1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FM Driver for Connectivity chip of Texas Instruments.
4 *
5 * This sub-module of FM driver is common for FM RX and TX
6 * functionality. This module is responsible for:
7 * 1) Forming group of Channel-8 commands to perform particular
8 * functionality (eg., frequency set require more than
9 * one Channel-8 command to be sent to the chip).
10 * 2) Sending each Channel-8 command to the chip and reading
11 * response back over Shared Transport.
12 * 3) Managing TX and RX Queues and Tasklets.
13 * 4) Handling FM Interrupt packet and taking appropriate action.
14 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
15 * firmware files based on mode selection)
16 *
17 * Copyright (C) 2011 Texas Instruments
18 * Author: Raja Mani <raja_mani@ti.com>
19 * Author: Manjunatha Halli <manjunatha_halli@ti.com>
20 */
21
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/module.h>
25 #include <linux/nospec.h>
26 #include <linux/jiffies.h>
27
28 #include "fmdrv.h"
29 #include "fmdrv_v4l2.h"
30 #include "fmdrv_common.h"
31 #include <linux/ti_wilink_st.h>
32 #include "fmdrv_rx.h"
33 #include "fmdrv_tx.h"
34
35 /* Region info */
36 static struct region_info region_configs[] = {
37 /* Europe/US */
38 {
39 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
40 .bot_freq = 87500, /* 87.5 MHz */
41 .top_freq = 108000, /* 108 MHz */
42 .fm_band = 0,
43 },
44 /* Japan */
45 {
46 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
47 .bot_freq = 76000, /* 76 MHz */
48 .top_freq = 90000, /* 90 MHz */
49 .fm_band = 1,
50 },
51 };
52
53 /* Band selection */
54 static u8 default_radio_region; /* Europe/US */
55 module_param(default_radio_region, byte, 0);
56 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
57
58 /* RDS buffer blocks */
59 static u32 default_rds_buf = 300;
60 module_param(default_rds_buf, uint, 0444);
61 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
62
63 /* Radio Nr */
64 static u32 radio_nr = -1;
65 module_param(radio_nr, int, 0444);
66 MODULE_PARM_DESC(radio_nr, "Radio Nr");
67
68 /* FM irq handlers forward declaration */
69 static void fm_irq_send_flag_getcmd(struct fmdev *);
70 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
71 static void fm_irq_handle_hw_malfunction(struct fmdev *);
72 static void fm_irq_handle_rds_start(struct fmdev *);
73 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
74 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
75 static void fm_irq_handle_rds_finish(struct fmdev *);
76 static void fm_irq_handle_tune_op_ended(struct fmdev *);
77 static void fm_irq_handle_power_enb(struct fmdev *);
78 static void fm_irq_handle_low_rssi_start(struct fmdev *);
79 static void fm_irq_afjump_set_pi(struct fmdev *);
80 static void fm_irq_handle_set_pi_resp(struct fmdev *);
81 static void fm_irq_afjump_set_pimask(struct fmdev *);
82 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
83 static void fm_irq_afjump_setfreq(struct fmdev *);
84 static void fm_irq_handle_setfreq_resp(struct fmdev *);
85 static void fm_irq_afjump_enableint(struct fmdev *);
86 static void fm_irq_afjump_enableint_resp(struct fmdev *);
87 static void fm_irq_start_afjump(struct fmdev *);
88 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
89 static void fm_irq_afjump_rd_freq(struct fmdev *);
90 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
91 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
92 static void fm_irq_send_intmsk_cmd(struct fmdev *);
93 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
94
95 /*
96 * When FM common module receives interrupt packet, following handlers
97 * will be executed one after another to service the interrupt(s)
98 */
99 enum fmc_irq_handler_index {
100 FM_SEND_FLAG_GETCMD_IDX,
101 FM_HANDLE_FLAG_GETCMD_RESP_IDX,
102
103 /* HW malfunction irq handler */
104 FM_HW_MAL_FUNC_IDX,
105
106 /* RDS threshold reached irq handler */
107 FM_RDS_START_IDX,
108 FM_RDS_SEND_RDS_GETCMD_IDX,
109 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
110 FM_RDS_FINISH_IDX,
111
112 /* Tune operation ended irq handler */
113 FM_HW_TUNE_OP_ENDED_IDX,
114
115 /* TX power enable irq handler */
116 FM_HW_POWER_ENB_IDX,
117
118 /* Low RSSI irq handler */
119 FM_LOW_RSSI_START_IDX,
120 FM_AF_JUMP_SETPI_IDX,
121 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
122 FM_AF_JUMP_SETPI_MASK_IDX,
123 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
124 FM_AF_JUMP_SET_AF_FREQ_IDX,
125 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
126 FM_AF_JUMP_ENABLE_INT_IDX,
127 FM_AF_JUMP_ENABLE_INT_RESP_IDX,
128 FM_AF_JUMP_START_AFJUMP_IDX,
129 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
130 FM_AF_JUMP_RD_FREQ_IDX,
131 FM_AF_JUMP_RD_FREQ_RESP_IDX,
132 FM_LOW_RSSI_FINISH_IDX,
133
134 /* Interrupt process post action */
135 FM_SEND_INTMSK_CMD_IDX,
136 FM_HANDLE_INTMSK_CMD_RESP_IDX,
137 };
138
139 /* FM interrupt handler table */
140 static int_handler_prototype int_handler_table[] = {
141 fm_irq_send_flag_getcmd,
142 fm_irq_handle_flag_getcmd_resp,
143 fm_irq_handle_hw_malfunction,
144 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
145 fm_irq_send_rdsdata_getcmd,
146 fm_irq_handle_rdsdata_getcmd_resp,
147 fm_irq_handle_rds_finish,
148 fm_irq_handle_tune_op_ended,
149 fm_irq_handle_power_enb, /* TX power enable irq handler */
150 fm_irq_handle_low_rssi_start,
151 fm_irq_afjump_set_pi,
152 fm_irq_handle_set_pi_resp,
153 fm_irq_afjump_set_pimask,
154 fm_irq_handle_set_pimask_resp,
155 fm_irq_afjump_setfreq,
156 fm_irq_handle_setfreq_resp,
157 fm_irq_afjump_enableint,
158 fm_irq_afjump_enableint_resp,
159 fm_irq_start_afjump,
160 fm_irq_handle_start_afjump_resp,
161 fm_irq_afjump_rd_freq,
162 fm_irq_afjump_rd_freq_resp,
163 fm_irq_handle_low_rssi_finish,
164 fm_irq_send_intmsk_cmd, /* Interrupt process post action */
165 fm_irq_handle_intmsk_cmd_resp
166 };
167
168 static long (*g_st_write) (struct sk_buff *skb);
169 static struct completion wait_for_fmdrv_reg_comp;
170
fm_irq_call(struct fmdev * fmdev)171 static inline void fm_irq_call(struct fmdev *fmdev)
172 {
173 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
174 }
175
176 /* Continue next function in interrupt handler table */
fm_irq_call_stage(struct fmdev * fmdev,u8 stage)177 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
178 {
179 fmdev->irq_info.stage = stage;
180 fm_irq_call(fmdev);
181 }
182
fm_irq_timeout_stage(struct fmdev * fmdev,u8 stage)183 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
184 {
185 fmdev->irq_info.stage = stage;
186 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
187 }
188
189 #ifdef FM_DUMP_TXRX_PKT
190 /* To dump outgoing FM Channel-8 packets */
