xref: /openbmc/linux/arch/x86/coco/tdx/tdx.c (revision d4e39b6f96fea9d3167a3c3a305daf584e867b4f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3 
4 #undef pr_fmt
5 #define pr_fmt(fmt)     "tdx: " fmt
6 
7 #include <linux/cpufeature.h>
8 #include <linux/export.h>
9 #include <linux/io.h>
10 #include <asm/coco.h>
11 #include <asm/tdx.h>
12 #include <asm/vmx.h>
13 #include <asm/ia32.h>
14 #include <asm/insn.h>
15 #include <asm/insn-eval.h>
16 #include <asm/pgtable.h>
17 #include <asm/traps.h>
18 
19 /* MMIO direction */
20 #define EPT_READ	0
21 #define EPT_WRITE	1
22 
23 /* Port I/O direction */
24 #define PORT_READ	0
25 #define PORT_WRITE	1
26 
27 /* See Exit Qualification for I/O Instructions in VMX documentation */
28 #define VE_IS_IO_IN(e)		((e) & BIT(3))
29 #define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
30 #define VE_GET_PORT_NUM(e)	((e) >> 16)
31 #define VE_IS_IO_STRING(e)	((e) & BIT(4))
32 
33 #define ATTR_DEBUG		BIT(0)
34 #define ATTR_SEPT_VE_DISABLE	BIT(28)
35 
36 /* TDX Module call error codes */
37 #define TDCALL_RETURN_CODE(a)	((a) >> 32)
38 #define TDCALL_INVALID_OPERAND	0xc0000100
39 
40 #define TDREPORT_SUBTYPE_0	0
41 
42 /* Called from __tdx_hypercall() for unrecoverable failure */
43 noinstr void __tdx_hypercall_failed(void)
44 {
45 	instrumentation_begin();
46 	panic("TDVMCALL failed. TDX module bug?");
47 }
48 
49 #ifdef CONFIG_KVM_GUEST
50 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
51 		       unsigned long p3, unsigned long p4)
52 {
53 	struct tdx_hypercall_args args = {
54 		.r10 = nr,
55 		.r11 = p1,
56 		.r12 = p2,
57 		.r13 = p3,
58 		.r14 = p4,
59 	};
60 
61 	return __tdx_hypercall(&args);
62 }
63 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
64 #endif
65 
66 /*
67  * Used for TDX guests to make calls directly to the TD module.  This
68  * should only be used for calls that have no legitimate reason to fail
69  * or where the kernel can not survive the call failing.
70  */
71 static inline void tdcall(u64 fn, struct tdx_module_args *args)
72 {
73 	if (__tdcall_ret(fn, args))
74 		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
75 }
76 
77 /* Read TD-scoped metadata */
78 static inline u64 __maybe_unused tdg_vm_rd(u64 field, u64 *value)
79 {
80 	struct tdx_module_args args = {
81 		.rdx = field,
82 	};
83 	u64 ret;
84 
85 	ret = __tdcall_ret(TDG_VM_RD, &args);
86 	*value = args.r8;
87 
88 	return ret;
89 }
90 
91 /* Write TD-scoped metadata */
92 static inline u64 tdg_vm_wr(u64 field, u64 value, u64 mask)
93 {
94 	struct tdx_module_args args = {
95 		.rdx = field,
96 		.r8 = value,
97 		.r9 = mask,
98 	};
99 
100 	return __tdcall(TDG_VM_WR, &args);
101 }
102 
103 /**
104  * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
105  *                           subtype 0) using TDG.MR.REPORT TDCALL.
106  * @reportdata: Address of the input buffer which contains user-defined
107  *              REPORTDATA to be included into TDREPORT.
108  * @tdreport: Address of the output buffer to store TDREPORT.
109  *
110  * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
111  * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
112  * It is used in the TDX guest driver module to get the TDREPORT0.
113  *
114  * Return 0 on success, -EINVAL for invalid operands, or -EIO on
115  * other TDCALL failures.
