1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <linux/anon_inodes.h>
64 #include <linux/sched/mm.h>
65 #include <linux/uaccess.h>
66 #include <linux/nospec.h>
67 #include <linux/highmem.h>
68 #include <linux/fsnotify.h>
69 #include <linux/fadvise.h>
70 #include <linux/task_work.h>
71 #include <linux/io_uring.h>
72 #include <linux/audit.h>
73 #include <linux/security.h>
74 #include <asm/shmparam.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78
79 #include <uapi/linux/io_uring.h>
80
81 #include "io-wq.h"
82
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94
95 #include "timeout.h"
96 #include "poll.h"
97 #include "rw.h"
98 #include "alloc_cache.h"
99
100 #define IORING_MAX_ENTRIES 32768
101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
102
103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
104 IORING_REGISTER_LAST + IORING_OP_LAST)
105
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108
109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 REQ_F_ASYNC_DATA)
115
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 IO_REQ_CLEAN_FLAGS)
118
119 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
120
121 #define IO_COMPL_BATCH 32
122 #define IO_REQ_ALLOC_BATCH 8
123
124 enum {
125 IO_CHECK_CQ_OVERFLOW_BIT,
126 IO_CHECK_CQ_DROPPED_BIT,
127 };
128
129 enum {
130 IO_EVENTFD_OP_SIGNAL_BIT,
131 IO_EVENTFD_OP_FREE_BIT,
132 };
133
134 struct io_defer_entry {
135 struct list_head list;
136 struct io_kiocb *req;
137 u32 seq;
138 };
139
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 struct task_struct *task,
146 bool cancel_all);
147
148 static void io_queue_sqe(struct io_kiocb *req);
149
150 struct kmem_cache *req_cachep;
151 static struct workqueue_struct *iou_wq __ro_after_init;
152
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 {
159 .procname = "io_uring_disabled",
160 .data = &sysctl_io_uring_disabled,
161 .maxlen = sizeof(sysctl_io_uring_disabled),
162 .mode = 0644,
163 .proc_handler = proc_dointvec_minmax,
164 .extra1 = SYSCTL_ZERO,
165 .extra2 = SYSCTL_TWO,
166 },
167 {
168 .procname = "io_uring_group",
169 .data = &sysctl_io_uring_group,
170 .maxlen = sizeof(gid_t),
171 .mode = 0644,
172 .proc_handler = proc_dointvec,
173 },
174 {},
175 };
176 #endif
177
io_submit_flush_completions(struct io_ring_ctx * ctx)178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
179 {
180 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
181 ctx->submit_state.cqes_count)
182 __io_submit_flush_completions(ctx);
183 }
184
__io_cqring_events(struct io_ring_ctx * ctx)185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
186 {
187 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
188 }
189
__io_cqring_events_user(struct io_ring_ctx * ctx)190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
191 {
192 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
193 }
194
io_match_linked(struct io_kiocb * head)195 static bool io_match_linked(struct io_kiocb *head)
196 {
197 struct io_kiocb *req;
198
199 io_for_each_link(req, head) {
200 if (req->flags & REQ_F_INFLIGHT)
201 return true;
202 }
203 return false;
204 }
205
206 /*
207 * As io_match_task() but protected against racing with linked timeouts.
208 * User must not hold timeout_lock.
209 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
211 bool cancel_all)
212 {
213 bool matched;
214
215 if (task && head->task != task)
216 return false;
217 if (cancel_all)
218 return true;
219
220 if (head->flags & REQ_F_LINK_TIMEOUT) {
221 struct io_ring_ctx *ctx = head->ctx;
222
223 /* protect against races with linked timeouts */
224 spin_lock_irq(&ctx->timeout_lock);
225 matched = io_match_linked(head);
226 spin_unlock_irq(&ctx->timeout_lock);
227 } else {
228 matched = io_match_linked(head);
229 }
230 return matched;
231 }
232
req_fail_link_node(struct io_kiocb * req,int res)233 static inline void req_fail_link_node(struct io_kiocb *req, int res)
234 {
235 req_set_fail(req);
236 io_req_set_res(req, res, 0);
237 }
238
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
240 {
241 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
242 }
243
io_ring_ctx_ref_free(struct percpu_ref * ref)244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
245 {
246 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
247
248 complete(&ctx->ref_comp);
249 }
250
io_fallback_req_func(struct work_struct * work)251 static __cold void io_fallback_req_func(struct work_struct *work)
252 {
253 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
254 fallback_work.work);
255 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
256 struct io_kiocb *req, *tmp;
257 struct io_tw_state ts = { .locked = true, };
258
259 percpu_ref_get(&ctx->refs);
260 mutex_lock(&ctx->uring_lock);
261 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
262 req->io_task_work.func(req, &ts);
263 if (WARN_ON_ONCE(!ts.locked))
264 return;
265 io_submit_flush_completions(ctx);
266 mutex_unlock(&ctx->uring_lock);
267 percpu_ref_put(&ctx->refs);
268 }
269
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
271 {
272 unsigned hash_buckets = 1U << bits;
273 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
274
275 table->hbs = kmalloc(hash_size, GFP_KERNEL);
276 if (!table->hbs)
277 return -ENOMEM;
278
279 table->hash_bits = bits;
280 init_hash_table(table, hash_buckets);
281 return 0;
282 }
283
io_ring_ctx_alloc(struct io_uring_params * p)284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 struct io_ring_ctx *ctx;
287 int hash_bits;
288
289 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
290 if (!ctx)
291 return NULL;
292
293 xa_init(&ctx->io_bl_xa);
294
295 /*
296 * Use 5 bits less than the max cq entries, that should give us around
297 * 32 entries per hash list if totally full and uniformly spread, but
298 * don't keep too many buckets to not overconsume memory.
299 */
300 hash_bits = ilog2(p->cq_entries) - 5;
301 hash_bits = clamp(hash_bits, 1, 8);
302 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
303 goto err;
304 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
305 goto err;
306 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 0, GFP_KERNEL))
308 goto err;
309
310 ctx->flags = p->flags;
311 init_waitqueue_head(&ctx->sqo_sq_wait);
312 INIT_LIST_HEAD(&ctx->sqd_list);
313 INIT_LIST_HEAD(&ctx->cq_overflow_list);
314 INIT_LIST_HEAD(&ctx->io_buffers_cache);
315 INIT_HLIST_HEAD(&ctx->io_buf_list);
316 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
317 sizeof(struct io_rsrc_node));
318 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
319 sizeof(struct async_poll));
320 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_async_msghdr));
322 init_completion(&ctx->ref_comp);
323 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
324 mutex_init(&ctx->uring_lock);
325 init_waitqueue_head(&ctx->cq_wait);
326 init_waitqueue_head(&ctx->poll_wq);
327 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
328 spin_lock_init(&ctx->completion_lock);
329 spin_lock_init(&ctx->timeout_lock);
330 INIT_WQ_LIST(&ctx->iopoll_list);
331 INIT_LIST_HEAD(&ctx->io_buffers_pages);
332 INIT_LIST_HEAD(&ctx->io_buffers_comp);
333 INIT_LIST_HEAD(&ctx->defer_list);
334 INIT_LIST_HEAD(&ctx->timeout_list);
335 INIT_LIST_HEAD(&ctx->ltimeout_list);
336 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
337 init_llist_head(&ctx->work_llist);
338 INIT_LIST_HEAD(&ctx->tctx_list);
339 ctx->submit_state.free_list.next = NULL;
340 INIT_WQ_LIST(&ctx->locked_free_list);
341 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
342 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
343 return ctx;
344 err:
345 kfree(ctx->cancel_table.hbs);
346 kfree(ctx->cancel_table_locked.hbs);
347 xa_destroy(&ctx->io_bl_xa);
348 kfree(ctx);
349 return NULL;
350 }
351
io_account_cq_overflow(struct io_ring_ctx * ctx)352 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353 {
354 struct io_rings *r = ctx->rings;
355
356 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 ctx->cq_extra--;
358 }
359
req_need_defer(struct io_kiocb * req,u32 seq)360 static bool req_need_defer(struct io_kiocb *req, u32 seq)
361 {
362 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
363 struct io_ring_ctx *ctx = req->ctx;
364
365 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
366 }
367
368 return false;
369 }
370
io_clean_op(struct io_kiocb * req)371 static void io_clean_op(struct io_kiocb *req)
372 {
373 if (req->flags & REQ_F_BUFFER_SELECTED) {
374 spin_lock(&req->ctx->completion_lock);
375 io_put_kbuf_comp(req);
376 spin_unlock(&req->ctx->completion_lock);
377 }
378
379 if (req->flags & REQ_F_NEED_CLEANUP) {
380 const struct io_cold_def *def = &io_cold_defs[req->opcode];
381
382 if (def->cleanup)
383 def->cleanup(req);
384 }
385 if ((req->flags & REQ_F_POLLED) && req->apoll) {
386 kfree(req->apoll->double_poll);
387 kfree(req->apoll);
388 req->apoll = NULL;
389 }
390 if (req->flags & REQ_F_INFLIGHT) {
391 struct io_uring_task *tctx = req->task->io_uring;
392
393 atomic_dec(&tctx->inflight_tracked);
394 }
395 if (req->flags & REQ_F_CREDS)
396 put_cred(req->creds);
397 if (req->flags & REQ_F_ASYNC_DATA) {
398 kfree(req->async_data);
399 req->async_data = NULL;
400 }
401 req->flags &= ~IO_REQ_CLEAN_FLAGS;
402 }
403
io_req_track_inflight(struct io_kiocb * req)404 static inline void io_req_track_inflight(struct io_kiocb *req)
405 {
406 if (!(req->flags & REQ_F_INFLIGHT)) {
407 req->flags |= REQ_F_INFLIGHT;
408 atomic_inc(&req->task->io_uring->inflight_tracked);
409 }
410 }
411
__io_prep_linked_timeout(struct io_kiocb * req)412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
413 {
414 if (WARN_ON_ONCE(!req->link))
415 return NULL;
416
417 req->flags &= ~REQ_F_ARM_LTIMEOUT;
418 req->flags |= REQ_F_LINK_TIMEOUT;
419
420 /* linked timeouts should have two refs once prep'ed */
421 io_req_set_refcount(req);
422 __io_req_set_refcount(req->link, 2);
423 return req->link;
424 }
425
io_prep_linked_timeout(struct io_kiocb * req)426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
427 {
428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
429 return NULL;
430 return __io_prep_linked_timeout(req);
431 }
432
__io_arm_ltimeout(struct io_kiocb * req)433 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
434 {
435 io_queue_linked_timeout(__io_prep_linked_timeout(req));
436 }
437
io_arm_ltimeout(struct io_kiocb * req)438 static inline void io_arm_ltimeout(struct io_kiocb *req)
439 {
440 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
441 __io_arm_ltimeout(req);
442 }
443
io_prep_async_work(struct io_kiocb * req)444 static void io_prep_async_work(struct io_kiocb *req)
445 {
446 const struct io_issue_def *def = &io_issue_defs[req->opcode];
447 struct io_ring_ctx *ctx = req->ctx;
448
449 if (!(req->flags & REQ_F_CREDS)) {
450 req->flags |= REQ_F_CREDS;
451 req->creds = get_current_cred();
452 }
453
454 req->work.list.next = NULL;
455 req->work.flags = 0;
456 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
457 if (req->flags & REQ_F_FORCE_ASYNC)
458 req->work.flags |= IO_WQ_WORK_CONCURRENT;
459
460 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
461 req->flags |= io_file_get_flags(req->file);
462
463 if (req->file && (req->flags & REQ_F_ISREG)) {
464 bool should_hash = def->hash_reg_file;
465
466 /* don't serialize this request if the fs doesn't need it */
467 if (should_hash && (req->file->f_flags & O_DIRECT) &&
468 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
469 should_hash = false;
470 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
471 io_wq_hash_work(&req->work, file_inode(req->file));
472 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
473 if (def->unbound_nonreg_file)
474 req->work.flags |= IO_WQ_WORK_UNBOUND;
475 }
476 }
477
io_prep_async_link(struct io_kiocb * req)478 static void io_prep_async_link(struct io_kiocb *req)
479 {
480 struct io_kiocb *cur;
481
482 if (req->flags & REQ_F_LINK_TIMEOUT) {
483 struct io_ring_ctx *ctx = req->ctx;
484
485 spin_lock_irq(&ctx->timeout_lock);
486 io_for_each_link(cur, req)
487 io_prep_async_work(cur);
488 spin_unlock_irq(&ctx->timeout_lock);
489 } else {
490 io_for_each_link(cur, req)
491 io_prep_async_work(cur);
492 }
493 }
494
io_queue_iowq(struct io_kiocb * req)495 static void io_queue_iowq(struct io_kiocb *req)
496 {
497 struct io_kiocb *link = io_prep_linked_timeout(req);
498 struct io_uring_task *tctx = req->task->io_uring;
499
500 BUG_ON(!tctx);
501
502 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
503 io_req_task_queue_fail(req, -ECANCELED);
504 return;
505 }
506
507 /* init ->work of the whole link before punting */
508 io_prep_async_link(req);
509
510 /*
511 * Not expected to happen, but if we do have a bug where this _can_
512 * happen, catch it here and ensure the request is marked as
513 * canceled. That will make io-wq go through the usual work cancel
514 * procedure rather than attempt to run this request (or create a new
515 * worker for it).
