xref: /openbmc/linux/drivers/net/can/m_can/m_can.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 //      Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6 
7 /* Bosch M_CAN user manual can be obtained from:
8  * https://github.com/linux-can/can-doc/tree/master/m_can
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/can/dev.h>
13 #include <linux/ethtool.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 
27 #include "m_can.h"
28 
29 /* registers definition */
30 enum m_can_reg {
31 	M_CAN_CREL	= 0x0,
32 	M_CAN_ENDN	= 0x4,
33 	M_CAN_CUST	= 0x8,
34 	M_CAN_DBTP	= 0xc,
35 	M_CAN_TEST	= 0x10,
36 	M_CAN_RWD	= 0x14,
37 	M_CAN_CCCR	= 0x18,
38 	M_CAN_NBTP	= 0x1c,
39 	M_CAN_TSCC	= 0x20,
40 	M_CAN_TSCV	= 0x24,
41 	M_CAN_TOCC	= 0x28,
42 	M_CAN_TOCV	= 0x2c,
43 	M_CAN_ECR	= 0x40,
44 	M_CAN_PSR	= 0x44,
45 	/* TDCR Register only available for version >=3.1.x */
46 	M_CAN_TDCR	= 0x48,
47 	M_CAN_IR	= 0x50,
48 	M_CAN_IE	= 0x54,
49 	M_CAN_ILS	= 0x58,
50 	M_CAN_ILE	= 0x5c,
51 	M_CAN_GFC	= 0x80,
52 	M_CAN_SIDFC	= 0x84,
53 	M_CAN_XIDFC	= 0x88,
54 	M_CAN_XIDAM	= 0x90,
55 	M_CAN_HPMS	= 0x94,
56 	M_CAN_NDAT1	= 0x98,
57 	M_CAN_NDAT2	= 0x9c,
58 	M_CAN_RXF0C	= 0xa0,
59 	M_CAN_RXF0S	= 0xa4,
60 	M_CAN_RXF0A	= 0xa8,
61 	M_CAN_RXBC	= 0xac,
62 	M_CAN_RXF1C	= 0xb0,
63 	M_CAN_RXF1S	= 0xb4,
64 	M_CAN_RXF1A	= 0xb8,
65 	M_CAN_RXESC	= 0xbc,
66 	M_CAN_TXBC	= 0xc0,
67 	M_CAN_TXFQS	= 0xc4,
68 	M_CAN_TXESC	= 0xc8,
69 	M_CAN_TXBRP	= 0xcc,
70 	M_CAN_TXBAR	= 0xd0,
71 	M_CAN_TXBCR	= 0xd4,
72 	M_CAN_TXBTO	= 0xd8,
73 	M_CAN_TXBCF	= 0xdc,
74 	M_CAN_TXBTIE	= 0xe0,
75 	M_CAN_TXBCIE	= 0xe4,
76 	M_CAN_TXEFC	= 0xf0,
77 	M_CAN_TXEFS	= 0xf4,
78 	M_CAN_TXEFA	= 0xf8,
79 };
80 
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN	8
83 
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK		GENMASK(31, 28)
86 #define CREL_STEP_MASK		GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK	GENMASK(23, 20)
88 
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC		BIT(23)
91 #define DBTP_DBRP_MASK		GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK	GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK	GENMASK(7, 4)
94 #define DBTP_DSJW_MASK		GENMASK(3, 0)
95 
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK		GENMASK(14, 8)
98 #define TDCR_TDCF_MASK		GENMASK(6, 0)
99 
100 /* Test Register (TEST) */
101 #define TEST_LBCK		BIT(4)
102 
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP		BIT(14)
105 #define CCCR_TEST		BIT(7)
106 #define CCCR_DAR		BIT(6)
107 #define CCCR_MON		BIT(5)
108 #define CCCR_CSR		BIT(4)
109 #define CCCR_CSA		BIT(3)
110 #define CCCR_ASM		BIT(2)
111 #define CCCR_CCE		BIT(1)
112 #define CCCR_INIT		BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK		GENMASK(11, 10)
115 #define CCCR_CMR_CANFD		0x1
116 #define CCCR_CMR_CANFD_BRS	0x2
117 #define CCCR_CMR_CAN		0x3
118 #define CCCR_CME_MASK		GENMASK(9, 8)
119 #define CCCR_CME_CAN		0
120 #define CCCR_CME_CANFD		0x1
121 #define CCCR_CME_CANFD_BRS	0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI		BIT(13)
124 #define CCCR_PXHD		BIT(12)
125 #define CCCR_BRSE		BIT(9)
126 #define CCCR_FDOE		BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO		BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM		BIT(11)
131 #define CCCR_UTSU		BIT(10)
132 
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK		GENMASK(31, 25)
135 #define NBTP_NBRP_MASK		GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK	GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK	GENMASK(6, 0)
138 
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK		GENMASK(19, 16)
141 #define TSCC_TSS_MASK		GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE	0x0
143 #define TSCC_TSS_INTERNAL	0x1
144 #define TSCC_TSS_EXTERNAL	0x2
145 
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK		GENMASK(15, 0)
148 
149 /* Error Counter Register (ECR) */
150 #define ECR_RP			BIT(15)
151 #define ECR_REC_MASK		GENMASK(14, 8)
152 #define ECR_TEC_MASK		GENMASK(7, 0)
153 
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO		BIT(7)
156 #define PSR_EW		BIT(6)
157 #define PSR_EP		BIT(5)
158 #define PSR_LEC_MASK	GENMASK(2, 0)
159 #define PSR_DLEC_MASK	GENMASK(10, 8)
160 
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT	0xffffffff
163 
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA		BIT(29)
166 #define IR_PED		BIT(28)
167 #define IR_PEA		BIT(27)
168 
169 /* Bits for version 3.0.x */
170 #define IR_STE		BIT(31)
171 #define IR_FOE		BIT(30)
172 #define IR_ACKE		BIT(29)
173 #define IR_BE		BIT(28)
174 #define IR_CRCE		BIT(27)
175 #define IR_WDI		BIT(26)
176 #define IR_BO		BIT(25)
177 #define IR_EW		BIT(24)
178 #define IR_EP		BIT(23)
179 #define IR_ELO		BIT(22)
180 #define IR_BEU		BIT(21)
181 #define IR_BEC		BIT(20)
182 #define IR_DRX		BIT(19)
183 #define IR_TOO		BIT(18)
184 #define IR_MRAF		BIT(17)
185 #define IR_TSW		BIT(16)
186 #define IR_TEFL		BIT(15)
187 #define IR_TEFF		BIT(14)
188 #define IR_TEFW		BIT(13)
189 #define IR_TEFN		BIT(12)
190 #define IR_TFE		BIT(11)
191 #define IR_TCF		BIT(10)
192 #define IR_TC		BIT(9)
193 #define IR_HPM		BIT(8)
194 #define IR_RF1L		BIT(7)
195 #define IR_RF1F		BIT(6)
196 #define IR_RF1W		BIT(5)
197 #define IR_RF1N		BIT(4)
198 #define IR_RF0L		BIT(3)
199 #define IR_RF0F		BIT(2)
200 #define IR_RF0W		BIT(1)
201 #define IR_RF0N		BIT(0)
202 #define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
203 
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 			 IR_RF0L)
209 #define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
210 
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X	(IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 			 IR_RF0L)
216 #define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
217 
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0	0x0
220 #define ILS_ALL_INT1	0xFFFFFFFF
221 
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1	BIT(1)
224 #define ILE_EINT0	BIT(0)
225 
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK	GENMASK(30, 24)
228 #define RXFC_FS_MASK	GENMASK(22, 16)
229 
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL	BIT(25)
232 #define RXFS_FF		BIT(24)
233 #define RXFS_FPI_MASK	GENMASK(21, 16)
234 #define RXFS_FGI_MASK	GENMASK(13, 8)
235 #define RXFS_FFL_MASK	GENMASK(6, 0)
236 
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK		GENMASK(10, 8)
239 #define RXESC_F1DS_MASK		GENMASK(6, 4)
240 #define RXESC_F0DS_MASK		GENMASK(2, 0)
241 #define RXESC_64B		0x7
242 
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK		GENMASK(29, 24)
245 #define TXBC_NDTB_MASK		GENMASK(21, 16)
246 
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF		BIT(21)
249 #define TXFQS_TFQPI_MASK	GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK		GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK		GENMASK(5, 0)
252 
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK		GENMASK(2, 0)
255 #define TXESC_TBDS_64B		0x7
256 
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFS_MASK		GENMASK(21, 16)
259 
260 /* Tx Event FIFO Status (TXEFS) */
261 #define TXEFS_TEFL		BIT(25)
262 #define TXEFS_EFF		BIT(24)
263 #define TXEFS_EFGI_MASK		GENMASK(12, 8)
264 #define TXEFS_EFFL_MASK		GENMASK(5, 0)
265 
266 /* Tx Event FIFO Acknowledge (TXEFA) */
267 #define TXEFA_EFAI_MASK		GENMASK(4, 0)
268 
269 /* Message RAM Configuration (in bytes) */
270 #define SIDF_ELEMENT_SIZE	4
271 #define XIDF_ELEMENT_SIZE	8
272 #define RXF0_ELEMENT_SIZE	72
273 #define RXF1_ELEMENT_SIZE	72
274 #define RXB_ELEMENT_SIZE	72
275 #define TXE_ELEMENT_SIZE	8
276 #define TXB_ELEMENT_SIZE	72
277 
278 /* Message RAM Elements */
279 #define M_CAN_FIFO_ID		0x0
280 #define M_CAN_FIFO_DLC		0x4
281 #define M_CAN_FIFO_DATA		0x8
282 
283 /* Rx Buffer Element */
284 /* R0 */
285 #define RX_BUF_ESI		BIT(31)
286 #define RX_BUF_XTD		BIT(30)
287 #define RX_BUF_RTR		BIT(29)
288 /* R1 */
289 #define RX_BUF_ANMF		BIT(31)
290 #define RX_BUF_FDF		BIT(21)
291 #define RX_BUF_BRS		BIT(20)
292 #define RX_BUF_RXTS_MASK	GENMASK(15, 0)
293 
294 /* Tx Buffer Element */
295 /* T0 */
296 #define TX_BUF_ESI		BIT(31)
297 #define TX_BUF_XTD		BIT(30)
298 #define TX_BUF_RTR		BIT(29)
299 /* T1 */
300 #define TX_BUF_EFC		BIT(23)
301 #define TX_BUF_FDF		BIT(21)
302 #define TX_BUF_BRS		BIT(20)
303 #define TX_BUF_MM_MASK		GENMASK(31, 24)
304 #define TX_BUF_DLC_MASK		GENMASK(19, 16)
305 
306 /* Tx event FIFO Element */
307 /* E1 */
308 #define TX_EVENT_MM_MASK	GENMASK(31, 24)
309 #define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
310 
311 /* Hrtimer polling interval */
312 #define HRTIMER_POLL_INTERVAL_MS		1
313 
314 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
315  * and we can save a (potentially slow) bus round trip by combining
316  * reads and writes to them.