dump_tx_skb_data(struct sk_buff * skb)191 inline void dump_tx_skb_data(struct sk_buff *skb)
192 {
193 int len, len_org;
194 u8 index;
195 struct fm_cmd_msg_hdr *cmd_hdr;
196
197 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
198 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
199 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
200 cmd_hdr->len, cmd_hdr->op,
201 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
202
203 len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
204 if (len_org > 0) {
205 printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen);
206 len = min(len_org, 14);
207 for (index = 0; index < len; index++)
208 printk(KERN_CONT "%x ",
209 skb->data[FM_CMD_MSG_HDR_SIZE + index]);
210 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
211 }
212 printk(KERN_CONT "\n");
213 }
214
215 /* To dump incoming FM Channel-8 packets */
dump_rx_skb_data(struct sk_buff * skb)216 inline void dump_rx_skb_data(struct sk_buff *skb)
217 {
218 int len, len_org;
219 u8 index;
220 struct fm_event_msg_hdr *evt_hdr;
221
222 evt_hdr = (struct fm_event_msg_hdr *)skb->data;
223 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
224 evt_hdr->hdr, evt_hdr->len,
225 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
226 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
227
228 len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
229 if (len_org > 0) {
230 printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen);
231 len = min(len_org, 14);
232 for (index = 0; index < len; index++)
233 printk(KERN_CONT "%x ",
234 skb->data[FM_EVT_MSG_HDR_SIZE + index]);
235 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
236 }
237 printk(KERN_CONT "\n");
238 }
239 #endif
240
fmc_update_region_info(struct fmdev * fmdev,u8 region_to_set)241 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
242 {
243 fmdev->rx.region = region_configs[region_to_set];
244 }
245
246 /*
247 * FM common sub-module will schedule this tasklet whenever it receives
248 * FM packet from ST driver.
249 */
recv_tasklet(struct tasklet_struct * t)250 static void recv_tasklet(struct tasklet_struct *t)
251 {
252 struct fmdev *fmdev;
253 struct fm_irq *irq_info;
254 struct fm_event_msg_hdr *evt_hdr;
255 struct sk_buff *skb;
256 u8 num_fm_hci_cmds;
257 unsigned long flags;
258
259 fmdev = from_tasklet(fmdev, t, tx_task);
260 irq_info = &fmdev->irq_info;
261 /* Process all packets in the RX queue */
262 while ((skb = skb_dequeue(&fmdev->rx_q))) {
263 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
264 fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
265 skb,
266 skb->len, sizeof(struct fm_event_msg_hdr));
267 kfree_skb(skb);
268 continue;
269 }
270
271 evt_hdr = (void *)skb->data;
272 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
273
274 /* FM interrupt packet? */
275 if (evt_hdr->op == FM_INTERRUPT) {
276 /* FM interrupt handler started already? */
277 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
278 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
279 if (irq_info->stage != 0) {
280 fmerr("Inval stage resetting to zero\n");
281 irq_info->stage = 0;
282 }
283
284 /*
285 * Execute first function in interrupt handler
286 * table.
287 */
288 irq_info->handlers[irq_info->stage](fmdev);
289 } else {
290 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
291 }
292 kfree_skb(skb);
293 }
294 /* Anyone waiting for this with completion handler? */
295 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
296
297 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
298 fmdev->resp_skb = skb;
299 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
300 complete(fmdev->resp_comp);
301
302 fmdev->resp_comp = NULL;
303 atomic_set(&fmdev->tx_cnt, 1);
304 }
305 /* Is this for interrupt handler? */
306 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
307 if (fmdev->resp_skb != NULL)
308 fmerr("Response SKB ptr not NULL\n");
309
310 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
311 fmdev->resp_skb = skb;
312 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
313
314 /* Execute interrupt handler where state index points */
315 irq_info->handlers[irq_info->stage](fmdev);
316
317 kfree_skb(skb);
318 atomic_set(&fmdev->tx_cnt, 1);
319 } else {
320 fmerr("Nobody claimed SKB(%p),purging\n", skb);
321 }
322
323 /*
324 * Check flow control field. If Num_FM_HCI_Commands field is
325 * not zero, schedule FM TX tasklet.
326 */
327 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
328 if (!skb_queue_empty(&fmdev->tx_q))
329 tasklet_schedule(&fmdev->tx_task);
330 }
331 }
332
333 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
send_tasklet(struct tasklet_struct * t)334 static void send_tasklet(struct tasklet_struct *t)
335 {
336 struct fmdev *fmdev;
337 struct sk_buff *skb;
338 int len;
339
340 fmdev = from_tasklet(fmdev, t, tx_task);
341
342 if (!atomic_read(&fmdev->tx_cnt))
343 return;
344
345 /* Check, is there any timeout happened to last transmitted packet */
346 if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) {
347 fmerr("TX timeout occurred\n");
348 atomic_set(&fmdev->tx_cnt, 1);
349 }
350
351 /* Send queued FM TX packets */
352 skb = skb_dequeue(&fmdev->tx_q);
353 if (!skb)
354 return;
355
356 atomic_dec(&fmdev->tx_cnt);
357 fmdev->pre_op = fm_cb(skb)->fm_op;
358
359 if (fmdev->resp_comp != NULL)
360 fmerr("Response completion handler is not NULL\n");
361
362 fmdev->resp_comp = fm_cb(skb)->completion;
363
364 /* Write FM packet to ST driver */
365 len = g_st_write(skb);
366 if (len < 0) {
367 kfree_skb(skb);
368 fmdev->resp_comp = NULL;
369 fmerr("TX tasklet failed to send skb(%p)\n", skb);
370 atomic_set(&fmdev->tx_cnt, 1);
371 } else {
372 fmdev->last_tx_jiffies = jiffies;
373 }
374 }
375
376 /*
377 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
378 * transmission
379 */
fm_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,int payload_len,struct completion * wait_completion)380 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
381 int payload_len, struct completion *wait_completion)
382 {
383 struct sk_buff *skb;
384 struct fm_cmd_msg_hdr *hdr;
385 int size;
386
387 if (fm_op >= FM_INTERRUPT) {
388 fmerr("Invalid fm opcode - %d\n", fm_op);
389 return -EINVAL;
390 }
391 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
392 fmerr("Payload data is NULL during fw download\n");
393 return -EINVAL;
394 }
395 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
396 size =
397 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
398 else
399 size = payload_len;
400
401 skb = alloc_skb(size, GFP_ATOMIC);
402 if (!skb) {
403 fmerr("No memory to create new SKB\n");
404 return -ENOMEM;
405 }
406 /*
407 * Don't fill FM header info for the commands which come from
408 * FM firmware file.
