1 #ifndef __BTRFS__ 2 #define __BTRFS__ 3 4 #include "list.h" 5 #include "kerncompat.h" 6 7 #define BTRFS_MAGIC "_BtRfS_M" 8 9 #define BTRFS_ROOT_TREE_OBJECTID 1 10 #define BTRFS_EXTENT_TREE_OBJECTID 2 11 #define BTRFS_FS_TREE_OBJECTID 3 12 13 /* 14 * the key defines the order in the tree, and so it also defines (optimal) 15 * block layout. objectid corresonds to the inode number. The flags 16 * tells us things about the object, and is a kind of stream selector. 17 * so for a given inode, keys with flags of 1 might refer to the inode 18 * data, flags of 2 may point to file data in the btree and flags == 3 19 * may point to extents. 20 * 21 * offset is the starting byte offset for this key in the stream. 22 * 23 * btrfs_disk_key is in disk byte order. struct btrfs_key is always 24 * in cpu native order. Otherwise they are identical and their sizes 25 * should be the same (ie both packed) 26 */ 27 struct btrfs_disk_key { 28 __le64 objectid; 29 __le64 offset; 30 __le32 flags; 31 } __attribute__ ((__packed__)); 32 33 struct btrfs_key { 34 u64 objectid; 35 u64 offset; 36 u32 flags; 37 } __attribute__ ((__packed__)); 38 39 /* 40 * every tree block (leaf or node) starts with this header. 41 */ 42 struct btrfs_header { 43 u8 fsid[16]; /* FS specific uuid */ 44 __le64 blocknr; /* which block this node is supposed to live in */ 45 __le64 parentid; /* objectid of the tree root */ 46 __le32 csum; 47 __le32 ham; 48 __le16 nritems; 49 __le16 flags; 50 /* generation flags to be added */ 51 } __attribute__ ((__packed__)); 52 53 #define BTRFS_MAX_LEVEL 8 54 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \ 55 sizeof(struct btrfs_header)) / \ 56 (sizeof(struct btrfs_disk_key) + sizeof(u64))) 57 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header)) 58 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize)) 59 60 struct btrfs_buffer; 61 /* 62 * the super block basically lists the main trees of the FS 63 * it currently lacks any block count etc etc 64 */ 65 struct btrfs_super_block { 66 u8 fsid[16]; /* FS specific uuid */ 67 __le64 blocknr; /* this block number */ 68 __le32 csum; 69 __le64 magic; 70 __le32 blocksize; 71 __le64 generation; 72 __le64 root; 73 __le64 total_blocks; 74 __le64 blocks_used; 75 } __attribute__ ((__packed__)); 76 77 /* 78 * A leaf is full of items. offset and size tell us where to find 79 * the item in the leaf (relative to the start of the data area) 80 */ 81 struct btrfs_item { 82 struct btrfs_disk_key key; 83 __le32 offset; 84 __le16 size; 85 } __attribute__ ((__packed__)); 86 87 /* 88 * leaves have an item area and a data area: 89 * [item0, item1....itemN] [free space] [dataN...data1, data0] 90 * 91 * The data is separate from the items to get the keys closer together 92 * during searches. 93 */ 94 struct btrfs_leaf { 95 struct btrfs_header header; 96 struct btrfs_item items[]; 97 } __attribute__ ((__packed__)); 98 99 /* 100 * all non-leaf blocks are nodes, they hold only keys and pointers to 101 * other blocks 102 */ 103 struct btrfs_key_ptr { 104 struct btrfs_disk_key key; 105 __le64 blockptr; 106 } __attribute__ ((__packed__)); 107 108 struct btrfs_node { 109 struct btrfs_header header; 110 struct btrfs_key_ptr ptrs[]; 111 } __attribute__ ((__packed__)); 112 113 /* 114 * btrfs_paths remember the path taken from the root down to the leaf. 115 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 116 * to any other levels that are present. 