xref: /openbmc/linux/drivers/mtd/spi-nor/spansion.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/device.h>
9 #include <linux/errno.h>
10 #include <linux/mtd/spi-nor.h>
11 
12 #include "core.h"
13 
14 /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
15 #define USE_CLSR	BIT(0)
16 #define USE_CLPEF	BIT(1)
17 
18 #define SPINOR_OP_CLSR		0x30	/* Clear status register 1 */
19 #define SPINOR_OP_CLPEF		0x82	/* Clear program/erase failure flags */
20 #define SPINOR_OP_RD_ANY_REG			0x65	/* Read any register */
21 #define SPINOR_OP_WR_ANY_REG			0x71	/* Write any register */
22 #define SPINOR_REG_CYPRESS_VREG			0x00800000
23 #define SPINOR_REG_CYPRESS_STR1			0x0
24 #define SPINOR_REG_CYPRESS_STR1V					\
25 	(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1)
26 #define SPINOR_REG_CYPRESS_CFR1			0x2
27 #define SPINOR_REG_CYPRESS_CFR1_QUAD_EN		BIT(1)	/* Quad Enable */
28 #define SPINOR_REG_CYPRESS_CFR2			0x3
29 #define SPINOR_REG_CYPRESS_CFR2V					\
30 	(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2)
31 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK	GENMASK(3, 0)
32 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24	0xb
33 #define SPINOR_REG_CYPRESS_CFR2_ADRBYT		BIT(7)
34 #define SPINOR_REG_CYPRESS_CFR3			0x4
35 #define SPINOR_REG_CYPRESS_CFR3_PGSZ		BIT(4) /* Page size. */
36 #define SPINOR_REG_CYPRESS_CFR5			0x6
37 #define SPINOR_REG_CYPRESS_CFR5_BIT6		BIT(6)
38 #define SPINOR_REG_CYPRESS_CFR5_DDR		BIT(1)
39 #define SPINOR_REG_CYPRESS_CFR5_OPI		BIT(0)
40 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN				\
41 	(SPINOR_REG_CYPRESS_CFR5_BIT6 |	SPINOR_REG_CYPRESS_CFR5_DDR |	\
42 	 SPINOR_REG_CYPRESS_CFR5_OPI)
43 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS	SPINOR_REG_CYPRESS_CFR5_BIT6
44 #define SPINOR_OP_CYPRESS_RD_FAST		0xee
45 #define SPINOR_REG_CYPRESS_ARCFN		0x00000006
46 
47 /* Cypress SPI NOR flash operations. */
48 #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf)		\
49 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0),		\
50 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
51 		   SPI_MEM_OP_NO_DUMMY,					\
52 		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
53 
54 #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf)		\
55 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0),		\
56 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
57 		   SPI_MEM_OP_DUMMY(ndummy, 0),				\
58 		   SPI_MEM_OP_DATA_IN(1, buf, 0))
59 
60 #define SPANSION_OP(opcode)						\
61 	SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0),				\
62 		   SPI_MEM_OP_NO_ADDR,					\
63 		   SPI_MEM_OP_NO_DUMMY,					\
64 		   SPI_MEM_OP_NO_DATA)
65 
66 /**
67  * struct spansion_nor_params - Spansion private parameters.
68  * @clsr:	Clear Status Register or Clear Program and Erase Failure Flag
69  *		opcode.
70  */
71 struct spansion_nor_params {
72 	u8 clsr;
73 };
74 
75 /**
76  * spansion_nor_clear_sr() - Clear the Status Register.
77  * @nor:	pointer to 'struct spi_nor'.