409 */
410 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
411 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
412 /* Fill command header info */
413 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
414 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
415
416 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
417 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
418
419 /* FM opcode */
420 hdr->op = fm_op;
421
422 /* read/write type */
423 hdr->rd_wr = type;
424 hdr->dlen = payload_len;
425 fm_cb(skb)->fm_op = fm_op;
426
427 /*
428 * If firmware download has finished and the command is
429 * not a read command then payload is != NULL - a write
430 * command with u16 payload - convert to be16
431 */
432 if (payload != NULL)
433 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
434
435 } else if (payload != NULL) {
436 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
437 }
438 if (payload != NULL)
439 skb_put_data(skb, payload, payload_len);
440
441 fm_cb(skb)->completion = wait_completion;
442 skb_queue_tail(&fmdev->tx_q, skb);
443 tasklet_schedule(&fmdev->tx_task);
444
445 return 0;
446 }
447
448 /* Sends FM Channel-8 command to the chip and waits for the response */
fmc_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,unsigned int payload_len,void * response,int * response_len)449 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
450 unsigned int payload_len, void *response, int *response_len)
451 {
452 struct sk_buff *skb;
453 struct fm_event_msg_hdr *evt_hdr;
454 unsigned long flags;
455 int ret;
456
457 init_completion(&fmdev->maintask_comp);
458 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
459 &fmdev->maintask_comp);
460 if (ret)
461 return ret;
462
463 if (!wait_for_completion_timeout(&fmdev->maintask_comp,
464 FM_DRV_TX_TIMEOUT)) {
465 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
466 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
467 return -ETIMEDOUT;
468 }
469 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
470 if (!fmdev->resp_skb) {
471 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
472 fmerr("Response SKB is missing\n");
473 return -EFAULT;
474 }
475 skb = fmdev->resp_skb;
476 fmdev->resp_skb = NULL;
477 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
478
479 evt_hdr = (void *)skb->data;
480 if (evt_hdr->status != 0) {
481 fmerr("Received event pkt status(%d) is not zero\n",
482 evt_hdr->status);
483 kfree_skb(skb);
484 return -EIO;
485 }
486 /* Send response data to caller */
487 if (response != NULL && response_len != NULL && evt_hdr->dlen &&
488 evt_hdr->dlen <= payload_len) {
489 /* Skip header info and copy only response data */
490 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
491 memcpy(response, skb->data, evt_hdr->dlen);
492 *response_len = evt_hdr->dlen;
493 } else if (response_len != NULL && evt_hdr->dlen == 0) {
494 *response_len = 0;
495 }
496 kfree_skb(skb);
497
498 return 0;
499 }
500
501 /* --- Helper functions used in FM interrupt handlers ---*/
check_cmdresp_status(struct fmdev * fmdev,struct sk_buff ** skb)502 static inline int check_cmdresp_status(struct fmdev *fmdev,
503 struct sk_buff **skb)
504 {
505 struct fm_event_msg_hdr *fm_evt_hdr;
506 unsigned long flags;
507
508 del_timer(&fmdev->irq_info.timer);
509
510 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
511 *skb = fmdev->resp_skb;
512 fmdev->resp_skb = NULL;
513 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
514
515 fm_evt_hdr = (void *)(*skb)->data;
516 if (fm_evt_hdr->status != 0) {
517 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
518 fm_evt_hdr->op);
519
520 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
521 return -1;
522 }
523
524 return 0;
525 }
526
fm_irq_common_cmd_resp_helper(struct fmdev * fmdev,u8 stage)527 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
528 {
529 struct sk_buff *skb;
530
531 if (!check_cmdresp_status(fmdev, &skb))
532 fm_irq_call_stage(fmdev, stage);
533 }
534
535 /*
536 * Interrupt process timeout handler.
537 * One of the irq handler did not get proper response from the chip. So take
538 * recovery action here. FM interrupts are disabled in the beginning of
539 * interrupt process. Therefore reset stage index to re-enable default
540 * interrupts. So that next interrupt will be processed as usual.