117 * 118 * The slots array records the index of the item or block pointer 119 * used while walking the tree. 120 */ 121 struct btrfs_path { 122 struct btrfs_buffer *nodes[BTRFS_MAX_LEVEL]; 123 int slots[BTRFS_MAX_LEVEL]; 124 }; 125 126 /* 127 * items in the extent btree are used to record the objectid of the 128 * owner of the block and the number of references 129 */ 130 struct btrfs_extent_item { 131 __le32 refs; 132 __le64 owner; 133 } __attribute__ ((__packed__)); 134 135 struct btrfs_inode_timespec { 136 __le32 sec; 137 __le32 nsec; 138 } __attribute__ ((__packed__)); 139 140 /* 141 * there is no padding here on purpose. If you want to extent the inode, 142 * make a new item type 143 */ 144 struct btrfs_inode_item { 145 __le64 generation; 146 __le64 size; 147 __le64 nblocks; 148 __le32 nlink; 149 __le32 uid; 150 __le32 gid; 151 __le32 mode; 152 __le32 rdev; 153 __le16 flags; 154 __le16 compat_flags; 155 struct btrfs_inode_timespec atime; 156 struct btrfs_inode_timespec ctime; 157 struct btrfs_inode_timespec mtime; 158 struct btrfs_inode_timespec otime; 159 } __attribute__ ((__packed__)); 160 161 /* inline data is just a blob of bytes */ 162 struct btrfs_inline_data_item { 163 u8 data; 164 } __attribute__ ((__packed__)); 165 166 struct btrfs_dir_item { 167 __le64 objectid; 168 __le16 flags; 169 u8 type; 170 } __attribute__ ((__packed__)); 171 172 struct btrfs_root_item { 173 __le64 blocknr; 174 __le32 flags; 175 __le64 block_limit; 176 __le64 blocks_used; 177 __le32 refs; 178 }; 179 180 /* 181 * in ram representation of the tree. extent_root is used for all allocations 182 * and for the extent tree extent_root root. current_insert is used 183 * only for the extent tree. 184 */ 185 struct btrfs_root { 186 struct btrfs_buffer *node; 187 struct btrfs_buffer *commit_root; 188 struct btrfs_root *extent_root; 189 struct btrfs_root *tree_root; 190 struct btrfs_key current_insert; 191 struct btrfs_key last_insert; 192 int fp; 193 struct radix_tree_root cache_radix; 194 struct radix_tree_root pinned_radix; 195 struct list_head trans; 196 struct list_head cache; 197 int cache_size; 198 int ref_cows; 199 struct btrfs_root_item root_item; 200 struct btrfs_key root_key; 201 u32 blocksize; 202 }; 203 204 /* the lower bits in the key flags defines the item type */ 205 #define BTRFS_KEY_TYPE_MAX 256 206 #define BTRFS_KEY_TYPE_MASK (BTRFS_KEY_TYPE_MAX - 1) 207 208 /* 209 * inode items have the data typically returned from stat and store other 210 * info about object characteristics. There is one for every file and dir in 211 * the FS 212 */ 213 #define BTRFS_INODE_ITEM_KEY 1 214 215 /* 216 * dir items are the name -> inode pointers in a directory. There is one 217 * for every name in a directory. 218 */ 219 #define BTRFS_DIR_ITEM_KEY 2 220 /* 221 * inline data is file data that fits in the btree. 222 */ 223 #define BTRFS_INLINE_DATA_KEY 3 224 /* 225 * extent data is for data that can't fit in the btree. It points to 226 * a (hopefully) huge chunk of disk 227 */ 228 #define BTRFS_EXTENT_DATA_KEY 4 229 /* 230 * root items point to tree roots. There are typically in the root 231 * tree used by the super block to find all the other trees 232 */ 233 #define BTRFS_ROOT_ITEM_KEY 5 234 /* 235 * extent items are in the extent map tree. These record which blocks 236 * are used, and how many references there are to each block 237 */ 238 #define BTRFS_EXTENT_ITEM_KEY 6 239 /* 240 * string items are for debugging. They just store a short string of 241 * data in the FS 242 */ 243 #define BTRFS_STRING_ITEM_KEY 7 244 245 static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i) 246 { 247 return le64_to_cpu(i->generation); 248 } 249 250 static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i, 251 u64 val) 252 { 253 i->generation = cpu_to_le64(val); 254 } 255 256 static inline u64 btrfs_inode_size(struct btrfs_inode_item *i) 257 { 258 return le64_to_cpu(i->size); 259 } 260 261 static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val) 262 { 263 i->size = cpu_to_le64(val); 264 } 265 266 static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i) 267 { 268 