317  */
318 struct id_and_dlc {
319 	u32 id;
320 	u32 dlc;
321 };
322 
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)323 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
324 {
325 	return cdev->ops->read_reg(cdev, reg);
326 }
327 
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)328 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
329 			       u32 val)
330 {
331 	cdev->ops->write_reg(cdev, reg, val);
332 }
333 
334 static int
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset,void * val,size_t val_count)335 m_can_fifo_read(struct m_can_classdev *cdev,
336 		u32 fgi, unsigned int offset, void *val, size_t val_count)
337 {
338 	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339 		offset;
340 
341 	if (val_count == 0)
342 		return 0;
343 
344 	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
345 }
346 
347 static int
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,const void * val,size_t val_count)348 m_can_fifo_write(struct m_can_classdev *cdev,
349 		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
350 {
351 	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
352 		offset;
353 
354 	if (val_count == 0)
355 		return 0;
356 
357 	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
358 }
359 
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)360 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
361 					  u32 fpi, u32 val)
362 {
363 	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
364 }
365 
366 static int
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset,u32 * val)367 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
368 {
369 	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
370 		offset;
371 
372 	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
373 }
374 
_m_can_tx_fifo_full(u32 txfqs)375 static inline bool _m_can_tx_fifo_full(u32 txfqs)
376 {
377 	return !!(txfqs & TXFQS_TFQF);
378 }
379 
m_can_tx_fifo_full(struct m_can_classdev * cdev)380 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
381 {
382 	return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS));
383 }
384 
m_can_config_endisable(struct m_can_classdev * cdev,bool enable)385 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
386 {
387 	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
388 	u32 timeout = 10;
389 	u32 val = 0;
390 
391 	/* Clear the Clock stop request if it was set */
392 	if (cccr & CCCR_CSR)
393 		cccr &= ~CCCR_CSR;
394 
395 	if (enable) {
396 		/* enable m_can configuration */
397 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
398 		udelay(5);
399 		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
400 		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
401 	} else {
402 		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
403 	}
404 
405 	/* there's a delay for module initialization */
406 	if (enable)
407 		val = CCCR_INIT | CCCR_CCE;
408 
409 	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
410 		if (timeout == 0) {
411 			netdev_warn(cdev->net, "Failed to init module\n");
412 			return;
413 		}
414 		timeout--;
415 		udelay(1);
416 	}
417 }
418 
m_can_enable_all_interrupts(struct m_can_classdev * cdev)419 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
420 {
421 	if (!cdev->net->irq) {
422 		dev_dbg(cdev->dev, "Start hrtimer\n");
423 		hrtimer_start(&cdev->hrtimer,
424 			      ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
425 			      HRTIMER_MODE_REL_PINNED);
426 	}
427 
428 	/* Only interrupt line 0 is used in this driver */
429 	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
430 }
431 
m_can_disable_all_interrupts(struct m_can_classdev * cdev)432 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
433 {
434 	m_can_write(cdev, M_CAN_ILE, 0x0);
435 
436 	if (!cdev->net->irq) {
437 		dev_dbg(cdev->dev, "Stop hrtimer\n");
438 		hrtimer_cancel(&cdev->hrtimer);
439 	}
440 }
441 
442 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
443  * width.
444  */
m_can_get_timestamp(struct m_can_classdev * cdev)445 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
446 {
447 	u32 tscv;
448 	u32 tsc;
449 
450 	tscv = m_can_read(cdev, M_CAN_TSCV);
451 	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
452 
453 	return (tsc << 16);
454 }
455 
m_can_clean(struct net_device * net)456 static void m_can_clean(struct net_device *net)
457 {
458 	struct m_can_classdev *cdev = netdev_priv(net);
459 
460 	if (cdev->tx_skb) {
461 		int putidx = 0;
462 
463 		net->stats.tx_errors++;
464 		if (cdev->version > 30)
465 			putidx = FIELD_GET(TXFQS_TFQPI_MASK,
466 					   m_can_read(cdev, M_CAN_TXFQS));
467 
468 		can_free_echo_skb(cdev->net, putidx, NULL);
469 		cdev->tx_skb = NULL;
470 	}
471 }
472 
473 /* For peripherals, pass skb to rx-offload, which will push skb from
474  * napi. For non-peripherals, RX is done in napi already, so push
475  * directly. timestamp is used to ensure good skb ordering in
476  * rx-offload and is ignored for non-peripherals.
