xref: /openbmc/linux/arch/x86/crypto/camellia-aesni-avx2-asm_64.S (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * x86_64/AVX2/AES-NI assembler implementation of Camellia
4 *
5 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
6 */
7
8#include <linux/linkage.h>
9#include <asm/frame.h>
10
11#define CAMELLIA_TABLE_BYTE_LEN 272
12
13/* struct camellia_ctx: */
14#define key_table 0
15#define key_length CAMELLIA_TABLE_BYTE_LEN
16
17/* register macros */
18#define CTX %rdi
19#define RIO %r8
20
21/**********************************************************************
22  helper macros
23 **********************************************************************/
24#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
25	vpand x, mask4bit, tmp0; \
26	vpandn x, mask4bit, x; \
27	vpsrld $4, x, x; \
28	\
29	vpshufb tmp0, lo_t, tmp0; \
30	vpshufb x, hi_t, x; \
31	vpxor tmp0, x, x;
32
33#define ymm0_x xmm0
34#define ymm1_x xmm1
35#define ymm2_x xmm2
36#define ymm3_x xmm3
37#define ymm4_x xmm4
38#define ymm5_x xmm5
39#define ymm6_x xmm6
40#define ymm7_x xmm7
41#define ymm8_x xmm8
42#define ymm9_x xmm9
43#define ymm10_x xmm10
44#define ymm11_x xmm11
45#define ymm12_x xmm12
46#define ymm13_x xmm13
47#define ymm14_x xmm14
48#define ymm15_x xmm15
49
50/**********************************************************************
51  32-way camellia
52 **********************************************************************/
53
54/*
55 * IN:
56 *   x0..x7: byte-sliced AB state
57 *   mem_cd: register pointer storing CD state
58 *   key: index for key material
59 * OUT:
60 *   x0..x7: new byte-sliced CD state
61 */
62#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
63		  t7, mem_cd, key) \
64	/* \
65	 * S-function with AES subbytes \
66	 */ \
67	vbroadcasti128 .Linv_shift_row(%rip), t4; \
68	vpbroadcastd .L0f0f0f0f(%rip), t7; \
69	vbroadcasti128 .Lpre_tf_lo_s1(%rip), t5; \
70	vbroadcasti128 .Lpre_tf_hi_s1(%rip), t6; \
71	vbroadcasti128 .Lpre_tf_lo_s4(%rip), t2; \
72	vbroadcasti128 .Lpre_tf_hi_s4(%rip), t3; \
73	\
74	/* AES inverse shift rows */ \
75	vpshufb t4, x0, x0; \
76	vpshufb t4, x7, x7; \
77	vpshufb t4, x3, x3; \
78	vpshufb t4, x6, x6; \
79	vpshufb t4, x2, x2; \
80	vpshufb t4, x5, x5; \
81	vpshufb t4, x1, x1; \
82	vpshufb t4, x4, x4; \
83	\
84	/* prefilter sboxes 1, 2 and 3 */ \
85	/* prefilter sbox 4 */ \
86	filter_8bit(x0, t5, t6, t7, t4); \
87	filter_8bit(x7, t5, t6, t7, t4); \
88	vextracti128 $1, x0, t0##_x; \
89	vextracti128 $1, x7, t1##_x; \
90	filter_8bit(x3, t2, t3, t7, t4); \
91	filter_8bit(x6, t2, t3, t7, t4); \
92	vextracti128 $1, x3, t3##_x; \
93	vextracti128 $1, x6, t2##_x; \
94	filter_8bit(x2, t5, t6, t7, t4); \
95	filter_8bit(x5, t5, t6, t7, t4); \
96	filter_8bit(x1, t5, t6, t7, t4); \
97	filter_8bit(x4, t5, t6, t7, t4); \
98	\
99	vpxor t4##_x, t4##_x, t4##_x; \
100	\
101	/* AES subbytes + AES shift rows */ \
102	vextracti128 $1, x2, t6##_x; \
103	vextracti128 $1, x5, t5##_x; \
104	vaesenclast t4##_x, x0##_x, x0##_x; \
105	vaesenclast t4##_x, t0##_x, t0##_x; \
106	vinserti128 $1, t0##_x, x0, x0; \
107	vaesenclast t4##_x, x7##_x, x7##_x; \
108	vaesenclast t4##_x, t1##_x, t1##_x; \
109	vinserti128 $1, t1##_x, x7, x7; \