516 */
517 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
518 req->work.flags |= IO_WQ_WORK_CANCEL;
519
520 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
521 io_wq_enqueue(tctx->io_wq, &req->work);
522 if (link)
523 io_queue_linked_timeout(link);
524 }
525
io_queue_deferred(struct io_ring_ctx * ctx)526 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
527 {
528 while (!list_empty(&ctx->defer_list)) {
529 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
530 struct io_defer_entry, list);
531
532 if (req_need_defer(de->req, de->seq))
533 break;
534 list_del_init(&de->list);
535 io_req_task_queue(de->req);
536 kfree(de);
537 }
538 }
539
io_eventfd_free(struct rcu_head * rcu)540 static void io_eventfd_free(struct rcu_head *rcu)
541 {
542 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
543
544 eventfd_ctx_put(ev_fd->cq_ev_fd);
545 kfree(ev_fd);
546 }
547
io_eventfd_ops(struct rcu_head * rcu)548 static void io_eventfd_ops(struct rcu_head *rcu)
549 {
550 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
551 int ops = atomic_xchg(&ev_fd->ops, 0);
552
553 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
554 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
555
556 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
557 * ordering in a race but if references are 0 we know we have to free
558 * it regardless.
559 */
560 if (atomic_dec_and_test(&ev_fd->refs))
561 call_rcu(&ev_fd->rcu, io_eventfd_free);
562 }
563
io_eventfd_signal(struct io_ring_ctx * ctx)564 static void io_eventfd_signal(struct io_ring_ctx *ctx)
565 {
566 struct io_ev_fd *ev_fd = NULL;
567
568 rcu_read_lock();
569 /*
570 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
571 * and eventfd_signal
572 */
573 ev_fd = rcu_dereference(ctx->io_ev_fd);
574
575 /*
576 * Check again if ev_fd exists incase an io_eventfd_unregister call
577 * completed between the NULL check of ctx->io_ev_fd at the start of
578 * the function and rcu_read_lock.
579 */
580 if (unlikely(!ev_fd))
581 goto out;
582 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
583 goto out;
584 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
585 goto out;
586
587 if (likely(eventfd_signal_allowed())) {
588 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
589 } else {
590 atomic_inc(&ev_fd->refs);
591 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
592 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
593 else
594 atomic_dec(&ev_fd->refs);
595 }
596
597 out:
598 rcu_read_unlock();
599 }
600
io_eventfd_flush_signal(struct io_ring_ctx * ctx)601 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
602 {
603 bool skip;
604
605 spin_lock(&ctx->completion_lock);
606
607 /*
608 * Eventfd should only get triggered when at least one event has been
609 * posted. Some applications rely on the eventfd notification count
610 * only changing IFF a new CQE has been added to the CQ ring. There's
611 * no depedency on 1:1 relationship between how many times this
612 * function is called (and hence the eventfd count) and number of CQEs
613 * posted to the CQ ring.
614 */
615 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
616 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
617 spin_unlock(&ctx->completion_lock);
618 if (skip)
619 return;
620
621 io_eventfd_signal(ctx);
622 }
623
__io_commit_cqring_flush(struct io_ring_ctx * ctx)624 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
625 {
626 if (ctx->poll_activated)
627 io_poll_wq_wake(ctx);
628 if (ctx->off_timeout_used)
629 io_flush_timeouts(ctx);
630 if (ctx->drain_active) {
631 spin_lock(&ctx->completion_lock);
632 io_queue_deferred(ctx);
633 spin_unlock(&ctx->completion_lock);
634 }
635 if (ctx->has_evfd)
636 io_eventfd_flush_signal(ctx);
637 }
638
__io_cq_lock(struct io_ring_ctx * ctx)639 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
640 {
641 if (!ctx->lockless_cq)
642 spin_lock(&ctx->completion_lock);
643 }
644
io_cq_lock(struct io_ring_ctx * ctx)645 static inline void io_cq_lock(struct io_ring_ctx *ctx)
646 __acquires(ctx->completion_lock)
647 {
648 spin_lock(&ctx->completion_lock);
649 }
650
__io_cq_unlock_post(struct io_ring_ctx * ctx)651 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
652 {
653 io_commit_cqring(ctx);
654 if (!ctx->task_complete) {
655 if (!ctx->lockless_cq)
656 spin_unlock(&ctx->completion_lock);
657 /* IOPOLL rings only need to wake up if it's also SQPOLL */
658 if (!ctx->syscall_iopoll)
659 io_cqring_wake(ctx);
660 }
661 io_commit_cqring_flush(ctx);
662 }
663
io_cq_unlock_post(struct io_ring_ctx * ctx)664 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
665 __releases(ctx->completion_lock)
666 {
667 io_commit_cqring(ctx);
668 spin_unlock(&ctx->completion_lock);
669 io_cqring_wake(ctx);
670 io_commit_cqring_flush(ctx);
671 }
672
673 /* Returns true if there are no backlogged entries after the flush */
io_cqring_overflow_kill(struct io_ring_ctx * ctx)674 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
675 {
676 struct io_overflow_cqe *ocqe;
677 LIST_HEAD(list);
678
679 lockdep_assert_held(&ctx->uring_lock);
680
681 spin_lock(&ctx->completion_lock);
682 list_splice_init(&ctx->cq_overflow_list, &list);
683 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
684 spin_unlock(&ctx->completion_lock);
685
686 while (!list_empty(&list)) {
687 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
688 list_del(&ocqe->list);
689 kfree(ocqe);
690 }
691 }
692
__io_cqring_overflow_flush(struct io_ring_ctx * ctx)693 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
694 {
695 size_t cqe_size = sizeof(struct io_uring_cqe);
696
697 lockdep_assert_held(&ctx->uring_lock);
698
699 if (__io_cqring_events(ctx) == ctx->cq_entries)
700 return;
701
702 if (ctx->flags & IORING_SETUP_CQE32)
703 cqe_size <<= 1;
704
705 io_cq_lock(ctx);
706 while (!list_empty(&ctx->cq_overflow_list)) {
707 struct io_uring_cqe *cqe;
708 struct io_overflow_cqe *ocqe;
709
710 if (!io_get_cqe_overflow(ctx, &cqe, true))
711 break;
712 ocqe = list_first_entry(&ctx->cq_overflow_list,
713 struct io_overflow_cqe, list);
714 memcpy(cqe, &ocqe->cqe, cqe_size);
715 list_del(&ocqe->list);
716 kfree(ocqe);
717
718 /*
719 * For silly syzbot cases that deliberately overflow by huge
720 * amounts, check if we need to resched and drop and
721 * reacquire the locks if so. Nothing real would ever hit this.
722 * Ideally we'd have a non-posting unlock for this, but hard
723 * to care for a non-real case.
724 */
725 if (need_resched()) {
726 io_cq_unlock_post(ctx);
727 mutex_unlock(&ctx->uring_lock);
728 cond_resched();
729 mutex_lock(&ctx->uring_lock);
730 io_cq_lock(ctx);
731 }
732 }
733
734 if (list_empty(&ctx->cq_overflow_list)) {
735 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
736 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
737 }
738 io_cq_unlock_post(ctx);
739 }
740
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)741 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
742 {
743 mutex_lock(&ctx->uring_lock);
744 __io_cqring_overflow_flush(ctx);
745 mutex_unlock(&ctx->uring_lock);
746 }
747
io_cqring_overflow_flush(struct io_ring_ctx * ctx)748 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
749 {
750 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
751 io_cqring_do_overflow_flush(ctx);
752 }
753
754 /* can be called by any task */
io_put_task_remote(struct task_struct * task)755 static void io_put_task_remote(struct task_struct *task)
756 {
757 struct io_uring_task *tctx = task->io_uring;
758
759 percpu_counter_sub(&tctx->inflight, 1);
760 if (unlikely(atomic_read(&tctx->in_cancel)))
761 wake_up(&tctx->wait);
762 put_task_struct(task);
763 }
764
765 /* used by a task to put its own references */
io_put_task_local(struct task_struct * task)766 static void io_put_task_local(struct task_struct *task)
767 {
768 task->io_uring->cached_refs++;
769 }
770
771 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task)772 static inline void io_put_task(struct task_struct *task)
773 {
774 if (likely(task == current))
775 io_put_task_local(task);
776 else
777 io_put_task_remote(task);
778 }
779
io_task_refs_refill(struct io_uring_task * tctx)780 void io_task_refs_refill(struct io_uring_task *tctx)
781 {
782 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
783
784 percpu_counter_add(&tctx->inflight, refill);
785 refcount_add(refill, ¤t->usage);
786 tctx->cached_refs += refill;
787 }
788
io_uring_drop_tctx_refs(struct task_struct * task)789 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
790 {
791 struct io_uring_task *tctx = task->io_uring;
792 unsigned int refs = tctx->cached_refs;
793
794 if (refs) {
795 tctx->cached_refs = 0;
796 percpu_counter_sub(&tctx->inflight, refs);
797 put_task_struct_many(task, refs);
798 }
799 }
800
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)801 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
802 s32 res, u32 cflags, u64 extra1, u64 extra2)
803 {
804 struct io_overflow_cqe *ocqe;
805 size_t ocq_size = sizeof(struct io_overflow_cqe);
806 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
807
808 lockdep_assert_held(&ctx->completion_lock);
809
810 if (is_cqe32)
811 ocq_size += sizeof(struct io_uring_cqe);
812
813 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
814 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
815 if (!ocqe) {
816 /*
817 * If we're in ring overflow flush mode, or in task cancel mode,
818 * or cannot allocate an overflow entry, then we need to drop it
819 * on the floor.
820 */
821 io_account_cq_overflow(ctx);
822 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
823 return false;
824 }
825 if (list_empty(&ctx->cq_overflow_list)) {
826 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
827 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
828
829 }
830 ocqe->cqe.user_data = user_data;
831 ocqe->cqe.res = res;
832 ocqe->cqe.flags = cflags;
833 if (is_cqe32) {
834 ocqe->cqe.big_cqe[0] = extra1;
835 ocqe->cqe.big_cqe[1] = extra2;
836 }
837 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
838 return true;
839 }
840
io_req_cqe_overflow(struct io_kiocb * req)841 void io_req_cqe_overflow(struct io_kiocb *req)
842 {
843 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
844 req->cqe.res, req->cqe.flags,
845 req->big_cqe.extra1, req->big_cqe.extra2);
846 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
847 }
848
849 /*
850 * writes to the cq entry need to come after reading head; the
851 * control dependency is enough as we're using WRITE_ONCE to
852 * fill the cq entry
853 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)854 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
855 {
856 struct io_rings *rings = ctx->rings;
857 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
858 unsigned int free, queued, len;
859
860 /*
861 * Posting into the CQ when there are pending overflowed CQEs may break
862 * ordering guarantees, which will affect links, F_MORE users and more.
863 * Force overflow the completion.
864 */
865 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
866 return false;
867
868 /* userspace may cheat modifying the tail, be safe and do min */
869 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
870 free = ctx->cq_entries - queued;
871 /* we need a contiguous range, limit based on the current array offset */
872 len = min(free, ctx->cq_entries - off);
873 if (!len)
874 return false;
875
876 if (ctx->flags & IORING_SETUP_CQE32) {
877 off <<= 1;
878 len <<= 1;
879 }
880
881 ctx->cqe_cached = &rings->cqes[off];
882 ctx->cqe_sentinel = ctx->cqe_cached + len;
883 return true;
884 }
885
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)886 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
887 u32 cflags)
888 {
889 struct io_uring_cqe *cqe;
890
891 ctx->cq_extra++;
892
893 /*
894 * If we can't get a cq entry, userspace overflowed the
895 * submission (by quite a lot). Increment the overflow count in
896 * the ring.
897 */
898 if (likely(io_get_cqe(ctx, &cqe))) {
899 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
900
901 WRITE_ONCE(cqe->user_data, user_data);
902 WRITE_ONCE(cqe->res, res);
903 WRITE_ONCE(cqe->flags, cflags);
904
905 if (ctx->flags & IORING_SETUP_CQE32) {
906 WRITE_ONCE(cqe->big_cqe[0], 0);
907 WRITE_ONCE(cqe->big_cqe[1], 0);
908 }
909 return true;
910 }
911 return false;
912 }
913
__io_flush_post_cqes(struct io_ring_ctx * ctx)914 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
915 __must_hold(&ctx->uring_lock)
916 {
917 struct io_submit_state *state = &ctx->submit_state;
918 unsigned int i;
919
920 lockdep_assert_held(&ctx->uring_lock);
921 for (i = 0; i < state->cqes_count; i++) {
922 struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
923
924 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
925 if (ctx->lockless_cq) {
926 spin_lock(&ctx->completion_lock);
927 io_cqring_event_overflow(ctx, cqe->user_data,
928 cqe->res, cqe->flags, 0, 0);
929 spin_unlock(&ctx->completion_lock);
930 } else {
931 io_cqring_event_overflow(ctx, cqe->user_data,
932 cqe->res, cqe->flags, 0, 0);
933 }
934 }
935 }
936 state->cqes_count = 0;
937 }
938
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)939 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
940 bool allow_overflow)
941 {
942 bool filled;
943
944 io_cq_lock(ctx);
945 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
946 if (!filled && allow_overflow)
947 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
948
949 io_cq_unlock_post(ctx);
950 return filled;
951 }
952
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)953 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
954 {
955 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
956 }
957
958 /*
959 * A helper for multishot requests posting additional CQEs.
960 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
961 */
io_fill_cqe_req_aux(struct io_kiocb * req,bool defer,s32 res,u32 cflags)962 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
963 {
964 struct io_ring_ctx *ctx = req->ctx;
965 u64 user_data = req->cqe.user_data;
966 struct io_uring_cqe *cqe;
967
968 if (!defer)
969 return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
970
971 lockdep_assert_held(&ctx->uring_lock);
972
973 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
974 __io_cq_lock(ctx);
975 __io_flush_post_cqes(ctx);
976 /* no need to flush - flush is deferred */
977 __io_cq_unlock_post(ctx);
978 }
979
980 /* For defered completions this is not as strict as it is otherwise,
981 * however it's main job is to prevent unbounded posted completions,
982 * and in that it works just as well.