116  */
117 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
118 {
119 	struct tdx_module_args args = {
120 		.rcx = virt_to_phys(tdreport),
121 		.rdx = virt_to_phys(reportdata),
122 		.r8 = TDREPORT_SUBTYPE_0,
123 	};
124 	u64 ret;
125 
126 	ret = __tdcall(TDG_MR_REPORT, &args);
127 	if (ret) {
128 		if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
129 			return -EINVAL;
130 		return -EIO;
131 	}
132 
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
136 
137 static void __noreturn tdx_panic(const char *msg)
138 {
139 	struct tdx_hypercall_args args = {
140 		.r10 = TDX_HYPERCALL_STANDARD,
141 		.r11 = TDVMCALL_REPORT_FATAL_ERROR,
142 		.r12 = 0, /* Error code: 0 is Panic */
143 	};
144 	union {
145 		/* Define register order according to the GHCI */
146 		struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
147 
148 		char str[64];
149 	} message;
150 
151 	/* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
152 	strncpy(message.str, msg, 64);
153 
154 	args.r8  = message.r8;
155 	args.r9  = message.r9;
156 	args.r14 = message.r14;
157 	args.r15 = message.r15;
158 	args.rdi = message.rdi;
159 	args.rsi = message.rsi;
160 	args.rbx = message.rbx;
161 	args.rdx = message.rdx;
162 
163 	/*
164 	 * This hypercall should never return and it is not safe
165 	 * to keep the guest running. Call it forever if it
166 	 * happens to return.
167 	 */
168 	while (1)
169 		__tdx_hypercall(&args);
170 }
171 
172 static void tdx_parse_tdinfo(u64 *cc_mask)
173 {
174 	struct tdx_module_args args = {};
175 	unsigned int gpa_width;
176 	u64 td_attr;
177 
178 	/*
179 	 * TDINFO TDX module call is used to get the TD execution environment
180 	 * information like GPA width, number of available vcpus, debug mode
181 	 * information, etc. More details about the ABI can be found in TDX
182 	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
183 	 * [TDG.VP.INFO].
184 	 */
185 	tdcall(TDG_VP_INFO, &args);
186 
187 	/*
188 	 * The highest bit of a guest physical address is the "sharing" bit.
189 	 * Set it for shared pages and clear it for private pages.
190 	 *
191 	 * The GPA width that comes out of this call is critical. TDX guests
192 	 * can not meaningfully run without it.
193 	 */
194 	gpa_width = args.rcx & GENMASK(5, 0);
195 	*cc_mask = BIT_ULL(gpa_width - 1);
196 
197 	/*
198 	 * The kernel can not handle #VE's when accessing normal kernel
199 	 * memory.  Ensure that no #VE will be delivered for accesses to
200 	 * TD-private memory.  Only VMM-shared memory (MMIO) will #VE.
201 	 */
202 	td_attr = args.rdx;
203 	if (!(td_attr & ATTR_SEPT_VE_DISABLE)) {
204 		const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set.";
205 
206 		/* Relax SEPT_VE_DISABLE check for debug TD. */
207 		if (td_attr & ATTR_DEBUG)
208 			pr_warn("%s\n", msg);
209 		else
210 			tdx_panic(msg);
211 	}
212 }
213 
214 /*
215  * The TDX module spec states that #VE may be injected for a limited set of
216  * reasons:
217  *
218  *  - Emulation of the architectural #VE injection on EPT violation;
219  *
220  *  - As a result of guest TD execution of a disallowed instruction,
221  *    a disallowed MSR access, or CPUID virtualization;
222  *
223  *  - A notification to the guest TD about anomalous behavior;
224  *
225  * The last one is opt-in and is not used by the kernel.
226  *
227  * The Intel Software Developer's Manual describes cases when instruction
228  * length field can be used in section "Information for VM Exits Due to
229  * Instruction Execution".
230  *
231  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
232  * information if #VE occurred due to instruction execution, but not for EPT
233  * violations.
