1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 __le32 ddgst; 50 51 struct bio *curr_bio; 52 struct iov_iter iter; 53 54 /* send state */ 55 size_t offset; 56 size_t data_sent; 57 enum nvme_tcp_send_state state; 58 }; 59 60 enum nvme_tcp_queue_flags { 61 NVME_TCP_Q_ALLOCATED = 0, 62 NVME_TCP_Q_LIVE = 1, 63 NVME_TCP_Q_POLLING = 2, 64 }; 65 66 enum nvme_tcp_recv_state { 67 NVME_TCP_RECV_PDU = 0, 68 NVME_TCP_RECV_DATA, 69 NVME_TCP_RECV_DDGST, 70 }; 71 72 struct nvme_tcp_ctrl; 73 struct nvme_tcp_queue { 74 struct socket *sock; 75 struct work_struct io_work; 76 int io_cpu; 77 78 spinlock_t lock; 79 struct mutex send_mutex; 80 struct list_head send_list; 81 82 /* recv state */ 83 void *pdu; 84 int pdu_remaining; 85 int pdu_offset; 86 size_t data_remaining; 87 size_t ddgst_remaining; 88 unsigned int nr_cqe; 89 90 /* send state */ 91 struct nvme_tcp_request *request; 92 93 int queue_size; 94 size_t cmnd_capsule_len; 95 struct nvme_tcp_ctrl *ctrl; 96 unsigned long flags; 97 bool rd_enabled; 98 99 bool hdr_digest; 100 bool data_digest; 101 struct ahash_request *rcv_hash; 102 struct ahash_request *snd_hash; 103 __le32 exp_ddgst; 104 __le32 recv_ddgst; 105 106 struct page_frag_cache pf_cache; 107 108 void (*state_change)(struct sock *); 109 void (*data_ready)(struct sock *); 110 void (*write_space)(struct sock *); 111 }; 112 113 struct nvme_tcp_ctrl { 114 /* read only in the hot path */ 115 struct nvme_tcp_queue *queues; 116 struct blk_mq_tag_set tag_set; 117 118 /* other member variables */ 119 struct list_head list; 120 struct blk_mq_tag_set admin_tag_set; 121 struct sockaddr_storage addr; 122 struct sockaddr_storage src_addr; 123 struct nvme_ctrl ctrl; 124 125 struct work_struct err_work; 126 struct delayed_work connect_work; 127 struct nvme_tcp_request async_req; 128 u32 io_queues[HCTX_MAX_TYPES]; 129 }; 130 131 static LIST_HEAD(nvme_tcp_ctrl_list); 132 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 133 static struct workqueue_struct *nvme_tcp_wq; 134 static const struct blk_mq_ops nvme_tcp_mq_ops; 135 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 136 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 137 138 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 139 { 140 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 141 } 142 143 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 144 { 145 return queue - queue->ctrl->queues; 146 } 147 148 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 149 { 150 u32 queue_idx = nvme_tcp_queue_id(queue); 151 152 if (queue_idx == 0) 153 return queue->ctrl->admin_tag_set.tags[queue_idx]; 154 return queue->ctrl->tag_set.tags[queue_idx - 1]; 155 } 156 157 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 158 { 159 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 160 } 161 162 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 163 { 164 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 165 } 166 167 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 168 { 169 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 170 } 171 172 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 173 { 174 return req == &req->queue->ctrl->async_req; 175 } 176 177 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 178 { 179 struct request *rq; 180 181 if (unlikely(nvme_tcp_async_req(req))) 182 return false; /* async events don't have a request */ 183 184 rq = blk_mq_rq_from_pdu(req); 185 186 return rq_data_dir(rq) == WRITE && req->data_len && 187 req->data_len <= nvme_tcp_inline_data_size(req->queue); 188 } 189 190 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 191 { 192 return req->iter.bvec->bv_page; 193 } 194 195 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 196 { 197 return req->iter.bvec->bv_offset + req->iter.iov_offset; 198 } 199 200 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 201 { 202 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 203 req->pdu_len - req->pdu_sent); 204 } 205 206 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 207 { 208 return req->iter.iov_offset; 209 } 210 211 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 212 { 213 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 214 req->pdu_len - req->pdu_sent : 0; 215 } 216 217 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 218 int len) 219 { 220 return nvme_tcp_pdu_data_left(req) <= len; 221 } 222 223 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 224 unsigned int dir) 225 { 226 struct request *rq = blk_mq_rq_from_pdu(req); 227 struct bio_vec *vec; 228 unsigned int size; 229 int nsegs; 230 size_t offset; 231 232 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 233 vec = &rq->special_vec; 234 nsegs = 1; 235 size = blk_rq_payload_bytes(rq); 236 offset = 0; 237 } else { 238 struct bio *bio = req->curr_bio; 239 240 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 241 nsegs = bio_segments(bio); 242 size = bio->bi_iter.bi_size; 243 offset = bio->bi_iter.bi_bvec_done; 244 } 245 246 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 247 req->iter.iov_offset = offset; 248 } 249 250 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 251 int len) 252 { 253 req->data_sent += len; 254 req->pdu_sent += len; 255 iov_iter_advance(&req->iter, len); 256 if (!iov_iter_count(&req->iter) && 257 req->data_sent < req->data_len) { 258 req->curr_bio = req->curr_bio->bi_next; 259 nvme_tcp_init_iter(req, WRITE); 260 } 261 } 262 263 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 264 bool sync) 265 { 266 struct nvme_tcp_queue *queue = req->queue; 267 bool empty; 268 269 spin_lock(&queue->lock); 270 empty = list_empty(&queue->send_list) && !queue->request; 271 list_add_tail(&req->entry, &queue->send_list); 272 spin_unlock(&queue->lock); 273 274 /* 275 * if we're the first on the send_list and we can try to send 276 * directly, otherwise queue io_work. Also, only do that if we 277 * are on the same cpu, so we don't introduce contention. 278 */ 279 if (queue->io_cpu == smp_processor_id() && 280 sync && empty && mutex_trylock(&queue->send_mutex)) { 281 nvme_tcp_try_send(queue); 282 mutex_unlock(&queue->send_mutex); 283 } else { 284 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 285 } 286 } 287 288 static inline struct nvme_tcp_request * 289 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 290 { 291 struct nvme_tcp_request *req; 292 293 spin_lock(&queue->lock); 294 req = list_first_entry_or_null(&queue->send_list, 295 struct nvme_tcp_request, entry); 296 if (req) 297 list_del(&req->entry); 298 spin_unlock(&queue->lock); 299 300 return req; 301 } 302 303 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 304 __le32 *dgst) 305 { 306 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 307 crypto_ahash_final(hash); 308 } 309 310 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 311 struct page *page, off_t off, size_t len) 312 { 313 struct scatterlist sg; 314 315 sg_init_marker(&sg, 1); 316 sg_set_page(&sg, page, len, off); 317 ahash_request_set_crypt(hash, &sg, NULL, len); 318 crypto_ahash_update(hash); 319 } 320 321 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 322 void *pdu, size_t len) 323 { 324 struct scatterlist sg; 325 326 sg_init_one(&sg, pdu, len); 327 ahash_request_set_crypt(hash, &sg, pdu + len, len); 328 crypto_ahash_digest(hash); 329 } 330 331 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 332 void *pdu, size_t pdu_len) 333 { 334 struct nvme_tcp_hdr *hdr = pdu; 335 __le32 recv_digest; 336 __le32 exp_digest; 337 338 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 339 dev_err(queue->ctrl->ctrl.device, 340 "queue %d: header digest flag is cleared\n", 341 nvme_tcp_queue_id(queue)); 342 return -EPROTO; 343 } 344 345 recv_digest = *(__le32 *)(pdu + hdr->hlen); 346 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 347 exp_digest = *(__le32 *)(pdu + hdr->hlen); 348 if (recv_digest != exp_digest) { 349 dev_err(queue->ctrl->ctrl.device, 350 "header digest error: recv %#x expected %#x\n", 351 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 352 return -EIO; 353 } 354 355 return 0; 356 } 357 358 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 359 { 360 struct nvme_tcp_hdr *hdr = pdu; 361 u8 digest_len = nvme_tcp_hdgst_len(queue); 362 u32 len; 363 364 len = le32_to_cpu(hdr->plen) - hdr->hlen - 365 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 366 367 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 368 dev_err(queue->ctrl->ctrl.device, 369 "queue %d: data digest flag is cleared\n", 370 nvme_tcp_queue_id(queue)); 371 return -EPROTO; 372 } 373 crypto_ahash_init(queue->rcv_hash); 374 375 return 0; 376 } 377 378 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 