477  */
m_can_receive_skb(struct m_can_classdev * cdev,struct sk_buff * skb,u32 timestamp)478 static void m_can_receive_skb(struct m_can_classdev *cdev,
479 			      struct sk_buff *skb,
480 			      u32 timestamp)
481 {
482 	if (cdev->is_peripheral) {
483 		struct net_device_stats *stats = &cdev->net->stats;
484 		int err;
485 
486 		err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
487 						     timestamp);
488 		if (err)
489 			stats->rx_fifo_errors++;
490 	} else {
491 		netif_receive_skb(skb);
492 	}
493 }
494 
m_can_read_fifo(struct net_device * dev,u32 fgi)495 static int m_can_read_fifo(struct net_device *dev, u32 fgi)
496 {
497 	struct net_device_stats *stats = &dev->stats;
498 	struct m_can_classdev *cdev = netdev_priv(dev);
499 	struct canfd_frame *cf;
500 	struct sk_buff *skb;
501 	struct id_and_dlc fifo_header;
502 	u32 timestamp = 0;
503 	int err;
504 
505 	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
506 	if (err)
507 		goto out_fail;
508 
509 	if (fifo_header.dlc & RX_BUF_FDF)
510 		skb = alloc_canfd_skb(dev, &cf);
511 	else
512 		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
513 	if (!skb) {
514 		stats->rx_dropped++;
515 		return 0;
516 	}
517 
518 	if (fifo_header.dlc & RX_BUF_FDF)
519 		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
520 	else
521 		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
522 
523 	if (fifo_header.id & RX_BUF_XTD)
524 		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
525 	else
526 		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
527 
528 	if (fifo_header.id & RX_BUF_ESI) {
529 		cf->flags |= CANFD_ESI;
530 		netdev_dbg(dev, "ESI Error\n");
531 	}
532 
533 	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
534 		cf->can_id |= CAN_RTR_FLAG;
535 	} else {
536 		if (fifo_header.dlc & RX_BUF_BRS)
537 			cf->flags |= CANFD_BRS;
538 
539 		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
540 				      cf->data, DIV_ROUND_UP(cf->len, 4));
541 		if (err)
542 			goto out_free_skb;
543 
544 		stats->rx_bytes += cf->len;
545 	}
546 	stats->rx_packets++;
547 
548 	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
549 
550 	m_can_receive_skb(cdev, skb, timestamp);
551 
552 	return 0;
553 
554 out_free_skb:
555 	kfree_skb(skb);
556 out_fail:
557 	netdev_err(dev, "FIFO read returned %d\n", err);
558 	return err;
559 }
560 
m_can_do_rx_poll(struct net_device * dev,int quota)561 static int m_can_do_rx_poll(struct net_device *dev, int quota)
562 {
563 	struct m_can_classdev *cdev = netdev_priv(dev);
564 	u32 pkts = 0;
565 	u32 rxfs;
566 	u32 rx_count;
567 	u32 fgi;
568 	int ack_fgi = -1;
569 	int i;
570 	int err = 0;
571 
572 	rxfs = m_can_read(cdev, M_CAN_RXF0S);
573 	if (!(rxfs & RXFS_FFL_MASK)) {
574 		netdev_dbg(dev, "no messages in fifo0\n");
575 		return 0;
576 	}
577 
578 	rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
579 	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
580 
581 	for (i = 0; i < rx_count && quota > 0; ++i) {
582 		err = m_can_read_fifo(dev, fgi);
583 		if (err)
584 			break;
585 
586 		quota--;
587 		pkts++;
588 		ack_fgi = fgi;
589 		fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
590 	}
591 
592 	if (ack_fgi != -1)
593 		m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
594 
595 	if (err)
596 		return err;
597 
598 	return pkts;
599 }
600 
m_can_handle_lost_msg(struct net_device * dev)601 static int m_can_handle_lost_msg(struct net_device *dev)
602 {
603 	struct m_can_classdev *cdev = netdev_priv(dev);
604 	struct net_device_stats *stats = &dev->stats;
605 	struct sk_buff *skb;
606 	struct can_frame *frame;
607 	u32 timestamp = 0;
608 
609 	netdev_err(dev, "msg lost in rxf0\n");
610 
611 	stats->rx_errors++;
612 	stats->rx_over_errors++;
613 
614 	skb = alloc_can_err_skb(dev, &frame);
615 	if (unlikely(!skb))
616 		return 0;
617 
618 	frame->can_id |= CAN_ERR_CRTL;
619 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
620 
621 	if (cdev->is_peripheral)
622 		timestamp = m_can_get_timestamp(cdev);
623 
624 	m_can_receive_skb(cdev, skb, timestamp);
625 
626 	return 1;
627 }
628 
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)629 static int m_can_handle_lec_err(struct net_device *dev,
630 				enum m_can_lec_type lec_type)
631 {
632 	struct m_can_classdev *cdev = netdev_priv(dev);
633 	struct net_device_stats *stats = &dev->stats;
634 	struct can_frame *cf;
635 	struct sk_buff *skb;
636 	u32 timestamp = 0;
637 
638 	cdev->can.can_stats.bus_error++;
639 
640 	/* propagate the error condition to the CAN stack */
641 	skb = alloc_can_err_skb(dev, &cf);
642 
643 	/* check for 'last error code' which tells us the
644 	 * type of the last error to occur on the CAN bus
645 	 */
646 	if (likely(skb))
647 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
648 
649 	switch (lec_type) {
650 	case LEC_STUFF_ERROR:
651 		netdev_dbg(dev, "stuff error\n");
652 		stats->rx_errors++;
653 		if (likely(skb))
654 			cf->data[2] |= CAN_ERR_PROT_STUFF;
655 		break;
656 	case LEC_FORM_ERROR:
657 		netdev_dbg(dev, "form error\n");
658 		stats->rx_errors++;
659 		if (likely(skb))
660 			cf->data[2] |= CAN_ERR_PROT_FORM;
661 		break;
662 	case LEC_ACK_ERROR:
663 		netdev_dbg(dev, "ack error\n");
664 		stats->tx_errors++;
665 		if (likely(skb))
666 			cf->data[3] = CAN_ERR_PROT_LOC_ACK;
667 		break;
668 	case LEC_BIT1_ERROR:
669 		netdev_dbg(dev, "bit1 error\n");
670 		stats->tx_errors++;
671 		if (likely(skb))
672 			cf->data[2] |= CAN_ERR_PROT_BIT1;
673 		break;
674 	case LEC_BIT0_ERROR:
675 		netdev_dbg(dev, "bit0 error\n");
676 		stats->tx_errors++;
677 		if (likely(skb))
678 			cf->data[2] |= CAN_ERR_PROT_BIT0;
679 		break;
680 	case LEC_CRC_ERROR:
681 		netdev_dbg(dev, "CRC error\n");
682 		stats->rx_errors++;
683 		if (likely(skb))
684 			cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
685 		break;
686 	default:
687 		break;
688 	}
689 
690 	if (unlikely(!skb))
691 		return 0;
692 
693 	if (cdev->is_peripheral)
694 		timestamp = m_can_get_timestamp(cdev);
695 
696 	m_can_receive_skb(cdev, skb, timestamp);
697 
698 	return 1;
699 }
700 
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)701 static int __m_can_get_berr_counter(const struct net_device *dev,
702 				    struct can_berr_counter *bec)
703 {
704 	struct m_can_classdev *cdev = netdev_priv(dev);
705 	unsigned int ecr;
706 
707 	ecr = m_can_read(cdev, M_CAN_ECR);
708 	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
709 	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
710 
711 	return 0;
712 }
713 
m_can_clk_start(struct m_can_classdev * cdev)714 static int m_can_clk_start(struct m_can_classdev *cdev)
715 {
716 	if (cdev->pm_clock_support == 0)
717 		return 0;
718 
719 	return pm_runtime_resume_and_get(cdev->dev);
720 }
721 
m_can_clk_stop(struct m_can_classdev * cdev)722 static void m_can_clk_stop(struct m_can_classdev *cdev)
723 {
724 	if (cdev->pm_clock_support)
725 		pm_runtime_put_sync(cdev->dev);
726 }
727 
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)728 static int m_can_get_berr_counter(const struct net_device *dev,
729 				  struct can_berr_counter *bec)
730 {
731 	struct m_can_classdev *cdev = netdev_priv(dev);
732 	int err;
733 
734 	err = m_can_clk_start(cdev);
735 	if (err)
736 		return err;
737 
738 	__m_can_get_berr_counter(dev, bec);
739 
740 	m_can_clk_stop(cdev);
741 
742 	return 0;
743 }
744 
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)745 static int m_can_handle_state_change(struct net_device *dev,
746 				     enum can_state new_state)
747 {
748 	struct m_can_classdev *cdev = netdev_priv(dev);
749 	struct can_frame *cf;
750 	struct sk_buff *skb;
751 	struct can_berr_counter bec;
752 	unsigned int ecr;
753 	u32 timestamp = 0;
754 
755 	switch (new_state) {
756 	case CAN_STATE_ERROR_WARNING:
757 		/* error warning state */
758 		cdev->can.can_stats.error_warning++;
759 		cdev->can.state = CAN_STATE_ERROR_WARNING;
760 		break;
761 	case CAN_STATE_ERROR_PASSIVE:
762 		/* error passive state */
763 		cdev->can.can_stats.error_passive++;
764 		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
765 		break;
766 	case CAN_STATE_BUS_OFF:
767 		/* bus-off state */
768 		cdev->can.state = CAN_STATE_BUS_OFF;
769 		m_can_disable_all_interrupts(cdev);
770 		cdev->can.can_stats.bus_off++;
771 		can_bus_off(dev);
772 		break;
773 	default:
774 		break;
775 	}
776 
777 	/* propagate the error condition to the CAN stack */
778 	skb = alloc_can_err_skb(dev, &cf);
779 	if (unlikely(!skb))
780 		return 0;
781 
782 	__m_can_get_berr_counter(dev, &bec);
783 
784 	switch (new_state) {
785 	case CAN_STATE_ERROR_WARNING:
786 		/* error warning state */
787 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
788 		cf->data[1] = (bec.txerr > bec.rxerr) ?