983 */
984 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
985 return false;
986
987 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
988 cqe->user_data = user_data;
989 cqe->res = res;
990 cqe->flags = cflags;
991 return true;
992 }
993
__io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)994 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
995 {
996 struct io_ring_ctx *ctx = req->ctx;
997 struct io_rsrc_node *rsrc_node = NULL;
998
999 io_cq_lock(ctx);
1000 if (!(req->flags & REQ_F_CQE_SKIP)) {
1001 if (!io_fill_cqe_req(ctx, req))
1002 io_req_cqe_overflow(req);
1003 }
1004
1005 /*
1006 * If we're the last reference to this request, add to our locked
1007 * free_list cache.
1008 */
1009 if (req_ref_put_and_test(req)) {
1010 if (req->flags & IO_REQ_LINK_FLAGS) {
1011 if (req->flags & IO_DISARM_MASK)
1012 io_disarm_next(req);
1013 if (req->link) {
1014 io_req_task_queue(req->link);
1015 req->link = NULL;
1016 }
1017 }
1018 io_put_kbuf_comp(req);
1019 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1020 io_clean_op(req);
1021 io_put_file(req);
1022
1023 rsrc_node = req->rsrc_node;
1024 /*
1025 * Selected buffer deallocation in io_clean_op() assumes that
1026 * we don't hold ->completion_lock. Clean them here to avoid
1027 * deadlocks.
1028 */
1029 io_put_task_remote(req->task);
1030 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1031 ctx->locked_free_nr++;
1032 }
1033 io_cq_unlock_post(ctx);
1034
1035 if (rsrc_node) {
1036 io_ring_submit_lock(ctx, issue_flags);
1037 io_put_rsrc_node(ctx, rsrc_node);
1038 io_ring_submit_unlock(ctx, issue_flags);
1039 }
1040 }
1041
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)1042 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1043 {
1044 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1045 req->io_task_work.func = io_req_task_complete;
1046 io_req_task_work_add(req);
1047 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1048 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1049 __io_req_complete_post(req, issue_flags);
1050 } else {
1051 struct io_ring_ctx *ctx = req->ctx;
1052
1053 mutex_lock(&ctx->uring_lock);
1054 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1055 mutex_unlock(&ctx->uring_lock);
1056 }
1057 }
1058
io_req_defer_failed(struct io_kiocb * req,s32 res)1059 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1060 __must_hold(&ctx->uring_lock)
1061 {
1062 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1063
1064 lockdep_assert_held(&req->ctx->uring_lock);
1065
1066 req_set_fail(req);
1067 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1068 if (def->fail)
1069 def->fail(req);
1070 io_req_complete_defer(req);
1071 }
1072
1073 /*
1074 * Don't initialise the fields below on every allocation, but do that in
1075 * advance and keep them valid across allocations.
1076 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1077 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1078 {
1079 req->ctx = ctx;
1080 req->link = NULL;
1081 req->async_data = NULL;
1082 /* not necessary, but safer to zero */
1083 memset(&req->cqe, 0, sizeof(req->cqe));
1084 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1085 }
1086
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1087 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1088 struct io_submit_state *state)
1089 {
1090 spin_lock(&ctx->completion_lock);
1091 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1092 ctx->locked_free_nr = 0;
1093 spin_unlock(&ctx->completion_lock);
1094 }
1095
1096 /*
1097 * A request might get retired back into the request caches even before opcode
1098 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1099 * Because of that, io_alloc_req() should be called only under ->uring_lock
1100 * and with extra caution to not get a request that is still worked on.
1101 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1102 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1103 __must_hold(&ctx->uring_lock)
1104 {
1105 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1106 void *reqs[IO_REQ_ALLOC_BATCH];
1107 int ret, i;
1108
1109 /*
1110 * If we have more than a batch's worth of requests in our IRQ side
1111 * locked cache, grab the lock and move them over to our submission
1112 * side cache.
1113 */
1114 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1115 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1116 if (!io_req_cache_empty(ctx))
1117 return true;
1118 }
1119
1120 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1121
1122 /*
1123 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1124 * retry single alloc to be on the safe side.
1125 */
1126 if (unlikely(ret <= 0)) {
1127 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1128 if (!reqs[0])
1129 return false;
1130 ret = 1;
1131 }
1132
1133 percpu_ref_get_many(&ctx->refs, ret);
1134 for (i = 0; i < ret; i++) {
1135 struct io_kiocb *req = reqs[i];
1136
1137 io_preinit_req(req, ctx);
1138 io_req_add_to_cache(req, ctx);
1139 }
1140 return true;
1141 }
1142
io_free_req(struct io_kiocb * req)1143 __cold void io_free_req(struct io_kiocb *req)
1144 {
1145 /* refs were already put, restore them for io_req_task_complete() */
1146 req->flags &= ~REQ_F_REFCOUNT;
1147 /* we only want to free it, don't post CQEs */
1148 req->flags |= REQ_F_CQE_SKIP;
1149 req->io_task_work.func = io_req_task_complete;
1150 io_req_task_work_add(req);
1151 }
1152
__io_req_find_next_prep(struct io_kiocb * req)1153 static void __io_req_find_next_prep(struct io_kiocb *req)
1154 {
1155 struct io_ring_ctx *ctx = req->ctx;
1156
1157 spin_lock(&ctx->completion_lock);
1158 io_disarm_next(req);
1159 spin_unlock(&ctx->completion_lock);
1160 }
1161
io_req_find_next(struct io_kiocb * req)1162 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1163 {
1164 struct io_kiocb *nxt;
1165
1166 /*
1167 * If LINK is set, we have dependent requests in this chain. If we
1168 * didn't fail this request, queue the first one up, moving any other
1169 * dependencies to the next request. In case of failure, fail the rest
1170 * of the chain.
1171 */
1172 if (unlikely(req->flags & IO_DISARM_MASK))
1173 __io_req_find_next_prep(req);
1174 nxt = req->link;
1175 req->link = NULL;
1176 return nxt;
1177 }
1178
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1179 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1180 {
1181 if (!ctx)
1182 return;
1183 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1184 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1185 if (ts->locked) {
1186 io_submit_flush_completions(ctx);
1187 mutex_unlock(&ctx->uring_lock);
1188 ts->locked = false;
1189 }
1190 percpu_ref_put(&ctx->refs);
1191 }
1192
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,struct io_tw_state * ts)1193 static unsigned int handle_tw_list(struct llist_node *node,
1194 struct io_ring_ctx **ctx,
1195 struct io_tw_state *ts)
1196 {
1197 unsigned int count = 0;
1198
1199 do {
1200 struct llist_node *next = node->next;
1201 struct io_kiocb *req = container_of(node, struct io_kiocb,
1202 io_task_work.node);
1203
1204 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1205
1206 if (req->ctx != *ctx) {
1207 ctx_flush_and_put(*ctx, ts);
1208 *ctx = req->ctx;
1209 /* if not contended, grab and improve batching */
1210 ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1211 percpu_ref_get(&(*ctx)->refs);
1212 }
1213 INDIRECT_CALL_2(req->io_task_work.func,
1214 io_poll_task_func, io_req_rw_complete,
1215 req, ts);
1216 node = next;
1217 count++;
1218 if (unlikely(need_resched())) {
1219 ctx_flush_and_put(*ctx, ts);
1220 *ctx = NULL;
1221 cond_resched();
1222 }
1223 } while (node);
1224
1225 return count;
1226 }
1227
1228 /**
1229 * io_llist_xchg - swap all entries in a lock-less list
1230 * @head: the head of lock-less list to delete all entries
1231 * @new: new entry as the head of the list
1232 *
1233 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1234 * The order of entries returned is from the newest to the oldest added one.
1235 */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1236 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1237 struct llist_node *new)
1238 {
1239 return xchg(&head->first, new);
1240 }
1241
io_fallback_tw(struct io_uring_task * tctx,bool sync)1242 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1243 {
1244 struct llist_node *node = llist_del_all(&tctx->task_list);
1245 struct io_ring_ctx *last_ctx = NULL;
1246 struct io_kiocb *req;
1247
1248 while (node) {
1249 req = container_of(node, struct io_kiocb, io_task_work.node);
1250 node = node->next;
1251 if (sync && last_ctx != req->ctx) {
1252 if (last_ctx) {
1253 flush_delayed_work(&last_ctx->fallback_work);
1254 percpu_ref_put(&last_ctx->refs);
1255 }
1256 last_ctx = req->ctx;
1257 percpu_ref_get(&last_ctx->refs);
1258 }
1259 if (llist_add(&req->io_task_work.node,
1260 &req->ctx->fallback_llist))
1261 schedule_delayed_work(&req->ctx->fallback_work, 1);
1262 }
1263
1264 if (last_ctx) {
1265 flush_delayed_work(&last_ctx->fallback_work);
1266 percpu_ref_put(&last_ctx->refs);
1267 }
1268 }
1269
tctx_task_work(struct callback_head * cb)1270 void tctx_task_work(struct callback_head *cb)
1271 {
1272 struct io_tw_state ts = {};
1273 struct io_ring_ctx *ctx = NULL;
1274 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1275 task_work);
1276 struct llist_node *node;
1277 unsigned int count = 0;
1278
1279 if (unlikely(current->flags & PF_EXITING)) {
1280 io_fallback_tw(tctx, true);
1281 return;
1282 }
1283
1284 node = llist_del_all(&tctx->task_list);
1285 if (node)
1286 count = handle_tw_list(node, &ctx, &ts);
1287
1288 ctx_flush_and_put(ctx, &ts);
1289
1290 /* relaxed read is enough as only the task itself sets ->in_cancel */
1291 if (unlikely(atomic_read(&tctx->in_cancel)))
1292 io_uring_drop_tctx_refs(current);
1293
1294 trace_io_uring_task_work_run(tctx, count, 1);
1295 }
1296
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1297 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1298 {
1299 struct io_ring_ctx *ctx = req->ctx;
1300 unsigned nr_wait, nr_tw, nr_tw_prev;
1301 struct llist_node *first;
1302
1303 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1304 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1305
1306 first = READ_ONCE(ctx->work_llist.first);
1307 do {
1308 nr_tw_prev = 0;
1309 if (first) {
1310 struct io_kiocb *first_req = container_of(first,
1311 struct io_kiocb,
1312 io_task_work.node);
1313 /*
1314 * Might be executed at any moment, rely on
1315 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1316 */
1317 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1318 }
1319 nr_tw = nr_tw_prev + 1;
1320 /* Large enough to fail the nr_wait comparison below */
1321 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1322 nr_tw = INT_MAX;
1323
1324 req->nr_tw = nr_tw;
1325 req->io_task_work.node.next = first;
1326 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1327 &req->io_task_work.node));
1328
1329 if (!first) {
1330 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1331 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1332 if (ctx->has_evfd)
1333 io_eventfd_signal(ctx);
1334 }
1335
1336 nr_wait = atomic_read(&ctx->cq_wait_nr);
1337 /* no one is waiting */
1338 if (!nr_wait)
1339 return;
1340 /* either not enough or the previous add has already woken it up */
1341 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1342 return;
1343 /* pairs with set_current_state() in io_cqring_wait() */
1344 smp_mb__after_atomic();
1345 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1346 }
1347
io_req_normal_work_add(struct io_kiocb * req)1348 static void io_req_normal_work_add(struct io_kiocb *req)
1349 {
1350 struct io_uring_task *tctx = req->task->io_uring;
1351 struct io_ring_ctx *ctx = req->ctx;
1352
1353 /* task_work already pending, we're done */
1354 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1355 return;
1356
1357 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1358 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1359
1360 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1361 return;
1362
1363 io_fallback_tw(tctx, false);
1364 }
1365
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1366 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1367 {
1368 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1369 rcu_read_lock();
1370 io_req_local_work_add(req, flags);
1371 rcu_read_unlock();
1372 } else {
1373 io_req_normal_work_add(req);
1374 }
1375 }
1376
io_move_task_work_from_local(struct io_ring_ctx * ctx)1377 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1378 {
1379 struct llist_node *node;
1380
1381 node = llist_del_all(&ctx->work_llist);
1382 while (node) {
1383 struct io_kiocb *req = container_of(node, struct io_kiocb,
1384 io_task_work.node);
1385
1386 node = node->next;
1387 io_req_normal_work_add(req);
1388 }
1389 }
1390
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1391 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1392 int min_events)
1393 {
1394 if (llist_empty(&ctx->work_llist))
1395 return false;
1396 if (events < min_events)
1397 return true;
1398 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1399 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1400 return false;
1401 }
1402
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events)1403 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1404 int min_events)
1405 {
1406 struct llist_node *node;
1407 unsigned int loops = 0;
1408 int ret = 0;
1409
1410 if (WARN_ON_ONCE(ctx->submitter_task != current))
1411 return -EEXIST;
1412 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1413 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1414 again:
1415 /*
1416 * llists are in reverse order, flip it back the right way before
1417 * running the pending items.
