1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/io.h> 29 #include <linux/iopoll.h> 30 #include <linux/dma-mapping.h> 31 32 #include <asm/irq.h> 33 #include <linux/dma/imx-dma.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 123 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 124 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 125 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 126 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 127 #define USR1_RTSS (1<<14) /* RTS pin status */ 128 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 129 #define USR1_RTSD (1<<12) /* RTS delta */ 130 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 131 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 132 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 133 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 134 #define USR1_DTRD (1<<7) /* DTR Delta */ 135 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 136 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 137 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 138 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 139 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 140 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 141 #define USR2_IDLE (1<<12) /* Idle condition */ 142 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 143 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 144 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 145 #define USR2_WAKE (1<<7) /* Wake */ 146 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 147 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 148 #define USR2_TXDC (1<<3) /* Transmitter complete */ 149 #define USR2_BRCD (1<<2) /* Break condition */ 150 #define USR2_ORE (1<<1) /* Overrun error */ 151 #define USR2_RDR (1<<0) /* Recv data ready */ 152 #define UTS_FRCPERR (1<<13) /* Force parity error */ 153 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 154 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 155 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 156 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 157 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 158 #define UTS_SOFTRST (1<<0) /* Software reset */ 159 160 /* We've been assigned a range on the "Low-density serial ports" major */ 161 #define SERIAL_IMX_MAJOR 207 162 #define MINOR_START 16 163 #define DEV_NAME "ttymxc" 164 165 /* 166 * This determines how often we check the modem status signals 167 * for any change. They generally aren't connected to an IRQ 168 * so we have to poll them. We also check immediately before 169 * filling the TX fifo incase CTS has been dropped. 170 */ 171 #define MCTRL_TIMEOUT (250*HZ/1000) 172 173 #define DRIVER_NAME "IMX-uart" 174 175 #define UART_NR 8 176 177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 178 enum imx_uart_type { 179 IMX1_UART, 180 IMX21_UART, 181 IMX53_UART, 182 IMX6Q_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* counter to stop 0xff flood */ 214 int idle_counter; 215 216 /* DMA fields */ 217 unsigned int dma_is_enabled:1; 218 unsigned int dma_is_rxing:1; 219 unsigned int dma_is_txing:1; 220 struct dma_chan *dma_chan_rx, *dma_chan_tx; 221 struct scatterlist rx_sgl, tx_sgl[2]; 222 void *rx_buf; 223 struct circ_buf rx_ring; 224 unsigned int rx_buf_size; 225 unsigned int rx_period_length; 226 unsigned int rx_periods; 227 dma_cookie_t rx_cookie; 228 unsigned int tx_bytes; 229 unsigned int dma_tx_nents; 230 unsigned int saved_reg[10]; 231 bool context_saved; 232 233 enum imx_tx_state tx_state; 234 struct hrtimer trigger_start_tx; 235 struct hrtimer trigger_stop_tx; 236 }; 237 238 struct imx_port_ucrs { 239 unsigned int ucr1; 240 unsigned int ucr2; 241 unsigned int ucr3; 242 }; 243 244 static struct imx_uart_data imx_uart_devdata[] = { 245 [IMX1_UART] = { 246 .uts_reg = IMX1_UTS, 247 .devtype = IMX1_UART, 248 }, 249 [IMX21_UART] = { 250 .uts_reg = IMX21_UTS, 251 .devtype = IMX21_UART, 252 }, 253 [IMX53_UART] = { 254 .uts_reg = IMX21_UTS, 255 .devtype = IMX53_UART, 256 }, 257 [IMX6Q_UART] = { 258 .uts_reg = IMX21_UTS, 259 .devtype = IMX6Q_UART, 260 }, 261 }; 262 263 static const struct of_device_id imx_uart_dt_ids[] = { 264 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 265 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 266 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 267 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 268 { /* sentinel */ } 269 }; 270 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 271 272 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 273 { 274 writel(val, sport->port.membase + offset); 275 } 276 277 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 278 { 279 return readl(sport->port.membase + offset); 280 } 281 282 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 283 { 284 return sport->devdata->uts_reg; 285 } 286 287 static inline int imx_uart_is_imx1(struct imx_port *sport) 288 { 289 return sport->devdata->devtype == IMX1_UART; 290 } 291 292 /* 293 * Save and restore functions for UCR1, UCR2 and UCR3 registers 294 */ 295 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 296 static void imx_uart_ucrs_save(struct imx_port *sport, 297 struct imx_port_ucrs *ucr) 298 { 299 /* save control registers */ 300 ucr->ucr1 = imx_uart_readl(sport, UCR1); 301 ucr->ucr2 = imx_uart_readl(sport, UCR2); 302 ucr->ucr3 = imx_uart_readl(sport, UCR3); 303 } 304 305 static void imx_uart_ucrs_restore(struct imx_port *sport, 306 struct imx_port_ucrs *ucr) 307 { 308 /* restore control registers */ 309 imx_uart_writel(sport, ucr->ucr1, UCR1); 310 imx_uart_writel(sport, ucr->ucr2, UCR2); 311 imx_uart_writel(sport, ucr->ucr3, UCR3); 312 } 313 #endif 314 315 /* called with port.lock taken and irqs caller dependent */ 316 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 317 { 318 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 319 320 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 321 } 322 323 /* called with port.lock taken and irqs caller dependent */ 324 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 325 { 326 *ucr2 &= ~UCR2_CTSC; 327 *ucr2 |= UCR2_CTS; 328 329 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 330 } 331 332 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 333 { 334 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 335 } 336 337 /* called with port.lock taken and irqs off */ 338 static void imx_uart_soft_reset(struct imx_port *sport) 339 { 340 int i = 10; 341 u32 ucr2, ubir, ubmr, uts; 342 343 /* 344 * According to the Reference Manual description of the UART SRST bit: 345 * 346 * "Reset the transmit and receive state machines, 347 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 348 * and UTS[6-3]". 349 * 350 * We don't need to restore the old values from USR1, USR2, URXD and 351 * UTXD. UBRC is read only, so only save/restore the other three 352 * registers. 353 */ 354 ubir = imx_uart_readl(sport, UBIR); 355 ubmr = imx_uart_readl(sport, UBMR); 356 uts = imx_uart_readl(sport, IMX21_UTS); 357 358 ucr2 = imx_uart_readl(sport, UCR2); 359 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 360 361 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 362 udelay(1); 363 364 /* Restore the registers */ 365 imx_uart_writel(sport, ubir, UBIR); 366 imx_uart_writel(sport, ubmr, UBMR); 367 imx_uart_writel(sport, uts, IMX21_UTS); 368 369 sport->idle_counter = 0; 370 } 371 372 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 373 { 374 unsigned int uts; 375 376 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 377 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 378 uts &= ~UTS_LOOP; 379 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 380 } 381 382 /* called with port.lock taken and irqs off */ 383 static void imx_uart_start_rx(struct uart_port *port) 384 { 385 struct imx_port *sport = (struct imx_port *)port; 386 unsigned int ucr1, ucr2; 387 388 ucr1 = imx_uart_readl(sport, UCR1); 389 ucr2 = imx_uart_readl(sport, UCR2); 390 391 ucr2 |= UCR2_RXEN; 392 393 if (sport->dma_is_enabled) { 394 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 395 } else { 396 ucr1 |= UCR1_RRDYEN; 397 ucr2 |= UCR2_ATEN; 398 } 399 400 /* Write UCR2 first as it includes RXEN */ 401 imx_uart_writel(sport, ucr2, UCR2); 402 imx_uart_writel(sport, ucr1, UCR1); 403 imx_uart_disable_loopback_rs485(sport); 404 } 405 406 /* called with port.lock taken and irqs off */ 407 static void imx_uart_stop_tx(struct uart_port *port) 408 { 409 struct imx_port *sport = (struct imx_port *)port; 410 u32 ucr1, ucr4, usr2; 411 412 if (sport->tx_state == OFF) 413 return; 414 415 /* 416 * We are maybe in the SMP context, so if the DMA TX thread is running 417 * on other cpu, we have to wait for it to finish. 