78  */
spansion_nor_clear_sr(struct spi_nor * nor)79 static void spansion_nor_clear_sr(struct spi_nor *nor)
80 {
81 	const struct spansion_nor_params *priv_params = nor->params->priv;
82 	int ret;
83 
84 	if (nor->spimem) {
85 		struct spi_mem_op op = SPANSION_OP(priv_params->clsr);
86 
87 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
88 
89 		ret = spi_mem_exec_op(nor->spimem, &op);
90 	} else {
91 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
92 						       NULL, 0);
93 	}
94 
95 	if (ret)
96 		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
97 }
98 
cypress_nor_sr_ready_and_clear_reg(struct spi_nor * nor,u64 addr)99 static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr)
100 {
101 	struct spi_nor_flash_parameter *params = nor->params;
102 	struct spi_mem_op op =
103 		CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr,
104 					  0, nor->bouncebuf);
105 	int ret;
106 
107 	if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
108 		op.addr.nbytes = nor->addr_nbytes;
109 		op.dummy.nbytes = params->rdsr_dummy;
110 		op.data.nbytes = 2;
111 	}
112 
113 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
114 	if (ret)
115 		return ret;
116 
117 	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
118 		if (nor->bouncebuf[0] & SR_E_ERR)
119 			dev_err(nor->dev, "Erase Error occurred\n");
120 		else
121 			dev_err(nor->dev, "Programming Error occurred\n");
122 
123 		spansion_nor_clear_sr(nor);
124 
125 		ret = spi_nor_write_disable(nor);
126 		if (ret)
127 			return ret;
128 
129 		return -EIO;
130 	}
131 
132 	return !(nor->bouncebuf[0] & SR_WIP);
133 }
134 /**
135  * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by
136  * using Read Any Register command to see if the whole flash is ready for new
137  * commands and clear it if there are any errors.
138  * @nor:	pointer to 'struct spi_nor'.
139  *
140  * Return: 1 if ready, 0 if not ready, -errno on errors.
141  */
cypress_nor_sr_ready_and_clear(struct spi_nor * nor)142 static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor)
143 {
144 	struct spi_nor_flash_parameter *params = nor->params;
145 	u64 addr;
146 	int ret;
147 	u8 i;
148 
149 	for (i = 0; i < params->n_dice; i++) {
150 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1;
151 		ret = cypress_nor_sr_ready_and_clear_reg(nor, addr);
152 		if (ret < 0)
153 			return ret;
154 		else if (ret == 0)
155 			return 0;
156 	}
157 
158 	return 1;
159 }
160 
cypress_nor_set_memlat(struct spi_nor * nor,u64 addr)161 static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr)
162 {
163 	struct spi_mem_op op;
164 	u8 *buf = nor->bouncebuf;
165 	int ret;
166 	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
167 
168 	op = (struct spi_mem_op)
169 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf);
170 
171 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
172 	if (ret)
173 		return ret;
174 
175 	/* Use 24 dummy cycles for memory array reads. */
176 	*buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK;
177 	*buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK,
178 			   SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24);
179 	op = (struct spi_mem_op)
180 		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf);
181 
182 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
183 	if (ret)
184 		return ret;
185 
186 	nor->read_dummy = 24;
187 
188 	return 0;
189 }
190 
cypress_nor_set_octal_dtr_bits(struct spi_nor * nor,u64 addr)191 static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr)
192 {
193 	struct spi_mem_op op;
194 	u8 *buf = nor->bouncebuf;
195 
196 	/* Set the octal and DTR enable bits. */
197 	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
198 	op = (struct spi_mem_op)
199 		CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes,
200 					  addr, 1, buf);
201 
202 	return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
203 }
204 
cypress_nor_octal_dtr_en(struct spi_nor * nor)205 static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
206 {
207 	const struct spi_nor_flash_parameter *params = nor->params;
208 	u8 *buf = nor->bouncebuf;
209 	u64 addr;
210 	int i, ret;
211 
212 	for (i = 0; i < params->n_dice; i++) {
213 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2;
214 		ret = cypress_nor_set_memlat(nor, addr);
215 		if (ret)
216 			return ret;
217 
218 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
219 		ret = cypress_nor_set_octal_dtr_bits(nor, addr);
220 		if (ret)
221 			return ret;
222 	}
223 
224 	/* Read flash ID to make sure the switch was successful. */
225 	ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf,
226 			      SNOR_PROTO_8_8_8_DTR);
227 	if (ret) {
228 		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
229 		return ret;
230 	}
231 
232 	if (memcmp(buf, nor->info->id, nor->info->id_len))
233 		return -EINVAL;
234 
235 	return 0;
236 }
237 
cypress_nor_set_single_spi_bits(struct spi_nor * nor,u64 addr)238 static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr)
239 {
240 	struct spi_mem_op op;
241 	u8 *buf = nor->bouncebuf;
242 
243 	/*
244 	 * The register is 1-byte wide, but 1-byte transactions are not allowed
245 	 * in 8D-8D-8D mode. Since there is no register at the next location,
246 	 * just initialize the value to 0 and let the transaction go on.