110	vaesenclast t4##_x, x3##_x, x3##_x; \
111	vaesenclast t4##_x, t3##_x, t3##_x; \
112	vinserti128 $1, t3##_x, x3, x3; \
113	vaesenclast t4##_x, x6##_x, x6##_x; \
114	vaesenclast t4##_x, t2##_x, t2##_x; \
115	vinserti128 $1, t2##_x, x6, x6; \
116	vextracti128 $1, x1, t3##_x; \
117	vextracti128 $1, x4, t2##_x; \
118	vbroadcasti128 .Lpost_tf_lo_s1(%rip), t0; \
119	vbroadcasti128 .Lpost_tf_hi_s1(%rip), t1; \
120	vaesenclast t4##_x, x2##_x, x2##_x; \
121	vaesenclast t4##_x, t6##_x, t6##_x; \
122	vinserti128 $1, t6##_x, x2, x2; \
123	vaesenclast t4##_x, x5##_x, x5##_x; \
124	vaesenclast t4##_x, t5##_x, t5##_x; \
125	vinserti128 $1, t5##_x, x5, x5; \
126	vaesenclast t4##_x, x1##_x, x1##_x; \
127	vaesenclast t4##_x, t3##_x, t3##_x; \
128	vinserti128 $1, t3##_x, x1, x1; \
129	vaesenclast t4##_x, x4##_x, x4##_x; \
130	vaesenclast t4##_x, t2##_x, t2##_x; \
131	vinserti128 $1, t2##_x, x4, x4; \
132	\
133	/* postfilter sboxes 1 and 4 */ \
134	vbroadcasti128 .Lpost_tf_lo_s3(%rip), t2; \
135	vbroadcasti128 .Lpost_tf_hi_s3(%rip), t3; \
136	filter_8bit(x0, t0, t1, t7, t6); \
137	filter_8bit(x7, t0, t1, t7, t6); \
138	filter_8bit(x3, t0, t1, t7, t6); \
139	filter_8bit(x6, t0, t1, t7, t6); \
140	\
141	/* postfilter sbox 3 */ \
142	vbroadcasti128 .Lpost_tf_lo_s2(%rip), t4; \
143	vbroadcasti128 .Lpost_tf_hi_s2(%rip), t5; \
144	filter_8bit(x2, t2, t3, t7, t6); \
145	filter_8bit(x5, t2, t3, t7, t6); \
146	\
147	vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
148	\
149	/* postfilter sbox 2 */ \
150	filter_8bit(x1, t4, t5, t7, t2); \
151	filter_8bit(x4, t4, t5, t7, t2); \
152	vpxor t7, t7, t7; \
153	\
154	vpsrldq $1, t0, t1; \
155	vpsrldq $2, t0, t2; \
156	vpshufb t7, t1, t1; \
157	vpsrldq $3, t0, t3; \
158	\
159	/* P-function */ \
160	vpxor x5, x0, x0; \
161	vpxor x6, x1, x1; \
162	vpxor x7, x2, x2; \
163	vpxor x4, x3, x3; \
164	\
165	vpshufb t7, t2, t2; \
166	vpsrldq $4, t0, t4; \
167	vpshufb t7, t3, t3; \
168	vpsrldq $5, t0, t5; \
169	vpshufb t7, t4, t4; \
170	\
171	vpxor x2, x4, x4; \
172	vpxor x3, x5, x5; \
173	vpxor x0, x6, x6; \
174	vpxor x1, x7, x7; \
175	\
176	vpsrldq $6, t0, t6; \
177	vpshufb t7, t5, t5; \
178	vpshufb t7, t6, t6; \
179	\
180	vpxor x7, x0, x0; \
181	vpxor x4, x1, x1; \
182	vpxor x5, x2, x2; \
183	vpxor x6, x3, x3; \
184	\
185	vpxor x3, x4, x4; \
186	vpxor x0, x5, x5; \
187	vpxor x1, x6, x6; \
188	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
189	\
190	/* Add key material and result to CD (x becomes new CD) */ \
191	\
192	vpxor t6, x1, x1; \
193	vpxor 5 * 32(mem_cd), x1, x1; \
194	\
195	vpsrldq $7, t0, t6; \
196	vpshufb t7, t0, t0; \
197	vpshufb t7, t6, t7; \
198	\
199	vpxor t7, x0, x0; \
200	vpxor 4 * 32(mem_cd), x0, x0; \
201	\
202	vpxor t5, x2, x2; \
203	vpxor 6 * 32(mem_cd), x2, x2; \
204	\
205	vpxor t4, x3, x3; \
206	vpxor 7 * 32(mem_cd), x3, x3; \
207	\
208	vpxor t3, x4, x4; \
209	vpxor 0 * 32(mem_cd), x4, x4; \
210	\
211	vpxor t2, x5, x5; \
212	vpxor 1 * 32(mem_cd), x5, x5; \
213	\
214	vpxor t1, x6, x6; \
215	vpxor 2 * 32(mem_cd), x6, x6; \
216	\
217	vpxor t0, x7, x7; \
218	vpxor 3 * 32(mem_cd), x7, x7;
219
220/*
221 * Size optimization... with inlined roundsm32 binary would be over 5 times
222 * larger and would only marginally faster.
