1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
4 * (master mode only)
5 *
6 * Copyright (C) 2009 - 2015 Xilinx, Inc.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/firmware/xlnx-zynqmp.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spinlock.h>
22 #include <linux/workqueue.h>
23 #include <linux/spi/spi-mem.h>
24
25 /* Generic QSPI register offsets */
26 #define GQSPI_CONFIG_OFST 0x00000100
27 #define GQSPI_ISR_OFST 0x00000104
28 #define GQSPI_IDR_OFST 0x0000010C
29 #define GQSPI_IER_OFST 0x00000108
30 #define GQSPI_IMASK_OFST 0x00000110
31 #define GQSPI_EN_OFST 0x00000114
32 #define GQSPI_TXD_OFST 0x0000011C
33 #define GQSPI_RXD_OFST 0x00000120
34 #define GQSPI_TX_THRESHOLD_OFST 0x00000128
35 #define GQSPI_RX_THRESHOLD_OFST 0x0000012C
36 #define IOU_TAPDLY_BYPASS_OFST 0x0000003C
37 #define GQSPI_LPBK_DLY_ADJ_OFST 0x00000138
38 #define GQSPI_GEN_FIFO_OFST 0x00000140
39 #define GQSPI_SEL_OFST 0x00000144
40 #define GQSPI_GF_THRESHOLD_OFST 0x00000150
41 #define GQSPI_FIFO_CTRL_OFST 0x0000014C
42 #define GQSPI_QSPIDMA_DST_CTRL_OFST 0x0000080C
43 #define GQSPI_QSPIDMA_DST_SIZE_OFST 0x00000804
44 #define GQSPI_QSPIDMA_DST_STS_OFST 0x00000808
45 #define GQSPI_QSPIDMA_DST_I_STS_OFST 0x00000814
46 #define GQSPI_QSPIDMA_DST_I_EN_OFST 0x00000818
47 #define GQSPI_QSPIDMA_DST_I_DIS_OFST 0x0000081C
48 #define GQSPI_QSPIDMA_DST_I_MASK_OFST 0x00000820
49 #define GQSPI_QSPIDMA_DST_ADDR_OFST 0x00000800
50 #define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
51 #define GQSPI_DATA_DLY_ADJ_OFST 0x000001F8
52
53 /* GQSPI register bit masks */
54 #define GQSPI_SEL_MASK 0x00000001
55 #define GQSPI_EN_MASK 0x00000001
56 #define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK 0x00000020
57 #define GQSPI_ISR_WR_TO_CLR_MASK 0x00000002
58 #define GQSPI_IDR_ALL_MASK 0x00000FBE
59 #define GQSPI_CFG_MODE_EN_MASK 0xC0000000
60 #define GQSPI_CFG_GEN_FIFO_START_MODE_MASK 0x20000000
61 #define GQSPI_CFG_ENDIAN_MASK 0x04000000
62 #define GQSPI_CFG_EN_POLL_TO_MASK 0x00100000
63 #define GQSPI_CFG_WP_HOLD_MASK 0x00080000
64 #define GQSPI_CFG_BAUD_RATE_DIV_MASK 0x00000038
65 #define GQSPI_CFG_CLK_PHA_MASK 0x00000004
66 #define GQSPI_CFG_CLK_POL_MASK 0x00000002
67 #define GQSPI_CFG_START_GEN_FIFO_MASK 0x10000000
68 #define GQSPI_GENFIFO_IMM_DATA_MASK 0x000000FF
69 #define GQSPI_GENFIFO_DATA_XFER 0x00000100
70 #define GQSPI_GENFIFO_EXP 0x00000200
71 #define GQSPI_GENFIFO_MODE_SPI 0x00000400
72 #define GQSPI_GENFIFO_MODE_DUALSPI 0x00000800
73 #define GQSPI_GENFIFO_MODE_QUADSPI 0x00000C00
74 #define GQSPI_GENFIFO_MODE_MASK 0x00000C00
75 #define GQSPI_GENFIFO_CS_LOWER 0x00001000
76 #define GQSPI_GENFIFO_CS_UPPER 0x00002000
77 #define GQSPI_GENFIFO_BUS_LOWER 0x00004000
78 #define GQSPI_GENFIFO_BUS_UPPER 0x00008000
79 #define GQSPI_GENFIFO_BUS_BOTH 0x0000C000
80 #define GQSPI_GENFIFO_BUS_MASK 0x0000C000
81 #define GQSPI_GENFIFO_TX 0x00010000
82 #define GQSPI_GENFIFO_RX 0x00020000
83 #define GQSPI_GENFIFO_STRIPE 0x00040000
84 #define GQSPI_GENFIFO_POLL 0x00080000
85 #define GQSPI_GENFIFO_EXP_START 0x00000100
86 #define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK 0x00000004
87 #define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK 0x00000002
88 #define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK 0x00000001
89 #define GQSPI_ISR_RXEMPTY_MASK 0x00000800
90 #define GQSPI_ISR_GENFIFOFULL_MASK 0x00000400
91 #define GQSPI_ISR_GENFIFONOT_FULL_MASK 0x00000200
92 #define GQSPI_ISR_TXEMPTY_MASK 0x00000100
93 #define GQSPI_ISR_GENFIFOEMPTY_MASK 0x00000080
94 #define GQSPI_ISR_RXFULL_MASK 0x00000020
95 #define GQSPI_ISR_RXNEMPTY_MASK 0x00000010
96 #define GQSPI_ISR_TXFULL_MASK 0x00000008
97 #define GQSPI_ISR_TXNOT_FULL_MASK 0x00000004
98 #define GQSPI_ISR_POLL_TIME_EXPIRE_MASK 0x00000002
99 #define GQSPI_IER_TXNOT_FULL_MASK 0x00000004
100 #define GQSPI_IER_RXEMPTY_MASK 0x00000800
101 #define GQSPI_IER_POLL_TIME_EXPIRE_MASK 0x00000002
102 #define GQSPI_IER_RXNEMPTY_MASK 0x00000010
103 #define GQSPI_IER_GENFIFOEMPTY_MASK 0x00000080
104 #define GQSPI_IER_TXEMPTY_MASK 0x00000100
105 #define GQSPI_QSPIDMA_DST_INTR_ALL_MASK 0x000000FE
106 #define GQSPI_QSPIDMA_DST_STS_WTC 0x0000E000
107 #define GQSPI_CFG_MODE_EN_DMA_MASK 0x80000000
108 #define GQSPI_ISR_IDR_MASK 0x00000994
109 #define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK 0x00000002
110 #define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK 0x00000002
111 #define GQSPI_IRQ_MASK 0x00000980
112
113 #define GQSPI_CFG_BAUD_RATE_DIV_SHIFT 3
114 #define GQSPI_GENFIFO_CS_SETUP 0x4
115 #define GQSPI_GENFIFO_CS_HOLD 0x3
116 #define GQSPI_TXD_DEPTH 64
117 #define GQSPI_RX_FIFO_THRESHOLD 32
118 #define GQSPI_RX_FIFO_FILL (GQSPI_RX_FIFO_THRESHOLD * 4)
119 #define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL 32
120 #define GQSPI_TX_FIFO_FILL (GQSPI_TXD_DEPTH -\