418 */ 419 if (sport->dma_is_txing) 420 return; 421 422 ucr1 = imx_uart_readl(sport, UCR1); 423 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 424 425 ucr4 = imx_uart_readl(sport, UCR4); 426 usr2 = imx_uart_readl(sport, USR2); 427 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 428 /* The shifter is still busy, so retry once TC triggers */ 429 return; 430 } 431 432 ucr4 &= ~UCR4_TCEN; 433 imx_uart_writel(sport, ucr4, UCR4); 434 435 /* in rs485 mode disable transmitter */ 436 if (port->rs485.flags & SER_RS485_ENABLED) { 437 if (sport->tx_state == SEND) { 438 sport->tx_state = WAIT_AFTER_SEND; 439 440 if (port->rs485.delay_rts_after_send > 0) { 441 start_hrtimer_ms(&sport->trigger_stop_tx, 442 port->rs485.delay_rts_after_send); 443 return; 444 } 445 446 /* continue without any delay */ 447 } 448 449 if (sport->tx_state == WAIT_AFTER_RTS || 450 sport->tx_state == WAIT_AFTER_SEND) { 451 u32 ucr2; 452 453 hrtimer_try_to_cancel(&sport->trigger_start_tx); 454 455 ucr2 = imx_uart_readl(sport, UCR2); 456 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 457 imx_uart_rts_active(sport, &ucr2); 458 else 459 imx_uart_rts_inactive(sport, &ucr2); 460 imx_uart_writel(sport, ucr2, UCR2); 461 462 if (!port->rs485_rx_during_tx_gpio) 463 imx_uart_start_rx(port); 464 465 sport->tx_state = OFF; 466 } 467 } else { 468 sport->tx_state = OFF; 469 } 470 } 471 472 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 473 { 474 struct imx_port *sport = (struct imx_port *)port; 475 u32 ucr1, ucr2, ucr4, uts; 476 477 ucr1 = imx_uart_readl(sport, UCR1); 478 ucr2 = imx_uart_readl(sport, UCR2); 479 ucr4 = imx_uart_readl(sport, UCR4); 480 481 if (sport->dma_is_enabled) { 482 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 483 } else { 484 ucr1 &= ~UCR1_RRDYEN; 485 ucr2 &= ~UCR2_ATEN; 486 ucr4 &= ~UCR4_OREN; 487 } 488 imx_uart_writel(sport, ucr1, UCR1); 489 imx_uart_writel(sport, ucr4, UCR4); 490 491 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 492 if (port->rs485.flags & SER_RS485_ENABLED && 493 port->rs485.flags & SER_RS485_RTS_ON_SEND && 494 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 495 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 496 uts |= UTS_LOOP; 497 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 498 ucr2 |= UCR2_RXEN; 499 } else { 500 ucr2 &= ~UCR2_RXEN; 501 } 502 503 imx_uart_writel(sport, ucr2, UCR2); 504 } 505 506 /* called with port.lock taken and irqs off */ 507 static void imx_uart_stop_rx(struct uart_port *port) 508 { 509 /* 510 * Stop RX and enable loopback in order to make sure RS485 bus 511 * is not blocked. Se comment in imx_uart_probe(). 512 */ 513 imx_uart_stop_rx_with_loopback_ctrl(port, true); 514 } 515 516 /* called with port.lock taken and irqs off */ 517 static void imx_uart_enable_ms(struct uart_port *port) 518 { 519 struct imx_port *sport = (struct imx_port *)port; 520 521 mod_timer(&sport->timer, jiffies); 522 523 mctrl_gpio_enable_ms(sport->gpios); 524 } 525 526 static void imx_uart_dma_tx(struct imx_port *sport); 527 528 /* called with port.lock taken and irqs off */ 529 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 530 { 531 struct circ_buf *xmit = &sport->port.state->xmit; 532 533 if (sport->port.x_char) { 534 /* Send next char */ 535 imx_uart_writel(sport, sport->port.x_char, URTX0); 536 sport->port.icount.tx++; 537 sport->port.x_char = 0; 538 return; 539 } 540 541 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 542 imx_uart_stop_tx(&sport->port); 543 return; 544 } 545 546 if (sport->dma_is_enabled) { 547 u32 ucr1; 548 /* 549 * We've just sent a X-char Ensure the TX DMA is enabled 550 * and the TX IRQ is disabled. 551 **/ 552 ucr1 = imx_uart_readl(sport, UCR1); 553 ucr1 &= ~UCR1_TRDYEN; 554 if (sport->dma_is_txing) { 555 ucr1 |= UCR1_TXDMAEN; 556 imx_uart_writel(sport, ucr1, UCR1); 557 } else { 558 imx_uart_writel(sport, ucr1, UCR1); 559 imx_uart_dma_tx(sport); 560 } 561 562 return; 563 } 564 565 while (!uart_circ_empty(xmit) && 566 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 567 /* send xmit->buf[xmit->tail] 568 * out the port here */ 569 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 570 uart_xmit_advance(&sport->port, 1); 571 } 572 573 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 574 uart_write_wakeup(&sport->port); 575 576 if (uart_circ_empty(xmit)) 577 imx_uart_stop_tx(&sport->port); 578 } 579 580 static void imx_uart_dma_tx_callback(void *data) 581 { 582 struct imx_port *sport = data; 583 struct scatterlist *sgl = &sport->tx_sgl[0]; 584 struct circ_buf *xmit = &sport->port.state->xmit; 585 unsigned long flags; 586 u32 ucr1; 587 588 spin_lock_irqsave(&sport->port.lock, flags); 589 590 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 591 592 ucr1 = imx_uart_readl(sport, UCR1); 593 ucr1 &= ~UCR1_TXDMAEN; 594 imx_uart_writel(sport, ucr1, UCR1); 595 596 uart_xmit_advance(&sport->port, sport->tx_bytes); 597 598 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 599 600 sport->dma_is_txing = 0; 601 602 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 603 uart_write_wakeup(&sport->port); 604 605 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 606 imx_uart_dma_tx(sport); 607 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 608 u32 ucr4 = imx_uart_readl(sport, UCR4); 609 ucr4 |= UCR4_TCEN; 610 imx_uart_writel(sport, ucr4, UCR4); 611 } 612 613 spin_unlock_irqrestore(&sport->port.lock, flags); 614 } 615 616 /* called with port.lock taken and irqs off */ 617 static void imx_uart_dma_tx(struct imx_port *sport) 618 { 619 struct circ_buf *xmit = &sport->port.state->xmit; 620 struct scatterlist *sgl = sport->tx_sgl; 621 struct dma_async_tx_descriptor *desc; 622 struct dma_chan *chan = sport->dma_chan_tx; 623 struct device *dev = sport->port.dev; 624 u32 ucr1, ucr4; 625 int ret; 626 627 if (sport->dma_is_txing) 628 return; 629 630 ucr4 = imx_uart_readl(sport, UCR4); 631 ucr4 &= ~UCR4_TCEN; 632 imx_uart_writel(sport, ucr4, UCR4); 633 634 sport->tx_bytes = uart_circ_chars_pending(xmit); 635 636 if (xmit->tail < xmit->head || xmit->head == 0) { 637 sport->dma_tx_nents = 1; 638 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 639 } else { 640 sport->dma_tx_nents = 2; 641 sg_init_table(sgl, 2); 642 sg_set_buf(sgl, xmit->buf + xmit->tail, 643 UART_XMIT_SIZE - xmit->tail); 644 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 645 } 646 647 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 648 if (ret == 0) { 649 dev_err(dev, "DMA mapping error for TX.\n"); 650 return; 651 } 652 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 653 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 654 if (!desc) { 655 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 656 DMA_TO_DEVICE); 657 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 658 return; 659 } 660 desc->callback = imx_uart_dma_tx_callback; 661 desc->callback_param = sport; 662 663 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 664 uart_circ_chars_pending(xmit)); 665 666 ucr1 = imx_uart_readl(sport, UCR1); 667 ucr1 |= UCR1_TXDMAEN; 668 imx_uart_writel(sport, ucr1, UCR1); 669 670 /* fire it */ 671 sport->dma_is_txing = 1; 672 dmaengine_submit(desc); 673 dma_async_issue_pending(chan); 674 return; 675 } 676 677 /* called with port.lock taken and irqs off */ 678 static void imx_uart_start_tx(struct uart_port *port) 679 { 680 struct imx_port *sport = (struct imx_port *)port; 681 u32 ucr1; 682 683 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 684 return; 685 686 /* 687 * We cannot simply do nothing here if sport->tx_state == SEND already 688 * because UCR1_TXMPTYEN might already have been cleared in 689 * imx_uart_stop_tx(), but tx_state is still SEND. 690 */ 691 692 if (port->rs485.flags & SER_RS485_ENABLED) { 693 if (sport->tx_state == OFF) { 694 u32 ucr2 = imx_uart_readl(sport, UCR2); 695 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 696 imx_uart_rts_active(sport, &ucr2); 697 else 698 imx_uart_rts_inactive(sport, &ucr2); 699 imx_uart_writel(sport, ucr2, UCR2); 700 701 /* 702 * Since we are about to transmit we can not stop RX 703 * with loopback enabled because that will make our 704 * transmitted data being just looped to RX. 705 */ 706 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 707 !port->rs485_rx_during_tx_gpio) 708 imx_uart_stop_rx_with_loopback_ctrl(port, false); 709 710 sport->tx_state = WAIT_AFTER_RTS; 711 712 if (port->rs485.delay_rts_before_send > 0) { 713 start_hrtimer_ms(&sport->trigger_start_tx, 714 port->rs485.delay_rts_before_send); 715 return; 716 } 717 718 /* continue without any delay */ 719 } 720 721 if (sport->tx_state == WAIT_AFTER_SEND 722 || sport->tx_state == WAIT_AFTER_RTS) { 723 724 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 725 726 /* 727 * Enable transmitter and shifter empty irq only if DMA 728 * is off. In the DMA case this is done in the 729 * tx-callback. 730 */ 731 if (!sport->dma_is_enabled) { 732 u32 ucr4 = imx_uart_readl(sport, UCR4); 733 ucr4 |= UCR4_TCEN; 734 imx_uart_writel(sport, ucr4, UCR4); 735 } 736 737 sport->tx_state = SEND; 738 } 739 } else { 740 sport->tx_state = SEND; 741 } 742 743 if (!sport->dma_is_enabled) { 744 ucr1 = imx_uart_readl(sport, UCR1); 745 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 746 } 747 748 if (sport->dma_is_enabled) { 749 if (sport->port.x_char) { 750 /* We have X-char to send, so enable TX IRQ and 751 * disable TX DMA to let TX interrupt to send X-char */ 752 ucr1 = imx_uart_readl(sport, UCR1); 753 ucr1 &= ~UCR1_TXDMAEN; 754 ucr1 |= UCR1_TRDYEN; 755 imx_uart_writel(sport, ucr1, UCR1); 756 return; 757 } 758 759 if (!uart_circ_empty(&port->state->xmit) && 760 !uart_tx_stopped(port)) 761 imx_uart_dma_tx(sport); 762 return; 763 } 764 } 765 766 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 767 { 768 struct imx_port *sport = dev_id; 769 u32 usr1; 770 771 imx_uart_writel(sport, USR1_RTSD, USR1); 772 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 773 uart_handle_cts_change(&sport->port, usr1); 774 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 775 776 return IRQ_HANDLED; 777 } 778 779 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 780 { 781 struct imx_port *sport = dev_id; 782 irqreturn_t ret; 783 784 spin_lock(&sport->port.lock); 785 786 ret = __imx_uart_rtsint(irq, dev_id); 787 788 spin_unlock(&sport->port.lock); 789 790 return ret; 791 } 792 793 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 794 { 795 struct imx_port *sport = dev_id; 796 797 spin_lock(&sport->port.lock); 798 imx_uart_transmit_buffer(sport); 799 spin_unlock(&sport->port.lock); 800 return IRQ_HANDLED; 801 } 802 803 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 804 * This is to be called from Rx ISRs only when some bytes were actually 805 * received. 