1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 17 #include "nvme.h" 18 #include "fabrics.h" 19 20 struct nvme_tcp_queue; 21 22 enum nvme_tcp_send_state { 23 NVME_TCP_SEND_CMD_PDU = 0, 24 NVME_TCP_SEND_H2C_PDU, 25 NVME_TCP_SEND_DATA, 26 NVME_TCP_SEND_DDGST, 27 }; 28 29 struct nvme_tcp_request { 30 struct nvme_request req; 31 void *pdu; 32 struct nvme_tcp_queue *queue; 33 u32 data_len; 34 u32 pdu_len; 35 u32 pdu_sent; 36 u16 ttag; 37 struct list_head entry; 38 __le32 ddgst; 39 40 struct bio *curr_bio; 41 struct iov_iter iter; 42 43 /* send state */ 44 size_t offset; 45 size_t data_sent; 46 enum nvme_tcp_send_state state; 47 }; 48 49 enum nvme_tcp_queue_flags { 50 NVME_TCP_Q_ALLOCATED = 0, 51 NVME_TCP_Q_LIVE = 1, 52 }; 53 54 enum nvme_tcp_recv_state { 55 NVME_TCP_RECV_PDU = 0, 56 NVME_TCP_RECV_DATA, 57 NVME_TCP_RECV_DDGST, 58 }; 59 60 struct nvme_tcp_ctrl; 61 struct nvme_tcp_queue { 62 struct socket *sock; 63 struct work_struct io_work; 64 int io_cpu; 65 66 spinlock_t lock; 67 struct list_head send_list; 68 69 /* recv state */ 70 void *pdu; 71 int pdu_remaining; 72 int pdu_offset; 73 size_t data_remaining; 74 size_t ddgst_remaining; 75 76 /* send state */ 77 struct nvme_tcp_request *request; 78 79 int queue_size; 80 size_t cmnd_capsule_len; 81 struct nvme_tcp_ctrl *ctrl; 82 unsigned long flags; 83 bool rd_enabled; 84 85 bool hdr_digest; 86 bool data_digest; 87 struct ahash_request *rcv_hash; 88 struct ahash_request *snd_hash; 89 __le32 exp_ddgst; 90 __le32 recv_ddgst; 91 92 struct page_frag_cache pf_cache; 93 94 void (*state_change)(struct sock *); 95 void (*data_ready)(struct sock *); 96 void (*write_space)(struct sock *); 97 }; 98 99 struct nvme_tcp_ctrl { 100 /* read only in the hot path */ 101 struct nvme_tcp_queue *queues; 102 struct blk_mq_tag_set tag_set; 103 104 /* other member variables */ 105 struct list_head list; 106 struct blk_mq_tag_set admin_tag_set; 107 struct sockaddr_storage addr; 108 struct sockaddr_storage src_addr; 109 struct nvme_ctrl ctrl; 110 111 struct work_struct err_work; 112 struct delayed_work connect_work; 113 struct nvme_tcp_request async_req; 114 u32 io_queues[HCTX_MAX_TYPES]; 115 }; 116 117 static LIST_HEAD(nvme_tcp_ctrl_list); 118 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 119 static struct workqueue_struct *nvme_tcp_wq; 120 static struct blk_mq_ops nvme_tcp_mq_ops; 121 static struct blk_mq_ops nvme_tcp_admin_mq_ops; 122 123 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 124 { 125 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 126 } 127 128 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 129 { 130 return queue - queue->ctrl->queues; 131 } 132 133 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 134 { 135 u32 queue_idx = nvme_tcp_queue_id(queue); 136 137 if (queue_idx == 0) 138 return queue->ctrl->admin_tag_set.tags[queue_idx]; 139 return queue->ctrl->tag_set.tags[queue_idx - 1]; 140 } 141 142 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 143 { 144 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 145 } 146 147 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 148 { 149 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 150 } 151 152 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 153 { 154 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 155 } 156 157 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 158 { 159 return req == &req->queue->ctrl->async_req; 160 } 161 162 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 163 { 164 struct request *rq; 165 unsigned int bytes; 166 167 if (unlikely(nvme_tcp_async_req(req))) 168 return false; /* async events don't have a request */ 169 170 rq = blk_mq_rq_from_pdu(req); 171 bytes = blk_rq_payload_bytes(rq); 172 173 return rq_data_dir(rq) == WRITE && bytes && 174 bytes <= nvme_tcp_inline_data_size(req->queue); 175 } 176 177 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 178 { 179 return req->iter.bvec->bv_page; 180 } 181 182 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 183 { 184 return req->iter.bvec->bv_offset + req->iter.iov_offset; 185 } 186 187 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 188 { 189 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 190 req->pdu_len - req->pdu_sent); 191 } 192 193 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 194 { 195 return req->iter.iov_offset; 196 } 197 198 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 199 { 200 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 201 req->pdu_len - req->pdu_sent : 0; 202 } 203 204 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 205 int len) 206 { 207 return nvme_tcp_pdu_data_left(req) <= len; 208 } 209 210 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 211 unsigned int dir) 212 { 213 struct request *rq = blk_mq_rq_from_pdu(req); 214 struct bio_vec *vec; 215 unsigned int size; 216 int nsegs; 217 size_t offset; 218 219 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 220 vec = &rq->special_vec; 221 nsegs = 1; 222 size = blk_rq_payload_bytes(rq); 223 offset = 0; 224 } else { 225 struct bio *bio = req->curr_bio; 226 227 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 228 nsegs = bio_segments(bio); 229 size = bio->bi_iter.bi_size; 230 offset = bio->bi_iter.bi_bvec_done; 231 } 232 233 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 234 req->iter.iov_offset = offset; 235 } 236 237 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 238 int len) 239 { 240 req->data_sent += len; 241 req->pdu_sent += len; 242 iov_iter_advance(&req->iter, len); 243 if (!iov_iter_count(&req->iter) && 244 req->data_sent < req->data_len) { 245 req->curr_bio = req->curr_bio->bi_next; 246 nvme_tcp_init_iter(req, WRITE); 247 } 248 } 249 250 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req) 251 { 252 struct nvme_tcp_queue *queue = req->queue; 253 254 spin_lock(&queue->lock); 255 list_add_tail(&req->entry, &queue->send_list); 256 spin_unlock(&queue->lock); 257 258 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 259 } 260 261 static inline struct nvme_tcp_request * 262 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 263 { 264 struct nvme_tcp_request *req; 265 266 spin_lock(&queue->lock); 267 req = list_first_entry_or_null(&queue->send_list, 268 struct nvme_tcp_request, entry); 269 if (req) 270 list_del(&req->entry); 271 spin_unlock(&queue->lock); 272 273 return req; 274 } 275 276 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 277 __le32 *dgst) 278 { 279 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 280 crypto_ahash_final(hash); 281 } 282 283 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 284 struct page *page, off_t off, size_t len) 285 { 286 struct scatterlist sg; 287 288 sg_init_marker(&sg, 1); 289 sg_set_page(&sg, page, len, off); 290 ahash_request_set_crypt(hash, &sg, NULL, len); 291 crypto_ahash_update(hash); 292 } 293 294 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 295 void *pdu, size_t len) 296 { 297 struct scatterlist sg; 298 299 sg_init_one(&sg, pdu, len); 300 ahash_request_set_crypt(hash, &sg, pdu + len, len); 301 crypto_ahash_digest(hash); 302 } 303 304 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 305 void *pdu, size_t pdu_len) 306 { 307 struct nvme_tcp_hdr *hdr = pdu; 308 __le32 recv_digest; 309 __le32 exp_digest; 310 311 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 312 dev_err(queue->ctrl->ctrl.device, 313 "queue %d: header digest flag is cleared\n", 314 nvme_tcp_queue_id(queue)); 315 return -EPROTO; 316 } 317 318 recv_digest = *(__le32 *)(pdu + hdr->hlen); 319 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 320 exp_digest = *(__le32 *)(pdu + hdr->hlen); 321 if (recv_digest != exp_digest) { 322 dev_err(queue->ctrl->ctrl.device, 323 "header digest error: recv %#x expected %#x\n", 324 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 325 return -EIO; 326 } 327 328 return 0; 329 } 330 331 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 332 { 333 struct nvme_tcp_hdr *hdr = pdu; 334 u8 digest_len = nvme_tcp_hdgst_len(queue); 335 u32 len; 336 337 len = le32_to_cpu(hdr->plen) - hdr->hlen - 338 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 