return le64_to_cpu(i->nblocks); 269 } 270 271 static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val) 272 { 273 i->nblocks = cpu_to_le64(val); 274 } 275 276 static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i) 277 { 278 return le32_to_cpu(i->nlink); 279 } 280 281 static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val) 282 { 283 i->nlink = cpu_to_le32(val); 284 } 285 286 static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i) 287 { 288 return le32_to_cpu(i->uid); 289 } 290 291 static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val) 292 { 293 i->uid = cpu_to_le32(val); 294 } 295 296 static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i) 297 { 298 return le32_to_cpu(i->gid); 299 } 300 301 static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val) 302 { 303 i->gid = cpu_to_le32(val); 304 } 305 306 static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i) 307 { 308 return le32_to_cpu(i->mode); 309 } 310 311 static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val) 312 { 313 i->mode = cpu_to_le32(val); 314 } 315 316 static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i) 317 { 318 return le32_to_cpu(i->rdev); 319 } 320 321 static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val) 322 { 323 i->rdev = cpu_to_le32(val); 324 } 325 326 static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i) 327 { 328 return le16_to_cpu(i->flags); 329 } 330 331 static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val) 332 { 333 i->flags = cpu_to_le16(val); 334 } 335 336 static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i) 337 { 338 return le16_to_cpu(i->compat_flags); 339 } 340 341 static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i, 342 u16 val) 343 { 344 i->compat_flags = cpu_to_le16(val); 345 } 346 347 348 static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei) 349 { 350 return le64_to_cpu(ei->owner); 351 } 352 353 static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val) 354 { 355 ei->owner = cpu_to_le64(val); 356 } 357 358 static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei) 359 { 360 return le32_to_cpu(ei->refs); 361 } 362 363 static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val) 364 { 365 ei->refs = cpu_to_le32(val); 366 } 367 368 static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr) 369 { 370 return le64_to_cpu(n->ptrs[nr].blockptr); 371 } 372 373 static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr, 374 u64 val) 375 { 376 n->ptrs[nr].blockptr = cpu_to_le64(val); 377 } 378 379 static inline u32 btrfs_item_offset(struct btrfs_item *item) 380 { 381 return le32_to_cpu(item->offset); 382 } 383 384 static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val) 385 { 386 item->offset = cpu_to_le32(val); 387 } 388 389 static inline u32 btrfs_item_end(struct btrfs_item *item) 390 { 391 return le32_to_cpu(item->offset) + le16_to_cpu(item->size); 392 } 393 394 static inline u16 btrfs_item_size(struct btrfs_item *item) 395 { 396 return le16_to_cpu(item->size); 397 } 398 399 static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val) 400 { 401 item->size = cpu_to_le16(val); 402 } 403 404 static inline u64 btrfs_dir_objectid(struct btrfs_dir_item *d) 405 { 406 return le64_to_cpu(d->objectid); 407 } 408 409 static inline void btrfs_set_dir_objectid(struct btrfs_dir_item *d, u64 val) 410 { 411 d->objectid = cpu_to_le64(val); 412 } 413 414 static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d) 415 { 416 return le16_to_cpu(d->flags); 417 } 418 419 static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val) 420 { 421 d->flags = cpu_to_le16(val); 422 } 423 424 static inline u8 btrfs_dir_type(struct btrfs_dir_item *d) 425 { 426 return d->type; 427 } 428 429 