806 * 807 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 808 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 809 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 810 * that is terminated by any activity on RxD line, or could be stopped by 811 * issuing soft reset to the UART (just stop/start of RX does not help). Note 812 * that what we do here is sending isolated start bit about 2.4 times shorter 813 * than it is to be on UART configured baud rate. 814 */ 815 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 816 { 817 /* To detect hardware 0xff flood we monitor RxD line between RX 818 * interrupts to isolate "receiving" of char(s) with no activity 819 * on RxD line, that'd never happen on actual data transfers. 820 * 821 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 822 * race here if we clear USR2_WAKE when receiving of a char is in 823 * progress, so we might get RX interrupt later with USR2_WAKE bit 824 * cleared. Note though that as we don't try to clear USR2_WAKE when we 825 * detected no activity, this race may hide actual activity only once. 826 * 827 * Yet another case where receive interrupt may occur without RxD 828 * activity is expiration of aging timer, so we consider this as well. 829 * 830 * We use 'idle_counter' to ensure that we got at least so many RX 831 * interrupts without any detected activity on RxD line. 2 cases 832 * described plus 1 to be on the safe side gives us a margin of 3, 833 * below. In practice I was not able to produce a false positive to 834 * induce soft reset at regular data transfers even using 1 as the 835 * margin, so 3 is actually very strong. 836 * 837 * We count interrupts, not chars in 'idle-counter' for simplicity. 838 */ 839 840 if (usr2 & USR2_WAKE) { 841 imx_uart_writel(sport, USR2_WAKE, USR2); 842 sport->idle_counter = 0; 843 } else if (++sport->idle_counter > 3) { 844 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 845 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 846 } 847 } 848 849 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 850 { 851 struct imx_port *sport = dev_id; 852 struct tty_port *port = &sport->port.state->port; 853 u32 usr2, rx; 854 855 /* If we received something, check for 0xff flood */ 856 usr2 = imx_uart_readl(sport, USR2); 857 if (usr2 & USR2_RDR) 858 imx_uart_check_flood(sport, usr2); 859 860 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 861 unsigned int flg = TTY_NORMAL; 862 sport->port.icount.rx++; 863 864 if (unlikely(rx & URXD_ERR)) { 865 if (rx & URXD_BRK) { 866 sport->port.icount.brk++; 867 if (uart_handle_break(&sport->port)) 868 continue; 869 } 870 else if (rx & URXD_PRERR) 871 sport->port.icount.parity++; 872 else if (rx & URXD_FRMERR) 873 sport->port.icount.frame++; 874 if (rx & URXD_OVRRUN) 875 sport->port.icount.overrun++; 876 877 if (rx & sport->port.ignore_status_mask) 878 continue; 879 880 rx &= (sport->port.read_status_mask | 0xFF); 881 882 if (rx & URXD_BRK) 883 flg = TTY_BREAK; 884 else if (rx & URXD_PRERR) 885 flg = TTY_PARITY; 886 else if (rx & URXD_FRMERR) 887 flg = TTY_FRAME; 888 if (rx & URXD_OVRRUN) 889 flg = TTY_OVERRUN; 890 891 sport->port.sysrq = 0; 892 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 893 continue; 894 } 895 896 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 897 continue; 898 899 if (tty_insert_flip_char(port, rx, flg) == 0) 900 sport->port.icount.buf_overrun++; 901 } 902 903 tty_flip_buffer_push(port); 904 905 return IRQ_HANDLED; 906 } 907 908 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 909 { 910 struct imx_port *sport = dev_id; 911 irqreturn_t ret; 912 913 spin_lock(&sport->port.lock); 914 915 ret = __imx_uart_rxint(irq, dev_id); 916 917 spin_unlock(&sport->port.lock); 918 919 return ret; 920 } 921 922 static void imx_uart_clear_rx_errors(struct imx_port *sport); 923 924 /* 925 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 926 */ 927 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 928 { 929 unsigned int tmp = TIOCM_DSR; 930 unsigned usr1 = imx_uart_readl(sport, USR1); 931 unsigned usr2 = imx_uart_readl(sport, USR2); 932 933 if (usr1 & USR1_RTSS) 934 tmp |= TIOCM_CTS; 935 936 /* in DCE mode DCDIN is always 0 */ 937 if (!(usr2 & USR2_DCDIN)) 938 tmp |= TIOCM_CAR; 939 940 if (sport->dte_mode) 941 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 942 tmp |= TIOCM_RI; 943 944 return tmp; 945 } 946 947 /* 948 * Handle any change of modem status signal since we were last called. 949 */ 950 static void imx_uart_mctrl_check(struct imx_port *sport) 951 { 952 unsigned int status, changed; 953 954 status = imx_uart_get_hwmctrl(sport); 955 changed = status ^ sport->old_status; 956 957 if (changed == 0) 958 return; 959 960 sport->old_status = status; 961 962 if (changed & TIOCM_RI && status & TIOCM_RI) 963 sport->port.icount.rng++; 964 if (changed & TIOCM_DSR) 965 sport->port.icount.dsr++; 966 if (changed & TIOCM_CAR) 967 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 968 if (changed & TIOCM_CTS) 969 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 970 971 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 972 } 973 974 static irqreturn_t imx_uart_int(int irq, void *dev_id) 975 { 976 struct imx_port *sport = dev_id; 977 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 978 irqreturn_t ret = IRQ_NONE; 979 980 spin_lock(&sport->port.lock); 981 982 usr1 = imx_uart_readl(sport, USR1); 983 usr2 = imx_uart_readl(sport, USR2); 984 ucr1 = imx_uart_readl(sport, UCR1); 985 ucr2 = imx_uart_readl(sport, UCR2); 986 ucr3 = imx_uart_readl(sport, UCR3); 987 ucr4 = imx_uart_readl(sport, UCR4); 988 989 /* 990 * Even if a condition is true that can trigger an irq only handle it if 991 * the respective irq source is enabled. This prevents some undesired 992 * actions, for example if a character that sits in the RX FIFO and that 993 * should be fetched via DMA is tried to be fetched using PIO. Or the 994 * receiver is currently off and so reading from URXD0 results in an 995 * exception. So just mask the (raw) status bits for disabled irqs. 996 */ 997 if ((ucr1 & UCR1_RRDYEN) == 0) 998 usr1 &= ~USR1_RRDY; 999 if ((ucr2 & UCR2_ATEN) == 0) 1000 usr1 &= ~USR1_AGTIM; 1001 if ((ucr1 & UCR1_TRDYEN) == 0) 1002 usr1 &= ~USR1_TRDY; 1003 if ((ucr4 & UCR4_TCEN) == 0) 1004 usr2 &= ~USR2_TXDC; 1005 if ((ucr3 & UCR3_DTRDEN) == 0) 1006 usr1 &= ~USR1_DTRD; 1007 if ((ucr1 & UCR1_RTSDEN) == 0) 1008 usr1 &= ~USR1_RTSD; 1009 if ((ucr3 & UCR3_AWAKEN) == 0) 1010 usr1 &= ~USR1_AWAKE; 1011 if ((ucr4 & UCR4_OREN) == 0) 1012 usr2 &= ~USR2_ORE; 1013 1014 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1015 imx_uart_writel(sport, USR1_AGTIM, USR1); 1016 1017 __imx_uart_rxint(irq, dev_id); 1018 ret = IRQ_HANDLED; 1019 } 1020 1021 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1022 imx_uart_transmit_buffer(sport); 1023 ret = IRQ_HANDLED; 1024 } 1025 1026 if (usr1 & USR1_DTRD) { 1027 imx_uart_writel(sport, USR1_DTRD, USR1); 1028 1029 imx_uart_mctrl_check(sport); 1030 1031 ret = IRQ_HANDLED; 1032 } 1033 1034 if (usr1 & USR1_RTSD) { 1035 __imx_uart_rtsint(irq, dev_id); 1036 ret = IRQ_HANDLED; 1037 } 1038 1039 if (usr1 & USR1_AWAKE) { 1040 imx_uart_writel(sport, USR1_AWAKE, USR1); 1041 ret = IRQ_HANDLED; 1042 } 1043 1044 if (usr2 & USR2_ORE) { 1045 sport->port.icount.overrun++; 1046 imx_uart_writel(sport, USR2_ORE, USR2); 1047 ret = IRQ_HANDLED; 1048 } 1049 1050 spin_unlock(&sport->port.lock); 1051 1052 return ret; 1053 } 1054 1055 /* 1056 * Return TIOCSER_TEMT when transmitter is not busy. 1057 */ 1058 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1059 { 1060 struct imx_port *sport = (struct imx_port *)port; 1061 unsigned int ret; 1062 1063 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1064 1065 /* If the TX DMA is working, return 0. */ 1066 if (sport->dma_is_txing) 1067 ret = 0; 1068 1069 return ret; 1070 } 1071 1072 /* called with port.lock taken and irqs off */ 1073 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1074 { 1075 struct imx_port *sport = (struct imx_port *)port; 1076 unsigned int ret = imx_uart_get_hwmctrl(sport); 1077 1078 mctrl_gpio_get(sport->gpios, &ret); 1079 1080 return ret; 1081 } 1082 1083 /* called with port.lock taken and irqs off */ 1084 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1085 { 1086 struct imx_port *sport = (struct imx_port *)port; 1087 u32 ucr3, uts; 1088 1089 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1090 u32 ucr2; 1091 1092 /* 1093 * Turn off autoRTS if RTS is lowered and restore autoRTS 1094 * setting if RTS is raised. 1095 */ 1096 ucr2 = imx_uart_readl(sport, UCR2); 1097 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1098 if (mctrl & TIOCM_RTS) { 1099 ucr2 |= UCR2_CTS; 1100 /* 1101 * UCR2_IRTS is unset if and only if the port is 1102 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1103 * to get the state to restore to. 1104 */ 1105 if (!