789 			CAN_ERR_CRTL_TX_WARNING :
790 			CAN_ERR_CRTL_RX_WARNING;
791 		cf->data[6] = bec.txerr;
792 		cf->data[7] = bec.rxerr;
793 		break;
794 	case CAN_STATE_ERROR_PASSIVE:
795 		/* error passive state */
796 		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
797 		ecr = m_can_read(cdev, M_CAN_ECR);
798 		if (ecr & ECR_RP)
799 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
800 		if (bec.txerr > 127)
801 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
802 		cf->data[6] = bec.txerr;
803 		cf->data[7] = bec.rxerr;
804 		break;
805 	case CAN_STATE_BUS_OFF:
806 		/* bus-off state */
807 		cf->can_id |= CAN_ERR_BUSOFF;
808 		break;
809 	default:
810 		break;
811 	}
812 
813 	if (cdev->is_peripheral)
814 		timestamp = m_can_get_timestamp(cdev);
815 
816 	m_can_receive_skb(cdev, skb, timestamp);
817 
818 	return 1;
819 }
820 
m_can_handle_state_errors(struct net_device * dev,u32 psr)821 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
822 {
823 	struct m_can_classdev *cdev = netdev_priv(dev);
824 	int work_done = 0;
825 
826 	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
827 		netdev_dbg(dev, "entered error warning state\n");
828 		work_done += m_can_handle_state_change(dev,
829 						       CAN_STATE_ERROR_WARNING);
830 	}
831 
832 	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
833 		netdev_dbg(dev, "entered error passive state\n");
834 		work_done += m_can_handle_state_change(dev,
835 						       CAN_STATE_ERROR_PASSIVE);
836 	}
837 
838 	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
839 		netdev_dbg(dev, "entered error bus off state\n");
840 		work_done += m_can_handle_state_change(dev,
841 						       CAN_STATE_BUS_OFF);
842 	}
843 
844 	return work_done;
845 }
846 
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)847 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
848 {
849 	if (irqstatus & IR_WDI)
850 		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
851 	if (irqstatus & IR_BEU)
852 		netdev_err(dev, "Bit Error Uncorrected\n");
853 	if (irqstatus & IR_BEC)
854 		netdev_err(dev, "Bit Error Corrected\n");
855 	if (irqstatus & IR_TOO)
856 		netdev_err(dev, "Timeout reached\n");
857 	if (irqstatus & IR_MRAF)
858 		netdev_err(dev, "Message RAM access failure occurred\n");
859 }
860 
is_lec_err(u8 lec)861 static inline bool is_lec_err(u8 lec)
862 {
863 	return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
864 }
865 
m_can_is_protocol_err(u32 irqstatus)866 static inline bool m_can_is_protocol_err(u32 irqstatus)
867 {
868 	return irqstatus & IR_ERR_LEC_31X;
869 }
870 
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)871 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
872 {
873 	struct net_device_stats *stats = &dev->stats;
874 	struct m_can_classdev *cdev = netdev_priv(dev);
875 	struct can_frame *cf;
876 	struct sk_buff *skb;
877 	u32 timestamp = 0;
878 
879 	/* propagate the error condition to the CAN stack */
880 	skb = alloc_can_err_skb(dev, &cf);
881 
882 	/* update tx error stats since there is protocol error */
883 	stats->tx_errors++;
884 
885 	/* update arbitration lost status */
886 	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
887 		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
888 		cdev->can.can_stats.arbitration_lost++;
889 		if (skb) {
890 			cf->can_id |= CAN_ERR_LOSTARB;
891 			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
892 		}
893 	}
894 
895 	if (unlikely(!skb)) {
896 		netdev_dbg(dev, "allocation of skb failed\n");
897 		return 0;
898 	}
899 
900 	if (cdev->is_peripheral)
901 		timestamp = m_can_get_timestamp(cdev);
902 
903 	m_can_receive_skb(cdev, skb, timestamp);
904 
905 	return 1;
906 }
907 
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)908 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
909 				   u32 psr)
910 {
911 	struct m_can_classdev *cdev = netdev_priv(dev);
912 	int work_done = 0;
913 
914 	if (irqstatus & IR_RF0L)
915 		work_done += m_can_handle_lost_msg(dev);
916 
917 	/* handle lec errors on the bus */
918 	if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
919 		u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
920 		u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
921 
922 		if (is_lec_err(lec)) {
923 			netdev_dbg(dev, "Arbitration phase error detected\n");
924 			work_done += m_can_handle_lec_err(dev, lec);
925 		}
926 
927 		if (is_lec_err(dlec)) {
928 			netdev_dbg(dev, "Data phase error detected\n");
929 			work_done += m_can_handle_lec_err(dev, dlec);
930 		}
931 	}
932 
933 	/* handle protocol errors in arbitration phase */
934 	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
935 	    m_can_is_protocol_err(irqstatus))
936 		work_done += m_can_handle_protocol_error(dev, irqstatus);
937 
938 	/* other unproccessed error interrupts */
939 	m_can_handle_other_err(dev, irqstatus);
940 
941 	return work_done;
942 }
943 
m_can_rx_handler(struct net_device * dev,int quota,u32 irqstatus)944 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
945 {
946 	struct m_can_classdev *cdev = netdev_priv(dev);
947 	int rx_work_or_err;
948 	int work_done = 0;
949 
950 	if (!irqstatus)
951 		goto end;
952 
953 	/* Errata workaround for issue "Needless activation of MRAF irq"
954 	 * During frame reception while the MCAN is in Error Passive state
955 	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
956 	 * it may happen that MCAN_IR.MRAF is set although there was no
957 	 * Message RAM access failure.
958 	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
959 	 * The Message RAM Access Failure interrupt routine needs to check
960 	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
961 	 * In this case, reset MCAN_IR.MRAF. No further action is required.
962 	 */
963 	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
964 	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
965 		struct can_berr_counter bec;
966 
967 		__m_can_get_berr_counter(dev, &bec);
968 		if (bec.rxerr == 127) {
969 			m_can_write(cdev, M_CAN_IR, IR_MRAF);
970 			irqstatus &= ~IR_MRAF;
971 		}
972 	}
973 
974 	if (irqstatus & IR_ERR_STATE)
975 		work_done += m_can_handle_state_errors(dev,
976 						       m_can_read(cdev, M_CAN_PSR));
977 
978 	if (irqstatus & IR_ERR_BUS_30X)
979 		work_done += m_can_handle_bus_errors(dev, irqstatus,
980 						     m_can_read(cdev, M_CAN_PSR));
981 
982 	if (irqstatus & IR_RF0N) {
983 		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
984 		if (rx_work_or_err < 0)
985 			return rx_work_or_err;
986 
987 		work_done += rx_work_or_err;
988 	}
989 end:
990 	return work_done;
991 }
992 
m_can_rx_peripheral(struct net_device * dev,u32 irqstatus)993 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus)
994 {
995 	struct m_can_classdev *cdev = netdev_priv(dev);
996 	int work_done;
997 
998 	work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus);
999 
1000 	/* Don't re-enable interrupts if the driver had a fatal error
1001 	 * (e.g., FIFO read failure).
1002 	 */
1003 	if (work_done < 0)
1004 		m_can_disable_all_interrupts(cdev);
1005 
1006 	return work_done;
1007 }
1008 
m_can_poll(struct napi_struct * napi,int quota)1009 static int m_can_poll(struct napi_struct *napi, int quota)
1010 {
1011 	struct net_device *dev = napi->dev;
1012 	struct m_can_classdev *cdev = netdev_priv(dev);
1013 	int work_done;
1014 	u32 irqstatus;
1015 
1016 	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1017 
1018 	work_done = m_can_rx_handler(dev, quota, irqstatus);
1019 
1020 	/* Don't re-enable interrupts if the driver had a fatal error
1021 	 * (e.g., FIFO read failure).
1022 	 */
1023 	if (work_done >= 0 && work_done < quota) {
1024 		napi_complete_done(napi, work_done);
1025 		m_can_enable_all_interrupts(cdev);
1026 	}
1027 
1028 	return work_done;
1029 }
1030 
1031 /* Echo tx skb and update net stats. Peripherals use rx-offload for
1032  * echo. timestamp is used for peripherals to ensure correct ordering
1033  * by rx-offload, and is ignored for non-peripherals.