121 GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
122 #define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL 0X10
123 #define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL 0x803FFA00
124 #define GQSPI_SELECT_FLASH_CS_LOWER 0x1
125 #define GQSPI_SELECT_FLASH_CS_UPPER 0x2
126 #define GQSPI_SELECT_FLASH_CS_BOTH 0x3
127 #define GQSPI_SELECT_FLASH_BUS_LOWER 0x1
128 #define GQSPI_SELECT_FLASH_BUS_UPPER 0x2
129 #define GQSPI_SELECT_FLASH_BUS_BOTH 0x3
130 #define GQSPI_BAUD_DIV_MAX 7 /* Baud rate divisor maximum */
131 #define GQSPI_BAUD_DIV_SHIFT 2 /* Baud rate divisor shift */
132 #define GQSPI_SELECT_MODE_SPI 0x1
133 #define GQSPI_SELECT_MODE_DUALSPI 0x2
134 #define GQSPI_SELECT_MODE_QUADSPI 0x4
135 #define GQSPI_DMA_UNALIGN 0x3
136 #define GQSPI_DEFAULT_NUM_CS 1 /* Default number of chip selects */
137
138 #define GQSPI_MAX_NUM_CS 2 /* Maximum number of chip selects */
139
140 #define GQSPI_USE_DATA_DLY 0x1
141 #define GQSPI_USE_DATA_DLY_SHIFT 31
142 #define GQSPI_DATA_DLY_ADJ_VALUE 0x2
143 #define GQSPI_DATA_DLY_ADJ_SHIFT 28
144 #define GQSPI_LPBK_DLY_ADJ_DLY_1 0x1
145 #define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT 0x3
146 #define TAP_DLY_BYPASS_LQSPI_RX_VALUE 0x1
147 #define TAP_DLY_BYPASS_LQSPI_RX_SHIFT 0x2
148
149 /* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */
150 #define QSPI_QUIRK_HAS_TAPDELAY BIT(0)
151
152 #define GQSPI_FREQ_37_5MHZ 37500000
153 #define GQSPI_FREQ_40MHZ 40000000
154 #define GQSPI_FREQ_100MHZ 100000000
155 #define GQSPI_FREQ_150MHZ 150000000
156
157 #define SPI_AUTOSUSPEND_TIMEOUT 3000
158 enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
159
160 /**
161 * struct qspi_platform_data - zynqmp qspi platform data structure
162 * @quirks: Flags is used to identify the platform
163 */
164 struct qspi_platform_data {
165 u32 quirks;
166 };
167
168 /**
169 * struct zynqmp_qspi - Defines qspi driver instance
170 * @ctlr: Pointer to the spi controller information
171 * @regs: Virtual address of the QSPI controller registers
172 * @refclk: Pointer to the peripheral clock
173 * @pclk: Pointer to the APB clock
174 * @irq: IRQ number
175 * @dev: Pointer to struct device
176 * @txbuf: Pointer to the TX buffer
177 * @rxbuf: Pointer to the RX buffer
178 * @bytes_to_transfer: Number of bytes left to transfer
179 * @bytes_to_receive: Number of bytes left to receive
180 * @genfifocs: Used for chip select
181 * @genfifobus: Used to select the upper or lower bus
182 * @dma_rx_bytes: Remaining bytes to receive by DMA mode
183 * @dma_addr: DMA address after mapping the kernel buffer
184 * @genfifoentry: Used for storing the genfifoentry instruction.
185 * @mode: Defines the mode in which QSPI is operating
186 * @data_completion: completion structure
187 * @op_lock: Operational lock
188 * @speed_hz: Current SPI bus clock speed in hz
189 * @has_tapdelay: Used for tapdelay register available in qspi
190 */
191 struct zynqmp_qspi {
192 struct spi_controller *ctlr;
193 void __iomem *regs;
194 struct clk *refclk;
195 struct clk *pclk;
196 int irq;
197 struct device *dev;
198 const void *txbuf;
199 void *rxbuf;
200 int bytes_to_transfer;
201 int bytes_to_receive;
202 u32 genfifocs;
203 u32 genfifobus;
204 u32 dma_rx_bytes;
205 dma_addr_t dma_addr;
206 u32 genfifoentry;
207 enum mode_type mode;
208 struct completion data_completion;
209 struct mutex op_lock;
210 u32 speed_hz;
211 bool has_tapdelay;
212 };
213
214 /**
215 * zynqmp_gqspi_read - For GQSPI controller read operation
216 * @xqspi: Pointer to the zynqmp_qspi structure
217 * @offset: Offset from where to read
218 * Return: Value at the offset
219 */
zynqmp_gqspi_read(struct zynqmp_qspi * xqspi,u32 offset)220 static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
221 {
222 return readl_relaxed(xqspi->regs + offset);
223 }
224
225 /**
226 * zynqmp_gqspi_write - For GQSPI controller write operation
227 * @xqspi: Pointer to the zynqmp_qspi structure
228 * @offset: Offset where to write
229 * @val: Value to be written
230 */
zynqmp_gqspi_write(struct zynqmp_qspi * xqspi,u32 offset,u32 val)231 static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
232 u32 val)
233 {
234 writel_relaxed(val, (xqspi->regs + offset));
235 }
236
237 /**
238 * zynqmp_gqspi_selectslave - For selection of slave device
239 * @instanceptr: Pointer to the zynqmp_qspi structure
240 * @slavecs: For chip select
241 * @slavebus: To check which bus is selected- upper or lower
242 */
zynqmp_gqspi_selectslave(struct zynqmp_qspi * instanceptr,u8 slavecs,u8 slavebus)243 static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr,
244 u8 slavecs, u8 slavebus)
245 {
246 /*
247 * Bus and CS lines selected here will be updated in the instance and
248 * used for subsequent GENFIFO entries during transfer.