223 */
224SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
225	roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
226		  %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
227		  %rcx, (%r9));
228	RET;
229SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
230
231SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
232	roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
233		  %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
234		  %rax, (%r9));
235	RET;
236SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
237
238/*
239 * IN/OUT:
240 *  x0..x7: byte-sliced AB state preloaded
241 *  mem_ab: byte-sliced AB state in memory
242 *  mem_cb: byte-sliced CD state in memory
243 */
244#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
245		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
246	leaq (key_table + (i) * 8)(CTX), %r9; \
247	call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
248	\
249	vmovdqu x0, 4 * 32(mem_cd); \
250	vmovdqu x1, 5 * 32(mem_cd); \
251	vmovdqu x2, 6 * 32(mem_cd); \
252	vmovdqu x3, 7 * 32(mem_cd); \
253	vmovdqu x4, 0 * 32(mem_cd); \
254	vmovdqu x5, 1 * 32(mem_cd); \
255	vmovdqu x6, 2 * 32(mem_cd); \
256	vmovdqu x7, 3 * 32(mem_cd); \
257	\
258	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
259	call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
260	\
261	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
262
263#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
264
265#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
266	/* Store new AB state */ \
267	vmovdqu x4, 4 * 32(mem_ab); \
268	vmovdqu x5, 5 * 32(mem_ab); \
269	vmovdqu x6, 6 * 32(mem_ab); \
270	vmovdqu x7, 7 * 32(mem_ab); \
271	vmovdqu x0, 0 * 32(mem_ab); \
272	vmovdqu x1, 1 * 32(mem_ab); \
273	vmovdqu x2, 2 * 32(mem_ab); \
274	vmovdqu x3, 3 * 32(mem_ab);
275
276#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
277		      y6, y7, mem_ab, mem_cd, i) \
278	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
279		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
280	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
281		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
282	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
283		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
284
285#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
286		      y6, y7, mem_ab, mem_cd, i) \
287	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
288		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
289	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
290		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
291	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
292		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
293
294/*
295 * IN:
296 *  v0..3: byte-sliced 32-bit integers
297 * OUT:
298 *  v0..3: (IN <<< 1)
299 */
300#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
301	vpcmpgtb v0, zero, t0; \
302	vpaddb v0, v0, v0; \
303	vpabsb t0, t0; \
304	\
305	vpcmpgtb v1, zero, t1; \
306	vpaddb v1, v1, v1; \
307	vpabsb t1, t1; \
308	\
309	vpcmpgtb v2, zero, t2; \
310	vpaddb v2, v2, v2; \
311	vpabsb t2, t2; \
312	\
313	vpor t0, v1, v1; \
314	\
315	vpcmpgtb v3, zero, t0; \
316	vpaddb v3, v3, v3; \
317	vpabsb t0, t0; \
318	\
319	vpor t1, v2, v2; \
320	vpor t2, v3, v3; \
321	vpor t0, v0, v0;
322
323/*
324 * IN:
325 *   r: byte-sliced AB state in memory
326 *   l: byte-sliced CD state in memory
327 * OUT:
328 *   x0..x7: new byte-sliced CD state
329 */
330#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
331	      tt1, tt2, tt3, kll, klr, krl, krr) \
332	/* \
333	 * t0 = kll; \
334	 * t0 &= ll; \
335	 * lr ^= rol32(t0, 1); \
336	 */ \
337	vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
338	vpxor tt0, tt0, tt0; \
339	vpshufb tt0, t0, t3; \
340	vpsrldq $1, t0, t0; \
341	vpshufb tt0, t0, t2; \
342	vpsrldq $1, t0, t0; \
343	vpshufb tt0, t0, t1; \
344	vpsrldq $1, t0, t0; \
345	vpshufb tt0, t0, t0; \
346	\
347	vpand l0, t0, t0; \
348	vpand l1, t1, t1; \
349	vpand l2, t2, t2; \
350	vpand l3, t3, t3; \
351	\
352	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