339 340 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 341 dev_err(queue->ctrl->ctrl.device, 342 "queue %d: data digest flag is cleared\n", 343 nvme_tcp_queue_id(queue)); 344 return -EPROTO; 345 } 346 crypto_ahash_init(queue->rcv_hash); 347 348 return 0; 349 } 350 351 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 352 struct request *rq, unsigned int hctx_idx) 353 { 354 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 355 356 page_frag_free(req->pdu); 357 } 358 359 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 360 struct request *rq, unsigned int hctx_idx, 361 unsigned int numa_node) 362 { 363 struct nvme_tcp_ctrl *ctrl = set->driver_data; 364 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 365 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 366 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 367 u8 hdgst = nvme_tcp_hdgst_len(queue); 368 369 req->pdu = page_frag_alloc(&queue->pf_cache, 370 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 371 GFP_KERNEL | __GFP_ZERO); 372 if (!req->pdu) 373 return -ENOMEM; 374 375 req->queue = queue; 376 nvme_req(rq)->ctrl = &ctrl->ctrl; 377 378 return 0; 379 } 380 381 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 382 unsigned int hctx_idx) 383 { 384 struct nvme_tcp_ctrl *ctrl = data; 385 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 386 387 hctx->driver_data = queue; 388 return 0; 389 } 390 391 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 392 unsigned int hctx_idx) 393 { 394 struct nvme_tcp_ctrl *ctrl = data; 395 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 396 397 hctx->driver_data = queue; 398 return 0; 399 } 400 401 static enum nvme_tcp_recv_state 402 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 403 { 404 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 405 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 406 NVME_TCP_RECV_DATA; 407 } 408 409 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 410 { 411 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 412 nvme_tcp_hdgst_len(queue); 413 queue->pdu_offset = 0; 414 queue->data_remaining = -1; 415 queue->ddgst_remaining = 0; 416 } 417 418 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 419 { 420 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 421 return; 422 423 queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work); 424 } 425 426 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 427 struct nvme_completion *cqe) 428 { 429 struct request *rq; 430 431 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 432 if (!rq) { 433 dev_err(queue->ctrl->ctrl.device, 434 "queue %d tag 0x%x not found\n", 435 nvme_tcp_queue_id(queue), cqe->command_id); 436 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 437 return -EINVAL; 438 } 439 440 nvme_end_request(rq, cqe->status, cqe->result); 441 442 return 0; 443 } 444 445 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 446 struct nvme_tcp_data_pdu *pdu) 447 { 448 struct request *rq; 449 450 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 451 if (!rq) { 452 dev_err(queue->ctrl->ctrl.device, 453 "queue %d tag %#x not found\n", 454 nvme_tcp_queue_id(queue), pdu->command_id); 455 return -ENOENT; 456 } 457 458 if (!blk_rq_payload_bytes(rq)) { 459 dev_err(queue->ctrl->ctrl.device, 460 "queue %d tag %#x unexpected data\n", 461 nvme_tcp_queue_id(queue), rq->tag); 462 return -EIO; 463 } 464 465 queue->data_remaining = le32_to_cpu(pdu->data_length); 466 467 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 468 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 469 dev_err(queue->ctrl->ctrl.device, 470 "queue %d tag %#x SUCCESS set but not last PDU\n", 471 nvme_tcp_queue_id(queue), rq->tag); 472 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 473 return -EPROTO; 474 } 475 476 return 0; 477 } 478 479 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 480 struct nvme_tcp_rsp_pdu *pdu) 481 { 482 struct nvme_completion *cqe = &pdu->cqe; 483 int ret = 0; 484 485 /* 486 * AEN requests are special as they don't time out and can 487 * survive any kind of queue freeze and often don't respond to 488 * aborts. We don't even bother to allocate a struct request 489 * for them but rather special case them here. 490 */ 491 if (unlikely(nvme_tcp_queue_id(queue) == 0 && 492 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 493 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 494 &cqe->result); 495 else 496 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 497 498 return ret; 499 } 500 501 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 502 struct nvme_tcp_r2t_pdu *pdu) 503 { 504 struct nvme_tcp_data_pdu *data = req->pdu; 505 struct nvme_tcp_queue *queue = req->queue; 506 struct request *rq = blk_mq_rq_from_pdu(req); 507 u8 hdgst = nvme_tcp_hdgst_len(queue); 508 u8 ddgst = nvme_tcp_ddgst_len(queue); 509 510 req->pdu_len = le32_to_cpu(pdu->r2t_length); 511 req->pdu_sent = 0; 512 513 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 514 dev_err(queue->ctrl->ctrl.device, 515 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 516 rq->tag, req->pdu_len, req->data_len, 517 req->data_sent); 518 return -EPROTO; 519 } 520 521 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 522 dev_err(queue->ctrl->ctrl.device, 523 "req %d unexpected r2t offset %u (expected %zu)\n", 524 rq->tag, le32_to_cpu(pdu->r2t_offset), 525 req->data_sent); 526 return -EPROTO; 527 } 528 529 memset(data, 0, sizeof(*data)); 530 data->hdr.type = nvme_tcp_h2c_data; 531 data->hdr.flags = NVME_TCP_F_DATA_LAST; 532 if (queue->hdr_digest) 533 data->hdr.flags |= NVME_TCP_F_HDGST; 534 if (queue->data_digest) 535 data->hdr.flags |= NVME_TCP_F_DDGST; 536 data->hdr.hlen = sizeof(*data); 537 data->hdr.pdo = data->hdr.hlen + hdgst; 538 data->hdr.plen = 539 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 540 data->ttag = pdu->ttag; 541 data->command_id = rq->tag; 542 data->data_offset = cpu_to_le32(req->data_sent); 543 data->data_length = cpu_to_le32(req->pdu_len); 544 return 0; 545 } 546 547 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 548 struct nvme_tcp_r2t_pdu *pdu) 549 { 550 struct nvme_tcp_request *req; 551 struct request *rq; 552 int ret; 553 554 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 555 if (!rq) { 556 dev_err(queue->ctrl->ctrl.device, 557 "queue %d tag %#x not found\n", 558 nvme_tcp_queue_id(queue), pdu->command_id); 559 return -ENOENT; 560 } 561 req = blk_mq_rq_to_pdu(rq); 562 563 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 564 if (unlikely(ret)) 565 return ret; 566 567 req->state = NVME_TCP_SEND_H2C_PDU; 568 req->offset = 0; 569 570 nvme_tcp_queue_request(req); 571 572 return 0; 573 } 574 575 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 576 unsigned int *offset, size_t *len) 577 { 578 struct nvme_tcp_hdr *hdr; 579 char *pdu = queue->pdu; 580 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 581 int ret; 582 583 ret = skb_copy_bits(skb, *offset, 584 &pdu[queue->pdu_offset], rcv_len); 585 if (unlikely(ret)) 586 return ret; 587 588 queue->pdu_remaining -= rcv_len; 589 queue->pdu_offset += rcv_len; 590 *offset += rcv_len; 591 *len -= rcv_len; 592 if (queue->pdu_remaining) 593 return 0; 594 595 hdr = queue->pdu; 596 if (queue->hdr_digest) { 597 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 598 if (unlikely(ret)) 599 return ret; 600 } 601 602 603 if (queue->data_digest) { 604 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 605 if (unlikely(ret)) 606 return ret; 607 } 608 609 switch (hdr->type) { 610 case nvme_tcp_c2h_data: 611 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 612 case nvme_tcp_rsp: 613 nvme_tcp_init_recv_ctx(queue); 614 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 615 case nvme_tcp_r2t: 616 nvme_tcp_init_recv_ctx(queue); 617 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 618 default: 619 dev_err(queue->ctrl->ctrl.device, 620 "unsupported pdu type (%d)\n", hdr->type); 621 return -EINVAL; 622 } 623 } 624 625 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 626 { 627 union nvme_result res = {}; 628 629 nvme_end_request(rq, cpu_to_le16(status << 1), res); 630 } 631 632 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 633 unsigned int *offset, size_t *len) 634 { 635 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 636 struct nvme_tcp_request *req; 637 struct request *rq; 638 639 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 640 if (!rq) { 641 dev_err(queue->ctrl->ctrl.device, 642 "queue %d tag %#x not found\n", 643 nvme_tcp_queue_id(queue), pdu->command_id); 644 return -ENOENT; 645 } 646 req = blk_mq_rq_to_pdu(rq); 647 648 while (true) { 649 int recv_len, ret; 650 651 recv_len = min_t(size_t, *len, queue->data_remaining); 652 if (!recv_len) 653 break; 654 655 if (!iov_iter_count(&req->iter)) { 656 req->curr_bio = req->curr_bio->bi_next; 657 658 /* 659 * If we don`t have any bios it means that controller 660 * sent more data than we requested, hence error 661 */ 662 if (!req->curr_bio) { 663 dev_err(queue->ctrl->ctrl.device, 664 "queue %d no space in request %#x", 665 nvme_tcp_queue_id(queue), rq->tag); 666 nvme_tcp_init_recv_ctx(queue); 667 return -EIO; 668 } 669 nvme_tcp_init_iter(req, READ); 670 } 671 672 /* we can read only from what is left in this bio */ 673 recv_len = min_t(size_t, recv_len, 674 iov_iter_count(&req->iter)); 675 676 if (queue->data_digest) 677 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 678 &req->iter, recv_len, queue->rcv_hash); 679 else 680 ret = skb_copy_datagram_iter(skb, *offset, 681 &req->iter, recv_len); 682 if (ret) { 683 dev_err(queue->ctrl->ctrl.device, 684 "queue %d failed to copy request %#x data", 685 nvme_tcp_queue_id(queue), rq->tag); 686 return ret; 687 } 688 689 *len -= recv_len; 690 *offset += recv_len; 691 queue->data_remaining -= recv_len; 692 } 693 694 if (!queue->data_remaining) { 695 if (queue->data_digest) { 696 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 697 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 698 } else { 699 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) 700 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 701 nvme_tcp_init_recv_ctx(queue); 702 } 703 } 704 705 return 0; 706 } 707 708 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 709 struct sk_buff *skb, unsigned int *offset, size_t *len) 710 { 711 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 712 char *ddgst = (char *)&queue->recv_ddgst; 713 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 714 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 715 int ret; 716 717 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 718 if (unlikely(ret)) 719 return ret; 720 721 queue->ddgst_remaining -= recv_len; 722 *offset += recv_len; 723 *len -= recv_len; 724 if (queue->ddgst_remaining) 725 return 0; 726 727 if (queue->recv_ddgst != queue->exp_ddgst) { 728 dev_err(queue->ctrl->ctrl.device, 729 "data digest error: recv %#x expected %#x\n", 730 le32_to_cpu(queue->recv_ddgst), 731 le32_to_cpu(queue->exp_ddgst)); 732 return -EIO; 733 } 734 735 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 736 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 737 pdu->command_id); 738 739 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 740 } 741 742 nvme_tcp_init_recv_ctx(queue); 743 return 0; 744 } 745 746 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 747 unsigned int offset, size_t len) 748 { 749 struct nvme_tcp_queue *queue = desc->arg.data; 750 size_t consumed = len; 751 int result; 752 753 while (len) { 754 switch (nvme_tcp_recv_state(queue)) { 755 case NVME_TCP_RECV_PDU: 756 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 757 break; 758 case NVME_TCP_RECV_DATA: 759 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 760 break; 761 case NVME_TCP_RECV_DDGST: 762 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 763 break; 764 default: 765 result = -EFAULT; 766 } 767 if (result) { 768 dev_err(queue->ctrl->ctrl.device, 769 "receive failed: %d\n", result); 770 queue->rd_enabled = false; 771 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 772 return result; 773 } 774 } 775 776 return consumed; 777 } 778 779 static void nvme_tcp_data_ready(struct sock *sk) 780 { 781 struct nvme_tcp_queue *queue; 782 783 read_lock(&sk->sk_callback_lock); 784 queue = sk->sk_user_data; 785 if (likely(queue && queue->rd_enabled)) 786 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 787 read_unlock(&sk->sk_callback_lock); 788 } 789 790 static void nvme_tcp_write_space(struct sock *sk) 791 { 792 struct nvme_tcp_queue *queue; 793 794 read_lock_bh(&sk->sk_callback_lock); 795 queue = sk->sk_user_data; 796 if (likely(queue && sk_stream_is_writeable(sk))) { 797 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 798 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 799 } 800 read_unlock_bh(&sk->sk_callback_lock); 801 } 802 803 static void nvme_tcp_state_change(struct sock *sk) 804 { 805 struct nvme_tcp_queue *queue; 806 807 read_lock(&sk->sk_callback_lock); 808 queue = sk->sk_user_data; 809 if (!queue) 810 goto done; 811 812 switch (sk->sk_state) { 813 case TCP_CLOSE: 814 case TCP_CLOSE_WAIT: 815 case TCP_LAST_ACK: 816 case TCP_FIN_WAIT1: 817 case TCP_FIN_WAIT2: 818 /* fallthrough */ 819 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 820 break; 821 default: 822 dev_info(queue->ctrl->ctrl.device, 823 "queue %d socket state %d\n", 824 nvme_tcp_queue_id(queue), sk->sk_state); 825 } 826 827 queue->state_change(sk); 828 done: 829 read_unlock(&sk->sk_callback_lock); 830 } 831 832 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 833 { 834 queue->request = NULL; 835 } 836 837 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 838 { 839 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR); 840 } 841 842 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 843 { 844 struct nvme_tcp_queue *queue = req->queue; 845 846 while (true) { 847 struct page *page = nvme_tcp_req_cur_page(req); 848 size_t offset = nvme_tcp_req_cur_offset(req); 849 size_t len = nvme_tcp_req_cur_length(req); 850 bool last = nvme_tcp_pdu_last_send(req, len); 851 int ret, flags = MSG_DONTWAIT; 852 853 if (last && !queue->data_digest) 854 flags |= MSG_EOR; 855 else 856 flags |= MSG_MORE; 857 858 /* can't zcopy slab pages */ 859 if (unlikely(PageSlab(page))) { 860 ret = sock_no_sendpage(queue->sock, page, offset, len, 861 flags); 862 } else { 863 ret = kernel_sendpage(queue->sock, page, offset, len, 864 flags); 865 } 866 if (ret <= 0) 867 return ret; 868 869 nvme_tcp_advance_req(req, ret); 870 if (queue->data_digest) 871 nvme_tcp_ddgst_update(queue->snd_hash, page, 872 offset, ret); 873 874 /* fully successful last write*/ 875 if (last && ret == len) { 876 if (queue->data_digest) { 877 nvme_tcp_ddgst_final(queue->snd_hash, 878 &req->ddgst); 879 req->state = NVME_TCP_SEND_DDGST; 880 req->offset = 0; 881 } else { 882 nvme_tcp_done_send_req(queue); 883 } 884 return 1; 885 } 886 } 887 return -EAGAIN; 888 } 889 890 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 891 { 892 struct nvme_tcp_queue *queue = req->queue; 893 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 894 bool inline_data = nvme_tcp_has_inline_data(req); 895 int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR); 896 u8 hdgst = nvme_tcp_hdgst_len(queue); 897 int len = sizeof(*pdu) + hdgst - req->offset; 898 int ret; 899 900 if (queue->hdr_digest && !req->offset) 901 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 902 903 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 904 offset_in_page(pdu) + req->offset, len, flags); 905 if (unlikely(ret <= 0)) 906 return ret; 907 908 len -= ret; 909 if (!len) { 910 if (inline_data) { 911 req->state = NVME_TCP_SEND_DATA; 912 if (queue->data_digest) 913 crypto_ahash_init(queue->snd_hash); 914 nvme_tcp_init_iter(req, WRITE); 915 } else { 916 nvme_tcp_done_send_req(queue); 917 } 918 return 1; 919 } 920 req->offset += ret; 921 922 return -EAGAIN; 923 } 924 925 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 926 { 927 struct nvme_tcp_queue *queue = req->queue; 928 struct nvme_tcp_data_pdu *pdu = req->pdu; 929 u8 hdgst = nvme_tcp_hdgst_len(queue); 930 int len = sizeof(*pdu) - req->offset + hdgst; 931 int ret; 932 933 if (queue->hdr_digest && !req->offset) 934 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 935 936 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 937 offset_in_page(pdu) + req->offset, len, 938 MSG_DONTWAIT | MSG_MORE); 939 if (unlikely(ret <= 0)) 940 return ret; 941 942 len -= ret; 943 if (!len) { 944 req->state = NVME_TCP_SEND_DATA; 945 if (queue->data_digest) 946 crypto_ahash_init(queue->snd_hash); 947 if (!req->data_sent) 948 nvme_tcp_init_iter(req, WRITE); 949 return 1; 950 } 951 req->offset += ret; 952 953 return -EAGAIN; 954 } 955 956 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 957 { 958 struct nvme_tcp_queue *queue = req->queue; 959 int ret; 960 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 961 struct kvec iov = { 962 .iov_base = &req->ddgst + req->offset, 963 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 964 }; 965 966 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 967 if (unlikely(ret <= 0)) 968 return ret; 969 970 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 971 nvme_tcp_done_send_req(queue); 972 return 1; 973 } 974 975 req->offset += ret; 976 return -EAGAIN; 977 } 978 979 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 980 { 981 struct nvme_tcp_request *req; 982 int ret = 1; 983 984 if (!queue->request) { 985 queue->request = nvme_tcp_fetch_request(queue); 986 if (!queue->request) 987 return 0; 988 } 989 req = queue->request; 990 991 if (req->state == NVME_TCP_SEND_CMD_PDU) { 992 ret = nvme_tcp_try_send_cmd_pdu(req); 993 if (ret <= 0) 994 goto done; 995 if (!nvme_tcp_has_inline_data(req)) 996 return ret; 997 } 998 999 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1000 ret = nvme_tcp_try_send_data_pdu(req); 1001 if (ret <= 0) 1002 goto done; 1003 } 1004 1005 if (req->state == NVME_TCP_SEND_DATA) { 1006 ret = nvme_tcp_try_send_data(req); 1007 if (ret <= 0) 1008 goto done; 1009 } 1010 1011 if (req->state == NVME_TCP_SEND_DDGST) 1012 ret = nvme_tcp_try_send_ddgst(req); 1013 done: 1014 if (ret == -EAGAIN) 1015 ret = 0; 1016 return ret; 1017 } 1018 1019 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1020 { 1021 struct socket *sock = queue->sock; 1022 struct sock *sk = sock->sk; 1023 read_descriptor_t rd_desc; 1024 int consumed; 1025 1026 rd_desc.arg.data = queue; 1027 rd_desc.count = 1; 1028 lock_sock(sk); 1029 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1030 release_sock(sk); 1031 return consumed; 1032 } 1033 1034 static void nvme_tcp_io_work(struct work_struct *w) 1035 { 1036 struct nvme_tcp_queue *queue = 1037 container_of(w, struct nvme_tcp_queue, io_work); 1038 unsigned long start = jiffies + msecs_to_jiffies(1); 1039 1040 do { 1041 bool pending = false; 1042 int result; 1043 1044 result = nvme_tcp_try_send(queue); 1045 if (result > 0) { 1046 pending = true; 1047 } else if (unlikely(result < 0)) { 1048 dev_err(queue->ctrl->ctrl.device, 1049 "failed to send request %d\n", result); 1050 if (result != -EPIPE) 1051 nvme_tcp_fail_request(queue->request); 1052 nvme_tcp_done_send_req(queue); 1053 return; 1054 } 1055 1056 result = nvme_tcp_try_recv(queue); 1057 if (result > 0) 1058 pending = true; 1059 1060 if (!pending) 1061 return; 1062 1063 } while (time_after(jiffies, start)); /* quota is exhausted */ 1064 1065 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1066 } 1067 1068 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1069 { 1070 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1071 1072 ahash_request_free(queue->rcv_hash); 1073 ahash_request_free(queue->snd_hash); 1074 crypto_free_ahash(tfm); 1075 } 1076 1077 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1078 { 1079 struct crypto_ahash *tfm; 1080 1081 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1082 if (IS_ERR(tfm)) 1083 return PTR_ERR(tfm); 1084 1085 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1086 if (!queue->snd_hash) 1087 goto free_tfm; 1088 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1089 1090 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1091 if (!queue->rcv_hash) 1092 goto free_snd_hash; 1093 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1094 1095 return 0; 1096 free_snd_hash: 1097 ahash_request_free(queue->snd_hash); 1098 free_tfm: 1099 crypto_free_ahash(tfm); 1100 return -ENOMEM; 1101 } 1102 1103 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1104 { 1105 struct nvme_tcp_request *async = &ctrl->async_req; 1106 1107 page_frag_free(async->pdu); 1108 } 1109 1110 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1111 { 1112 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1113 struct nvme_tcp_request *async = &ctrl->async_req; 1114 u8 hdgst = nvme_tcp_hdgst_len(queue); 1115 1116 async->pdu = page_frag_alloc(&queue->pf_cache, 1117 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1118 GFP_KERNEL | __GFP_ZERO); 1119 if (!async->pdu) 1120 return -ENOMEM; 1121 1122 async->queue = &ctrl->queues[0]; 1123 return 0; 1124 } 1125 1126 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1127 { 1128 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1129 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1130 1131 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1132 return; 1133 1134 if (queue->hdr_digest || queue->data_digest) 1135 nvme_tcp_free_crypto(queue); 1136 1137 sock_release(queue->sock); 1138 kfree(queue->pdu); 1139 } 1140 1141 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1142 { 1143 struct nvme_tcp_icreq_pdu *icreq; 1144 struct nvme_tcp_icresp_pdu *icresp; 1145 struct msghdr msg = {}; 1146 struct kvec iov; 1147 bool ctrl_hdgst, ctrl_ddgst; 1148 int ret; 1149 1150 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1151 if (!icreq) 1152 return -ENOMEM; 1153 1154 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1155 if (!icresp) { 1156 ret = -ENOMEM; 1157 goto free_icreq; 1158 } 1159 1160 icreq->hdr.type = nvme_tcp_icreq; 1161 icreq->hdr.hlen = sizeof(*icreq); 1162 icreq->hdr.pdo = 0; 1163 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1164 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1165 icreq->maxr2t = 0; /* single inflight r2t supported */ 1166 icreq->hpda = 0; /* no alignment constraint */ 1167 if (queue->hdr_digest) 1168 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1169 if (queue->data_digest) 1170 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1171 1172 iov.iov_base = icreq; 1173 iov.iov_len = sizeof(*icreq); 1174 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1175 if (ret < 0) 1176 goto free_icresp; 1177 1178 memset(&msg, 0, sizeof(msg)); 1179 iov.iov_base = icresp; 1180 iov.iov_len = sizeof(*icresp); 1181 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1182 iov.iov_len, msg.msg_flags); 1183 if (ret < 0) 1184 goto free_icresp; 1185 1186 ret = -EINVAL; 1187 if (icresp->hdr.type != nvme_tcp_icresp) { 1188 pr_err("queue %d: bad type returned %d\n", 1189 nvme_tcp_queue_id(queue), icresp->hdr.type); 1190 goto free_icresp; 1191 } 1192 1193 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1194 pr_err("queue %d: bad pdu length returned %d\n", 1195 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1196 goto free_icresp; 1197 } 1198 1199 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1200 pr_err("queue %d: bad pfv returned %d\n", 1201 nvme_tcp_queue_id(queue), icresp->pfv); 1202 goto free_icresp; 1203 } 1204 1205 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1206 if ((queue->data_digest && !ctrl_ddgst) || 1207 (!queue->data_digest && ctrl_ddgst)) { 1208 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1209 nvme_tcp_queue_id(queue), 1210 queue->data_digest ? "enabled" : "disabled", 1211 ctrl_ddgst ? "enabled" : "disabled"); 1212 goto free_icresp; 1213 } 1214 1215 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1216 if ((queue->hdr_digest && !ctrl_hdgst) || 1217 (!queue->hdr_digest && ctrl_hdgst)) { 1218 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1219 nvme_tcp_queue_id(queue), 1220 queue->hdr_digest ? "enabled" : "disabled", 1221 ctrl_hdgst ? "enabled" : "disabled"); 1222 goto free_icresp; 1223 } 1224 1225 if (icresp->cpda != 0) { 1226 pr_err("queue %d: unsupported