379 struct request *rq, unsigned int hctx_idx) 380 { 381 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 382 383 page_frag_free(req->pdu); 384 } 385 386 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 387 struct request *rq, unsigned int hctx_idx, 388 unsigned int numa_node) 389 { 390 struct nvme_tcp_ctrl *ctrl = set->driver_data; 391 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 392 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 393 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 394 u8 hdgst = nvme_tcp_hdgst_len(queue); 395 396 req->pdu = page_frag_alloc(&queue->pf_cache, 397 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 398 GFP_KERNEL | __GFP_ZERO); 399 if (!req->pdu) 400 return -ENOMEM; 401 402 req->queue = queue; 403 nvme_req(rq)->ctrl = &ctrl->ctrl; 404 405 return 0; 406 } 407 408 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_tcp_ctrl *ctrl = data; 412 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 413 414 hctx->driver_data = queue; 415 return 0; 416 } 417 418 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 419 unsigned int hctx_idx) 420 { 421 struct nvme_tcp_ctrl *ctrl = data; 422 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 423 424 hctx->driver_data = queue; 425 return 0; 426 } 427 428 static enum nvme_tcp_recv_state 429 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 430 { 431 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 432 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 433 NVME_TCP_RECV_DATA; 434 } 435 436 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 437 { 438 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 439 nvme_tcp_hdgst_len(queue); 440 queue->pdu_offset = 0; 441 queue->data_remaining = -1; 442 queue->ddgst_remaining = 0; 443 } 444 445 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 446 { 447 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 448 return; 449 450 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 451 } 452 453 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 454 struct nvme_completion *cqe) 455 { 456 struct request *rq; 457 458 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 459 if (!rq) { 460 dev_err(queue->ctrl->ctrl.device, 461 "queue %d tag 0x%x not found\n", 462 nvme_tcp_queue_id(queue), cqe->command_id); 463 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 464 return -EINVAL; 465 } 466 467 if (!nvme_end_request(rq, cqe->status, cqe->result)) 468 nvme_complete_rq(rq); 469 queue->nr_cqe++; 470 471 return 0; 472 } 473 474 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 475 struct nvme_tcp_data_pdu *pdu) 476 { 477 struct request *rq; 478 479 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 480 if (!rq) { 481 dev_err(queue->ctrl->ctrl.device, 482 "queue %d tag %#x not found\n", 483 nvme_tcp_queue_id(queue), pdu->command_id); 484 return -ENOENT; 485 } 486 487 if (!blk_rq_payload_bytes(rq)) { 488 dev_err(queue->ctrl->ctrl.device, 489 "queue %d tag %#x unexpected data\n", 490 nvme_tcp_queue_id(queue), rq->tag); 491 return -EIO; 492 } 493 494 queue->data_remaining = le32_to_cpu(pdu->data_length); 495 496 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 497 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 498 dev_err(queue->ctrl->ctrl.device, 499 "queue %d tag %#x SUCCESS set but not last PDU\n", 500 nvme_tcp_queue_id(queue), rq->tag); 501 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 502 return -EPROTO; 503 } 504 505 return 0; 506 } 507 508 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 509 struct nvme_tcp_rsp_pdu *pdu) 510 { 511 struct nvme_completion *cqe = &pdu->cqe; 512 int ret = 0; 513 514 /* 515 * AEN requests are special as they don't time out and can 516 * survive any kind of queue freeze and often don't respond to 517 * aborts. We don't even bother to allocate a struct request 518 * for them but rather special case them here. 519 */ 520 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 521 cqe->command_id))) 522 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 523 &cqe->result); 524 else 525 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 526 527 return ret; 528 } 529 530 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 531 struct nvme_tcp_r2t_pdu *pdu) 532 { 533 struct nvme_tcp_data_pdu *data = req->pdu; 534 struct nvme_tcp_queue *queue = req->queue; 535 struct request *rq = blk_mq_rq_from_pdu(req); 536 u8 hdgst = nvme_tcp_hdgst_len(queue); 537 u8 ddgst = nvme_tcp_ddgst_len(queue); 538 539 req->pdu_len = le32_to_cpu(pdu->r2t_length); 540 req->pdu_sent = 0; 541 542 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 543 dev_err(queue->ctrl->ctrl.device, 544 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 545 rq->tag, req->pdu_len, req->data_len, 546 req->data_sent); 547 return -EPROTO; 548 } 549 550 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 551 dev_err(queue->ctrl->ctrl.device, 552 "req %d unexpected r2t offset %u (expected %zu)\n", 553 rq->tag, le32_to_cpu(pdu->r2t_offset), 554 req->data_sent); 555 return -EPROTO; 556 } 557 558 memset(data, 0, sizeof(*data)); 559 data->hdr.type = nvme_tcp_h2c_data; 560 data->hdr.flags = NVME_TCP_F_DATA_LAST; 561 if (queue->hdr_digest) 562 data->hdr.flags |= NVME_TCP_F_HDGST; 563 if (queue->data_digest) 564 data->hdr.flags |= NVME_TCP_F_DDGST; 565 data->hdr.hlen = sizeof(*data); 566 data->hdr.pdo = data->hdr.hlen + hdgst; 567 data->hdr.plen = 568 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 569 data->ttag = pdu->ttag; 570 data->command_id = rq->tag; 571 data->data_offset = cpu_to_le32(req->data_sent); 572 data->data_length = cpu_to_le32(req->pdu_len); 573 return 0; 574 } 575 576 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 577 struct nvme_tcp_r2t_pdu *pdu) 578 { 579 struct nvme_tcp_request *req; 580 struct request *rq; 581 int ret; 582 583 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 584 if (!rq) { 585 dev_err(queue->ctrl->ctrl.device, 586 "queue %d tag %#x not found\n", 587 nvme_tcp_queue_id(queue), pdu->command_id); 588 return -ENOENT; 589 } 590 req = blk_mq_rq_to_pdu(rq); 591 592 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 593 if (unlikely(ret)) 594 return ret; 595 596 req->state = NVME_TCP_SEND_H2C_PDU; 597 req->offset = 0; 598 599 nvme_tcp_queue_request(req, false); 600 601 return 0; 602 } 603 604 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 605 unsigned int *offset, size_t *len) 606 { 607 struct nvme_tcp_hdr *hdr; 608 char *pdu = queue->pdu; 609 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 610 int ret; 611 612 ret = skb_copy_bits(skb, *offset, 613 &pdu[queue->pdu_offset], rcv_len); 614 if (unlikely(ret)) 615 return ret; 616 617 queue->pdu_remaining -= rcv_len; 618 queue->pdu_offset += rcv_len; 619 *offset += rcv_len; 620 *len -= rcv_len; 621 if (queue->pdu_remaining) 622 return 0; 623 624 hdr = queue->pdu; 625 if (queue->hdr_digest) { 626 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 627 if (unlikely(ret)) 628 return ret; 629 } 630 631 632 if (queue->data_digest) { 633 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 634 if (unlikely(ret)) 635 return ret; 636 } 637 638 switch (hdr->type) { 639 case nvme_tcp_c2h_data: 640 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 641 case nvme_tcp_rsp: 642 nvme_tcp_init_recv_ctx(queue); 643 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 644 case nvme_tcp_r2t: 645 nvme_tcp_init_recv_ctx(queue); 646 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 647 default: 648 dev_err(queue->ctrl->ctrl.device, 649 "unsupported pdu type (%d)\n", hdr->type); 650 return -EINVAL; 651 } 652 } 653 654 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 655 { 656 union nvme_result res = {}; 657 658 if (!nvme_end_request(rq, cpu_to_le16(status << 1), res)) 659 nvme_complete_rq(rq); 660 } 661 662 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 663 unsigned int *offset, size_t *len) 664 { 665 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 666 struct nvme_tcp_request *req; 667 struct request *rq; 668 669 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 670 if (!rq) { 671 dev_err(queue->ctrl->ctrl.device, 672 "queue %d tag %#x not found\n", 673 nvme_tcp_queue_id(queue), pdu->command_id); 674 return -ENOENT; 675 } 676 req = blk_mq_rq_to_pdu(rq); 677 678 while (true) { 679 int recv_len, ret; 680 681 recv_len = min_t(size_t, *len, queue->data_remaining); 682 if (!recv_len) 683 break; 684 685 if (!iov_iter_count(&req->iter)) { 686 req->curr_bio = req->curr_bio->bi_next; 687 688 /* 689 * If we don`t have any bios it means that controller 690 * sent more data