249 */
250
251 /* Choose slave select line */
252 switch (slavecs) {
253 case GQSPI_SELECT_FLASH_CS_BOTH:
254 instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
255 GQSPI_GENFIFO_CS_UPPER;
256 break;
257 case GQSPI_SELECT_FLASH_CS_UPPER:
258 instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
259 break;
260 case GQSPI_SELECT_FLASH_CS_LOWER:
261 instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
262 break;
263 default:
264 dev_warn(instanceptr->dev, "Invalid slave select\n");
265 }
266
267 /* Choose the bus */
268 switch (slavebus) {
269 case GQSPI_SELECT_FLASH_BUS_BOTH:
270 instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
271 GQSPI_GENFIFO_BUS_UPPER;
272 break;
273 case GQSPI_SELECT_FLASH_BUS_UPPER:
274 instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
275 break;
276 case GQSPI_SELECT_FLASH_BUS_LOWER:
277 instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
278 break;
279 default:
280 dev_warn(instanceptr->dev, "Invalid slave bus\n");
281 }
282 }
283
284 /**
285 * zynqmp_qspi_set_tapdelay: To configure qspi tap delays
286 * @xqspi: Pointer to the zynqmp_qspi structure
287 * @baudrateval: Buadrate to configure
288 */
zynqmp_qspi_set_tapdelay(struct zynqmp_qspi * xqspi,u32 baudrateval)289 static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval)
290 {
291 u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
292 u32 reqhz = 0;
293
294 clk_rate = clk_get_rate(xqspi->refclk);
295 reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
296
297 if (!xqspi->has_tapdelay) {
298 if (reqhz <= GQSPI_FREQ_40MHZ) {
299 zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
300 PM_TAPDELAY_BYPASS_ENABLE);
301 } else if (reqhz <= GQSPI_FREQ_100MHZ) {
302 zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
303 PM_TAPDELAY_BYPASS_ENABLE);
304 lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
305 datadlyadj |= ((GQSPI_USE_DATA_DLY <<
306 GQSPI_USE_DATA_DLY_SHIFT)
307 | (GQSPI_DATA_DLY_ADJ_VALUE <<
308 GQSPI_DATA_DLY_ADJ_SHIFT));
309 } else if (reqhz <= GQSPI_FREQ_150MHZ) {
310 lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK;
311 }
312 } else {
313 if (reqhz <= GQSPI_FREQ_37_5MHZ) {
314 tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
315 TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
316 } else if (reqhz <= GQSPI_FREQ_100MHZ) {
317 tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
318 TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
319 lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
320 datadlyadj |= (GQSPI_USE_DATA_DLY <<
321 GQSPI_USE_DATA_DLY_SHIFT);
322 } else if (reqhz <= GQSPI_FREQ_150MHZ) {
323 lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK
324 | (GQSPI_LPBK_DLY_ADJ_DLY_1 <<
325 GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT));
326 }
327 zynqmp_gqspi_write(xqspi,
328 IOU_TAPDLY_BYPASS_OFST, tapdlybypass);
329 }
330 zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj);
331 zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj);
332 }
333
334 /**
335 * zynqmp_qspi_init_hw - Initialize the hardware
336 * @xqspi: Pointer to the zynqmp_qspi structure
337 *
338 * The default settings of the QSPI controller's configurable parameters on
339 * reset are
340 * - Master mode
341 * - TX threshold set to 1
342 * - RX threshold set to 1
343 * - Flash memory interface mode enabled
344 * This function performs the following actions
345 * - Disable and clear all the interrupts
346 * - Enable manual slave select
347 * - Enable manual start
348 * - Deselect all the chip select lines
349 * - Set the little endian mode of TX FIFO
350 * - Set clock phase
351 * - Set clock polarity and
352 * - Enable the QSPI controller
353 */
zynqmp_qspi_init_hw(struct zynqmp_qspi * xqspi)354 static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
355 {
356 u32 config_reg, baud_rate_val = 0;
357 ulong clk_rate;
358
359 /* Select the GQSPI mode */
360 zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
361 /* Clear and disable interrupts */
362 zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
363 zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
364 GQSPI_ISR_WR_TO_CLR_MASK);
365 /* Clear the DMA STS */
366 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
367 zynqmp_gqspi_read(xqspi,
368 GQSPI_QSPIDMA_DST_I_STS_OFST));
369 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
370 zynqmp_gqspi_read(xqspi,
371 GQSPI_QSPIDMA_DST_STS_OFST) |
372 GQSPI_QSPIDMA_DST_STS_WTC);
373 zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
374 zynqmp_gqspi_write(xqspi,
375 GQSPI_QSPIDMA_DST_I_DIS_OFST,
376 GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
377 /* Disable the GQSPI */
378 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
379 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
380 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
381 /* Manual start */
382 config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
383 /* Little endian by default */
384 config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
385 /* Disable poll time out */
386 config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
387 /* Set hold bit */
388 config_reg |= GQSPI_CFG_WP_HOLD_MASK;
389 /* Clear pre-scalar by default */
390 config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
391 /* Set CPHA */
392 if (xqspi->ctlr->mode_bits & SPI_CPHA)
393 config_reg |= GQSPI_CFG_CLK_PHA_MASK;
394 else
395 config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
396 /* Set CPOL */
397 if (xqspi->ctlr->mode_bits & SPI_CPOL)
398 config_reg |= GQSPI_CFG_CLK_POL_MASK;
399 else
400 config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
401
402 /* Set the clock frequency */
403 clk_rate = clk_get_rate(xqspi->refclk);
404 while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
405 (clk_rate /
406 (GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz)
407 baud_rate_val++;
408
409 config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
410 config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
411
412 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
413
414 /* Set the tapdelay for clock frequency */
415 zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
416
417 /* Clear the TX and RX FIFO */
418 zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
419 GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
420 GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
421 GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
422 /* Reset thresholds */
423 zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
424 GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
425 zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
426 GQSPI_RX_FIFO_THRESHOLD);
427 zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
428 GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
429 zynqmp_gqspi_selectslave(xqspi,
430 GQSPI_SELECT_FLASH_CS_LOWER,
431 GQSPI_SELECT_FLASH_BUS_LOWER);
