1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254 }
255
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258 {
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264 }
265
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 u8 *b = buf;
269
270 b[0] = val << shift;
271 }
272
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 put_unaligned_be16(val << shift, buf);
276 }
277
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 put_unaligned_le16(val << shift, buf);
281 }
282
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285 {
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289 }
290
regmap_format_24_be(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 put_unaligned_be24(val << shift, buf);
294 }
295
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 put_unaligned_be32(val << shift, buf);
299 }
300
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 put_unaligned_le32(val << shift, buf);
304 }
305
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)306 static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308 {
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312 }
313
regmap_parse_inplace_noop(void * buf)314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317
regmap_parse_8(const void * buf)318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 const u8 *b = buf;
321
322 return b[0];
323 }
324
regmap_parse_16_be(const void * buf)325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 return get_unaligned_be16(buf);
328 }
329
regmap_parse_16_le(const void * buf)330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 return get_unaligned_le16(buf);
333 }
334
regmap_parse_16_be_inplace(void * buf)335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 u16 v = get_unaligned_be16(buf);
338
339 memcpy(buf, &v, sizeof(v));
340 }
341
regmap_parse_16_le_inplace(void * buf)342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 u16 v = get_unaligned_le16(buf);
345
346 memcpy(buf, &v, sizeof(v));
347 }
348
regmap_parse_16_native(const void * buf)349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 u16 v;
352
353 memcpy(&v, buf, sizeof(v));
354 return v;
355 }
356
regmap_parse_24_be(const void * buf)357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 return get_unaligned_be24(buf);
360 }
361
regmap_parse_32_be(const void * buf)362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 return get_unaligned_be32(buf);
365 }
366
regmap_parse_32_le(const void * buf)367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 return get_unaligned_le32(buf);
370 }
371
regmap_parse_32_be_inplace(void * buf)372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 u32 v = get_unaligned_be32(buf);
375
376 memcpy(buf, &v, sizeof(v));
377 }
378
regmap_parse_32_le_inplace(void * buf)379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 u32 v = get_unaligned_le32(buf);
382
383 memcpy(buf, &v, sizeof(v));
384 }
385
regmap_parse_32_native(const void * buf)386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 u32 v;
389
390 memcpy(&v, buf, sizeof(v));
391 return v;
392 }
393
regmap_lock_hwlock(void * __map)394 static void regmap_lock_hwlock(void *__map)
395 {
396 struct regmap *map = __map;
397
398 hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400
regmap_lock_hwlock_irq(void * __map)401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 struct regmap *map = __map;
404
405 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407
regmap_lock_hwlock_irqsave(void * __map)408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 struct regmap *map = __map;
411
412 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 &map->spinlock_flags);
414 }
415
regmap_unlock_hwlock(void * __map)416 static void regmap_unlock_hwlock(void *__map)
417 {
418 struct regmap *map = __map;
419
420 hwspin_unlock(map->hwlock);
421 }
422
regmap_unlock_hwlock_irq(void * __map)423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 struct regmap *map = __map;
426
427 hwspin_unlock_irq(map->hwlock);
428 }
429
regmap_unlock_hwlock_irqrestore(void * __map)430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 struct regmap *map = __map;
433
434 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436
regmap_lock_unlock_none(void * __map)437 static void regmap_lock_unlock_none(void *__map)
438 {
439
440 }
441
regmap_lock_mutex(void * __map)442 static void regmap_lock_mutex(void *__map)
443 {
444 struct regmap *map = __map;
445 mutex_lock(&map->mutex);
446 }
447
regmap_unlock_mutex(void * __map)448 static void regmap_unlock_mutex(void *__map)
449 {
450 struct regmap *map = __map;
451 mutex_unlock(&map->mutex);
452 }
453
regmap_lock_spinlock(void * __map)454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 struct regmap *map = __map;
458 unsigned long flags;
459
460 spin_lock_irqsave(&map->spinlock, flags);
461 map->spinlock_flags = flags;
462 }
463
regmap_unlock_spinlock(void * __map)464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 struct regmap *map = __map;
468 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470
regmap_lock_raw_spinlock(void * __map)471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 struct regmap *map = __map;
475 unsigned long flags;
476
477 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 map->raw_spinlock_flags = flags;
479 }
480
regmap_unlock_raw_spinlock(void * __map)481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 struct regmap *map = __map;
485 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487
dev_get_regmap_release(struct device * dev,void * res)488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 /*
491 * We don't actually have anything to do here; the goal here
492 * is not to manage the regmap but to provide a simple way to
493 * get the regmap back given a struct device.
494 */
495 }
496
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)497 static bool _regmap_range_add(struct regmap *map,
498 struct regmap_range_node *data)
499 {
500 struct rb_root *root = &map->range_tree;
501 struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503 while (*new) {
504 struct regmap_range_node *this =
505 rb_entry(*new, struct regmap_range_node, node);
506
507 parent = *new;
508 if (data->range_max < this->range_min)
509 new = &((*new)->rb_left);
510 else if (data->range_min > this->range_max)
511 new = &((*new)->rb_right);
512 else
513 return false;
514 }
515
516 rb_link_node(&data->node, parent, new);
517 rb_insert_color(&data->node, root);
518
519 return true;
520 }
521
_regmap_range_lookup(struct regmap * map,unsigned int reg)522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 unsigned int reg)
524 {
525 struct rb_node *node = map->range_tree.rb_node;
526
527 while (node) {
528 struct regmap_range_node *this =
529 rb_entry(node, struct regmap_range_node, node);
530
531 if (reg < this->range_min)
532 node = node->rb_left;
533 else if (reg > this->range_max)
534 node = node->rb_right;
535 else
536 return this;
537 }
538
539 return NULL;
540 }
541
regmap_range_exit(struct regmap * map)542 static void regmap_range_exit(struct regmap *map)
543 {
544 struct rb_node *next;
545 struct regmap_range_node *range_node;
546
547 next = rb_first(&map->range_tree);
548 while (next) {
549 range_node = rb_entry(next, struct regmap_range_node, node);
550 next = rb_next(&range_node->node);
551 rb_erase(&range_node->node, &map->range_tree);
552 kfree(range_node);
553 }
554
555 kfree(map->selector_work_buf);
556 }
557
regmap_set_name(struct regmap * map,const struct regmap_config * config)558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 if (config->name) {
561 const char *name = kstrdup_const(config->name, GFP_KERNEL);
562
563 if (!name)
564 return -ENOMEM;
565
566 kfree_const(map->name);
567 map->name = name;
568 }
569
570 return 0;
571 }
572
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 const struct regmap_config *config)
575 {
576 struct regmap **m;
577 int ret;
578
579 map->dev = dev;
580
581 ret = regmap_set_name(map, config);
582 if (ret)
583 return ret;
584
585 regmap_debugfs_exit(map);
586 regmap_debugfs_init(map);
587
588 /* Add a devres resource for dev_get_regmap() */
589 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 if (!m) {
591 regmap_debugfs_exit(map);
592 return -ENOMEM;
593 }
594 *m = map;
595 devres_add(dev, m);
596
597 return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
601 static int dev_get_regmap_match(struct device *dev, void *res, void *data);
602
regmap_detach_dev(struct device * dev,struct regmap * map)603 static int regmap_detach_dev(struct device *dev, struct regmap *map)
604 {
605 if (!dev)
606 return 0;
607
608 return devres_release(dev, dev_get_regmap_release,
609 dev_get_regmap_match, (void *)map->name);
610 }
611
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 const struct regmap_config *config)
614 {
615 enum regmap_endian endian;
616
617 /* Retrieve the endianness specification from the regmap config */
618 endian = config->reg_format_endian;
619
620 /* If the regmap config specified a non-default value, use that */
621 if (endian != REGMAP_ENDIAN_DEFAULT)
622 return endian;
623
624 /* Retrieve the endianness specification from the bus config */
625 if (bus && bus->reg_format_endian_default)
626 endian = bus->reg_format_endian_default;
627
628 /* If the bus specified a non-default value, use that */
629 if (endian != REGMAP_ENDIAN_DEFAULT)
630 return endian;
631
632 /* Use this if no other value was found */
633 return REGMAP_ENDIAN_BIG;
634 }
635
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)636 enum regmap_endian regmap_get_val_endian(struct device *dev,
637 const struct regmap_bus *bus,
638 const struct regmap_config *config)
639 {
640 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
641 enum regmap_endian endian;
642
643 /* Retrieve the endianness specification from the regmap config */
644 endian = config->val_format_endian;
645
646 /* If the regmap config specified a non-default value, use that */
647 if (endian != REGMAP_ENDIAN_DEFAULT)
648 return endian;
649
650 /* If the firmware node exist try to get endianness from it */
651 if (fwnode_property_read_bool(fwnode, "big-endian"))
652 endian = REGMAP_ENDIAN_BIG;
653 else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 endian = REGMAP_ENDIAN_LITTLE;
655 else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 endian = REGMAP_ENDIAN_NATIVE;
657
658 /* If the endianness was specified in fwnode, use that */
659 if (endian != REGMAP_ENDIAN_DEFAULT)
660 return endian;
661
662 /* Retrieve the endianness specification from the bus config */
663 if (bus && bus->val_format_endian_default)
664 endian = bus->val_format_endian_default;
665
666 /* If the bus specified a non-default value, use that */
667 if (endian != REGMAP_ENDIAN_DEFAULT)
668 return endian;
669
670 /* Use this if no other value was found */
671 return REGMAP_ENDIAN_BIG;
672 }
673 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
674
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)675 struct regmap *__regmap_init(struct device *dev,
676 const struct regmap_bus *bus,
677 void *bus_context,
678 const struct regmap_config *config,
679 struct lock_class_key *lock_key,
680 const char *lock_name)
681 {
682 struct regmap *map;
683 int ret = -EINVAL;
684 enum regmap_endian reg_endian, val_endian;
685 int i, j;
686
687 if (!config)
688 goto err;
689
690 map = kzalloc(sizeof(*map), GFP_KERNEL);
691 if (map == NULL) {
692 ret = -ENOMEM;
693 goto err;
694 }
695
696 ret = regmap_set_name(map, config);
697 if (ret)
698 goto err_map;
699
700 ret = -EINVAL; /* Later error paths rely on this */
701
702 if (config->disable_locking) {
703 map->lock = map->unlock = regmap_lock_unlock_none;
704 map->can_sleep = config->can_sleep;
705 regmap_debugfs_disable(map);
706 } else if (config->lock && config->unlock) {
707 map->lock = config->lock;
708 map->unlock = config->unlock;
709 map->lock_arg = config->lock_arg;
710 map->can_sleep = config->can_sleep;
711 } else if (config->use_hwlock) {
712 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
713 if (!map->hwlock) {
714 ret = -ENXIO;
715 goto err_name;
716 }
717
718 switch (config->hwlock_mode) {
719 case HWLOCK_IRQSTATE:
720 map->lock = regmap_lock_hwlock_irqsave;
721 map->unlock = regmap_unlock_hwlock_irqrestore;
722 break;
723 case HWLOCK_IRQ:
724 map->lock = regmap_lock_hwlock_irq;
725 map->unlock = regmap_unlock_hwlock_irq;
726 break;
727 default:
728 map->lock = regmap_lock_hwlock;
729 map->unlock = regmap_unlock_hwlock;
730 break;
731 }
732
733 map->lock_arg = map;
734 } else {
735 if ((bus && bus->fast_io) ||
736 config->fast_io) {
737 if (config->use_raw_spinlock) {
738 raw_spin_lock_init(&map->raw_spinlock);
739 map->lock = regmap_lock_raw_spinlock;
740 map->unlock = regmap_unlock_raw_spinlock;
741 lockdep_set_class_and_name(&map->raw_spinlock,
742 lock_key, lock_name);
743 } else {
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
749 }
750 } else {
751 mutex_init(&map->mutex);
752 map->lock = regmap_lock_mutex;
753 map->unlock = regmap_unlock_mutex;
754 map->can_sleep = true;
755 lockdep_set_class_and_name(&map->mutex,
756 lock_key, lock_name);
757 }
758 map->lock_arg = map;
759 map->lock_key = lock_key;
760 }
761
762 /*
763 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 * scratch buffers with sleeping allocations.