1418 */
1419 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1420 while (node) {
1421 struct llist_node *next = node->next;
1422 struct io_kiocb *req = container_of(node, struct io_kiocb,
1423 io_task_work.node);
1424 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1425 INDIRECT_CALL_2(req->io_task_work.func,
1426 io_poll_task_func, io_req_rw_complete,
1427 req, ts);
1428 ret++;
1429 node = next;
1430 }
1431 loops++;
1432
1433 if (io_run_local_work_continue(ctx, ret, min_events))
1434 goto again;
1435 if (ts->locked) {
1436 io_submit_flush_completions(ctx);
1437 if (io_run_local_work_continue(ctx, ret, min_events))
1438 goto again;
1439 }
1440
1441 trace_io_uring_local_work_run(ctx, ret, loops);
1442 return ret;
1443 }
1444
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1445 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1446 int min_events)
1447 {
1448 struct io_tw_state ts = { .locked = true, };
1449 int ret;
1450
1451 if (llist_empty(&ctx->work_llist))
1452 return 0;
1453
1454 ret = __io_run_local_work(ctx, &ts, min_events);
1455 /* shouldn't happen! */
1456 if (WARN_ON_ONCE(!ts.locked))
1457 mutex_lock(&ctx->uring_lock);
1458 return ret;
1459 }
1460
io_run_local_work(struct io_ring_ctx * ctx,int min_events)1461 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1462 {
1463 struct io_tw_state ts = {};
1464 int ret;
1465
1466 ts.locked = mutex_trylock(&ctx->uring_lock);
1467 ret = __io_run_local_work(ctx, &ts, min_events);
1468 if (ts.locked)
1469 mutex_unlock(&ctx->uring_lock);
1470
1471 return ret;
1472 }
1473
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1474 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1475 {
1476 io_tw_lock(req->ctx, ts);
1477 io_req_defer_failed(req, req->cqe.res);
1478 }
1479
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1480 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1481 {
1482 io_tw_lock(req->ctx, ts);
1483 /* req->task == current here, checking PF_EXITING is safe */
1484 if (unlikely(req->task->flags & PF_EXITING))
1485 io_req_defer_failed(req, -EFAULT);
1486 else if (req->flags & REQ_F_FORCE_ASYNC)
1487 io_queue_iowq(req);
1488 else
1489 io_queue_sqe(req);
1490 }
1491
io_req_task_queue_fail(struct io_kiocb * req,int ret)1492 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1493 {
1494 io_req_set_res(req, ret, 0);
1495 req->io_task_work.func = io_req_task_cancel;
1496 io_req_task_work_add(req);
1497 }
1498
io_req_task_queue(struct io_kiocb * req)1499 void io_req_task_queue(struct io_kiocb *req)
1500 {
1501 req->io_task_work.func = io_req_task_submit;
1502 io_req_task_work_add(req);
1503 }
1504
io_queue_next(struct io_kiocb * req)1505 void io_queue_next(struct io_kiocb *req)
1506 {
1507 struct io_kiocb *nxt = io_req_find_next(req);
1508
1509 if (nxt)
1510 io_req_task_queue(nxt);
1511 }
1512
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1513 static void io_free_batch_list(struct io_ring_ctx *ctx,
1514 struct io_wq_work_node *node)
1515 __must_hold(&ctx->uring_lock)
1516 {
1517 do {
1518 struct io_kiocb *req = container_of(node, struct io_kiocb,
1519 comp_list);
1520
1521 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1522 if (req->flags & REQ_F_REFCOUNT) {
1523 node = req->comp_list.next;
1524 if (!req_ref_put_and_test(req))
1525 continue;
1526 }
1527 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1528 struct async_poll *apoll = req->apoll;
1529
1530 if (apoll->double_poll)
1531 kfree(apoll->double_poll);
1532 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1533 kfree(apoll);
1534 req->flags &= ~REQ_F_POLLED;
1535 }
1536 if (req->flags & IO_REQ_LINK_FLAGS)
1537 io_queue_next(req);
1538 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1539 io_clean_op(req);
1540 }
1541 io_put_file(req);
1542
1543 io_req_put_rsrc_locked(req, ctx);
1544
1545 io_put_task(req->task);
1546 node = req->comp_list.next;
1547 io_req_add_to_cache(req, ctx);
1548 } while (node);
1549 }
1550
__io_submit_flush_completions(struct io_ring_ctx * ctx)1551 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1552 __must_hold(&ctx->uring_lock)
1553 {
1554 struct io_submit_state *state = &ctx->submit_state;
1555 struct io_wq_work_node *node;
1556
1557 __io_cq_lock(ctx);
1558 /* must come first to preserve CQE ordering in failure cases */
1559 if (state->cqes_count)
1560 __io_flush_post_cqes(ctx);
1561 __wq_list_for_each(node, &state->compl_reqs) {
1562 struct io_kiocb *req = container_of(node, struct io_kiocb,
1563 comp_list);
1564
1565 if (!(req->flags & REQ_F_CQE_SKIP) &&
1566 unlikely(!io_fill_cqe_req(ctx, req))) {
1567 if (ctx->lockless_cq) {
1568 spin_lock(&ctx->completion_lock);
1569 io_req_cqe_overflow(req);
1570 spin_unlock(&ctx->completion_lock);
1571 } else {
1572 io_req_cqe_overflow(req);
1573 }
1574 }
1575 }
1576 __io_cq_unlock_post(ctx);
1577
1578 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1579 io_free_batch_list(ctx, state->compl_reqs.first);
1580 INIT_WQ_LIST(&state->compl_reqs);
1581 }
1582 }
1583
io_cqring_events(struct io_ring_ctx * ctx)1584 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1585 {
1586 /* See comment at the top of this file */
1587 smp_rmb();
1588 return __io_cqring_events(ctx);
1589 }
1590
1591 /*
1592 * We can't just wait for polled events to come to us, we have to actively
1593 * find and complete them.
1594 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1595 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1596 {
1597 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1598 return;
1599
1600 mutex_lock(&ctx->uring_lock);
1601 while (!wq_list_empty(&ctx->iopoll_list)) {
1602 /* let it sleep and repeat later if can't complete a request */
1603 if (io_do_iopoll(ctx, true) == 0)
1604 break;
1605 /*
1606 * Ensure we allow local-to-the-cpu processing to take place,
1607 * in this case we need to ensure that we reap all events.
1608 * Also let task_work, etc. to progress by releasing the mutex
1609 */
1610 if (need_resched()) {
1611 mutex_unlock(&ctx->uring_lock);
1612 cond_resched();
1613 mutex_lock(&ctx->uring_lock);
1614 }
1615 }
1616 mutex_unlock(&ctx->uring_lock);
1617 }
1618
io_iopoll_check(struct io_ring_ctx * ctx,long min)1619 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1620 {
1621 unsigned int nr_events = 0;
1622 unsigned long check_cq;
1623
1624 lockdep_assert_held(&ctx->uring_lock);
1625
1626 if (!io_allowed_run_tw(ctx))
1627 return -EEXIST;
1628
1629 check_cq = READ_ONCE(ctx->check_cq);
1630 if (unlikely(check_cq)) {
1631 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1632 __io_cqring_overflow_flush(ctx);
1633 /*
1634 * Similarly do not spin if we have not informed the user of any
1635 * dropped CQE.
1636 */
1637 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1638 return -EBADR;
1639 }
1640 /*
1641 * Don't enter poll loop if we already have events pending.
1642 * If we do, we can potentially be spinning for commands that
1643 * already triggered a CQE (eg in error).
1644 */
1645 if (io_cqring_events(ctx))
1646 return 0;
1647
1648 do {
1649 int ret = 0;
1650
1651 /*
1652 * If a submit got punted to a workqueue, we can have the
1653 * application entering polling for a command before it gets
1654 * issued. That app will hold the uring_lock for the duration
1655 * of the poll right here, so we need to take a breather every
1656 * now and then to ensure that the issue has a chance to add
1657 * the poll to the issued list. Otherwise we can spin here
1658 * forever, while the workqueue is stuck trying to acquire the
1659 * very same mutex.
1660 */
1661 if (wq_list_empty(&ctx->iopoll_list) ||
1662 io_task_work_pending(ctx)) {
1663 u32 tail = ctx->cached_cq_tail;
1664
1665 (void) io_run_local_work_locked(ctx, min);
1666
1667 if (task_work_pending(current) ||
1668 wq_list_empty(&ctx->iopoll_list)) {
1669 mutex_unlock(&ctx->uring_lock);
1670 io_run_task_work();
1671 mutex_lock(&ctx->uring_lock);
1672 }
1673 /* some requests don't go through iopoll_list */
1674 if (tail != ctx->cached_cq_tail ||
1675 wq_list_empty(&ctx->iopoll_list))
1676 break;
1677 }
1678 ret = io_do_iopoll(ctx, !min);
1679 if (unlikely(ret < 0))
1680 return ret;
1681
1682 if (task_sigpending(current))
1683 return -EINTR;
1684 if (need_resched())
1685 break;
1686
1687 nr_events += ret;
1688 } while (nr_events < min);
1689
1690 return 0;
1691 }
1692
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1693 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1694 {
1695 if (ts->locked)
1696 io_req_complete_defer(req);
1697 else
1698 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1699 }
1700
1701 /*
1702 * After the iocb has been issued, it's safe to be found on the poll list.
1703 * Adding the kiocb to the list AFTER submission ensures that we don't
1704 * find it from a io_do_iopoll() thread before the issuer is done
1705 * accessing the kiocb cookie.
1706 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1707 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1708 {
1709 struct io_ring_ctx *ctx = req->ctx;
1710 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1711
1712 /* workqueue context doesn't hold uring_lock, grab it now */
1713 if (unlikely(needs_lock))
1714 mutex_lock(&ctx->uring_lock);
1715
1716 /*
1717 * Track whether we have multiple files in our lists. This will impact
1718 * how we do polling eventually, not spinning if we're on potentially
1719 * different devices.
1720 */
1721 if (wq_list_empty(&ctx->iopoll_list)) {
1722 ctx->poll_multi_queue = false;
1723 } else if (!ctx->poll_multi_queue) {
1724 struct io_kiocb *list_req;
1725
1726 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1727 comp_list);
1728 if (list_req->file != req->file)
1729 ctx->poll_multi_queue = true;
1730 }
1731
1732 /*
1733 * For fast devices, IO may have already completed. If it has, add
1734 * it to the front so we find it first.
1735 */
1736 if (READ_ONCE(req->iopoll_completed))
1737 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1738 else
1739 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1740
1741 if (unlikely(needs_lock)) {
1742 /*
1743 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1744 * in sq thread task context or in io worker task context. If
1745 * current task context is sq thread, we don't need to check
1746 * whether should wake up sq thread.
1747 */
1748 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1749 wq_has_sleeper(&ctx->sq_data->wait))
1750 wake_up(&ctx->sq_data->wait);
1751
1752 mutex_unlock(&ctx->uring_lock);
1753 }
1754 }
1755
io_file_get_flags(struct file * file)1756 unsigned int io_file_get_flags(struct file *file)
1757 {
1758 unsigned int res = 0;
1759
1760 if (S_ISREG(file_inode(file)->i_mode))
1761 res |= REQ_F_ISREG;
1762 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1763 res |= REQ_F_SUPPORT_NOWAIT;
1764 return res;
1765 }
1766
io_alloc_async_data(struct io_kiocb * req)1767 bool io_alloc_async_data(struct io_kiocb *req)
1768 {
1769 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1770 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1771 if (req->async_data) {
1772 req->flags |= REQ_F_ASYNC_DATA;
1773 return false;
1774 }
1775 return true;
1776 }
1777
io_req_prep_async(struct io_kiocb * req)1778 int io_req_prep_async(struct io_kiocb *req)
1779 {
1780 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1781 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1782
1783 /* assign early for deferred execution for non-fixed file */
1784 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1785 req->file = io_file_get_normal(req, req->cqe.fd);
1786 if (!cdef->prep_async)
1787 return 0;
1788 if (WARN_ON_ONCE(req_has_async_data(req)))
1789 return -EFAULT;
1790 if (!def->manual_alloc) {
1791 if (io_alloc_async_data(req))
1792 return -EAGAIN;
1793 }
1794 return cdef->prep_async(req);
1795 }
1796
io_get_sequence(struct io_kiocb * req)1797 static u32 io_get_sequence(struct io_kiocb *req)
1798 {
1799 u32 seq = req->ctx->cached_sq_head;
1800 struct io_kiocb *cur;
1801
1802 /* need original cached_sq_head, but it was increased for each req */
1803 io_for_each_link(cur, req)
1804 seq--;
1805 return seq;
1806 }
1807
io_drain_req(struct io_kiocb * req)1808 static __cold void io_drain_req(struct io_kiocb *req)
1809 __must_hold(&ctx->uring_lock)
1810 {
1811 struct io_ring_ctx *ctx = req->ctx;
1812 struct io_defer_entry *de;
1813 int ret;
1814 u32 seq = io_get_sequence(req);
1815
1816 /* Still need defer if there is pending req in defer list. */
1817 spin_lock(&ctx->completion_lock);
1818 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1819 spin_unlock(&ctx->completion_lock);
1820 queue:
1821 ctx->drain_active = false;
1822 io_req_task_queue(req);
1823 return;
1824 }
1825 spin_unlock(&ctx->completion_lock);
1826
1827 io_prep_async_link(req);
1828 de = kmalloc(sizeof(*de), GFP_KERNEL);
1829 if (!de) {
1830 ret = -ENOMEM;
1831 io_req_defer_failed(req, ret);
1832 return;
1833 }
1834
1835 spin_lock(&ctx->completion_lock);
1836 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1837 spin_unlock(&ctx->completion_lock);
1838 kfree(de);
1839 goto queue;
1840 }
1841
1842 trace_io_uring_defer(req);
1843 de->req = req;
1844 de->seq = seq;
1845 list_add_tail(&de->list, &ctx->defer_list);
1846 spin_unlock(&ctx->completion_lock);
1847 }
1848
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1849 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1850 unsigned int issue_flags)
1851 {
1852 if (req->file || !def->needs_file)
1853 return true;
1854
1855 if (req->flags & REQ_F_FIXED_FILE)
1856 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1857 else
1858 req->file = io_file_get_normal(req, req->cqe.fd);
1859
1860 return !!req->file;
1861 }
1862
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1863 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1864 {
1865 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1866 const struct cred *creds = NULL;
1867 int ret;
1868
1869 if (unlikely(!io_assign_file(req, def, issue_flags)))
1870 return -EBADF;
1871
1872 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1873 creds = override_creds(req->creds);
1874
1875 if (!def->audit_skip)
1876 audit_uring_entry(req->opcode);
1877
1878 ret = def->issue(req, issue_flags);
1879
1880 if (!def->audit_skip)
1881 audit_uring_exit(!ret, ret);
1882
1883 if (creds)
1884 revert_creds(creds);
1885
1886 if (ret == IOU_OK) {
1887 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1888 io_req_complete_defer(req);
1889 else
1890 io_req_complete_post(req, issue_flags);
1891
1892 return 0;
1893 }
1894
1895 if (ret != IOU_ISSUE_SKIP_COMPLETE)
1896 return ret;
1897
1898 /* If the op doesn't have a file, we're not polling for it */
1899 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1900 io_iopoll_req_issued(req, issue_flags);
1901
1902 return 0;
1903 }
1904
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1905 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1906 {
1907 io_tw_lock(req->ctx, ts);
1908 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1909 IO_URING_F_COMPLETE_DEFER);
1910 }
1911
io_wq_free_work(struct io_wq_work * work)1912 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1913 {
1914 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1915 struct io_kiocb *nxt = NULL;
1916
1917 if (req_ref_put_and_test(req)) {
1918 if (req->flags & IO_REQ_LINK_FLAGS)
1919 nxt = io_req_find_next(req);
1920 io_free_req(req);
1921 }
1922 return nxt ? &nxt->work : NULL;
1923 }
1924
io_wq_submit_work(struct io_wq_work * work)1925 void io_wq_submit_work(struct io_wq_work *work)
1926 {
1927 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1928 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1929 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1930 bool needs_poll = false;
1931 int ret = 0, err = -ECANCELED;
1932
1933 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1934 if (!(req->flags & REQ_F_REFCOUNT))
1935 __io_req_set_refcount(req, 2);
1936 else
1937 req_ref_get(req);
1938
1939 io_arm_ltimeout(req);
1940
1941 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1942 if (work->flags & IO_WQ_WORK_CANCEL) {
1943 fail:
1944 io_req_task_queue_fail(req, err);
1945 return;
1946 }
1947 if (!io_assign_file(req, def, issue_flags)) {
1948 err = -EBADF;
1949 work->flags |= IO_WQ_WORK_CANCEL;
1950 goto fail;
1951 }
1952
1953 if (req->flags & REQ_F_FORCE_ASYNC) {
1954 bool opcode_poll = def->pollin || def->pollout;
1955
1956 if (opcode_poll && file_can_poll(req->file)) {
1957 needs_poll = true;
1958 issue_flags |= IO_URING_F_NONBLOCK;
1959 }
1960 }
1961
1962 do {
1963 ret = io_issue_sqe(req, issue_flags);
1964 if (ret != -EAGAIN)
1965 break;
1966
1967 /*
1968 * If REQ_F_NOWAIT is set, then don't wait or retry with
1969 * poll. -EAGAIN is final for that case.