432 /* Initialize DMA */
433 zynqmp_gqspi_write(xqspi,
434 GQSPI_QSPIDMA_DST_CTRL_OFST,
435 GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
436
437 /* Enable the GQSPI */
438 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
439 }
440
441 /**
442 * zynqmp_qspi_copy_read_data - Copy data to RX buffer
443 * @xqspi: Pointer to the zynqmp_qspi structure
444 * @data: The variable where data is stored
445 * @size: Number of bytes to be copied from data to RX buffer
446 */
zynqmp_qspi_copy_read_data(struct zynqmp_qspi * xqspi,ulong data,u8 size)447 static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
448 ulong data, u8 size)
449 {
450 memcpy(xqspi->rxbuf, &data, size);
451 xqspi->rxbuf += size;
452 xqspi->bytes_to_receive -= size;
453 }
454
455 /**
456 * zynqmp_qspi_chipselect - Select or deselect the chip select line
457 * @qspi: Pointer to the spi_device structure
458 * @is_high: Select(0) or deselect (1) the chip select line
459 */
zynqmp_qspi_chipselect(struct spi_device * qspi,bool is_high)460 static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
461 {
462 struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
463 ulong timeout;
464 u32 genfifoentry = 0, statusreg;
465
466 genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
467
468 if (!is_high) {
469 if (!spi_get_chipselect(qspi, 0)) {
470 xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
471 xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER;
472 } else {
473 xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
474 xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER;
475 }
476 genfifoentry |= xqspi->genfifobus;
477 genfifoentry |= xqspi->genfifocs;
478 genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
479 } else {
480 genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
481 }
482
483 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
484
485 /* Manually start the generic FIFO command */
486 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
487 zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
488 GQSPI_CFG_START_GEN_FIFO_MASK);
489
490 timeout = jiffies + msecs_to_jiffies(1000);
491
492 /* Wait until the generic FIFO command is empty */
493 do {
494 statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
495
496 if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
497 (statusreg & GQSPI_ISR_TXEMPTY_MASK))
498 break;
499 cpu_relax();
500 } while (!time_after_eq(jiffies, timeout));
501
502 if (time_after_eq(jiffies, timeout))
503 dev_err(xqspi->dev, "Chip select timed out\n");
504 }
505
506 /**
507 * zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4.
508 * @xqspi: xqspi is a pointer to the GQSPI instance
509 * @spimode: spimode - SPI or DUAL or QUAD.
510 * Return: Mask to set desired SPI mode in GENFIFO entry.
511 */
zynqmp_qspi_selectspimode(struct zynqmp_qspi * xqspi,u8 spimode)512 static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
513 u8 spimode)
514 {
515 u32 mask = 0;
516
517 switch (spimode) {
518 case GQSPI_SELECT_MODE_DUALSPI:
519 mask = GQSPI_GENFIFO_MODE_DUALSPI;
520 break;
521 case GQSPI_SELECT_MODE_QUADSPI:
522 mask = GQSPI_GENFIFO_MODE_QUADSPI;
523 break;
524 case GQSPI_SELECT_MODE_SPI:
525 mask = GQSPI_GENFIFO_MODE_SPI;
526 break;
527 default:
528 dev_warn(xqspi->dev, "Invalid SPI mode\n");
529 }
530
531 return mask;
532 }
533
534 /**
535 * zynqmp_qspi_config_op - Configure QSPI controller for specified
536 * transfer
537 * @xqspi: Pointer to the zynqmp_qspi structure
538 * @qspi: Pointer to the spi_device structure
539 *
540 * Sets the operational mode of QSPI controller for the next QSPI transfer and
541 * sets the requested clock frequency.
542 *
543 * Return: Always 0
544 *
545 * Note:
546 * If the requested frequency is not an exact match with what can be
547 * obtained using the pre-scalar value, the driver sets the clock
548 * frequency which is lower than the requested frequency (maximum lower)
549 * for the transfer.
550 *
551 * If the requested frequency is higher or lower than that is supported
552 * by the QSPI controller the driver will set the highest or lowest
553 * frequency supported by controller.
554 */
zynqmp_qspi_config_op(struct zynqmp_qspi * xqspi,struct spi_device * qspi)555 static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi,
556 struct spi_device *qspi)
557 {
558 ulong clk_rate;
559 u32 config_reg, req_speed_hz, baud_rate_val = 0;
560
561 req_speed_hz = qspi->max_speed_hz;
562
563 if (xqspi->speed_hz != req_speed_hz) {
564 xqspi->speed_hz = req_speed_hz;
565
566 /* Set the clock frequency */
567 /* If req_speed_hz == 0, default to lowest speed */
568 clk_rate = clk_get_rate(xqspi->refclk);
569
570 while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
571 (clk_rate /
572 (GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) >
573 req_speed_hz)
574 baud_rate_val++;
575
576 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
577
578 config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
579 config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
580 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
581 zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
582 }
583 return 0;
584 }
585
586 /**
587 * zynqmp_qspi_setup_op - Configure the QSPI controller
588 * @qspi: Pointer to the spi_device structure
589 *
590 * Sets the operational mode of QSPI controller for the next QSPI transfer,
591 * baud rate and divisor value to setup the requested qspi clock.
592 *
593 * Return: 0 on success; error value otherwise.
594 */
zynqmp_qspi_setup_op(struct spi_device * qspi)595 static int zynqmp_qspi_setup_op(struct spi_device *qspi)
596 {
597 struct spi_controller *ctlr = qspi->master;
598 struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr);
599
600 if (ctlr->busy)
601 return -EBUSY;
602
603 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
604
605 return 0;
606 }
607
608 /**
609 * zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in
610 * the FIFO or the bytes required to be
611 * transmitted.
612 * @xqspi: Pointer to the zynqmp_qspi structure
613 * @size: Number of bytes to be copied from TX buffer to TX FIFO
614 */
zynqmp_qspi_filltxfifo(struct zynqmp_qspi * xqspi,int size)615 static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
616 {
617 u32 count = 0, intermediate;
618
619 while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) {
620 if (xqspi->bytes_to_transfer >= 4) {
621 memcpy(&intermediate, xqspi->txbuf, 4);
622 xqspi->txbuf += 4;
623 xqspi->bytes_to_transfer -= 4;
624 count += 4;
625 } else {
626 memcpy(&intermediate, xqspi->txbuf,
627 xqspi->bytes_to_transfer);
628 xqspi->txbuf += xqspi->bytes_to_transfer;
629 xqspi->bytes_to_transfer = 0;
630 count += xqspi->bytes_to_transfer;
631 }
632 zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
633 }
634 }
635
636 /**
637 * zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in
638 * the FIFO.
