xref: /openbmc/linux/drivers/base/regmap/regmap.c (revision 0135bbcc7a0cc056f0203ff839466236b8e3dc19)
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/regmap.h>
21 
22 #include "internal.h"
23 
24 bool regmap_writeable(struct regmap *map, unsigned int reg)
25 {
26 	if (map->max_register && reg > map->max_register)
27 		return false;
28 
29 	if (map->writeable_reg)
30 		return map->writeable_reg(map->dev, reg);
31 
32 	return true;
33 }
34 
35 bool regmap_readable(struct regmap *map, unsigned int reg)
36 {
37 	if (map->max_register && reg > map->max_register)
38 		return false;
39 
40 	if (map->format.format_write)
41 		return false;
42 
43 	if (map->readable_reg)
44 		return map->readable_reg(map->dev, reg);
45 
46 	return true;
47 }
48 
49 bool regmap_volatile(struct regmap *map, unsigned int reg)
50 {
51 	if (!regmap_readable(map, reg))
52 		return false;
53 
54 	if (map->volatile_reg)
55 		return map->volatile_reg(map->dev, reg);
56 
57 	return true;
58 }
59 
60 bool regmap_precious(struct regmap *map, unsigned int reg)
61 {
62 	if (!regmap_readable(map, reg))
63 		return false;
64 
65 	if (map->precious_reg)
66 		return map->precious_reg(map->dev, reg);
67 
68 	return false;
69 }
70 
71 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
72 	unsigned int num)
73 {
74 	unsigned int i;
75 
76 	for (i = 0; i < num; i++)
77 		if (!regmap_volatile(map, reg + i))
78 			return false;
79 
80 	return true;
81 }
82 
83 static void regmap_format_2_6_write(struct regmap *map,
84 				     unsigned int reg, unsigned int val)
85 {
86 	u8 *out = map->work_buf;
87 
88 	*out = (reg << 6) | val;
89 }
90 
91 static void regmap_format_4_12_write(struct regmap *map,
92 				     unsigned int reg, unsigned int val)
93 {
94 	__be16 *out = map->work_buf;
95 	*out = cpu_to_be16((reg << 12) | val);
96 }
97 
98 static void regmap_format_7_9_write(struct regmap *map,
99 				    unsigned int reg, unsigned int val)
100 {
101 	__be16 *out = map->work_buf;
102 	*out = cpu_to_be16((reg << 9) | val);
103 }
104 
105 static void regmap_format_10_14_write(struct regmap *map,
106 				    unsigned int reg, unsigned int val)
107 {
108 	u8 *out = map->work_buf;
109 
110 	out[2] = val;
111 	out[1] = (val >> 8) | (reg << 6);
112 	out[0] = reg >> 2;
113 }
114 
115 static void regmap_format_8(void *buf, unsigned int val)
116 {
117 	u8 *b = buf;
118 
119 	b[0] = val;
120 }
121 
122 static void regmap_format_16(void *buf, unsigned int val)
123 {
124 	__be16 *b = buf;
125 
126 	b[0] = cpu_to_be16(val);
127 }
128 
129 static void regmap_format_32(void *buf, unsigned int val)
130 {
131 	__be32 *b = buf;
132 
133 	b[0] = cpu_to_be32(val);
134 }
135 
136 static unsigned int regmap_parse_8(void *buf)
137 {
138 	u8 *b = buf;
139 
140 	return b[0];
141 }
142 
143 static unsigned int regmap_parse_16(void *buf)
144 {
145 	__be16 *b = buf;
146 
147 	b[0] = be16_to_cpu(b[0]);
148 
149 	return b[0];
150 }
151 
152 static unsigned int regmap_parse_32(void *buf)
153 {
154 	__be32 *b = buf;
155 
156 	b[0] = be32_to_cpu(b[0]);
157 
158 	return b[0];
159 }
160 
161 /**
162  * regmap_init(): Initialise register map
163  *
164  * @dev: Device that will be interacted with
165  * @bus: Bus-specific callbacks to use with device
166  * @bus_context: Data passed to bus-specific callbacks
167  * @config: Configuration for register map
168  *
169  * The return value will be an ERR_PTR() on error or a valid pointer to
170  * a struct regmap.  This function should generally not be called
171  * directly, it should be called by bus-specific init functions.