1970 */
1971 if (req->flags & REQ_F_NOWAIT)
1972 break;
1973
1974 /*
1975 * We can get EAGAIN for iopolled IO even though we're
1976 * forcing a sync submission from here, since we can't
1977 * wait for request slots on the block side.
1978 */
1979 if (!needs_poll) {
1980 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1981 break;
1982 if (io_wq_worker_stopped())
1983 break;
1984 cond_resched();
1985 continue;
1986 }
1987
1988 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1989 return;
1990 /* aborted or ready, in either case retry blocking */
1991 needs_poll = false;
1992 issue_flags &= ~IO_URING_F_NONBLOCK;
1993 } while (1);
1994
1995 /* avoid locking problems by failing it from a clean context */
1996 if (ret < 0)
1997 io_req_task_queue_fail(req, ret);
1998 }
1999
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)2000 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2001 unsigned int issue_flags)
2002 {
2003 struct io_ring_ctx *ctx = req->ctx;
2004 struct io_fixed_file *slot;
2005 struct file *file = NULL;
2006
2007 io_ring_submit_lock(ctx, issue_flags);
2008
2009 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2010 goto out;
2011 fd = array_index_nospec(fd, ctx->nr_user_files);
2012 slot = io_fixed_file_slot(&ctx->file_table, fd);
2013 file = io_slot_file(slot);
2014 req->flags |= io_slot_flags(slot);
2015 io_req_set_rsrc_node(req, ctx, 0);
2016 out:
2017 io_ring_submit_unlock(ctx, issue_flags);
2018 return file;
2019 }
2020
io_file_get_normal(struct io_kiocb * req,int fd)2021 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2022 {
2023 struct file *file = fget(fd);
2024
2025 trace_io_uring_file_get(req, fd);
2026
2027 /* we don't allow fixed io_uring files */
2028 if (file && io_is_uring_fops(file))
2029 io_req_track_inflight(req);
2030 return file;
2031 }
2032
io_queue_async(struct io_kiocb * req,int ret)2033 static void io_queue_async(struct io_kiocb *req, int ret)
2034 __must_hold(&req->ctx->uring_lock)
2035 {
2036 struct io_kiocb *linked_timeout;
2037
2038 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2039 io_req_defer_failed(req, ret);
2040 return;
2041 }
2042
2043 linked_timeout = io_prep_linked_timeout(req);
2044
2045 switch (io_arm_poll_handler(req, 0)) {
2046 case IO_APOLL_READY:
2047 io_kbuf_recycle(req, 0);
2048 io_req_task_queue(req);
2049 break;
2050 case IO_APOLL_ABORTED:
2051 io_kbuf_recycle(req, 0);
2052 io_queue_iowq(req);
2053 break;
2054 case IO_APOLL_OK:
2055 break;
2056 }
2057
2058 if (linked_timeout)
2059 io_queue_linked_timeout(linked_timeout);
2060 }
2061
io_queue_sqe(struct io_kiocb * req)2062 static inline void io_queue_sqe(struct io_kiocb *req)
2063 __must_hold(&req->ctx->uring_lock)
2064 {
2065 int ret;
2066
2067 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2068
2069 /*
2070 * We async punt it if the file wasn't marked NOWAIT, or if the file
2071 * doesn't support non-blocking read/write attempts
2072 */
2073 if (likely(!ret))
2074 io_arm_ltimeout(req);
2075 else
2076 io_queue_async(req, ret);
2077 }
2078
io_queue_sqe_fallback(struct io_kiocb * req)2079 static void io_queue_sqe_fallback(struct io_kiocb *req)
2080 __must_hold(&req->ctx->uring_lock)
2081 {
2082 if (unlikely(req->flags & REQ_F_FAIL)) {
2083 /*
2084 * We don't submit, fail them all, for that replace hardlinks
2085 * with normal links. Extra REQ_F_LINK is tolerated.
2086 */
2087 req->flags &= ~REQ_F_HARDLINK;
2088 req->flags |= REQ_F_LINK;
2089 io_req_defer_failed(req, req->cqe.res);
2090 } else {
2091 int ret = io_req_prep_async(req);
2092
2093 if (unlikely(ret)) {
2094 io_req_defer_failed(req, ret);
2095 return;
2096 }
2097
2098 if (unlikely(req->ctx->drain_active))
2099 io_drain_req(req);
2100 else
2101 io_queue_iowq(req);
2102 }
2103 }
2104
2105 /*
2106 * Check SQE restrictions (opcode and flags).
2107 *
2108 * Returns 'true' if SQE is allowed, 'false' otherwise.
2109 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2110 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2111 struct io_kiocb *req,
2112 unsigned int sqe_flags)
2113 {
2114 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2115 return false;
2116
2117 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2118 ctx->restrictions.sqe_flags_required)
2119 return false;
2120
2121 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2122 ctx->restrictions.sqe_flags_required))
2123 return false;
2124
2125 return true;
2126 }
2127
io_init_req_drain(struct io_kiocb * req)2128 static void io_init_req_drain(struct io_kiocb *req)
2129 {
2130 struct io_ring_ctx *ctx = req->ctx;
2131 struct io_kiocb *head = ctx->submit_state.link.head;
2132
2133 ctx->drain_active = true;
2134 if (head) {
2135 /*
2136 * If we need to drain a request in the middle of a link, drain
2137 * the head request and the next request/link after the current
2138 * link. Considering sequential execution of links,
2139 * REQ_F_IO_DRAIN will be maintained for every request of our
2140 * link.
2141 */
2142 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2143 ctx->drain_next = true;
2144 }
2145 }
2146
io_init_fail_req(struct io_kiocb * req,int err)2147 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2148 {
2149 /* ensure per-opcode data is cleared if we fail before prep */
2150 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2151 return err;
2152 }
2153
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2154 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2155 const struct io_uring_sqe *sqe)
2156 __must_hold(&ctx->uring_lock)
2157 {
2158 const struct io_issue_def *def;
2159 unsigned int sqe_flags;
2160 int personality;
2161 u8 opcode;
2162
2163 /* req is partially pre-initialised, see io_preinit_req() */
2164 req->opcode = opcode = READ_ONCE(sqe->opcode);
2165 /* same numerical values with corresponding REQ_F_*, safe to copy */
2166 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2167 req->cqe.user_data = READ_ONCE(sqe->user_data);
2168 req->file = NULL;
2169 req->rsrc_node = NULL;
2170 req->task = current;
2171
2172 if (unlikely(opcode >= IORING_OP_LAST)) {
2173 req->opcode = 0;
2174 return io_init_fail_req(req, -EINVAL);
2175 }
2176 def = &io_issue_defs[opcode];
2177 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2178 /* enforce forwards compatibility on users */
2179 if (sqe_flags & ~SQE_VALID_FLAGS)
2180 return io_init_fail_req(req, -EINVAL);
2181 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2182 if (!def->buffer_select)
2183 return io_init_fail_req(req, -EOPNOTSUPP);
2184 req->buf_index = READ_ONCE(sqe->buf_group);
2185 }
2186 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2187 ctx->drain_disabled = true;
2188 if (sqe_flags & IOSQE_IO_DRAIN) {
2189 if (ctx->drain_disabled)
2190 return io_init_fail_req(req, -EOPNOTSUPP);
2191 io_init_req_drain(req);
2192 }
2193 }
2194 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2195 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2196 return io_init_fail_req(req, -EACCES);
2197 /* knock it to the slow queue path, will be drained there */
2198 if (ctx->drain_active)
2199 req->flags |= REQ_F_FORCE_ASYNC;
2200 /* if there is no link, we're at "next" request and need to drain */
2201 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2202 ctx->drain_next = false;
2203 ctx->drain_active = true;
2204 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2205 }
2206 }
2207
2208 if (!def->ioprio && sqe->ioprio)
2209 return io_init_fail_req(req, -EINVAL);
2210 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2211 return io_init_fail_req(req, -EINVAL);
2212
2213 if (def->needs_file) {
2214 struct io_submit_state *state = &ctx->submit_state;
2215
2216 req->cqe.fd = READ_ONCE(sqe->fd);
2217
2218 /*
2219 * Plug now if we have more than 2 IO left after this, and the
2220 * target is potentially a read/write to block based storage.
2221 */
2222 if (state->need_plug && def->plug) {
2223 state->plug_started = true;
2224 state->need_plug = false;
2225 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2226 }
2227 }
2228
2229 personality = READ_ONCE(sqe->personality);
2230 if (personality) {
2231 int ret;
2232
2233 req->creds = xa_load(&ctx->personalities, personality);
2234 if (!req->creds)
2235 return io_init_fail_req(req, -EINVAL);
2236 get_cred(req->creds);
2237 ret = security_uring_override_creds(req->creds);
2238 if (ret) {
2239 put_cred(req->creds);
2240 return io_init_fail_req(req, ret);
2241 }
2242 req->flags |= REQ_F_CREDS;
2243 }
2244
2245 return def->prep(req, sqe);
2246 }
2247
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2248 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2249 struct io_kiocb *req, int ret)
2250 {
2251 struct io_ring_ctx *ctx = req->ctx;
2252 struct io_submit_link *link = &ctx->submit_state.link;
2253 struct io_kiocb *head = link->head;
2254
2255 trace_io_uring_req_failed(sqe, req, ret);
2256
2257 /*
2258 * Avoid breaking links in the middle as it renders links with SQPOLL
2259 * unusable. Instead of failing eagerly, continue assembling the link if
2260 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2261 * should find the flag and handle the rest.
2262 */
2263 req_fail_link_node(req, ret);
2264 if (head && !(head->flags & REQ_F_FAIL))
2265 req_fail_link_node(head, -ECANCELED);
2266
2267 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2268 if (head) {
2269 link->last->link = req;
2270 link->head = NULL;
2271 req = head;
2272 }
2273 io_queue_sqe_fallback(req);
2274 return ret;
2275 }
2276
2277 if (head)
2278 link->last->link = req;
2279 else
2280 link->head = req;
2281 link->last = req;
2282 return 0;
2283 }
2284
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2285 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2286 const struct io_uring_sqe *sqe)
2287 __must_hold(&ctx->uring_lock)
2288 {
2289 struct io_submit_link *link = &ctx->submit_state.link;
2290 int ret;
2291
2292 ret = io_init_req(ctx, req, sqe);
2293 if (unlikely(ret))
2294 return io_submit_fail_init(sqe, req, ret);
2295
2296 trace_io_uring_submit_req(req);
2297
2298 /*
2299 * If we already have a head request, queue this one for async
2300 * submittal once the head completes. If we don't have a head but
2301 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2302 * submitted sync once the chain is complete. If none of those
2303 * conditions are true (normal request), then just queue it.
2304 */
2305 if (unlikely(link->head)) {
2306 ret = io_req_prep_async(req);
2307 if (unlikely(ret))
2308 return io_submit_fail_init(sqe, req, ret);
2309
2310 trace_io_uring_link(req, link->head);
2311 link->last->link = req;
2312 link->last = req;
2313
2314 if (req->flags & IO_REQ_LINK_FLAGS)
2315 return 0;
2316 /* last request of the link, flush it */
2317 req = link->head;
2318 link->head = NULL;
2319 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2320 goto fallback;
2321
2322 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2323 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2324 if (req->flags & IO_REQ_LINK_FLAGS) {
2325 link->head = req;
2326 link->last = req;
2327 } else {
2328 fallback:
2329 io_queue_sqe_fallback(req);
2330 }
2331 return 0;
2332 }
2333
2334 io_queue_sqe(req);
2335 return 0;
2336 }
2337
2338 /*
2339 * Batched submission is done, ensure local IO is flushed out.