765 */
766 if ((bus && bus->fast_io) || config->fast_io)
767 map->alloc_flags = GFP_ATOMIC;
768 else
769 map->alloc_flags = GFP_KERNEL;
770
771 map->reg_base = config->reg_base;
772
773 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
774 map->format.pad_bytes = config->pad_bits / 8;
775 map->format.reg_shift = config->reg_shift;
776 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
777 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
778 config->val_bits + config->pad_bits, 8);
779 map->reg_shift = config->pad_bits % 8;
780 if (config->reg_stride)
781 map->reg_stride = config->reg_stride;
782 else
783 map->reg_stride = 1;
784 if (is_power_of_2(map->reg_stride))
785 map->reg_stride_order = ilog2(map->reg_stride);
786 else
787 map->reg_stride_order = -1;
788 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
789 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
790 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
791 if (bus) {
792 map->max_raw_read = bus->max_raw_read;
793 map->max_raw_write = bus->max_raw_write;
794 } else if (config->max_raw_read && config->max_raw_write) {
795 map->max_raw_read = config->max_raw_read;
796 map->max_raw_write = config->max_raw_write;
797 }
798 map->dev = dev;
799 map->bus = bus;
800 map->bus_context = bus_context;
801 map->max_register = config->max_register;
802 map->wr_table = config->wr_table;
803 map->rd_table = config->rd_table;
804 map->volatile_table = config->volatile_table;
805 map->precious_table = config->precious_table;
806 map->wr_noinc_table = config->wr_noinc_table;
807 map->rd_noinc_table = config->rd_noinc_table;
808 map->writeable_reg = config->writeable_reg;
809 map->readable_reg = config->readable_reg;
810 map->volatile_reg = config->volatile_reg;
811 map->precious_reg = config->precious_reg;
812 map->writeable_noinc_reg = config->writeable_noinc_reg;
813 map->readable_noinc_reg = config->readable_noinc_reg;
814 map->cache_type = config->cache_type;
815
816 spin_lock_init(&map->async_lock);
817 INIT_LIST_HEAD(&map->async_list);
818 INIT_LIST_HEAD(&map->async_free);
819 init_waitqueue_head(&map->async_waitq);
820
821 if (config->read_flag_mask ||
822 config->write_flag_mask ||
823 config->zero_flag_mask) {
824 map->read_flag_mask = config->read_flag_mask;
825 map->write_flag_mask = config->write_flag_mask;
826 } else if (bus) {
827 map->read_flag_mask = bus->read_flag_mask;
828 }
829
830 if (config && config->read && config->write) {
831 map->reg_read = _regmap_bus_read;
832 if (config->reg_update_bits)
833 map->reg_update_bits = config->reg_update_bits;
834
835 /* Bulk read/write */
836 map->read = config->read;
837 map->write = config->write;
838
839 reg_endian = REGMAP_ENDIAN_NATIVE;
840 val_endian = REGMAP_ENDIAN_NATIVE;
841 } else if (!bus) {
842 map->reg_read = config->reg_read;
843 map->reg_write = config->reg_write;
844 map->reg_update_bits = config->reg_update_bits;
845
846 map->defer_caching = false;
847 goto skip_format_initialization;
848 } else if (!bus->read || !bus->write) {
849 map->reg_read = _regmap_bus_reg_read;
850 map->reg_write = _regmap_bus_reg_write;
851 map->reg_update_bits = bus->reg_update_bits;
852
853 map->defer_caching = false;
854 goto skip_format_initialization;
855 } else {
856 map->reg_read = _regmap_bus_read;
857 map->reg_update_bits = bus->reg_update_bits;
858 /* Bulk read/write */
859 map->read = bus->read;
860 map->write = bus->write;
861
862 reg_endian = regmap_get_reg_endian(bus, config);
863 val_endian = regmap_get_val_endian(dev, bus, config);
864 }
865
866 switch (config->reg_bits + map->reg_shift) {
867 case 2:
868 switch (config->val_bits) {
869 case 6:
870 map->format.format_write = regmap_format_2_6_write;
871 break;
872 default:
873 goto err_hwlock;
874 }
875 break;
876
877 case 4:
878 switch (config->val_bits) {
879 case 12:
880 map->format.format_write = regmap_format_4_12_write;
881 break;
882 default:
883 goto err_hwlock;
884 }
885 break;
886
887 case 7:
888 switch (config->val_bits) {
889 case 9:
890 map->format.format_write = regmap_format_7_9_write;
891 break;
892 case 17:
893 map->format.format_write = regmap_format_7_17_write;
894 break;
895 default:
896 goto err_hwlock;
897 }
898 break;
899
900 case 10:
901 switch (config->val_bits) {
902 case 14:
903 map->format.format_write = regmap_format_10_14_write;
904 break;
905 default:
906 goto err_hwlock;
907 }
908 break;
909
910 case 12:
911 switch (config->val_bits) {
912 case 20:
913 map->format.format_write = regmap_format_12_20_write;
914 break;
915 default:
916 goto err_hwlock;
917 }
918 break;
919
920 case 8:
921 map->format.format_reg = regmap_format_8;
922 break;
923
924 case 16:
925 switch (reg_endian) {
926 case REGMAP_ENDIAN_BIG:
927 map->format.format_reg = regmap_format_16_be;
928 break;
929 case REGMAP_ENDIAN_LITTLE:
930 map->format.format_reg = regmap_format_16_le;
931 break;
932 case REGMAP_ENDIAN_NATIVE:
933 map->format.format_reg = regmap_format_16_native;
934 break;
935 default:
936 goto err_hwlock;
937 }
938 break;
939
940 case 24:
941 switch (reg_endian) {
942 case REGMAP_ENDIAN_BIG:
943 map->format.format_reg = regmap_format_24_be;
944 break;
945 default:
946 goto err_hwlock;
947 }
948 break;
949
950 case 32:
951 switch (reg_endian) {
952 case REGMAP_ENDIAN_BIG:
953 map->format.format_reg = regmap_format_32_be;
954 break;
955 case REGMAP_ENDIAN_LITTLE:
956 map->format.format_reg = regmap_format_32_le;
957 break;
958 case REGMAP_ENDIAN_NATIVE:
959 map->format.format_reg = regmap_format_32_native;
960 break;
961 default:
962 goto err_hwlock;
963 }
964 break;
965
966 default:
967 goto err_hwlock;
968 }
969
970 if (val_endian == REGMAP_ENDIAN_NATIVE)
971 map->format.parse_inplace = regmap_parse_inplace_noop;
972
973 switch (config->val_bits) {
974 case 8:
975 map->format.format_val = regmap_format_8;
976 map->format.parse_val = regmap_parse_8;
977 map->format.parse_inplace = regmap_parse_inplace_noop;
978 break;
979 case 16:
980 switch (val_endian) {
981 case REGMAP_ENDIAN_BIG:
982 map->format.format_val = regmap_format_16_be;
983 map->format.parse_val = regmap_parse_16_be;
984 map->format.parse_inplace = regmap_parse_16_be_inplace;
985 break;
986 case REGMAP_ENDIAN_LITTLE:
987 map->format.format_val = regmap_format_16_le;
988 map->format.parse_val = regmap_parse_16_le;
989 map->format.parse_inplace = regmap_parse_16_le_inplace;
990 break;
991 case REGMAP_ENDIAN_NATIVE:
992 map->format.format_val = regmap_format_16_native;
993 map->format.parse_val = regmap_parse_16_native;
994 break;
995 default:
996 goto err_hwlock;
997 }
998 break;
999 case 24:
1000 switch (val_endian) {
1001 case REGMAP_ENDIAN_BIG:
1002 map->format.format_val = regmap_format_24_be;
1003 map->format.parse_val = regmap_parse_24_be;
1004 break;
1005 default:
1006 goto err_hwlock;
1007 }
1008 break;
1009 case 32:
1010 switch (val_endian) {
1011 case REGMAP_ENDIAN_BIG:
1012 map->format.format_val = regmap_format_32_be;
1013 map->format.parse_val = regmap_parse_32_be;
1014 map->format.parse_inplace = regmap_parse_32_be_inplace;
1015 break;
1016 case REGMAP_ENDIAN_LITTLE:
1017 map->format.format_val = regmap_format_32_le;
1018 map->format.parse_val = regmap_parse_32_le;
1019 map->format.parse_inplace = regmap_parse_32_le_inplace;
1020 break;
1021 case REGMAP_ENDIAN_NATIVE:
1022 map->format.format_val = regmap_format_32_native;
1023 map->format.parse_val = regmap_parse_32_native;
1024 break;
1025 default:
1026 goto err_hwlock;
1027 }
1028 break;
1029 }
1030
1031 if (map->format.format_write) {
1032 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1033 (val_endian != REGMAP_ENDIAN_BIG))
1034 goto err_hwlock;
1035 map->use_single_write = true;
1036 }
1037
1038 if (!map->format.format_write &&
1039 !(map->format.format_reg && map->format.format_val))
1040 goto err_hwlock;
1041
1042 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1043 if (map->work_buf == NULL) {
1044 ret = -ENOMEM;
1045 goto err_hwlock;
1046 }
1047
1048 if (map->format.format_write) {
1049 map->defer_caching = false;
1050 map->reg_write = _regmap_bus_formatted_write;
1051 } else if (map->format.format_val) {
1052 map->defer_caching = true;
1053 map->reg_write = _regmap_bus_raw_write;
1054 }
1055
1056 skip_format_initialization:
1057
1058 map->range_tree = RB_ROOT;
1059 for (i = 0; i < config->num_ranges; i++) {
1060 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1061 struct regmap_range_node *new;
1062
1063 /* Sanity check */
1064 if (range_cfg->range_max < range_cfg->range_min) {
1065 dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1066 range_cfg->range_max, range_cfg->range_min);
1067 goto err_range;
1068 }
1069
1070 if (range_cfg->range_max > map->max_register) {
1071 dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1072 range_cfg->range_max, map->max_register);
1073 goto err_range;
1074 }
1075
1076 if (range_cfg->selector_reg > map->max_register) {
1077 dev_err(map->dev,
1078 "Invalid range %d: selector out of map\n", i);
1079 goto err_range;
1080 }
1081
1082 if (range_cfg->window_len == 0) {
1083 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1084 i);
1085 goto err_range;
1086 }
1087
1088 /* Make sure, that this register range has no selector
1089 or data window within its boundary */
1090 for (j = 0; j < config->num_ranges; j++) {
1091 unsigned int sel_reg = config->ranges[j].selector_reg;
1092 unsigned int win_min = config->ranges[j].window_start;
1093 unsigned int win_max = win_min +
1094 config->ranges[j].window_len - 1;
1095
1096 /* Allow data window inside its own virtual range */
1097 if (j == i)
1098 continue;
1099
1100 if (range_cfg->range_min <= sel_reg &&
1101 sel_reg <= range_cfg->range_max) {
1102 dev_err(map->dev,
1103 "Range %d: selector for %d in window\n",
1104 i, j);
1105 goto err_range;
1106 }
1107
1108 if (!(win_max < range_cfg->range_min ||
1109 win_min > range_cfg->range_max)) {
1110 dev_err(map->dev,
1111 "Range %d: window for %d in window\n",
1112 i, j);
1113 goto err_range;
1114 }
1115 }
1116
1117 new = kzalloc(sizeof(*new), GFP_KERNEL);
1118 if (new == NULL) {
1119 ret = -ENOMEM;
1120 goto err_range;
1121 }
1122
1123 new->map = map;
1124 new->name = range_cfg->name;
1125 new->range_min = range_cfg->range_min;
1126 new->range_max = range_cfg->range_max;
1127 new->selector_reg = range_cfg->selector_reg;
1128 new->selector_mask = range_cfg->selector_mask;
1129 new->selector_shift = range_cfg->selector_shift;
1130 new->window_start = range_cfg->window_start;
1131 new->window_len = range_cfg->window_len;
1132
1133 if (!_regmap_range_add(map, new)) {
1134 dev_err(map->dev, "Failed to add range %d\n", i);
1135 kfree(new);
1136 goto err_range;
1137 }
1138
1139 if (map->selector_work_buf == NULL) {
1140 map->selector_work_buf =
1141 kzalloc(map->format.buf_size, GFP_KERNEL);
1142 if (map->selector_work_buf == NULL) {
1143 ret = -ENOMEM;
1144 goto err_range;
1145 }
1146 }
1147 }
1148
1149 ret = regcache_init(map, config);
1150 if (ret != 0)
1151 goto err_range;
1152
1153 if (dev) {
1154 ret = regmap_attach_dev(dev, map, config);
1155 if (ret != 0)