172  */
173 struct regmap *regmap_init(struct device *dev,
174 			   const struct regmap_bus *bus,
175 			   void *bus_context,
176 			   const struct regmap_config *config)
177 {
178 	struct regmap *map;
179 	int ret = -EINVAL;
180 
181 	if (!bus || !config)
182 		goto err;
183 
184 	map = kzalloc(sizeof(*map), GFP_KERNEL);
185 	if (map == NULL) {
186 		ret = -ENOMEM;
187 		goto err;
188 	}
189 
190 	mutex_init(&map->lock);
191 	map->format.buf_size = (config->reg_bits + config->val_bits) / 8;
192 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
193 	map->format.pad_bytes = config->pad_bits / 8;
194 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
195 	map->format.buf_size += map->format.pad_bytes;
196 	map->dev = dev;
197 	map->bus = bus;
198 	map->bus_context = bus_context;
199 	map->max_register = config->max_register;
200 	map->writeable_reg = config->writeable_reg;
201 	map->readable_reg = config->readable_reg;
202 	map->volatile_reg = config->volatile_reg;
203 	map->precious_reg = config->precious_reg;
204 	map->cache_type = config->cache_type;
205 
206 	if (config->read_flag_mask || config->write_flag_mask) {
207 		map->read_flag_mask = config->read_flag_mask;
208 		map->write_flag_mask = config->write_flag_mask;
209 	} else {
210 		map->read_flag_mask = bus->read_flag_mask;
211 	}
212 
213 	switch (config->reg_bits) {
214 	case 2:
215 		switch (config->val_bits) {
216 		case 6:
217 			map->format.format_write = regmap_format_2_6_write;
218 			break;
219 		default:
220 			goto err_map;
221 		}
222 		break;
223 
224 	case 4:
225 		switch (config->val_bits) {
226 		case 12:
227 			map->format.format_write = regmap_format_4_12_write;
228 			break;
229 		default:
230 			goto err_map;
231 		}
232 		break;
233 
234 	case 7:
235 		switch (config->val_bits) {
236 		case 9:
237 			map->format.format_write = regmap_format_7_9_write;
238 			break;
239 		default:
240 			goto err_map;
241 		}
242 		break;
243 
244 	case 10:
245 		switch (config->val_bits) {
246 		case 14:
247 			map->format.format_write = regmap_format_10_14_write;
248 			break;
249 		default:
250 			goto err_map;
251 		}
252 		break;
253 
254 	case 8:
255 		map->format.format_reg = regmap_format_8;
256 		break;
257 
258 	case 16:
259 		map->format.format_reg = regmap_format_16;
260 		break;
261 
262 	case 32:
263 		map->format.format_reg = regmap_format_32;
264 		break;
265 
266 	default:
267 		goto err_map;
268 	}
269 
270 	switch (config->val_bits) {
271 	case 8:
272 		map->format.format_val = regmap_format_8;
273 		map->format.parse_val = regmap_parse_8;
274 		break;
275 	case 16:
276 		map->format.format_val = regmap_format_16;
277 		map->format.parse_val = regmap_parse_16;
278 		break;
279 	case 32:
280 		map->format.format_val = regmap_format_32;
281 		map->format.parse_val = regmap_parse_32;
282 		break;
283 	}
284 
285 	if (!map->format.format_write &&
286 	    !(map->format.format_reg && map->format.format_val))
287 		goto err_map;
288 
289 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
290 	if (map->work_buf == NULL) {
291 		ret = -ENOMEM;
292 		goto err_map;
293 	}
294 
295 	regmap_debugfs_init(map);
296 
297 	ret = regcache_init(map, config);
298 	if (ret < 0)
299 		goto err_free_workbuf;
300 
301 	return map;
302 
303 err_free_workbuf:
304 	kfree(map->work_buf);
305 err_map:
306 	kfree(map);
307 err:
308 	return ERR_PTR(ret);
309 }
310 EXPORT_SYMBOL_GPL(regmap_init);
311 
312 static void devm_regmap_release(struct device *dev, void *res)
313 {
314 	regmap_exit(*(struct regmap **)res);
315 }
316 
317 /**
318  * devm_regmap_init(): Initialise managed register map
319  *
320  * @dev: Device that will be interacted with
321  * @bus: Bus-specific callbacks to use with device
322  * @bus_context: Data passed to bus-specific callbacks
323  * @config: Configuration for register map
324  *
325  * The return value will be an ERR_PTR() on error or a valid pointer
326  * to a struct regmap.  This function should generally not be called
327  * directly, it should be called by bus-specific init functions.  The
328  * map will be automatically freed by the device management code.