247 	 */
248 	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS;
249 	buf[1] = 0;
250 	op = (struct spi_mem_op)
251 		CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf);
252 	return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
253 }
254 
cypress_nor_octal_dtr_dis(struct spi_nor * nor)255 static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
256 {
257 	const struct spi_nor_flash_parameter *params = nor->params;
258 	u8 *buf = nor->bouncebuf;
259 	u64 addr;
260 	int i, ret;
261 
262 	for (i = 0; i < params->n_dice; i++) {
263 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
264 		ret = cypress_nor_set_single_spi_bits(nor, addr);
265 		if (ret)
266 			return ret;
267 	}
268 
269 	/* Read flash ID to make sure the switch was successful. */
270 	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
271 	if (ret) {
272 		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
273 		return ret;
274 	}
275 
276 	if (memcmp(buf, nor->info->id, nor->info->id_len))
277 		return -EINVAL;
278 
279 	return 0;
280 }
281 
cypress_nor_quad_enable_volatile_reg(struct spi_nor * nor,u64 addr)282 static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr)
283 {
284 	struct spi_mem_op op;
285 	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
286 	u8 cfr1v_written;
287 	int ret;
288 
289 	op = (struct spi_mem_op)
290 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
291 					  nor->bouncebuf);
292 
293 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
294 	if (ret)
295 		return ret;
296 
297 	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN)
298 		return 0;
299 
300 	/* Update the Quad Enable bit. */
301 	nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN;
302 	op = (struct spi_mem_op)
303 		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1,
304 					  nor->bouncebuf);
305 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
306 	if (ret)
307 		return ret;
308 
309 	cfr1v_written = nor->bouncebuf[0];
310 
311 	/* Read back and check it. */
312 	op = (struct spi_mem_op)
313 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
314 					  nor->bouncebuf);
315 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
316 	if (ret)
317 		return ret;
318 
319 	if (nor->bouncebuf[0] != cfr1v_written) {
320 		dev_err(nor->dev, "CFR1: Read back test failed\n");
321 		return -EIO;
322 	}
323 
324 	return 0;
325 }
326 
327 /**
328  * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
329  *                                      register.
330  * @nor:	pointer to a 'struct spi_nor'
331  *
332  * It is recommended to update volatile registers in the field application due
333  * to a risk of the non-volatile registers corruption by power interrupt. This
334  * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
335  * bit in the CFR1 non-volatile in advance (typically by a Flash programmer
336  * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
337  * also set during Flash power-up.
338  *
339  * Return: 0 on success, -errno otherwise.
340  */
cypress_nor_quad_enable_volatile(struct spi_nor * nor)341 static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
342 {
343 	struct spi_nor_flash_parameter *params = nor->params;
344 	u64 addr;
345 	u8 i;
346 	int ret;
347 
348 	for (i = 0; i < params->n_dice; i++) {
349 		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1;
350 		ret = cypress_nor_quad_enable_volatile_reg(nor, addr);
351 		if (ret)
352 			return ret;
353 	}
354 
355 	return 0;
356 }
357 
358 /**
359  * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode
360  *                                            (3 or 4-byte) by querying status
361  *                                            register 1 (SR1).
362  * @nor:		pointer to a 'struct spi_nor'
363  * @addr_mode:		ponter to a buffer where we return the determined
364  *			address mode.
365  *
366  * This function tries to determine current address mode by comparing SR1 value
367  * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address).
368  *
369  * Return: 0 on success, -errno otherwise.