cpda returned %d\n", 1227 nvme_tcp_queue_id(queue), icresp->cpda); 1228 goto free_icresp; 1229 } 1230 1231 ret = 0; 1232 free_icresp: 1233 kfree(icresp); 1234 free_icreq: 1235 kfree(icreq); 1236 return ret; 1237 } 1238 1239 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1240 int qid, size_t queue_size) 1241 { 1242 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1243 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1244 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1245 int ret, opt, rcv_pdu_size, n; 1246 1247 queue->ctrl = ctrl; 1248 INIT_LIST_HEAD(&queue->send_list); 1249 spin_lock_init(&queue->lock); 1250 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1251 queue->queue_size = queue_size; 1252 1253 if (qid > 0) 1254 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1255 else 1256 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1257 NVME_TCP_ADMIN_CCSZ; 1258 1259 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1260 IPPROTO_TCP, &queue->sock); 1261 if (ret) { 1262 dev_err(ctrl->ctrl.device, 1263 "failed to create socket: %d\n", ret); 1264 return ret; 1265 } 1266 1267 /* Single syn retry */ 1268 opt = 1; 1269 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT, 1270 (char *)&opt, sizeof(opt)); 1271 if (ret) { 1272 dev_err(ctrl->ctrl.device, 1273 "failed to set TCP_SYNCNT sock opt %d\n", ret); 1274 goto err_sock; 1275 } 1276 1277 /* Set TCP no delay */ 1278 opt = 1; 1279 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, 1280 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1281 if (ret) { 1282 dev_err(ctrl->ctrl.device, 1283 "failed to set TCP_NODELAY sock opt %d\n", ret); 1284 goto err_sock; 1285 } 1286 1287 /* 1288 * Cleanup whatever is sitting in the TCP transmit queue on socket 1289 * close. This is done to prevent stale data from being sent should 1290 * the network connection be restored before TCP times out. 1291 */ 1292 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER, 1293 (char *)&sol, sizeof(sol)); 1294 if (ret) { 1295 dev_err(ctrl->ctrl.device, 1296 "failed to set SO_LINGER sock opt %d\n", ret); 1297 goto err_sock; 1298 } 1299 1300 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1301 if (!qid) 1302 n = 0; 1303 else 1304 n = (qid - 1) % num_online_cpus(); 1305 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1306 queue->request = NULL; 1307 queue->data_remaining = 0; 1308 queue->ddgst_remaining = 0; 1309 queue->pdu_remaining = 0; 1310 queue->pdu_offset = 0; 1311 sk_set_memalloc(queue->sock->sk); 1312 1313 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1314 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1315 sizeof(ctrl->src_addr)); 1316 if (ret) { 1317 dev_err(ctrl->ctrl.device, 1318 "failed to bind queue %d socket %d\n", 1319 qid, ret); 1320 goto err_sock; 1321 } 1322 } 1323 1324 queue->hdr_digest = nctrl->opts->hdr_digest; 1325 queue->data_digest = nctrl->opts->data_digest; 1326 if (queue->hdr_digest || queue->data_digest) { 1327 ret = nvme_tcp_alloc_crypto(queue); 1328 if (ret) { 1329 dev_err(ctrl->ctrl.device, 1330 "failed to allocate queue %d crypto\n", qid); 1331 goto err_sock; 1332 } 1333 } 1334 1335 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1336 nvme_tcp_hdgst_len(queue); 1337 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1338 if (!queue->pdu) { 1339 ret = -ENOMEM; 1340 goto err_crypto; 1341 } 1342 1343 dev_dbg(ctrl->ctrl.device, "connecting queue %d\n", 1344 nvme_tcp_queue_id(queue)); 1345 1346 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1347 sizeof(ctrl->addr), 0); 1348 if (ret) { 1349 dev_err(ctrl->ctrl.device, 1350 "failed to connect socket: %d\n", ret); 1351 goto err_rcv_pdu; 1352 } 1353 1354 ret = nvme_tcp_init_connection(queue); 1355 if (ret) 1356 goto err_init_connect; 1357 1358 queue->rd_enabled = true; 1359 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1360 nvme_tcp_init_recv_ctx(queue); 1361 1362 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1363 queue->sock->sk->sk_user_data = queue; 1364 queue->state_change = queue->sock->sk->sk_state_change; 1365 queue->data_ready = queue->sock->sk->sk_data_ready; 1366 queue->write_space = queue->sock->sk->sk_write_space; 1367 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1368 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1369 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1370 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1371 1372 return 0; 1373 1374 err_init_connect: 1375 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1376 err_rcv_pdu: 1377 kfree(queue->pdu); 1378 err_crypto: 1379 if (queue->hdr_digest || queue->data_digest) 1380 nvme_tcp_free_crypto(queue); 1381 err_sock: 1382 sock_release(queue->sock); 1383 queue->sock = NULL; 1384 return ret; 1385 } 1386 1387 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1388 { 1389 struct socket *sock = queue->sock; 1390 1391 write_lock_bh(&sock->sk->sk_callback_lock); 1392 sock->sk->sk_user_data = NULL; 1393 sock->sk->sk_data_ready = queue->data_ready; 1394 sock->sk->sk_state_change = queue->state_change; 1395 sock->sk->sk_write_space = queue->write_space; 1396 write_unlock_bh(&sock->sk->sk_callback_lock); 1397 } 1398 1399 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1400 { 1401 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1402 nvme_tcp_restore_sock_calls(queue); 1403 cancel_work_sync(&queue->io_work); 1404 } 1405 1406 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1407 { 1408 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1409 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1410 1411 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1412 return; 1413 1414 __nvme_tcp_stop_queue(queue); 1415 } 1416 1417 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1418 { 1419 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1420 int ret; 1421 1422 if (idx) 1423 ret = nvmf_connect_io_queue(nctrl, idx, false); 1424 else 1425 ret = nvmf_connect_admin_queue(nctrl); 1426 1427 if (!ret) { 1428 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1429 } else { 1430 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1431 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1432 dev_err(nctrl->device, 1433 "failed to connect queue: %d ret=%d\n", idx, ret); 1434 } 1435 return ret; 1436 } 1437 1438 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1439 bool admin) 1440 { 1441 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1442 struct blk_mq_tag_set *set; 1443 int ret; 1444 1445 if (admin) { 1446 set = &ctrl->admin_tag_set; 1447 memset(set, 0, sizeof(*set)); 1448 set->ops = &nvme_tcp_admin_mq_ops; 1449 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1450 set->reserved_tags = 2; /* connect + keep-alive */ 1451 set->numa_node = NUMA_NO_NODE; 1452 set->cmd_size = sizeof(struct nvme_tcp_request); 1453 set->driver_data = ctrl; 1454 set->nr_hw_queues = 1; 1455 set->timeout = ADMIN_TIMEOUT; 1456 } else { 1457 set = &ctrl->tag_set; 1458 memset(set, 0, sizeof(*set)); 1459 set->ops = &nvme_tcp_mq_ops; 1460 set->queue_depth = nctrl->sqsize + 1; 1461 set->reserved_tags = 1; /* fabric connect */ 1462 set->numa_node = NUMA_NO_NODE; 1463 set->flags = BLK_MQ_F_SHOULD_MERGE; 1464 set->cmd_size = sizeof(struct nvme_tcp_request); 1465 set->driver_data = ctrl; 1466 set->nr_hw_queues = nctrl->queue_count - 1; 1467 set->timeout = NVME_IO_TIMEOUT; 1468 set->nr_maps = 2 /* default + read */; 1469 } 1470 1471 ret = blk_mq_alloc_tag_set(set); 1472 if (ret) 1473 return ERR_PTR(ret); 1474 1475 return set; 1476 } 1477 1478 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1479 { 1480 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1481 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1482 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1483 } 1484 1485 nvme_tcp_free_queue(ctrl, 0); 1486 } 1487 1488 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1489 { 1490 int i; 1491 1492 for (i = 1; i < ctrl->queue_count; i++) 1493 nvme_tcp_free_queue(ctrl, i); 1494 } 1495 1496 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1497 { 1498 int i; 1499 1500 for (i = 1; i < ctrl->queue_count; i++) 1501 