1156 goto err_regcache;
1157 } else {
1158 regmap_debugfs_init(map);
1159 }
1160
1161 return map;
1162
1163 err_regcache:
1164 regcache_exit(map);
1165 err_range:
1166 regmap_range_exit(map);
1167 kfree(map->work_buf);
1168 err_hwlock:
1169 if (map->hwlock)
1170 hwspin_lock_free(map->hwlock);
1171 err_name:
1172 kfree_const(map->name);
1173 err_map:
1174 kfree(map);
1175 err:
1176 return ERR_PTR(ret);
1177 }
1178 EXPORT_SYMBOL_GPL(__regmap_init);
1179
devm_regmap_release(struct device * dev,void * res)1180 static void devm_regmap_release(struct device *dev, void *res)
1181 {
1182 regmap_exit(*(struct regmap **)res);
1183 }
1184
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1185 struct regmap *__devm_regmap_init(struct device *dev,
1186 const struct regmap_bus *bus,
1187 void *bus_context,
1188 const struct regmap_config *config,
1189 struct lock_class_key *lock_key,
1190 const char *lock_name)
1191 {
1192 struct regmap **ptr, *regmap;
1193
1194 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1195 if (!ptr)
1196 return ERR_PTR(-ENOMEM);
1197
1198 regmap = __regmap_init(dev, bus, bus_context, config,
1199 lock_key, lock_name);
1200 if (!IS_ERR(regmap)) {
1201 *ptr = regmap;
1202 devres_add(dev, ptr);
1203 } else {
1204 devres_free(ptr);
1205 }
1206
1207 return regmap;
1208 }
1209 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1210
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1211 static void regmap_field_init(struct regmap_field *rm_field,
1212 struct regmap *regmap, struct reg_field reg_field)
1213 {
1214 rm_field->regmap = regmap;
1215 rm_field->reg = reg_field.reg;
1216 rm_field->shift = reg_field.lsb;
1217 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1218
1219 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1220
1221 rm_field->id_size = reg_field.id_size;
1222 rm_field->id_offset = reg_field.id_offset;
1223 }
1224
1225 /**
1226 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1227 *
1228 * @dev: Device that will be interacted with
1229 * @regmap: regmap bank in which this register field is located.
1230 * @reg_field: Register field with in the bank.
1231 *
1232 * The return value will be an ERR_PTR() on error or a valid pointer
1233 * to a struct regmap_field. The regmap_field will be automatically freed
1234 * by the device management code.
1235 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1236 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1237 struct regmap *regmap, struct reg_field reg_field)
1238 {
1239 struct regmap_field *rm_field = devm_kzalloc(dev,
1240 sizeof(*rm_field), GFP_KERNEL);
1241 if (!rm_field)
1242 return ERR_PTR(-ENOMEM);
1243
1244 regmap_field_init(rm_field, regmap, reg_field);
1245
1246 return rm_field;
1247
1248 }
1249 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1250
1251
1252 /**
1253 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1254 *
1255 * @regmap: regmap bank in which this register field is located.
1256 * @rm_field: regmap register fields within the bank.
1257 * @reg_field: Register fields within the bank.
1258 * @num_fields: Number of register fields.
1259 *
1260 * The return value will be an -ENOMEM on error or zero for success.
1261 * Newly allocated regmap_fields should be freed by calling
1262 * regmap_field_bulk_free()
1263 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1264 int regmap_field_bulk_alloc(struct regmap *regmap,
1265 struct regmap_field **rm_field,
1266 const struct reg_field *reg_field,
1267 int num_fields)
1268 {
1269 struct regmap_field *rf;
1270 int i;
1271
1272 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1273 if (!rf)
1274 return -ENOMEM;
1275
1276 for (i = 0; i < num_fields; i++) {
1277 regmap_field_init(&rf[i], regmap, reg_field[i]);
1278 rm_field[i] = &rf[i];
1279 }
1280
1281 return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1284
1285 /**
1286 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1287 * fields.
1288 *
1289 * @dev: Device that will be interacted with
1290 * @regmap: regmap bank in which this register field is located.
1291 * @rm_field: regmap register fields within the bank.
1292 * @reg_field: Register fields within the bank.
1293 * @num_fields: Number of register fields.
1294 *
1295 * The return value will be an -ENOMEM on error or zero for success.
1296 * Newly allocated regmap_fields will be automatically freed by the
1297 * device management code.
1298 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1299 int devm_regmap_field_bulk_alloc(struct device *dev,
1300 struct regmap *regmap,
1301 struct regmap_field **rm_field,
1302 const struct reg_field *reg_field,
1303 int num_fields)
1304 {
1305 struct regmap_field *rf;
1306 int i;
1307
1308 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1309 if (!rf)
1310 return -ENOMEM;
1311
1312 for (i = 0; i < num_fields; i++) {
1313 regmap_field_init(&rf[i], regmap, reg_field[i]);
1314 rm_field[i] = &rf[i];
1315 }
1316
1317 return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1320
1321 /**
1322 * regmap_field_bulk_free() - Free register field allocated using
1323 * regmap_field_bulk_alloc.
1324 *
1325 * @field: regmap fields which should be freed.
1326 */
regmap_field_bulk_free(struct regmap_field * field)1327 void regmap_field_bulk_free(struct regmap_field *field)
1328 {
1329 kfree(field);
1330 }
1331 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1332
1333 /**
1334 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1335 * devm_regmap_field_bulk_alloc.
1336 *
1337 * @dev: Device that will be interacted with
1338 * @field: regmap field which should be freed.
1339 *
1340 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1341 * drivers need not call this function, as the memory allocated via devm
1342 * will be freed as per device-driver life-cycle.
1343 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1344 void devm_regmap_field_bulk_free(struct device *dev,
1345 struct regmap_field *field)
1346 {
1347 devm_kfree(dev, field);
1348 }
1349 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1350
1351 /**
1352 * devm_regmap_field_free() - Free a register field allocated using
1353 * devm_regmap_field_alloc.
1354 *
1355 * @dev: Device that will be interacted with
1356 * @field: regmap field which should be freed.
1357 *
1358 * Free register field allocated using devm_regmap_field_alloc(). Usually
1359 * drivers need not call this function, as the memory allocated via devm
1360 * will be freed as per device-driver life-cyle.
1361 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1362 void devm_regmap_field_free(struct device *dev,
1363 struct regmap_field *field)
1364 {
1365 devm_kfree(dev, field);
1366 }
1367 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1368
1369 /**
1370 * regmap_field_alloc() - Allocate and initialise a register field.
1371 *
1372 * @regmap: regmap bank in which this register field is located.
1373 * @reg_field: Register field with in the bank.
1374 *
1375 * The return value will be an ERR_PTR() on error or a valid pointer
1376 * to a struct regmap_field. The regmap_field should be freed by the
1377 * user once its finished working with it using regmap_field_free().
1378 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1379 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1380 struct reg_field reg_field)
1381 {
1382 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1383
1384 if (!rm_field)
1385 return ERR_PTR(-ENOMEM);
1386
1387 regmap_field_init(rm_field, regmap, reg_field);
1388
1389 return rm_field;
1390 }
1391 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1392
1393 /**
1394 * regmap_field_free() - Free register field allocated using
1395 * regmap_field_alloc.
1396 *
1397 * @field: regmap field which should be freed.
1398 */
regmap_field_free(struct regmap_field * field)1399 void regmap_field_free(struct regmap_field *field)
1400 {
1401 kfree(field);
1402 }
1403 EXPORT_SYMBOL_GPL(regmap_field_free);
1404
1405 /**
1406 * regmap_reinit_cache() - Reinitialise the current register cache
1407 *
1408 * @map: Register map to operate on.
1409 * @config: New configuration. Only the cache data will be used.
1410 *
1411 * Discard any existing register cache for the map and initialize a
1412 * new cache. This can be used to restore the cache to defaults or to
1413 * update the cache configuration to reflect runtime discovery of the
1414 * hardware.
1415 *
1416 * No explicit locking is done here, the user needs to ensure that
1417 * this function will not race with other calls to regmap.
1418 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1419 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1420 {
1421 int ret;
1422
1423 regcache_exit(map);
1424 regmap_debugfs_exit(map);
1425
1426 map->max_register = config->max_register;
1427 map->writeable_reg = config->writeable_reg;
1428 map->readable_reg = config->readable_reg;
1429 map->volatile_reg = config->volatile_reg;
1430 map->precious_reg = config->precious_reg;
1431 map->writeable_noinc_reg = config->writeable_noinc_reg;
1432 map->readable_noinc_reg = config->readable_noinc_reg;
1433 map->cache_type = config->cache_type;
1434
1435 ret = regmap_set_name(map, config);
1436 if (ret)
1437 return ret;
1438
1439 regmap_debugfs_init(map);
1440
1441 map->cache_bypass = false;
1442 map->cache_only = false;
1443
1444 return regcache_init(map, config);
1445 }
1446 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1447
1448 /**
1449 * regmap_exit() - Free a previously allocated register map
1450 *
1451 * @map: Register map to operate on.
1452 */
regmap_exit(struct regmap * map)1453 void regmap_exit(struct regmap *map)
1454 {
1455 struct regmap_async *async;
1456
1457 regmap_detach_dev(map->dev, map);
1458 regcache_exit(map);
1459 regmap_debugfs_exit(map);
1460 regmap_range_exit(map);
1461 if (map->bus && map->bus->free_context)
1462 map->bus->free_context(map->bus_context);
1463 kfree(map->work_buf);
1464 while (!list_empty(&map->async_free)) {
1465 async = list_first_entry_or_null(&map->async_free,
1466 struct regmap_async,
1467 list);
1468 list_del(&async->list);
1469 kfree(async->work_buf);
1470 kfree(async);
1471 }
1472 if (map->hwlock)
1473 hwspin_lock_free(map->hwlock);
1474 if (map->lock == regmap_lock_mutex)
1475 mutex_destroy(&map->mutex);
1476 kfree_const(map->name);
1477 kfree(map->patch);
1478 if (map->bus && map->bus->free_on_exit)
1479 kfree(map->bus);
1480 kfree(map);
1481 }
1482 EXPORT_SYMBOL_GPL(regmap_exit);
1483
dev_get_regmap_match(struct device * dev,void * res,void * data)1484 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1485 {
1486 struct regmap **r = res;
1487 if (!r || !*r) {
1488 WARN_ON(!r || !*r);
1489 return 0;
1490 }
1491
1492 /* If the user didn't specify a name match any */
1493 if (data)
1494 return (*r)->name && !strcmp((*r)->name, data);
1495 else
1496 return 1;
1497 }
1498
1499 /**
1500 * dev_get_regmap() - Obtain the regmap (if any) for a device
1501 *
1502 * @dev: Device to retrieve the map for
1503 * @name: Optional name for the register map, usually NULL.