329  */
330 struct regmap *devm_regmap_init(struct device *dev,
331 				const struct regmap_bus *bus,
332 				void *bus_context,
333 				const struct regmap_config *config)
334 {
335 	struct regmap **ptr, *regmap;
336 
337 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
338 	if (!ptr)
339 		return ERR_PTR(-ENOMEM);
340 
341 	regmap = regmap_init(dev, bus, bus_context, config);
342 	if (!IS_ERR(regmap)) {
343 		*ptr = regmap;
344 		devres_add(dev, ptr);
345 	} else {
346 		devres_free(ptr);
347 	}
348 
349 	return regmap;
350 }
351 EXPORT_SYMBOL_GPL(devm_regmap_init);
352 
353 /**
354  * regmap_reinit_cache(): Reinitialise the current register cache
355  *
356  * @map: Register map to operate on.
357  * @config: New configuration.  Only the cache data will be used.
358  *
359  * Discard any existing register cache for the map and initialize a
360  * new cache.  This can be used to restore the cache to defaults or to
361  * update the cache configuration to reflect runtime discovery of the
362  * hardware.
363  */
364 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
365 {
366 	int ret;
367 
368 	mutex_lock(&map->lock);
369 
370 	regcache_exit(map);
371 	regmap_debugfs_exit(map);
372 
373 	map->max_register = config->max_register;
374 	map->writeable_reg = config->writeable_reg;
375 	map->readable_reg = config->readable_reg;
376 	map->volatile_reg = config->volatile_reg;
377 	map->precious_reg = config->precious_reg;
378 	map->cache_type = config->cache_type;
379 
380 	regmap_debugfs_init(map);
381 
382 	map->cache_bypass = false;
383 	map->cache_only = false;
384 
385 	ret = regcache_init(map, config);
386 
387 	mutex_unlock(&map->lock);
388 
389 	return ret;
390 }
391 
392 /**
393  * regmap_exit(): Free a previously allocated register map
394  */
395 void regmap_exit(struct regmap *map)
396 {
397 	regcache_exit(map);
398 	regmap_debugfs_exit(map);
399 	if (map->bus->free_context)
400 		map->bus->free_context(map->bus_context);
401 	kfree(map->work_buf);
402 	kfree(map);
403 }
404 EXPORT_SYMBOL_GPL(regmap_exit);
405 
406 static int _regmap_raw_write(struct regmap *map, unsigned int reg,
407 			     const void *val, size_t val_len)
408 {
409 	u8 *u8 = map->work_buf;
410 	void *buf;
411 	int ret = -ENOTSUPP;
412 	size_t len;
413 	int i;
414 
415 	/* Check for unwritable registers before we start */
416 	if (map->writeable_reg)
417 		for (i = 0; i < val_len / map->format.val_bytes; i++)
418 			if (!map->writeable_reg(map->dev, reg + i))
419 				return -EINVAL;
420 
421 	if (!map->cache_bypass && map->format.parse_val) {
422 		unsigned int ival;
423 		int val_bytes = map->format.val_bytes;
424 		for (i = 0; i < val_len / val_bytes; i++) {
425 			memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
426 			ival = map->format.parse_val(map->work_buf);
427 			ret = regcache_write(map, reg + i, ival);
428 			if (ret) {
429 				dev_err(map->dev,
430 				   "Error in caching of register: %u ret: %d\n",
431 					reg + i, ret);
432 				return ret;
433 			}
434 		}
435 		if (map->cache_only) {
436 			map->cache_dirty = true;
437 			return 0;
438 		}
439 	}
440 
441 	map->format.format_reg(map->work_buf, reg);
442 
443 	u8[0] |= map->write_flag_mask;
444 
445 	trace_regmap_hw_write_start(map->dev, reg,
446 				    val_len / map->format.val_bytes);
447 
448 	/* If we're doing a single register write we can probably just
449 	 * send the work_buf directly, otherwise try to do a gather
450 	 * write.