than we requested, hence error 691 */ 692 if (!req->curr_bio) { 693 dev_err(queue->ctrl->ctrl.device, 694 "queue %d no space in request %#x", 695 nvme_tcp_queue_id(queue), rq->tag); 696 nvme_tcp_init_recv_ctx(queue); 697 return -EIO; 698 } 699 nvme_tcp_init_iter(req, READ); 700 } 701 702 /* we can read only from what is left in this bio */ 703 recv_len = min_t(size_t, recv_len, 704 iov_iter_count(&req->iter)); 705 706 if (queue->data_digest) 707 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 708 &req->iter, recv_len, queue->rcv_hash); 709 else 710 ret = skb_copy_datagram_iter(skb, *offset, 711 &req->iter, recv_len); 712 if (ret) { 713 dev_err(queue->ctrl->ctrl.device, 714 "queue %d failed to copy request %#x data", 715 nvme_tcp_queue_id(queue), rq->tag); 716 return ret; 717 } 718 719 *len -= recv_len; 720 *offset += recv_len; 721 queue->data_remaining -= recv_len; 722 } 723 724 if (!queue->data_remaining) { 725 if (queue->data_digest) { 726 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 727 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 728 } else { 729 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 730 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 731 queue->nr_cqe++; 732 } 733 nvme_tcp_init_recv_ctx(queue); 734 } 735 } 736 737 return 0; 738 } 739 740 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 741 struct sk_buff *skb, unsigned int *offset, size_t *len) 742 { 743 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 744 char *ddgst = (char *)&queue->recv_ddgst; 745 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 746 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 747 int ret; 748 749 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 750 if (unlikely(ret)) 751 return ret; 752 753 queue->ddgst_remaining -= recv_len; 754 *offset += recv_len; 755 *len -= recv_len; 756 if (queue->ddgst_remaining) 757 return 0; 758 759 if (queue->recv_ddgst != queue->exp_ddgst) { 760 dev_err(queue->ctrl->ctrl.device, 761 "data digest error: recv %#x expected %#x\n", 762 le32_to_cpu(queue->recv_ddgst), 763 le32_to_cpu(queue->exp_ddgst)); 764 return -EIO; 765 } 766 767 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 768 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 769 pdu->command_id); 770 771 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 772 queue->nr_cqe++; 773 } 774 775 nvme_tcp_init_recv_ctx(queue); 776 return 0; 777 } 778 779 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 780 unsigned int offset, size_t len) 781 { 782 struct nvme_tcp_queue *queue = desc->arg.data; 783 size_t consumed = len; 784 int result; 785 786 while (len) { 787 switch (nvme_tcp_recv_state(queue)) { 788 case NVME_TCP_RECV_PDU: 789 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 790 break; 791 case NVME_TCP_RECV_DATA: 792 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 793 break; 794 case NVME_TCP_RECV_DDGST: 795 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 796 break; 797 default: 798 result = -EFAULT; 799 } 800 if (result) { 801 dev_err(queue->ctrl->ctrl.device, 802 "receive failed: %d\n", result); 803 queue->rd_enabled = false; 804 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 805 return result; 806 } 807 } 808 809 return consumed; 810 } 811 812 static void nvme_tcp_data_ready(struct sock *sk) 813 { 814 struct nvme_tcp_queue *queue; 815 816 read_lock_bh(&sk->sk_callback_lock); 817 queue = sk->sk_user_data; 818 if (likely(queue && queue->rd_enabled) && 819 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 820 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 821 read_unlock_bh(&sk->sk_callback_lock); 822 } 823 824 static void nvme_tcp_write_space(struct sock *sk) 825 { 826 struct nvme_tcp_queue *queue; 827 828 read_lock_bh(&sk->sk_callback_lock); 829 queue = sk->sk_user_data; 830 if (likely(queue && sk_stream_is_writeable(sk))) { 831 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 832 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 833 } 834 read_unlock_bh(&sk->sk_callback_lock); 835 } 836 837 static void nvme_tcp_state_change(struct sock *sk) 838 { 839 struct nvme_tcp_queue *queue; 840 841 read_lock(&sk->sk_callback_lock); 842 queue = sk->sk_user_data; 843 if (!queue) 844 goto done; 845 846 switch (sk->sk_state) { 847 case TCP_CLOSE: 848 case TCP_CLOSE_WAIT: 849 case TCP_LAST_ACK: 850 case TCP_FIN_WAIT1: 851 case TCP_FIN_WAIT2: 852 /* fallthrough */ 853 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 854 break; 855 default: 856 dev_info(queue->ctrl->ctrl.device, 857 "queue %d socket state %d\n", 858 nvme_tcp_queue_id(queue), sk->sk_state); 859 } 860 861 queue->state_change(sk); 862 done: 863 read_unlock(&sk->sk_callback_lock); 864 } 865 866 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 867 { 868 queue->request = NULL; 869 } 870 871 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 872 { 873 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 874 } 875 876 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 877 { 878 struct nvme_tcp_queue *queue = req->queue; 879 880 while (true) { 881 struct page *page = nvme_tcp_req_cur_page(req); 882 size_t offset = nvme_tcp_req_cur_offset(req); 883 size_t len = nvme_tcp_req_cur_length(req); 884 bool last = nvme_tcp_pdu_last_send(req, len); 885 int ret, flags = MSG_DONTWAIT; 886 887 if (last && !queue->data_digest) 888 flags |= MSG_EOR; 889 else 890 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 891 892 /* can't zcopy slab pages */ 893 if (unlikely(PageSlab(page))) { 894 ret = sock_no_sendpage(queue->sock, page, offset, len, 895 flags); 896 } else { 897 ret = kernel_sendpage(queue->sock, page, offset, len, 898 flags); 899 } 900 if (ret <= 0) 901 return ret; 902 903 nvme_tcp_advance_req(req, ret); 904 if (queue->data_digest) 905 nvme_tcp_ddgst_update(queue->snd_hash, page, 906 offset, ret); 907 908 /* fully successful last write*/ 909 if (last && ret == len) { 910 if (queue->data_digest) { 911 nvme_tcp_ddgst_final(queue->snd_hash, 912 &req->ddgst); 913 req->state = NVME_TCP_SEND_DDGST; 914 req->offset = 0; 915 } else { 916 nvme_tcp_done_send_req(queue); 917 } 918 return 1; 919 } 920 } 921 return -EAGAIN; 922 } 923 924 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 925 { 926 struct nvme_tcp_queue *queue = req->queue; 927 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 928 bool inline_data = nvme_tcp_has_inline_data(req); 929 u8 hdgst = nvme_tcp_hdgst_len(queue); 930 int len = sizeof(*pdu) + hdgst - req->offset; 931 int flags = MSG_DONTWAIT; 932 int ret; 933 934 if (inline_data) 935 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 936 else 937 flags |= MSG_EOR; 938 939 if (queue->hdr_digest && !req->offset) 940 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 941 942 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 943 offset_in_page(pdu) + req->offset, len, flags); 944 if (unlikely(ret <= 0)) 945 return ret; 946 947 len -= ret; 948 if (!len) { 949 if (inline_data) { 950 req->state = NVME_TCP_SEND_DATA; 951 if (queue->data_digest) 952 crypto_ahash_init(queue->snd_hash); 953 nvme_tcp_init_iter(req, WRITE); 954 } else { 955 nvme_tcp_done_send_req(queue); 956 } 957 return 1; 958 } 959 req->offset += ret; 960 961 return -EAGAIN; 962 } 963 964 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 965 { 966 struct nvme_tcp_queue *queue = req->queue; 967 struct nvme_tcp_data_pdu *pdu = req->pdu; 968 u8 hdgst = nvme_tcp_hdgst_len(queue); 969 int len = sizeof(*pdu) - req->offset + hdgst; 970 int ret; 971 972 if (queue->hdr_digest && !req->offset) 973 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 974 975 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 976 offset_in_page(pdu) + req->offset, len, 977 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 978 if (unlikely(ret <= 0)) 979 return ret; 980 981 len -= ret; 982 if (!len) { 983 req->state = NVME_TCP_SEND_DATA; 984 if (queue->data_digest) 985 crypto_ahash_init(queue->snd_hash); 986 if (!req->data_sent) 987 nvme_tcp_init_iter(req, WRITE); 988 return 1; 989 } 990 req->offset += ret; 991 992 return -EAGAIN; 993 } 994 995 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 996 { 997 struct nvme_tcp_queue *queue = req->queue; 998 int ret; 999 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 1000 struct kvec iov = { 1001 .iov_base = &req->ddgst + req->offset, 1002 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1003 }; 1004 1005 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1006 if (unlikely(ret <= 0)) 1007 return ret; 1008 1009 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1010 nvme_tcp_done_send_req(queue); 1011 return 1; 1012 } 1013 1014 req->offset += ret; 1015 return -EAGAIN; 1016 } 1017 1018 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1019 { 1020 struct nvme_tcp_request *req; 1021 int ret = 1; 1022 1023 if (!queue->request) { 1024 queue->request = nvme_tcp_fetch_request(queue); 1025 if (!queue->request) 1026 return 0; 1027 } 1028 req = queue->request; 1029 1030 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1031 ret = nvme_tcp_try_send_cmd_pdu(req); 1032 if (ret <= 0) 1033 goto done; 1034 if (!nvme_tcp_has_inline_data(req)) 1035 return ret; 1036 } 1037 1038 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1039 ret = nvme_tcp_try_send_data_pdu(req); 1040 if (ret <= 0) 1041 goto done; 1042 } 1043 1044 if (req->state == NVME_TCP_SEND_DATA) { 1045 ret = nvme_tcp_try_send_data(req); 1046 if (ret <= 0) 1047 goto done; 1048 } 1049 1050 if (req->state == NVME_TCP_SEND_DDGST) 1051 ret = nvme_tcp_try_send_ddgst(req); 1052 done: 1053 if (ret == -EAGAIN) { 1054 ret = 0; 1055 } else if (ret < 0) { 1056 dev_err(queue->ctrl->ctrl.device, 1057 "failed to send request %d\n", ret); 1058 if (ret != -EPIPE && ret != -ECONNRESET) 1059 nvme_tcp_fail_request(queue->request); 1060 nvme_tcp_done_send_req(queue); 1061 } 1062 return ret; 1063 } 1064 1065 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1066 { 1067 struct socket *sock = queue->sock; 1068 struct sock *sk = sock->sk; 1069 read_descriptor_t rd_desc; 1070 int consumed; 1071 1072 rd_desc.arg.data = queue; 1073 rd_desc.count = 1; 1074 lock_sock(sk); 1075 queue->nr_cqe = 0; 1076 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1077 release_sock(sk); 1078 return consumed; 1079 } 1080 1081 static void nvme_tcp_io_work(struct work_struct *w) 1082 { 1083 struct nvme_tcp_queue *queue = 1084 container_of(w, struct nvme_tcp_queue, io_work); 1085 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1086 1087 do { 1088 bool pending = false; 1089 int result; 1090 1091 if (mutex_trylock(&queue->send_mutex)) { 1092 result = nvme_tcp_try_send(queue); 1093 mutex_unlock(&queue->send_mutex); 1094 if (result > 0) 1095 pending = true; 1096 else if (unlikely(result < 0)) 1097 break; 1098 } 1099 1100 result = nvme_tcp_try_recv(queue); 1101 if (result > 0) 1102 pending = true; 1103 else if (unlikely(result < 0)) 1104 return; 1105 1106 if (!pending) 1107 return; 1108 1109 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1110 1111 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1112 } 1113 1114 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1115 { 1116 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1117 1118 ahash_request_free(queue->rcv_hash); 1119 ahash_request_free(queue->snd_hash); 1120 crypto_free_ahash(tfm); 1121 } 1122 1123 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1124 { 1125 struct crypto_ahash *tfm; 1126 1127 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1128 if (IS_ERR(tfm)) 1129 return PTR_ERR(tfm); 1130 1131 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1132 if (!queue->snd_hash) 1133 goto free_tfm; 1134 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1135 1136 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1137 if (!queue->rcv_hash) 1138 goto free_snd_hash; 1139 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1140 1141 return 0; 1142 free_snd_hash: 1143 ahash_request_free(queue->snd_hash); 1144 free_tfm: 1145 crypto_free_ahash(tfm); 1146 return -ENOMEM; 1147 } 1148 1149 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1150 { 1151 struct nvme_tcp_request *async = &ctrl->async_req; 1152 1153 page_frag_free(async->pdu); 1154 } 1155 1156 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1157 { 1158 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1159 struct nvme_tcp_request *async = &ctrl->async_req; 1160 u8 hdgst = nvme_tcp_hdgst_len(queue); 1161 1162 async->pdu = page_frag_alloc(&queue->pf_cache, 1163 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1164 GFP_KERNEL | __GFP_ZERO); 1165 if (!async->pdu) 1166 return -ENOMEM; 1167 1168 async->queue = &ctrl->queues[0]; 1169 return 0; 1170 } 1171 1172 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1173 { 1174 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1175 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1176 1177 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1178 return; 1179 1180 if (queue->hdr_digest || queue->data_digest) 1181 nvme_tcp_free_crypto(queue); 1182 1183 sock_release(queue->sock); 1184 kfree(queue->pdu); 1185 } 1186 1187 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1188 { 1189 struct nvme_tcp_icreq_pdu *icreq; 1190 struct nvme_tcp_icresp_pdu *icresp; 1191 struct msghdr msg = {}; 1192 struct kvec iov; 1193 bool ctrl_hdgst, ctrl_ddgst; 1194 int ret; 1195 1196 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1197 if (!icreq) 1198 return -ENOMEM; 1199 1200 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1201 if (!icresp) { 1202 ret = -ENOMEM; 1203 goto free_icreq; 1204 } 1205 1206 icreq->hdr.type = nvme_tcp_icreq; 1207 icreq->hdr.hlen = sizeof(*icreq); 1208 icreq->hdr.pdo = 0; 1209 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1210 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1211 icreq->maxr2t = 0; /* single inflight r2t supported */ 1212 icreq->hpda = 0; /* no alignment constraint */ 1213 if (queue->hdr_digest) 1214 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1215 if (queue->data_digest) 1216 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1217 1218 iov.iov_base = icreq; 1219 iov.iov_len = sizeof(*icreq); 1220 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1221 if (ret < 0) 1222 goto free_icresp; 1223 1224 memset(&msg, 0, sizeof(msg)); 1225 iov.iov_base = icresp; 1226 iov.iov_len = sizeof(*icresp); 1227 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1228 iov.iov_len, msg.msg_flags); 1229 if (ret < 0) 1230 goto free_icresp; 1231 1232 ret = -EINVAL; 1233 if (icresp->hdr.type != nvme_tcp_icresp) { 1234 pr_err("queue %d: bad type returned %d\n", 1235 nvme_tcp_queue_id(queue), icresp->hdr.type); 1236 goto free_icresp; 1237 } 1238 1239 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1240 pr_err("queue %d: bad pdu length returned %d\n", 1241 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1242 goto free_icresp; 1243 } 1244 1245 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1246 pr_err("queue %d: bad pfv returned %d\n", 1247 nvme_tcp_queue_id(queue), icresp->pfv); 1248 goto free_icresp; 1249 } 1250 1251 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1252 if ((queue->data_digest && !ctrl_ddgst) || 1253 (!queue->data_digest && ctrl_ddgst)) { 1254 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1255 nvme_tcp_queue_id(queue), 1256 queue->data_digest ? "enabled" : "disabled", 1257 ctrl_ddgst ? "enabled" : "disabled"); 1258 goto free_icresp; 1259 } 1260 1261 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1262 if ((queue->hdr_digest && !ctrl_hdgst) || 1263 (!queue->hdr_digest && ctrl_hdgst)) { 1264 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1265 nvme_tcp_queue_id(queue), 1266 queue->hdr_digest ? "enabled" : "disabled", 1267 ctrl_hdgst ? "enabled" : "disabled"); 1268 goto free_icresp; 1269 } 1270 1271 if (icresp->cpda != 0) { 1272 pr_err("queue %d: unsupported cpda returned %d\n", 1273 nvme_tcp_queue_id(queue), icresp->cpda); 1274 goto free_icresp; 1275 } 1276 1277 ret = 0; 1278 free_icresp: 1279 kfree(icresp); 1280 free_icreq: 1281 kfree(icreq); 1282 return ret; 1283 } 1284 1285 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1286 { 1287 return nvme_tcp_queue_id(queue) == 0; 1288 } 1289 1290 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1291 { 1292 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1293 int qid = nvme_tcp_queue_id(queue); 1294 1295 return !nvme_tcp_admin_queue(queue) && 1296 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1297 } 1298 1299 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1300 { 1301 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1302 int qid = nvme_tcp_queue_id(queue); 1303 1304 return !nvme_tcp_admin_queue(queue) && 1305 !nvme_tcp_default_queue(queue) && 1306 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1307 ctrl->io_queues[HCTX_TYPE_READ]; 1308 } 1309 1310 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1311 { 1312 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1313 int qid = nvme_tcp_queue_id(queue); 1314 1315 return !nvme_tcp_admin_queue(queue) && 1316 !nvme_tcp_default_queue(queue) && 1317 !nvme_tcp_read_queue(queue) && 1318 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1319 ctrl->io_queues[HCTX_TYPE_READ] + 1320 