1504 *
1505 * Returns the regmap for the device if one is present, or NULL. If
1506 * name is specified then it must match the name specified when
1507 * registering the device, if it is NULL then the first regmap found
1508 * will be used. Devices with multiple register maps are very rare,
1509 * generic code should normally not need to specify a name.
1510 */
dev_get_regmap(struct device * dev,const char * name)1511 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1512 {
1513 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1514 dev_get_regmap_match, (void *)name);
1515
1516 if (!r)
1517 return NULL;
1518 return *r;
1519 }
1520 EXPORT_SYMBOL_GPL(dev_get_regmap);
1521
1522 /**
1523 * regmap_get_device() - Obtain the device from a regmap
1524 *
1525 * @map: Register map to operate on.
1526 *
1527 * Returns the underlying device that the regmap has been created for.
1528 */
regmap_get_device(struct regmap * map)1529 struct device *regmap_get_device(struct regmap *map)
1530 {
1531 return map->dev;
1532 }
1533 EXPORT_SYMBOL_GPL(regmap_get_device);
1534
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1535 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1536 struct regmap_range_node *range,
1537 unsigned int val_num)
1538 {
1539 void *orig_work_buf;
1540 unsigned int win_offset;
1541 unsigned int win_page;
1542 bool page_chg;
1543 int ret;
1544
1545 win_offset = (*reg - range->range_min) % range->window_len;
1546 win_page = (*reg - range->range_min) / range->window_len;
1547
1548 if (val_num > 1) {
1549 /* Bulk write shouldn't cross range boundary */
1550 if (*reg + val_num - 1 > range->range_max)
1551 return -EINVAL;
1552
1553 /* ... or single page boundary */
1554 if (val_num > range->window_len - win_offset)
1555 return -EINVAL;
1556 }
1557
1558 /* It is possible to have selector register inside data window.
1559 In that case, selector register is located on every page and
1560 it needs no page switching, when accessed alone. */
1561 if (val_num > 1 ||
1562 range->window_start + win_offset != range->selector_reg) {
1563 /* Use separate work_buf during page switching */
1564 orig_work_buf = map->work_buf;
1565 map->work_buf = map->selector_work_buf;
1566
1567 ret = _regmap_update_bits(map, range->selector_reg,
1568 range->selector_mask,
1569 win_page << range->selector_shift,
1570 &page_chg, false);
1571
1572 map->work_buf = orig_work_buf;
1573
1574 if (ret != 0)
1575 return ret;
1576 }
1577
1578 *reg = range->window_start + win_offset;
1579
1580 return 0;
1581 }
1582
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1583 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1584 unsigned long mask)
1585 {
1586 u8 *buf;
1587 int i;
1588
1589 if (!mask || !map->work_buf)
1590 return;
1591
1592 buf = map->work_buf;
1593
1594 for (i = 0; i < max_bytes; i++)
1595 buf[i] |= (mask >> (8 * i)) & 0xff;
1596 }
1597
regmap_reg_addr(struct regmap * map,unsigned int reg)1598 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1599 {
1600 reg += map->reg_base;
1601
1602 if (map->format.reg_shift > 0)
1603 reg >>= map->format.reg_shift;
1604 else if (map->format.reg_shift < 0)
1605 reg <<= -(map->format.reg_shift);
1606
1607 return reg;
1608 }
1609
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1610 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1611 const void *val, size_t val_len, bool noinc)
1612 {
1613 struct regmap_range_node *range;
1614 unsigned long flags;
1615 void *work_val = map->work_buf + map->format.reg_bytes +
1616 map->format.pad_bytes;
1617 void *buf;
1618 int ret = -ENOTSUPP;
1619 size_t len;
1620 int i;
1621
1622 /* Check for unwritable or noinc registers in range
1623 * before we start
1624 */
1625 if (!regmap_writeable_noinc(map, reg)) {
1626 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1627 unsigned int element =
1628 reg + regmap_get_offset(map, i);
1629 if (!regmap_writeable(map, element) ||
1630 regmap_writeable_noinc(map, element))
1631 return -EINVAL;
1632 }
1633 }
1634
1635 if (!map->cache_bypass && map->format.parse_val) {
1636 unsigned int ival, offset;
1637 int val_bytes = map->format.val_bytes;
1638
1639 /* Cache the last written value for noinc writes */
1640 i = noinc ? val_len - val_bytes : 0;
1641 for (; i < val_len; i += val_bytes) {
1642 ival = map->format.parse_val(val + i);
1643 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1644 ret = regcache_write(map, reg + offset, ival);
1645 if (ret) {
1646 dev_err(map->dev,
1647 "Error in caching of register: %x ret: %d\n",
1648 reg + offset, ret);
1649 return ret;
1650 }
1651 }
1652 if (map->cache_only) {
1653 map->cache_dirty = true;
1654 return 0;
1655 }
1656 }
1657
1658 range = _regmap_range_lookup(map, reg);
1659 if (range) {
1660 int val_num = val_len / map->format.val_bytes;
1661 int win_offset = (reg - range->range_min) % range->window_len;
1662 int win_residue = range->window_len - win_offset;
1663
1664 /* If the write goes beyond the end of the window split it */
1665 while (val_num > win_residue) {
1666 dev_dbg(map->dev, "Writing window %d/%zu\n",
1667 win_residue, val_len / map->format.val_bytes);
1668 ret = _regmap_raw_write_impl(map, reg, val,
1669 win_residue *
1670 map->format.val_bytes, noinc);
1671 if (ret != 0)
1672 return ret;
1673
1674 reg += win_residue;
1675 val_num -= win_residue;
1676 val += win_residue * map->format.val_bytes;
1677 val_len -= win_residue * map->format.val_bytes;
1678
1679 win_offset = (reg - range->range_min) %
1680 range->window_len;
1681 win_residue = range->window_len - win_offset;
1682 }
1683
1684 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1685 if (ret != 0)
1686 return ret;
1687 }
1688
1689 reg = regmap_reg_addr(map, reg);
1690 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1691 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1692 map->write_flag_mask);
1693
1694 /*
1695 * Essentially all I/O mechanisms will be faster with a single
1696 * buffer to write. Since register syncs often generate raw
1697 * writes of single registers optimise that case.
1698 */
1699 if (val != work_val && val_len == map->format.val_bytes) {
1700 memcpy(work_val, val, map->format.val_bytes);
1701 val = work_val;
1702 }
1703
1704 if (map->async && map->bus && map->bus->async_write) {
1705 struct regmap_async *async;
1706
1707 trace_regmap_async_write_start(map, reg, val_len);
1708
1709 spin_lock_irqsave(&map->async_lock, flags);
1710 async = list_first_entry_or_null(&map->async_free,
1711 struct regmap_async,
1712 list);
1713 if (async)
1714 list_del(&async->list);
1715 spin_unlock_irqrestore(&map->async_lock, flags);
1716
1717 if (!async) {
1718 async = map->bus->async_alloc();
1719 if (!async)
1720 return -ENOMEM;
1721
1722 async->work_buf = kzalloc(map->format.buf_size,
1723 GFP_KERNEL | GFP_DMA);
1724 if (!async->work_buf) {
1725 kfree(async);
1726 return -ENOMEM;
1727 }
1728 }
1729
1730 async->map = map;
1731
1732 /* If the caller supplied the value we can use it safely. */
1733 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1734 map->format.reg_bytes + map->format.val_bytes);
1735
1736 spin_lock_irqsave(&map->async_lock, flags);
1737 list_add_tail(&async->list, &map->async_list);
1738 spin_unlock_irqrestore(&map->async_lock, flags);
1739
1740 if (val != work_val)
1741 ret = map->bus->async_write(map->bus_context,
1742 async->work_buf,
1743 map->format.reg_bytes +
1744 map->format.pad_bytes,
1745 val, val_len, async);
1746 else
1747 ret = map->bus->async_write(map->bus_context,
1748 async->work_buf,
1749 map->format.reg_bytes +
1750 map->format.pad_bytes +
1751 val_len, NULL, 0, async);
1752
1753 if (ret != 0) {
1754 dev_err(map->dev, "Failed to schedule write: %d\n",
1755 ret);
1756
1757 spin_lock_irqsave(&map->async_lock, flags);
1758 list_move(&async->list, &map->async_free);
1759 spin_unlock_irqrestore(&map->async_lock, flags);
1760 }
1761
1762 return ret;
1763 }
1764
1765 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1766
1767 /* If we're doing a single register write we can probably just
1768 * send the work_buf directly, otherwise try to do a gather
1769 * write.
1770 */
1771 if (val == work_val)
1772 ret = map->write(map->bus_context, map->work_buf,
1773 map->format.reg_bytes +
1774 map->format.pad_bytes +
1775 val_len);
1776 else if (map->bus && map->bus->gather_write)
1777 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1778 map->format.reg_bytes +
1779 map->format.pad_bytes,
1780 val, val_len);
1781 else
1782 ret = -ENOTSUPP;
1783
1784 /* If that didn't work fall back on linearising by hand. */
1785 if (ret == -ENOTSUPP) {
1786 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1787 buf = kzalloc(len, GFP_KERNEL);
1788 if (!buf)
1789 return -ENOMEM;
1790
1791 memcpy(buf, map->work_buf, map->format.reg_bytes);
1792 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1793 val, val_len);
1794 ret = map->write(map->bus_context, buf, len);
1795
1796 kfree(buf);
1797 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1798 /* regcache_drop_region() takes lock that we already have,
1799 * thus call map->cache_ops->drop() directly
1800 */
1801 if (map->cache_ops && map->cache_ops->drop)
1802 map->cache_ops->drop(map, reg, reg + 1);
1803 }
1804
1805 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1806
1807 return ret;
1808 }
1809
1810 /**
1811 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1812 *
1813 * @map: Map to check.
1814 */
regmap_can_raw_write(struct regmap * map)1815 bool regmap_can_raw_write(struct regmap *map)
1816 {
1817 return map->write && map->format.format_val && map->format.format_reg;
1818 }
1819 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1820
1821 /**
1822 * regmap_get_raw_read_max - Get the maximum size we can read
1823 *
1824 * @map: Map to check.
1825 */
regmap_get_raw_read_max(struct regmap * map)1826 size_t regmap_get_raw_read_max(struct regmap *map)
1827 {
1828 return map->max_raw_read;
1829 }
1830 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1831
1832 /**
1833 * regmap_get_raw_write_max - Get the maximum size we can read
1834 *
1835 * @map: Map to check.