451 	 */
452 	if (val == (map->work_buf + map->format.pad_bytes +
453 		    map->format.reg_bytes))
454 		ret = map->bus->write(map->bus_context, map->work_buf,
455 				      map->format.reg_bytes +
456 				      map->format.pad_bytes +
457 				      val_len);
458 	else if (map->bus->gather_write)
459 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
460 					     map->format.reg_bytes +
461 					     map->format.pad_bytes,
462 					     val, val_len);
463 
464 	/* If that didn't work fall back on linearising by hand. */
465 	if (ret == -ENOTSUPP) {
466 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
467 		buf = kzalloc(len, GFP_KERNEL);
468 		if (!buf)
469 			return -ENOMEM;
470 
471 		memcpy(buf, map->work_buf, map->format.reg_bytes);
472 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
473 		       val, val_len);
474 		ret = map->bus->write(map->bus_context, buf, len);
475 
476 		kfree(buf);
477 	}
478 
479 	trace_regmap_hw_write_done(map->dev, reg,
480 				   val_len / map->format.val_bytes);
481 
482 	return ret;
483 }
484 
485 int _regmap_write(struct regmap *map, unsigned int reg,
486 		  unsigned int val)
487 {
488 	int ret;
489 	BUG_ON(!map->format.format_write && !map->format.format_val);
490 
491 	if (!map->cache_bypass && map->format.format_write) {
492 		ret = regcache_write(map, reg, val);
493 		if (ret != 0)
494 			return ret;
495 		if (map->cache_only) {
496 			map->cache_dirty = true;
497 			return 0;
498 		}
499 	}
500 
501 	trace_regmap_reg_write(map->dev, reg, val);
502 
503 	if (map->format.format_write) {
504 		map->format.format_write(map, reg, val);
505 
506 		trace_regmap_hw_write_start(map->dev, reg, 1);
507 
508 		ret = map->bus->write(map->bus_context, map->work_buf,
509 				      map->format.buf_size);
510 
511 		trace_regmap_hw_write_done(map->dev, reg, 1);
512 
513 		return ret;
514 	} else {
515 		map->format.format_val(map->work_buf + map->format.reg_bytes
516 				       + map->format.pad_bytes, val);
517 		return _regmap_raw_write(map, reg,
518 					 map->work_buf +
519 					 map->format.reg_bytes +
520 					 map->format.pad_bytes,
521 					 map->format.val_bytes);
522 	}
523 }
524 
525 /**
526  * regmap_write(): Write a value to a single register
527  *
528  * @map: Register map to write to
529  * @reg: Register to write to
530  * @val: Value to be written
531  *
532  * A value of zero will be returned on success, a negative errno will
533  * be returned in error cases.