ctrl->io_queues[HCTX_TYPE_POLL]; 1321 } 1322 1323 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1324 { 1325 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1326 int qid = nvme_tcp_queue_id(queue); 1327 int n = 0; 1328 1329 if (nvme_tcp_default_queue(queue)) 1330 n = qid - 1; 1331 else if (nvme_tcp_read_queue(queue)) 1332 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1333 else if (nvme_tcp_poll_queue(queue)) 1334 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1335 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1336 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1337 } 1338 1339 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1340 int qid, size_t queue_size) 1341 { 1342 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1343 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1344 int ret, rcv_pdu_size; 1345 1346 queue->ctrl = ctrl; 1347 INIT_LIST_HEAD(&queue->send_list); 1348 spin_lock_init(&queue->lock); 1349 mutex_init(&queue->send_mutex); 1350 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1351 queue->queue_size = queue_size; 1352 1353 if (qid > 0) 1354 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1355 else 1356 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1357 NVME_TCP_ADMIN_CCSZ; 1358 1359 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1360 IPPROTO_TCP, &queue->sock); 1361 if (ret) { 1362 dev_err(nctrl->device, 1363 "failed to create socket: %d\n", ret); 1364 return ret; 1365 } 1366 1367 /* Single syn retry */ 1368 tcp_sock_set_syncnt(queue->sock->sk, 1); 1369 1370 /* Set TCP no delay */ 1371 tcp_sock_set_nodelay(queue->sock->sk); 1372 1373 /* 1374 * Cleanup whatever is sitting in the TCP transmit queue on socket 1375 * close. This is done to prevent stale data from being sent should 1376 * the network connection be restored before TCP times out. 1377 */ 1378 sock_no_linger(queue->sock->sk); 1379 1380 if (so_priority > 0) 1381 sock_set_priority(queue->sock->sk, so_priority); 1382 1383 /* Set socket type of service */ 1384 if (nctrl->opts->tos >= 0) 1385 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1386 1387 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1388 nvme_tcp_set_queue_io_cpu(queue); 1389 queue->request = NULL; 1390 queue->data_remaining = 0; 1391 queue->ddgst_remaining = 0; 1392 queue->pdu_remaining = 0; 1393 queue->pdu_offset = 0; 1394 sk_set_memalloc(queue->sock->sk); 1395 1396 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1397 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1398 sizeof(ctrl->src_addr)); 1399 if (ret) { 1400 dev_err(nctrl->device, 1401 "failed to bind queue %d socket %d\n", 1402 qid, ret); 1403 goto err_sock; 1404 } 1405 } 1406 1407 queue->hdr_digest = nctrl->opts->hdr_digest; 1408 queue->data_digest = nctrl->opts->data_digest; 1409 if (queue->hdr_digest || queue->data_digest) { 1410 ret = nvme_tcp_alloc_crypto(queue); 1411 if (ret) { 1412 dev_err(nctrl->device, 1413 "failed to allocate queue %d crypto\n", qid); 1414 goto err_sock; 1415 } 1416 } 1417 1418 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1419 nvme_tcp_hdgst_len(queue); 1420 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1421 if (!queue->pdu) { 1422 ret = -ENOMEM; 1423 goto err_crypto; 1424 } 1425 1426 dev_dbg(nctrl->device, "connecting queue %d\n", 1427 nvme_tcp_queue_id(queue)); 1428 1429 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1430 sizeof(ctrl->addr), 0); 1431 if (ret) { 1432 dev_err(nctrl->device, 1433 "failed to connect socket: %d\n", ret); 1434 goto err_rcv_pdu; 1435 } 1436 1437 ret = nvme_tcp_init_connection(queue); 1438 if (ret) 1439 goto err_init_connect; 1440 1441 queue->rd_enabled = true; 1442 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1443 nvme_tcp_init_recv_ctx(queue); 1444 1445 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1446 queue->sock->sk->sk_user_data = queue; 1447 queue->state_change = queue->sock->sk->sk_state_change; 1448 queue->data_ready = queue->sock->sk->sk_data_ready; 1449 queue->write_space = queue->sock->sk->sk_write_space; 1450 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1451 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1452 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1453 #ifdef CONFIG_NET_RX_BUSY_POLL 1454 queue->sock->sk->sk_ll_usec = 1; 1455 #endif 1456 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1457 1458 return 0; 1459 1460 err_init_connect: 1461 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1462 err_rcv_pdu: 1463 kfree(queue->pdu); 1464 err_crypto: 1465 if (queue->hdr_digest || queue->data_digest) 1466 nvme_tcp_free_crypto(queue); 1467 err_sock: 1468 sock_release(queue->sock); 1469 queue->sock = NULL; 1470 return ret; 1471 } 1472 1473 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1474 { 1475 struct socket *sock = queue->sock; 1476 1477 write_lock_bh(&sock->sk->sk_callback_lock); 1478 sock->sk->sk_user_data = NULL; 1479 sock->sk->sk_data_ready = queue->data_ready; 1480 sock->sk->sk_state_change = queue->state_change; 1481 sock->sk->sk_write_space = queue->write_space; 1482 write_unlock_bh(&sock->sk->sk_callback_lock); 1483 } 1484 1485 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1486 { 1487 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1488 nvme_tcp_restore_sock_calls(queue); 1489 cancel_work_sync(&queue->io_work); 1490 } 1491 1492 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1493 { 1494 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1495 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1496 1497 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1498 return; 1499 1500 __nvme_tcp_stop_queue(queue); 1501 } 1502 1503 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1504 { 1505 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1506 int ret; 1507 1508 if (idx) 1509 ret = nvmf_connect_io_queue(nctrl, idx, false); 1510 else 1511 ret = nvmf_connect_admin_queue(nctrl); 1512 1513 if (!ret) { 1514 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1515 } else { 1516 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1517 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1518 dev_err(nctrl->device, 1519 "failed to connect queue: %d ret=%d\n", idx, ret); 1520 } 1521 return ret; 1522 } 1523 1524 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1525 bool admin) 1526 { 1527 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1528 struct blk_mq_tag_set *set; 1529 int ret; 1530 1531 if (admin) { 1532 set = &ctrl->admin_tag_set; 1533 memset(set, 0, sizeof(*set)); 1534 set->ops = &nvme_tcp_admin_mq_ops; 1535 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1536 set->reserved_tags = 2; /* connect + keep-alive */ 1537 set->numa_node = NUMA_NO_NODE; 1538 set->flags = BLK_MQ_F_BLOCKING; 1539 set->cmd_size = sizeof(struct nvme_tcp_request); 1540 set->driver_data = ctrl; 1541 set->nr_hw_queues = 1; 1542 set->timeout = ADMIN_TIMEOUT; 1543 } else { 1544 set = &ctrl->tag_set; 1545 memset(set, 0, sizeof(*set)); 1546 set->ops = &nvme_tcp_mq_ops; 1547 set->queue_depth = nctrl->sqsize + 1; 1548 set->reserved_tags = 1; /* fabric connect */ 1549 set->numa_node = NUMA_NO_NODE; 1550 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1551 set->cmd_size = sizeof(struct nvme_tcp_request); 1552 set->driver_data = ctrl; 1553 set->nr_hw_queues = nctrl->queue_count - 1; 1554 set->timeout = NVME_IO_TIMEOUT; 1555 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1556 } 1557 1558 ret = blk_mq_alloc_tag_set(set); 1559 if (ret) 1560 return ERR_PTR(ret); 1561 1562 return set; 1563 } 1564 1565 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1566 { 1567 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1568 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1569 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1570 } 1571 1572 nvme_tcp_free_queue(ctrl, 0); 1573 } 1574 1575 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1576 { 1577 int i; 1578 1579 for (i = 1; i < ctrl->queue_count; i++) 1580 nvme_tcp_free_queue(ctrl, i); 1581 } 1582 1583 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1584 { 1585 int i; 1586 1587 for (i = 1; i < ctrl->queue_count; i++) 1588 nvme_tcp_stop_queue(ctrl, i); 1589 } 1590 1591 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1592 { 1593 int i, ret = 0; 1594 1595 for (i = 1; i < ctrl->queue_count; i++) { 1596 ret = nvme_tcp_start_queue(ctrl, i); 1597 if (ret) 1598 goto out_stop_queues; 1599 } 1600 1601 return 0; 1602 1603 out_stop_queues: 1604 for (i--; i >= 1; i--) 1605 nvme_tcp_stop_queue(ctrl, i); 1606 return ret; 1607 } 1608 1609 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1610 { 1611 int