370  */
cypress_nor_determine_addr_mode_by_sr1(struct spi_nor * nor,u8 * addr_mode)371 static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor,
372 						  u8 *addr_mode)
373 {
374 	struct spi_mem_op op =
375 		CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0,
376 					  nor->bouncebuf);
377 	bool is3byte, is4byte;
378 	int ret;
379 
380 	ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]);
381 	if (ret)
382 		return ret;
383 
384 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
385 	if (ret)
386 		return ret;
387 
388 	is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
389 
390 	op = (struct spi_mem_op)
391 		CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0,
392 					  nor->bouncebuf);
393 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
394 	if (ret)
395 		return ret;
396 
397 	is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
398 
399 	if (is3byte == is4byte)
400 		return -EIO;
401 	if (is3byte)
402 		*addr_mode = 3;
403 	else
404 		*addr_mode = 4;
405 
406 	return 0;
407 }
408 
409 /**
410  * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of
411  *                                      current address mode.
412  * @nor:		pointer to a 'struct spi_nor'
413  *
414  * Determine current address mode by reading SR1 with different methods, then
415  * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte
416  * address mode.
417  *
418  * Return: 0 on success, -errno otherwise.
419  */
cypress_nor_set_addr_mode_nbytes(struct spi_nor * nor)420 static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor)
421 {
422 	struct spi_mem_op op;
423 	u8 addr_mode;
424 	int ret;
425 
426 	/*
427 	 * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable
428 	 * that sets bit-1 in SR1.
429 	 */
430 	ret = spi_nor_write_enable(nor);
431 	if (ret)
432 		return ret;
433 	ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode);
434 	if (ret) {
435 		ret = spi_nor_set_4byte_addr_mode(nor, true);
436 		if (ret)
437 			return ret;
438 		return spi_nor_write_disable(nor);
439 	}
440 	ret = spi_nor_write_disable(nor);
441 	if (ret)
442 		return ret;
443 
444 	/*
445 	 * Query CFR2V and make sure no contradiction between determined address
446 	 * mode and CFR2V[7].
447 	 */
448 	op = (struct spi_mem_op)
449 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V,
450 					  0, nor->bouncebuf);
451 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
452 	if (ret)
453 		return ret;
454 
455 	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) {
456 		if (addr_mode != 4)
457 			return spi_nor_set_4byte_addr_mode(nor, true);
458 	} else {
459 		if (addr_mode != 3)
460 			return spi_nor_set_4byte_addr_mode(nor, true);
461 	}
462 
463 	nor->params->addr_nbytes = addr_mode;
464 	nor->params->addr_mode_nbytes = addr_mode;
465 
466 	return 0;
467 }
468 
469 /**
470  * cypress_nor_get_page_size() - Get flash page size configuration.
471  * @nor:	pointer to a 'struct spi_nor'
472  *
473  * The BFPT table advertises a 512B or 256B page size depending on part but the
474  * page size is actually configurable (with the default being 256B). Read from
475  * CFR3V[4] and set the correct size.
476  *
477  * Return: 0 on success, -errno otherwise.
478  */
cypress_nor_get_page_size(struct spi_nor * nor)479 static int cypress_nor_get_page_size(struct spi_nor *nor)
480 {
481 	struct spi_mem_op op =
482 		CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
483 					  0, 0, nor->bouncebuf);
484 	struct spi_nor_flash_parameter *params = nor->params;
485 	int ret;
486 	u8 i;
487 
488 	/*
489 	 * Use the minimum common page size configuration. Programming 256-byte
490 	 * under 512-byte page size configuration is safe.
491 	 */
492 	params->page_size = 256;
493 	for (i = 0; i < params->n_dice; i++) {
494 		op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3;
495 
496 		ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
497 		if (ret)
498 			return ret;
499 
500 		if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ))
501 			return 0;
502 	}
503 
504 	params->page_size = 512;
505 
506 	return 0;
507 }
508 
cypress_nor_ecc_init(struct spi_nor * nor)509 static void cypress_nor_ecc_init(struct spi_nor *nor)
510 {
511 	/*
512 	 * Programming is supported only in 16-byte ECC data unit granularity.
513 	 * Byte-programming, bit-walking, or multiple program operations to the
514 	 * same ECC data unit without an erase are not allowed.