1034  */
m_can_tx_update_stats(struct m_can_classdev * cdev,unsigned int msg_mark,u32 timestamp)1035 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
1036 				  unsigned int msg_mark,
1037 				  u32 timestamp)
1038 {
1039 	struct net_device *dev = cdev->net;
1040 	struct net_device_stats *stats = &dev->stats;
1041 
1042 	if (cdev->is_peripheral)
1043 		stats->tx_bytes +=
1044 			can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1045 								    msg_mark,
1046 								    timestamp,
1047 								    NULL);
1048 	else
1049 		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1050 
1051 	stats->tx_packets++;
1052 }
1053 
m_can_echo_tx_event(struct net_device * dev)1054 static int m_can_echo_tx_event(struct net_device *dev)
1055 {
1056 	u32 txe_count = 0;
1057 	u32 m_can_txefs;
1058 	u32 fgi = 0;
1059 	int ack_fgi = -1;
1060 	int i = 0;
1061 	int err = 0;
1062 	unsigned int msg_mark;
1063 
1064 	struct m_can_classdev *cdev = netdev_priv(dev);
1065 
1066 	/* read tx event fifo status */
1067 	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1068 
1069 	/* Get Tx Event fifo element count */
1070 	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1071 	fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1072 
1073 	/* Get and process all sent elements */
1074 	for (i = 0; i < txe_count; i++) {
1075 		u32 txe, timestamp = 0;
1076 
1077 		/* get message marker, timestamp */
1078 		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1079 		if (err) {
1080 			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1081 			break;
1082 		}
1083 
1084 		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1085 		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1086 
1087 		ack_fgi = fgi;
1088 		fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1089 
1090 		/* update stats */
1091 		m_can_tx_update_stats(cdev, msg_mark, timestamp);
1092 	}
1093 
1094 	if (ack_fgi != -1)
1095 		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1096 							  ack_fgi));
1097 
1098 	return err;
1099 }
1100 
m_can_isr(int irq,void * dev_id)1101 static irqreturn_t m_can_isr(int irq, void *dev_id)
1102 {
1103 	struct net_device *dev = (struct net_device *)dev_id;
1104 	struct m_can_classdev *cdev = netdev_priv(dev);
1105 	u32 ir;
1106 
1107 	if (pm_runtime_suspended(cdev->dev))
1108 		return IRQ_NONE;
1109 	ir = m_can_read(cdev, M_CAN_IR);
1110 	if (!ir)
1111 		return IRQ_NONE;
1112 
1113 	/* ACK all irqs */
1114 	m_can_write(cdev, M_CAN_IR, ir);
1115 
1116 	if (cdev->ops->clear_interrupts)
1117 		cdev->ops->clear_interrupts(cdev);
1118 
1119 	/* schedule NAPI in case of
1120 	 * - rx IRQ
1121 	 * - state change IRQ
1122 	 * - bus error IRQ and bus error reporting
1123 	 */
1124 	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1125 		cdev->irqstatus = ir;
1126 		if (!cdev->is_peripheral) {
1127 			m_can_disable_all_interrupts(cdev);
1128 			napi_schedule(&cdev->napi);
1129 		} else if (m_can_rx_peripheral(dev, ir) < 0) {
1130 			goto out_fail;
1131 		}
1132 	}
1133 
1134 	if (cdev->version == 30) {
1135 		if (ir & IR_TC) {
1136 			/* Transmission Complete Interrupt*/
1137 			u32 timestamp = 0;
1138 
1139 			if (cdev->is_peripheral)
1140 				timestamp = m_can_get_timestamp(cdev);
1141 			m_can_tx_update_stats(cdev, 0, timestamp);
1142 			netif_wake_queue(dev);
1143 		}
1144 	} else  {
1145 		if (ir & IR_TEFN) {
1146 			/* New TX FIFO Element arrived */
1147 			if (m_can_echo_tx_event(dev) != 0)
1148 				goto out_fail;
1149 
1150 			if (netif_queue_stopped(dev) &&
1151 			    !m_can_tx_fifo_full(cdev))
1152 				netif_wake_queue(dev);
1153 		}
1154 	}
1155 
1156 	if (cdev->is_peripheral)
1157 		can_rx_offload_threaded_irq_finish(&cdev->offload);
1158 
1159 	return IRQ_HANDLED;
1160 
1161 out_fail:
1162 	m_can_disable_all_interrupts(cdev);
1163 	return IRQ_HANDLED;
1164 }
1165 
1166 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1167 	.name = KBUILD_MODNAME,
1168 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1169 	.tseg1_max = 64,
1170 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1171 	.tseg2_max = 16,
1172 	.sjw_max = 16,
1173 	.brp_min = 1,
1174 	.brp_max = 1024,
1175 	.brp_inc = 1,
1176 };
1177 
1178 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1179 	.name = KBUILD_MODNAME,
1180 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1181 	.tseg1_max = 16,
1182 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1183 	.tseg2_max = 8,
1184 	.sjw_max = 4,
1185 	.brp_min = 1,
1186 	.brp_max = 32,
1187 	.brp_inc = 1,
1188 };
1189 
1190 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1191 	.name = KBUILD_MODNAME,
1192 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1193 	.tseg1_max = 256,
1194 	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1195 	.tseg2_max = 128,
1196 	.sjw_max = 128,
1197 	.brp_min = 1,
1198 	.brp_max = 512,
1199 	.brp_inc = 1,
1200 };
1201 
1202 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1203 	.name = KBUILD_MODNAME,
1204 	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1205 	.tseg1_max = 32,
1206 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1207 	.tseg2_max = 16,
1208 	.sjw_max = 16,
1209 	.brp_min = 1,
1210 	.brp_max = 32,
1211 	.brp_inc = 1,
1212 };
1213 
m_can_set_bittiming(struct net_device * dev)1214 static int m_can_set_bittiming(struct net_device *dev)
1215 {
1216 	struct m_can_classdev *cdev = netdev_priv(dev);
1217 	const struct can_bittiming *bt = &cdev->can.bittiming;
1218 	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1219 	u16 brp, sjw, tseg1, tseg2;
1220 	u32 reg_btp;
1221 
1222 	brp = bt->brp - 1;
1223 	sjw = bt->sjw - 1;
1224 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1225 	tseg2 = bt->phase_seg2 - 1;
1226 	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1227 		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1228 		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1229 		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1230 	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1231 
1232 	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1233 		reg_btp = 0;
1234 		brp = dbt->brp - 1;
1235 		sjw = dbt->sjw - 1;
1236 		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1237 		tseg2 = dbt->phase_seg2 - 1;
1238 
1239 		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1240 		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1241 		 * paper presented at the International CAN Conference 2013
1242 		 */
1243 		if (dbt->bitrate > 2500000) {
1244 			u32 tdco, ssp;
1245 
1246 			/* Use the same value of secondary sampling point
1247 			 * as the data sampling point
1248 			 */
1249 			ssp = dbt->sample_point;
1250 
1251 			/* Equation based on Bosch's M_CAN User Manual's
1252 			 * Transmitter Delay Compensation Section
1253 			 */
1254 			tdco = (cdev->can.clock.freq / 1000) *
1255 				ssp / dbt->bitrate;
1256 
1257 			/* Max valid TDCO value is 127 */
1258 			if (tdco > 127) {
1259 				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1260 					    tdco);
1261 				tdco = 127;
1262 			}
1263 
1264 			reg_btp |= DBTP_TDC;
1265 			m_can_write(cdev, M_CAN_TDCR,
1266 				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1267 		}
1268 
1269 		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1270 			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1271 			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1272 			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1273 
1274 		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 /* Configure M_CAN chip:
1281  * - set rx buffer/fifo element size
1282  * - configure rx fifo
1283  * - accept non-matching frame into fifo 0
1284  * - configure tx buffer
1285  *		- >= v3.1.x: TX FIFO is used
1286  * - configure mode
1287  * - setup bittiming
1288  * - configure timestamp generation
1289  */
m_can_chip_config(struct net_device * dev)1290 static int m_can_chip_config(struct net_device *dev)
1291 {
1292 	struct m_can_classdev *cdev = netdev_priv(dev);
1293 	u32 interrupts = IR_ALL_INT;
1294 	u32 cccr, test;
1295 	int err;
1296 
1297 	err = m_can_init_ram(cdev);
1298 	if (err) {
1299 		dev_err(cdev->dev, "Message RAM configuration failed\n");
1300 		return err;
1301 	}
1302 
1303 	/* Disable unused interrupts */
1304 	interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TEFW | IR_TFE |
1305 			IR_TCF | IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N |
1306 			IR_RF0F | IR_RF0W);
1307 
1308 	m_can_config_endisable(cdev, true);
1309 
1310 	/* RX Buffer/FIFO Element Size 64 bytes data field */
1311 	m_can_write(cdev, M_CAN_RXESC,