534  */
535 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
536 {
537 	int ret;
538 
539 	mutex_lock(&map->lock);
540 
541 	ret = _regmap_write(map, reg, val);
542 
543 	mutex_unlock(&map->lock);
544 
545 	return ret;
546 }
547 EXPORT_SYMBOL_GPL(regmap_write);
548 
549 /**
550  * regmap_raw_write(): Write raw values to one or more registers
551  *
552  * @map: Register map to write to
553  * @reg: Initial register to write to
554  * @val: Block of data to be written, laid out for direct transmission to the
555  *       device
556  * @val_len: Length of data pointed to by val.
557  *
558  * This function is intended to be used for things like firmware
559  * download where a large block of data needs to be transferred to the
560  * device.  No formatting will be done on the data provided.
561  *
562  * A value of zero will be returned on success, a negative errno will
563  * be returned in error cases.
564  */
565 int regmap_raw_write(struct regmap *map, unsigned int reg,
566 		     const void *val, size_t val_len)
567 {
568 	int ret;
569 
570 	mutex_lock(&map->lock);
571 
572 	ret = _regmap_raw_write(map, reg, val, val_len);
573 
574 	mutex_unlock(&map->lock);
575 
576 	return ret;
577 }
578 EXPORT_SYMBOL_GPL(regmap_raw_write);
579 
580 /*
581  * regmap_bulk_write(): Write multiple registers to the device
582  *
583  * @map: Register map to write to
584  * @reg: First register to be write from
585  * @val: Block of data to be written, in native register size for device
586  * @val_count: Number of registers to write
587  *
588  * This function is intended to be used for writing a large block of
589  * data to be device either in single transfer or multiple transfer.
590  *
591  * A value of zero will be returned on success, a negative errno will
592  * be returned in error cases.
593  */
594 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
595 		     size_t val_count)
596 {
597 	int ret = 0, i;
598 	size_t val_bytes = map->format.val_bytes;
599 	void *wval;
600 
601 	if (!map->format.parse_val)
602 		return -EINVAL;
603 
604 	mutex_lock(&map->lock);
605 
606 	/* No formatting is require if val_byte is 1 */
607 	if (val_bytes == 1) {
608 		wval = (void *)val;
609 	} else {
610 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
611 		if (!wval) {
612 			ret = -ENOMEM;
613 			dev_err(map->dev, "Error in memory allocation\n");
614 			goto out;
615 		}
616 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
617 			map->format.parse_val(wval + i);
618 	}
619 	ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
620 
621 	if (val_bytes != 1)
622 		kfree(wval);
623 
624 out:
625 	mutex_unlock(&map->lock);
626 	return ret;
627 }
628 EXPORT_SYMBOL_GPL(regmap_bulk_write);
629 
630 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
631 			    unsigned int val_len)
632 {
633 	u8 *u8 = map->work_buf;
634 	int ret;
635 
636 	map->format.format_reg(map->work_buf, reg);
637 
638 	/*
639 	 * Some buses or devices flag reads by setting the high bits in the
640 	 * register addresss; since it's always the high bits for all
641 	 * current formats we can do this here rather than in
642 	 * formatting.  This may break if we get interesting formats.
643 	 */
644 	u8[0] |= map->read_flag_mask;
645 
646 	trace_regmap_hw_read_start(map->dev, reg,
647 				   val_len / map->format.val_bytes);
648 
649 	ret = map->bus->read(map->bus_context, map->work_buf,
650 			     map->format.reg_bytes + map->format.pad_bytes,
651 			     val, val_len);
652 
653 	trace_regmap_hw_read_done(map->dev, reg,
654 				  val_len / map->format.val_bytes);
655 
656 	return ret;
657 }
658 
659 static int _regmap_read(struct regmap *map, unsigned int reg,
660 			unsigned int *val)
661 {
662 	int ret;
663 
664 	if (!map->cache_bypass) {
665 		ret = regcache_read(map, reg, val);
666 		if (ret == 0)
667 			return 0;
668 	}
669 
670 	if (!map->format.parse_val)
671 		return -EINVAL;
672 
673 	if (map->cache_only)
674 		return -EBUSY;
675 
676 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
677 	if (ret == 0) {
678 		*val = map->format.parse_val(map->work_buf);
679 		trace_regmap_reg_read(map->dev, reg, *val);
680 	}
681 
682 	return ret;
683 }
684 
685 /**
686  * regmap_read(): Read a value from a single register
687  *
688  * @map: Register map to write to
689  * @reg: Register to be read from
690  * @val: Pointer to store read value
691  *
692  * A value of zero will be returned on success, a negative errno will
693  * be returned in error cases.