515 	 */
516 	nor->params->writesize = 16;
517 	nor->flags |= SNOR_F_ECC;
518 }
519 
520 static int
s25fs256t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)521 s25fs256t_post_bfpt_fixup(struct spi_nor *nor,
522 			  const struct sfdp_parameter_header *bfpt_header,
523 			  const struct sfdp_bfpt *bfpt)
524 {
525 	struct spi_mem_op op;
526 	int ret;
527 
528 	ret = cypress_nor_set_addr_mode_nbytes(nor);
529 	if (ret)
530 		return ret;
531 
532 	/* Read Architecture Configuration Register (ARCFN) */
533 	op = (struct spi_mem_op)
534 		CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
535 					  SPINOR_REG_CYPRESS_ARCFN, 1,
536 					  nor->bouncebuf);
537 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
538 	if (ret)
539 		return ret;
540 
541 	/* ARCFN value must be 0 if uniform sector is selected  */
542 	if (nor->bouncebuf[0])
543 		return -ENODEV;
544 
545 	return 0;
546 }
547 
s25fs256t_post_sfdp_fixup(struct spi_nor * nor)548 static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor)
549 {
550 	struct spi_nor_flash_parameter *params = nor->params;
551 
552 	/*
553 	 * S25FS256T does not define the SCCR map, but we would like to use the
554 	 * same code base for both single and multi chip package devices, thus
555 	 * set the vreg_offset and n_dice to be able to do so.
556 	 */
557 	params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL);
558 	if (!params->vreg_offset)
559 		return -ENOMEM;
560 
561 	params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG;
562 	params->n_dice = 1;
563 
564 	/* PP_1_1_4_4B is supported but missing in 4BAIT. */
565 	params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
566 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
567 				SPINOR_OP_PP_1_1_4_4B,
568 				SNOR_PROTO_1_1_4);
569 
570 	return cypress_nor_get_page_size(nor);
571 }
572 
s25fs256t_late_init(struct spi_nor * nor)573 static int s25fs256t_late_init(struct spi_nor *nor)
574 {
575 	cypress_nor_ecc_init(nor);
576 
577 	return 0;
578 }
579 
580 static struct spi_nor_fixups s25fs256t_fixups = {
581 	.post_bfpt = s25fs256t_post_bfpt_fixup,
582 	.post_sfdp = s25fs256t_post_sfdp_fixup,
583 	.late_init = s25fs256t_late_init,
584 };
585 
586 static int
s25hx_t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)587 s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
588 			const struct sfdp_parameter_header *bfpt_header,
589 			const struct sfdp_bfpt *bfpt)
590 {
591 	int ret;
592 
593 	ret = cypress_nor_set_addr_mode_nbytes(nor);
594 	if (ret)
595 		return ret;
596 
597 	/* Replace Quad Enable with volatile version */
598 	nor->params->quad_enable = cypress_nor_quad_enable_volatile;
599 
600 	return 0;
601 }
602 
s25hx_t_post_sfdp_fixup(struct spi_nor * nor)603 static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
604 {
605 	struct spi_nor_flash_parameter *params = nor->params;
606 	struct spi_nor_erase_type *erase_type = params->erase_map.erase_type;
607 	unsigned int i;
608 
609 	if (!params->n_dice || !params->vreg_offset) {
610 		dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
611 			__func__);
612 		return -EOPNOTSUPP;
613 	}
614 
615 	/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
616 	if (params->size == SZ_256M)
617 		params->n_dice = 2;
618 
619 	/*
620 	 * In some parts, 3byte erase opcodes are advertised by 4BAIT.
621 	 * Convert them to 4byte erase opcodes.
622 	 */
623 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
624 		switch (erase_type[i].opcode) {
625 		case SPINOR_OP_SE:
626 			erase_type[i].opcode = SPINOR_OP_SE_4B;
627 			break;
628 		case SPINOR_OP_BE_4K:
629 			erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
630 			break;
631 		default:
632 			break;
633 		}
634 	}
635 
636 	return cypress_nor_get_page_size(nor);
637 }
638 
s25hx_t_late_init(struct spi_nor * nor)639 static int s25hx_t_late_init(struct spi_nor *nor)
640 {
641 	struct spi_nor_flash_parameter *params = nor->params;
642 
643 	/* Fast Read 4B requires mode cycles */
644 	params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
645 	params->ready = cypress_nor_sr_ready_and_clear;
646 	cypress_nor_ecc_init(nor);
647 
648 	return 0;
649 }
650 
651 static struct spi_nor_fixups s25hx_t_fixups = {
652 	.post_bfpt = s25hx_t_post_bfpt_fixup,
653 	.post_sfdp = s25hx_t_post_sfdp_fixup,
654 	.late_init = s25hx_t_late_init,
655 };
656 
657 /**
658  * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes.