353	\
354	vpxor l4, t0, l4; \
355	vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
356	vmovdqu l4, 4 * 32(l); \
357	vpxor l5, t1, l5; \
358	vmovdqu l5, 5 * 32(l); \
359	vpxor l6, t2, l6; \
360	vmovdqu l6, 6 * 32(l); \
361	vpxor l7, t3, l7; \
362	vmovdqu l7, 7 * 32(l); \
363	\
364	/* \
365	 * t2 = krr; \
366	 * t2 |= rr; \
367	 * rl ^= t2; \
368	 */ \
369	\
370	vpshufb tt0, t0, t3; \
371	vpsrldq $1, t0, t0; \
372	vpshufb tt0, t0, t2; \
373	vpsrldq $1, t0, t0; \
374	vpshufb tt0, t0, t1; \
375	vpsrldq $1, t0, t0; \
376	vpshufb tt0, t0, t0; \
377	\
378	vpor 4 * 32(r), t0, t0; \
379	vpor 5 * 32(r), t1, t1; \
380	vpor 6 * 32(r), t2, t2; \
381	vpor 7 * 32(r), t3, t3; \
382	\
383	vpxor 0 * 32(r), t0, t0; \
384	vpxor 1 * 32(r), t1, t1; \
385	vpxor 2 * 32(r), t2, t2; \
386	vpxor 3 * 32(r), t3, t3; \
387	vmovdqu t0, 0 * 32(r); \
388	vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
389	vmovdqu t1, 1 * 32(r); \
390	vmovdqu t2, 2 * 32(r); \
391	vmovdqu t3, 3 * 32(r); \
392	\
393	/* \
394	 * t2 = krl; \
395	 * t2 &= rl; \
396	 * rr ^= rol32(t2, 1); \
397	 */ \
398	vpshufb tt0, t0, t3; \
399	vpsrldq $1, t0, t0; \
400	vpshufb tt0, t0, t2; \
401	vpsrldq $1, t0, t0; \
402	vpshufb tt0, t0, t1; \
403	vpsrldq $1, t0, t0; \
404	vpshufb tt0, t0, t0; \
405	\
406	vpand 0 * 32(r), t0, t0; \
407	vpand 1 * 32(r), t1, t1; \
408	vpand 2 * 32(r), t2, t2; \
409	vpand 3 * 32(r), t3, t3; \
410	\
411	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
412	\
413	vpxor 4 * 32(r), t0, t0; \
414	vpxor 5 * 32(r), t1, t1; \
415	vpxor 6 * 32(r), t2, t2; \
416	vpxor 7 * 32(r), t3, t3; \
417	vmovdqu t0, 4 * 32(r); \
418	vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
419	vmovdqu t1, 5 * 32(r); \
420	vmovdqu t2, 6 * 32(r); \
421	vmovdqu t3, 7 * 32(r); \
422	\
423	/* \
424	 * t0 = klr; \
425	 * t0 |= lr; \
426	 * ll ^= t0; \
427	 */ \
428	\
429	vpshufb tt0, t0, t3; \
430	vpsrldq $1, t0, t0; \
431	vpshufb tt0, t0, t2; \
432	vpsrldq $1, t0, t0; \
433	vpshufb tt0, t0, t1; \
434	vpsrldq $1, t0, t0; \
435	vpshufb tt0, t0, t0; \
436	\
437	vpor l4, t0, t0; \
438	vpor l5, t1, t1; \
439	vpor l6, t2, t2; \
440	vpor l7, t3, t3; \
441	\
442	vpxor l0, t0, l0; \
443	vmovdqu l0, 0 * 32(l); \
444	vpxor l1, t1, l1; \
445	vmovdqu l1, 1 * 32(l); \
446	vpxor l2, t2, l2; \
447	vmovdqu l2, 2 * 32(l); \
448	vpxor l3, t3, l3; \
449	vmovdqu l3, 3 * 32(l);
450
451#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
452	vpunpckhdq x1, x0, t2; \
453	vpunpckldq x1, x0, x0; \
454	\
455	vpunpckldq x3, x2, t1; \
456	vpunpckhdq x3, x2, x2; \
457	\
458	vpunpckhqdq t1, x0, x1; \
459	vpunpcklqdq t1, x0, x0; \
460	\
461	vpunpckhqdq x2, t2, x3; \
462	vpunpcklqdq x2, t2, x2;
463
464#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
465			      a3, b3, c3, d3, st0, st1) \
466	vmovdqu d2, st0; \
467	vmovdqu d3, st1; \
468	transpose_4x4(a0, a1, a2, a3, d2, d3); \
469	transpose_4x4(b0, b1, b2, b3, d2, d3); \
470	vmovdqu st0, d2; \
471	vmovdqu st1, d3; \
472	\
473	vmovdqu a0, st0; \
474	vmovdqu a1, st1; \
475	transpose_4x4(c0, c1, c2, c3, a0, a1); \
476	transpose_4x4(d0, d1, d2, d3, a0, a1); \
477	\
478	vbroadcasti128 .Lshufb_16x16b(%rip), a0; \
479	vmovdqu st1, a1; \
480	vpshufb a0, a2, a2; \
481	vpshufb a0, a3, a3; \
482	vpshufb a0, b0, b0; \
483	vpshufb a0, b1, b1; \
484	vpshufb a0, b2, b2; \
485	vpshufb a0, b3, b3; \
486	vpshufb a0, a1, a1; \
487	vpshufb a0, c0, c0; \
488	vpshufb a0, c1, c1; \
489	vpshufb a0, c2, c2; \
490	vpshufb a0, c3, c3; \
491	vpshufb a0, d0, d0; \
492	vpshufb a0, d1, d1; \
493	vpshufb a0, d2, d2; \
494	vpshufb a0, d3, d3; \
495	vmovdqu d3, st1; \
496	vmovdqu st0, d3; \
497	vpshufb a0, d3, a0; \
498	vmovdqu d2, st0; \
499	\
500	transpose_4x4(a0, b0, c0, d0, d2, d3); \
501	transpose_4x4(a1, b1, c1, d1, d2, d3); \
502	vmovdqu st0, d2; \
503	vmovdqu st1, d3; \
504	\
505	vmovdqu b0, st0; \
506	vmovdqu b1, st1; \
507	transpose_4x4(a2, b2, c2, d2, b0, b1); \
508	transpose_4x4(a3, b3, c3, d3, b0, b1); \
509	vmovdqu st0, b0; \
510	vmovdqu st1, b1; \
511	/* does not adjust output bytes inside vectors */
512
513/* load blocks to registers and apply pre-whitening */