2340 */
io_submit_state_end(struct io_ring_ctx * ctx)2341 static void io_submit_state_end(struct io_ring_ctx *ctx)
2342 {
2343 struct io_submit_state *state = &ctx->submit_state;
2344
2345 if (unlikely(state->link.head))
2346 io_queue_sqe_fallback(state->link.head);
2347 /* flush only after queuing links as they can generate completions */
2348 io_submit_flush_completions(ctx);
2349 if (state->plug_started)
2350 blk_finish_plug(&state->plug);
2351 }
2352
2353 /*
2354 * Start submission side cache.
2355 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2356 static void io_submit_state_start(struct io_submit_state *state,
2357 unsigned int max_ios)
2358 {
2359 state->plug_started = false;
2360 state->need_plug = max_ios > 2;
2361 state->submit_nr = max_ios;
2362 /* set only head, no need to init link_last in advance */
2363 state->link.head = NULL;
2364 }
2365
io_commit_sqring(struct io_ring_ctx * ctx)2366 static void io_commit_sqring(struct io_ring_ctx *ctx)
2367 {
2368 struct io_rings *rings = ctx->rings;
2369
2370 /*
2371 * Ensure any loads from the SQEs are done at this point,
2372 * since once we write the new head, the application could
2373 * write new data to them.
2374 */
2375 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2376 }
2377
2378 /*
2379 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2380 * that is mapped by userspace. This means that care needs to be taken to
2381 * ensure that reads are stable, as we cannot rely on userspace always
2382 * being a good citizen. If members of the sqe are validated and then later
2383 * used, it's important that those reads are done through READ_ONCE() to
2384 * prevent a re-load down the line.
2385 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2386 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2387 {
2388 unsigned mask = ctx->sq_entries - 1;
2389 unsigned head = ctx->cached_sq_head++ & mask;
2390
2391 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2392 head = READ_ONCE(ctx->sq_array[head]);
2393 if (unlikely(head >= ctx->sq_entries)) {
2394 /* drop invalid entries */
2395 spin_lock(&ctx->completion_lock);
2396 ctx->cq_extra--;
2397 spin_unlock(&ctx->completion_lock);
2398 WRITE_ONCE(ctx->rings->sq_dropped,
2399 READ_ONCE(ctx->rings->sq_dropped) + 1);
2400 return false;
2401 }
2402 }
2403
2404 /*
2405 * The cached sq head (or cq tail) serves two purposes:
2406 *
2407 * 1) allows us to batch the cost of updating the user visible
2408 * head updates.
2409 * 2) allows the kernel side to track the head on its own, even
2410 * though the application is the one updating it.
2411 */
2412
2413 /* double index for 128-byte SQEs, twice as long */
2414 if (ctx->flags & IORING_SETUP_SQE128)
2415 head <<= 1;
2416 *sqe = &ctx->sq_sqes[head];
2417 return true;
2418 }
2419
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2420 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2421 __must_hold(&ctx->uring_lock)
2422 {
2423 unsigned int entries = io_sqring_entries(ctx);
2424 unsigned int left;
2425 int ret;
2426
2427 if (unlikely(!entries))
2428 return 0;
2429 /* make sure SQ entry isn't read before tail */
2430 ret = left = min(nr, entries);
2431 io_get_task_refs(left);
2432 io_submit_state_start(&ctx->submit_state, left);
2433
2434 do {
2435 const struct io_uring_sqe *sqe;
2436 struct io_kiocb *req;
2437
2438 if (unlikely(!io_alloc_req(ctx, &req)))
2439 break;
2440 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2441 io_req_add_to_cache(req, ctx);
2442 break;
2443 }
2444
2445 /*
2446 * Continue submitting even for sqe failure if the
2447 * ring was setup with IORING_SETUP_SUBMIT_ALL
2448 */
2449 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2450 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2451 left--;
2452 break;
2453 }
2454 } while (--left);
2455
2456 if (unlikely(left)) {
2457 ret -= left;
2458 /* try again if it submitted nothing and can't allocate a req */
2459 if (!ret && io_req_cache_empty(ctx))
2460 ret = -EAGAIN;
2461 current->io_uring->cached_refs += left;
2462 }
2463
2464 io_submit_state_end(ctx);
2465 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2466 io_commit_sqring(ctx);
2467 return ret;
2468 }
2469
2470 struct io_wait_queue {
2471 struct wait_queue_entry wq;
2472 struct io_ring_ctx *ctx;
2473 unsigned cq_tail;
2474 unsigned nr_timeouts;
2475 ktime_t timeout;
2476 };
2477
io_has_work(struct io_ring_ctx * ctx)2478 static inline bool io_has_work(struct io_ring_ctx *ctx)
2479 {
2480 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2481 !llist_empty(&ctx->work_llist);
2482 }
2483
io_should_wake(struct io_wait_queue * iowq)2484 static inline bool io_should_wake(struct io_wait_queue *iowq)
2485 {
2486 struct io_ring_ctx *ctx = iowq->ctx;
2487 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2488
2489 /*
2490 * Wake up if we have enough events, or if a timeout occurred since we
2491 * started waiting. For timeouts, we always want to return to userspace,
2492 * regardless of event count.
2493 */
2494 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2495 }
2496
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2497 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2498 int wake_flags, void *key)
2499 {
2500 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2501
2502 /*
2503 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2504 * the task, and the next invocation will do it.
2505 */
2506 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2507 return autoremove_wake_function(curr, mode, wake_flags, key);
2508 return -1;
2509 }
2510
io_run_task_work_sig(struct io_ring_ctx * ctx)2511 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2512 {
2513 if (!llist_empty(&ctx->work_llist)) {
2514 __set_current_state(TASK_RUNNING);
2515 if (io_run_local_work(ctx, INT_MAX) > 0)
2516 return 0;
2517 }
2518 if (io_run_task_work() > 0)
2519 return 0;
2520 if (task_sigpending(current))
2521 return -EINTR;
2522 return 0;
2523 }
2524
current_pending_io(void)2525 static bool current_pending_io(void)
2526 {
2527 struct io_uring_task *tctx = current->io_uring;
2528
2529 if (!tctx)
2530 return false;
2531 return percpu_counter_read_positive(&tctx->inflight);
2532 }
2533
2534 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq)2535 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2536 struct io_wait_queue *iowq)
2537 {
2538 int ret;
2539
2540 if (unlikely(READ_ONCE(ctx->check_cq)))
2541 return 1;
2542 if (unlikely(!llist_empty(&ctx->work_llist)))
2543 return 1;
2544 if (unlikely(task_work_pending(current)))
2545 return 1;
2546 if (unlikely(task_sigpending(current)))
2547 return -EINTR;
2548 if (unlikely(io_should_wake(iowq)))
2549 return 0;
2550
2551 /*
2552 * Mark us as being in io_wait if we have pending requests, so cpufreq
2553 * can take into account that the task is waiting for IO - turns out
2554 * to be important for low QD IO.
2555 */
2556 if (current_pending_io())
2557 current->in_iowait = 1;
2558 ret = 0;
2559 if (iowq->timeout == KTIME_MAX)
2560 schedule();
2561 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2562 ret = -ETIME;
2563 current->in_iowait = 0;
2564 return ret;
2565 }
2566
2567 /*
2568 * Wait until events become available, if we don't already have some. The
2569 * application must reap them itself, as they reside on the shared cq ring.
2570 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2571 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2572 const sigset_t __user *sig, size_t sigsz,
2573 struct __kernel_timespec __user *uts)
2574 {
2575 struct io_wait_queue iowq;
2576 struct io_rings *rings = ctx->rings;
2577 int ret;
2578
2579 if (!io_allowed_run_tw(ctx))
2580 return -EEXIST;
2581 if (!llist_empty(&ctx->work_llist))
2582 io_run_local_work(ctx, min_events);
2583 io_run_task_work();
2584 io_cqring_overflow_flush(ctx);
2585 /* if user messes with these they will just get an early return */
2586 if (__io_cqring_events_user(ctx) >= min_events)
2587 return 0;
2588
2589 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2590 iowq.wq.private = current;
2591 INIT_LIST_HEAD(&iowq.wq.entry);
2592 iowq.ctx = ctx;
2593 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2594 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2595 iowq.timeout = KTIME_MAX;
2596
2597 if (uts) {
2598 struct timespec64 ts;
2599
2600 if (get_timespec64(&ts, uts))
2601 return -EFAULT;
2602 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2603 }
2604
2605 if (sig) {
2606 #ifdef CONFIG_COMPAT
2607 if (in_compat_syscall())
2608 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2609 sigsz);
2610 else
2611 #endif
2612 ret = set_user_sigmask(sig, sigsz);
2613
2614 if (ret)
2615 return ret;
2616 }
2617
2618 trace_io_uring_cqring_wait(ctx, min_events);
2619 do {
2620 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2621 unsigned long check_cq;
2622
2623 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2624 atomic_set(&ctx->cq_wait_nr, nr_wait);
2625 set_current_state(TASK_INTERRUPTIBLE);
2626 } else {
2627 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2628 TASK_INTERRUPTIBLE);
2629 }
2630
2631 ret = io_cqring_wait_schedule(ctx, &iowq);
2632 __set_current_state(TASK_RUNNING);
2633 atomic_set(&ctx->cq_wait_nr, 0);
2634
2635 /*
2636 * Run task_work after scheduling and before io_should_wake().
2637 * If we got woken because of task_work being processed, run it
2638 * now rather than let the caller do another wait loop.
2639 */
2640 if (!llist_empty(&ctx->work_llist))
2641 io_run_local_work(ctx, nr_wait);
2642 io_run_task_work();
2643
2644 /*
2645 * Non-local task_work will be run on exit to userspace, but
2646 * if we're using DEFER_TASKRUN, then we could have waited
2647 * with a timeout for a number of requests. If the timeout
2648 * hits, we could have some requests ready to process. Ensure
2649 * this break is _after_ we have run task_work, to avoid
2650 * deferring running potentially pending requests until the
2651 * next time we wait for events.
2652 */
2653 if (ret < 0)
2654 break;
2655
2656 check_cq = READ_ONCE(ctx->check_cq);
2657 if (unlikely(check_cq)) {
2658 /* let the caller flush overflows, retry */
2659 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2660 io_cqring_do_overflow_flush(ctx);
2661 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2662 ret = -EBADR;
2663 break;
2664 }
2665 }
2666
2667 if (io_should_wake(&iowq)) {
2668 ret = 0;
2669 break;
2670 }
2671 cond_resched();
2672 } while (1);
2673
2674 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2675 finish_wait(&ctx->cq_wait, &iowq.wq);
2676 restore_saved_sigmask_unless(ret == -EINTR);
2677
2678 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2679 }
2680
io_mem_free(void * ptr)2681 void io_mem_free(void *ptr)
2682 {
2683 if (!ptr)
2684 return;
2685
2686 folio_put(virt_to_folio(ptr));
2687 }
2688
io_pages_free(struct page *** pages,int npages)2689 static void io_pages_free(struct page ***pages, int npages)
2690 {
2691 struct page **page_array;
2692 int i;
2693
2694 if (!pages)
2695 return;
2696
2697 page_array = *pages;
2698 if (!page_array)
2699 return;
2700
2701 for (i = 0; i < npages; i++)
2702 unpin_user_page(page_array[i]);
2703 kvfree(page_array);
2704 *pages = NULL;
2705 }
2706
__io_uaddr_map(struct page *** pages,unsigned short * npages,unsigned long uaddr,size_t size)2707 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2708 unsigned long uaddr, size_t size)
2709 {
2710 struct page **page_array;
2711 unsigned int nr_pages;
2712 void *page_addr;
2713 int ret, i, pinned;
2714
2715 *npages = 0;
2716
2717 if (uaddr & (PAGE_SIZE - 1) || !size)
2718 return ERR_PTR(-EINVAL);
2719
2720 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2721 if (nr_pages > USHRT_MAX)
2722 return ERR_PTR(-EINVAL);
2723 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2724 if (!page_array)
2725 return ERR_PTR(-ENOMEM);
2726
2727
2728 pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2729 page_array);
2730 if (pinned != nr_pages) {
2731 ret = (pinned < 0) ? pinned : -EFAULT;
2732 goto free_pages;
2733 }
2734
2735 page_addr = page_address(page_array[0]);
2736 for (i = 0; i < nr_pages; i++) {
2737 ret = -EINVAL;
2738
2739 /*
2740 * Can't support mapping user allocated ring memory on 32-bit
2741 * archs where it could potentially reside in highmem. Just
2742 * fail those with -EINVAL, just like we did on kernels that
2743 * didn't support this feature.
2744 */
2745 if (PageHighMem(page_array[i]))
2746 goto free_pages;
2747
2748 /*
2749 * No support for discontig pages for now, should either be a
2750 * single normal page, or a huge page. Later on we can add
2751 * support for remapping discontig pages, for now we will
2752 * just fail them with EINVAL.