694  */
695 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
696 {
697 	int ret;
698 
699 	mutex_lock(&map->lock);
700 
701 	ret = _regmap_read(map, reg, val);
702 
703 	mutex_unlock(&map->lock);
704 
705 	return ret;
706 }
707 EXPORT_SYMBOL_GPL(regmap_read);
708 
709 /**
710  * regmap_raw_read(): Read raw data from the device
711  *
712  * @map: Register map to write to
713  * @reg: First register to be read from
714  * @val: Pointer to store read value
715  * @val_len: Size of data to read
716  *
717  * A value of zero will be returned on success, a negative errno will
718  * be returned in error cases.
719  */
720 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
721 		    size_t val_len)
722 {
723 	size_t val_bytes = map->format.val_bytes;
724 	size_t val_count = val_len / val_bytes;
725 	unsigned int v;
726 	int ret, i;
727 
728 	mutex_lock(&map->lock);
729 
730 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
731 	    map->cache_type == REGCACHE_NONE) {
732 		/* Physical block read if there's no cache involved */
733 		ret = _regmap_raw_read(map, reg, val, val_len);
734 
735 	} else {
736 		/* Otherwise go word by word for the cache; should be low
737 		 * cost as we expect to hit the cache.
738 		 */
739 		for (i = 0; i < val_count; i++) {
740 			ret = _regmap_read(map, reg + i, &v);
741 			if (ret != 0)
742 				goto out;
743 
744 			map->format.format_val(val + (i * val_bytes), v);
745 		}
746 	}
747 
748  out:
749 	mutex_unlock(&map->lock);
750 
751 	return ret;
752 }
753 EXPORT_SYMBOL_GPL(regmap_raw_read);
754 
755 /**
756  * regmap_bulk_read(): Read multiple registers from the device
757  *
758  * @map: Register map to write to
759  * @reg: First register to be read from
760  * @val: Pointer to store read value, in native register size for device
761  * @val_count: Number of registers to read
762  *
763  * A value of zero will be returned on success, a negative errno will
764  * be returned in error cases.
765  */
766 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
767 		     size_t val_count)
768 {
769 	int ret, i;
770 	size_t val_bytes = map->format.val_bytes;
771 	bool vol = regmap_volatile_range(map, reg, val_count);
772 
773 	if (!map->format.parse_val)
774 		return -EINVAL;
775 
776 	if (vol || map->cache_type == REGCACHE_NONE) {
777 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
778 		if (ret != 0)
779 			return ret;
780 
781 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
782 			map->format.parse_val(val + i);
783 	} else {
784 		for (i = 0; i < val_count; i++) {
785 			ret = regmap_read(map, reg + i, val + (i * val_bytes));
786 			if (ret != 0)
787 				return ret;
788 		}
789 	}
790 
791 	return 0;
792 }
793 EXPORT_SYMBOL_GPL(regmap_bulk_read);
794 
795 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
796 			       unsigned int mask, unsigned int val,
797 			       bool *change)
798 {
799 	int ret;
800 	unsigned int tmp, orig;
801 
802 	mutex_lock(&map->lock);
803 
804 	ret = _regmap_read(map, reg, &orig);
805 	if (ret != 0)
806 		goto out;
807 
808 	tmp = orig & ~mask;
809 	tmp |= val & mask;
810 
811 	if (tmp != orig) {
812 		ret = _regmap_write(map, reg, tmp);
813 		*change = true;
814 	} else {
815 		*change = false;
816 	}
817 
818 out:
819 	mutex_unlock(&map->lock);
820 
821 	return ret;
822 }
823 
824 /**
825  * regmap_update_bits: Perform a read/modify/write cycle on the register map
826  *
827  * @map: Register map to update
828  * @reg: Register to update
829  * @mask: Bitmask to change
830  * @val: New value for bitmask
831  *
832  * Returns zero for success, a negative number on error.