514#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
515		     y6, y7, rio, key) \
516	vpbroadcastq key, x0; \
517	vpshufb .Lpack_bswap(%rip), x0, x0; \
518	\
519	vpxor 0 * 32(rio), x0, y7; \
520	vpxor 1 * 32(rio), x0, y6; \
521	vpxor 2 * 32(rio), x0, y5; \
522	vpxor 3 * 32(rio), x0, y4; \
523	vpxor 4 * 32(rio), x0, y3; \
524	vpxor 5 * 32(rio), x0, y2; \
525	vpxor 6 * 32(rio), x0, y1; \
526	vpxor 7 * 32(rio), x0, y0; \
527	vpxor 8 * 32(rio), x0, x7; \
528	vpxor 9 * 32(rio), x0, x6; \
529	vpxor 10 * 32(rio), x0, x5; \
530	vpxor 11 * 32(rio), x0, x4; \
531	vpxor 12 * 32(rio), x0, x3; \
532	vpxor 13 * 32(rio), x0, x2; \
533	vpxor 14 * 32(rio), x0, x1; \
534	vpxor 15 * 32(rio), x0, x0;
535
536/* byteslice pre-whitened blocks and store to temporary memory */
537#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
538		      y6, y7, mem_ab, mem_cd) \
539	byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
540			      y4, y5, y6, y7, (mem_ab), (mem_cd)); \
541	\
542	vmovdqu x0, 0 * 32(mem_ab); \
543	vmovdqu x1, 1 * 32(mem_ab); \
544	vmovdqu x2, 2 * 32(mem_ab); \
545	vmovdqu x3, 3 * 32(mem_ab); \
546	vmovdqu x4, 4 * 32(mem_ab); \
547	vmovdqu x5, 5 * 32(mem_ab); \
548	vmovdqu x6, 6 * 32(mem_ab); \
549	vmovdqu x7, 7 * 32(mem_ab); \
550	vmovdqu y0, 0 * 32(mem_cd); \
551	vmovdqu y1, 1 * 32(mem_cd); \
552	vmovdqu y2, 2 * 32(mem_cd); \
553	vmovdqu y3, 3 * 32(mem_cd); \
554	vmovdqu y4, 4 * 32(mem_cd); \
555	vmovdqu y5, 5 * 32(mem_cd); \
556	vmovdqu y6, 6 * 32(mem_cd); \
557	vmovdqu y7, 7 * 32(mem_cd);
558
559/* de-byteslice, apply post-whitening and store blocks */
560#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
561		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
562	byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
563			      y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
564	\
565	vmovdqu x0, stack_tmp0; \
566	\
567	vpbroadcastq key, x0; \
568	vpshufb .Lpack_bswap(%rip), x0, x0; \
569	\
570	vpxor x0, y7, y7; \
571	vpxor x0, y6, y6; \
572	vpxor x0, y5, y5; \
573	vpxor x0, y4, y4; \
574	vpxor x0, y3, y3; \
575	vpxor x0, y2, y2; \
576	vpxor x0, y1, y1; \
577	vpxor x0, y0, y0; \
578	vpxor x0, x7, x7; \
579	vpxor x0, x6, x6; \
580	vpxor x0, x5, x5; \
581	vpxor x0, x4, x4; \
582	vpxor x0, x3, x3; \
583	vpxor x0, x2, x2; \
584	vpxor x0, x1, x1; \
585	vpxor stack_tmp0, x0, x0;
586
587#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
588		     y6, y7, rio) \
589	vmovdqu x0, 0 * 32(rio); \
590	vmovdqu x1, 1 * 32(rio); \
591	vmovdqu x2, 2 * 32(rio); \
592	vmovdqu x3, 3 * 32(rio); \
593	vmovdqu x4, 4 * 32(rio); \
594	vmovdqu x5, 5 * 32(rio); \
595	vmovdqu x6, 6 * 32(rio); \
596	vmovdqu x7, 7 * 32(rio); \
597	vmovdqu y0, 8 * 32(rio); \
598	vmovdqu y1, 9 * 32(rio); \
599	vmovdqu y2, 10 * 32(rio); \
600	vmovdqu y3, 11 * 32(rio); \
601	vmovdqu y4, 12 * 32(rio); \
602	vmovdqu y5, 13 * 32(rio); \
603	vmovdqu y6, 14 * 32(rio); \
604	vmovdqu y7, 15 * 32(rio);
605
606
607.section	.rodata.cst32.shufb_16x16b, "aM", @progbits, 32
608.align 32
609#define SHUFB_BYTES(idx) \
610	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
611.Lshufb_16x16b:
612	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
613	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
614
615.section	.rodata.cst32.pack_bswap, "aM", @progbits, 32
616.align 32
617.Lpack_bswap:
618	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
619	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
620
621/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
622.section	.rodata.cst16, "aM", @progbits, 16
623.align 16
624
625/*
626 * pre-SubByte transform
627 *
628 * pre-lookup for sbox1, sbox2, sbox3:
629 *   swap_bitendianness(
630 *       isom_map_camellia_to_aes(
631 *           camellia_f(
632 *               swap_bitendianess(in)
633 *           )
634 *       )
635 *   )
636 *
637 * (note: '⊕ 0xc5' inside camellia_f())
638 */
639.Lpre_tf_lo_s1:
640	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
641	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
642.Lpre_tf_hi_s1:
643	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