1836 */
regmap_get_raw_write_max(struct regmap * map)1837 size_t regmap_get_raw_write_max(struct regmap *map)
1838 {
1839 return map->max_raw_write;
1840 }
1841 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1842
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1843 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1844 unsigned int val)
1845 {
1846 int ret;
1847 struct regmap_range_node *range;
1848 struct regmap *map = context;
1849
1850 WARN_ON(!map->format.format_write);
1851
1852 range = _regmap_range_lookup(map, reg);
1853 if (range) {
1854 ret = _regmap_select_page(map, ®, range, 1);
1855 if (ret != 0)
1856 return ret;
1857 }
1858
1859 reg = regmap_reg_addr(map, reg);
1860 map->format.format_write(map, reg, val);
1861
1862 trace_regmap_hw_write_start(map, reg, 1);
1863
1864 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1865
1866 trace_regmap_hw_write_done(map, reg, 1);
1867
1868 return ret;
1869 }
1870
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1871 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1872 unsigned int val)
1873 {
1874 struct regmap *map = context;
1875 struct regmap_range_node *range;
1876 int ret;
1877
1878 range = _regmap_range_lookup(map, reg);
1879 if (range) {
1880 ret = _regmap_select_page(map, ®, range, 1);
1881 if (ret != 0)
1882 return ret;
1883 }
1884
1885 reg = regmap_reg_addr(map, reg);
1886 return map->bus->reg_write(map->bus_context, reg, val);
1887 }
1888
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1889 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1890 unsigned int val)
1891 {
1892 struct regmap *map = context;
1893
1894 WARN_ON(!map->format.format_val);
1895
1896 map->format.format_val(map->work_buf + map->format.reg_bytes
1897 + map->format.pad_bytes, val, 0);
1898 return _regmap_raw_write_impl(map, reg,
1899 map->work_buf +
1900 map->format.reg_bytes +
1901 map->format.pad_bytes,
1902 map->format.val_bytes,
1903 false);
1904 }
1905
_regmap_map_get_context(struct regmap * map)1906 static inline void *_regmap_map_get_context(struct regmap *map)
1907 {
1908 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1909 }
1910
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1911 int _regmap_write(struct regmap *map, unsigned int reg,
1912 unsigned int val)
1913 {
1914 int ret;
1915 void *context = _regmap_map_get_context(map);
1916
1917 if (!regmap_writeable(map, reg))
1918 return -EIO;
1919
1920 if (!map->cache_bypass && !map->defer_caching) {
1921 ret = regcache_write(map, reg, val);
1922 if (ret != 0)
1923 return ret;
1924 if (map->cache_only) {
1925 map->cache_dirty = true;
1926 return 0;
1927 }
1928 }
1929
1930 ret = map->reg_write(context, reg, val);
1931 if (ret == 0) {
1932 if (regmap_should_log(map))
1933 dev_info(map->dev, "%x <= %x\n", reg, val);
1934
1935 trace_regmap_reg_write(map, reg, val);
1936 }
1937
1938 return ret;
1939 }
1940
1941 /**
1942 * regmap_write() - Write a value to a single register
1943 *
1944 * @map: Register map to write to
1945 * @reg: Register to write to
1946 * @val: Value to be written
1947 *
1948 * A value of zero will be returned on success, a negative errno will
1949 * be returned in error cases.
1950 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1951 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1952 {
1953 int ret;
1954
1955 if (!IS_ALIGNED(reg, map->reg_stride))
1956 return -EINVAL;
1957
1958 map->lock(map->lock_arg);
1959
1960 ret = _regmap_write(map, reg, val);
1961
1962 map->unlock(map->lock_arg);
1963
1964 return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(regmap_write);
1967
1968 /**
1969 * regmap_write_async() - Write a value to a single register asynchronously
1970 *
1971 * @map: Register map to write to
1972 * @reg: Register to write to
1973 * @val: Value to be written
1974 *
1975 * A value of zero will be returned on success, a negative errno will
1976 * be returned in error cases.
1977 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1978 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1979 {
1980 int ret;
1981
1982 if (!IS_ALIGNED(reg, map->reg_stride))
1983 return -EINVAL;
1984
1985 map->lock(map->lock_arg);
1986
1987 map->async = true;
1988
1989 ret = _regmap_write(map, reg, val);
1990
1991 map->async = false;
1992
1993 map->unlock(map->lock_arg);
1994
1995 return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(regmap_write_async);
1998
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1999 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2000 const void *val, size_t val_len, bool noinc)
2001 {
2002 size_t val_bytes = map->format.val_bytes;
2003 size_t val_count = val_len / val_bytes;
2004 size_t chunk_count, chunk_bytes;
2005 size_t chunk_regs = val_count;
2006 int ret, i;
2007
2008 if (!val_count)
2009 return -EINVAL;
2010
2011 if (map->use_single_write)
2012 chunk_regs = 1;
2013 else if (map->max_raw_write && val_len > map->max_raw_write)
2014 chunk_regs = map->max_raw_write / val_bytes;
2015
2016 chunk_count = val_count / chunk_regs;
2017 chunk_bytes = chunk_regs * val_bytes;
2018
2019 /* Write as many bytes as possible with chunk_size */
2020 for (i = 0; i < chunk_count; i++) {
2021 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2022 if (ret)
2023 return ret;
2024
2025 reg += regmap_get_offset(map, chunk_regs);
2026 val += chunk_bytes;
2027 val_len -= chunk_bytes;
2028 }
2029
2030 /* Write remaining bytes */
2031 if (val_len)
2032 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2033
2034 return ret;
2035 }
2036
2037 /**
2038 * regmap_raw_write() - Write raw values to one or more registers
2039 *
2040 * @map: Register map to write to
2041 * @reg: Initial register to write to
2042 * @val: Block of data to be written, laid out for direct transmission to the
2043 * device
2044 * @val_len: Length of data pointed to by val.
2045 *
2046 * This function is intended to be used for things like firmware
2047 * download where a large block of data needs to be transferred to the
2048 * device. No formatting will be done on the data provided.
2049 *
2050 * A value of zero will be returned on success, a negative errno will
2051 * be returned in error cases.
2052 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2053 int regmap_raw_write(struct regmap *map, unsigned int reg,
2054 const void *val, size_t val_len)
2055 {
2056 int ret;
2057
2058 if (!regmap_can_raw_write(map))
2059 return -EINVAL;
2060 if (val_len % map->format.val_bytes)
2061 return -EINVAL;
2062
2063 map->lock(map->lock_arg);
2064
2065 ret = _regmap_raw_write(map, reg, val, val_len, false);
2066
2067 map->unlock(map->lock_arg);
2068
2069 return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(regmap_raw_write);
2072
regmap_noinc_readwrite(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool write)2073 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2074 void *val, unsigned int val_len, bool write)
2075 {
2076 size_t val_bytes = map->format.val_bytes;
2077 size_t val_count = val_len / val_bytes;
2078 unsigned int lastval;
2079 u8 *u8p;
2080 u16 *u16p;
2081 u32 *u32p;
2082 int ret;
2083 int i;
2084
2085 switch (val_bytes) {
2086 case 1:
2087 u8p = val;
2088 if (write)
2089 lastval = (unsigned int)u8p[val_count - 1];
2090 break;
2091 case 2:
2092 u16p = val;
2093 if (write)
2094 lastval = (unsigned int)u16p[val_count - 1];
2095 break;
2096 case 4:
2097 u32p = val;
2098 if (write)
2099 lastval = (unsigned int)u32p[val_count - 1];
2100 break;
2101 default:
2102 return -EINVAL;
2103 }
2104
2105 /*
2106 * Update the cache with the last value we write, the rest is just
2107 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2108 * sure a single read from the cache will work.
2109 */
2110 if (write) {
2111 if (!map->cache_bypass && !map->defer_caching) {
2112 ret = regcache_write(map, reg, lastval);
2113 if (ret != 0)
2114 return ret;
2115 if (map->cache_only) {
2116 map->cache_dirty = true;
2117 return 0;
2118 }
2119 }
2120 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2121 } else {
2122 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2123 }
2124
2125 if (!ret && regmap_should_log(map)) {
2126 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2127 for (i = 0; i < val_count; i++) {
2128 switch (val_bytes) {
2129 case 1:
2130 pr_cont("%x", u8p[i]);
2131 break;
2132 case 2:
2133 pr_cont("%x", u16p[i]);
2134 break;
2135 case 4:
2136 pr_cont("%x", u32p[i]);
2137 break;
2138 default:
2139 break;
2140 }
2141 if (i == (val_count - 1))
2142 pr_cont("]\n");
2143 else
2144 pr_cont(",");
2145 }
2146 }
2147
2148 return 0;
2149 }
2150
2151 /**
2152 * regmap_noinc_write(): Write data from a register without incrementing the
2153 * register number
2154 *
2155 * @map: Register map to write to
2156 * @reg: Register to write to
2157 * @val: Pointer to data buffer
2158 * @val_len: Length of output buffer in bytes.
2159 *
2160 * The regmap API usually assumes that bulk bus write operations will write a
2161 * range of registers. Some devices have certain registers for which a write
2162 * operation can write to an internal FIFO.
2163 *
2164 * The target register must be volatile but registers after it can be
2165 * completely unrelated cacheable registers.
2166 *
2167 * This will attempt multiple writes as required to write val_len bytes.
2168 *
2169 * A value of zero will be returned on success, a negative errno will be
2170 * returned in error cases.
2171 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2172 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2173 const void *val, size_t val_len)
2174 {
2175 size_t write_len;
2176 int ret;
2177
2178 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2179 return -EINVAL;
2180 if (val_len % map->format.val_bytes)
2181 return -EINVAL;
2182 if (!IS_ALIGNED(reg, map->reg_stride))
2183 return -EINVAL;
2184 if (val_len == 0)
2185 return -EINVAL;
2186
2187 map->lock(map->lock_arg);
2188
2189 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2190 ret = -EINVAL;
2191 goto out_unlock;
2192 }
2193
2194 /*
2195 * Use the accelerated operation if we can. The val drops the const
2196 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2197 */
2198 if (map->bus->reg_noinc_write) {
2199 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2200 goto out_unlock;
2201 }
2202
2203 while (val_len) {
2204 if (map->max_raw_write && map->max_raw_write < val_len)
2205 write_len = map->max_raw_write;
2206 else
2207 write_len = val_len;
2208 ret = _regmap_raw_write(map, reg, val, write_len, true);
2209 if (ret)
2210 goto out_unlock;
2211 val = ((u8 *)val) + write_len;
2212 val_len -= write_len;
2213 }
2214
2215 out_unlock:
2216 map->unlock(map->lock_arg);
2217 return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2220
2221 /**
2222 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2223 * register field.
2224 *
2225 * @field: Register field to write to
2226 * @mask: Bitmask to change
2227 * @val: Value to be written
2228 * @change: Boolean indicating if a write was done
2229 * @async: Boolean indicating asynchronously
2230 * @force: Boolean indicating use force update
2231 *
2232 * Perform a read/modify/write cycle on the register field with change,
2233 * async, force option.
2234 *
2235 * A value of zero will be returned on success, a negative errno will
2236 * be returned in error cases.
2237 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2238 int regmap_field_update_bits_base(struct regmap_field *field,
2239 unsigned int mask, unsigned int val,
2240 bool *change, bool async, bool force)
2241 {
2242 mask = (mask << field->shift) & field->mask;
2243
2244 return regmap_update_bits_base(field->regmap, field->reg,
2245 mask, val << field->shift,
2246 change, async, force);
2247 }
2248 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2249
2250 /**
2251 * regmap_field_test_bits() - Check if all specified bits are set in a
2252 * register field.
2253 *
2254 * @field: Register field to operate on
2255 * @bits: Bits to test
2256 *
2257 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2258 * tested bits is not set and 1 if all tested bits are set.