ret; 1612 1613 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1614 if (ret) 1615 return ret; 1616 1617 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1618 if (ret) 1619 goto out_free_queue; 1620 1621 return 0; 1622 1623 out_free_queue: 1624 nvme_tcp_free_queue(ctrl, 0); 1625 return ret; 1626 } 1627 1628 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1629 { 1630 int i, ret; 1631 1632 for (i = 1; i < ctrl->queue_count; i++) { 1633 ret = nvme_tcp_alloc_queue(ctrl, i, 1634 ctrl->sqsize + 1); 1635 if (ret) 1636 goto out_free_queues; 1637 } 1638 1639 return 0; 1640 1641 out_free_queues: 1642 for (i--; i >= 1; i--) 1643 nvme_tcp_free_queue(ctrl, i); 1644 1645 return ret; 1646 } 1647 1648 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1649 { 1650 unsigned int nr_io_queues; 1651 1652 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1653 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1654 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1655 1656 return nr_io_queues; 1657 } 1658 1659 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1660 unsigned int nr_io_queues) 1661 { 1662 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1663 struct nvmf_ctrl_options *opts = nctrl->opts; 1664 1665 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1666 /* 1667 * separate read/write queues 1668 * hand out dedicated default queues only after we have 1669 * sufficient read queues. 1670 */ 1671 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1672 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1673 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1674 min(opts->nr_write_queues, nr_io_queues); 1675 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1676 } else { 1677 /* 1678 * shared read/write queues 1679 * either no write queues were requested, or we don't have 1680 * sufficient queue count to have dedicated default queues. 1681 */ 1682 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1683 min(opts->nr_io_queues, nr_io_queues); 1684 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1685 } 1686 1687 if (opts->nr_poll_queues && nr_io_queues) { 1688 /* map dedicated poll queues only if we have queues left */ 1689 ctrl->io_queues[HCTX_TYPE_POLL] = 1690 min(opts->nr_poll_queues, nr_io_queues); 1691 } 1692 } 1693 1694 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1695 { 1696 unsigned int nr_io_queues; 1697 int ret; 1698 1699 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1700 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1701 if (ret) 1702 return ret; 1703 1704 ctrl->queue_count = nr_io_queues + 1; 1705 if (ctrl->queue_count < 2) 1706 return 0; 1707 1708 dev_info(ctrl->device, 1709 "creating %d I/O queues.\n", nr_io_queues); 1710 1711 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1712 1713 return __nvme_tcp_alloc_io_queues(ctrl); 1714 } 1715 1716 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1717 { 1718 nvme_tcp_stop_io_queues(ctrl); 1719 if (remove) { 1720 blk_cleanup_queue(ctrl->connect_q); 1721 blk_mq_free_tag_set(ctrl->tagset); 1722 } 1723 nvme_tcp_free_io_queues(ctrl); 1724 } 1725 1726 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1727 { 1728 int ret; 1729 1730 ret = nvme_tcp_alloc_io_queues(ctrl); 1731 if (ret) 1732 return ret; 1733 1734 if (new) { 1735 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1736 if (IS_ERR(ctrl->tagset)) { 1737 ret = PTR_ERR(ctrl->tagset); 1738 goto out_free_io_queues; 1739 } 1740 1741 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1742 if (IS_ERR(ctrl->connect_q)) { 1743 ret = PTR_ERR(ctrl->connect_q); 1744 goto out_free_tag_set; 1745 } 1746 } else { 1747 blk_mq_update_nr_hw_queues(ctrl->tagset, 1748 ctrl->queue_count - 1); 1749 } 1750 1751 ret = nvme_tcp_start_io_queues(ctrl); 1752 if (ret) 1753 goto out_cleanup_connect_q; 1754 1755 return 0; 1756 1757 out_cleanup_connect_q: 1758 if (new) 1759 blk_cleanup_queue(ctrl->connect_q); 1760 out_free_tag_set: 1761 if (new) 1762 blk_mq_free_tag_set(ctrl->tagset); 1763 out_free_io_queues: 1764 nvme_tcp_free_io_queues(ctrl); 1765 return ret; 1766 } 1767 1768 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1769 { 1770 nvme_tcp_stop_queue(ctrl, 0); 1771 if (remove) { 1772 blk_cleanup_queue(ctrl->admin_q); 1773 blk_cleanup_queue(ctrl->fabrics_q); 1774 blk_mq_free_tag_set(ctrl->admin_tagset); 1775 } 1776 nvme_tcp_free_admin_queue(ctrl); 1777 } 1778 1779 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1780 { 1781 int error; 1782 1783 error = nvme_tcp_alloc_admin_queue(ctrl); 1784 if (error) 1785 return error; 1786 1787 if (new) { 1788 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1789 if (IS_ERR(ctrl->admin_tagset)) { 1790 error = PTR_ERR(ctrl->admin_tagset); 1791 goto out_free_queue; 1792 } 1793 1794 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1795 if (IS_ERR(ctrl->fabrics_q)) { 1796 error = PTR_ERR(ctrl->fabrics_q); 1797 goto out_free_tagset; 1798 } 1799 1800 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1801 if (IS_ERR(ctrl->admin_q)) { 1802 error = PTR_ERR(ctrl->admin_q); 1803 goto out_cleanup_fabrics_q; 1804 } 1805 } 1806 1807 error = nvme_tcp_start_queue(ctrl, 0); 1808 if (error) 1809 goto out_cleanup_queue; 1810 1811 error = nvme_enable_ctrl(ctrl); 1812 if (error) 1813 goto out_stop_queue; 1814 1815 blk_mq_unquiesce_queue(ctrl->admin_q); 1816 1817 error = nvme_init_identify(ctrl); 1818 if (error) 1819 goto out_stop_queue; 1820 1821 return 0; 1822 1823 out_stop_queue: 1824 nvme_tcp_stop_queue(ctrl, 0); 1825 out_cleanup_queue: 1826 if (new) 1827 blk_cleanup_queue(ctrl->admin_q); 1828 out_cleanup_fabrics_q: 1829 if (new) 1830 blk_cleanup_queue(ctrl->fabrics_q); 1831 out_free_tagset: 1832 if (new) 1833 blk_mq_free_tag_set(ctrl->admin_tagset); 1834 out_free_queue: 1835 nvme_tcp_free_admin_queue(ctrl); 1836 return error; 1837 } 1838 1839 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1840 bool remove) 1841 { 1842 blk_mq_quiesce_queue(ctrl->admin_q); 1843 nvme_tcp_stop_queue(ctrl, 0); 1844 if (ctrl->admin_tagset) { 1845 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1846 nvme_cancel_request, ctrl); 1847 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 1848 } 1849 if (remove) 1850 blk_mq_unquiesce_queue(ctrl->admin_q); 1851 nvme_tcp_destroy_admin_queue(ctrl, remove); 1852 } 1853 1854 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1855 bool remove) 1856 { 1857 if (ctrl->queue_count <= 1) 1858 return; 1859 nvme_stop_queues(ctrl); 1860 nvme_tcp_stop_io_queues(ctrl); 1861 if (ctrl->tagset) { 1862 blk_mq_tagset_busy_iter(ctrl->tagset, 1863 nvme_cancel_request, ctrl); 1864 blk_mq_tagset_wait_completed_request(ctrl->tagset); 1865 } 1866 if (remove) 1867 nvme_start_queues(ctrl); 1868 nvme_tcp_destroy_io_queues(ctrl, remove); 1869 } 1870 1871 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1872 { 1873 /* If we are resetting/deleting then do nothing */ 1874 if (ctrl->state != NVME_CTRL_CONNECTING) { 1875 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1876 ctrl->state == NVME_CTRL_LIVE); 1877 return; 1878 } 1879 1880 if (nvmf_should_reconnect(ctrl)) { 1881 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1882 ctrl->opts->reconnect_delay); 1883 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1884 ctrl->opts->reconnect_delay * HZ); 1885 } else { 1886 dev_info(ctrl->device, "Removing controller...\n"); 1887 nvme_delete_ctrl(ctrl); 1888 } 1889 } 1890 1891 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1892 { 1893 struct nvmf_ctrl_options *opts = ctrl->opts; 1894 int ret; 1895 1896 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1897 if (ret) 1898 return ret; 1899 1900 if (ctrl->icdoff) { 1901 dev_err(ctrl->device, "icdoff is not supported!