639 * @xqspi: Pointer to the zynqmp_qspi structure
640 * @size: Number of bytes to be copied from RX buffer to RX FIFO
641 */
zynqmp_qspi_readrxfifo(struct zynqmp_qspi * xqspi,u32 size)642 static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
643 {
644 ulong data;
645 int count = 0;
646
647 while ((count < size) && (xqspi->bytes_to_receive > 0)) {
648 if (xqspi->bytes_to_receive >= 4) {
649 (*(u32 *)xqspi->rxbuf) =
650 zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
651 xqspi->rxbuf += 4;
652 xqspi->bytes_to_receive -= 4;
653 count += 4;
654 } else {
655 data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
656 count += xqspi->bytes_to_receive;
657 zynqmp_qspi_copy_read_data(xqspi, data,
658 xqspi->bytes_to_receive);
659 xqspi->bytes_to_receive = 0;
660 }
661 }
662 }
663
664 /**
665 * zynqmp_qspi_fillgenfifo - Fills the GENFIFO.
666 * @xqspi: Pointer to the zynqmp_qspi structure
667 * @nbits: Transfer/Receive buswidth.
668 * @genfifoentry: Variable in which GENFIFO mask is saved
669 */
zynqmp_qspi_fillgenfifo(struct zynqmp_qspi * xqspi,u8 nbits,u32 genfifoentry)670 static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits,
671 u32 genfifoentry)
672 {
673 u32 transfer_len = 0;
674
675 if (xqspi->txbuf) {
676 genfifoentry &= ~GQSPI_GENFIFO_RX;
677 genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
678 genfifoentry |= GQSPI_GENFIFO_TX;
679 transfer_len = xqspi->bytes_to_transfer;
680 } else if (xqspi->rxbuf) {
681 genfifoentry &= ~GQSPI_GENFIFO_TX;
682 genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
683 genfifoentry |= GQSPI_GENFIFO_RX;
684 if (xqspi->mode == GQSPI_MODE_DMA)
685 transfer_len = xqspi->dma_rx_bytes;
686 else
687 transfer_len = xqspi->bytes_to_receive;
688 } else {
689 /* Sending dummy circles here */
690 genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX);
691 genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
692 transfer_len = xqspi->bytes_to_transfer;
693 }
694 genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits);
695 xqspi->genfifoentry = genfifoentry;
696
697 if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
698 genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
699 genfifoentry |= transfer_len;
700 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
701 } else {
702 int tempcount = transfer_len;
703 u32 exponent = 8; /* 2^8 = 256 */
704 u8 imm_data = tempcount & 0xFF;
705
706 tempcount &= ~(tempcount & 0xFF);
707 /* Immediate entry */
708 if (tempcount != 0) {
709 /* Exponent entries */
710 genfifoentry |= GQSPI_GENFIFO_EXP;
711 while (tempcount != 0) {
712 if (tempcount & GQSPI_GENFIFO_EXP_START) {
713 genfifoentry &=
714 ~GQSPI_GENFIFO_IMM_DATA_MASK;
715 genfifoentry |= exponent;
716 zynqmp_gqspi_write(xqspi,
717 GQSPI_GEN_FIFO_OFST,
718 genfifoentry);
719 }
720 tempcount = tempcount >> 1;
721 exponent++;
722 }
723 }
724 if (imm_data != 0) {
725 genfifoentry &= ~GQSPI_GENFIFO_EXP;
726 genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
727 genfifoentry |= (u8)(imm_data & 0xFF);
728 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST,
729 genfifoentry);
730 }
731 }
732 if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) {
733 /* Dummy generic FIFO entry */
734 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
735 }
736 }
737
738 /**
739 * zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI
740 * controller
741 * @xqspi: zynqmp_qspi instance pointer
742 *
743 * This function handles DMA interrupt only.
744 */
zynqmp_process_dma_irq(struct zynqmp_qspi * xqspi)745 static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
746 {
747 u32 config_reg, genfifoentry;
748
749 dma_unmap_single(xqspi->dev, xqspi->dma_addr,
750 xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
751 xqspi->rxbuf += xqspi->dma_rx_bytes;
752 xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
753 xqspi->dma_rx_bytes = 0;
754
755 /* Disabling the DMA interrupts */
756 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
757 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
758
759 if (xqspi->bytes_to_receive > 0) {
760 /* Switch to IO mode,for remaining bytes to receive */
761 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
762 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
763 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
764
765 /* Initiate the transfer of remaining bytes */
766 genfifoentry = xqspi->genfifoentry;
767 genfifoentry |= xqspi->bytes_to_receive;
768 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
769
770 /* Dummy generic FIFO entry */
771 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
772
773 /* Manual start */
774 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
775 (zynqmp_gqspi_read(xqspi,
776 GQSPI_CONFIG_OFST) |
777 GQSPI_CFG_START_GEN_FIFO_MASK));
778
779 /* Enable the RX interrupts for IO mode */
780 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
781 GQSPI_IER_GENFIFOEMPTY_MASK |
782 GQSPI_IER_RXNEMPTY_MASK |
783 GQSPI_IER_RXEMPTY_MASK);
784 }
785 }
786
787 /**
788 * zynqmp_qspi_irq - Interrupt service routine of the QSPI controller
789 * @irq: IRQ number
790 * @dev_id: Pointer to the xqspi structure
791 *
792 * This function handles TX empty only.
793 * On TX empty interrupt this function reads the received data from RX FIFO
794 * and fills the TX FIFO if there is any data remaining to be transferred.
795 *
796 * Return: IRQ_HANDLED when interrupt is handled
797 * IRQ_NONE otherwise.
798 */
zynqmp_qspi_irq(int irq,void * dev_id)799 static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
800 {
801 struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id;
802 irqreturn_t ret = IRQ_NONE;
803 u32 status, mask, dma_status = 0;
804
805 status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
806 zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
807 mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
808
809 /* Read and clear DMA status */
810 if (xqspi->mode == GQSPI_MODE_DMA) {
811 dma_status =
812 zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
813 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
814 dma_status);
815 }
816
817 if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
818 zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
819 ret = IRQ_HANDLED;
820 }
821
822 if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
823 zynqmp_process_dma_irq(xqspi);
824 ret = IRQ_HANDLED;
825 } else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
826 (mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
827 zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
828 ret = IRQ_HANDLED;
829 }
830
831 if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 &&
832 ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
833 zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
834 complete(&xqspi->data_completion);
835 ret = IRQ_HANDLED;
836 }
837 return ret;
838 }
839
840 /**
841 * zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation
842 * @xqspi: xqspi is a pointer to the GQSPI instance.