2259 */
regmap_field_test_bits(struct regmap_field * field,unsigned int bits)2260 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2261 {
2262 unsigned int val, ret;
2263
2264 ret = regmap_field_read(field, &val);
2265 if (ret)
2266 return ret;
2267
2268 return (val & bits) == bits;
2269 }
2270 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2271
2272 /**
2273 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2274 * register field with port ID
2275 *
2276 * @field: Register field to write to
2277 * @id: port ID
2278 * @mask: Bitmask to change
2279 * @val: Value to be written
2280 * @change: Boolean indicating if a write was done
2281 * @async: Boolean indicating asynchronously
2282 * @force: Boolean indicating use force update
2283 *
2284 * A value of zero will be returned on success, a negative errno will
2285 * be returned in error cases.
2286 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2287 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2288 unsigned int mask, unsigned int val,
2289 bool *change, bool async, bool force)
2290 {
2291 if (id >= field->id_size)
2292 return -EINVAL;
2293
2294 mask = (mask << field->shift) & field->mask;
2295
2296 return regmap_update_bits_base(field->regmap,
2297 field->reg + (field->id_offset * id),
2298 mask, val << field->shift,
2299 change, async, force);
2300 }
2301 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2302
2303 /**
2304 * regmap_bulk_write() - Write multiple registers to the device
2305 *
2306 * @map: Register map to write to
2307 * @reg: First register to be write from
2308 * @val: Block of data to be written, in native register size for device
2309 * @val_count: Number of registers to write
2310 *
2311 * This function is intended to be used for writing a large block of
2312 * data to the device either in single transfer or multiple transfer.
2313 *
2314 * A value of zero will be returned on success, a negative errno will
2315 * be returned in error cases.
2316 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2317 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2318 size_t val_count)
2319 {
2320 int ret = 0, i;
2321 size_t val_bytes = map->format.val_bytes;
2322
2323 if (!IS_ALIGNED(reg, map->reg_stride))
2324 return -EINVAL;
2325
2326 /*
2327 * Some devices don't support bulk write, for them we have a series of
2328 * single write operations.
2329 */
2330 if (!map->write || !map->format.parse_inplace) {
2331 map->lock(map->lock_arg);
2332 for (i = 0; i < val_count; i++) {
2333 unsigned int ival;
2334
2335 switch (val_bytes) {
2336 case 1:
2337 ival = *(u8 *)(val + (i * val_bytes));
2338 break;
2339 case 2:
2340 ival = *(u16 *)(val + (i * val_bytes));
2341 break;
2342 case 4:
2343 ival = *(u32 *)(val + (i * val_bytes));
2344 break;
2345 default:
2346 ret = -EINVAL;
2347 goto out;
2348 }
2349
2350 ret = _regmap_write(map,
2351 reg + regmap_get_offset(map, i),
2352 ival);
2353 if (ret != 0)
2354 goto out;
2355 }
2356 out:
2357 map->unlock(map->lock_arg);
2358 } else {
2359 void *wval;
2360
2361 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2362 if (!wval)
2363 return -ENOMEM;
2364
2365 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2366 map->format.parse_inplace(wval + i);
2367
2368 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2369
2370 kfree(wval);
2371 }
2372
2373 if (!ret)
2374 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2375
2376 return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2379
2380 /*
2381 * _regmap_raw_multi_reg_write()
2382 *
2383 * the (register,newvalue) pairs in regs have not been formatted, but
2384 * they are all in the same page and have been changed to being page
2385 * relative. The page register has been written if that was necessary.
2386 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2387 static int _regmap_raw_multi_reg_write(struct regmap *map,
2388 const struct reg_sequence *regs,
2389 size_t num_regs)
2390 {
2391 int ret;
2392 void *buf;
2393 int i;
2394 u8 *u8;
2395 size_t val_bytes = map->format.val_bytes;
2396 size_t reg_bytes = map->format.reg_bytes;
2397 size_t pad_bytes = map->format.pad_bytes;
2398 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2399 size_t len = pair_size * num_regs;
2400
2401 if (!len)
2402 return -EINVAL;
2403
2404 buf = kzalloc(len, GFP_KERNEL);
2405 if (!buf)
2406 return -ENOMEM;
2407
2408 /* We have to linearise by hand. */
2409
2410 u8 = buf;
2411
2412 for (i = 0; i < num_regs; i++) {
2413 unsigned int reg = regs[i].reg;
2414 unsigned int val = regs[i].def;
2415 trace_regmap_hw_write_start(map, reg, 1);
2416 reg = regmap_reg_addr(map, reg);
2417 map->format.format_reg(u8, reg, map->reg_shift);
2418 u8 += reg_bytes + pad_bytes;
2419 map->format.format_val(u8, val, 0);
2420 u8 += val_bytes;
2421 }
2422 u8 = buf;
2423 *u8 |= map->write_flag_mask;
2424
2425 ret = map->write(map->bus_context, buf, len);
2426
2427 kfree(buf);
2428
2429 for (i = 0; i < num_regs; i++) {
2430 int reg = regs[i].reg;
2431 trace_regmap_hw_write_done(map, reg, 1);
2432 }
2433 return ret;
2434 }
2435
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2436 static unsigned int _regmap_register_page(struct regmap *map,
2437 unsigned int reg,
2438 struct regmap_range_node *range)
2439 {
2440 unsigned int win_page = (reg - range->range_min) / range->window_len;
2441
2442 return win_page;
2443 }
2444
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2445 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2446 struct reg_sequence *regs,
2447 size_t num_regs)
2448 {
2449 int ret;
2450 int i, n;
2451 struct reg_sequence *base;
2452 unsigned int this_page = 0;
2453 unsigned int page_change = 0;
2454 /*
2455 * the set of registers are not neccessarily in order, but
2456 * since the order of write must be preserved this algorithm
2457 * chops the set each time the page changes. This also applies
2458 * if there is a delay required at any point in the sequence.
2459 */
2460 base = regs;
2461 for (i = 0, n = 0; i < num_regs; i++, n++) {
2462 unsigned int reg = regs[i].reg;
2463 struct regmap_range_node *range;
2464
2465 range = _regmap_range_lookup(map, reg);
2466 if (range) {
2467 unsigned int win_page = _regmap_register_page(map, reg,
2468 range);
2469
2470 if (i == 0)
2471 this_page = win_page;
2472 if (win_page != this_page) {
2473 this_page = win_page;
2474 page_change = 1;
2475 }
2476 }
2477
2478 /* If we have both a page change and a delay make sure to
2479 * write the regs and apply the delay before we change the
2480 * page.
2481 */
2482
2483 if (page_change || regs[i].delay_us) {
2484
2485 /* For situations where the first write requires
2486 * a delay we need to make sure we don't call
2487 * raw_multi_reg_write with n=0
2488 * This can't occur with page breaks as we
2489 * never write on the first iteration
2490 */
2491 if (regs[i].delay_us && i == 0)
2492 n = 1;
2493
2494 ret = _regmap_raw_multi_reg_write(map, base, n);
2495 if (ret != 0)
2496 return ret;
2497
2498 if (regs[i].delay_us) {
2499 if (map->can_sleep)
2500 fsleep(regs[i].delay_us);
2501 else
2502 udelay(regs[i].delay_us);
2503 }
2504
2505 base += n;
2506 n = 0;
2507
2508 if (page_change) {
2509 ret = _regmap_select_page(map,
2510 &base[n].reg,
2511 range, 1);
2512 if (ret != 0)
2513 return ret;
2514
2515 page_change = 0;
2516 }
2517
2518 }
2519
2520 }
2521 if (n > 0)
2522 return _regmap_raw_multi_reg_write(map, base, n);
2523 return 0;
2524 }
2525
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2526 static int _regmap_multi_reg_write(struct regmap *map,
2527 const struct reg_sequence *regs,
2528 size_t num_regs)
2529 {
2530 int i;
2531 int ret;
2532
2533 if (!map->can_multi_write) {
2534 for (i = 0; i < num_regs; i++) {
2535 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2536 if (ret != 0)
2537 return ret;
2538
2539 if (regs[i].delay_us) {
2540 if (map->can_sleep)
2541 fsleep(regs[i].delay_us);
2542 else
2543 udelay(regs[i].delay_us);
2544 }
2545 }
2546 return 0;
2547 }
2548
2549 if (!map->format.parse_inplace)
2550 return -EINVAL;
2551
2552 if (map->writeable_reg)
2553 for (i = 0; i < num_regs; i++) {
2554 int reg = regs[i].reg;
2555 if (!map->writeable_reg(map->dev, reg))
2556 return -EINVAL;
2557 if (!IS_ALIGNED(reg, map->reg_stride))
2558 return -EINVAL;
2559 }
2560
2561 if (!map->cache_bypass) {
2562 for (i = 0; i < num_regs; i++) {
2563 unsigned int val = regs[i].def;
2564 unsigned int reg = regs[i].reg;
2565 ret = regcache_write(map, reg, val);
2566 if (ret) {
2567 dev_err(map->dev,
2568 "Error in caching of register: %x ret: %d\n",
2569 reg, ret);
2570 return ret;
2571 }
2572 }
2573 if (map->cache_only) {
2574 map->cache_dirty = true;
2575 return 0;
2576 }
2577 }
2578
2579 WARN_ON(!map->bus);
2580
2581 for (i = 0; i < num_regs; i++) {
2582 unsigned int reg = regs[i].reg;
2583 struct regmap_range_node *range;
2584
2585 /* Coalesce all the writes between a page break or a delay
2586 * in a sequence
2587 */
2588 range = _regmap_range_lookup(map, reg);
2589 if (range || regs[i].delay_us) {
2590 size_t len = sizeof(struct reg_sequence)*num_regs;
2591 struct reg_sequence *base = kmemdup(regs, len,
2592 GFP_KERNEL);
2593 if (!base)
2594 return -ENOMEM;
2595 ret = _regmap_range_multi_paged_reg_write(map, base,
2596 num_regs);
2597 kfree(base);
2598
2599 return ret;
2600 }
2601 }
2602 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2603 }
2604
2605 /**
2606 * regmap_multi_reg_write() - Write multiple registers to the device
2607 *
2608 * @map: Register map to write to
2609 * @regs: Array of structures containing register,value to be written
2610 * @num_regs: Number of registers to write
2611 *
2612 * Write multiple registers to the device where the set of register, value
2613 * pairs are supplied in any order, possibly not all in a single range.
2614 *
2615 * The 'normal' block write mode will send ultimately send data on the
2616 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2617 * addressed. However, this alternative block multi write mode will send
2618 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2619 * must of course support the mode.
2620 *
2621 * A value of zero will be returned on success, a negative errno will be
2622 * returned in error cases.
2623 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2624 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2625 int num_regs)
2626 {
2627 int ret;
2628
2629 map->lock(map->lock_arg);
2630
2631 ret = _regmap_multi_reg_write(map, regs, num_regs);
2632
2633 map->unlock(map->lock_arg);
2634
2635 return ret;
2636 }
2637 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2638
2639 /**
2640 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2641 * device but not the cache
2642 *
2643 * @map: Register map to write to
2644 * @regs: Array of structures containing register,value to be written
2645 * @num_regs: Number of registers to write
2646 *
2647 * Write multiple registers to the device but not the cache where the set
2648 * of register are supplied in any order.
2649 *
2650 * This function is intended to be used for writing a large block of data
2651 * atomically to the device in single transfer for those I2C client devices
2652 * that implement this alternative block write mode.
2653 *
2654 * A value of zero will be returned on success, a negative errno will
2655 * be returned in error cases.
