type;
427 }
428 
429 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
430 {
431 	d->type = val;
432 }
433 
434 static inline u32 btrfs_dir_name_len(struct btrfs_item *i)
435 {
436 	return btrfs_item_size(i) - sizeof(struct btrfs_dir_item);
437 }
438 
439 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
440 					 struct btrfs_disk_key *disk)
441 {
442 	cpu->offset = le64_to_cpu(disk->offset);
443 	cpu->flags = le32_to_cpu(disk->flags);
444 	cpu->objectid = le64_to_cpu(disk->objectid);
445 }
446 
447 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
448 					 struct btrfs_key *cpu)
449 {
450 	disk->offset = cpu_to_le64(cpu->offset);
451 	disk->flags = cpu_to_le32(cpu->flags);
452 	disk->objectid = cpu_to_le64(cpu->objectid);
453 }
454 
455 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
456 {
457 	return le64_to_cpu(disk->objectid);
458 }
459 
460 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
461 					       u64 val)
462 {
463 	disk->objectid = cpu_to_le64(val);
464 }
465 
466 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
467 {
468 	return le64_to_cpu(disk->offset);
469 }
470 
471 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
472 					     u64 val)
473 {
474 	disk->offset = cpu_to_le64(val);
475 }
476 
477 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
478 {
479 	return le32_to_cpu(disk->flags);
480 }
481 
482 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
483 					    u32 val)
484 {
485 	disk->flags = cpu_to_le32(val);
486 }
487 
488 static inline u32 btrfs_key_type(struct btrfs_key *key)
489 {
490 	return key->flags & BTRFS_KEY_TYPE_MASK;
491 }
492 
493 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
494 {
495 	return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK;
496 }
497 
498 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type)
499 {
500 	BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
501 	key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
502 }
503 
504 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type)
505 {
506 	u32 flags = btrfs_disk_key_flags(key);
507 	BUG_ON(type >= BTRFS_KEY_TYPE_MAX);
508 	flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type;
509 	btrfs_set_disk_key_flags(key, flags);
510 }
511 
512 static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
513 {
514 	return le64_to_cpu(h->blocknr);
515 }
516 
517 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
518 {
519 	h->blocknr = cpu_to_le64(blocknr);
520 }
521 
522 static inline u64 btrfs_header_parentid(struct btrfs_header *h)
523 {
524 	return le64_to_cpu(h->parentid);
525 }
526 
527 static inline void btrfs_set_header_parentid(struct btrfs_header *h,
528 					     u64 parentid)
529 {
530 	h->parentid = cpu_to_le64(parentid);
531 }
532 
533 static inline u16 btrfs_header_nritems(struct btrfs_header *h)
534 {
535 	return le16_to_cpu(h->nritems);
536 }
537 
538 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
539 {
540 	h->nritems = cpu_to_le16(val);
541 }
542 
543 static inline u16 btrfs_header_flags(struct btrfs_header *h)
544 {
545 	return le16_to_cpu(h->flags);
546 }
547 
548 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
549 {
550 	h->flags = cpu_to_le16(val);
551 }
552 
553 static inline int btrfs_header_level(struct btrfs_header *h)
554 {
555 	return btrfs_header_flags(h) & (BTRFS_MAX_LEVEL - 1);
556 }
557 
558 static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
559 {
560 	u16 flags;
561 	BUG_ON(level > BTRFS_MAX_LEVEL);
562 	flags = btrfs_header_flags(h) & ~(BTRFS_MAX_LEVEL - 1);
563 	btrfs_set_header_flags(h, flags | level);
564 }
565 
566 static inline int btrfs_is_leaf(struct btrfs_node *n)
567 {
568 	return (btrfs_header_level(&n->header) == 0);
569 }
570 
571 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
572 {
573 	return le64_to_cpu(item->blocknr);
574 }
575 
576 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
577 {
578 	item->blocknr = cpu_to_le64(val);
579 }
580 
581 static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
582 {
583 	return le32_to_cpu(item->refs);
584 }
585 
586 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
587 {
588 	item->refs = cpu_to_le32(val);
589 }
590 
591 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
592 {
593 	return le64_to_cpu(s->blocknr);
594 }
595 
596 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
597 {
598 	s->blocknr = cpu_to_le64(val);
599 }
600 
601 static inline u64 btrfs_super_root(struct btrfs_super_block *s)
602 {
603 	return le64_to_cpu(s->root);
604 }
605 
606 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
607 {
608 	s->root = cpu_to_le64(val);
609 }
610 
611 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
612 {
613 	return le64_to_cpu(s->total_blocks);
614 }
615 
616 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
617 						u64 val)
618 {
619 	s->total_blocks = cpu_to_le64(val);
620 }
621 
622 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
623 {
624 	return le64_to_cpu(s->blocks_used);
625 }
626 
627 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
628 						u64 val)
629 {
630 	s->blocks_used = cpu_to_le64(val);
631 }
632 
633 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
634 {
635 	return le32_to_cpu(s->blocksize);
636 }
637 
638 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
639 						u32 val)
640 {
641 	s->blocksize = cpu_to_le32(val);
642 }
643 
644 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
645 {
646 	return (u8 *)l->items;
647 }
648 /* helper function to cast into the data area of the leaf. */
649 #define btrfs_item_ptr(leaf, slot, type) \
650 	((type *)(btrfs_leaf_data(leaf) + \
651 	btrfs_item_offset((leaf)->items + (slot))))
652 
653 struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_root *root);
654 int btrfs_inc_ref(struct btrfs_root *root, struct btrfs_buffer *buf);
655 int btrfs_free_extent(struct btrfs_root *root, u64 blocknr, u64 num_blocks);
656 int btrfs_search_slot(struct btrfs_root *root, struct btrfs_key *key,
657 		struct btrfs_path *p, int ins_len, int cow);
658 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
659 void btrfs_init_path(struct btrfs_path *p);
660 int btrfs_del_item(struct btrfs_root *root, struct btrfs_path *path);
661 int btrfs_insert_item(struct btrfs_root *root, struct btrfs_key *key,
662 		void *data, u32 data_size);
663 int btrfs_insert_empty_item(struct btrfs_root *root, struct btrfs_path *path,
664 			    struct btrfs_key *cpu_key, u32 data_size);
665 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
666 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
667 int btrfs_drop_snapshot(struct btrfs_root *root, struct btrfs_buffer *snap);
668 int btrfs_finish_extent_commit(struct btrfs_root *root);
669 int btrfs_del_root(struct btrfs_root *root, struct btrfs_key *key);
670 int btrfs_insert_root(struct btrfs_root *root, struct btrfs_key *key,
671 		      struct btrfs_root_item *item);
672 int btrfs_update_root(struct btrfs_root *root, struct btrfs_key *key,
673 		      struct btrfs_root_item *item);
674 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
675 			struct btrfs_root_item *item, struct btrfs_key *key);
676 int btrfs_insert_dir_item(struct btrfs_root *root, char *name, int name_len,
677 			  u64 dir, u64 objectid, u8 type);
678 int btrfs_lookup_dir_item(struct btrfs_root *root, struct btrfs_path *path,
679 			  u64 dir, char *name, int name_len, int mod);
680 int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
681 			      char *name, int name_len);
682 #endif
683