541 */
int_timeout_handler(struct timer_list * t)542 static void int_timeout_handler(struct timer_list *t)
543 {
544 struct fmdev *fmdev;
545 struct fm_irq *fmirq;
546
547 fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
548 fmdev = from_timer(fmdev, t, irq_info.timer);
549 fmirq = &fmdev->irq_info;
550 fmirq->retry++;
551
552 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
553 /* Stop recovery action (interrupt reenable process) and
554 * reset stage index & retry count values */
555 fmirq->stage = 0;
556 fmirq->retry = 0;
557 fmerr("Recovery action failed duringirq processing, max retry reached\n");
558 return;
559 }
560 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
561 }
562
563 /* --------- FM interrupt handlers ------------*/
fm_irq_send_flag_getcmd(struct fmdev * fmdev)564 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
565 {
566 u16 flag;
567
568 /* Send FLAG_GET command , to know the source of interrupt */
569 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
570 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
571 }
572
fm_irq_handle_flag_getcmd_resp(struct fmdev * fmdev)573 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
574 {
575 struct sk_buff *skb;
576 struct fm_event_msg_hdr *fm_evt_hdr;
577
578 if (check_cmdresp_status(fmdev, &skb))
579 return;
580
581 fm_evt_hdr = (void *)skb->data;
582 if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
583 return;
584
585 /* Skip header info and copy only response data */
586 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
587 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
588
589 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
590 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
591
592 /* Continue next function in interrupt handler table */
593 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
594 }
595
fm_irq_handle_hw_malfunction(struct fmdev * fmdev)596 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
597 {
598 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
599 fmerr("irq: HW MAL int received - do nothing\n");
600
601 /* Continue next function in interrupt handler table */
602 fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
603 }
604
fm_irq_handle_rds_start(struct fmdev * fmdev)605 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
606 {
607 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
608 fmdbg("irq: rds threshold reached\n");
609 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
610 } else {
611 /* Continue next function in interrupt handler table */
612 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
613 }
614
615 fm_irq_call(fmdev);
616 }
617
fm_irq_send_rdsdata_getcmd(struct fmdev * fmdev)618 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
619 {
620 /* Send the command to read RDS data from the chip */
621 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
622 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
623 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
624 }
625
626 /* Keeps track of current RX channel AF (Alternate Frequency) */
fm_rx_update_af_cache(struct fmdev * fmdev,u8 af)627 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
628 {
629 struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
630 u8 reg_idx = fmdev->rx.region.fm_band;
631 u8 index;
632 u32 freq;
633
634 /* First AF indicates the number of AF follows. Reset the list */
635 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
636 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
637 fmdev->rx.stat_info.afcache_size = 0;
638 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
639 return;
640 }
641
642 if (af < FM_RDS_MIN_AF)
643 return;
644 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
645 return;
646 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
647 return;
648
649 freq = fmdev->rx.region.bot_freq + (af * 100);
650 if (freq == fmdev->rx.freq) {
651 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
652 fmdev->rx.freq, freq);
653 return;
654 }
655 /* Do check in AF cache */
656 for (index = 0; index < stat_info->afcache_size; index++) {
657 if (stat_info->af_cache[index] == freq)
658 break;
659 }
660 /* Reached the limit of the list - ignore the next AF */
661 if (index == stat_info->af_list_max) {
662 fmdbg("AF cache is full\n");
663 return;
664 }
665 /*
666 * If we reached the end of the list then this AF is not
667 * in the list - add it.
668 */
669 if (index == stat_info->afcache_size) {
670 fmdbg("Storing AF %d to cache index %d\n", freq, index);
671 stat_info->af_cache[index] = freq;
672 stat_info->afcache_size++;
673 }
674 }
675
676 /*
677 * Converts RDS buffer data from big endian format
678 * to little endian format.
679 */
fm_rdsparse_swapbytes(struct fmdev * fmdev,struct fm_rdsdata_format * rds_format)680 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
681 struct fm_rdsdata_format *rds_format)
682 {
683 u8 index = 0;
684 u8 *rds_buff;
685
686 /*
687 * Since in Orca the 2 RDS Data bytes are in little endian and
688 * in Dolphin they are in big endian, the parsing of the RDS data
689 * is chip dependent
690 */
691 if (fmdev->asci_id != 0x6350) {
692 rds_buff = &rds_format->data.groupdatabuff.buff[0];
693 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
694 swap(rds_buff[index], rds_buff[index + 1]);
695 index += 2;
696 }
697 }
698 }
699
fm_irq_handle_rdsdata_getcmd_resp(struct fmdev * fmdev)700 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
701 {
702 struct sk_buff *skb;
703 struct fm_rdsdata_format rds_fmt;
704 struct fm_rds *rds = &fmdev->rx.rds;
705 unsigned long group_idx, flags;
706 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
707 u8 type, blk_idx, idx;
708 u16 cur_picode;
709 u32 rds_len;
710
711 if (check_cmdresp_status(fmdev, &skb))
712 return;
713
714 /* Skip header info */
715 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
716 rds_data = skb->data;
717 rds_len = skb->len;
718
719 /* Parse the RDS data */
720 while (rds_len >= FM_RDS_BLK_SIZE) {
721 meta_data = rds_data[2];
722 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
723 type = (meta_data & 0x07);
724
725 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
726 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
727 fmdbg("Block index:%d(%s)\n", blk_idx,
728 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
729
730 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
731 break;
732
733 if (blk_idx > FM_RDS_BLK_IDX_D) {
734 fmdbg("Block sequence mismatch\n");
735 rds->last_blk_idx = -1;
736 break;
737 }
738
739 /* Skip checkword (control) byte and copy only data byte */
740 idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
741 FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
742
743 memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
744 FM_RDS_BLK_SIZE - 1);
745
746 rds->last_blk_idx = blk_idx;
747
748 /* If completed a whole group then handle it */
749 if (blk_idx == FM_RDS_BLK_IDX_D) {
750 fmdbg("Good block received\n");
751 fm_rdsparse_swapbytes(fmdev, &rds_fmt);
752
753 /*
754 * Extract PI code and store in local cache.
755 * We need this during AF switch processing.
756 */
757 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
758 if (fmdev->rx.stat_info.picode != cur_picode)
759 fmdev->rx.stat_info.picode = cur_picode;
760
761 fmdbg("picode:%d\n", cur_picode);
762
763 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
764 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
765 (group_idx % 2) ? "B" : "A");
766
767 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
768 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
769 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
770 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
771 }
772 }
773 rds_len -= FM_RDS_BLK_SIZE;
774 rds_data += FM_RDS_BLK_SIZE;
775 }
776
777 /* Copy raw rds data to internal rds buffer */
778 rds_data = skb->data;
779 rds_len = skb->len;
780
781 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
782 while (rds_len > 0) {
783 /*
784 * Fill RDS buffer as per V4L2 specification.