644	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
645
646/*
647 * pre-SubByte transform
648 *
649 * pre-lookup for sbox4:
650 *   swap_bitendianness(
651 *       isom_map_camellia_to_aes(
652 *           camellia_f(
653 *               swap_bitendianess(in <<< 1)
654 *           )
655 *       )
656 *   )
657 *
658 * (note: '⊕ 0xc5' inside camellia_f())
659 */
660.Lpre_tf_lo_s4:
661	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
662	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
663.Lpre_tf_hi_s4:
664	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
665	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
666
667/*
668 * post-SubByte transform
669 *
670 * post-lookup for sbox1, sbox4:
671 *  swap_bitendianness(
672 *      camellia_h(
673 *          isom_map_aes_to_camellia(
674 *              swap_bitendianness(
675 *                  aes_inverse_affine_transform(in)
676 *              )
677 *          )
678 *      )
679 *  )
680 *
681 * (note: '⊕ 0x6e' inside camellia_h())
682 */
683.Lpost_tf_lo_s1:
684	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
685	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
686.Lpost_tf_hi_s1:
687	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
688	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
689
690/*
691 * post-SubByte transform
692 *
693 * post-lookup for sbox2:
694 *  swap_bitendianness(
695 *      camellia_h(
696 *          isom_map_aes_to_camellia(
697 *              swap_bitendianness(
698 *                  aes_inverse_affine_transform(in)
699 *              )
700 *          )
701 *      )
702 *  ) <<< 1
703 *
704 * (note: '⊕ 0x6e' inside camellia_h())
705 */
706.Lpost_tf_lo_s2:
707	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
708	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
709.Lpost_tf_hi_s2:
710	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
711	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
712
713/*
714 * post-SubByte transform
715 *
716 * post-lookup for sbox3:
717 *  swap_bitendianness(
718 *      camellia_h(
719 *          isom_map_aes_to_camellia(
720 *              swap_bitendianness(
721 *                  aes_inverse_affine_transform(in)
722 *              )
723 *          )
724 *      )
725 *  ) >>> 1
726 *
727 * (note: '⊕ 0x6e' inside camellia_h())
728 */
729.Lpost_tf_lo_s3:
730	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
731	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
732.Lpost_tf_hi_s3:
733	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
734	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
735
736/* For isolating SubBytes from AESENCLAST, inverse shift row */
737.Linv_shift_row:
738	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
739	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
740
741.section	.rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
742.align 4
743/* 4-bit mask */
744.L0f0f0f0f:
745	.long 0x0f0f0f0f
746
747.text
748
749SYM_FUNC_START_LOCAL(__camellia_enc_blk32)
750	/* input:
751	 *	%rdi: ctx, CTX
752	 *	%rax: temporary storage, 512 bytes
753	 *	%ymm0..%ymm15: 32 plaintext blocks
754	 * output:
755	 *	%ymm0..%ymm15: 32 encrypted blocks, order swapped:
756	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
757	 */
758	FRAME_BEGIN
759
760	leaq 8 * 32(%rax), %rcx;
761
762	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
763		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
764		      %ymm15, %rax, %rcx);
765
766	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
767		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
768		     %ymm15, %rax, %rcx, 0);
769
770	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
771	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
772	      %ymm15,
773	      ((key_table + (8) * 8) + 0)(CTX),
774	      ((key_table + (8) * 8) + 4)(CTX),
775	      ((key_table + (8) * 8) + 8)(CTX),
776	      ((key_table + (8) * 8) + 12)(CTX));
777
778	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
779		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
780		     %ymm15, %rax, %rcx, 8);
781