\n"); 1902 goto destroy_admin; 1903 } 1904 1905 if (opts->queue_size > ctrl->sqsize + 1) 1906 dev_warn(ctrl->device, 1907 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1908 opts->queue_size, ctrl->sqsize + 1); 1909 1910 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1911 dev_warn(ctrl->device, 1912 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1913 ctrl->sqsize + 1, ctrl->maxcmd); 1914 ctrl->sqsize = ctrl->maxcmd - 1; 1915 } 1916 1917 if (ctrl->queue_count > 1) { 1918 ret = nvme_tcp_configure_io_queues(ctrl, new); 1919 if (ret) 1920 goto destroy_admin; 1921 } 1922 1923 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1924 /* 1925 * state change failure is ok if we're in DELETING state, 1926 * unless we're during creation of a new controller to 1927 * avoid races with teardown flow. 1928 */ 1929 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1930 WARN_ON_ONCE(new); 1931 ret = -EINVAL; 1932 goto destroy_io; 1933 } 1934 1935 nvme_start_ctrl(ctrl); 1936 return 0; 1937 1938 destroy_io: 1939 if (ctrl->queue_count > 1) 1940 nvme_tcp_destroy_io_queues(ctrl, new); 1941 destroy_admin: 1942 nvme_tcp_stop_queue(ctrl, 0); 1943 nvme_tcp_destroy_admin_queue(ctrl, new); 1944 return ret; 1945 } 1946 1947 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1948 { 1949 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1950 struct nvme_tcp_ctrl, connect_work); 1951 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1952 1953 ++ctrl->nr_reconnects; 1954 1955 if (nvme_tcp_setup_ctrl(ctrl, false)) 1956 goto requeue; 1957 1958 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1959 ctrl->nr_reconnects); 1960 1961 ctrl->nr_reconnects = 0; 1962 1963 return; 1964 1965 requeue: 1966 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1967 ctrl->nr_reconnects); 1968 nvme_tcp_reconnect_or_remove(ctrl); 1969 } 1970 1971 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1972 { 1973 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1974 struct nvme_tcp_ctrl, err_work); 1975 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1976 1977 nvme_stop_keep_alive(ctrl); 1978 nvme_tcp_teardown_io_queues(ctrl, false); 1979 /* unquiesce to fail fast pending requests */ 1980 nvme_start_queues(ctrl); 1981 nvme_tcp_teardown_admin_queue(ctrl, false); 1982 blk_mq_unquiesce_queue(ctrl->admin_q); 1983 1984 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1985 /* state change failure is ok if we're in DELETING state */ 1986 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1987 return; 1988 } 1989 1990 nvme_tcp_reconnect_or_remove(ctrl); 1991 } 1992 1993 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 1994 { 1995 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 1996 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 1997 1998 nvme_tcp_teardown_io_queues(ctrl, shutdown); 1999 blk_mq_quiesce_queue(ctrl->admin_q); 2000 if (shutdown) 2001 nvme_shutdown_ctrl(ctrl); 2002 else 2003 nvme_disable_ctrl(ctrl); 2004 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2005 } 2006 2007 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2008 { 2009 nvme_tcp_teardown_ctrl(ctrl, true); 2010 } 2011 2012 static void nvme_reset_ctrl_work(struct work_struct *work) 2013 { 2014 struct nvme_ctrl *ctrl = 2015 container_of(work, struct nvme_ctrl, reset_work); 2016 2017 nvme_stop_ctrl(ctrl); 2018 nvme_tcp_teardown_ctrl(ctrl, false); 2019 2020 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2021 /* state change failure is ok if we're in DELETING state */ 2022 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 2023 return; 2024 } 2025 2026 if (nvme_tcp_setup_ctrl(ctrl, false)) 2027 goto out_fail; 2028 2029 return; 2030 2031 out_fail: 2032 ++ctrl->nr_reconnects; 2033 nvme_tcp_reconnect_or_remove(ctrl); 2034 } 2035 2036 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2037 { 2038 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2039 2040 if (list_empty(&ctrl->list)) 2041 goto free_ctrl; 2042 2043 mutex_lock(&nvme_tcp_ctrl_mutex); 2044 list_del(&ctrl->list); 2045 mutex_unlock(&nvme_tcp_ctrl_mutex); 2046 2047 nvmf_free_options(nctrl->opts); 2048 free_ctrl: 2049 kfree(ctrl->queues); 2050 kfree(ctrl); 2051 } 2052 2053 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2054 { 2055 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2056 2057 sg->addr = 0; 2058 sg->length = 0; 2059 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2060 NVME_SGL_FMT_TRANSPORT_A; 2061 } 2062 2063 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2064 struct nvme_command *c, u32 data_len) 2065 { 2066 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2067 2068 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2069 sg->length = cpu_to_le32(data_len); 2070 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2071 } 2072 2073 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2074 u32 data_len) 2075 { 2076 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2077 2078 sg->addr = 0; 2079 sg->length = cpu_to_le32(data_len); 2080 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2081 NVME_SGL_FMT_TRANSPORT_A; 2082 } 2083 2084 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2085 { 2086 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2087 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2088 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2089 struct nvme_command *cmd = &pdu->cmd; 2090 u8 hdgst = nvme_tcp_hdgst_len(queue); 2091 2092 memset(pdu, 0, sizeof(*pdu)); 2093 pdu->hdr.type = nvme_tcp_cmd; 2094 if (queue->hdr_digest) 2095 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2096 pdu->hdr.hlen = sizeof(*pdu); 2097 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2098 2099 cmd->common.opcode = nvme_admin_async_event; 2100 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2101 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2102 nvme_tcp_set_sg_null(cmd); 2103 2104 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2105 ctrl->async_req.offset = 0; 2106 ctrl->async_req.curr_bio = NULL; 2107 ctrl->async_req.data_len = 0; 2108 2109 nvme_tcp_queue_request(&ctrl->async_req, true); 2110 } 2111 2112 static enum blk_eh_timer_return 2113 nvme_tcp_timeout(struct request *rq, bool reserved) 2114 { 2115 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2116 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2117 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2118 2119 /* 2120 * Restart the timer if a controller reset is already scheduled. Any 2121 * timed out commands would be handled before entering the connecting 2122 * state. 2123 */ 2124 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 2125 return BLK_EH_RESET_TIMER; 2126 2127 dev_warn(ctrl->ctrl.device, 2128 "queue %d: timeout request %#x type %d\n", 2129 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2130 2131 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2132 /* 2133 * Teardown immediately if controller times out while starting 2134 * or we are already started error recovery. all outstanding 2135 * requests are completed on shutdown, so we return BLK_EH_DONE. 2136 */ 2137 flush_work(&ctrl->err_work); 2138 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2139 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2140 return BLK_EH_DONE; 2141 } 2142 2143 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2144 nvme_tcp_error_recovery(&ctrl->ctrl); 2145 2146 return BLK_EH_RESET_TIMER; 2147 } 2148 2149 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2150 struct request *rq) 2151 { 2152 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2153 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2154 struct nvme_command *c = &pdu->cmd; 2155 2156 c->common.flags |= NVME_CMD_SGL_METABUF; 2157 2158 if (!blk_rq_nr_phys_segments(rq)) 2159 nvme_tcp_set_sg_null(c); 2160 else if (rq_data_dir(rq) == WRITE && 2161 req->data_len <= nvme_tcp_inline_data_size(queue)) 2162 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2163 else 2164 nvme_tcp_set_sg_host_data(c, req->data_len); 2165 2166 return 0; 2167 } 2168 2169 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2170 struct request *rq) 2171 { 2172 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2173 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2174 struct nvme_tcp_queue *queue = req->queue; 2175 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2176 blk_status_t ret; 2177 2178 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2179 if (ret) 2180 return ret; 2181 2182 req->state = NVME_TCP_SEND_CMD_PDU; 2183 req->offset = 0; 2184 req->data_sent = 0; 2185 req->pdu_len = 0; 2186 req->pdu_sent = 0; 2187 req->data_len = blk_rq_nr_phys_segments(rq) ? 