2656 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2657 int regmap_multi_reg_write_bypassed(struct regmap *map,
2658 const struct reg_sequence *regs,
2659 int num_regs)
2660 {
2661 int ret;
2662 bool bypass;
2663
2664 map->lock(map->lock_arg);
2665
2666 bypass = map->cache_bypass;
2667 map->cache_bypass = true;
2668
2669 ret = _regmap_multi_reg_write(map, regs, num_regs);
2670
2671 map->cache_bypass = bypass;
2672
2673 map->unlock(map->lock_arg);
2674
2675 return ret;
2676 }
2677 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2678
2679 /**
2680 * regmap_raw_write_async() - Write raw values to one or more registers
2681 * asynchronously
2682 *
2683 * @map: Register map to write to
2684 * @reg: Initial register to write to
2685 * @val: Block of data to be written, laid out for direct transmission to the
2686 * device. Must be valid until regmap_async_complete() is called.
2687 * @val_len: Length of data pointed to by val.
2688 *
2689 * This function is intended to be used for things like firmware
2690 * download where a large block of data needs to be transferred to the
2691 * device. No formatting will be done on the data provided.
2692 *
2693 * If supported by the underlying bus the write will be scheduled
2694 * asynchronously, helping maximise I/O speed on higher speed buses
2695 * like SPI. regmap_async_complete() can be called to ensure that all
2696 * asynchrnous writes have been completed.
2697 *
2698 * A value of zero will be returned on success, a negative errno will
2699 * be returned in error cases.
2700 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2701 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2702 const void *val, size_t val_len)
2703 {
2704 int ret;
2705
2706 if (val_len % map->format.val_bytes)
2707 return -EINVAL;
2708 if (!IS_ALIGNED(reg, map->reg_stride))
2709 return -EINVAL;
2710
2711 map->lock(map->lock_arg);
2712
2713 map->async = true;
2714
2715 ret = _regmap_raw_write(map, reg, val, val_len, false);
2716
2717 map->async = false;
2718
2719 map->unlock(map->lock_arg);
2720
2721 return ret;
2722 }
2723 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2724
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2725 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2726 unsigned int val_len, bool noinc)
2727 {
2728 struct regmap_range_node *range;
2729 int ret;
2730
2731 if (!map->read)
2732 return -EINVAL;
2733
2734 range = _regmap_range_lookup(map, reg);
2735 if (range) {
2736 ret = _regmap_select_page(map, ®, range,
2737 noinc ? 1 : val_len / map->format.val_bytes);
2738 if (ret != 0)
2739 return ret;
2740 }
2741
2742 reg = regmap_reg_addr(map, reg);
2743 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2744 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2745 map->read_flag_mask);
2746 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2747
2748 ret = map->read(map->bus_context, map->work_buf,
2749 map->format.reg_bytes + map->format.pad_bytes,
2750 val, val_len);
2751
2752 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2753
2754 return ret;
2755 }
2756
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2757 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2758 unsigned int *val)
2759 {
2760 struct regmap *map = context;
2761 struct regmap_range_node *range;
2762 int ret;
2763
2764 range = _regmap_range_lookup(map, reg);
2765 if (range) {
2766 ret = _regmap_select_page(map, ®, range, 1);
2767 if (ret != 0)
2768 return ret;
2769 }
2770
2771 reg = regmap_reg_addr(map, reg);
2772 return map->bus->reg_read(map->bus_context, reg, val);
2773 }
2774
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2775 static int _regmap_bus_read(void *context, unsigned int reg,
2776 unsigned int *val)
2777 {
2778 int ret;
2779 struct regmap *map = context;
2780 void *work_val = map->work_buf + map->format.reg_bytes +
2781 map->format.pad_bytes;
2782
2783 if (!map->format.parse_val)
2784 return -EINVAL;
2785
2786 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2787 if (ret == 0)
2788 *val = map->format.parse_val(work_val);
2789
2790 return ret;
2791 }
2792
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2793 static int _regmap_read(struct regmap *map, unsigned int reg,
2794 unsigned int *val)
2795 {
2796 int ret;
2797 void *context = _regmap_map_get_context(map);
2798
2799 if (!map->cache_bypass) {
2800 ret = regcache_read(map, reg, val);
2801 if (ret == 0)
2802 return 0;
2803 }
2804
2805 if (map->cache_only)
2806 return -EBUSY;
2807
2808 if (!regmap_readable(map, reg))
2809 return -EIO;
2810
2811 ret = map->reg_read(context, reg, val);
2812 if (ret == 0) {
2813 if (regmap_should_log(map))
2814 dev_info(map->dev, "%x => %x\n", reg, *val);
2815
2816 trace_regmap_reg_read(map, reg, *val);
2817
2818 if (!map->cache_bypass)
2819 regcache_write(map, reg, *val);
2820 }
2821
2822 return ret;
2823 }
2824
2825 /**
2826 * regmap_read() - Read a value from a single register
2827 *
2828 * @map: Register map to read from
2829 * @reg: Register to be read from
2830 * @val: Pointer to store read value
2831 *
2832 * A value of zero will be returned on success, a negative errno will
2833 * be returned in error cases.
2834 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2835 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2836 {
2837 int ret;
2838
2839 if (!IS_ALIGNED(reg, map->reg_stride))
2840 return -EINVAL;
2841
2842 map->lock(map->lock_arg);
2843
2844 ret = _regmap_read(map, reg, val);
2845
2846 map->unlock(map->lock_arg);
2847
2848 return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(regmap_read);
2851
2852 /**
2853 * regmap_read_bypassed() - Read a value from a single register direct
2854 * from the device, bypassing the cache
2855 *
2856 * @map: Register map to read from
2857 * @reg: Register to be read from
2858 * @val: Pointer to store read value
2859 *
2860 * A value of zero will be returned on success, a negative errno will
2861 * be returned in error cases.
2862 */
regmap_read_bypassed(struct regmap * map,unsigned int reg,unsigned int * val)2863 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2864 {
2865 int ret;
2866 bool bypass, cache_only;
2867
2868 if (!IS_ALIGNED(reg, map->reg_stride))
2869 return -EINVAL;
2870
2871 map->lock(map->lock_arg);
2872
2873 bypass = map->cache_bypass;
2874 cache_only = map->cache_only;
2875 map->cache_bypass = true;
2876 map->cache_only = false;
2877
2878 ret = _regmap_read(map, reg, val);
2879
2880 map->cache_bypass = bypass;
2881 map->cache_only = cache_only;
2882
2883 map->unlock(map->lock_arg);
2884
2885 return ret;
2886 }
2887 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2888
2889 /**
2890 * regmap_raw_read() - Read raw data from the device
2891 *
2892 * @map: Register map to read from
2893 * @reg: First register to be read from
2894 * @val: Pointer to store read value
2895 * @val_len: Size of data to read
2896 *
2897 * A value of zero will be returned on success, a negative errno will
2898 * be returned in error cases.
2899 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2900 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2901 size_t val_len)
2902 {
2903 size_t val_bytes = map->format.val_bytes;
2904 size_t val_count = val_len / val_bytes;
2905 unsigned int v;
2906 int ret, i;
2907
2908 if (val_len % map->format.val_bytes)
2909 return -EINVAL;
2910 if (!IS_ALIGNED(reg, map->reg_stride))
2911 return -EINVAL;
2912 if (val_count == 0)
2913 return -EINVAL;
2914
2915 map->lock(map->lock_arg);
2916
2917 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2918 map->cache_type == REGCACHE_NONE) {
2919 size_t chunk_count, chunk_bytes;
2920 size_t chunk_regs = val_count;
2921
2922 if (!map->cache_bypass && map->cache_only) {
2923 ret = -EBUSY;
2924 goto out;
2925 }
2926
2927 if (!map->read) {
2928 ret = -ENOTSUPP;
2929 goto out;
2930 }
2931
2932 if (map->use_single_read)
2933 chunk_regs = 1;
2934 else if (map->max_raw_read && val_len > map->max_raw_read)
2935 chunk_regs = map->max_raw_read / val_bytes;
2936
2937 chunk_count = val_count / chunk_regs;
2938 chunk_bytes = chunk_regs * val_bytes;
2939
2940 /* Read bytes that fit into whole chunks */
2941 for (i = 0; i < chunk_count; i++) {
2942 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2943 if (ret != 0)
2944 goto out;
2945
2946 reg += regmap_get_offset(map, chunk_regs);
2947 val += chunk_bytes;
2948 val_len -= chunk_bytes;
2949 }
2950
2951 /* Read remaining bytes */
2952 if (val_len) {
2953 ret = _regmap_raw_read(map, reg, val, val_len, false);
2954 if (ret != 0)
2955 goto out;
2956 }
2957 } else {
2958 /* Otherwise go word by word for the cache; should be low
2959 * cost as we expect to hit the cache.
2960 */
2961 for (i = 0; i < val_count; i++) {
2962 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2963 &v);
2964 if (ret != 0)
2965 goto out;
2966
2967 map->format.format_val(val + (i * val_bytes), v, 0);
2968 }
2969 }
2970
2971 out:
2972 map->unlock(map->lock_arg);
2973
2974 return ret;
2975 }
2976 EXPORT_SYMBOL_GPL(regmap_raw_read);
2977
2978 /**
2979 * regmap_noinc_read(): Read data from a register without incrementing the
2980 * register number
2981 *
2982 * @map: Register map to read from
2983 * @reg: Register to read from
2984 * @val: Pointer to data buffer
2985 * @val_len: Length of output buffer in bytes.
2986 *
2987 * The regmap API usually assumes that bulk read operations will read a
2988 * range of registers. Some devices have certain registers for which a read
2989 * operation read will read from an internal FIFO.
2990 *
2991 * The target register must be volatile but registers after it can be
2992 * completely unrelated cacheable registers.
2993 *
2994 * This will attempt multiple reads as required to read val_len bytes.
2995 *
2996 * A value of zero will be returned on success, a negative errno will be
2997 * returned in error cases.
2998 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2999 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3000 void *val, size_t val_len)
3001 {
3002 size_t read_len;
3003 int ret;
3004
3005 if (!map->read)
3006 return -ENOTSUPP;
3007
3008 if (val_len % map->format.val_bytes)
3009 return -EINVAL;
3010 if (!IS_ALIGNED(reg, map->reg_stride))
3011 return -EINVAL;
3012 if (val_len == 0)
3013 return -EINVAL;
3014
3015 map->lock(map->lock_arg);
3016
3017 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3018 ret = -EINVAL;
3019 goto out_unlock;
3020 }
3021
3022 /*
3023 * We have not defined the FIFO semantics for cache, as the
3024 * cache is just one value deep. Should we return the last
3025 * written value? Just avoid this by always reading the FIFO
3026 * even when using cache. Cache only will not work.
3027 */
3028 if (!map->cache_bypass && map->cache_only) {
3029 ret = -EBUSY;
3030 goto out_unlock;
3031 }
3032
3033 /* Use the accelerated operation if we can */
3034 if (map->bus->reg_noinc_read) {
3035 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3036 goto out_unlock;
3037 }
3038
3039 while (val_len) {
3040 if (map->max_raw_read && map->max_raw_read < val_len)
3041 read_len = map->max_raw_read;
3042 else
3043 read_len = val_len;
3044 ret = _regmap_raw_read(map, reg, val, read_len, true);
3045 if (ret)
3046 goto out_unlock;
3047 val = ((u8 *)val) + read_len;
3048 val_len -= read_len;
3049 }
3050
3051 out_unlock:
3052 map->unlock(map->lock_arg);
3053 return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3056
3057 /**
3058 * regmap_field_read(): Read a value to a single register field
3059 *
3060 * @field: Register field to read from
3061 * @val: Pointer to store read value
3062 *
3063 * A value of zero will be returned on success, a negative errno will
3064 * be returned in error cases.