659  * @nor:		pointer to a 'struct spi_nor'
660  * @enable:              whether to enable or disable Octal DTR
661  *
662  * This also sets the memory access latency cycles to 24 to allow the flash to
663  * run at up to 200MHz.
664  *
665  * Return: 0 on success, -errno otherwise.
666  */
cypress_nor_set_octal_dtr(struct spi_nor * nor,bool enable)667 static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
668 {
669 	return enable ? cypress_nor_octal_dtr_en(nor) :
670 			cypress_nor_octal_dtr_dis(nor);
671 }
672 
s28hx_t_post_sfdp_fixup(struct spi_nor * nor)673 static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor)
674 {
675 	struct spi_nor_flash_parameter *params = nor->params;
676 
677 	if (!params->n_dice || !params->vreg_offset) {
678 		dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
679 			__func__);
680 		return -EOPNOTSUPP;
681 	}
682 
683 	/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
684 	if (params->size == SZ_256M)
685 		params->n_dice = 2;
686 
687 	/*
688 	 * On older versions of the flash the xSPI Profile 1.0 table has the
689 	 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
690 	 */
691 	if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
692 		params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
693 			SPINOR_OP_CYPRESS_RD_FAST;
694 
695 	/* This flash is also missing the 4-byte Page Program opcode bit. */
696 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
697 				SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
698 	/*
699 	 * Since xSPI Page Program opcode is backward compatible with
700 	 * Legacy SPI, use Legacy SPI opcode there as well.
701 	 */
702 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
703 				SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
704 
705 	/*
706 	 * The xSPI Profile 1.0 table advertises the number of additional
707 	 * address bytes needed for Read Status Register command as 0 but the
708 	 * actual value for that is 4.
709 	 */
710 	params->rdsr_addr_nbytes = 4;
711 
712 	return cypress_nor_get_page_size(nor);
713 }
714 
s28hx_t_post_bfpt_fixup(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)715 static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor,
716 				   const struct sfdp_parameter_header *bfpt_header,
717 				   const struct sfdp_bfpt *bfpt)
718 {
719 	return cypress_nor_set_addr_mode_nbytes(nor);
720 }
721 
s28hx_t_late_init(struct spi_nor * nor)722 static int s28hx_t_late_init(struct spi_nor *nor)
723 {
724 	struct spi_nor_flash_parameter *params = nor->params;
725 
726 	params->set_octal_dtr = cypress_nor_set_octal_dtr;
727 	params->ready = cypress_nor_sr_ready_and_clear;
728 	cypress_nor_ecc_init(nor);
729 
730 	return 0;
731 }
732 
733 static const struct spi_nor_fixups s28hx_t_fixups = {
734 	.post_sfdp = s28hx_t_post_sfdp_fixup,
735 	.post_bfpt = s28hx_t_post_bfpt_fixup,
736 	.late_init = s28hx_t_late_init,
737 };
738 
739 static int
s25fs_s_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)740 s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
741 			     const struct sfdp_parameter_header *bfpt_header,
742 			     const struct sfdp_bfpt *bfpt)
743 {
744 	/*
745 	 * The S25FS-S chip family reports 512-byte pages in BFPT but
746 	 * in reality the write buffer still wraps at the safe default
747 	 * of 256 bytes.  Overwrite the page size advertised by BFPT
748 	 * to get the writes working.
749 	 */
750 	nor->params->page_size = 256;
751 
752 	return 0;
753 }
754 
755 static const struct spi_nor_fixups s25fs_s_nor_fixups = {
756 	.post_bfpt = s25fs_s_nor_post_bfpt_fixups,
757 };
758 
759 static const struct flash_info spansion_nor_parts[] = {
760 	/* Spansion/Cypress -- single (large) sector size only, at least
761 	 * for the chips listed here (without boot sectors).