785 * Store control byte
786 */
787 type = (rds_data[2] & 0x07);
788 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
789 tmpbuf[2] = blk_idx; /* Offset name */
790 tmpbuf[2] |= blk_idx << 3; /* Received offset */
791
792 /* Store data byte */
793 tmpbuf[0] = rds_data[0];
794 tmpbuf[1] = rds_data[1];
795
796 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
797 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
798
799 /* Check for overflow & start over */
800 if (rds->wr_idx == rds->rd_idx) {
801 fmdbg("RDS buffer overflow\n");
802 rds->wr_idx = 0;
803 rds->rd_idx = 0;
804 break;
805 }
806 rds_len -= FM_RDS_BLK_SIZE;
807 rds_data += FM_RDS_BLK_SIZE;
808 }
809 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
810
811 /* Wakeup read queue */
812 if (rds->wr_idx != rds->rd_idx)
813 wake_up_interruptible(&rds->read_queue);
814
815 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
816 }
817
fm_irq_handle_rds_finish(struct fmdev * fmdev)818 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
819 {
820 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
821 }
822
fm_irq_handle_tune_op_ended(struct fmdev * fmdev)823 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
824 {
825 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
826 irq_info.mask) {
827 fmdbg("irq: tune ended/bandlimit reached\n");
828 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
829 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
830 } else {
831 complete(&fmdev->maintask_comp);
832 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
833 }
834 } else
835 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
836
837 fm_irq_call(fmdev);
838 }
839
fm_irq_handle_power_enb(struct fmdev * fmdev)840 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
841 {
842 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
843 fmdbg("irq: Power Enabled/Disabled\n");
844 complete(&fmdev->maintask_comp);
845 }
846
847 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
848 }
849
fm_irq_handle_low_rssi_start(struct fmdev * fmdev)850 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
851 {
852 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
853 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
854 (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
855 (fmdev->rx.stat_info.afcache_size != 0)) {
856 fmdbg("irq: rssi level has fallen below threshold level\n");
857
858 /* Disable further low RSSI interrupts */
859 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
860
861 fmdev->rx.afjump_idx = 0;
862 fmdev->rx.freq_before_jump = fmdev->rx.freq;
863 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
864 } else {
865 /* Continue next function in interrupt handler table */
866 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
867 }
868
869 fm_irq_call(fmdev);
870 }
871
fm_irq_afjump_set_pi(struct fmdev * fmdev)872 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
873 {
874 u16 payload;
875
876 /* Set PI code - must be updated if the AF list is not empty */
877 payload = fmdev->rx.stat_info.picode;
878 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
879 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
880 }
881
fm_irq_handle_set_pi_resp(struct fmdev * fmdev)882 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
883 {
884 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
885 }
886
887 /*
888 * Set PI mask.
889 * 0xFFFF = Enable PI code matching
890 * 0x0000 = Disable PI code matching
891 */
fm_irq_afjump_set_pimask(struct fmdev * fmdev)892 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
893 {
894 u16 payload;
895
896 payload = 0x0000;
897 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
898 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
899 }
900
fm_irq_handle_set_pimask_resp(struct fmdev * fmdev)901 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
902 {
903 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
904 }
905
fm_irq_afjump_setfreq(struct fmdev * fmdev)906 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
907 {
908 u16 frq_index;
909 u16 payload;
910
911 fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
912 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
913 fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
914
915 payload = frq_index;
916 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
917 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
918 }
919
fm_irq_handle_setfreq_resp(struct fmdev * fmdev)920 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
921 {
922 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
923 }
924
fm_irq_afjump_enableint(struct fmdev * fmdev)925 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
926 {
927 u16 payload;
928
929 /* Enable FR (tuning operation ended) interrupt */
930 payload = FM_FR_EVENT;
931 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
932 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
933 }
934
fm_irq_afjump_enableint_resp(struct fmdev * fmdev)935 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
936 {
937 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
938 }
939
fm_irq_start_afjump(struct fmdev * fmdev)940 static void fm_irq_start_afjump(struct fmdev *fmdev)
941 {
942 u16 payload;
943
944 payload = FM_TUNER_AF_JUMP_MODE;
945 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
946 sizeof(payload), NULL))
947 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
948 }
949
fm_irq_handle_start_afjump_resp(struct fmdev * fmdev)950 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
951 {
952 struct sk_buff *skb;
953
954 if (check_cmdresp_status(fmdev, &skb))
955 return;
956
957 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
958 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
959 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
960 }
961
fm_irq_afjump_rd_freq(struct fmdev * fmdev)962 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
963 {
964 u16 payload;
965
966 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
967 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
968 }
969
fm_irq_afjump_rd_freq_resp(struct fmdev * fmdev)970 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
971 {
972 struct sk_buff *skb;
973 u16 read_freq;
974 u32 curr_freq, jumped_freq;
975
976 if (check_cmdresp_status(fmdev, &skb))
977 return;
978
979 /* Skip header info and copy only response data */
980 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
981 memcpy(&read_freq, skb->data, sizeof(read_freq));
982 read_freq = be16_to_cpu((__force __be16)read_freq);
983 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
984
985 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
986
987 /* If the frequency was changed the jump succeeded */
988 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
989 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
990 fmdev->rx.freq = curr_freq;
991 fm_rx_reset_rds_cache(fmdev);
992
993 /* AF feature is on, enable low level RSSI interrupt */
994 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
995 fmdev->irq_info.mask |= FM_LEV_EVENT;
996
997 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
998 } else { /* jump to the next freq in the AF list */
999 fmdev->rx.afjump_idx++;
1000
1001 /* If we reached the end of the list - stop searching */
1002 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1003 fmdbg("AF switch processing failed\n");
1004 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1005 } else { /* AF List is not over - try next one */
1006
1007 fmdbg("Trying next freq in AF cache\n");
1008 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1009 }
1010 }
1011 fm_irq_call(fmdev);
1012 }
1013
fm_irq_handle_low_rssi_finish(struct fmdev * fmdev)1014 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1015 {
1016 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1017 }
1018
fm_irq_send_intmsk_cmd(struct fmdev * fmdev)1019 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1020 {
1021 u16 payload;
1022
1023 /* Re-enable FM interrupts */
1024 payload = fmdev->irq_info.mask;
1025
1026 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1027 sizeof(payload), NULL))
1028 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1029 }
1030
fm_irq_handle_intmsk_cmd_resp(struct fmdev * fmdev)1031 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1032 {
1033 struct sk_buff *skb;
1034
1035 if (check_cmdresp_status(fmdev, &skb))
1036 return;
1037 /*
1038 * This is last function in interrupt table to be executed.
1039 * So, reset stage index to 0.