nvme_tcp_stop_queue(ctrl, i); 1502 } 1503 1504 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1505 { 1506 int i, ret = 0; 1507 1508 for (i = 1; i < ctrl->queue_count; i++) { 1509 ret = nvme_tcp_start_queue(ctrl, i); 1510 if (ret) 1511 goto out_stop_queues; 1512 } 1513 1514 return 0; 1515 1516 out_stop_queues: 1517 for (i--; i >= 1; i--) 1518 nvme_tcp_stop_queue(ctrl, i); 1519 return ret; 1520 } 1521 1522 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1523 { 1524 int ret; 1525 1526 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1527 if (ret) 1528 return ret; 1529 1530 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1531 if (ret) 1532 goto out_free_queue; 1533 1534 return 0; 1535 1536 out_free_queue: 1537 nvme_tcp_free_queue(ctrl, 0); 1538 return ret; 1539 } 1540 1541 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1542 { 1543 int i, ret; 1544 1545 for (i = 1; i < ctrl->queue_count; i++) { 1546 ret = nvme_tcp_alloc_queue(ctrl, i, 1547 ctrl->sqsize + 1); 1548 if (ret) 1549 goto out_free_queues; 1550 } 1551 1552 return 0; 1553 1554 out_free_queues: 1555 for (i--; i >= 1; i--) 1556 nvme_tcp_free_queue(ctrl, i); 1557 1558 return ret; 1559 } 1560 1561 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1562 { 1563 unsigned int nr_io_queues; 1564 1565 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1566 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1567 1568 return nr_io_queues; 1569 } 1570 1571 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1572 unsigned int nr_io_queues) 1573 { 1574 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1575 struct nvmf_ctrl_options *opts = nctrl->opts; 1576 1577 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1578 /* 1579 * separate read/write queues 1580 * hand out dedicated default queues only after we have 1581 * sufficient read queues. 1582 */ 1583 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1584 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1585 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1586 min(opts->nr_write_queues, nr_io_queues); 1587 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1588 } else { 1589 /* 1590 * shared read/write queues 1591 * either no write queues were requested, or we don't have 1592 * sufficient queue count to have dedicated default queues. 1593 */ 1594 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1595 min(opts->nr_io_queues, nr_io_queues); 1596 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1597 } 1598 } 1599 1600 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1601 { 1602 unsigned int nr_io_queues; 1603 int ret; 1604 1605 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1606 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1607 if (ret) 1608 return ret; 1609 1610 ctrl->queue_count = nr_io_queues + 1; 1611 if (ctrl->queue_count < 2) 1612 return 0; 1613 1614 dev_info(ctrl->device, 1615 "creating %d I/O queues.\n", nr_io_queues); 1616 1617 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1618 1619 return __nvme_tcp_alloc_io_queues(ctrl); 1620 } 1621 1622 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1623 { 1624 nvme_tcp_stop_io_queues(ctrl); 1625 if (remove) { 1626 blk_cleanup_queue(ctrl->connect_q); 1627 blk_mq_free_tag_set(ctrl->tagset); 1628 } 1629 nvme_tcp_free_io_queues(ctrl); 1630 } 1631 1632 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1633 { 1634 int ret; 1635 1636 ret = nvme_tcp_alloc_io_queues(ctrl); 1637 if (ret) 1638 return ret; 1639 1640 if (new) { 1641 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1642 if (IS_ERR(ctrl->tagset)) { 1643 ret = PTR_ERR(ctrl->tagset); 1644 goto out_free_io_queues; 1645 } 1646 1647 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1648 if (IS_ERR(ctrl->connect_q)) { 1649 ret = PTR_ERR(ctrl->connect_q); 1650 goto out_free_tag_set; 1651 } 1652 } else { 1653 blk_mq_update_nr_hw_queues(ctrl->tagset, 1654 ctrl->queue_count - 1); 1655 } 1656 1657 ret = nvme_tcp_start_io_queues(ctrl); 1658 if (ret) 1659 goto out_cleanup_connect_q; 1660 1661 return 0; 1662 1663 out_cleanup_connect_q: 1664 if (new) 1665 blk_cleanup_queue(ctrl->connect_q); 1666 out_free_tag_set: 1667 if (new) 1668 blk_mq_free_tag_set(ctrl->tagset); 1669 out_free_io_queues: 1670 nvme_tcp_free_io_queues(ctrl); 1671 return ret; 1672 } 1673 1674 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1675 { 1676 nvme_tcp_stop_queue(ctrl, 0); 1677 if (remove) { 1678 blk_cleanup_queue(ctrl->admin_q); 1679 blk_mq_free_tag_set(ctrl->admin_tagset); 1680 } 1681 nvme_tcp_free_admin_queue(ctrl); 1682 } 1683 1684 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1685 { 1686 int error; 1687 1688 error = nvme_tcp_alloc_admin_queue(ctrl); 1689 if (error) 1690 return error; 1691 1692 if (new) { 1693 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1694 if (IS_ERR(ctrl->admin_tagset)) { 1695 error = PTR_ERR(ctrl->admin_tagset); 1696 goto out_free_queue; 1697 } 1698 1699 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1700 if (IS_ERR(ctrl->admin_q)) { 1701 error = PTR_ERR(ctrl->admin_q); 1702 goto out_free_tagset; 1703 } 1704 } 1705 1706 error = nvme_tcp_start_queue(ctrl, 0); 1707 if (error) 1708 goto out_cleanup_queue; 1709 1710 error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 1711 if (error) { 1712 dev_err(ctrl->device, 1713 "prop_get NVME_REG_CAP failed\n"); 1714 goto out_stop_queue; 1715 } 1716 1717 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 1718 1719 error = nvme_enable_ctrl(ctrl, ctrl->cap); 1720 if (error) 1721 goto out_stop_queue; 1722 1723 error = nvme_init_identify(ctrl); 1724 if (error) 1725 goto out_stop_queue; 1726 1727 return 0; 1728 1729 out_stop_queue: 1730 nvme_tcp_stop_queue(ctrl, 0); 1731 out_cleanup_queue: 1732 if (new) 1733 blk_cleanup_queue(ctrl->admin_q); 1734 out_free_tagset: 1735 if (new) 1736 blk_mq_free_tag_set(ctrl->admin_tagset); 1737 out_free_queue: 1738 nvme_tcp_free_admin_queue(ctrl); 1739 return error; 1740 } 1741 1742 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1743 bool remove) 1744 { 1745 blk_mq_quiesce_queue(ctrl->admin_q); 1746 nvme_tcp_stop_queue(ctrl, 0); 1747 if (ctrl->admin_tagset) { 1748 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1749 nvme_cancel_request, ctrl); 1750 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 1751 } 1752 blk_mq_unquiesce_queue(ctrl->admin_q); 1753 nvme_tcp_destroy_admin_queue(ctrl, remove); 1754 } 1755 1756 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1757 bool remove) 1758 { 1759 if (ctrl->queue_count <= 1) 1760 return; 1761 nvme_stop_queues(ctrl); 1762 nvme_tcp_stop_io_queues(ctrl); 1763 if (ctrl->tagset) { 1764 blk_mq_tagset_busy_iter(ctrl->tagset, 1765 nvme_cancel_request, ctrl); 1766 blk_mq_tagset_wait_completed_request(ctrl->tagset); 1767 } 1768 if (remove) 1769 nvme_start_queues(ctrl); 1770 nvme_tcp_destroy_io_queues(ctrl, remove); 1771 } 1772 1773 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1774 { 1775 /* If we are resetting/deleting then do nothing */ 1776 if (ctrl->state != NVME_CTRL_CONNECTING) { 1777 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1778 ctrl->state == NVME_CTRL_LIVE); 1779 return; 1780 } 1781 1782 if (nvmf_should_reconnect(ctrl)) { 1783 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1784 ctrl->opts->reconnect_delay); 1785 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1786 ctrl->opts->reconnect_delay * HZ); 1787 } else { 1788 dev_info(ctrl->device, "Removing controller...\n"); 1789 nvme_delete_ctrl(ctrl); 1790 } 1791 } 1792 1793 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1794 { 1795 struct nvmf_ctrl_options *opts = ctrl->opts; 1796 int ret = -EINVAL; 1797 1798 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1799 if (ret) 1800 return ret; 1801 1802 if (ctrl->icdoff) { 1803 dev_err(ctrl->device, "icdoff is not supported!