1312 		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1313 		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1314 		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1315 
1316 	/* Accept Non-matching Frames Into FIFO 0 */
1317 	m_can_write(cdev, M_CAN_GFC, 0x0);
1318 
1319 	if (cdev->version == 30) {
1320 		/* only support one Tx Buffer currently */
1321 		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1322 			    cdev->mcfg[MRAM_TXB].off);
1323 	} else {
1324 		/* TX FIFO is used for newer IP Core versions */
1325 		m_can_write(cdev, M_CAN_TXBC,
1326 			    FIELD_PREP(TXBC_TFQS_MASK,
1327 				       cdev->mcfg[MRAM_TXB].num) |
1328 			    cdev->mcfg[MRAM_TXB].off);
1329 	}
1330 
1331 	/* support 64 bytes payload */
1332 	m_can_write(cdev, M_CAN_TXESC,
1333 		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1334 
1335 	/* TX Event FIFO */
1336 	if (cdev->version == 30) {
1337 		m_can_write(cdev, M_CAN_TXEFC,
1338 			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1339 			    cdev->mcfg[MRAM_TXE].off);
1340 	} else {
1341 		/* Full TX Event FIFO is used */
1342 		m_can_write(cdev, M_CAN_TXEFC,
1343 			    FIELD_PREP(TXEFC_EFS_MASK,
1344 				       cdev->mcfg[MRAM_TXE].num) |
1345 			    cdev->mcfg[MRAM_TXE].off);
1346 	}
1347 
1348 	/* rx fifo configuration, blocking mode, fifo size 1 */
1349 	m_can_write(cdev, M_CAN_RXF0C,
1350 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1351 		    cdev->mcfg[MRAM_RXF0].off);
1352 
1353 	m_can_write(cdev, M_CAN_RXF1C,
1354 		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1355 		    cdev->mcfg[MRAM_RXF1].off);
1356 
1357 	cccr = m_can_read(cdev, M_CAN_CCCR);
1358 	test = m_can_read(cdev, M_CAN_TEST);
1359 	test &= ~TEST_LBCK;
1360 	if (cdev->version == 30) {
1361 		/* Version 3.0.x */
1362 
1363 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1364 			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1365 			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1366 
1367 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1368 			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1369 
1370 	} else {
1371 		/* Version 3.1.x or 3.2.x */
1372 		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1373 			  CCCR_NISO | CCCR_DAR);
1374 
1375 		/* Only 3.2.x has NISO Bit implemented */
1376 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1377 			cccr |= CCCR_NISO;
1378 
1379 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1380 			cccr |= (CCCR_BRSE | CCCR_FDOE);
1381 	}
1382 
1383 	/* Loopback Mode */
1384 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1385 		cccr |= CCCR_TEST | CCCR_MON;
1386 		test |= TEST_LBCK;
1387 	}
1388 
1389 	/* Enable Monitoring (all versions) */
1390 	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1391 		cccr |= CCCR_MON;
1392 
1393 	/* Disable Auto Retransmission (all versions) */
1394 	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1395 		cccr |= CCCR_DAR;
1396 
1397 	/* Write config */
1398 	m_can_write(cdev, M_CAN_CCCR, cccr);
1399 	m_can_write(cdev, M_CAN_TEST, test);
1400 
1401 	/* Enable interrupts */
1402 	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1403 		if (cdev->version == 30)
1404 			interrupts &= ~(IR_ERR_LEC_30X);
1405 		else
1406 			interrupts &= ~(IR_ERR_LEC_31X);
1407 	}
1408 	m_can_write(cdev, M_CAN_IE, interrupts);
1409 
1410 	/* route all interrupts to INT0 */
1411 	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1412 
1413 	/* set bittiming params */
1414 	m_can_set_bittiming(dev);
1415 
1416 	/* enable internal timestamp generation, with a prescaler of 16. The
1417 	 * prescaler is applied to the nominal bit timing
1418 	 */
1419 	m_can_write(cdev, M_CAN_TSCC,
1420 		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1421 		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1422 
1423 	m_can_config_endisable(cdev, false);
1424 
1425 	if (cdev->ops->init)
1426 		cdev->ops->init(cdev);
1427 
1428 	return 0;
1429 }
1430 
m_can_start(struct net_device * dev)1431 static int m_can_start(struct net_device *dev)
1432 {
1433 	struct m_can_classdev *cdev = netdev_priv(dev);
1434 	int ret;
1435 
1436 	/* basic m_can configuration */
1437 	ret = m_can_chip_config(dev);
1438 	if (ret)
1439 		return ret;
1440 
1441 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1442 
1443 	m_can_enable_all_interrupts(cdev);
1444 
1445 	return 0;
1446 }
1447 
m_can_set_mode(struct net_device * dev,enum can_mode mode)1448 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1449 {
1450 	switch (mode) {
1451 	case CAN_MODE_START:
1452 		m_can_clean(dev);
1453 		m_can_start(dev);
1454 		netif_wake_queue(dev);
1455 		break;
1456 	default:
1457 		return -EOPNOTSUPP;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 /* Checks core release number of M_CAN
1464  * returns 0 if an unsupported device is detected
1465  * else it returns the release and step coded as:
1466  * return value = 10 * <release> + 1 * <step>
1467  */
m_can_check_core_release(struct m_can_classdev * cdev)1468 static int m_can_check_core_release(struct m_can_classdev *cdev)
1469 {
1470 	u32 crel_reg;
1471 	u8 rel;
1472 	u8 step;
1473 	int res;
1474 
1475 	/* Read Core Release Version and split into version number
1476 	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1477 	 */
1478 	crel_reg = m_can_read(cdev, M_CAN_CREL);
1479 	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1480 	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1481 
1482 	if (rel == 3) {
1483 		/* M_CAN v3.x.y: create return value */
1484 		res = 30 + step;
1485 	} else {
1486 		/* Unsupported M_CAN version */
1487 		res = 0;
1488 	}
1489 
1490 	return res;
1491 }
1492 
1493 /* Selectable Non ISO support only in version 3.2.x
1494  * This function checks if the bit is writable.
1495  */
m_can_niso_supported(struct m_can_classdev * cdev)1496 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1497 {
1498 	u32 cccr_reg, cccr_poll = 0;
1499 	int niso_timeout = -ETIMEDOUT;
1500 	int i;
1501 
1502 	m_can_config_endisable(cdev, true);
1503 	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1504 	cccr_reg |= CCCR_NISO;
1505 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1506 
1507 	for (i = 0; i <= 10; i++) {
1508 		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1509 		if (cccr_poll == cccr_reg) {
1510 			niso_timeout = 0;
1511 			break;
1512 		}
1513 
1514 		usleep_range(1, 5);
1515 	}
1516 
1517 	/* Clear NISO */
1518 	cccr_reg &= ~(CCCR_NISO);
1519 	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1520 
1521 	m_can_config_endisable(cdev, false);
1522 
1523 	/* return false if time out (-ETIMEDOUT), else return true */
1524 	return !niso_timeout;
1525 }
1526 
m_can_dev_setup(struct m_can_classdev * cdev)1527 static int m_can_dev_setup(struct m_can_classdev *cdev)
1528 {
1529 	struct net_device *dev = cdev->net;
1530 	int m_can_version, err;
1531 
1532 	m_can_version = m_can_check_core_release(cdev);
1533 	/* return if unsupported version */
1534 	if (!m_can_version) {
1535 		dev_err(cdev->dev, "Unsupported version number: %2d",
1536 			m_can_version);
1537 		return -EINVAL;
1538 	}
1539 
1540 	if (!cdev->is_peripheral)
1541 		netif_napi_add(dev, &cdev->napi, m_can_poll);
1542 
1543 	/* Shared properties of all M_CAN versions */
1544 	cdev->version = m_can_version;
1545 	cdev->can.do_set_mode = m_can_set_mode;
1546 	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1547 
1548 	/* Set M_CAN supported operations */
1549 	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1550 		CAN_CTRLMODE_LISTENONLY |
1551 		CAN_CTRLMODE_BERR_REPORTING |
1552 		CAN_CTRLMODE_FD |
1553 		CAN_CTRLMODE_ONE_SHOT;
1554 
1555 	/* Set properties depending on M_CAN version */
1556 	switch (cdev->version) {
1557 	case 30:
1558 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1559 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1560 		if (err)
1561 			return err;
1562 		cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1563 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1564 		break;
1565 	case 31:
1566 		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1567 		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1568 		if (err)
1569 			return err;
1570 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1571 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1572 		break;
1573 	case 32:
1574 	case 33:
1575 		/* Support both MCAN version v3.2.x and v3.3.0 */
1576 		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1577 		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1578 
1579 		cdev->can.ctrlmode_supported |=
1580 			(m_can_niso_supported(cdev) ?