1040 */
1041 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1042
1043 /* Start processing any pending interrupt */
1044 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1045 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1046 else
1047 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1048 }
1049
1050 /* Returns availability of RDS data in internal buffer */
fmc_is_rds_data_available(struct fmdev * fmdev,struct file * file,struct poll_table_struct * pts)1051 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1052 struct poll_table_struct *pts)
1053 {
1054 poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1055 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1056 return 0;
1057
1058 return -EAGAIN;
1059 }
1060
1061 /* Copies RDS data from internal buffer to user buffer */
fmc_transfer_rds_from_internal_buff(struct fmdev * fmdev,struct file * file,u8 __user * buf,size_t count)1062 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1063 u8 __user *buf, size_t count)
1064 {
1065 u32 block_count;
1066 u8 tmpbuf[FM_RDS_BLK_SIZE];
1067 unsigned long flags;
1068 int ret;
1069
1070 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1071 if (file->f_flags & O_NONBLOCK)
1072 return -EWOULDBLOCK;
1073
1074 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1075 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1076 if (ret)
1077 return -EINTR;
1078 }
1079
1080 /* Calculate block count from byte count */
1081 count /= FM_RDS_BLK_SIZE;
1082 block_count = 0;
1083 ret = 0;
1084
1085 while (block_count < count) {
1086 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1087
1088 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1089 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1090 break;
1091 }
1092 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1093 FM_RDS_BLK_SIZE);
1094 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1095 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1096 fmdev->rx.rds.rd_idx = 0;
1097
1098 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1099
1100 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1101 break;
1102
1103 block_count++;
1104 buf += FM_RDS_BLK_SIZE;
1105 ret += FM_RDS_BLK_SIZE;
1106 }
1107 return ret;
1108 }
1109
fmc_set_freq(struct fmdev * fmdev,u32 freq_to_set)1110 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1111 {
1112 switch (fmdev->curr_fmmode) {
1113 case FM_MODE_RX:
1114 return fm_rx_set_freq(fmdev, freq_to_set);
1115
1116 case FM_MODE_TX:
1117 return fm_tx_set_freq(fmdev, freq_to_set);
1118
1119 default:
1120 return -EINVAL;
1121 }
1122 }
1123
fmc_get_freq(struct fmdev * fmdev,u32 * cur_tuned_frq)1124 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1125 {
1126 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1127 fmerr("RX frequency is not set\n");
1128 return -EPERM;
1129 }
1130 if (cur_tuned_frq == NULL) {
1131 fmerr("Invalid memory\n");
1132 return -ENOMEM;
1133 }
1134
1135 switch (fmdev->curr_fmmode) {
1136 case FM_MODE_RX:
1137 *cur_tuned_frq = fmdev->rx.freq;
1138 return 0;
1139
1140 case FM_MODE_TX:
1141 *cur_tuned_frq = 0; /* TODO : Change this later */
1142 return 0;
1143
1144 default:
1145 return -EINVAL;
1146 }
1147
1148 }
1149
fmc_set_region(struct fmdev * fmdev,u8 region_to_set)1150 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1151 {
1152 switch (fmdev->curr_fmmode) {
1153 case FM_MODE_RX:
1154 return fm_rx_set_region(fmdev, region_to_set);
1155
1156 case FM_MODE_TX:
1157 return fm_tx_set_region(fmdev, region_to_set);
1158
1159 default:
1160 return -EINVAL;
1161 }
1162 }
1163
fmc_set_mute_mode(struct fmdev * fmdev,u8 mute_mode_toset)1164 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1165 {
1166 switch (fmdev->curr_fmmode) {
1167 case FM_MODE_RX:
1168 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1169
1170 case FM_MODE_TX:
1171 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1172
1173 default:
1174 return -EINVAL;
1175 }
1176 }
1177
fmc_set_stereo_mono(struct fmdev * fmdev,u16 mode)1178 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1179 {
1180 switch (fmdev->curr_fmmode) {
1181 case FM_MODE_RX:
1182 return fm_rx_set_stereo_mono(fmdev, mode);
1183
1184 case FM_MODE_TX:
1185 return fm_tx_set_stereo_mono(fmdev, mode);
1186
1187 default:
1188 return -EINVAL;
1189 }
1190 }
1191
fmc_set_rds_mode(struct fmdev * fmdev,u8 rds_en_dis)1192 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1193 {
1194 switch (fmdev->curr_fmmode) {
1195 case FM_MODE_RX:
1196 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1197
1198 case FM_MODE_TX:
1199 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1200
1201 default:
1202 return -EINVAL;
1203 }
1204 }
1205
1206 /* Sends power off command to the chip */
fm_power_down(struct fmdev * fmdev)1207 static int fm_power_down(struct fmdev *fmdev)
1208 {
1209 u16 payload;
1210 int ret;
1211
1212 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1213 fmerr("FM core is not ready\n");
1214 return -EPERM;
1215 }
1216 if (fmdev->curr_fmmode == FM_MODE_OFF) {
1217 fmdbg("FM chip is already in OFF state\n");
1218 return 0;
1219 }
1220
1221 payload = 0x0;
1222 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1223 sizeof(payload), NULL, NULL);
1224 if (ret < 0)
1225 return ret;
1226
1227 return fmc_release(fmdev);
1228 }
1229
1230 /* Reads init command from FM firmware file and loads to the chip */
fm_download_firmware(struct fmdev * fmdev,const u8 * fw_name)1231 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1232 {
1233 const struct firmware *fw_entry;
1234 struct bts_header *fw_header;
1235 struct bts_action *action;
1236 struct bts_action_delay *delay;
1237 u8 *fw_data;
1238 int ret, fw_len;
1239
1240 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1241
1242 ret = request_firmware(&fw_entry, fw_name,
1243 &fmdev->radio_dev->dev);
1244 if (ret < 0) {
1245 fmerr("Unable to read firmware(%s) content\n", fw_name);
1246 return ret;
1247 }
1248 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1249
1250 fw_data = (void *)fw_entry->data;
1251 fw_len = fw_entry->size;
1252
1253 fw_header = (struct bts_header *)fw_data;
1254 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1255 fmerr("%s not a legal TI firmware file\n", fw_name);
1256 ret = -EINVAL;
1257 goto rel_fw;
1258 }
1259 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1260
1261 /* Skip file header info , we already verified it */
1262 fw_data += sizeof(struct bts_header);
1263 fw_len -= sizeof(struct bts_header);
1264
1265 while (fw_data && fw_len > 0) {
1266 action = (struct bts_action *)fw_data;
1267
1268 switch (action->type) {
1269 case ACTION_SEND_COMMAND: /* Send */
1270 ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1271 action->size, NULL, NULL);
1272 if (ret)
1273 goto rel_fw;
1274
1275 break;
1276
1277 case ACTION_DELAY: /* Delay */
1278 delay = (struct bts_action_delay *)action->data;
1279 mdelay(delay->msec);
1280 break;
1281 }
1282
1283 fw_data += (sizeof(struct bts_action) + (action->size));
1284 fw_len -= (sizeof(struct bts_action) + (action->size));
1285 }
1286 fmdbg("Transferred only %d of %d bytes of the firmware to chip\n",
1287 fw_entry->size - fw_len, fw_entry->size);
1288 rel_fw:
1289 release_firmware(fw_entry);
1290 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1291
1292 return ret;
1293 }
1294
1295 /* Loads default RX configuration to the chip */
load_default_rx_configuration(struct fmdev * fmdev)1296 static int load_default_rx_configuration(struct fmdev *fmdev)
1297 {
1298 int ret;
1299
1300 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1301 if (ret < 0)
1302 return ret;
1303
1304 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1305 }
1306
1307 /* Does FM power on sequence */
fm_power_up(struct fmdev * fmdev,u8 mode)1308 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1309 {
1310 u16 payload;
1311 __be16 asic_id = 0, asic_ver = 0;
1312 int resp_len, ret;
1313 u8 fw_name[50];
1314
1315 if (mode >= FM_MODE_ENTRY_MAX) {
1316 fmerr("Invalid firmware download option\n");
1317 return -EINVAL;
1318 }
1319
1320 /*
1321 * Initialize FM common module. FM GPIO toggling is
1322 * taken care in Shared Transport driver.