2753 */
2754 if (page_address(page_array[i]) != page_addr)
2755 goto free_pages;
2756 page_addr += PAGE_SIZE;
2757 }
2758
2759 *pages = page_array;
2760 *npages = nr_pages;
2761 return page_to_virt(page_array[0]);
2762
2763 free_pages:
2764 io_pages_free(&page_array, pinned > 0 ? pinned : 0);
2765 return ERR_PTR(ret);
2766 }
2767
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2768 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2769 size_t size)
2770 {
2771 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2772 size);
2773 }
2774
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2775 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2776 size_t size)
2777 {
2778 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2779 size);
2780 }
2781
io_rings_free(struct io_ring_ctx * ctx)2782 static void io_rings_free(struct io_ring_ctx *ctx)
2783 {
2784 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2785 io_mem_free(ctx->rings);
2786 io_mem_free(ctx->sq_sqes);
2787 } else {
2788 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2789 ctx->n_ring_pages = 0;
2790 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2791 ctx->n_sqe_pages = 0;
2792 }
2793
2794 ctx->rings = NULL;
2795 ctx->sq_sqes = NULL;
2796 }
2797
io_mem_alloc(size_t size)2798 void *io_mem_alloc(size_t size)
2799 {
2800 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2801 void *ret;
2802
2803 ret = (void *) __get_free_pages(gfp, get_order(size));
2804 if (ret)
2805 return ret;
2806 return ERR_PTR(-ENOMEM);
2807 }
2808
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2809 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2810 unsigned int cq_entries, size_t *sq_offset)
2811 {
2812 struct io_rings *rings;
2813 size_t off, sq_array_size;
2814
2815 off = struct_size(rings, cqes, cq_entries);
2816 if (off == SIZE_MAX)
2817 return SIZE_MAX;
2818 if (ctx->flags & IORING_SETUP_CQE32) {
2819 if (check_shl_overflow(off, 1, &off))
2820 return SIZE_MAX;
2821 }
2822
2823 #ifdef CONFIG_SMP
2824 off = ALIGN(off, SMP_CACHE_BYTES);
2825 if (off == 0)
2826 return SIZE_MAX;
2827 #endif
2828
2829 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2830 if (sq_offset)
2831 *sq_offset = SIZE_MAX;
2832 return off;
2833 }
2834
2835 if (sq_offset)
2836 *sq_offset = off;
2837
2838 sq_array_size = array_size(sizeof(u32), sq_entries);
2839 if (sq_array_size == SIZE_MAX)
2840 return SIZE_MAX;
2841
2842 if (check_add_overflow(off, sq_array_size, &off))
2843 return SIZE_MAX;
2844
2845 return off;
2846 }
2847
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2848 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2849 unsigned int eventfd_async)
2850 {
2851 struct io_ev_fd *ev_fd;
2852 __s32 __user *fds = arg;
2853 int fd;
2854
2855 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2856 lockdep_is_held(&ctx->uring_lock));
2857 if (ev_fd)
2858 return -EBUSY;
2859
2860 if (copy_from_user(&fd, fds, sizeof(*fds)))
2861 return -EFAULT;
2862
2863 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2864 if (!ev_fd)
2865 return -ENOMEM;
2866
2867 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2868 if (IS_ERR(ev_fd->cq_ev_fd)) {
2869 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2870 kfree(ev_fd);
2871 return ret;
2872 }
2873
2874 spin_lock(&ctx->completion_lock);
2875 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2876 spin_unlock(&ctx->completion_lock);
2877
2878 ev_fd->eventfd_async = eventfd_async;
2879 ctx->has_evfd = true;
2880 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2881 atomic_set(&ev_fd->refs, 1);
2882 atomic_set(&ev_fd->ops, 0);
2883 return 0;
2884 }
2885
io_eventfd_unregister(struct io_ring_ctx * ctx)2886 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2887 {
2888 struct io_ev_fd *ev_fd;
2889
2890 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2891 lockdep_is_held(&ctx->uring_lock));
2892 if (ev_fd) {
2893 ctx->has_evfd = false;
2894 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2895 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2896 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2897 return 0;
2898 }
2899
2900 return -ENXIO;
2901 }
2902
io_req_caches_free(struct io_ring_ctx * ctx)2903 static void io_req_caches_free(struct io_ring_ctx *ctx)
2904 {
2905 struct io_kiocb *req;
2906 int nr = 0;
2907
2908 mutex_lock(&ctx->uring_lock);
2909 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2910
2911 while (!io_req_cache_empty(ctx)) {
2912 req = io_extract_req(ctx);
2913 kmem_cache_free(req_cachep, req);
2914 nr++;
2915 }
2916 if (nr)
2917 percpu_ref_put_many(&ctx->refs, nr);
2918 mutex_unlock(&ctx->uring_lock);
2919 }
2920
io_rsrc_node_cache_free(struct io_cache_entry * entry)2921 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2922 {
2923 kfree(container_of(entry, struct io_rsrc_node, cache));
2924 }
2925
io_ring_ctx_free(struct io_ring_ctx * ctx)2926 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2927 {
2928 io_sq_thread_finish(ctx);
2929 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2930 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2931 return;
2932
2933 mutex_lock(&ctx->uring_lock);
2934 if (ctx->buf_data)
2935 __io_sqe_buffers_unregister(ctx);
2936 if (ctx->file_data)
2937 __io_sqe_files_unregister(ctx);
2938 io_cqring_overflow_kill(ctx);
2939 io_eventfd_unregister(ctx);
2940 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2941 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2942 io_destroy_buffers(ctx);
2943 mutex_unlock(&ctx->uring_lock);
2944 if (ctx->sq_creds)
2945 put_cred(ctx->sq_creds);
2946 if (ctx->submitter_task)
2947 put_task_struct(ctx->submitter_task);
2948
2949 /* there are no registered resources left, nobody uses it */
2950 if (ctx->rsrc_node)
2951 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2952
2953 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2954 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2955
2956 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2957 if (ctx->mm_account) {
2958 mmdrop(ctx->mm_account);
2959 ctx->mm_account = NULL;
2960 }
2961 io_rings_free(ctx);
2962 io_kbuf_mmap_list_free(ctx);
2963
2964 percpu_ref_exit(&ctx->refs);
2965 free_uid(ctx->user);
2966 io_req_caches_free(ctx);
2967 if (ctx->hash_map)
2968 io_wq_put_hash(ctx->hash_map);
2969 kfree(ctx->cancel_table.hbs);
2970 kfree(ctx->cancel_table_locked.hbs);
2971 xa_destroy(&ctx->io_bl_xa);
2972 kfree(ctx);
2973 }
2974
io_activate_pollwq_cb(struct callback_head * cb)2975 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2976 {
2977 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2978 poll_wq_task_work);
2979
2980 mutex_lock(&ctx->uring_lock);
2981 ctx->poll_activated = true;
2982 mutex_unlock(&ctx->uring_lock);
2983
2984 /*
2985 * Wake ups for some events between start of polling and activation
2986 * might've been lost due to loose synchronisation.
2987 */
2988 wake_up_all(&ctx->poll_wq);
2989 percpu_ref_put(&ctx->refs);
2990 }
2991
io_activate_pollwq(struct io_ring_ctx * ctx)2992 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2993 {
2994 spin_lock(&ctx->completion_lock);
2995 /* already activated or in progress */
2996 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2997 goto out;
2998 if (WARN_ON_ONCE(!ctx->task_complete))
2999 goto out;
3000 if (!ctx->submitter_task)
3001 goto out;
3002 /*
3003 * with ->submitter_task only the submitter task completes requests, we
3004 * only need to sync with it, which is done by injecting a tw
3005 */
3006 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3007 percpu_ref_get(&ctx->refs);
3008 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3009 percpu_ref_put(&ctx->refs);
3010 out:
3011 spin_unlock(&ctx->completion_lock);
3012 }
3013
io_uring_poll(struct file * file,poll_table * wait)3014 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3015 {
3016 struct io_ring_ctx *ctx = file->private_data;
3017 __poll_t mask = 0;
3018
3019 if (unlikely(!ctx->poll_activated))
3020 io_activate_pollwq(ctx);
3021
3022 poll_wait(file, &ctx->poll_wq, wait);
3023 /*
3024 * synchronizes with barrier from wq_has_sleeper call in
3025 * io_commit_cqring
3026 */
3027 smp_rmb();
3028 if (!io_sqring_full(ctx))
3029 mask |= EPOLLOUT | EPOLLWRNORM;
3030
3031 /*
3032 * Don't flush cqring overflow list here, just do a simple check.
3033 * Otherwise there could possible be ABBA deadlock:
3034 * CPU0 CPU1
3035 * ---- ----
3036 * lock(&ctx->uring_lock);
3037 * lock(&ep->mtx);
3038 * lock(&ctx->uring_lock);
3039 * lock(&ep->mtx);
3040 *
3041 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3042 * pushes them to do the flush.
3043 */
3044
3045 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3046 mask |= EPOLLIN | EPOLLRDNORM;
3047
3048 return mask;
3049 }
3050
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)3051 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3052 {
3053 const struct cred *creds;
3054
3055 creds = xa_erase(&ctx->personalities, id);
3056 if (creds) {
3057 put_cred(creds);
3058 return 0;
3059 }
3060
3061 return -EINVAL;
3062 }
3063
3064 struct io_tctx_exit {
3065 struct callback_head task_work;
3066 struct completion completion;
3067 struct io_ring_ctx *ctx;
3068 };
3069
io_tctx_exit_cb(struct callback_head * cb)3070 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3071 {
3072 struct io_uring_task *tctx = current->io_uring;
3073 struct io_tctx_exit *work;
3074
3075 work = container_of(cb, struct io_tctx_exit, task_work);
3076 /*
3077 * When @in_cancel, we're in cancellation and it's racy to remove the
3078 * node. It'll be removed by the end of cancellation, just ignore it.
3079 * tctx can be NULL if the queueing of this task_work raced with
3080 * work cancelation off the exec path.
3081 */
3082 if (tctx && !atomic_read(&tctx->in_cancel))
3083 io_uring_del_tctx_node((unsigned long)work->ctx);
3084 complete(&work->completion);
3085 }
3086
io_cancel_ctx_cb(struct io_wq_work * work,void * data)3087 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3088 {
3089 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3090
3091 return req->ctx == data;
3092 }
3093
io_ring_exit_work(struct work_struct * work)3094 static __cold void io_ring_exit_work(struct work_struct *work)
3095 {
3096 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3097 unsigned long timeout = jiffies + HZ * 60 * 5;
3098 unsigned long interval = HZ / 20;
3099 struct io_tctx_exit exit;
3100 struct io_tctx_node *node;
3101 int ret;
3102
3103 /*
3104 * If we're doing polled IO and end up having requests being
3105 * submitted async (out-of-line), then completions can come in while
3106 * we're waiting for refs to drop. We need to reap these manually,
3107 * as nobody else will be looking for them.
3108 */
3109 do {
3110 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3111 mutex_lock(&ctx->uring_lock);
3112 io_cqring_overflow_kill(ctx);
3113 mutex_unlock(&ctx->uring_lock);
3114 }
3115
3116 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3117 io_move_task_work_from_local(ctx);
3118
3119 while (io_uring_try_cancel_requests(ctx, NULL, true))
3120 cond_resched();
3121
3122 if (ctx->sq_data) {
3123 struct io_sq_data *sqd = ctx->sq_data;
3124 struct task_struct *tsk;
3125
3126 io_sq_thread_park(sqd);
3127 tsk = sqd->thread;
3128 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3129 io_wq_cancel_cb(tsk->io_uring->io_wq,
3130 io_cancel_ctx_cb, ctx, true);
3131 io_sq_thread_unpark(sqd);
3132 }
3133
3134 io_req_caches_free(ctx);
3135
3136 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3137 /* there is little hope left, don't run it too often */
3138 interval = HZ * 60;
3139 }
3140 /*
3141 * This is really an uninterruptible wait, as it has to be
3142 * complete. But it's also run from a kworker, which doesn't
3143 * take signals, so it's fine to make it interruptible. This
3144 * avoids scenarios where we knowingly can wait much longer
3145 * on completions, for example if someone does a SIGSTOP on
3146 * a task that needs to finish task_work to make this loop
3147 * complete. That's a synthetic situation that should not
3148 * cause a stuck task backtrace, and hence a potential panic
3149 * on stuck tasks if that is enabled.
3150 */
3151 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3152
3153 init_completion(&exit.completion);
3154 init_task_work(&exit.task_work, io_tctx_exit_cb);
3155 exit.ctx = ctx;
3156
3157 mutex_lock(&ctx->uring_lock);
3158 while (!list_empty(&ctx->tctx_list)) {
3159 WARN_ON_ONCE(time_after(jiffies, timeout));
3160
3161 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3162 ctx_node);
3163 /* don't spin on a single task if cancellation failed */
3164 list_rotate_left(&ctx->tctx_list);
3165 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3166 if (WARN_ON_ONCE(ret))
3167 continue;
3168
3169 mutex_unlock(&ctx->uring_lock);
3170 /*
3171 * See comment above for
3172 * wait_for_completion_interruptible_timeout() on why this
3173 * wait is marked as interruptible.
3174 */
3175 wait_for_completion_interruptible(&exit.completion);
3176 mutex_lock(&ctx->uring_lock);
3177 }
3178 mutex_unlock(&ctx->uring_lock);
3179 spin_lock(&ctx->completion_lock);
3180 spin_unlock(&ctx->completion_lock);
3181
3182 /* pairs with RCU read section in io_req_local_work_add() */
3183 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3184 synchronize_rcu();
3185
3186 io_ring_ctx_free(ctx);
3187 }
3188
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3189 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3190 {
3191 unsigned long index;
3192 struct creds *creds;
3193
3194 mutex_lock(&ctx->uring_lock);
3195 percpu_ref_kill(&ctx->refs);
3196 xa_for_each(&ctx->personalities, index, creds)
3197 io_unregister_personality(ctx, index);
3198 if (ctx->rings)
3199 io_poll_remove_all(ctx, NULL, true);
3200 mutex_unlock(&ctx->uring_lock);
3201
3202 /*
3203 * If we failed setting up the ctx, we might not have any rings
3204 * and therefore did not submit any requests
3205 */
3206 if (ctx->rings)
3207 io_kill_timeouts(ctx, NULL, true);
3208
3209 flush_delayed_work(&ctx->fallback_work);
3210
3211 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3212 /*
3213 * Use system_unbound_wq to avoid spawning tons of event kworkers
3214 * if we're exiting a ton of rings at the same time. It just adds
3215 * noise and overhead, there's no discernable change in runtime
3216 * over using system_wq.