234  */
235 static int ve_instr_len(struct ve_info *ve)
236 {
237 	switch (ve->exit_reason) {
238 	case EXIT_REASON_HLT:
239 	case EXIT_REASON_MSR_READ:
240 	case EXIT_REASON_MSR_WRITE:
241 	case EXIT_REASON_CPUID:
242 	case EXIT_REASON_IO_INSTRUCTION:
243 		/* It is safe to use ve->instr_len for #VE due instructions */
244 		return ve->instr_len;
245 	case EXIT_REASON_EPT_VIOLATION:
246 		/*
247 		 * For EPT violations, ve->insn_len is not defined. For those,
248 		 * the kernel must decode instructions manually and should not
249 		 * be using this function.
250 		 */
251 		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
252 		return 0;
253 	default:
254 		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
255 		return ve->instr_len;
256 	}
257 }
258 
259 static u64 __cpuidle __halt(const bool irq_disabled)
260 {
261 	struct tdx_hypercall_args args = {
262 		.r10 = TDX_HYPERCALL_STANDARD,
263 		.r11 = hcall_func(EXIT_REASON_HLT),
264 		.r12 = irq_disabled,
265 	};
266 
267 	/*
268 	 * Emulate HLT operation via hypercall. More info about ABI
269 	 * can be found in TDX Guest-Host-Communication Interface
270 	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
271 	 *
272 	 * The VMM uses the "IRQ disabled" param to understand IRQ
273 	 * enabled status (RFLAGS.IF) of the TD guest and to determine
274 	 * whether or not it should schedule the halted vCPU if an
275 	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
276 	 * can keep the vCPU in virtual HLT, even if an IRQ is
277 	 * pending, without hanging/breaking the guest.
278 	 */
279 	return __tdx_hypercall(&args);
280 }
281 
282 static int handle_halt(struct ve_info *ve)
283 {
284 	const bool irq_disabled = irqs_disabled();
285 
286 	if (__halt(irq_disabled))
287 		return -EIO;
288 
289 	return ve_instr_len(ve);
290 }
291 
292 void __cpuidle tdx_safe_halt(void)
293 {
294 	const bool irq_disabled = false;
295 
296 	/*
297 	 * Use WARN_ONCE() to report the failure.
298 	 */
299 	if (__halt(irq_disabled))
300 		WARN_ONCE(1, "HLT instruction emulation failed\n");
301 }
302 
303 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
304 {
305 	struct tdx_hypercall_args args = {
306 		.r10 = TDX_HYPERCALL_STANDARD,
307 		.r11 = hcall_func(EXIT_REASON_MSR_READ),
308 		.r12 = regs->cx,
309 	};
310 
311 	/*
312 	 * Emulate the MSR read via hypercall. More info about ABI
313 	 * can be found in TDX Guest-Host-Communication Interface
314 	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
315 	 */
316 	if (__tdx_hypercall_ret(&args))
317 		return -EIO;
318 
319 	regs->ax = lower_32_bits(args.r11);
320 	regs->dx = upper_32_bits(args.r11);
321 	return ve_instr_len(ve);
322 }
323 
324 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
325 {
326 	struct tdx_hypercall_args args = {
327 		.r10 = TDX_HYPERCALL_STANDARD,
328 		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
329 		.r12 = regs->cx,
330 		.r13 = (u64)regs->dx << 32 | regs->ax,
331 	};
332 
333 	/*
334 	 * Emulate the MSR write via hypercall. More info about ABI
335 	 * can be found in TDX Guest-Host-Communication Interface
336 	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
337 	 */
338 	if (__tdx_hypercall(&args))
339 		return -EIO;
340 
341 	return ve_instr_len(ve);
342 }
343 
344 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
345 {
346 	struct tdx_hypercall_args args = {
347 		.r10 = TDX_HYPERCALL_STANDARD,
348 		.r11 = hcall_func(EXIT_REASON_CPUID),
349 		.r12 = regs->ax,
350 		.r13 = regs->cx,
351 	};
352 
353 	/*
354 	 * Only allow VMM to control range reserved for hypervisor
355 	 * communication.
