xref: /openbmc/linux/drivers/pwm/pwm-dwc.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DesignWare PWM Controller driver
4  *
5  * Copyright (C) 2018-2020 Intel Corporation
6  *
7  * Author: Felipe Balbi (Intel)
8  * Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
9  * Author: Raymond Tan <raymond.tan@intel.com>
10  *
11  * Limitations:
12  * - The hardware cannot generate a 0 % or 100 % duty cycle. Both high and low
13  *   periods are one or more input clock periods long.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pwm.h>
23 
24 #define DWC_TIM_LD_CNT(n)	((n) * 0x14)
25 #define DWC_TIM_LD_CNT2(n)	(((n) * 4) + 0xb0)
26 #define DWC_TIM_CUR_VAL(n)	(((n) * 0x14) + 0x04)
27 #define DWC_TIM_CTRL(n)		(((n) * 0x14) + 0x08)
28 #define DWC_TIM_EOI(n)		(((n) * 0x14) + 0x0c)
29 #define DWC_TIM_INT_STS(n)	(((n) * 0x14) + 0x10)
30 
31 #define DWC_TIMERS_INT_STS	0xa0
32 #define DWC_TIMERS_EOI		0xa4
33 #define DWC_TIMERS_RAW_INT_STS	0xa8
34 #define DWC_TIMERS_COMP_VERSION	0xac
35 
36 #define DWC_TIMERS_TOTAL	8
37 #define DWC_CLK_PERIOD_NS	10
38 
39 /* Timer Control Register */
40 #define DWC_TIM_CTRL_EN		BIT(0)
41 #define DWC_TIM_CTRL_MODE	BIT(1)
42 #define DWC_TIM_CTRL_MODE_FREE	(0 << 1)
43 #define DWC_TIM_CTRL_MODE_USER	(1 << 1)
44 #define DWC_TIM_CTRL_INT_MASK	BIT(2)
45 #define DWC_TIM_CTRL_PWM	BIT(3)
46 
47 struct dwc_pwm_ctx {
48 	u32 cnt;
49 	u32 cnt2;
50 	u32 ctrl;
51 };
52 
53 struct dwc_pwm {
54 	struct pwm_chip chip;
55 	void __iomem *base;
56 	struct dwc_pwm_ctx ctx[DWC_TIMERS_TOTAL];
57 };
58 #define to_dwc_pwm(p)	(container_of((p), struct dwc_pwm, chip))
59 
dwc_pwm_readl(struct dwc_pwm * dwc,u32 offset)60 static inline u32 dwc_pwm_readl(struct dwc_pwm *dwc, u32 offset)
61 {
62 	return readl(dwc->base + offset);
63 }
64 
dwc_pwm_writel(struct dwc_pwm * dwc,u32 value,u32 offset)65 static inline void dwc_pwm_writel(struct dwc_pwm *dwc, u32 value, u32 offset)
66 {
67 	writel(value, dwc->base + offset);
68 }
69 
__dwc_pwm_set_enable(struct dwc_pwm * dwc,int pwm,int enabled)70 static void __dwc_pwm_set_enable(struct dwc_pwm *dwc, int pwm, int enabled)
71 {
72 	u32 reg;
73 
74 	reg = dwc_pwm_readl(dwc, DWC_TIM_CTRL(pwm));
75 
76 	if (enabled)
77 		reg |= DWC_TIM_CTRL_EN;
78 	else
79 		reg &= ~DWC_TIM_CTRL_EN;
80 
81 	dwc_pwm_writel(dwc, reg, DWC_TIM_CTRL(pwm));
82 }
83 
__dwc_pwm_configure_timer(struct dwc_pwm * dwc,struct pwm_device * pwm,const struct pwm_state * state)84 static int __dwc_pwm_configure_timer(struct dwc_pwm *dwc,
85 				     struct pwm_device *pwm,
86 				     const struct pwm_state *state)
87 {
88 	u64 tmp;
89 	u32 ctrl;
90 	u32 high;
91 	u32 low;
92 
93 	/*
94 	 * Calculate width of low and high period in terms of input clock
95 	 * periods and check are the result within HW limits between 1 and
96 	 * 2^32 periods.