(ucr2 & UCR2_IRTS)) 1106 ucr2 |= UCR2_CTSC; 1107 } 1108 imx_uart_writel(sport, ucr2, UCR2); 1109 } 1110 1111 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1112 if (!(mctrl & TIOCM_DTR)) 1113 ucr3 |= UCR3_DSR; 1114 imx_uart_writel(sport, ucr3, UCR3); 1115 1116 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1117 if (mctrl & TIOCM_LOOP) 1118 uts |= UTS_LOOP; 1119 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1120 1121 mctrl_gpio_set(sport->gpios, mctrl); 1122 } 1123 1124 /* 1125 * Interrupts always disabled. 1126 */ 1127 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1128 { 1129 struct imx_port *sport = (struct imx_port *)port; 1130 unsigned long flags; 1131 u32 ucr1; 1132 1133 spin_lock_irqsave(&sport->port.lock, flags); 1134 1135 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1136 1137 if (break_state != 0) 1138 ucr1 |= UCR1_SNDBRK; 1139 1140 imx_uart_writel(sport, ucr1, UCR1); 1141 1142 spin_unlock_irqrestore(&sport->port.lock, flags); 1143 } 1144 1145 /* 1146 * This is our per-port timeout handler, for checking the 1147 * modem status signals. 1148 */ 1149 static void imx_uart_timeout(struct timer_list *t) 1150 { 1151 struct imx_port *sport = from_timer(sport, t, timer); 1152 unsigned long flags; 1153 1154 if (sport->port.state) { 1155 spin_lock_irqsave(&sport->port.lock, flags); 1156 imx_uart_mctrl_check(sport); 1157 spin_unlock_irqrestore(&sport->port.lock, flags); 1158 1159 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1160 } 1161 } 1162 1163 /* 1164 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1165 * [1] the RX DMA buffer is full. 1166 * [2] the aging timer expires 1167 * 1168 * Condition [2] is triggered when a character has been sitting in the FIFO 1169 * for at least 8 byte durations. 1170 */ 1171 static void imx_uart_dma_rx_callback(void *data) 1172 { 1173 struct imx_port *sport = data; 1174 struct dma_chan *chan = sport->dma_chan_rx; 1175 struct scatterlist *sgl = &sport->rx_sgl; 1176 struct tty_port *port = &sport->port.state->port; 1177 struct dma_tx_state state; 1178 struct circ_buf *rx_ring = &sport->rx_ring; 1179 enum dma_status status; 1180 unsigned int w_bytes = 0; 1181 unsigned int r_bytes; 1182 unsigned int bd_size; 1183 1184 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1185 1186 if (status == DMA_ERROR) { 1187 spin_lock(&sport->port.lock); 1188 imx_uart_clear_rx_errors(sport); 1189 spin_unlock(&sport->port.lock); 1190 return; 1191 } 1192 1193 /* 1194 * The state-residue variable represents the empty space 1195 * relative to the entire buffer. Taking this in consideration 1196 * the head is always calculated base on the buffer total 1197 * length - DMA transaction residue. The UART script from the 1198 * SDMA firmware will jump to the next buffer descriptor, 1199 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1200 * Taking this in consideration the tail is always at the 1201 * beginning of the buffer descriptor that contains the head. 1202 */ 1203 1204 /* Calculate the head */ 1205 rx_ring->head = sg_dma_len(sgl) - state.residue; 1206 1207 /* Calculate the tail. */ 1208 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1209 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1210 1211 if (rx_ring->head <= sg_dma_len(sgl) && 1212 rx_ring->head > rx_ring->tail) { 1213 1214 /* Move data from tail to head */ 1215 r_bytes = rx_ring->head - rx_ring->tail; 1216 1217 /* If we received something, check for 0xff flood */ 1218 spin_lock(&sport->port.lock); 1219 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1220 spin_unlock(&sport->port.lock); 1221 1222 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1223 1224 /* CPU claims ownership of RX DMA buffer */ 1225 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1226 DMA_FROM_DEVICE); 1227 1228 w_bytes = tty_insert_flip_string(port, 1229 sport->rx_buf + rx_ring->tail, r_bytes); 1230 1231 /* UART retrieves ownership of RX DMA buffer */ 1232 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1233 DMA_FROM_DEVICE); 1234 1235 if (w_bytes != r_bytes) 1236 sport->port.icount.buf_overrun++; 1237 1238 sport->port.icount.rx += w_bytes; 1239 } 1240 } else { 1241 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1242 WARN_ON(rx_ring->head <= rx_ring->tail); 1243 } 1244 1245 if (w_bytes) { 1246 tty_flip_buffer_push(port); 1247 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1248 } 1249 } 1250 1251 static int imx_uart_start_rx_dma(struct imx_port *sport) 1252 { 1253 struct scatterlist *sgl = &sport->rx_sgl; 1254 struct dma_chan *chan = sport->dma_chan_rx; 1255 struct device *dev = sport->port.dev; 1256 struct dma_async_tx_descriptor *desc; 1257 int ret; 1258 1259 sport->rx_ring.head = 0; 1260 sport->rx_ring.tail = 0; 1261 1262 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1263 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1264 if (ret == 0) { 1265 dev_err(dev, "DMA mapping error for RX.\n"); 1266 return -EINVAL; 1267 } 1268 1269 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1270 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1271 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1272 1273 if (!desc) { 1274 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1275 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1276 return -EINVAL; 1277 } 1278 desc->callback = imx_uart_dma_rx_callback; 1279 desc->callback_param = sport; 1280 1281 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1282 sport->dma_is_rxing = 1; 1283 sport->rx_cookie = dmaengine_submit(desc); 1284 dma_async_issue_pending(chan); 1285 return 0; 1286 } 1287 1288 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1289 { 1290 struct tty_port *port = &sport->port.state->port; 1291 u32 usr1, usr2; 1292 1293 usr1 = imx_uart_readl(sport, USR1); 1294 usr2 = imx_uart_readl(sport, USR2); 1295 1296 if (usr2 & USR2_BRCD) { 1297 sport->port.icount.brk++; 1298 imx_uart_writel(sport, USR2_BRCD, USR2); 1299 uart_handle_break(&sport->port); 1300 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1301 sport->port.icount.buf_overrun++; 1302 tty_flip_buffer_push(port); 1303 } else { 1304 if (usr1 & USR1_FRAMERR) { 1305 sport->port.icount.frame++; 1306 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1307 } else if (usr1 & USR1_PARITYERR) { 1308 sport->port.icount.parity++; 1309 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1310 } 1311 } 1312 1313 if (usr2 & USR2_ORE) { 1314 sport->port.icount.overrun++; 1315 imx_uart_writel(sport, USR2_ORE, USR2); 1316 } 1317 1318 sport->idle_counter = 0; 1319 1320 } 1321 1322 #define TXTL_DEFAULT 2 /* reset default */ 1323 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1324 #define TXTL_DMA 8 /* DMA burst setting */ 1325 #define RXTL_DMA 9 /* DMA burst setting */ 1326 1327 static void imx_uart_setup_ufcr(struct imx_port *sport, 1328 unsigned char txwl, unsigned char rxwl) 1329 { 1330 unsigned int val; 1331 1332 /* set receiver / transmitter trigger level */ 1333 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1334 val |= txwl << UFCR_TXTL_SHF | rxwl; 1335 imx_uart_writel(sport, val, UFCR); 1336 } 1337 1338 static void imx_uart_dma_exit(struct imx_port *sport) 1339 { 1340 if (sport->dma_chan_rx) { 1341 dmaengine_terminate_sync(sport->dma_chan_rx); 1342 dma_release_channel(sport->dma_chan_rx); 1343 sport->dma_chan_rx = NULL; 1344 sport->rx_cookie = -EINVAL; 1345 kfree(sport->rx_buf); 1346 sport->rx_buf = NULL; 1347 } 1348 1349 if (sport->dma_chan_tx) { 1350 dmaengine_terminate_sync(sport->dma_chan_tx); 1351 dma_release_channel(sport->dma_chan_tx); 1352 sport->dma_chan_tx = NULL; 1353 } 1354 } 1355 1356 static int imx_uart_dma_init(struct imx_port *sport) 1357 { 1358 struct dma_slave_config slave_config = {}; 1359 struct device *dev = sport->port.dev; 1360 int ret; 1361 1362 /* Prepare for RX : */ 1363 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1364 if (!sport->dma_chan_rx) { 1365 dev_dbg(dev, "cannot get the DMA channel.\n"); 1366 ret = -EINVAL; 1367 goto err; 1368 } 1369 1370 slave_config.direction = DMA_DEV_TO_MEM; 1371 slave_config.src_addr = sport->port.mapbase + URXD0; 1372 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1373 /* one byte less than the watermark level to enable the aging timer */ 1374 slave_config.src_maxburst = RXTL_DMA - 1; 1375 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1376 if (ret) { 1377 dev_err(dev, "error in RX dma configuration.\n"); 1378 goto err; 1379 } 1380 1381 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1382 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1383 if (!sport->rx_buf) { 1384 ret = -ENOMEM; 1385 goto err; 1386 } 1387 sport->rx_ring.buf = sport->rx_buf; 1388 1389 /* Prepare for TX : */ 1390 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1391 if (!sport->dma_chan_tx) { 1392 dev_err(dev, "cannot get the TX DMA channel!