\n"); 1804 goto destroy_admin; 1805 } 1806 1807 if (opts->queue_size > ctrl->sqsize + 1) 1808 dev_warn(ctrl->device, 1809 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1810 opts->queue_size, ctrl->sqsize + 1); 1811 1812 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1813 dev_warn(ctrl->device, 1814 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1815 ctrl->sqsize + 1, ctrl->maxcmd); 1816 ctrl->sqsize = ctrl->maxcmd - 1; 1817 } 1818 1819 if (ctrl->queue_count > 1) { 1820 ret = nvme_tcp_configure_io_queues(ctrl, new); 1821 if (ret) 1822 goto destroy_admin; 1823 } 1824 1825 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1826 /* state change failure is ok if we're in DELETING state */ 1827 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1828 ret = -EINVAL; 1829 goto destroy_io; 1830 } 1831 1832 nvme_start_ctrl(ctrl); 1833 return 0; 1834 1835 destroy_io: 1836 if (ctrl->queue_count > 1) 1837 nvme_tcp_destroy_io_queues(ctrl, new); 1838 destroy_admin: 1839 nvme_tcp_stop_queue(ctrl, 0); 1840 nvme_tcp_destroy_admin_queue(ctrl, new); 1841 return ret; 1842 } 1843 1844 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1845 { 1846 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1847 struct nvme_tcp_ctrl, connect_work); 1848 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1849 1850 ++ctrl->nr_reconnects; 1851 1852 if (nvme_tcp_setup_ctrl(ctrl, false)) 1853 goto requeue; 1854 1855 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1856 ctrl->nr_reconnects); 1857 1858 ctrl->nr_reconnects = 0; 1859 1860 return; 1861 1862 requeue: 1863 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1864 ctrl->nr_reconnects); 1865 nvme_tcp_reconnect_or_remove(ctrl); 1866 } 1867 1868 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1869 { 1870 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1871 struct nvme_tcp_ctrl, err_work); 1872 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1873 1874 nvme_stop_keep_alive(ctrl); 1875 nvme_tcp_teardown_io_queues(ctrl, false); 1876 /* unquiesce to fail fast pending requests */ 1877 nvme_start_queues(ctrl); 1878 nvme_tcp_teardown_admin_queue(ctrl, false); 1879 1880 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1881 /* state change failure is ok if we're in DELETING state */ 1882 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1883 return; 1884 } 1885 1886 nvme_tcp_reconnect_or_remove(ctrl); 1887 } 1888 1889 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 1890 { 1891 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 1892 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 1893 1894 nvme_tcp_teardown_io_queues(ctrl, shutdown); 1895 if (shutdown) 1896 nvme_shutdown_ctrl(ctrl); 1897 else 1898 nvme_disable_ctrl(ctrl, ctrl->cap); 1899 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 1900 } 1901 1902 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 1903 { 1904 nvme_tcp_teardown_ctrl(ctrl, true); 1905 } 1906 1907 static void nvme_reset_ctrl_work(struct work_struct *work) 1908 { 1909 struct nvme_ctrl *ctrl = 1910 container_of(work, struct nvme_ctrl, reset_work); 1911 1912 nvme_stop_ctrl(ctrl); 1913 nvme_tcp_teardown_ctrl(ctrl, false); 1914 1915 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1916 /* state change failure is ok if we're in DELETING state */ 1917 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1918 return; 1919 } 1920 1921 if (nvme_tcp_setup_ctrl(ctrl, false)) 1922 goto out_fail; 1923 1924 return; 1925 1926 out_fail: 1927 ++ctrl->nr_reconnects; 1928 nvme_tcp_reconnect_or_remove(ctrl); 1929 } 1930 1931 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 1932 { 1933 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1934 1935 if (list_empty(&ctrl->list)) 1936 goto free_ctrl; 1937 1938 mutex_lock(&nvme_tcp_ctrl_mutex); 1939 list_del(&ctrl->list); 1940 mutex_unlock(&nvme_tcp_ctrl_mutex); 1941 1942 nvmf_free_options(nctrl->opts); 1943 free_ctrl: 1944 kfree(ctrl->queues); 1945 kfree(ctrl); 1946 } 1947 1948 static void nvme_tcp_set_sg_null(struct nvme_command *c) 1949 { 1950 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1951 1952 sg->addr = 0; 1953 sg->length = 0; 1954 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1955 NVME_SGL_FMT_TRANSPORT_A; 1956 } 1957 1958 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 1959 struct nvme_command *c, u32 data_len) 1960 { 1961 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1962 1963 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1964 sg->length = cpu_to_le32(data_len); 1965 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1966 } 1967 1968 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 1969 u32 data_len) 1970 { 1971 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1972 1973 sg->addr = 0; 1974 sg->length = cpu_to_le32(data_len); 1975 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1976 NVME_SGL_FMT_TRANSPORT_A; 1977 } 1978 1979 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 1980 { 1981 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 1982 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1983 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 1984 struct nvme_command *cmd = &pdu->cmd; 1985 u8 hdgst = nvme_tcp_hdgst_len(queue); 1986 1987 memset(pdu, 0, sizeof(*pdu)); 1988 pdu->hdr.type = nvme_tcp_cmd; 1989 if (queue->hdr_digest) 1990 pdu->hdr.flags |= NVME_TCP_F_HDGST; 1991 pdu->hdr.hlen = sizeof(*pdu); 1992 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 1993 1994 cmd->common.opcode = nvme_admin_async_event; 1995 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1996 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1997 nvme_tcp_set_sg_null(cmd); 1998 1999 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2000 ctrl->async_req.offset = 0; 2001 ctrl->async_req.curr_bio = NULL; 2002 ctrl->async_req.data_len = 0; 2003 2004 nvme_tcp_queue_request(&ctrl->async_req); 2005 } 2006 2007 static enum blk_eh_timer_return 2008 nvme_tcp_timeout(struct request *rq, bool reserved) 2009 { 2010 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2011 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2012 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2013 2014 dev_warn(ctrl->ctrl.device, 2015 "queue %d: timeout request %#x type %d\n", 2016 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2017 2018 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2019 /* 2020 * Teardown immediately if controller times out while starting 2021 * or we are already started error recovery. all outstanding 2022 * requests are completed on shutdown, so we return BLK_EH_DONE. 2023 */ 2024 flush_work(&ctrl->err_work); 2025 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2026 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2027 return BLK_EH_DONE; 2028 } 2029 2030 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2031 nvme_tcp_error_recovery(&ctrl->ctrl); 2032 2033 return BLK_EH_RESET_TIMER; 2034 } 2035 2036 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2037 struct request *rq) 2038 { 2039 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2040 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2041 struct nvme_command *c = &pdu->cmd; 2042 2043 c->common.flags |= NVME_CMD_SGL_METABUF; 2044 2045 if (rq_data_dir(rq) == WRITE && req->data_len && 2046 req->data_len <= nvme_tcp_inline_data_size(queue)) 2047 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2048 else 2049 nvme_tcp_set_sg_host_data(c, req->data_len); 2050 2051 return 0; 2052 } 2053 2054 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2055 struct request *rq) 2056 { 2057 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2058 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2059 struct nvme_tcp_queue *queue = req->queue; 2060 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2061 blk_status_t ret; 2062 2063 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2064 if (ret) 2065 return ret; 2066 2067 req->state = NVME_TCP_SEND_CMD_PDU; 2068 req->offset = 0; 2069 req->data_sent = 0; 2070 req->pdu_len = 0; 2071 req->pdu_sent = 0; 2072 req->data_len = blk_rq_payload_bytes(rq); 2073 req->curr_bio = rq->bio; 2074 2075 if (rq_data_dir(rq) == WRITE && 2076 req->data_len <= nvme_tcp_inline_data_size(queue)) 2077 req->pdu_len = req->data_len; 2078 else if (req->curr_bio) 2079 nvme_tcp_init_iter(req, READ); 2080 2081 pdu->hdr.type = nvme_tcp_cmd; 2082 pdu->hdr.flags = 0; 2083 if (queue->hdr_digest) 