833  */
834 int regmap_update_bits(struct regmap *map, unsigned int reg,
835 		       unsigned int mask, unsigned int val)
836 {
837 	bool change;
838 	return _regmap_update_bits(map, reg, mask, val, &change);
839 }
840 EXPORT_SYMBOL_GPL(regmap_update_bits);
841 
842 /**
843  * regmap_update_bits_check: Perform a read/modify/write cycle on the
844  *                           register map and report if updated
845  *
846  * @map: Register map to update
847  * @reg: Register to update
848  * @mask: Bitmask to change
849  * @val: New value for bitmask
850  * @change: Boolean indicating if a write was done
851  *
852  * Returns zero for success, a negative number on error.
853  */
854 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
855 			     unsigned int mask, unsigned int val,
856 			     bool *change)
857 {
858 	return _regmap_update_bits(map, reg, mask, val, change);
859 }
860 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
861 
862 /**
863  * regmap_register_patch: Register and apply register updates to be applied
864  *                        on device initialistion
865  *
866  * @map: Register map to apply updates to.
867  * @regs: Values to update.
868  * @num_regs: Number of entries in regs.
869  *
870  * Register a set of register updates to be applied to the device
871  * whenever the device registers are synchronised with the cache and
872  * apply them immediately.  Typically this is used to apply
873  * corrections to be applied to the device defaults on startup, such
874  * as the updates some vendors provide to undocumented registers.
875  */
876 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
877 			  int num_regs)
878 {
879 	int i, ret;
880 	bool bypass;
881 
882 	/* If needed the implementation can be extended to support this */
883 	if (map->patch)
884 		return -EBUSY;
885 
886 	mutex_lock(&map->lock);
887 
888 	bypass = map->cache_bypass;
889 
890 	map->cache_bypass = true;
891 
892 	/* Write out first; it's useful to apply even if we fail later. */
893 	for (i = 0; i < num_regs; i++) {
894 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
895 		if (ret != 0) {
896 			dev_err(map->dev, "Failed to write %x = %x: %d\n",
897 				regs[i].reg, regs[i].def, ret);
898 			goto out;
899 		}
900 	}
901 
902 	map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
903 	if (map->patch != NULL) {
904 		memcpy(map->patch, regs,
905 		       num_regs * sizeof(struct reg_default));
906 		map->patch_regs = num_regs;
907 	} else {
908 		ret = -ENOMEM;
909 	}
910 
911 out:
912 	map->cache_bypass = bypass;
913 
914 	mutex_unlock(&map->lock);
915 
916 	return ret;
917 }
918 EXPORT_SYMBOL_GPL(regmap_register_patch);
919 
920 /*
921  * regmap_get_val_bytes(): Report the size of a register value
922  *
923  * Report the size of a register value, mainly intended to for use by
924  * generic infrastructure built on top of regmap.
925  */
926 int regmap_get_val_bytes(struct regmap *map)
927 {
928 	if (map->format.format_write)
929 		return -EINVAL;
930 
931 	return map->format.val_bytes;
932 }
933 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
934 
935 static int __init regmap_initcall(void)
936 {
937 	regmap_debugfs_initcall();
938 
939 	return 0;
940 }
941 postcore_initcall(regmap_initcall);
942