1323 */
1324 ret = fmc_prepare(fmdev);
1325 if (ret < 0) {
1326 fmerr("Unable to prepare FM Common\n");
1327 return ret;
1328 }
1329
1330 payload = FM_ENABLE;
1331 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1332 sizeof(payload), NULL, NULL))
1333 goto rel;
1334
1335 /* Allow the chip to settle down in Channel-8 mode */
1336 msleep(20);
1337
1338 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1339 sizeof(asic_id), &asic_id, &resp_len))
1340 goto rel;
1341
1342 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1343 sizeof(asic_ver), &asic_ver, &resp_len))
1344 goto rel;
1345
1346 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1347 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1348
1349 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1350 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1351
1352 ret = fm_download_firmware(fmdev, fw_name);
1353 if (ret < 0) {
1354 fmdbg("Failed to download firmware file %s\n", fw_name);
1355 goto rel;
1356 }
1357 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1358 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1359 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1360
1361 ret = fm_download_firmware(fmdev, fw_name);
1362 if (ret < 0) {
1363 fmdbg("Failed to download firmware file %s\n", fw_name);
1364 goto rel;
1365 } else
1366 return ret;
1367 rel:
1368 return fmc_release(fmdev);
1369 }
1370
1371 /* Set FM Modes(TX, RX, OFF) */
fmc_set_mode(struct fmdev * fmdev,u8 fm_mode)1372 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1373 {
1374 int ret = 0;
1375
1376 if (fm_mode >= FM_MODE_ENTRY_MAX) {
1377 fmerr("Invalid FM mode\n");
1378 return -EINVAL;
1379 }
1380 if (fmdev->curr_fmmode == fm_mode) {
1381 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1382 return ret;
1383 }
1384
1385 switch (fm_mode) {
1386 case FM_MODE_OFF: /* OFF Mode */
1387 ret = fm_power_down(fmdev);
1388 if (ret < 0) {
1389 fmerr("Failed to set OFF mode\n");
1390 return ret;
1391 }
1392 break;
1393
1394 case FM_MODE_TX: /* TX Mode */
1395 case FM_MODE_RX: /* RX Mode */
1396 /* Power down before switching to TX or RX mode */
1397 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1398 ret = fm_power_down(fmdev);
1399 if (ret < 0) {
1400 fmerr("Failed to set OFF mode\n");
1401 return ret;
1402 }
1403 msleep(30);
1404 }
1405 ret = fm_power_up(fmdev, fm_mode);
1406 if (ret < 0) {
1407 fmerr("Failed to load firmware\n");
1408 return ret;
1409 }
1410 }
1411 fmdev->curr_fmmode = fm_mode;
1412
1413 /* Set default configuration */
1414 if (fmdev->curr_fmmode == FM_MODE_RX) {
1415 fmdbg("Loading default rx configuration..\n");
1416 ret = load_default_rx_configuration(fmdev);
1417 if (ret < 0)
1418 fmerr("Failed to load default values\n");
1419 }
1420
1421 return ret;
1422 }
1423
1424 /* Returns current FM mode (TX, RX, OFF) */
fmc_get_mode(struct fmdev * fmdev,u8 * fmmode)1425 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1426 {
1427 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1428 fmerr("FM core is not ready\n");
1429 return -EPERM;
1430 }
1431 if (fmmode == NULL) {
1432 fmerr("Invalid memory\n");
1433 return -ENOMEM;
1434 }
1435
1436 *fmmode = fmdev->curr_fmmode;
1437 return 0;
1438 }
1439
1440 /* Called by ST layer when FM packet is available */
fm_st_receive(void * arg,struct sk_buff * skb)1441 static long fm_st_receive(void *arg, struct sk_buff *skb)
1442 {
1443 struct fmdev *fmdev;
1444
1445 fmdev = arg;
1446
1447 if (skb == NULL) {
1448 fmerr("Invalid SKB received from ST\n");
1449 return -EFAULT;
1450 }
1451
1452 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1453 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1454 return -EINVAL;
1455 }
1456
1457 memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1458 skb_queue_tail(&fmdev->rx_q, skb);
1459 tasklet_schedule(&fmdev->rx_task);
1460
1461 return 0;
1462 }
1463
1464 /*
1465 * Called by ST layer to indicate protocol registration completion
1466 * status.
1467 */
fm_st_reg_comp_cb(void * arg,int data)1468 static void fm_st_reg_comp_cb(void *arg, int data)
1469 {
1470 struct fmdev *fmdev;
1471
1472 fmdev = (struct fmdev *)arg;
1473 fmdev->streg_cbdata = data;
1474 complete(&wait_for_fmdrv_reg_comp);
1475 }
1476
1477 /*
1478 * This function will be called from FM V4L2 open function.
1479 * Register with ST driver and initialize driver data.