843 *
844 * Return: 0 on success; error value otherwise.
845 */
zynqmp_qspi_setuprxdma(struct zynqmp_qspi * xqspi)846 static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
847 {
848 u32 rx_bytes, rx_rem, config_reg;
849 dma_addr_t addr;
850 u64 dma_align = (u64)(uintptr_t)xqspi->rxbuf;
851
852 if (xqspi->bytes_to_receive < 8 ||
853 ((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
854 /* Setting to IO mode */
855 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
856 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
857 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
858 xqspi->mode = GQSPI_MODE_IO;
859 xqspi->dma_rx_bytes = 0;
860 return 0;
861 }
862
863 rx_rem = xqspi->bytes_to_receive % 4;
864 rx_bytes = (xqspi->bytes_to_receive - rx_rem);
865
866 addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
867 rx_bytes, DMA_FROM_DEVICE);
868 if (dma_mapping_error(xqspi->dev, addr)) {
869 dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
870 return -ENOMEM;
871 }
872
873 xqspi->dma_rx_bytes = rx_bytes;
874 xqspi->dma_addr = addr;
875 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
876 (u32)(addr & 0xffffffff));
877 addr = ((addr >> 16) >> 16);
878 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
879 ((u32)addr) & 0xfff);
880
881 /* Enabling the DMA mode */
882 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
883 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
884 config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
885 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
886
887 /* Switch to DMA mode */
888 xqspi->mode = GQSPI_MODE_DMA;
889
890 /* Write the number of bytes to transfer */
891 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
892
893 return 0;
894 }
895
896 /**
897 * zynqmp_qspi_write_op - This function sets up the GENFIFO entries,
898 * TX FIFO, and fills the TX FIFO with as many
899 * bytes as possible.
900 * @xqspi: Pointer to the GQSPI instance.
901 * @tx_nbits: Transfer buswidth.
902 * @genfifoentry: Variable in which GENFIFO mask is returned
903 * to calling function
904 */
zynqmp_qspi_write_op(struct zynqmp_qspi * xqspi,u8 tx_nbits,u32 genfifoentry)905 static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits,
906 u32 genfifoentry)
907 {
908 u32 config_reg;
909
910 zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry);
911 zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
912 if (xqspi->mode == GQSPI_MODE_DMA) {
913 config_reg = zynqmp_gqspi_read(xqspi,
914 GQSPI_CONFIG_OFST);
915 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
916 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
917 config_reg);
918 xqspi->mode = GQSPI_MODE_IO;
919 }
920 }
921
922 /**
923 * zynqmp_qspi_read_op - This function sets up the GENFIFO entries and
924 * RX DMA operation.
925 * @xqspi: xqspi is a pointer to the GQSPI instance.
926 * @rx_nbits: Receive buswidth.
927 * @genfifoentry: genfifoentry is pointer to the variable in which
928 * GENFIFO mask is returned to calling function
929 *
930 * Return: 0 on success; error value otherwise.
931 */
zynqmp_qspi_read_op(struct zynqmp_qspi * xqspi,u8 rx_nbits,u32 genfifoentry)932 static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits,
933 u32 genfifoentry)
934 {
935 int ret;
936
937 ret = zynqmp_qspi_setuprxdma(xqspi);
938 if (ret)
939 return ret;
940 zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry);
941
942 return 0;
943 }
944
945 /**
946 * zynqmp_qspi_suspend - Suspend method for the QSPI driver
947 * @dev: Address of the platform_device structure
948 *
949 * This function stops the QSPI driver queue and disables the QSPI controller
950 *
951 * Return: Always 0
952 */
zynqmp_qspi_suspend(struct device * dev)953 static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
954 {
955 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
956 struct spi_controller *ctlr = xqspi->ctlr;
957 int ret;
958
959 ret = spi_controller_suspend(ctlr);
960 if (ret)
961 return ret;
962
963 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
964
965 return 0;
966 }
967
968 /**
969 * zynqmp_qspi_resume - Resume method for the QSPI driver
970 * @dev: Address of the platform_device structure
971 *
972 * The function starts the QSPI driver queue and initializes the QSPI
973 * controller
974 *
975 * Return: 0 on success; error value otherwise
976 */
zynqmp_qspi_resume(struct device * dev)977 static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
978 {
979 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
980 struct spi_controller *ctlr = xqspi->ctlr;
981
982 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
983
984 spi_controller_resume(ctlr);
985
986 return 0;
987 }
988
989 /**
990 * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
991 * @dev: Address of the platform_device structure
992 *
993 * This function disables the clocks
994 *
995 * Return: Always 0
996 */
zynqmp_runtime_suspend(struct device * dev)997 static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
998 {
999 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
1000
1001 clk_disable_unprepare(xqspi->refclk);
1002 clk_disable_unprepare(xqspi->pclk);
1003
1004 return 0;
1005 }
1006
1007 /**
1008 * zynqmp_runtime_resume - Runtime resume method for the SPI driver
1009 * @dev: Address of the platform_device structure
1010 *
1011 * This function enables the clocks
1012 *
1013 * Return: 0 on success and error value on error
1014 */
zynqmp_runtime_resume(struct device * dev)1015 static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
1016 {
1017 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
1018 int ret;
1019
1020 ret = clk_prepare_enable(xqspi->pclk);
1021 if (ret) {
1022 dev_err(dev, "Cannot enable APB clock.\n");
1023 return ret;
1024 }
1025
1026 ret = clk_prepare_enable(xqspi->refclk);
1027 if (ret) {
1028 dev_err(dev, "Cannot enable device clock.\n");
1029 clk_disable_unprepare(xqspi->pclk);
1030 return ret;
1031 }
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * zynqmp_qspi_exec_op() - Initiates the QSPI transfer
1038 * @mem: The SPI memory
1039 * @op: The memory operation to execute
1040 *
1041 * Executes a memory operation.
1042 *
1043 * This function first selects the chip and starts the memory operation.
1044 *
1045 * Return: 0 in case of success, a negative error code otherwise.