\n"); 1393 ret = -EINVAL; 1394 goto err; 1395 } 1396 1397 slave_config.direction = DMA_MEM_TO_DEV; 1398 slave_config.dst_addr = sport->port.mapbase + URTX0; 1399 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1400 slave_config.dst_maxburst = TXTL_DMA; 1401 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1402 if (ret) { 1403 dev_err(dev, "error in TX dma configuration."); 1404 goto err; 1405 } 1406 1407 return 0; 1408 err: 1409 imx_uart_dma_exit(sport); 1410 return ret; 1411 } 1412 1413 static void imx_uart_enable_dma(struct imx_port *sport) 1414 { 1415 u32 ucr1; 1416 1417 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1418 1419 /* set UCR1 */ 1420 ucr1 = imx_uart_readl(sport, UCR1); 1421 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1422 imx_uart_writel(sport, ucr1, UCR1); 1423 1424 sport->dma_is_enabled = 1; 1425 } 1426 1427 static void imx_uart_disable_dma(struct imx_port *sport) 1428 { 1429 u32 ucr1; 1430 1431 /* clear UCR1 */ 1432 ucr1 = imx_uart_readl(sport, UCR1); 1433 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1434 imx_uart_writel(sport, ucr1, UCR1); 1435 1436 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1437 1438 sport->dma_is_enabled = 0; 1439 } 1440 1441 /* half the RX buffer size */ 1442 #define CTSTL 16 1443 1444 static int imx_uart_startup(struct uart_port *port) 1445 { 1446 struct imx_port *sport = (struct imx_port *)port; 1447 int retval; 1448 unsigned long flags; 1449 int dma_is_inited = 0; 1450 u32 ucr1, ucr2, ucr3, ucr4; 1451 1452 retval = clk_prepare_enable(sport->clk_per); 1453 if (retval) 1454 return retval; 1455 retval = clk_prepare_enable(sport->clk_ipg); 1456 if (retval) { 1457 clk_disable_unprepare(sport->clk_per); 1458 return retval; 1459 } 1460 1461 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1462 1463 /* disable the DREN bit (Data Ready interrupt enable) before 1464 * requesting IRQs 1465 */ 1466 ucr4 = imx_uart_readl(sport, UCR4); 1467 1468 /* set the trigger level for CTS */ 1469 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1470 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1471 1472 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1473 1474 /* Can we enable the DMA support? */ 1475 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1476 dma_is_inited = 1; 1477 1478 spin_lock_irqsave(&sport->port.lock, flags); 1479 1480 /* Reset fifo's and state machines */ 1481 imx_uart_soft_reset(sport); 1482 1483 /* 1484 * Finally, clear and enable interrupts 1485 */ 1486 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1487 imx_uart_writel(sport, USR2_ORE, USR2); 1488 1489 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1490 ucr1 |= UCR1_UARTEN; 1491 if (sport->have_rtscts) 1492 ucr1 |= UCR1_RTSDEN; 1493 1494 imx_uart_writel(sport, ucr1, UCR1); 1495 1496 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1497 if (!dma_is_inited) 1498 ucr4 |= UCR4_OREN; 1499 if (sport->inverted_rx) 1500 ucr4 |= UCR4_INVR; 1501 imx_uart_writel(sport, ucr4, UCR4); 1502 1503 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1504 /* 1505 * configure tx polarity before enabling tx 1506 */ 1507 if (sport->inverted_tx) 1508 ucr3 |= UCR3_INVT; 1509 1510 if (!imx_uart_is_imx1(sport)) { 1511 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1512 1513 if (sport->dte_mode) 1514 /* disable broken interrupts */ 1515 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1516 } 1517 imx_uart_writel(sport, ucr3, UCR3); 1518 1519 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1520 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1521 if (!sport->have_rtscts) 1522 ucr2 |= UCR2_IRTS; 1523 /* 1524 * make sure the edge sensitive RTS-irq is disabled, 1525 * we're using RTSD instead. 1526 */ 1527 if (!imx_uart_is_imx1(sport)) 1528 ucr2 &= ~UCR2_RTSEN; 1529 imx_uart_writel(sport, ucr2, UCR2); 1530 1531 /* 1532 * Enable modem status interrupts 1533 */ 1534 imx_uart_enable_ms(&sport->port); 1535 1536 if (dma_is_inited) { 1537 imx_uart_enable_dma(sport); 1538 imx_uart_start_rx_dma(sport); 1539 } else { 1540 ucr1 = imx_uart_readl(sport, UCR1); 1541 ucr1 |= UCR1_RRDYEN; 1542 imx_uart_writel(sport, ucr1, UCR1); 1543 1544 ucr2 = imx_uart_readl(sport, UCR2); 1545 ucr2 |= UCR2_ATEN; 1546 imx_uart_writel(sport, ucr2, UCR2); 1547 } 1548 1549 imx_uart_disable_loopback_rs485(sport); 1550 1551 spin_unlock_irqrestore(&sport->port.lock, flags); 1552 1553 return 0; 1554 } 1555 1556 static void imx_uart_shutdown(struct uart_port *port) 1557 { 1558 struct imx_port *sport = (struct imx_port *)port; 1559 unsigned long flags; 1560 u32 ucr1, ucr2, ucr4, uts; 1561 1562 if (sport->dma_is_enabled) { 1563 dmaengine_terminate_sync(sport->dma_chan_tx); 1564 if (sport->dma_is_txing) { 1565 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1566 sport->dma_tx_nents, DMA_TO_DEVICE); 1567 sport->dma_is_txing = 0; 1568 } 1569 dmaengine_terminate_sync(sport->dma_chan_rx); 1570 if (sport->dma_is_rxing) { 1571 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1572 1, DMA_FROM_DEVICE); 1573 sport->dma_is_rxing = 0; 1574 } 1575 1576 spin_lock_irqsave(&sport->port.lock, flags); 1577 imx_uart_stop_tx(port); 1578 imx_uart_stop_rx(port); 1579 imx_uart_disable_dma(sport); 1580 spin_unlock_irqrestore(&sport->port.lock, flags); 1581 imx_uart_dma_exit(sport); 1582 } 1583 1584 mctrl_gpio_disable_ms(sport->gpios); 1585 1586 spin_lock_irqsave(&sport->port.lock, flags); 1587 ucr2 = imx_uart_readl(sport, UCR2); 1588 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1589 imx_uart_writel(sport, ucr2, UCR2); 1590 spin_unlock_irqrestore(&sport->port.lock, flags); 1591 1592 /* 1593 * Stop our timer. 1594 */ 1595 del_timer_sync(&sport->timer); 1596 1597 /* 1598 * Disable all interrupts, port and break condition. 1599 */ 1600 1601 spin_lock_irqsave(&sport->port.lock, flags); 1602 1603 ucr1 = imx_uart_readl(sport, UCR1); 1604 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1605 UCR1_ATDMAEN | UCR1_SNDBRK); 1606 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1607 if (port->rs485.flags & SER_RS485_ENABLED && 1608 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1609 sport->have_rtscts && !sport->have_rtsgpio) { 1610 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1611 uts |= UTS_LOOP; 1612 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1613 ucr1 |= UCR1_UARTEN; 1614 } else { 1615 ucr1 &= ~UCR1_UARTEN; 1616 } 1617 imx_uart_writel(sport, ucr1, UCR1); 1618 1619 ucr4 = imx_uart_readl(sport, UCR4); 1620 ucr4 &= ~UCR4_TCEN; 1621 imx_uart_writel(sport, ucr4, UCR4); 1622 1623 spin_unlock_irqrestore(&sport->port.lock, flags); 1624 1625 clk_disable_unprepare(sport->clk_per); 1626 clk_disable_unprepare(sport->clk_ipg); 1627 } 1628 1629 /* called with port.lock taken and irqs off */ 1630 static void imx_uart_flush_buffer(struct uart_port *port) 1631 { 1632 struct imx_port *sport = (struct imx_port *)port; 1633 struct scatterlist *sgl = &sport->tx_sgl[0]; 1634 1635 if (!sport->dma_chan_tx) 1636 return; 1637 1638 sport->tx_bytes = 0; 1639 dmaengine_terminate_all(sport->dma_chan_tx); 1640 if (sport->dma_is_txing) { 1641 u32 ucr1; 1642 1643 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1644 DMA_TO_DEVICE); 1645 ucr1 = imx_uart_readl(sport, UCR1); 1646 ucr1 &= ~UCR1_TXDMAEN; 1647 imx_uart_writel(sport, ucr1, UCR1); 1648 sport->dma_is_txing = 0; 1649 } 1650 1651 imx_uart_soft_reset(sport); 1652 1653 } 1654 1655 static void 1656 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1657 const struct ktermios *old) 1658 { 1659 struct imx_port *sport = (struct imx_port *)port; 1660 unsigned long flags; 1661 u32 ucr2, old_ucr2, ufcr; 1662 unsigned int baud, quot; 1663 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1664 unsigned long div; 1665 unsigned long num, denom, old_ubir, old_ubmr; 1666 uint64_t tdiv64; 1667 1668 /* 1669 * We only support CS7 and CS8. 1670 */ 1671 while ((termios->c_cflag & CSIZE) != CS7 && 1672 (termios->c_cflag & CSIZE) != CS8) { 1673 termios->c_cflag &= ~CSIZE; 1674 termios->c_cflag |= old_csize; 1675 old_csize = CS8; 1676 } 1677 1678 del_timer_sync(&sport->timer); 1679 1680 /* 1681 * Ask the core to calculate the divisor for us. 1682 */ 1683 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1684 quot = uart_get_divisor(port, baud); 1685 1686 spin_lock_irqsave(&sport->port.lock, flags); 1687 1688 /* 1689 * Read current UCR2 and save it for future use, then clear all the bits 1690 * except those we will or may need to preserve. 1691 */ 1692 old_ucr2 = imx_uart_readl(sport, UCR2); 1693 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1694 1695 ucr2 |= UCR2_SRST | UCR2_IRTS; 1696 if ((termios->c_cflag & CSIZE) == CS8) 1697 ucr2 |= UCR2_WS; 1698 1699 if (!sport->have_rtscts) 1700 termios->c_cflag &= ~CRTSCTS; 1701 1702 if (port->rs485.flags & SER_RS485_ENABLED) { 1703 /* 1704 * RTS is mandatory for rs485 operation, so keep 1705 * it under manual control and keep transmitter 1706 * disabled. 1707 */ 1708 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1709 imx_uart_rts_active(sport, &ucr2); 1710 else 1711 imx_uart_rts_inactive(sport, &ucr2); 1712 1713 } else if (termios->c_cflag & CRTSCTS) { 1714 /* 1715 * Only let receiver control RTS output if we were not requested 1716 * to have RTS inactive (which then should take precedence). 1717 */ 1718 if (ucr2 & UCR2_CTS) 1719 ucr2 |= UCR2_CTSC; 1720 } 1721 1722 if (termios->c_cflag & CRTSCTS) 1723 ucr2 &= ~UCR2_IRTS; 1724 if (termios->c_cflag & CSTOPB) 1725 ucr2 |= UCR2_STPB; 1726 if (termios->c_cflag & PARENB) { 1727 ucr2 |= UCR2_PREN; 1728 if (termios->c_cflag & PARODD) 1729 ucr2 |= UCR2_PROE; 1730 } 1731 1732 sport->port.read_status_mask = 0; 1733 if (termios->c_iflag & INPCK) 1734 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1735 if (termios->c_iflag & (BRKINT | PARMRK)) 1736 sport->port.read_status_mask |= URXD_BRK; 1737 1738 /* 1739 * Characters to ignore 1740 */ 1741 sport->port.ignore_status_mask = 0; 1742 if (termios->c_iflag & IGNPAR) 1743 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1744 if (termios->c_iflag & IGNBRK) { 1745 sport->port.ignore_status_mask |= URXD_BRK; 1746 /* 1747 * If we're ignoring parity and break indicators, 1748 * ignore overruns too (for real raw support). 