782	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
783	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
784	      %ymm15,
785	      ((key_table + (16) * 8) + 0)(CTX),
786	      ((key_table + (16) * 8) + 4)(CTX),
787	      ((key_table + (16) * 8) + 8)(CTX),
788	      ((key_table + (16) * 8) + 12)(CTX));
789
790	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
791		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
792		     %ymm15, %rax, %rcx, 16);
793
794	movl $24, %r8d;
795	cmpl $16, key_length(CTX);
796	jne .Lenc_max32;
797
798.Lenc_done:
799	/* load CD for output */
800	vmovdqu 0 * 32(%rcx), %ymm8;
801	vmovdqu 1 * 32(%rcx), %ymm9;
802	vmovdqu 2 * 32(%rcx), %ymm10;
803	vmovdqu 3 * 32(%rcx), %ymm11;
804	vmovdqu 4 * 32(%rcx), %ymm12;
805	vmovdqu 5 * 32(%rcx), %ymm13;
806	vmovdqu 6 * 32(%rcx), %ymm14;
807	vmovdqu 7 * 32(%rcx), %ymm15;
808
809	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
810		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
811		    %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
812
813	FRAME_END
814	RET;
815
816.align 8
817.Lenc_max32:
818	movl $32, %r8d;
819
820	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
821	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
822	      %ymm15,
823	      ((key_table + (24) * 8) + 0)(CTX),
824	      ((key_table + (24) * 8) + 4)(CTX),
825	      ((key_table + (24) * 8) + 8)(CTX),
826	      ((key_table + (24) * 8) + 12)(CTX));
827
828	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
829		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
830		     %ymm15, %rax, %rcx, 24);
831
832	jmp .Lenc_done;
833SYM_FUNC_END(__camellia_enc_blk32)
834
835SYM_FUNC_START_LOCAL(__camellia_dec_blk32)
836	/* input:
837	 *	%rdi: ctx, CTX
838	 *	%rax: temporary storage, 512 bytes
839	 *	%r8d: 24 for 16 byte key, 32 for larger
840	 *	%ymm0..%ymm15: 16 encrypted blocks
841	 * output:
842	 *	%ymm0..%ymm15: 16 plaintext blocks, order swapped:
843	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
844	 */
845	FRAME_BEGIN
846
847	leaq 8 * 32(%rax), %rcx;
848
849	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
850		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
851		      %ymm15, %rax, %rcx);
852
853	cmpl $32, %r8d;
854	je .Ldec_max32;
855
856.Ldec_max24:
857	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
858		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
859		     %ymm15, %rax, %rcx, 16);
860
861	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
862	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
863	      %ymm15,
864	      ((key_table + (16) * 8) + 8)(CTX),
865	      ((key_table + (16) * 8) + 12)(CTX),
866	      ((key_table + (16) * 8) + 0)(CTX),
867	      ((key_table + (16) * 8) + 4)(CTX));
868
869	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
870		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
871		     %ymm15, %rax, %rcx, 8);
872
873	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
874	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
875	      %ymm15,
876	      ((key_table + (8) * 8) + 8)(CTX),
877	      ((key_table + (8) * 8) + 12)(CTX),
878	      ((key_table + (8) * 8) + 0)(CTX),
879	      ((key_table + (8) * 8) + 4)(CTX));
880
881	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
882		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
883		     %ymm15, %rax, %rcx, 0);
884
885	/* load CD for output */
886	vmovdqu 0 * 32(%rcx), %ymm8;
887	vmovdqu 1 * 32(%rcx), %ymm9;
888	vmovdqu 2 * 32(%rcx), %ymm10;
889	vmovdqu 3 * 32(%rcx), %ymm11;
890	vmovdqu 4 * 32(%rcx), %ymm12;
891	vmovdqu 5 * 32(%rcx), %ymm13;
892	vmovdqu 6 * 32(%rcx), %ymm14;
893	vmovdqu 7 * 32(%rcx), %ymm15;
894
895	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
896		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
897		    %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
898
899	FRAME_END
900	RET;
901
902.align 8
903.Ldec_max32:
904	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
905		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
906		     %ymm15, %rax, %rcx, 24);
907