356 	 *
357 	 * Return all-zeros for any CPUID outside the range. It matches CPU
358 	 * behaviour for non-supported leaf.
359 	 */
360 	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
361 		regs->ax = regs->bx = regs->cx = regs->dx = 0;
362 		return ve_instr_len(ve);
363 	}
364 
365 	/*
366 	 * Emulate the CPUID instruction via a hypercall. More info about
367 	 * ABI can be found in TDX Guest-Host-Communication Interface
368 	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
369 	 */
370 	if (__tdx_hypercall_ret(&args))
371 		return -EIO;
372 
373 	/*
374 	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
375 	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
376 	 * So copy the register contents back to pt_regs.
377 	 */
378 	regs->ax = args.r12;
379 	regs->bx = args.r13;
380 	regs->cx = args.r14;
381 	regs->dx = args.r15;
382 
383 	return ve_instr_len(ve);
384 }
385 
386 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
387 {
388 	struct tdx_hypercall_args args = {
389 		.r10 = TDX_HYPERCALL_STANDARD,
390 		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
391 		.r12 = size,
392 		.r13 = EPT_READ,
393 		.r14 = addr,
394 	};
395 
396 	if (__tdx_hypercall_ret(&args))
397 		return false;
398 	*val = args.r11;
399 	return true;
400 }
401 
402 static bool mmio_write(int size, unsigned long addr, unsigned long val)
403 {
404 	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
405 			       EPT_WRITE, addr, val);
406 }
407 
408 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
409 {
410 	unsigned long *reg, val, vaddr;
411 	char buffer[MAX_INSN_SIZE];
412 	enum insn_mmio_type mmio;
413 	struct insn insn = {};
414 	int size, extend_size;
415 	u8 extend_val = 0;
416 
417 	/* Only in-kernel MMIO is supported */
418 	if (WARN_ON_ONCE(user_mode(regs)))
419 		return -EFAULT;
420 
421 	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
422 		return -EFAULT;
423 
424 	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
425 		return -EINVAL;
426 
427 	mmio = insn_decode_mmio(&insn, &size);
428 	if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
429 		return -EINVAL;
430 
431 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
432 		reg = insn_get_modrm_reg_ptr(&insn, regs);
433 		if (!reg)
434 			return -EINVAL;
435 	}
436 
437 	if (!fault_in_kernel_space(ve->gla)) {
438 		WARN_ONCE(1, "Access to userspace address is not supported");
439 		return -EINVAL;
440 	}
441 
442 	/*
443 	 * Reject EPT violation #VEs that split pages.
444 	 *
445 	 * MMIO accesses are supposed to be naturally aligned and therefore
446 	 * never cross page boundaries. Seeing split page accesses indicates
447 	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
448 	 *
449 	 * load_unaligned_zeropad() will recover using exception fixups.
450 	 */
451 	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
452 	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
453 		return -EFAULT;
454 
455 	/* Handle writes first */
456 	switch (mmio) {
457 	case INSN_MMIO_WRITE:
458 		memcpy(&val, reg, size);
459 		if (!mmio_write(size, ve->gpa, val))
460 			return -EIO;
461 		return insn.length;
462 	case INSN_MMIO_WRITE_IMM:
463 		val = insn.immediate.value;
464 		if (!mmio_write(size, ve->gpa, val))
465 			return -EIO;
466 		return insn.length;
467 	case INSN_MMIO_READ:
468 	case INSN_MMIO_READ_ZERO_EXTEND:
469 	case INSN_MMIO_READ_SIGN_EXTEND:
470 		/* Reads are handled below */
471 		break;
472 	case INSN_MMIO_MOVS:
473 	case INSN_MMIO_DECODE_FAILED:
474 		/*
475 		 * MMIO was accessed with an instruction that could not be
476 		 * decoded or handled properly. It was likely not using io.h
477 		 * helpers or accessed MMIO accidentally.