3065 */
regmap_field_read(struct regmap_field * field,unsigned int * val)3066 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3067 {
3068 int ret;
3069 unsigned int reg_val;
3070 ret = regmap_read(field->regmap, field->reg, ®_val);
3071 if (ret != 0)
3072 return ret;
3073
3074 reg_val &= field->mask;
3075 reg_val >>= field->shift;
3076 *val = reg_val;
3077
3078 return ret;
3079 }
3080 EXPORT_SYMBOL_GPL(regmap_field_read);
3081
3082 /**
3083 * regmap_fields_read() - Read a value to a single register field with port ID
3084 *
3085 * @field: Register field to read from
3086 * @id: port ID
3087 * @val: Pointer to store read value
3088 *
3089 * A value of zero will be returned on success, a negative errno will
3090 * be returned in error cases.
3091 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)3092 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3093 unsigned int *val)
3094 {
3095 int ret;
3096 unsigned int reg_val;
3097
3098 if (id >= field->id_size)
3099 return -EINVAL;
3100
3101 ret = regmap_read(field->regmap,
3102 field->reg + (field->id_offset * id),
3103 ®_val);
3104 if (ret != 0)
3105 return ret;
3106
3107 reg_val &= field->mask;
3108 reg_val >>= field->shift;
3109 *val = reg_val;
3110
3111 return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(regmap_fields_read);
3114
3115 /**
3116 * regmap_bulk_read() - Read multiple registers from the device
3117 *
3118 * @map: Register map to read from
3119 * @reg: First register to be read from
3120 * @val: Pointer to store read value, in native register size for device
3121 * @val_count: Number of registers to read
3122 *
3123 * A value of zero will be returned on success, a negative errno will
3124 * be returned in error cases.
3125 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)3126 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3127 size_t val_count)
3128 {
3129 int ret, i;
3130 size_t val_bytes = map->format.val_bytes;
3131 bool vol = regmap_volatile_range(map, reg, val_count);
3132
3133 if (!IS_ALIGNED(reg, map->reg_stride))
3134 return -EINVAL;
3135 if (val_count == 0)
3136 return -EINVAL;
3137
3138 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3139 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3140 if (ret != 0)
3141 return ret;
3142
3143 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3144 map->format.parse_inplace(val + i);
3145 } else {
3146 u32 *u32 = val;
3147 u16 *u16 = val;
3148 u8 *u8 = val;
3149
3150 map->lock(map->lock_arg);
3151
3152 for (i = 0; i < val_count; i++) {
3153 unsigned int ival;
3154
3155 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3156 &ival);
3157 if (ret != 0)
3158 goto out;
3159
3160 switch (map->format.val_bytes) {
3161 case 4:
3162 u32[i] = ival;
3163 break;
3164 case 2:
3165 u16[i] = ival;
3166 break;
3167 case 1:
3168 u8[i] = ival;
3169 break;
3170 default:
3171 ret = -EINVAL;
3172 goto out;
3173 }
3174 }
3175
3176 out:
3177 map->unlock(map->lock_arg);
3178 }
3179
3180 if (!ret)
3181 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3182
3183 return ret;
3184 }
3185 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3186
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3187 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3188 unsigned int mask, unsigned int val,
3189 bool *change, bool force_write)
3190 {
3191 int ret;
3192 unsigned int tmp, orig;
3193
3194 if (change)
3195 *change = false;
3196
3197 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3198 reg = regmap_reg_addr(map, reg);
3199 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3200 if (ret == 0 && change)
3201 *change = true;
3202 } else {
3203 ret = _regmap_read(map, reg, &orig);
3204 if (ret != 0)
3205 return ret;
3206
3207 tmp = orig & ~mask;
3208 tmp |= val & mask;
3209
3210 if (force_write || (tmp != orig) || map->force_write_field) {
3211 ret = _regmap_write(map, reg, tmp);
3212 if (ret == 0 && change)
3213 *change = true;
3214 }
3215 }
3216
3217 return ret;
3218 }
3219
3220 /**
3221 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3222 *
3223 * @map: Register map to update
3224 * @reg: Register to update
3225 * @mask: Bitmask to change
3226 * @val: New value for bitmask
3227 * @change: Boolean indicating if a write was done
3228 * @async: Boolean indicating asynchronously
3229 * @force: Boolean indicating use force update
3230 *
3231 * Perform a read/modify/write cycle on a register map with change, async, force
3232 * options.
3233 *
3234 * If async is true:
3235 *
3236 * With most buses the read must be done synchronously so this is most useful
3237 * for devices with a cache which do not need to interact with the hardware to
3238 * determine the current register value.
3239 *
3240 * Returns zero for success, a negative number on error.
3241 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3242 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3243 unsigned int mask, unsigned int val,
3244 bool *change, bool async, bool force)
3245 {
3246 int ret;
3247
3248 map->lock(map->lock_arg);
3249
3250 map->async = async;
3251
3252 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3253
3254 map->async = false;
3255
3256 map->unlock(map->lock_arg);
3257
3258 return ret;
3259 }
3260 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3261
3262 /**
3263 * regmap_test_bits() - Check if all specified bits are set in a register.
3264 *
3265 * @map: Register map to operate on
3266 * @reg: Register to read from
3267 * @bits: Bits to test
3268 *
3269 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3270 * bits are set and a negative error number if the underlying regmap_read()
3271 * fails.
3272 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3273 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3274 {
3275 unsigned int val, ret;
3276
3277 ret = regmap_read(map, reg, &val);
3278 if (ret)
3279 return ret;
3280
3281 return (val & bits) == bits;
3282 }
3283 EXPORT_SYMBOL_GPL(regmap_test_bits);
3284
regmap_async_complete_cb(struct regmap_async * async,int ret)3285 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3286 {
3287 struct regmap *map = async->map;
3288 bool wake;
3289
3290 trace_regmap_async_io_complete(map);
3291
3292 spin_lock(&map->async_lock);
3293 list_move(&async->list, &map->async_free);
3294 wake = list_empty(&map->async_list);
3295
3296 if (ret != 0)
3297 map->async_ret = ret;
3298
3299 spin_unlock(&map->async_lock);
3300
3301 if (wake)
3302 wake_up(&map->async_waitq);
3303 }
3304 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3305
regmap_async_is_done(struct regmap * map)3306 static int regmap_async_is_done(struct regmap *map)
3307 {
3308 unsigned long flags;
3309 int ret;
3310
3311 spin_lock_irqsave(&map->async_lock, flags);
3312 ret = list_empty(&map->async_list);
3313 spin_unlock_irqrestore(&map->async_lock, flags);
3314
3315 return ret;
3316 }
3317
3318 /**
3319 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3320 *
3321 * @map: Map to operate on.
3322 *
3323 * Blocks until any pending asynchronous I/O has completed. Returns
3324 * an error code for any failed I/O operations.
3325 */
regmap_async_complete(struct regmap * map)3326 int regmap_async_complete(struct regmap *map)
3327 {
3328 unsigned long flags;
3329 int ret;
3330
3331 /* Nothing to do with no async support */
3332 if (!map->bus || !map->bus->async_write)
3333 return 0;
3334
3335 trace_regmap_async_complete_start(map);
3336
3337 wait_event(map->async_waitq, regmap_async_is_done(map));
3338
3339 spin_lock_irqsave(&map->async_lock, flags);
3340 ret = map->async_ret;
3341 map->async_ret = 0;
3342 spin_unlock_irqrestore(&map->async_lock, flags);
3343
3344 trace_regmap_async_complete_done(map);
3345
3346 return ret;
3347 }
3348 EXPORT_SYMBOL_GPL(regmap_async_complete);
3349
3350 /**
3351 * regmap_register_patch - Register and apply register updates to be applied
3352 * on device initialistion
3353 *
3354 * @map: Register map to apply updates to.
3355 * @regs: Values to update.
3356 * @num_regs: Number of entries in regs.
3357 *
3358 * Register a set of register updates to be applied to the device
3359 * whenever the device registers are synchronised with the cache and
3360 * apply them immediately. Typically this is used to apply
3361 * corrections to be applied to the device defaults on startup, such
3362 * as the updates some vendors provide to undocumented registers.
3363 *
3364 * The caller must ensure that this function cannot be called
3365 * concurrently with either itself or regcache_sync().
3366 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3367 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3368 int num_regs)
3369 {
3370 struct reg_sequence *p;
3371 int ret;
3372 bool bypass;
3373
3374 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3375 num_regs))
3376 return 0;
3377
3378 p = krealloc(map->patch,
3379 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3380 GFP_KERNEL);
3381 if (p) {
3382 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3383 map->patch = p;
3384 map->patch_regs += num_regs;
3385 } else {
3386 return -ENOMEM;
3387 }
3388
3389 map->lock(map->lock_arg);
3390
3391 bypass = map->cache_bypass;
3392
3393 map->cache_bypass = true;
3394 map->async = true;
3395
3396 ret = _regmap_multi_reg_write(map, regs, num_regs);
3397
3398 map->async = false;
3399 map->cache_bypass = bypass;
3400
3401 map->unlock(map->lock_arg);
3402
3403 regmap_async_complete(map);
3404
3405 return ret;
3406 }
3407 EXPORT_SYMBOL_GPL(regmap_register_patch);
3408
3409 /**
3410 * regmap_get_val_bytes() - Report the size of a register value
3411 *
3412 * @map: Register map to operate on.
3413 *
3414 * Report the size of a register value, mainly intended to for use by
3415 * generic infrastructure built on top of regmap.
3416 */
regmap_get_val_bytes(struct regmap * map)3417 int regmap_get_val_bytes(struct regmap *map)
3418 {
3419 if (map->format.format_write)
3420 return -EINVAL;
3421
3422 return map->format.val_bytes;
3423 }
3424 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3425
3426 /**
3427 * regmap_get_max_register() - Report the max register value
3428 *
3429 * @map: Register map to operate on.
3430 *
3431 * Report the max register value, mainly intended to for use by
3432 * generic infrastructure built on top of regmap.
3433 */
regmap_get_max_register(struct regmap * map)3434 int regmap_get_max_register(struct regmap *map)
3435 {
3436 return map->max_register ? map->max_register : -EINVAL;
3437 }
3438 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3439
3440 /**
3441 * regmap_get_reg_stride() - Report the register address stride
3442 *
3443 * @map: Register map to operate on.
3444 *
3445 * Report the register address stride, mainly intended to for use by
3446 * generic infrastructure built on top of regmap.
3447 */
regmap_get_reg_stride(struct regmap * map)3448 int regmap_get_reg_stride(struct regmap *map)
3449 {
3450 return map->reg_stride;
3451 }
3452 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3453
3454 /**
3455 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3456 *
3457 * @map: Register map to operate on.
3458 *
3459 * Returns true if an access to the register might sleep, else false.
3460 */
regmap_might_sleep(struct regmap * map)3461 bool regmap_might_sleep(struct regmap *map)
3462 {
3463 return map->can_sleep;
3464 }
3465 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3466
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3467 int regmap_parse_val(struct regmap *map, const void *buf,
3468 unsigned int *val)
3469 {
3470 if (!map->format.parse_val)
3471 return -EINVAL;
3472
3473 *val = map->format.parse_val(buf);
3474
3475 return 0;
3476 }
3477 EXPORT_SYMBOL_GPL(regmap_parse_val);
3478
regmap_initcall(void)3479 static int __init regmap_initcall(void)
3480 {
3481 regmap_debugfs_initcall();
3482
3483 return 0;
3484 }
3485 postcore_initcall(regmap_initcall);
3486