2188 blk_rq_payload_bytes(rq) : 0; 2189 req->curr_bio = rq->bio; 2190 2191 if (rq_data_dir(rq) == WRITE && 2192 req->data_len <= nvme_tcp_inline_data_size(queue)) 2193 req->pdu_len = req->data_len; 2194 else if (req->curr_bio) 2195 nvme_tcp_init_iter(req, READ); 2196 2197 pdu->hdr.type = nvme_tcp_cmd; 2198 pdu->hdr.flags = 0; 2199 if (queue->hdr_digest) 2200 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2201 if (queue->data_digest && req->pdu_len) { 2202 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2203 ddgst = nvme_tcp_ddgst_len(queue); 2204 } 2205 pdu->hdr.hlen = sizeof(*pdu); 2206 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2207 pdu->hdr.plen = 2208 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2209 2210 ret = nvme_tcp_map_data(queue, rq); 2211 if (unlikely(ret)) { 2212 nvme_cleanup_cmd(rq); 2213 dev_err(queue->ctrl->ctrl.device, 2214 "Failed to map data (%d)\n", ret); 2215 return ret; 2216 } 2217 2218 return 0; 2219 } 2220 2221 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2222 const struct blk_mq_queue_data *bd) 2223 { 2224 struct nvme_ns *ns = hctx->queue->queuedata; 2225 struct nvme_tcp_queue *queue = hctx->driver_data; 2226 struct request *rq = bd->rq; 2227 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2228 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2229 blk_status_t ret; 2230 2231 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2232 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2233 2234 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2235 if (unlikely(ret)) 2236 return ret; 2237 2238 blk_mq_start_request(rq); 2239 2240 nvme_tcp_queue_request(req, true); 2241 2242 return BLK_STS_OK; 2243 } 2244 2245 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2246 { 2247 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2248 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2249 2250 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2251 /* separate read/write queues */ 2252 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2253 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2254 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2255 set->map[HCTX_TYPE_READ].nr_queues = 2256 ctrl->io_queues[HCTX_TYPE_READ]; 2257 set->map[HCTX_TYPE_READ].queue_offset = 2258 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2259 } else { 2260 /* shared read/write queues */ 2261 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2262 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2263 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2264 set->map[HCTX_TYPE_READ].nr_queues = 2265 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2266 set->map[HCTX_TYPE_READ].queue_offset = 0; 2267 } 2268 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2269 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2270 2271 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2272 /* map dedicated poll queues only if we have queues left */ 2273 set->map[HCTX_TYPE_POLL].nr_queues = 2274 ctrl->io_queues[HCTX_TYPE_POLL]; 2275 set->map[HCTX_TYPE_POLL].queue_offset = 2276 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2277 ctrl->io_queues[HCTX_TYPE_READ]; 2278 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2279 } 2280 2281 dev_info(ctrl->ctrl.device, 2282 "mapped %d/%d/%d default/read/poll queues.\n", 2283 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2284 ctrl->io_queues[HCTX_TYPE_READ], 2285 ctrl->io_queues[HCTX_TYPE_POLL]); 2286 2287 return 0; 2288 } 2289 2290 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2291 { 2292 struct nvme_tcp_queue *queue = hctx->driver_data; 2293 struct sock *sk = queue->sock->sk; 2294 2295 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2296 return 0; 2297 2298 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2299 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2300 sk_busy_loop(sk, true); 2301 nvme_tcp_try_recv(queue); 2302 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2303 return queue->nr_cqe; 2304 } 2305 2306 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2307 .queue_rq = nvme_tcp_queue_rq, 2308 .complete = nvme_complete_rq, 2309 .init_request = nvme_tcp_init_request, 2310 .exit_request = nvme_tcp_exit_request, 2311 .init_hctx = nvme_tcp_init_hctx, 2312 .timeout = nvme_tcp_timeout, 2313 .map_queues = nvme_tcp_map_queues, 2314 .poll = nvme_tcp_poll, 2315 }; 2316 2317 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2318 .queue_rq = nvme_tcp_queue_rq, 2319 .complete = nvme_complete_rq, 2320 .init_request = nvme_tcp_init_request, 2321 .exit_request = nvme_tcp_exit_request, 2322 .init_hctx = nvme_tcp_init_admin_hctx, 2323 .timeout = nvme_tcp_timeout, 2324 }; 2325 2326 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2327 .name = "tcp", 2328 .module = THIS_MODULE, 2329 .flags = NVME_F_FABRICS, 2330 .reg_read32 = nvmf_reg_read32, 2331 .reg_read64 = nvmf_reg_read64, 2332 .reg_write32 = nvmf_reg_write32, 2333 .free_ctrl = nvme_tcp_free_ctrl, 2334 .submit_async_event = nvme_tcp_submit_async_event, 2335 .delete_ctrl = nvme_tcp_delete_ctrl, 2336 .get_address = nvmf_get_address, 2337 }; 2338 2339 static bool 2340 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2341 { 2342 struct nvme_tcp_ctrl *ctrl; 2343 bool found = false; 2344 2345 mutex_lock(&nvme_tcp_ctrl_mutex); 2346 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2347 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2348 if (found) 2349 break; 2350 } 2351 mutex_unlock(&nvme_tcp_ctrl_mutex); 2352 2353 return found; 2354 } 2355 2356 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2357 struct nvmf_ctrl_options *opts) 2358 { 2359 struct nvme_tcp_ctrl *ctrl; 2360 int ret; 2361 2362 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2363 if (!ctrl) 2364 return ERR_PTR(-ENOMEM); 2365 2366 INIT_LIST_HEAD(&ctrl->list); 2367 ctrl->ctrl.opts = opts; 2368 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2369 opts->nr_poll_queues + 1; 2370 ctrl->ctrl.sqsize = opts->queue_size - 1; 2371 ctrl->ctrl.kato = opts->kato; 2372 2373 INIT_DELAYED_WORK(&ctrl->connect_work, 2374 nvme_tcp_reconnect_ctrl_work); 2375 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2376 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2377 2378 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2379 opts->trsvcid = 2380 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2381 if (!opts->trsvcid) { 2382 ret = -ENOMEM; 2383 goto out_free_ctrl; 2384 } 2385 opts->mask |= NVMF_OPT_TRSVCID; 2386 } 2387 2388 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2389 opts->traddr, opts->trsvcid, &ctrl->addr); 2390 if (ret) { 2391 pr_err("malformed address passed: %s:%s\n", 2392 opts->traddr, opts->trsvcid); 2393 goto out_free_ctrl; 2394 } 2395 2396 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2397 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2398 opts->host_traddr, NULL, &ctrl->src_addr); 2399 if (ret) { 2400 pr_err("malformed src address passed: %s\n", 2401 opts->host_traddr); 2402 goto out_free_ctrl; 2403 } 2404 } 2405 2406 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2407 ret = -EALREADY; 2408 goto out_free_ctrl; 2409 } 2410 2411 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2412 GFP_KERNEL); 2413 if (!ctrl->queues) { 2414 ret = -ENOMEM; 2415 goto out_free_ctrl; 2416 } 2417 2418 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2419 if (ret) 2420 goto out_kfree_queues; 2421 2422 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2423 WARN_ON_ONCE(1); 2424 ret = -EINTR; 2425 goto out_uninit_ctrl; 2426 } 2427 2428 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2429 if (ret) 2430 goto out_uninit_ctrl; 2431 2432 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2433 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2434 2435 mutex_lock(&nvme_tcp_ctrl_mutex); 2436 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2437 mutex_unlock(&nvme_tcp_ctrl_mutex); 2438 2439 return &ctrl->ctrl; 2440 2441 out_uninit_ctrl: 2442 nvme_uninit_ctrl(&ctrl->ctrl); 2443 nvme_put_ctrl(&ctrl->ctrl); 2444 if (ret > 0) 2445 ret = -EIO; 2446 return ERR_PTR(ret); 2447 out_kfree_queues: 2448 kfree(ctrl->queues); 2449 out_free_ctrl: 2450 kfree(ctrl); 2451 return ERR_PTR(ret); 2452 } 2453 2454 static struct nvmf_transport_ops nvme_tcp_transport = { 2455 .name = "tcp", 2456 .module = THIS_MODULE, 2457 .required_opts = NVMF_OPT_TRADDR, 2458 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2459 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2460 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2461 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2462 NVMF_OPT_TOS, 2463 .create_ctrl = nvme_tcp_create_ctrl, 2464 }; 2465 2466 static int __init nvme_tcp_init_module(void) 2467 { 2468 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2469 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2470 if (!nvme_tcp_wq) 2471 return -ENOMEM; 2472 2473 nvmf_register_transport(&nvme_tcp_transport); 2474 return 0; 2475 } 2476 2477 static void __exit nvme_tcp_cleanup_module(void) 2478 { 2479 struct nvme_tcp_ctrl *ctrl; 2480 2481 nvmf_unregister_transport(&nvme_tcp_transport); 2482 2483 mutex_lock(&nvme_tcp_ctrl_mutex); 2484 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2485 nvme_delete_ctrl(&ctrl->ctrl); 2486 mutex_unlock(&nvme_tcp_ctrl_mutex); 2487 flush_workqueue(nvme_delete_wq); 2488 2489 destroy_workqueue(nvme_tcp_wq); 2490 } 2491 2492 module_init(nvme_tcp_init_module); 2493 module_exit(nvme_tcp_cleanup_module); 2494 2495 MODULE_LICENSE("GPL v2"); 2496