478 		 */
479 		return -EINVAL;
480 	default:
481 		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
482 		return -EINVAL;
483 	}
484 
485 	/* Handle reads */
486 	if (!mmio_read(size, ve->gpa, &val))
487 		return -EIO;
488 
489 	switch (mmio) {
490 	case INSN_MMIO_READ:
491 		/* Zero-extend for 32-bit operation */
492 		extend_size = size == 4 ? sizeof(*reg) : 0;
493 		break;
494 	case INSN_MMIO_READ_ZERO_EXTEND:
495 		/* Zero extend based on operand size */
496 		extend_size = insn.opnd_bytes;
497 		break;
498 	case INSN_MMIO_READ_SIGN_EXTEND:
499 		/* Sign extend based on operand size */
500 		extend_size = insn.opnd_bytes;
501 		if (size == 1 && val & BIT(7))
502 			extend_val = 0xFF;
503 		else if (size > 1 && val & BIT(15))
504 			extend_val = 0xFF;
505 		break;
506 	default:
507 		/* All other cases has to be covered with the first switch() */
508 		WARN_ON_ONCE(1);
509 		return -EINVAL;
510 	}
511 
512 	if (extend_size)
513 		memset(reg, extend_val, extend_size);
514 	memcpy(reg, &val, size);
515 	return insn.length;
516 }
517 
518 static bool handle_in(struct pt_regs *regs, int size, int port)
519 {
520 	struct tdx_hypercall_args args = {
521 		.r10 = TDX_HYPERCALL_STANDARD,
522 		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
523 		.r12 = size,
524 		.r13 = PORT_READ,
525 		.r14 = port,
526 	};
527 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
528 	bool success;
529 
530 	/*
531 	 * Emulate the I/O read via hypercall. More info about ABI can be found
532 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
533 	 * "TDG.VP.VMCALL<Instruction.IO>".
534 	 */
535 	success = !__tdx_hypercall_ret(&args);
536 
537 	/* Update part of the register affected by the emulated instruction */
538 	regs->ax &= ~mask;
539 	if (success)
540 		regs->ax |= args.r11 & mask;
541 
542 	return success;
543 }
544 
545 static bool handle_out(struct pt_regs *regs, int size, int port)
546 {
547 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
548 
549 	/*
550 	 * Emulate the I/O write via hypercall. More info about ABI can be found
551 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
552 	 * "TDG.VP.VMCALL<Instruction.IO>".
553 	 */
554 	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
555 			       PORT_WRITE, port, regs->ax & mask);
556 }
557 
558 /*
559  * Emulate I/O using hypercall.
560  *
561  * Assumes the IO instruction was using ax, which is enforced
562  * by the standard io.h macros.
563  *
564  * Return True on success or False on failure.
565  */
566 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
567 {
568 	u32 exit_qual = ve->exit_qual;
569 	int size, port;
570 	bool in, ret;
571 
572 	if (VE_IS_IO_STRING(exit_qual))
573 		return -EIO;
574 
575 	in   = VE_IS_IO_IN(exit_qual);
576 	size = VE_GET_IO_SIZE(exit_qual);
577 	port = VE_GET_PORT_NUM(exit_qual);
578 
579 
580 	if (in)
581 		ret = handle_in(regs, size, port);
582 	else
583 		ret = handle_out(regs, size, port);
584 	if (!ret)
585 		return -EIO;
586 
587 	return ve_instr_len(ve);
588 }
589 
590 /*
591  * Early #VE exception handler. Only handles a subset of port I/O.
592  * Intended only for earlyprintk. If failed, return false.
593  */
594 __init bool tdx_early_handle_ve(struct pt_regs *regs)
595 {
596 	struct ve_info ve;
597 	int insn_len;
598 
599 	tdx_get_ve_info(&ve);
600 
601 	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
602 		return false;
603 
604 	insn_len = handle_io(regs, &ve);
605 	if (insn_len < 0)
606 		return false;
607 
608 	regs->ip += insn_len;
609 	return true;
610 }
611 
612 void tdx_get_ve_info(struct ve_info *ve)
613 {
614 	struct tdx_module_args args = {};
615 
616 	/*
617 	 * Called during #VE handling to retrieve the #VE info from the
618 	 * TDX module.