1749 */ 1750 if (termios->c_iflag & IGNPAR) 1751 sport->port.ignore_status_mask |= URXD_OVRRUN; 1752 } 1753 1754 if ((termios->c_cflag & CREAD) == 0) 1755 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1756 1757 /* 1758 * Update the per-port timeout. 1759 */ 1760 uart_update_timeout(port, termios->c_cflag, baud); 1761 1762 /* custom-baudrate handling */ 1763 div = sport->port.uartclk / (baud * 16); 1764 if (baud == 38400 && quot != div) 1765 baud = sport->port.uartclk / (quot * 16); 1766 1767 div = sport->port.uartclk / (baud * 16); 1768 if (div > 7) 1769 div = 7; 1770 if (!div) 1771 div = 1; 1772 1773 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1774 1 << 16, 1 << 16, &num, &denom); 1775 1776 tdiv64 = sport->port.uartclk; 1777 tdiv64 *= num; 1778 do_div(tdiv64, denom * 16 * div); 1779 tty_termios_encode_baud_rate(termios, 1780 (speed_t)tdiv64, (speed_t)tdiv64); 1781 1782 num -= 1; 1783 denom -= 1; 1784 1785 ufcr = imx_uart_readl(sport, UFCR); 1786 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1787 imx_uart_writel(sport, ufcr, UFCR); 1788 1789 /* 1790 * Two registers below should always be written both and in this 1791 * particular order. One consequence is that we need to check if any of 1792 * them changes and then update both. We do need the check for change 1793 * as even writing the same values seem to "restart" 1794 * transmission/receiving logic in the hardware, that leads to data 1795 * breakage even when rate doesn't in fact change. E.g., user switches 1796 * RTS/CTS handshake and suddenly gets broken bytes. 1797 */ 1798 old_ubir = imx_uart_readl(sport, UBIR); 1799 old_ubmr = imx_uart_readl(sport, UBMR); 1800 if (old_ubir != num || old_ubmr != denom) { 1801 imx_uart_writel(sport, num, UBIR); 1802 imx_uart_writel(sport, denom, UBMR); 1803 } 1804 1805 if (!imx_uart_is_imx1(sport)) 1806 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1807 IMX21_ONEMS); 1808 1809 imx_uart_writel(sport, ucr2, UCR2); 1810 1811 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1812 imx_uart_enable_ms(&sport->port); 1813 1814 spin_unlock_irqrestore(&sport->port.lock, flags); 1815 } 1816 1817 static const char *imx_uart_type(struct uart_port *port) 1818 { 1819 return port->type == PORT_IMX ? "IMX" : NULL; 1820 } 1821 1822 /* 1823 * Configure/autoconfigure the port. 1824 */ 1825 static void imx_uart_config_port(struct uart_port *port, int flags) 1826 { 1827 if (flags & UART_CONFIG_TYPE) 1828 port->type = PORT_IMX; 1829 } 1830 1831 /* 1832 * Verify the new serial_struct (for TIOCSSERIAL). 1833 * The only change we allow are to the flags and type, and 1834 * even then only between PORT_IMX and PORT_UNKNOWN 1835 */ 1836 static int 1837 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1838 { 1839 int ret = 0; 1840 1841 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1842 ret = -EINVAL; 1843 if (port->irq != ser->irq) 1844 ret = -EINVAL; 1845 if (ser->io_type != UPIO_MEM) 1846 ret = -EINVAL; 1847 if (port->uartclk / 16 != ser->baud_base) 1848 ret = -EINVAL; 1849 if (port->mapbase != (unsigned long)ser->iomem_base) 1850 ret = -EINVAL; 1851 if (port->iobase != ser->port) 1852 ret = -EINVAL; 1853 if (ser->hub6 != 0) 1854 ret = -EINVAL; 1855 return ret; 1856 } 1857 1858 #if defined(CONFIG_CONSOLE_POLL) 1859 1860 static int imx_uart_poll_init(struct uart_port *port) 1861 { 1862 struct imx_port *sport = (struct imx_port *)port; 1863 unsigned long flags; 1864 u32 ucr1, ucr2; 1865 int retval; 1866 1867 retval = clk_prepare_enable(sport->clk_ipg); 1868 if (retval) 1869 return retval; 1870 retval = clk_prepare_enable(sport->clk_per); 1871 if (retval) 1872 clk_disable_unprepare(sport->clk_ipg); 1873 1874 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1875 1876 spin_lock_irqsave(&sport->port.lock, flags); 1877 1878 /* 1879 * Be careful about the order of enabling bits here. First enable the 1880 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1881 * This prevents that a character that already sits in the RX fifo is 1882 * triggering an irq but the try to fetch it from there results in an 1883 * exception because UARTEN or RXEN is still off. 1884 */ 1885 ucr1 = imx_uart_readl(sport, UCR1); 1886 ucr2 = imx_uart_readl(sport, UCR2); 1887 1888 if (imx_uart_is_imx1(sport)) 1889 ucr1 |= IMX1_UCR1_UARTCLKEN; 1890 1891 ucr1 |= UCR1_UARTEN; 1892 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1893 1894 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1895 ucr2 &= ~UCR2_ATEN; 1896 1897 imx_uart_writel(sport, ucr1, UCR1); 1898 imx_uart_writel(sport, ucr2, UCR2); 1899 1900 /* now enable irqs */ 1901 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1902 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1903 1904 spin_unlock_irqrestore(&sport->port.lock, flags); 1905 1906 return 0; 1907 } 1908 1909 static int imx_uart_poll_get_char(struct uart_port *port) 1910 { 1911 struct imx_port *sport = (struct imx_port *)port; 1912 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1913 return NO_POLL_CHAR; 1914 1915 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1916 } 1917 1918 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1919 { 1920 struct imx_port *sport = (struct imx_port *)port; 1921 unsigned int status; 1922 1923 /* drain */ 1924 do { 1925 status = imx_uart_readl(sport, USR1); 1926 } while (~status & USR1_TRDY); 1927 1928 /* write */ 1929 imx_uart_writel(sport, c, URTX0); 1930 1931 /* flush */ 1932 do { 1933 status = imx_uart_readl(sport, USR2); 1934 } while (~status & USR2_TXDC); 1935 } 1936 #endif 1937 1938 /* called with port.lock taken and irqs off or from .probe without locking */ 1939 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1940 struct serial_rs485 *rs485conf) 1941 { 1942 struct imx_port *sport = (struct imx_port *)port; 1943 u32 ucr2; 1944 1945 if (rs485conf->flags & SER_RS485_ENABLED) { 1946 /* Enable receiver if low-active RTS signal is requested */ 1947 if (sport->have_rtscts && !sport->have_rtsgpio && 1948 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1949 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1950 1951 /* disable transmitter */ 1952 ucr2 = imx_uart_readl(sport, UCR2); 1953 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1954 imx_uart_rts_active(sport, &ucr2); 1955 else 1956 imx_uart_rts_inactive(sport, &ucr2); 1957 imx_uart_writel(sport, ucr2, UCR2); 1958 } 1959 1960 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1961 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1962 rs485conf->flags & SER_RS485_RX_DURING_TX) 1963 imx_uart_start_rx(port); 1964 1965 return 0; 1966 } 1967 1968 static const struct uart_ops imx_uart_pops = { 1969 .tx_empty = imx_uart_tx_empty, 1970 .set_mctrl = imx_uart_set_mctrl, 1971 .get_mctrl = imx_uart_get_mctrl, 1972 .stop_tx = imx_uart_stop_tx, 1973 .start_tx = imx_uart_start_tx, 1974 .stop_rx = imx_uart_stop_rx, 1975 .enable_ms = imx_uart_enable_ms, 1976 .break_ctl = imx_uart_break_ctl, 1977 .startup = imx_uart_startup, 1978 .shutdown = imx_uart_shutdown, 1979 .flush_buffer = imx_uart_flush_buffer, 1980 .set_termios = imx_uart_set_termios, 1981 .type = imx_uart_type, 1982 .config_port = imx_uart_config_port, 1983 .verify_port = imx_uart_verify_port, 1984 #if defined(CONFIG_CONSOLE_POLL) 1985 .poll_init = imx_uart_poll_init, 1986 .poll_get_char = imx_uart_poll_get_char, 1987 .poll_put_char = imx_uart_poll_put_char, 1988 #endif 1989 }; 1990 1991 static struct imx_port *imx_uart_ports[UART_NR]; 1992 1993 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1994 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 1995 { 1996 struct imx_port *sport = (struct imx_port *)port; 1997 1998 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1999 barrier(); 2000 2001 imx_uart_writel(sport, ch, URTX0); 2002 } 2003 2004 /* 2005 * Interrupts are disabled on entering 2006 */ 2007 static void 2008 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2009 { 2010 struct imx_port *sport = imx_uart_ports[co->index]; 2011 struct imx_port_ucrs old_ucr; 2012 unsigned long flags; 2013 unsigned int ucr1, usr2; 2014 int locked = 1; 2015 2016 if (sport->port.sysrq) 2017 locked = 0; 2018 else if (oops_in_progress) 2019 locked = spin_trylock_irqsave(&sport->port.lock, flags); 2020 else 2021 spin_lock_irqsave(&sport->port.lock, flags); 2022 2023 /* 2024 * First, save UCR1/2/3 and then disable interrupts 2025 */ 2026 imx_uart_ucrs_save(sport, &old_ucr); 2027 ucr1 = old_ucr.ucr1; 2028 2029 if (imx_uart_is_imx1(sport)) 2030 ucr1 |= IMX1_UCR1_UARTCLKEN; 2031 ucr1 |= UCR1_UARTEN; 2032 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2033 2034 imx_uart_writel(sport, ucr1, UCR1); 2035 2036 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2037 2038 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2039 2040 /* 2041 * Finally, wait for transmitter to become empty 2042 * and restore UCR1/2/3 2043 */ 2044 read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2045 0, USEC_PER_SEC, false, sport, USR2); 2046 imx_uart_ucrs_restore(sport, &old_ucr); 2047 2048 if (locked) 2049 spin_unlock_irqrestore(&sport->port.lock, flags); 2050 } 2051 2052 /* 2053 * If the port was already initialised (eg, by a boot loader), 2054 * try to determine the current setup. 