static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val) 430 { 431 d->type = val; 432 } 433 434 static inline u32 btrfs_dir_name_len(struct btrfs_item *i) 435 { 436 return btrfs_item_size(i) - sizeof(struct btrfs_dir_item); 437 } 438 439 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 440 struct btrfs_disk_key *disk) 441 { 442 cpu->offset = le64_to_cpu(disk->offset); 443 cpu->flags = le32_to_cpu(disk->flags); 444 cpu->objectid = le64_to_cpu(disk->objectid); 445 } 446 447 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 448 struct btrfs_key *cpu) 449 { 450 disk->offset = cpu_to_le64(cpu->offset); 451 disk->flags = cpu_to_le32(cpu->flags); 452 disk->objectid = cpu_to_le64(cpu->objectid); 453 } 454 455 static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk) 456 { 457 return le64_to_cpu(disk->objectid); 458 } 459 460 static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk, 461 u64 val) 462 { 463 disk->objectid = cpu_to_le64(val); 464 } 465 466 static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk) 467 { 468 return le64_to_cpu(disk->offset); 469 } 470 471 static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk, 472 u64 val) 473 { 474 disk->offset = cpu_to_le64(val); 475 } 476 477 static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk) 478 { 479 return le32_to_cpu(disk->flags); 480 } 481 482 static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk, 483 u32 val) 484 { 485 disk->flags = cpu_to_le32(val); 486 } 487 488 static inline u32 btrfs_key_type(struct btrfs_key *key) 489 { 490 return key->flags & BTRFS_KEY_TYPE_MASK; 491 } 492 493 static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key) 494 { 495 return le32_to_cpu(key->flags) & BTRFS_KEY_TYPE_MASK; 496 } 497 498 static inline void btrfs_set_key_type(struct btrfs_key *key, u32 type) 499 { 500 BUG_ON(type >= BTRFS_KEY_TYPE_MAX); 501 key->flags = (key->flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type; 502 } 503 504 static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u32 type) 505 { 506 u32 flags = btrfs_disk_key_flags(key); 507 BUG_ON(type >= BTRFS_KEY_TYPE_MAX); 508 flags = (flags & ~((u64)BTRFS_KEY_TYPE_MASK)) | type; 509 btrfs_set_disk_key_flags(key, flags); 510 } 511 512 static inline u64 btrfs_header_blocknr(struct btrfs_header *h) 513 { 514 return le64_to_cpu(h->blocknr); 515 } 516 517 static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr) 518 { 519 h->blocknr = cpu_to_le64(blocknr); 520 } 521 522 static inline u64 btrfs_header_parentid(struct btrfs_header *h) 523 { 524 return le64_to_cpu(h->parentid); 525 } 526 527 static inline void btrfs_set_header_parentid(struct btrfs_header *h, 528 u64 parentid) 529 { 530 h->parentid = cpu_to_le64(parentid); 531 } 532 533 static inline u16 btrfs_header_nritems(struct btrfs_header *h) 534 { 535 return le16_to_cpu(h->nritems); 536 } 537 538 static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val) 539 { 540 h->nritems = cpu_to_le16(val); 541 } 542 543 static inline u16 btrfs_header_flags(struct btrfs_header *h) 544 { 545 return le16_to_cpu(h->flags); 546 } 547 548 static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val) 549 { 550 h->flags = cpu_to_le16(val); 551 } 552 553 static inline int btrfs_header_level(struct btrfs_header *h) 554 { 555 return btrfs_header_flags(h) & (BTRFS_MAX_LEVEL - 1); 556 } 557 558 static inline void btrfs_set_header_level(struct btrfs_header *h, int level) 559 { 560 u16 flags; 561 BUG_ON(level > BTRFS_MAX_LEVEL); 562 flags = btrfs_header_flags(h) & ~(BTRFS_MAX_LEVEL - 1); 563 btrfs_set_header_flags(h, flags | level); 564 } 565 566 static inline int btrfs_is_leaf(struct btrfs_node *n) 567 { 568 return (btrfs_header_level(&n->header) == 0); 569 } 570 571 static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item) 