619 	 *
620 	 * This has to be called early in #VE handling.  A "nested" #VE which
621 	 * occurs before this will raise a #DF and is not recoverable.
622 	 *
623 	 * The call retrieves the #VE info from the TDX module, which also
624 	 * clears the "#VE valid" flag. This must be done before anything else
625 	 * because any #VE that occurs while the valid flag is set will lead to
626 	 * #DF.
627 	 *
628 	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
629 	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
630 	 */
631 	tdcall(TDG_VP_VEINFO_GET, &args);
632 
633 	/* Transfer the output parameters */
634 	ve->exit_reason = args.rcx;
635 	ve->exit_qual   = args.rdx;
636 	ve->gla         = args.r8;
637 	ve->gpa         = args.r9;
638 	ve->instr_len   = lower_32_bits(args.r10);
639 	ve->instr_info  = upper_32_bits(args.r10);
640 }
641 
642 /*
643  * Handle the user initiated #VE.
644  *
645  * On success, returns the number of bytes RIP should be incremented (>=0)
646  * or -errno on error.
647  */
648 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
649 {
650 	switch (ve->exit_reason) {
651 	case EXIT_REASON_CPUID:
652 		return handle_cpuid(regs, ve);
653 	default:
654 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
655 		return -EIO;
656 	}
657 }
658 
659 static inline bool is_private_gpa(u64 gpa)
660 {
661 	return gpa == cc_mkenc(gpa);
662 }
663 
664 /*
665  * Handle the kernel #VE.
666  *
667  * On success, returns the number of bytes RIP should be incremented (>=0)
668  * or -errno on error.
669  */
670 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
671 {
672 	switch (ve->exit_reason) {
673 	case EXIT_REASON_HLT:
674 		return handle_halt(ve);
675 	case EXIT_REASON_MSR_READ:
676 		return read_msr(regs, ve);
677 	case EXIT_REASON_MSR_WRITE:
678 		return write_msr(regs, ve);
679 	case EXIT_REASON_CPUID:
680 		return handle_cpuid(regs, ve);
681 	case EXIT_REASON_EPT_VIOLATION:
682 		if (is_private_gpa(ve->gpa))
683 			panic("Unexpected EPT-violation on private memory.");
684 		return handle_mmio(regs, ve);
685 	case EXIT_REASON_IO_INSTRUCTION:
686 		return handle_io(regs, ve);
687 	default:
688 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
689 		return -EIO;
690 	}
691 }
692 
693 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
694 {
695 	int insn_len;
696 
697 	if (user_mode(regs))
698 		insn_len = virt_exception_user(regs, ve);
699 	else
700 		insn_len = virt_exception_kernel(regs, ve);
701 	if (insn_len < 0)
702 		return false;
703 
704 	/* After successful #VE handling, move the IP */
705 	regs->ip += insn_len;
706 
707 	return true;
708 }
709 
710 static bool tdx_tlb_flush_required(bool private)
711 {
712 	/*
713 	 * TDX guest is responsible for flushing TLB on private->shared
714 	 * transition. VMM is responsible for flushing on shared->private.
715 	 *
716 	 * The VMM _can't_ flush private addresses as it can't generate PAs
717 	 * with the guest's HKID.  Shared memory isn't subject to integrity
718 	 * checking, i.e. the VMM doesn't need to flush for its own protection.
719 	 *
720 	 * There's no need to flush when converting from shared to private,
721 	 * as flushing is the VMM's responsibility in this case, e.g. it must
722 	 * flush to avoid integrity failures in the face of a buggy or
723 	 * malicious guest.
724 	 */
725 	return !private;
726 }
727 
728 static bool tdx_cache_flush_required(void)
729 {
730 	/*
731 	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
732 	 * TDX doesn't have such capability.
733 	 *
734 	 * Flush cache unconditionally.