2055 */ 2056 static void 2057 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2058 int *parity, int *bits) 2059 { 2060 2061 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2062 /* ok, the port was enabled */ 2063 unsigned int ucr2, ubir, ubmr, uartclk; 2064 unsigned int baud_raw; 2065 unsigned int ucfr_rfdiv; 2066 2067 ucr2 = imx_uart_readl(sport, UCR2); 2068 2069 *parity = 'n'; 2070 if (ucr2 & UCR2_PREN) { 2071 if (ucr2 & UCR2_PROE) 2072 *parity = 'o'; 2073 else 2074 *parity = 'e'; 2075 } 2076 2077 if (ucr2 & UCR2_WS) 2078 *bits = 8; 2079 else 2080 *bits = 7; 2081 2082 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2083 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2084 2085 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2086 if (ucfr_rfdiv == 6) 2087 ucfr_rfdiv = 7; 2088 else 2089 ucfr_rfdiv = 6 - ucfr_rfdiv; 2090 2091 uartclk = clk_get_rate(sport->clk_per); 2092 uartclk /= ucfr_rfdiv; 2093 2094 { /* 2095 * The next code provides exact computation of 2096 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2097 * without need of float support or long long division, 2098 * which would be required to prevent 32bit arithmetic overflow 2099 */ 2100 unsigned int mul = ubir + 1; 2101 unsigned int div = 16 * (ubmr + 1); 2102 unsigned int rem = uartclk % div; 2103 2104 baud_raw = (uartclk / div) * mul; 2105 baud_raw += (rem * mul + div / 2) / div; 2106 *baud = (baud_raw + 50) / 100 * 100; 2107 } 2108 2109 if (*baud != baud_raw) 2110 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2111 baud_raw, *baud); 2112 } 2113 } 2114 2115 static int 2116 imx_uart_console_setup(struct console *co, char *options) 2117 { 2118 struct imx_port *sport; 2119 int baud = 9600; 2120 int bits = 8; 2121 int parity = 'n'; 2122 int flow = 'n'; 2123 int retval; 2124 2125 /* 2126 * Check whether an invalid uart number has been specified, and 2127 * if so, search for the first available port that does have 2128 * console support. 2129 */ 2130 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2131 co->index = 0; 2132 sport = imx_uart_ports[co->index]; 2133 if (sport == NULL) 2134 return -ENODEV; 2135 2136 /* For setting the registers, we only need to enable the ipg clock. */ 2137 retval = clk_prepare_enable(sport->clk_ipg); 2138 if (retval) 2139 goto error_console; 2140 2141 if (options) 2142 uart_parse_options(options, &baud, &parity, &bits, &flow); 2143 else 2144 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2145 2146 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2147 2148 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2149 2150 if (retval) { 2151 clk_disable_unprepare(sport->clk_ipg); 2152 goto error_console; 2153 } 2154 2155 retval = clk_prepare_enable(sport->clk_per); 2156 if (retval) 2157 clk_disable_unprepare(sport->clk_ipg); 2158 2159 error_console: 2160 return retval; 2161 } 2162 2163 static int 2164 imx_uart_console_exit(struct console *co) 2165 { 2166 struct imx_port *sport = imx_uart_ports[co->index]; 2167 2168 clk_disable_unprepare(sport->clk_per); 2169 clk_disable_unprepare(sport->clk_ipg); 2170 2171 return 0; 2172 } 2173 2174 static struct uart_driver imx_uart_uart_driver; 2175 static struct console imx_uart_console = { 2176 .name = DEV_NAME, 2177 .write = imx_uart_console_write, 2178 .device = uart_console_device, 2179 .setup = imx_uart_console_setup, 2180 .exit = imx_uart_console_exit, 2181 .flags = CON_PRINTBUFFER, 2182 .index = -1, 2183 .data = &imx_uart_uart_driver, 2184 }; 2185 2186 #define IMX_CONSOLE &imx_uart_console 2187 2188 #else 2189 #define IMX_CONSOLE NULL 2190 #endif 2191 2192 static struct uart_driver imx_uart_uart_driver = { 2193 .owner = THIS_MODULE, 2194 .driver_name = DRIVER_NAME, 2195 .dev_name = DEV_NAME, 2196 .major = SERIAL_IMX_MAJOR, 2197 .minor = MINOR_START, 2198 .nr = ARRAY_SIZE(imx_uart_ports), 2199 .cons = IMX_CONSOLE, 2200 }; 2201 2202 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2203 { 2204 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2205 unsigned long flags; 2206 2207 spin_lock_irqsave(&sport->port.lock, flags); 2208 if (sport->tx_state == WAIT_AFTER_RTS) 2209 imx_uart_start_tx(&sport->port); 2210 spin_unlock_irqrestore(&sport->port.lock, flags); 2211 2212 return HRTIMER_NORESTART; 2213 } 2214 2215 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2216 { 2217 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2218 unsigned long flags; 2219 2220 spin_lock_irqsave(&sport->port.lock, flags); 2221 if (sport->tx_state == WAIT_AFTER_SEND) 2222 imx_uart_stop_tx(&sport->port); 2223 spin_unlock_irqrestore(&sport->port.lock, flags); 2224 2225 return HRTIMER_NORESTART; 2226 } 2227 2228 static const struct serial_rs485 imx_rs485_supported = { 2229 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2230 SER_RS485_RX_DURING_TX, 2231 .delay_rts_before_send = 1, 2232 .delay_rts_after_send = 1, 2233 }; 2234 2235 /* Default RX DMA buffer configuration */ 2236 #define RX_DMA_PERIODS 16 2237 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2238 2239 static int imx_uart_probe(struct platform_device *pdev) 2240 { 2241 struct device_node *np = pdev->dev.of_node; 2242 struct imx_port *sport; 2243 void __iomem *base; 2244 u32 dma_buf_conf[2]; 2245 int ret = 0; 2246 u32 ucr1, ucr2, uts; 2247 struct resource *res; 2248 int txirq, rxirq, rtsirq; 2249 2250 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2251 if (!sport) 2252 return -ENOMEM; 2253 2254 sport->devdata = of_device_get_match_data(&pdev->dev); 2255 2256 ret = of_alias_get_id(np, "serial"); 2257 if (ret < 0) { 2258 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2259 return ret; 2260 } 2261 sport->port.line = ret; 2262 2263 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2264 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2265 2266 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2267 2268 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2269 2270 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2271 2272 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2273 2274 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2275 sport->rx_period_length = dma_buf_conf[0]; 2276 sport->rx_periods = dma_buf_conf[1]; 2277 } else { 2278 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2279 sport->rx_periods = RX_DMA_PERIODS; 2280 } 2281 2282 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2283 dev_err(&pdev->dev, "serial%d out of range\n", 2284 sport->port.line); 2285 return -EINVAL; 2286 } 2287 2288 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2289 if (IS_ERR(base)) 2290 return PTR_ERR(base); 2291 2292 rxirq = platform_get_irq(pdev, 0); 2293 if (rxirq < 0) 2294 return rxirq; 2295 txirq = platform_get_irq_optional(pdev, 1); 2296 rtsirq = platform_get_irq_optional(pdev, 2); 2297 2298 sport->port.dev = &pdev->dev; 2299 sport->port.mapbase = res->start; 2300 sport->port.membase = base; 2301 sport->port.type = PORT_IMX; 2302 sport->port.iotype = UPIO_MEM; 2303 sport->port.irq = rxirq; 2304 sport->port.fifosize = 32; 2305 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2306 sport->port.ops = &imx_uart_pops; 2307 sport->port.rs485_config = imx_uart_rs485_config; 2308 /* RTS is required to control the RS485 transmitter */ 2309 if (sport->have_rtscts || sport->have_rtsgpio) 2310 sport->port.rs485_supported = imx_rs485_supported; 2311 sport->port.flags = UPF_BOOT_AUTOCONF; 2312 timer_setup(&sport->timer, imx_uart_timeout, 0); 2313 2314 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2315 if (IS_ERR(sport->gpios)) 2316 return PTR_ERR(sport->gpios); 2317 2318 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2319 if (IS_ERR(sport->clk_ipg)) { 2320 ret = PTR_ERR(sport->clk_ipg); 2321 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2322 return ret; 2323 } 2324 2325 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2326 if (IS_ERR(sport->clk_per)) { 2327 ret = PTR_ERR(sport->clk_per); 2328 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2329 return ret; 2330 } 2331 2332 sport->port.uartclk = clk_get_rate(sport->clk_per); 2333 2334 /* For register access, we only need to enable the ipg clock. */ 2335 ret = clk_prepare_enable(sport->clk_ipg); 2336 if (ret) { 2337 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2338 return ret; 2339 } 2340 2341 ret = uart_get_rs485_mode(&sport->port); 2342 if (ret) 2343 goto err_clk; 2344 2345 /* 2346 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2347 * signal cannot be set low during transmission in case the 2348 * receiver is off (limitation of the i.MX UART IP). 