1480 */
fmc_prepare(struct fmdev * fmdev)1481 int fmc_prepare(struct fmdev *fmdev)
1482 {
1483 static struct st_proto_s fm_st_proto;
1484 int ret;
1485
1486 if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1487 fmdbg("FM Core is already up\n");
1488 return 0;
1489 }
1490
1491 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1492 fm_st_proto.recv = fm_st_receive;
1493 fm_st_proto.match_packet = NULL;
1494 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1495 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1496 fm_st_proto.priv_data = fmdev;
1497 fm_st_proto.chnl_id = 0x08;
1498 fm_st_proto.max_frame_size = 0xff;
1499 fm_st_proto.hdr_len = 1;
1500 fm_st_proto.offset_len_in_hdr = 0;
1501 fm_st_proto.len_size = 1;
1502 fm_st_proto.reserve = 1;
1503
1504 ret = st_register(&fm_st_proto);
1505 if (ret == -EINPROGRESS) {
1506 init_completion(&wait_for_fmdrv_reg_comp);
1507 fmdev->streg_cbdata = -EINPROGRESS;
1508 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1509
1510 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1511 FM_ST_REG_TIMEOUT)) {
1512 fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1513 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1514 return -ETIMEDOUT;
1515 }
1516 if (fmdev->streg_cbdata != 0) {
1517 fmerr("ST reg comp CB called with error status %d\n",
1518 fmdev->streg_cbdata);
1519 return -EAGAIN;
1520 }
1521
1522 ret = 0;
1523 } else if (ret < 0) {
1524 fmerr("st_register failed %d\n", ret);
1525 return -EAGAIN;
1526 }
1527
1528 if (fm_st_proto.write != NULL) {
1529 g_st_write = fm_st_proto.write;
1530 } else {
1531 fmerr("Failed to get ST write func pointer\n");
1532 ret = st_unregister(&fm_st_proto);
1533 if (ret < 0)
1534 fmerr("st_unregister failed %d\n", ret);
1535 return -EAGAIN;
1536 }
1537
1538 spin_lock_init(&fmdev->rds_buff_lock);
1539 spin_lock_init(&fmdev->resp_skb_lock);
1540
1541 /* Initialize TX queue and TX tasklet */
1542 skb_queue_head_init(&fmdev->tx_q);
1543 tasklet_setup(&fmdev->tx_task, send_tasklet);
1544
1545 /* Initialize RX Queue and RX tasklet */
1546 skb_queue_head_init(&fmdev->rx_q);
1547 tasklet_setup(&fmdev->rx_task, recv_tasklet);
1548
1549 fmdev->irq_info.stage = 0;
1550 atomic_set(&fmdev->tx_cnt, 1);
1551 fmdev->resp_comp = NULL;
1552
1553 timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1554 /*TODO: add FM_STIC_EVENT later */
1555 fmdev->irq_info.mask = FM_MAL_EVENT;
1556
1557 /* Region info */
1558 fmdev->rx.region = region_configs[default_radio_region];
1559
1560 fmdev->rx.mute_mode = FM_MUTE_OFF;
1561 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1562 fmdev->rx.rds.flag = FM_RDS_DISABLE;
1563 fmdev->rx.freq = FM_UNDEFINED_FREQ;
1564 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1565 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1566 fmdev->irq_info.retry = 0;
1567
1568 fm_rx_reset_rds_cache(fmdev);
1569 init_waitqueue_head(&fmdev->rx.rds.read_queue);
1570
1571 fm_rx_reset_station_info(fmdev);
1572 set_bit(FM_CORE_READY, &fmdev->flag);
1573
1574 return ret;
1575 }
1576
1577 /*
1578 * This function will be called from FM V4L2 release function.
1579 * Unregister from ST driver.
1580 */
fmc_release(struct fmdev * fmdev)1581 int fmc_release(struct fmdev *fmdev)
1582 {
1583 static struct st_proto_s fm_st_proto;
1584 int ret;
1585
1586 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1587 fmdbg("FM Core is already down\n");
1588 return 0;
1589 }
1590 /* Service pending read */
1591 wake_up_interruptible(&fmdev->rx.rds.read_queue);
1592
1593 tasklet_kill(&fmdev->tx_task);
1594 tasklet_kill(&fmdev->rx_task);
1595
1596 skb_queue_purge(&fmdev->tx_q);
1597 skb_queue_purge(&fmdev->rx_q);
1598
1599 fmdev->resp_comp = NULL;
1600 fmdev->rx.freq = 0;
1601
1602 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1603 fm_st_proto.chnl_id = 0x08;
1604
1605 ret = st_unregister(&fm_st_proto);
1606
1607 if (ret < 0)
1608 fmerr("Failed to de-register FM from ST %d\n", ret);
1609 else
1610 fmdbg("Successfully unregistered from ST\n");
1611
1612 clear_bit(FM_CORE_READY, &fmdev->flag);
1613 return ret;
1614 }
1615
1616 /*
1617 * Module init function. Ask FM V4L module to register video device.
1618 * Allocate memory for FM driver context and RX RDS buffer.
1619 */
fm_drv_init(void)1620 static int __init fm_drv_init(void)
1621 {
1622 struct fmdev *fmdev = NULL;
1623 int ret = -ENOMEM;
1624
1625 fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1626
1627 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1628 if (NULL == fmdev) {
1629 fmerr("Can't allocate operation structure memory\n");
1630 return ret;
1631 }
1632 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1633 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1634 if (NULL == fmdev->rx.rds.buff) {
1635 fmerr("Can't allocate rds ring buffer\n");
1636 goto rel_dev;
1637 }
1638
1639 ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1640 if (ret < 0)
1641 goto rel_rdsbuf;
1642
1643 fmdev->irq_info.handlers = int_handler_table;
1644 fmdev->curr_fmmode = FM_MODE_OFF;
1645 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1646 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1647 return ret;
1648
1649 rel_rdsbuf:
1650 kfree(fmdev->rx.rds.buff);
1651 rel_dev:
1652 kfree(fmdev);
1653
1654 return ret;
1655 }
1656
1657 /* Module exit function. Ask FM V4L module to unregister video device */
fm_drv_exit(void)1658 static void __exit fm_drv_exit(void)
1659 {
1660 struct fmdev *fmdev = NULL;
1661
1662 fmdev = fm_v4l2_deinit_video_device();
1663 if (fmdev != NULL) {
1664 kfree(fmdev->rx.rds.buff);
1665 kfree(fmdev);
1666 }
1667 }
1668
1669 module_init(fm_drv_init);
1670 module_exit(fm_drv_exit);
1671
1672 /* ------------- Module Info ------------- */
1673 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1674 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1675 MODULE_VERSION(FM_DRV_VERSION);
1676 MODULE_LICENSE("GPL");
1677