762 	 */
763 	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64)
764 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
765 	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128)
766 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
767 	{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
768 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
769 		MFR_FLAGS(USE_CLSR)
770 	},
771 	{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
772 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
773 		MFR_FLAGS(USE_CLSR)
774 	},
775 	{ "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
776 		NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
777 			      SPI_NOR_QUAD_READ)
778 		MFR_FLAGS(USE_CLSR)
779 	},
780 	{ "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
781 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
782 		MFR_FLAGS(USE_CLSR)
783 	},
784 	{ "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
785 		FLAGS(SPI_NOR_HAS_LOCK)
786 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
787 		MFR_FLAGS(USE_CLSR)
788 	},
789 	{ "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
790 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
791 		MFR_FLAGS(USE_CLSR)
792 		.fixups = &s25fs_s_nor_fixups, },
793 	{ "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
794 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
795 		MFR_FLAGS(USE_CLSR)
796 	},
797 	{ "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
798 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
799 		MFR_FLAGS(USE_CLSR)
800 	},
801 	{ "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
802 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
803 		MFR_FLAGS(USE_CLSR)
804 		.fixups = &s25fs_s_nor_fixups, },
805 	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64) },
806 	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256) },
807 	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64)
808 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
809 		MFR_FLAGS(USE_CLSR)
810 	},
811 	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256)
812 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
813 		MFR_FLAGS(USE_CLSR)
814 	},
815 	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8) },
816 	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16) },
817 	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32) },
818 	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64) },
819 	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128) },
820 	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8)
821 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
822 			      SPI_NOR_QUAD_READ) },
823 	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16)
824 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
825 			      SPI_NOR_QUAD_READ) },
826 	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32)
827 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
828 			      SPI_NOR_QUAD_READ) },
829 	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128)
830 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
831 			      SPI_NOR_QUAD_READ) },
832 	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32)
833 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
834 			      SPI_NOR_QUAD_READ) },
835 	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64)
836 		NO_SFDP_FLAGS(SECT_4K) },
837 	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128)
838 		NO_SFDP_FLAGS(SECT_4K) },
839 	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8)
840 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
841 	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16)
842 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
843 	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128)
844 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
845 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
846 	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256)
847 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
848 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
849 	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512)
850 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
851 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