1046 */
zynqmp_qspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)1047 static int zynqmp_qspi_exec_op(struct spi_mem *mem,
1048 const struct spi_mem_op *op)
1049 {
1050 struct zynqmp_qspi *xqspi = spi_controller_get_devdata
1051 (mem->spi->master);
1052 int err = 0, i;
1053 u32 genfifoentry = 0;
1054 u16 opcode = op->cmd.opcode;
1055 u64 opaddr;
1056
1057 dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n",
1058 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
1059 op->dummy.buswidth, op->data.buswidth);
1060
1061 mutex_lock(&xqspi->op_lock);
1062 zynqmp_qspi_config_op(xqspi, mem->spi);
1063 zynqmp_qspi_chipselect(mem->spi, false);
1064 genfifoentry |= xqspi->genfifocs;
1065 genfifoentry |= xqspi->genfifobus;
1066
1067 if (op->cmd.opcode) {
1068 reinit_completion(&xqspi->data_completion);
1069 xqspi->txbuf = &opcode;
1070 xqspi->rxbuf = NULL;
1071 xqspi->bytes_to_transfer = op->cmd.nbytes;
1072 xqspi->bytes_to_receive = 0;
1073 zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry);
1074 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1075 zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1076 GQSPI_CFG_START_GEN_FIFO_MASK);
1077 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1078 GQSPI_IER_GENFIFOEMPTY_MASK |
1079 GQSPI_IER_TXNOT_FULL_MASK);
1080 if (!wait_for_completion_timeout
1081 (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1082 err = -ETIMEDOUT;
1083 goto return_err;
1084 }
1085 }
1086
1087 if (op->addr.nbytes) {
1088 xqspi->txbuf = &opaddr;
1089 for (i = 0; i < op->addr.nbytes; i++) {
1090 *(((u8 *)xqspi->txbuf) + i) = op->addr.val >>
1091 (8 * (op->addr.nbytes - i - 1));
1092 }
1093
1094 reinit_completion(&xqspi->data_completion);
1095 xqspi->rxbuf = NULL;
1096 xqspi->bytes_to_transfer = op->addr.nbytes;
1097 xqspi->bytes_to_receive = 0;
1098 zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry);
1099 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1100 zynqmp_gqspi_read(xqspi,
1101 GQSPI_CONFIG_OFST) |
1102 GQSPI_CFG_START_GEN_FIFO_MASK);
1103 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1104 GQSPI_IER_TXEMPTY_MASK |
1105 GQSPI_IER_GENFIFOEMPTY_MASK |
1106 GQSPI_IER_TXNOT_FULL_MASK);
1107 if (!wait_for_completion_timeout
1108 (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1109 err = -ETIMEDOUT;
1110 goto return_err;
1111 }
1112 }
1113
1114 if (op->dummy.nbytes) {
1115 xqspi->txbuf = NULL;
1116 xqspi->rxbuf = NULL;
1117 /*
1118 * xqspi->bytes_to_transfer here represents the dummy circles
1119 * which need to be sent.
1120 */
1121 xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth;
1122 xqspi->bytes_to_receive = 0;
1123 /*
1124 * Using op->data.buswidth instead of op->dummy.buswidth here because
1125 * we need to use it to configure the correct SPI mode.
1126 */
1127 zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1128 genfifoentry);
1129 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1130 zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1131 GQSPI_CFG_START_GEN_FIFO_MASK);
1132 }
1133
1134 if (op->data.nbytes) {
1135 reinit_completion(&xqspi->data_completion);
1136 if (op->data.dir == SPI_MEM_DATA_OUT) {
1137 xqspi->txbuf = (u8 *)op->data.buf.out;
1138 xqspi->rxbuf = NULL;
1139 xqspi->bytes_to_transfer = op->data.nbytes;
1140 xqspi->bytes_to_receive = 0;
1141 zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1142 genfifoentry);
1143 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1144 zynqmp_gqspi_read
1145 (xqspi, GQSPI_CONFIG_OFST) |
1146 GQSPI_CFG_START_GEN_FIFO_MASK);
1147 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1148 GQSPI_IER_TXEMPTY_MASK |
1149 GQSPI_IER_GENFIFOEMPTY_MASK |
1150 GQSPI_IER_TXNOT_FULL_MASK);
1151 } else {
1152 xqspi->txbuf = NULL;
1153 xqspi->rxbuf = (u8 *)op->data.buf.in;
1154 xqspi->bytes_to_receive = op->data.nbytes;
1155 xqspi->bytes_to_transfer = 0;
1156 err = zynqmp_qspi_read_op(xqspi, op->data.buswidth,
1157 genfifoentry);
1158 if (err)
1159 goto return_err;
1160
1161 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1162 zynqmp_gqspi_read
1163 (xqspi, GQSPI_CONFIG_OFST) |
1164 GQSPI_CFG_START_GEN_FIFO_MASK);
1165 if (xqspi->mode == GQSPI_MODE_DMA) {
1166 zynqmp_gqspi_write
1167 (xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST,
1168 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
1169 } else {
1170 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1171 GQSPI_IER_GENFIFOEMPTY_MASK |
1172 GQSPI_IER_RXNEMPTY_MASK |
1173 GQSPI_IER_RXEMPTY_MASK);
1174 }
1175 }
1176 if (!wait_for_completion_timeout
1177 (&xqspi->data_completion, msecs_to_jiffies(1000)))
1178 err = -ETIMEDOUT;
1179 }
1180
1181 return_err:
1182
1183 zynqmp_qspi_chipselect(mem->spi, true);
1184 mutex_unlock(&xqspi->op_lock);
1185
1186 return err;
1187 }
1188
1189 static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
1190 SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
1191 zynqmp_runtime_resume, NULL)
1192 SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
1193 };
1194
1195 static const struct qspi_platform_data versal_qspi_def = {
1196 .quirks = QSPI_QUIRK_HAS_TAPDELAY,
1197 };
1198
1199 static const struct of_device_id zynqmp_qspi_of_match[] = {
1200 { .compatible = "xlnx,zynqmp-qspi-1.0"},
1201 { .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def },
1202 { /* End of table */ }
1203 };
1204
1205 static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = {
1206 .exec_op = zynqmp_qspi_exec_op,
1207 };
1208
1209 /**
1210 * zynqmp_qspi_probe - Probe method for the QSPI driver
1211 * @pdev: Pointer to the platform_device structure
1212 *
1213 * This function initializes the driver data structures and the hardware.