1581 			 CAN_CTRLMODE_FD_NON_ISO : 0);
1582 		break;
1583 	default:
1584 		dev_err(cdev->dev, "Unsupported version number: %2d",
1585 			cdev->version);
1586 		return -EINVAL;
1587 	}
1588 
1589 	if (cdev->ops->init)
1590 		cdev->ops->init(cdev);
1591 
1592 	return 0;
1593 }
1594 
m_can_stop(struct net_device * dev)1595 static void m_can_stop(struct net_device *dev)
1596 {
1597 	struct m_can_classdev *cdev = netdev_priv(dev);
1598 
1599 	/* disable all interrupts */
1600 	m_can_disable_all_interrupts(cdev);
1601 
1602 	/* Set init mode to disengage from the network */
1603 	m_can_config_endisable(cdev, true);
1604 
1605 	/* set the state as STOPPED */
1606 	cdev->can.state = CAN_STATE_STOPPED;
1607 }
1608 
m_can_close(struct net_device * dev)1609 static int m_can_close(struct net_device *dev)
1610 {
1611 	struct m_can_classdev *cdev = netdev_priv(dev);
1612 
1613 	netif_stop_queue(dev);
1614 
1615 	m_can_stop(dev);
1616 	if (dev->irq)
1617 		free_irq(dev->irq, dev);
1618 
1619 	if (cdev->is_peripheral) {
1620 		cdev->tx_skb = NULL;
1621 		destroy_workqueue(cdev->tx_wq);
1622 		cdev->tx_wq = NULL;
1623 		can_rx_offload_disable(&cdev->offload);
1624 	} else {
1625 		napi_disable(&cdev->napi);
1626 	}
1627 
1628 	close_candev(dev);
1629 
1630 	m_can_clk_stop(cdev);
1631 	phy_power_off(cdev->transceiver);
1632 
1633 	return 0;
1634 }
1635 
m_can_next_echo_skb_occupied(struct net_device * dev,int putidx)1636 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1637 {
1638 	struct m_can_classdev *cdev = netdev_priv(dev);
1639 	/*get wrap around for loopback skb index */
1640 	unsigned int wrap = cdev->can.echo_skb_max;
1641 	int next_idx;
1642 
1643 	/* calculate next index */
1644 	next_idx = (++putidx >= wrap ? 0 : putidx);
1645 
1646 	/* check if occupied */
1647 	return !!cdev->can.echo_skb[next_idx];
1648 }
1649 
m_can_tx_handler(struct m_can_classdev * cdev)1650 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1651 {
1652 	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1653 	struct net_device *dev = cdev->net;
1654 	struct sk_buff *skb = cdev->tx_skb;
1655 	struct id_and_dlc fifo_header;
1656 	u32 cccr, fdflags;
1657 	u32 txfqs;
1658 	int err;
1659 	int putidx;
1660 
1661 	cdev->tx_skb = NULL;
1662 
1663 	/* Generate ID field for TX buffer Element */
1664 	/* Common to all supported M_CAN versions */
1665 	if (cf->can_id & CAN_EFF_FLAG) {
1666 		fifo_header.id = cf->can_id & CAN_EFF_MASK;
1667 		fifo_header.id |= TX_BUF_XTD;
1668 	} else {
1669 		fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1670 	}
1671 
1672 	if (cf->can_id & CAN_RTR_FLAG)
1673 		fifo_header.id |= TX_BUF_RTR;
1674 
1675 	if (cdev->version == 30) {
1676 		netif_stop_queue(dev);
1677 
1678 		fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1679 
1680 		/* Write the frame ID, DLC, and payload to the FIFO element. */
1681 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1682 		if (err)
1683 			goto out_fail;
1684 
1685 		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1686 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1687 		if (err)
1688 			goto out_fail;
1689 
1690 		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1691 			cccr = m_can_read(cdev, M_CAN_CCCR);
1692 			cccr &= ~CCCR_CMR_MASK;
1693 			if (can_is_canfd_skb(skb)) {
1694 				if (cf->flags & CANFD_BRS)
1695 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1696 							   CCCR_CMR_CANFD_BRS);
1697 				else
1698 					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1699 							   CCCR_CMR_CANFD);
1700 			} else {
1701 				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1702 			}
1703 			m_can_write(cdev, M_CAN_CCCR, cccr);
1704 		}
1705 		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1706 
1707 		can_put_echo_skb(skb, dev, 0, 0);
1708 
1709 		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1710 		/* End of xmit function for version 3.0.x */
1711 	} else {
1712 		/* Transmit routine for version >= v3.1.x */
1713 
1714 		txfqs = m_can_read(cdev, M_CAN_TXFQS);
1715 
1716 		/* Check if FIFO full */
1717 		if (_m_can_tx_fifo_full(txfqs)) {
1718 			/* This shouldn't happen */
1719 			netif_stop_queue(dev);
1720 			netdev_warn(dev,
1721 				    "TX queue active although FIFO is full.");
1722 
1723 			if (cdev->is_peripheral) {
1724 				kfree_skb(skb);
1725 				dev->stats.tx_dropped++;
1726 				return NETDEV_TX_OK;
1727 			} else {
1728 				return NETDEV_TX_BUSY;
1729 			}
1730 		}
1731 
1732 		/* get put index for frame */
1733 		putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs);
1734 
1735 		/* Construct DLC Field, with CAN-FD configuration.
1736 		 * Use the put index of the fifo as the message marker,
1737 		 * used in the TX interrupt for sending the correct echo frame.
1738 		 */
1739 
1740 		/* get CAN FD configuration of frame */
1741 		fdflags = 0;
1742 		if (can_is_canfd_skb(skb)) {
1743 			fdflags |= TX_BUF_FDF;
1744 			if (cf->flags & CANFD_BRS)
1745 				fdflags |= TX_BUF_BRS;
1746 		}
1747 
1748 		fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1749 			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1750 			fdflags | TX_BUF_EFC;
1751 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1752 		if (err)
1753 			goto out_fail;
1754 
1755 		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1756 				       cf->data, DIV_ROUND_UP(cf->len, 4));
1757 		if (err)
1758 			goto out_fail;
1759 
1760 		/* Push loopback echo.
1761 		 * Will be looped back on TX interrupt based on message marker
1762 		 */
1763 		can_put_echo_skb(skb, dev, putidx, 0);
1764 
1765 		/* Enable TX FIFO element to start transfer  */
1766 		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1767 
1768 		/* stop network queue if fifo full */
1769 		if (m_can_tx_fifo_full(cdev) ||
1770 		    m_can_next_echo_skb_occupied(dev, putidx))
1771 			netif_stop_queue(dev);
1772 	}
1773 
1774 	return NETDEV_TX_OK;
1775 
1776 out_fail:
1777 	netdev_err(dev, "FIFO write returned %d\n", err);
1778 	m_can_disable_all_interrupts(cdev);
1779 	return NETDEV_TX_BUSY;
1780 }
1781 
m_can_tx_work_queue(struct work_struct * ws)1782 static void m_can_tx_work_queue(struct work_struct *ws)
1783 {
1784 	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1785 						   tx_work);
1786 
1787 	m_can_tx_handler(cdev);
1788 }
1789 
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)1790 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1791 				    struct net_device *dev)
1792 {
1793 	struct m_can_classdev *cdev = netdev_priv(dev);
1794 
1795 	if (can_dev_dropped_skb(dev, skb))
1796 		return NETDEV_TX_OK;
1797 
1798 	if (cdev->is_peripheral) {
1799 		if (cdev->tx_skb) {
1800 			netdev_err(dev, "hard_xmit called while tx busy\n");
1801 			return NETDEV_TX_BUSY;
1802 		}
1803 
1804 		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1805 			m_can_clean(dev);
1806 		} else {
1807 			/* Need to stop the queue to avoid numerous requests
1808 			 * from being sent.  Suggested improvement is to create
1809 			 * a queueing mechanism that will queue the skbs and
1810 			 * process them in order.