908	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
909	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
910	      %ymm15,
911	      ((key_table + (24) * 8) + 8)(CTX),
912	      ((key_table + (24) * 8) + 12)(CTX),
913	      ((key_table + (24) * 8) + 0)(CTX),
914	      ((key_table + (24) * 8) + 4)(CTX));
915
916	jmp .Ldec_max24;
917SYM_FUNC_END(__camellia_dec_blk32)
918
919SYM_FUNC_START(camellia_ecb_enc_32way)
920	/* input:
921	 *	%rdi: ctx, CTX
922	 *	%rsi: dst (32 blocks)
923	 *	%rdx: src (32 blocks)
924	 */
925	FRAME_BEGIN
926
927	vzeroupper;
928
929	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
930		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
931		     %ymm15, %rdx, (key_table)(CTX));
932
933	/* now dst can be used as temporary buffer (even in src == dst case) */
934	movq	%rsi, %rax;
935
936	call __camellia_enc_blk32;
937
938	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
939		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
940		     %ymm8, %rsi);
941
942	vzeroupper;
943
944	FRAME_END
945	RET;
946SYM_FUNC_END(camellia_ecb_enc_32way)
947
948SYM_FUNC_START(camellia_ecb_dec_32way)
949	/* input:
950	 *	%rdi: ctx, CTX
951	 *	%rsi: dst (32 blocks)
952	 *	%rdx: src (32 blocks)
953	 */
954	FRAME_BEGIN
955
956	vzeroupper;
957
958	cmpl $16, key_length(CTX);
959	movl $32, %r8d;
960	movl $24, %eax;
961	cmovel %eax, %r8d; /* max */
962
963	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
964		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
965		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
966
967	/* now dst can be used as temporary buffer (even in src == dst case) */
968	movq	%rsi, %rax;
969
970	call __camellia_dec_blk32;
971
972	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
973		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
974		     %ymm8, %rsi);
975
976	vzeroupper;
977
978	FRAME_END
979	RET;
980SYM_FUNC_END(camellia_ecb_dec_32way)
981
982SYM_FUNC_START(camellia_cbc_dec_32way)
983	/* input:
984	 *	%rdi: ctx, CTX
985	 *	%rsi: dst (32 blocks)
986	 *	%rdx: src (32 blocks)
987	 */
988	FRAME_BEGIN
989	subq $(16 * 32), %rsp;
990
991	vzeroupper;
992
993	cmpl $16, key_length(CTX);
994	movl $32, %r8d;
995	movl $24, %eax;
996	cmovel %eax, %r8d; /* max */
997
998	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
999		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1000		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1001
1002	cmpq %rsi, %rdx;
1003	je .Lcbc_dec_use_stack;
1004
1005	/* dst can be used as temporary storage, src is not overwritten. */
1006	movq %rsi, %rax;
1007	jmp .Lcbc_dec_continue;
1008
1009.Lcbc_dec_use_stack:
1010	/*
1011	 * dst still in-use (because dst == src), so use stack for temporary
1012	 * storage.
1013	 */
1014	movq %rsp, %rax;
1015
1016.Lcbc_dec_continue:
1017	call __camellia_dec_blk32;
1018
1019	vmovdqu %ymm7, (%rax);
1020	vpxor %ymm7, %ymm7, %ymm7;
1021	vinserti128 $1, (%rdx), %ymm7, %ymm7;
1022	vpxor (%rax), %ymm7, %ymm7;
1023	vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1024	vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1025	vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1026	vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1027	vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1028	vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1029	vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1030	vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1031	vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1032	vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1033	vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1034	vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1035	vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1036	vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1037	vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1038	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1039		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1040		     %ymm8, %rsi);
1041
1042	vzeroupper;
1043
1044	addq $(16 * 32), %rsp;
1045	FRAME_END
1046	RET;
1047SYM_FUNC_END(camellia_cbc_dec_32way)
1048