735 	 */
736 	return true;
737 }
738 
739 /*
740  * Inform the VMM of the guest's intent for this physical page: shared with
741  * the VMM or private to the guest.  The VMM is expected to change its mapping
742  * of the page in response.
743  */
744 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
745 {
746 	phys_addr_t start = __pa(vaddr);
747 	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
748 
749 	if (!enc) {
750 		/* Set the shared (decrypted) bits: */
751 		start |= cc_mkdec(0);
752 		end   |= cc_mkdec(0);
753 	}
754 
755 	/*
756 	 * Notify the VMM about page mapping conversion. More info about ABI
757 	 * can be found in TDX Guest-Host-Communication Interface (GHCI),
758 	 * section "TDG.VP.VMCALL<MapGPA>"
759 	 */
760 	if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
761 		return false;
762 
763 	/* shared->private conversion requires memory to be accepted before use */
764 	if (enc)
765 		return tdx_accept_memory(start, end);
766 
767 	return true;
768 }
769 
770 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
771 					  bool enc)
772 {
773 	/*
774 	 * Only handle shared->private conversion here.
775 	 * See the comment in tdx_early_init().
776 	 */
777 	if (enc)
778 		return tdx_enc_status_changed(vaddr, numpages, enc);
779 	return true;
780 }
781 
782 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
783 					 bool enc)
784 {
785 	/*
786 	 * Only handle private->shared conversion here.
787 	 * See the comment in tdx_early_init().
788 	 */
789 	if (!enc)
790 		return tdx_enc_status_changed(vaddr, numpages, enc);
791 	return true;
792 }
793 
794 void __init tdx_early_init(void)
795 {
796 	u64 cc_mask;
797 	u32 eax, sig[3];
798 
799 	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
800 
801 	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
802 		return;
803 
804 	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
805 
806 	cc_vendor = CC_VENDOR_INTEL;
807 	tdx_parse_tdinfo(&cc_mask);
808 	cc_set_mask(cc_mask);
809 
810 	/* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
811 	tdg_vm_wr(TDCS_NOTIFY_ENABLES, 0, -1ULL);
812 
813 	/*
814 	 * All bits above GPA width are reserved and kernel treats shared bit
815 	 * as flag, not as part of physical address.
816 	 *
817 	 * Adjust physical mask to only cover valid GPA bits.
818 	 */
819 	physical_mask &= cc_mask - 1;
820 
821 	/*
822 	 * The kernel mapping should match the TDX metadata for the page.
823 	 * load_unaligned_zeropad() can touch memory *adjacent* to that which is
824 	 * owned by the caller and can catch even _momentary_ mismatches.  Bad
825 	 * things happen on mismatch:
826 	 *
827 	 *   - Private mapping => Shared Page  == Guest shutdown
828          *   - Shared mapping  => Private Page == Recoverable #VE
829 	 *
830 	 * guest.enc_status_change_prepare() converts the page from
831 	 * shared=>private before the mapping becomes private.
832 	 *
833 	 * guest.enc_status_change_finish() converts the page from
834 	 * private=>shared after the mapping becomes private.
835 	 *
836 	 * In both cases there is a temporary shared mapping to a private page,
837 	 * which can result in a #VE.  But, there is never a private mapping to
838 	 * a shared page.
839 	 */
840 	x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
841 	x86_platform.guest.enc_status_change_finish  = tdx_enc_status_change_finish;
842 
843 	x86_platform.guest.enc_cache_flush_required  = tdx_cache_flush_required;
844 	x86_platform.guest.enc_tlb_flush_required    = tdx_tlb_flush_required;
845 
846 	/*
847 	 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel
848 	 * bringup low level code. That raises #VE which cannot be handled
849 	 * there.
850 	 *
851 	 * Intel-TDX has a secure RDMSR hypercall, but that needs to be
852 	 * implemented seperately in the low level startup ASM code.
853 	 * Until that is in place, disable parallel bringup for TDX.
854 	 */
855 	x86_cpuinit.parallel_bringup = false;
856 
857 	pr_info("Guest detected\n");
858 }
859