1811 			 */
1812 			cdev->tx_skb = skb;
1813 			netif_stop_queue(cdev->net);
1814 			queue_work(cdev->tx_wq, &cdev->tx_work);
1815 		}
1816 	} else {
1817 		cdev->tx_skb = skb;
1818 		return m_can_tx_handler(cdev);
1819 	}
1820 
1821 	return NETDEV_TX_OK;
1822 }
1823 
hrtimer_callback(struct hrtimer * timer)1824 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
1825 {
1826 	struct m_can_classdev *cdev = container_of(timer, struct
1827 						   m_can_classdev, hrtimer);
1828 
1829 	m_can_isr(0, cdev->net);
1830 
1831 	hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
1832 
1833 	return HRTIMER_RESTART;
1834 }
1835 
m_can_open(struct net_device * dev)1836 static int m_can_open(struct net_device *dev)
1837 {
1838 	struct m_can_classdev *cdev = netdev_priv(dev);
1839 	int err;
1840 
1841 	err = phy_power_on(cdev->transceiver);
1842 	if (err)
1843 		return err;
1844 
1845 	err = m_can_clk_start(cdev);
1846 	if (err)
1847 		goto out_phy_power_off;
1848 
1849 	/* open the can device */
1850 	err = open_candev(dev);
1851 	if (err) {
1852 		netdev_err(dev, "failed to open can device\n");
1853 		goto exit_disable_clks;
1854 	}
1855 
1856 	if (cdev->is_peripheral)
1857 		can_rx_offload_enable(&cdev->offload);
1858 	else
1859 		napi_enable(&cdev->napi);
1860 
1861 	/* register interrupt handler */
1862 	if (cdev->is_peripheral) {
1863 		cdev->tx_skb = NULL;
1864 		cdev->tx_wq = alloc_workqueue("mcan_wq",
1865 					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1866 		if (!cdev->tx_wq) {
1867 			err = -ENOMEM;
1868 			goto out_wq_fail;
1869 		}
1870 
1871 		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1872 
1873 		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1874 					   IRQF_ONESHOT,
1875 					   dev->name, dev);
1876 	} else if (dev->irq) {
1877 		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1878 				  dev);
1879 	}
1880 
1881 	if (err < 0) {
1882 		netdev_err(dev, "failed to request interrupt\n");
1883 		goto exit_irq_fail;
1884 	}
1885 
1886 	/* start the m_can controller */
1887 	err = m_can_start(dev);
1888 	if (err)
1889 		goto exit_start_fail;
1890 
1891 	netif_start_queue(dev);
1892 
1893 	return 0;
1894 
1895 exit_start_fail:
1896 	if (cdev->is_peripheral || dev->irq)
1897 		free_irq(dev->irq, dev);
1898 exit_irq_fail:
1899 	if (cdev->is_peripheral)
1900 		destroy_workqueue(cdev->tx_wq);
1901 out_wq_fail:
1902 	if (cdev->is_peripheral)
1903 		can_rx_offload_disable(&cdev->offload);
1904 	else
1905 		napi_disable(&cdev->napi);
1906 	close_candev(dev);
1907 exit_disable_clks:
1908 	m_can_clk_stop(cdev);
1909 out_phy_power_off:
1910 	phy_power_off(cdev->transceiver);
1911 	return err;
1912 }
1913 
1914 static const struct net_device_ops m_can_netdev_ops = {
1915 	.ndo_open = m_can_open,
1916 	.ndo_stop = m_can_close,
1917 	.ndo_start_xmit = m_can_start_xmit,
1918 	.ndo_change_mtu = can_change_mtu,
1919 };
1920 
1921 static const struct ethtool_ops m_can_ethtool_ops = {
1922 	.get_ts_info = ethtool_op_get_ts_info,
1923 };
1924 
register_m_can_dev(struct net_device * dev)1925 static int register_m_can_dev(struct net_device *dev)
1926 {
1927 	dev->flags |= IFF_ECHO;	/* we support local echo */
1928 	dev->netdev_ops = &m_can_netdev_ops;
1929 	dev->ethtool_ops = &m_can_ethtool_ops;
1930 
1931 	return register_candev(dev);
1932 }
1933 
m_can_check_mram_cfg(struct m_can_classdev * cdev,u32 mram_max_size)1934 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
1935 {
1936 	u32 total_size;
1937 
1938 	total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
1939 			cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1940 	if (total_size > mram_max_size) {
1941 		dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
1942 			total_size, mram_max_size);
1943 		return -EINVAL;
1944 	}
1945 
1946 	return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
1949 
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)1950 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1951 				const u32 *mram_config_vals)
1952 {
1953 	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1954 	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1955 	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1956 		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1957 	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1958 	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1959 		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1960 	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1961 		FIELD_MAX(RXFC_FS_MASK);
1962 	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1963 		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1964 	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1965 		FIELD_MAX(RXFC_FS_MASK);
1966 	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1967 		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1968 	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1969 	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1970 		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1971 	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1972 	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1973 		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1974 	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1975 		FIELD_MAX(TXBC_NDTB_MASK);
1976 
1977 	dev_dbg(cdev->dev,
1978 		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1979 		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1980 		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1981 		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1982 		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1983 		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1984 		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1985 		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1986 }
1987 
m_can_init_ram(struct m_can_classdev * cdev)1988 int m_can_init_ram(struct m_can_classdev *cdev)
1989 {
1990 	int end, i, start;
1991 	int err = 0;
1992 
1993 	/* initialize the entire Message RAM in use to avoid possible
1994 	 * ECC/parity checksum errors when reading an uninitialized buffer
1995 	 */
1996 	start = cdev->mcfg[MRAM_SIDF].off;
1997 	end = cdev->mcfg[MRAM_TXB].off +
1998 		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1999 
2000 	for (i = start; i < end; i += 4) {
2001 		err = m_can_fifo_write_no_off(cdev, i, 0x0);
2002 		if (err)
2003 			break;
2004 	}
2005 
2006 	return err;
2007 }
2008 EXPORT_SYMBOL_GPL(m_can_init_ram);
2009 
m_can_class_get_clocks(struct m_can_classdev * cdev)2010 int m_can_class_get_clocks(struct m_can_classdev *cdev)
2011 {
2012 	int ret = 0;
2013 
2014 	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2015 	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2016 
2017 	if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2018 		dev_err(cdev->dev, "no clock found\n");
2019 		ret = -ENODEV;
2020 	}
2021 
2022 	return ret;
2023 }
2024 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2025 
m_can_class_allocate_dev(struct device * dev,int sizeof_priv)2026 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2027 						int sizeof_priv)
2028 {
2029 	struct m_can_classdev *class_dev = NULL;
2030 	u32 mram_config_vals[MRAM_CFG_LEN];
2031 	struct net_device *net_dev;
2032 	u32 tx_fifo_size;
2033 	int ret;
2034 
2035 	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2036 					     "bosch,mram-cfg",
2037 					     mram_config_vals,
2038 					     sizeof(mram_config_vals) / 4);
2039 	if (ret) {
2040 		dev_err(dev, "Could not get Message RAM configuration.");
2041 		goto out;
2042 	}
2043 
2044 	/* Get TX FIFO size
2045 	 * Defines the total amount of echo buffers for loopback
2046 	 */
2047 	tx_fifo_size = mram_config_vals[7];
2048 
2049 	/* allocate the m_can device */
2050 	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2051 	if (!net_dev) {
2052 		dev_err(dev, "Failed to allocate CAN device");
2053 		goto out;
2054 	}
2055 
2056 	class_dev = netdev_priv(net_dev);
2057 	class_dev->net = net_dev;
2058 	class_dev->dev = dev;
2059 	SET_NETDEV_DEV(net_dev, dev);
2060 
2061 	m_can_of_parse_mram(class_dev, mram_config_vals);
2062 out:
2063 	return class_dev;
2064 }
2065 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2066 
m_can_class_free_dev(struct net_device * net)2067 void m_can_class_free_dev(struct net_device *net)
2068 {
2069 	free_candev(net);
2070 }
2071 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2072 
m_can_class_register(struct m_can_classdev * cdev)2073 int m_can_class_register(struct m_can_classdev *cdev)
2074 {
2075 	int ret;
2076 
2077 	if (cdev->pm_clock_support) {
2078 		ret = m_can_clk_start(cdev);
2079 		if (ret)
2080 			return ret;
2081 	}
2082 
2083 	if (cdev->is_peripheral) {
2084 		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2085 						NAPI_POLL_WEIGHT);
2086 		if (ret)
2087 			goto clk_disable;
2088 	}
2089 
2090 	if (!cdev->net->irq)
2091 		cdev->hrtimer.function = &hrtimer_callback;
2092 
2093 	ret = m_can_dev_setup(cdev);
2094 	if (ret)
2095 		goto rx_offload_del;
2096 
2097 	ret = register_m_can_dev(cdev->net);
2098 	if (ret) {
2099 		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2100 			cdev->net->name, ret);
2101 		goto rx_offload_del;
2102 	}
2103 
2104 	of_can_transceiver(cdev->net);
2105 
2106 	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2107 		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2108 
2109 	/* Probe finished
2110 	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2111 	 */
2112 	m_can_clk_stop(cdev);
2113 
2114 	return 0;
2115 
2116 rx_offload_del:
2117 	if (cdev->is_peripheral)
2118 		can_rx_offload_del(&cdev->offload);
2119 clk_disable:
2120 	m_can_clk_stop(cdev);
2121 
2122 	return ret;
2123 }
2124 EXPORT_SYMBOL_GPL(m_can_class_register);
2125 
m_can_class_unregister(struct m_can_classdev * cdev)2126 void m_can_class_unregister(struct m_can_classdev *cdev)
2127 {
2128 	if (cdev->is_peripheral)
2129 		can_rx_offload_del(&cdev->offload);
2130 	unregister_candev(cdev->net);
2131 }
2132 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2133 
m_can_class_suspend(struct device * dev)2134 int m_can_class_suspend(struct device *dev)
2135 {
2136 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2137 	struct net_device *ndev = cdev->net;
2138 
2139 	if (netif_running(ndev)) {
2140 		netif_stop_queue(ndev);
2141 		netif_device_detach(ndev);
2142 		m_can_stop(ndev);
2143 		m_can_clk_stop(cdev);
2144 	}
2145 
2146 	pinctrl_pm_select_sleep_state(dev);
2147 
2148 	cdev->can.state = CAN_STATE_SLEEPING;
2149 
2150 	return 0;
2151 }
2152 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2153 
m_can_class_resume(struct device * dev)2154 int m_can_class_resume(struct device *dev)
2155 {
2156 	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2157 	struct net_device *ndev = cdev->net;
2158 
2159 	pinctrl_pm_select_default_state(dev);
2160 
2161 	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2162 
2163 	if (netif_running(ndev)) {
2164 		int ret;
2165 
2166 		ret = m_can_clk_start(cdev);
2167 		if (ret)
2168 			return ret;
2169 		ret  = m_can_start(ndev);
2170 		if (ret) {
2171 			m_can_clk_stop(cdev);
2172 
2173 			return ret;
2174 		}
2175 
2176 		netif_device_attach(ndev);
2177 		netif_start_queue(ndev);
2178 	}
2179 
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(m_can_class_resume);
2183 
2184 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2185 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2186 MODULE_LICENSE("GPL v2");
2187 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2188