1214 *
1215 * Return: 0 on success; error value otherwise
1216 */
zynqmp_qspi_probe(struct platform_device * pdev)1217 static int zynqmp_qspi_probe(struct platform_device *pdev)
1218 {
1219 int ret = 0;
1220 struct spi_controller *ctlr;
1221 struct zynqmp_qspi *xqspi;
1222 struct device *dev = &pdev->dev;
1223 struct device_node *np = dev->of_node;
1224 u32 num_cs;
1225 const struct qspi_platform_data *p_data;
1226
1227 ctlr = spi_alloc_master(&pdev->dev, sizeof(*xqspi));
1228 if (!ctlr)
1229 return -ENOMEM;
1230
1231 xqspi = spi_controller_get_devdata(ctlr);
1232 xqspi->dev = dev;
1233 xqspi->ctlr = ctlr;
1234 platform_set_drvdata(pdev, xqspi);
1235
1236 p_data = of_device_get_match_data(&pdev->dev);
1237 if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY))
1238 xqspi->has_tapdelay = true;
1239
1240 xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
1241 if (IS_ERR(xqspi->regs)) {
1242 ret = PTR_ERR(xqspi->regs);
1243 goto remove_master;
1244 }
1245
1246 xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
1247 if (IS_ERR(xqspi->pclk)) {
1248 dev_err(dev, "pclk clock not found.\n");
1249 ret = PTR_ERR(xqspi->pclk);
1250 goto remove_master;
1251 }
1252
1253 xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
1254 if (IS_ERR(xqspi->refclk)) {
1255 dev_err(dev, "ref_clk clock not found.\n");
1256 ret = PTR_ERR(xqspi->refclk);
1257 goto remove_master;
1258 }
1259
1260 ret = clk_prepare_enable(xqspi->pclk);
1261 if (ret) {
1262 dev_err(dev, "Unable to enable APB clock.\n");
1263 goto remove_master;
1264 }
1265
1266 ret = clk_prepare_enable(xqspi->refclk);
1267 if (ret) {
1268 dev_err(dev, "Unable to enable device clock.\n");
1269 goto clk_dis_pclk;
1270 }
1271
1272 init_completion(&xqspi->data_completion);
1273
1274 mutex_init(&xqspi->op_lock);
1275
1276 pm_runtime_use_autosuspend(&pdev->dev);
1277 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1278 pm_runtime_set_active(&pdev->dev);
1279 pm_runtime_enable(&pdev->dev);
1280
1281 ret = pm_runtime_get_sync(&pdev->dev);
1282 if (ret < 0) {
1283 dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret);
1284 goto clk_dis_all;
1285 }
1286
1287 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
1288 SPI_TX_DUAL | SPI_TX_QUAD;
1289 ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
1290 xqspi->speed_hz = ctlr->max_speed_hz;
1291
1292 /* QSPI controller initializations */
1293 zynqmp_qspi_init_hw(xqspi);
1294
1295 xqspi->irq = platform_get_irq(pdev, 0);
1296 if (xqspi->irq < 0) {
1297 ret = xqspi->irq;
1298 goto clk_dis_all;
1299 }
1300 ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
1301 0, pdev->name, xqspi);
1302 if (ret != 0) {
1303 ret = -ENXIO;
1304 dev_err(dev, "request_irq failed\n");
1305 goto clk_dis_all;
1306 }
1307
1308 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
1309 if (ret)
1310 goto clk_dis_all;
1311
1312 ret = of_property_read_u32(np, "num-cs", &num_cs);
1313 if (ret < 0) {
1314 ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS;
1315 } else if (num_cs > GQSPI_MAX_NUM_CS) {
1316 ret = -EINVAL;
1317 dev_err(&pdev->dev, "only %d chip selects are available\n",
1318 GQSPI_MAX_NUM_CS);
1319 goto clk_dis_all;
1320 } else {
1321 ctlr->num_chipselect = num_cs;
1322 }
1323
1324 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1325 ctlr->mem_ops = &zynqmp_qspi_mem_ops;
1326 ctlr->setup = zynqmp_qspi_setup_op;
1327 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1328 ctlr->dev.of_node = np;
1329 ctlr->auto_runtime_pm = true;
1330
1331 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1332 if (ret) {
1333 dev_err(&pdev->dev, "spi_register_controller failed\n");
1334 goto clk_dis_all;
1335 }
1336
1337 pm_runtime_mark_last_busy(&pdev->dev);
1338 pm_runtime_put_autosuspend(&pdev->dev);
1339
1340 return 0;
1341
1342 clk_dis_all:
1343 pm_runtime_disable(&pdev->dev);
1344 pm_runtime_dont_use_autosuspend(&pdev->dev);
1345 pm_runtime_put_noidle(&pdev->dev);
1346 pm_runtime_set_suspended(&pdev->dev);
1347 clk_disable_unprepare(xqspi->refclk);
1348 clk_dis_pclk:
1349 clk_disable_unprepare(xqspi->pclk);
1350 remove_master:
1351 spi_controller_put(ctlr);
1352
1353 return ret;
1354 }
1355
1356 /**
1357 * zynqmp_qspi_remove - Remove method for the QSPI driver
1358 * @pdev: Pointer to the platform_device structure
1359 *
1360 * This function is called if a device is physically removed from the system or
1361 * if the driver module is being unloaded. It frees all resources allocated to
1362 * the device.
1363 *
1364 * Return: 0 Always
1365 */
zynqmp_qspi_remove(struct platform_device * pdev)1366 static void zynqmp_qspi_remove(struct platform_device *pdev)
1367 {
1368 struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev);
1369
1370 pm_runtime_get_sync(&pdev->dev);
1371
1372 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
1373
1374 pm_runtime_disable(&pdev->dev);
1375 pm_runtime_dont_use_autosuspend(&pdev->dev);
1376 pm_runtime_put_noidle(&pdev->dev);
1377 pm_runtime_set_suspended(&pdev->dev);
1378 clk_disable_unprepare(xqspi->refclk);
1379 clk_disable_unprepare(xqspi->pclk);
1380 }
1381
1382 MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
1383
1384 static struct platform_driver zynqmp_qspi_driver = {
1385 .probe = zynqmp_qspi_probe,
1386 .remove_new = zynqmp_qspi_remove,
1387 .driver = {
1388 .name = "zynqmp-qspi",
1389 .of_match_table = zynqmp_qspi_of_match,
1390 .pm = &zynqmp_qspi_dev_pm_ops,
1391 },
1392 };
1393
1394 module_platform_driver(zynqmp_qspi_driver);
1395
1396 MODULE_AUTHOR("Xilinx, Inc.");
1397 MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
1398 MODULE_LICENSE("GPL");
1399