852 	{ "s25fs256t",  INFO6(0x342b19, 0x0f0890, 0, 0)
853 		PARSE_SFDP
854 		MFR_FLAGS(USE_CLPEF)
855 		.fixups = &s25fs256t_fixups },
856 	{ "s25hl512t",  INFO6(0x342a1a, 0x0f0390, 0, 0)
857 		PARSE_SFDP
858 		MFR_FLAGS(USE_CLPEF)
859 		.fixups = &s25hx_t_fixups },
860 	{ "s25hl01gt",  INFO6(0x342a1b, 0x0f0390, 0, 0)
861 		PARSE_SFDP
862 		MFR_FLAGS(USE_CLPEF)
863 		.fixups = &s25hx_t_fixups },
864 	{ "s25hl02gt",  INFO6(0x342a1c, 0x0f0090, 0, 0)
865 		PARSE_SFDP
866 		MFR_FLAGS(USE_CLPEF)
867 		FLAGS(NO_CHIP_ERASE)
868 		.fixups = &s25hx_t_fixups },
869 	{ "s25hs512t",  INFO6(0x342b1a, 0x0f0390, 0, 0)
870 		PARSE_SFDP
871 		MFR_FLAGS(USE_CLPEF)
872 		.fixups = &s25hx_t_fixups },
873 	{ "s25hs01gt",  INFO6(0x342b1b, 0x0f0390, 0, 0)
874 		PARSE_SFDP
875 		MFR_FLAGS(USE_CLPEF)
876 		.fixups = &s25hx_t_fixups },
877 	{ "s25hs02gt",  INFO6(0x342b1c, 0x0f0090, 0, 0)
878 		PARSE_SFDP
879 		MFR_FLAGS(USE_CLPEF)
880 		FLAGS(NO_CHIP_ERASE)
881 		.fixups = &s25hx_t_fixups },
882 	{ "cy15x104q",  INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
883 		FLAGS(SPI_NOR_NO_ERASE) },
884 	{ "s28hl512t",   INFO(0x345a1a,      0, 0, 0)
885 		PARSE_SFDP
886 		MFR_FLAGS(USE_CLPEF)
887 		.fixups = &s28hx_t_fixups,
888 	},
889 	{ "s28hl01gt",   INFO(0x345a1b,      0, 0, 0)
890 		PARSE_SFDP
891 		MFR_FLAGS(USE_CLPEF)
892 		.fixups = &s28hx_t_fixups,
893 	},
894 	{ "s28hs512t",   INFO(0x345b1a,      0, 0, 0)
895 		PARSE_SFDP
896 		MFR_FLAGS(USE_CLPEF)
897 		.fixups = &s28hx_t_fixups,
898 	},
899 	{ "s28hs01gt",   INFO(0x345b1b,      0, 0, 0)
900 		PARSE_SFDP
901 		MFR_FLAGS(USE_CLPEF)
902 		.fixups = &s28hx_t_fixups,
903 	},
904 	{ "s28hs02gt",   INFO(0x345b1c,      0, 0, 0)
905 		PARSE_SFDP
906 		MFR_FLAGS(USE_CLPEF)
907 		.fixups = &s28hx_t_fixups,
908 	},
909 };
910 
911 /**
912  * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
913  * flash is ready for new commands and clear it if there are any errors.
914  * @nor:	pointer to 'struct spi_nor'.
915  *
916  * Return: 1 if ready, 0 if not ready, -errno on errors.
917  */
spansion_nor_sr_ready_and_clear(struct spi_nor * nor)918 static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
919 {
920 	int ret;
921 
922 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
923 	if (ret)
924 		return ret;
925 
926 	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
927 		if (nor->bouncebuf[0] & SR_E_ERR)
928 			dev_err(nor->dev, "Erase Error occurred\n");
929 		else
930 			dev_err(nor->dev, "Programming Error occurred\n");
931 
932 		spansion_nor_clear_sr(nor);
933 
934 		/*
935 		 * WEL bit remains set to one when an erase or page program
936 		 * error occurs. Issue a Write Disable command to protect
937 		 * against inadvertent writes that can possibly corrupt the
938 		 * contents of the memory.
939 		 */
940 		ret = spi_nor_write_disable(nor);
941 		if (ret)
942 			return ret;
943 
944 		return -EIO;
945 	}
946 
947 	return !(nor->bouncebuf[0] & SR_WIP);
948 }
949 
spansion_nor_late_init(struct spi_nor * nor)950 static int spansion_nor_late_init(struct spi_nor *nor)
951 {
952 	struct spi_nor_flash_parameter *params = nor->params;
953 	struct spansion_nor_params *priv_params;
954 	u8 mfr_flags = nor->info->mfr_flags;
955 
956 	if (params->size > SZ_16M) {
957 		nor->flags |= SNOR_F_4B_OPCODES;
958 		/* No small sector erase for 4-byte command set */
959 		nor->erase_opcode = SPINOR_OP_SE;
960 		nor->mtd.erasesize = nor->info->sector_size;
961 	}
962 
963 	if (mfr_flags & (USE_CLSR | USE_CLPEF)) {
964 		priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params),
965 					   GFP_KERNEL);
966 		if (!priv_params)
967 			return -ENOMEM;
968 
969 		if (mfr_flags & USE_CLSR)
970 			priv_params->clsr = SPINOR_OP_CLSR;
971 		else if (mfr_flags & USE_CLPEF)
972 			priv_params->clsr = SPINOR_OP_CLPEF;
973 
974 		params->priv = priv_params;
975 		params->ready = spansion_nor_sr_ready_and_clear;
976 	}
977 
978 	return 0;
979 }
980 
981 static const struct spi_nor_fixups spansion_nor_fixups = {
982 	.late_init = spansion_nor_late_init,
983 };
984 
985 const struct spi_nor_manufacturer spi_nor_spansion = {
986 	.name = "spansion",
987 	.parts = spansion_nor_parts,
988 	.nparts = ARRAY_SIZE(spansion_nor_parts),
989 	.fixups = &spansion_nor_fixups,
990 };
991