2084 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2085 if (queue->data_digest && req->pdu_len) { 2086 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2087 ddgst = nvme_tcp_ddgst_len(queue); 2088 } 2089 pdu->hdr.hlen = sizeof(*pdu); 2090 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2091 pdu->hdr.plen = 2092 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2093 2094 ret = nvme_tcp_map_data(queue, rq); 2095 if (unlikely(ret)) { 2096 dev_err(queue->ctrl->ctrl.device, 2097 "Failed to map data (%d)\n", ret); 2098 return ret; 2099 } 2100 2101 return 0; 2102 } 2103 2104 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2105 const struct blk_mq_queue_data *bd) 2106 { 2107 struct nvme_ns *ns = hctx->queue->queuedata; 2108 struct nvme_tcp_queue *queue = hctx->driver_data; 2109 struct request *rq = bd->rq; 2110 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2111 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2112 blk_status_t ret; 2113 2114 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2115 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2116 2117 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2118 if (unlikely(ret)) 2119 return ret; 2120 2121 blk_mq_start_request(rq); 2122 2123 nvme_tcp_queue_request(req); 2124 2125 return BLK_STS_OK; 2126 } 2127 2128 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2129 { 2130 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2131 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2132 2133 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2134 /* separate read/write queues */ 2135 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2136 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2137 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2138 set->map[HCTX_TYPE_READ].nr_queues = 2139 ctrl->io_queues[HCTX_TYPE_READ]; 2140 set->map[HCTX_TYPE_READ].queue_offset = 2141 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2142 } else { 2143 /* shared read/write queues */ 2144 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2145 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2146 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2147 set->map[HCTX_TYPE_READ].nr_queues = 2148 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2149 set->map[HCTX_TYPE_READ].queue_offset = 0; 2150 } 2151 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2152 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2153 2154 dev_info(ctrl->ctrl.device, 2155 "mapped %d/%d default/read queues.\n", 2156 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2157 ctrl->io_queues[HCTX_TYPE_READ]); 2158 2159 return 0; 2160 } 2161 2162 static struct blk_mq_ops nvme_tcp_mq_ops = { 2163 .queue_rq = nvme_tcp_queue_rq, 2164 .complete = nvme_complete_rq, 2165 .init_request = nvme_tcp_init_request, 2166 .exit_request = nvme_tcp_exit_request, 2167 .init_hctx = nvme_tcp_init_hctx, 2168 .timeout = nvme_tcp_timeout, 2169 .map_queues = nvme_tcp_map_queues, 2170 }; 2171 2172 static struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2173 .queue_rq = nvme_tcp_queue_rq, 2174 .complete = nvme_complete_rq, 2175 .init_request = nvme_tcp_init_request, 2176 .exit_request = nvme_tcp_exit_request, 2177 .init_hctx = nvme_tcp_init_admin_hctx, 2178 .timeout = nvme_tcp_timeout, 2179 }; 2180 2181 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2182 .name = "tcp", 2183 .module = THIS_MODULE, 2184 .flags = NVME_F_FABRICS, 2185 .reg_read32 = nvmf_reg_read32, 2186 .reg_read64 = nvmf_reg_read64, 2187 .reg_write32 = nvmf_reg_write32, 2188 .free_ctrl = nvme_tcp_free_ctrl, 2189 .submit_async_event = nvme_tcp_submit_async_event, 2190 .delete_ctrl = nvme_tcp_delete_ctrl, 2191 .get_address = nvmf_get_address, 2192 }; 2193 2194 static bool 2195 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2196 { 2197 struct nvme_tcp_ctrl *ctrl; 2198 bool found = false; 2199 2200 mutex_lock(&nvme_tcp_ctrl_mutex); 2201 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2202 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2203 if (found) 2204 break; 2205 } 2206 mutex_unlock(&nvme_tcp_ctrl_mutex); 2207 2208 return found; 2209 } 2210 2211 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2212 struct nvmf_ctrl_options *opts) 2213 { 2214 struct nvme_tcp_ctrl *ctrl; 2215 int ret; 2216 2217 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2218 if (!ctrl) 2219 return ERR_PTR(-ENOMEM); 2220 2221 INIT_LIST_HEAD(&ctrl->list); 2222 ctrl->ctrl.opts = opts; 2223 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1; 2224 ctrl->ctrl.sqsize = opts->queue_size - 1; 2225 ctrl->ctrl.kato = opts->kato; 2226 2227 INIT_DELAYED_WORK(&ctrl->connect_work, 2228 nvme_tcp_reconnect_ctrl_work); 2229 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2230 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2231 2232 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2233 opts->trsvcid = 2234 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2235 if (!opts->trsvcid) { 2236 ret = -ENOMEM; 2237 goto out_free_ctrl; 2238 } 2239 opts->mask |= NVMF_OPT_TRSVCID; 2240 } 2241 2242 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2243 opts->traddr, opts->trsvcid, &ctrl->addr); 2244 if (ret) { 2245 pr_err("malformed address passed: %s:%s\n", 2246 opts->traddr, opts->trsvcid); 2247 goto out_free_ctrl; 2248 } 2249 2250 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2251 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2252 opts->host_traddr, NULL, &ctrl->src_addr); 2253 if (ret) { 2254 pr_err("malformed src address passed: %s\n", 2255 opts->host_traddr); 2256 goto out_free_ctrl; 2257 } 2258 } 2259 2260 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2261 ret = -EALREADY; 2262 goto out_free_ctrl; 2263 } 2264 2265 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2266 GFP_KERNEL); 2267 if (!ctrl->queues) { 2268 ret = -ENOMEM; 2269 goto out_free_ctrl; 2270 } 2271 2272 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2273 if (ret) 2274 goto out_kfree_queues; 2275 2276 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2277 WARN_ON_ONCE(1); 2278 ret = -EINTR; 2279 goto out_uninit_ctrl; 2280 } 2281 2282 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2283 if (ret) 2284 goto out_uninit_ctrl; 2285 2286 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2287 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2288 2289 nvme_get_ctrl(&ctrl->ctrl); 2290 2291 mutex_lock(&nvme_tcp_ctrl_mutex); 2292 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2293 mutex_unlock(&nvme_tcp_ctrl_mutex); 2294 2295 return &ctrl->ctrl; 2296 2297 out_uninit_ctrl: 2298 nvme_uninit_ctrl(&ctrl->ctrl); 2299 nvme_put_ctrl(&ctrl->ctrl); 2300 if (ret > 0) 2301 ret = -EIO; 2302 return ERR_PTR(ret); 2303 out_kfree_queues: 2304 kfree(ctrl->queues); 2305 out_free_ctrl: 2306 kfree(ctrl); 2307 return ERR_PTR(ret); 2308 } 2309 2310 static struct nvmf_transport_ops nvme_tcp_transport = { 2311 .name = "tcp", 2312 .module = THIS_MODULE, 2313 .required_opts = NVMF_OPT_TRADDR, 2314 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2315 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2316 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2317 NVMF_OPT_NR_WRITE_QUEUES, 2318 .create_ctrl = nvme_tcp_create_ctrl, 2319 }; 2320 2321 static int __init nvme_tcp_init_module(void) 2322 { 2323 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2324 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2325 if (!nvme_tcp_wq) 2326 return -ENOMEM; 2327 2328 nvmf_register_transport(&nvme_tcp_transport); 2329 return 0; 2330 } 2331 2332 static void __exit nvme_tcp_cleanup_module(void) 2333 { 2334 struct nvme_tcp_ctrl *ctrl; 2335 2336 nvmf_unregister_transport(&nvme_tcp_transport); 2337 2338 mutex_lock(&nvme_tcp_ctrl_mutex); 2339 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2340 nvme_delete_ctrl(&ctrl->ctrl); 2341 mutex_unlock(&nvme_tcp_ctrl_mutex); 2342 flush_workqueue(nvme_delete_wq); 2343 2344 destroy_workqueue(nvme_tcp_wq); 2345 } 2346 2347 module_init(nvme_tcp_init_module); 2348 module_exit(nvme_tcp_cleanup_module); 2349 2350 MODULE_LICENSE("GPL v2"); 2351