2349 */ 2350 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2351 sport->have_rtscts && !sport->have_rtsgpio && 2352 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2353 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2354 dev_err(&pdev->dev, 2355 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2356 2357 /* Disable interrupts before requesting them */ 2358 ucr1 = imx_uart_readl(sport, UCR1); 2359 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2360 imx_uart_writel(sport, ucr1, UCR1); 2361 2362 /* Disable Ageing Timer interrupt */ 2363 ucr2 = imx_uart_readl(sport, UCR2); 2364 ucr2 &= ~UCR2_ATEN; 2365 imx_uart_writel(sport, ucr2, UCR2); 2366 2367 /* 2368 * In case RS485 is enabled without GPIO RTS control, the UART IP 2369 * is used to control CTS signal. Keep both the UART and Receiver 2370 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2371 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2372 * data from being fed into the RX FIFO, enable loopback mode in 2373 * UTS register, which disconnects the RX path from external RXD 2374 * pin and connects it to the Transceiver, which is disabled, so 2375 * no data can be fed to the RX FIFO that way. 2376 */ 2377 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2378 sport->have_rtscts && !sport->have_rtsgpio) { 2379 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2380 uts |= UTS_LOOP; 2381 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2382 2383 ucr1 = imx_uart_readl(sport, UCR1); 2384 ucr1 |= UCR1_UARTEN; 2385 imx_uart_writel(sport, ucr1, UCR1); 2386 2387 ucr2 = imx_uart_readl(sport, UCR2); 2388 ucr2 |= UCR2_RXEN; 2389 imx_uart_writel(sport, ucr2, UCR2); 2390 } 2391 2392 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2393 /* 2394 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2395 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2396 * and DCD (when they are outputs) or enables the respective 2397 * irqs. So set this bit early, i.e. before requesting irqs. 2398 */ 2399 u32 ufcr = imx_uart_readl(sport, UFCR); 2400 if (!(ufcr & UFCR_DCEDTE)) 2401 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2402 2403 /* 2404 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2405 * enabled later because they cannot be cleared 2406 * (confirmed on i.MX25) which makes them unusable. 2407 */ 2408 imx_uart_writel(sport, 2409 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2410 UCR3); 2411 2412 } else { 2413 u32 ucr3 = UCR3_DSR; 2414 u32 ufcr = imx_uart_readl(sport, UFCR); 2415 if (ufcr & UFCR_DCEDTE) 2416 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2417 2418 if (!imx_uart_is_imx1(sport)) 2419 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2420 imx_uart_writel(sport, ucr3, UCR3); 2421 } 2422 2423 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2424 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2425 sport->trigger_start_tx.function = imx_trigger_start_tx; 2426 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2427 2428 /* 2429 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2430 * chips only have one interrupt. 2431 */ 2432 if (txirq > 0) { 2433 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2434 dev_name(&pdev->dev), sport); 2435 if (ret) { 2436 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2437 ret); 2438 goto err_clk; 2439 } 2440 2441 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2442 dev_name(&pdev->dev), sport); 2443 if (ret) { 2444 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2445 ret); 2446 goto err_clk; 2447 } 2448 2449 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2450 dev_name(&pdev->dev), sport); 2451 if (ret) { 2452 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2453 ret); 2454 goto err_clk; 2455 } 2456 } else { 2457 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2458 dev_name(&pdev->dev), sport); 2459 if (ret) { 2460 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2461 goto err_clk; 2462 } 2463 } 2464 2465 imx_uart_ports[sport->port.line] = sport; 2466 2467 platform_set_drvdata(pdev, sport); 2468 2469 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2470 2471 err_clk: 2472 clk_disable_unprepare(sport->clk_ipg); 2473 2474 return ret; 2475 } 2476 2477 static int imx_uart_remove(struct platform_device *pdev) 2478 { 2479 struct imx_port *sport = platform_get_drvdata(pdev); 2480 2481 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2482 2483 return 0; 2484 } 2485 2486 static void imx_uart_restore_context(struct imx_port *sport) 2487 { 2488 unsigned long flags; 2489 2490 spin_lock_irqsave(&sport->port.lock, flags); 2491 if (!sport->context_saved) { 2492 spin_unlock_irqrestore(&sport->port.lock, flags); 2493 return; 2494 } 2495 2496 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2497 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2498 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2499 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2500 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2501 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2502 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2503 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2504 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2505 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2506 sport->context_saved = false; 2507 spin_unlock_irqrestore(&sport->port.lock, flags); 2508 } 2509 2510 static void imx_uart_save_context(struct imx_port *sport) 2511 { 2512 unsigned long flags; 2513 2514 /* Save necessary regs */ 2515 spin_lock_irqsave(&sport->port.lock, flags); 2516 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2517 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2518 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2519 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2520 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2521 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2522 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2523 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2524 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2525 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2526 sport->context_saved = true; 2527 spin_unlock_irqrestore(&sport->port.lock, flags); 2528 } 2529 2530 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2531 { 2532 u32 ucr3; 2533 2534 ucr3 = imx_uart_readl(sport, UCR3); 2535 if (on) { 2536 imx_uart_writel(sport, USR1_AWAKE, USR1); 2537 ucr3 |= UCR3_AWAKEN; 2538 } else { 2539 ucr3 &= ~UCR3_AWAKEN; 2540 } 2541 imx_uart_writel(sport, ucr3, UCR3); 2542 2543 if (sport->have_rtscts) { 2544 u32 ucr1 = imx_uart_readl(sport, UCR1); 2545 if (on) { 2546 imx_uart_writel(sport, USR1_RTSD, USR1); 2547 ucr1 |= UCR1_RTSDEN; 2548 } else { 2549 ucr1 &= ~UCR1_RTSDEN; 2550 } 2551 imx_uart_writel(sport, ucr1, UCR1); 2552 } 2553 } 2554 2555 static int imx_uart_suspend_noirq(struct device *dev) 2556 { 2557 struct imx_port *sport = dev_get_drvdata(dev); 2558 2559 imx_uart_save_context(sport); 2560 2561 clk_disable(sport->clk_ipg); 2562 2563 pinctrl_pm_select_sleep_state(dev); 2564 2565 return 0; 2566 } 2567 2568 static int imx_uart_resume_noirq(struct device *dev) 2569 { 2570 struct imx_port *sport = dev_get_drvdata(dev); 2571 int ret; 2572 2573 pinctrl_pm_select_default_state(dev); 2574 2575 ret = clk_enable(sport->clk_ipg); 2576 if (ret) 2577 return ret; 2578 2579 imx_uart_restore_context(sport); 2580 2581 return 0; 2582 } 2583 2584 static int imx_uart_suspend(struct device *dev) 2585 { 2586 struct imx_port *sport = dev_get_drvdata(dev); 2587 int ret; 2588 2589 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2590 disable_irq(sport->port.irq); 2591 2592 ret = clk_prepare_enable(sport->clk_ipg); 2593 if (ret) 2594 return ret; 2595 2596 /* enable wakeup from i.MX UART */ 2597 imx_uart_enable_wakeup(sport, true); 2598 2599 return 0; 2600 } 2601 2602 static int imx_uart_resume(struct device *dev) 2603 { 2604 struct imx_port *sport = dev_get_drvdata(dev); 2605 2606 /* disable wakeup from i.MX UART */ 2607 imx_uart_enable_wakeup(sport, false); 2608 2609 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2610 enable_irq(sport->port.irq); 2611 2612 clk_disable_unprepare(sport->clk_ipg); 2613 2614 return 0; 2615 } 2616 2617 static int imx_uart_freeze(struct device *dev) 2618 { 2619 struct imx_port *sport = dev_get_drvdata(dev); 2620 2621 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2622 2623 return clk_prepare_enable(sport->clk_ipg); 2624 } 2625 2626 static int imx_uart_thaw(struct device *dev) 2627 { 2628 struct imx_port *sport = dev_get_drvdata(dev); 2629 2630 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2631 2632 clk_disable_unprepare(sport->clk_ipg); 2633 2634 return 0; 2635 } 2636 2637 static const struct dev_pm_ops imx_uart_pm_ops = { 2638 .suspend_noirq = imx_uart_suspend_noirq, 2639 .resume_noirq = imx_uart_resume_noirq, 2640 .freeze_noirq = imx_uart_suspend_noirq, 2641 .thaw_noirq = imx_uart_resume_noirq, 2642 .restore_noirq = imx_uart_resume_noirq, 2643 .suspend = imx_uart_suspend, 2644 .resume = imx_uart_resume, 2645 .freeze = imx_uart_freeze, 2646 .thaw = imx_uart_thaw, 2647 .restore = imx_uart_thaw, 2648 }; 2649 2650 static struct platform_driver imx_uart_platform_driver = { 2651 .probe = imx_uart_probe, 2652 .remove = imx_uart_remove, 2653 2654 .driver = { 2655 .name = "imx-uart", 2656 .of_match_table = imx_uart_dt_ids, 2657 .pm = &imx_uart_pm_ops, 2658 }, 2659 }; 2660 2661 static int __init imx_uart_init(void) 2662 { 2663 int ret = uart_register_driver(&imx_uart_uart_driver); 2664 2665 if (ret) 2666 return ret; 2667 2668 ret = platform_driver_register(&imx_uart_platform_driver); 2669 if (ret != 0) 2670 uart_unregister_driver(&imx_uart_uart_driver); 2671 2672 return ret; 2673 } 2674 2675 static void __exit imx_uart_exit(void) 2676 { 2677 platform_driver_unregister(&imx_uart_platform_driver); 2678 uart_unregister_driver(&imx_uart_uart_driver); 2679 } 2680 2681 module_init(imx_uart_init); 2682 module_exit(imx_uart_exit); 2683 2684 MODULE_AUTHOR("Sascha Hauer"); 2685 MODULE_DESCRIPTION("IMX generic serial port driver"); 2686 MODULE_LICENSE("GPL"); 2687 MODULE_ALIAS("platform:imx-uart"); 2688