572 { 573 return le64_to_cpu(item->blocknr); 574 } 575 576 static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val) 577 { 578 item->blocknr = cpu_to_le64(val); 579 } 580 581 static inline u32 btrfs_root_refs(struct btrfs_root_item *item) 582 { 583 return le32_to_cpu(item->refs); 584 } 585 586 static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val) 587 { 588 item->refs = cpu_to_le32(val); 589 } 590 591 static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s) 592 { 593 return le64_to_cpu(s->blocknr); 594 } 595 596 static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val) 597 { 598 s->blocknr = cpu_to_le64(val); 599 } 600 601 static inline u64 btrfs_super_root(struct btrfs_super_block *s) 602 { 603 return le64_to_cpu(s->root); 604 } 605 606 static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val) 607 { 608 s->root = cpu_to_le64(val); 609 } 610 611 static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s) 612 { 613 return le64_to_cpu(s->total_blocks); 614 } 615 616 static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s, 617 u64 val) 618 { 619 s->total_blocks = cpu_to_le64(val); 620 } 621 622 static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s) 623 { 624 return le64_to_cpu(s->blocks_used); 625 } 626 627 static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s, 628 u64 val) 629 { 630 s->blocks_used = cpu_to_le64(val); 631 } 632 633 static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s) 634 { 635 return le32_to_cpu(s->blocksize); 636 } 637 638 static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s, 639 u32 val) 640 { 641 s->blocksize = cpu_to_le32(val); 642 } 643 644 static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l) 645 { 646 return (u8 *)l->items; 647 } 648 /* helper function to cast into the data area of the leaf. */ 649 #define btrfs_item_ptr(leaf, slot, type) \ 650 ((type *)(btrfs_leaf_data(leaf) + \ 651 btrfs_item_offset((leaf)->items + (slot)))) 652 653 struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_root *root); 654 int btrfs_inc_ref(struct btrfs_root *root, struct btrfs_buffer *buf); 655 int btrfs_free_extent(struct btrfs_root *root, u64 blocknr, u64 num_blocks); 656 int btrfs_search_slot(struct btrfs_root *root, struct btrfs_key *key, 657 struct btrfs_path *p, int ins_len, int cow); 658 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p); 659 void btrfs_init_path(struct btrfs_path *p); 660 int btrfs_del_item(struct btrfs_root *root, struct btrfs_path *path); 661 int btrfs_insert_item(struct btrfs_root *root, struct btrfs_key *key, 662 void *data, u32 data_size); 663 int btrfs_insert_empty_item(struct btrfs_root *root, struct btrfs_path *path, 664 struct btrfs_key *cpu_key, u32 data_size); 665 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); 666 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf); 667 int btrfs_drop_snapshot(struct btrfs_root *root, struct btrfs_buffer *snap); 668 int btrfs_finish_extent_commit(struct btrfs_root *root); 669 int btrfs_del_root(struct btrfs_root *root, struct btrfs_key *key); 670 int btrfs_insert_root(struct btrfs_root *root, struct btrfs_key *key, 671 struct btrfs_root_item *item); 672 int btrfs_update_root(struct btrfs_root *root, struct btrfs_key *key, 673 struct btrfs_root_item *item); 674 int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, 675 struct btrfs_root_item *item, struct btrfs_key *key); 676 int btrfs_insert_dir_item(struct btrfs_root *root, char *name, int name_len, 677 u64 dir, u64 objectid, u8 type); 678 int btrfs_lookup_dir_item(struct btrfs_root *root, struct btrfs_path *path, 679 u64 dir, char *name, int name_len, int mod); 680 int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path, 681 char *name, int name_len); 682 #endif 683