97 	 */
98 	tmp = DIV_ROUND_CLOSEST_ULL(state->duty_cycle, DWC_CLK_PERIOD_NS);
99 	if (tmp < 1 || tmp > (1ULL << 32))
100 		return -ERANGE;
101 	low = tmp - 1;
102 
103 	tmp = DIV_ROUND_CLOSEST_ULL(state->period - state->duty_cycle,
104 				    DWC_CLK_PERIOD_NS);
105 	if (tmp < 1 || tmp > (1ULL << 32))
106 		return -ERANGE;
107 	high = tmp - 1;
108 
109 	/*
110 	 * Specification says timer usage flow is to disable timer, then
111 	 * program it followed by enable. It also says Load Count is loaded
112 	 * into timer after it is enabled - either after a disable or
113 	 * a reset. Based on measurements it happens also without disable
114 	 * whenever Load Count is updated. But follow the specification.
115 	 */
116 	__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
117 
118 	/*
119 	 * Write Load Count and Load Count 2 registers. Former defines the
120 	 * width of low period and latter the width of high period in terms
121 	 * multiple of input clock periods:
122 	 * Width = ((Count + 1) * input clock period).
123 	 */
124 	dwc_pwm_writel(dwc, low, DWC_TIM_LD_CNT(pwm->hwpwm));
125 	dwc_pwm_writel(dwc, high, DWC_TIM_LD_CNT2(pwm->hwpwm));
126 
127 	/*
128 	 * Set user-defined mode, timer reloads from Load Count registers
129 	 * when it counts down to 0.
130 	 * Set PWM mode, it makes output to toggle and width of low and high
131 	 * periods are set by Load Count registers.
132 	 */
133 	ctrl = DWC_TIM_CTRL_MODE_USER | DWC_TIM_CTRL_PWM;
134 	dwc_pwm_writel(dwc, ctrl, DWC_TIM_CTRL(pwm->hwpwm));
135 
136 	/*
137 	 * Enable timer. Output starts from low period.
138 	 */
139 	__dwc_pwm_set_enable(dwc, pwm->hwpwm, state->enabled);
140 
141 	return 0;
142 }
143 
dwc_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)144 static int dwc_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
145 			 const struct pwm_state *state)
146 {
147 	struct dwc_pwm *dwc = to_dwc_pwm(chip);
148 
149 	if (state->polarity != PWM_POLARITY_INVERSED)
150 		return -EINVAL;
151 
152 	if (state->enabled) {
153 		if (!pwm->state.enabled)
154 			pm_runtime_get_sync(chip->dev);
155 		return __dwc_pwm_configure_timer(dwc, pwm, state);
156 	} else {
157 		if (pwm->state.enabled) {
158 			__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
159 			pm_runtime_put_sync(chip->dev);
160 		}
161 	}
162 
163 	return 0;
164 }
165 
dwc_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)166 static int dwc_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
167 			     struct pwm_state *state)
168 {
169 	struct dwc_pwm *dwc = to_dwc_pwm(chip);
170 	u64 duty, period;
171 
172 	pm_runtime_get_sync(chip->dev);
173 
174 	state->enabled = !!(dwc_pwm_readl(dwc,
175 				DWC_TIM_CTRL(pwm->hwpwm)) & DWC_TIM_CTRL_EN);
176 
177 	duty = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(pwm->hwpwm));
178 	duty += 1;
179 	duty *= DWC_CLK_PERIOD_NS;
180 	state->duty_cycle = duty;
181 
182 	period = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(pwm->hwpwm));
183 	period += 1;
184 	period *= DWC_CLK_PERIOD_NS;
185 	period += duty;
186 	state->period = period;
187 
188 	state->polarity = PWM_POLARITY_INVERSED;
189 
190 	pm_runtime_put_sync(chip->dev);
191 
192 	return 0;
193 }
194 
195 static const struct pwm_ops dwc_pwm_ops = {
196 	.apply = dwc_pwm_apply,
197 	.get_state = dwc_pwm_get_state,
198 	.owner = THIS_MODULE,
199 };
200 
dwc_pwm_alloc(struct device * dev)201 static struct dwc_pwm *dwc_pwm_alloc(struct device *dev)
202 {
203 	struct dwc_pwm *dwc;
204 
205 	dwc = devm_kzalloc(dev, sizeof(*dwc), GFP_KERNEL);
206 	if (!dwc)
207 		return NULL;
208 
209 	dwc->chip.dev = dev;
210 	dwc->chip.ops = &dwc_pwm_ops;
211 	dwc->chip.npwm = DWC_TIMERS_TOTAL;
212 
213 	dev_set_drvdata(dev, dwc);
214 	return dwc;
215 }
216 
dwc_pwm_probe(struct pci_dev * pci,const struct pci_device_id * id)217 static int dwc_pwm_probe(struct pci_dev *pci, const struct pci_device_id *id)
218 {
219 	struct device *dev = &pci->dev;
220 	struct dwc_pwm *dwc;
221 	int ret;
222 
223 	dwc = dwc_pwm_alloc(dev);
224 	if (!dwc)
225 		return -ENOMEM;
226 
227 	ret = pcim_enable_device(pci);
228 	if (ret) {
229 		dev_err(dev, "Failed to enable device (%pe)\n", ERR_PTR(ret));
230 		return ret;
231 	}
232 
233 	pci_set_master(pci);
234 
235 	ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
236 	if (ret) {
237 		dev_err(dev, "Failed to iomap PCI BAR (%pe)\n", ERR_PTR(ret));
238 		return ret;
239 	}
240 
241 	dwc->base = pcim_iomap_table(pci)[0];
242 	if (!dwc->base) {
243 		dev_err(dev, "Base address missing\n");
244 		return -ENOMEM;
245 	}
246 
247 	ret = devm_pwmchip_add(dev, &dwc->chip);
248 	if (ret)
249 		return ret;
250 
251 	pm_runtime_put(dev);
252 	pm_runtime_allow(dev);
253 
254 	return 0;
255 }
256 
dwc_pwm_remove(struct pci_dev * pci)257 static void dwc_pwm_remove(struct pci_dev *pci)
258 {
259 	pm_runtime_forbid(&pci->dev);
260 	pm_runtime_get_noresume(&pci->dev);
261 }
262 
263 #ifdef CONFIG_PM_SLEEP
dwc_pwm_suspend(struct device * dev)264 static int dwc_pwm_suspend(struct device *dev)
265 {
266 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
267 	struct dwc_pwm *dwc = pci_get_drvdata(pdev);
268 	int i;
269 
270 	for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
271 		if (dwc->chip.pwms[i].state.enabled) {
272 			dev_err(dev, "PWM %u in use by consumer (%s)\n",
273 				i, dwc->chip.pwms[i].label);
274 			return -EBUSY;
275 		}
276 		dwc->ctx[i].cnt = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(i));
277 		dwc->ctx[i].cnt2 = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(i));
278 		dwc->ctx[i].ctrl = dwc_pwm_readl(dwc, DWC_TIM_CTRL(i));
279 	}
280 
281 	return 0;
282 }
283 
dwc_pwm_resume(struct device * dev)284 static int dwc_pwm_resume(struct device *dev)
285 {
286 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
287 	struct dwc_pwm *dwc = pci_get_drvdata(pdev);
288 	int i;
289 
290 	for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
291 		dwc_pwm_writel(dwc, dwc->ctx[i].cnt, DWC_TIM_LD_CNT(i));
292 		dwc_pwm_writel(dwc, dwc->ctx[i].cnt2, DWC_TIM_LD_CNT2(i));
293 		dwc_pwm_writel(dwc, dwc->ctx[i].ctrl, DWC_TIM_CTRL(i));
294 	}
295 
296 	return 0;
297 }
298 #endif
299 
300 static SIMPLE_DEV_PM_OPS(dwc_pwm_pm_ops, dwc_pwm_suspend, dwc_pwm_resume);
301 
302 static const struct pci_device_id dwc_pwm_id_table[] = {
303 	{ PCI_VDEVICE(INTEL, 0x4bb7) }, /* Elkhart Lake */
304 	{  }	/* Terminating Entry */
305 };
306 MODULE_DEVICE_TABLE(pci, dwc_pwm_id_table);
307 
308 static struct pci_driver dwc_pwm_driver = {
309 	.name = "pwm-dwc",
310 	.probe = dwc_pwm_probe,
311 	.remove = dwc_pwm_remove,
312 	.id_table = dwc_pwm_id_table,
313 	.driver = {
314 		.pm = &dwc_pwm_pm_ops,
315 	},
316 };
317 
318 module_pci_driver(dwc_pwm_driver);
319 
320 MODULE_AUTHOR("Felipe Balbi (Intel)");
321 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
322 MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
323 MODULE_DESCRIPTION("DesignWare PWM Controller");
324 MODULE_LICENSE("GPL");
325