3217 */
3218 queue_work(iou_wq, &ctx->exit_work);
3219 }
3220
io_uring_release(struct inode * inode,struct file * file)3221 static int io_uring_release(struct inode *inode, struct file *file)
3222 {
3223 struct io_ring_ctx *ctx = file->private_data;
3224
3225 file->private_data = NULL;
3226 io_ring_ctx_wait_and_kill(ctx);
3227 return 0;
3228 }
3229
3230 struct io_task_cancel {
3231 struct task_struct *task;
3232 bool all;
3233 };
3234
io_cancel_task_cb(struct io_wq_work * work,void * data)3235 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3236 {
3237 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3238 struct io_task_cancel *cancel = data;
3239
3240 return io_match_task_safe(req, cancel->task, cancel->all);
3241 }
3242
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3243 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3244 struct task_struct *task,
3245 bool cancel_all)
3246 {
3247 struct io_defer_entry *de;
3248 LIST_HEAD(list);
3249
3250 spin_lock(&ctx->completion_lock);
3251 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3252 if (io_match_task_safe(de->req, task, cancel_all)) {
3253 list_cut_position(&list, &ctx->defer_list, &de->list);
3254 break;
3255 }
3256 }
3257 spin_unlock(&ctx->completion_lock);
3258 if (list_empty(&list))
3259 return false;
3260
3261 while (!list_empty(&list)) {
3262 de = list_first_entry(&list, struct io_defer_entry, list);
3263 list_del_init(&de->list);
3264 io_req_task_queue_fail(de->req, -ECANCELED);
3265 kfree(de);
3266 }
3267 return true;
3268 }
3269
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3270 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3271 {
3272 struct io_tctx_node *node;
3273 enum io_wq_cancel cret;
3274 bool ret = false;
3275
3276 mutex_lock(&ctx->uring_lock);
3277 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3278 struct io_uring_task *tctx = node->task->io_uring;
3279
3280 /*
3281 * io_wq will stay alive while we hold uring_lock, because it's
3282 * killed after ctx nodes, which requires to take the lock.
3283 */
3284 if (!tctx || !tctx->io_wq)
3285 continue;
3286 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3287 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3288 }
3289 mutex_unlock(&ctx->uring_lock);
3290
3291 return ret;
3292 }
3293
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3294 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3295 struct task_struct *task,
3296 bool cancel_all)
3297 {
3298 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3299 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3300 enum io_wq_cancel cret;
3301 bool ret = false;
3302
3303 /* set it so io_req_local_work_add() would wake us up */
3304 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3305 atomic_set(&ctx->cq_wait_nr, 1);
3306 smp_mb();
3307 }
3308
3309 /* failed during ring init, it couldn't have issued any requests */
3310 if (!ctx->rings)
3311 return false;
3312
3313 if (!task) {
3314 ret |= io_uring_try_cancel_iowq(ctx);
3315 } else if (tctx && tctx->io_wq) {
3316 /*
3317 * Cancels requests of all rings, not only @ctx, but
3318 * it's fine as the task is in exit/exec.
3319 */
3320 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3321 &cancel, true);
3322 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3323 }
3324
3325 /* SQPOLL thread does its own polling */
3326 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3327 (ctx->sq_data && ctx->sq_data->thread == current)) {
3328 while (!wq_list_empty(&ctx->iopoll_list)) {
3329 io_iopoll_try_reap_events(ctx);
3330 ret = true;
3331 cond_resched();
3332 }
3333 }
3334
3335 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3336 io_allowed_defer_tw_run(ctx))
3337 ret |= io_run_local_work(ctx, INT_MAX) > 0;
3338 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3339 mutex_lock(&ctx->uring_lock);
3340 ret |= io_poll_remove_all(ctx, task, cancel_all);
3341 mutex_unlock(&ctx->uring_lock);
3342 ret |= io_kill_timeouts(ctx, task, cancel_all);
3343 if (task)
3344 ret |= io_run_task_work() > 0;
3345 return ret;
3346 }
3347
tctx_inflight(struct io_uring_task * tctx,bool tracked)3348 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3349 {
3350 if (tracked)
3351 return atomic_read(&tctx->inflight_tracked);
3352 return percpu_counter_sum(&tctx->inflight);
3353 }
3354
3355 /*
3356 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3357 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3358 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3359 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3360 {
3361 struct io_uring_task *tctx = current->io_uring;
3362 struct io_ring_ctx *ctx;
3363 struct io_tctx_node *node;
3364 unsigned long index;
3365 s64 inflight;
3366 DEFINE_WAIT(wait);
3367
3368 WARN_ON_ONCE(sqd && sqd->thread != current);
3369
3370 if (!current->io_uring)
3371 return;
3372 if (tctx->io_wq)
3373 io_wq_exit_start(tctx->io_wq);
3374
3375 atomic_inc(&tctx->in_cancel);
3376 do {
3377 bool loop = false;
3378
3379 io_uring_drop_tctx_refs(current);
3380 if (!tctx_inflight(tctx, !cancel_all))
3381 break;
3382
3383 /* read completions before cancelations */
3384 inflight = tctx_inflight(tctx, false);
3385 if (!inflight)
3386 break;
3387
3388 if (!sqd) {
3389 xa_for_each(&tctx->xa, index, node) {
3390 /* sqpoll task will cancel all its requests */
3391 if (node->ctx->sq_data)
3392 continue;
3393 loop |= io_uring_try_cancel_requests(node->ctx,
3394 current, cancel_all);
3395 }
3396 } else {
3397 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3398 loop |= io_uring_try_cancel_requests(ctx,
3399 current,
3400 cancel_all);
3401 }
3402
3403 if (loop) {
3404 cond_resched();
3405 continue;
3406 }
3407
3408 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3409 io_run_task_work();
3410 io_uring_drop_tctx_refs(current);
3411 xa_for_each(&tctx->xa, index, node) {
3412 if (!llist_empty(&node->ctx->work_llist)) {
3413 WARN_ON_ONCE(node->ctx->submitter_task &&
3414 node->ctx->submitter_task != current);
3415 goto end_wait;
3416 }
3417 }
3418 /*
3419 * If we've seen completions, retry without waiting. This
3420 * avoids a race where a completion comes in before we did
3421 * prepare_to_wait().
3422 */
3423 if (inflight == tctx_inflight(tctx, !cancel_all))
3424 schedule();
3425 end_wait:
3426 finish_wait(&tctx->wait, &wait);
3427 } while (1);
3428
3429 io_uring_clean_tctx(tctx);
3430 if (cancel_all) {
3431 /*
3432 * We shouldn't run task_works after cancel, so just leave
3433 * ->in_cancel set for normal exit.
3434 */
3435 atomic_dec(&tctx->in_cancel);
3436 /* for exec all current's requests should be gone, kill tctx */
3437 __io_uring_free(current);
3438 }
3439 }
3440
__io_uring_cancel(bool cancel_all)3441 void __io_uring_cancel(bool cancel_all)
3442 {
3443 io_uring_unreg_ringfd();
3444 io_uring_cancel_generic(cancel_all, NULL);
3445 }
3446
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3447 static void *io_uring_validate_mmap_request(struct file *file,
3448 loff_t pgoff, size_t sz)
3449 {
3450 struct io_ring_ctx *ctx = file->private_data;
3451 loff_t offset = pgoff << PAGE_SHIFT;
3452 struct page *page;
3453 void *ptr;
3454
3455 switch (offset & IORING_OFF_MMAP_MASK) {
3456 case IORING_OFF_SQ_RING:
3457 case IORING_OFF_CQ_RING:
3458 /* Don't allow mmap if the ring was setup without it */
3459 if (ctx->flags & IORING_SETUP_NO_MMAP)
3460 return ERR_PTR(-EINVAL);
3461 ptr = ctx->rings;
3462 break;
3463 case IORING_OFF_SQES:
3464 /* Don't allow mmap if the ring was setup without it */
3465 if (ctx->flags & IORING_SETUP_NO_MMAP)
3466 return ERR_PTR(-EINVAL);
3467 ptr = ctx->sq_sqes;
3468 break;
3469 case IORING_OFF_PBUF_RING: {
3470 struct io_buffer_list *bl;
3471 unsigned int bgid;
3472
3473 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3474 bl = io_pbuf_get_bl(ctx, bgid);
3475 if (IS_ERR(bl))
3476 return bl;
3477 ptr = bl->buf_ring;
3478 io_put_bl(ctx, bl);
3479 break;
3480 }
3481 default:
3482 return ERR_PTR(-EINVAL);
3483 }
3484
3485 page = virt_to_head_page(ptr);
3486 if (sz > page_size(page))
3487 return ERR_PTR(-EINVAL);
3488
3489 return ptr;
3490 }
3491
3492 #ifdef CONFIG_MMU
3493
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3494 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3495 {
3496 size_t sz = vma->vm_end - vma->vm_start;
3497 unsigned long pfn;
3498 void *ptr;
3499
3500 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3501 if (IS_ERR(ptr))
3502 return PTR_ERR(ptr);
3503
3504 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3505 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3506 }
3507
io_uring_mmu_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3508 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3509 unsigned long addr, unsigned long len,
3510 unsigned long pgoff, unsigned long flags)
3511 {
3512 void *ptr;
3513
3514 /*
3515 * Do not allow to map to user-provided address to avoid breaking the
3516 * aliasing rules. Userspace is not able to guess the offset address of
3517 * kernel kmalloc()ed memory area.
3518 */
3519 if (addr)
3520 return -EINVAL;
3521
3522 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3523 if (IS_ERR(ptr))
3524 return -ENOMEM;
3525
3526 /*
3527 * Some architectures have strong cache aliasing requirements.
3528 * For such architectures we need a coherent mapping which aliases
3529 * kernel memory *and* userspace memory. To achieve that:
3530 * - use a NULL file pointer to reference physical memory, and
3531 * - use the kernel virtual address of the shared io_uring context
3532 * (instead of the userspace-provided address, which has to be 0UL
3533 * anyway).
3534 * - use the same pgoff which the get_unmapped_area() uses to
3535 * calculate the page colouring.
3536 * For architectures without such aliasing requirements, the
3537 * architecture will return any suitable mapping because addr is 0.
3538 */
3539 filp = NULL;
3540 flags |= MAP_SHARED;
3541 pgoff = 0; /* has been translated to ptr above */
3542 #ifdef SHM_COLOUR
3543 addr = (uintptr_t) ptr;
3544 pgoff = addr >> PAGE_SHIFT;
3545 #else
3546 addr = 0UL;
3547 #endif
3548 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3549 }
3550
3551 #else /* !CONFIG_MMU */
3552
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3553 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3554 {
3555 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3556 }
3557
io_uring_nommu_mmap_capabilities(struct file * file)3558 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3559 {
3560 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3561 }
3562
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3563 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3564 unsigned long addr, unsigned long len,
3565 unsigned long pgoff, unsigned long flags)
3566 {
3567 void *ptr;
3568
3569 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3570 if (IS_ERR(ptr))
3571 return PTR_ERR(ptr);
3572
3573 return (unsigned long) ptr;
3574 }
3575
3576 #endif /* !CONFIG_MMU */
3577
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3578 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3579 {
3580 if (flags & IORING_ENTER_EXT_ARG) {
3581 struct io_uring_getevents_arg arg;
3582
3583 if (argsz != sizeof(arg))
3584 return -EINVAL;
3585 if (copy_from_user(&arg, argp, sizeof(arg)))
3586 return -EFAULT;
3587 }
3588 return 0;
3589 }
3590
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3591 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3592 struct __kernel_timespec __user **ts,
3593 const sigset_t __user **sig)
3594 {
3595 struct io_uring_getevents_arg arg;
3596
3597 /*
3598 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3599 * is just a pointer to the sigset_t.
3600 */
3601 if (!(flags & IORING_ENTER_EXT_ARG)) {
3602 *sig = (const sigset_t __user *) argp;
3603 *ts = NULL;
3604 return 0;
3605 }
3606
3607 /*
3608 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3609 * timespec and sigset_t pointers if good.
3610 */
3611 if (*argsz != sizeof(arg))
3612 return -EINVAL;
3613 if (copy_from_user(&arg, argp, sizeof(arg)))
3614 return -EFAULT;
3615 if (arg.pad)
3616 return -EINVAL;
3617 *sig = u64_to_user_ptr(arg.sigmask);
3618 *argsz = arg.sigmask_sz;
3619 *ts = u64_to_user_ptr(arg.ts);
3620 return 0;
3621 }
3622
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3623 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3624 u32, min_complete, u32, flags, const void __user *, argp,
3625 size_t, argsz)
3626 {
3627 struct io_ring_ctx *ctx;
3628 struct file *file;
3629 long ret;
3630
3631 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3632 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3633 IORING_ENTER_REGISTERED_RING)))
3634 return -EINVAL;
3635
3636 /*
3637 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3638 * need only dereference our task private array to find it.
3639 */
3640 if (flags & IORING_ENTER_REGISTERED_RING) {
3641 struct io_uring_task *tctx = current->io_uring;
3642
3643 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3644 return -EINVAL;
3645 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3646 file = tctx->registered_rings[fd];
3647 if (unlikely(!file))
3648 return -EBADF;
3649 } else {
3650 file = fget(fd);
3651 if (unlikely(!file))
3652 return -EBADF;
3653 ret = -EOPNOTSUPP;
3654 if (unlikely(!io_is_uring_fops(file)))
3655 goto out;
3656 }
3657
3658 ctx = file->private_data;
3659 ret = -EBADFD;
3660 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3661 goto out;
3662
3663 /*
3664 * For SQ polling, the thread will do all submissions and completions.
3665 * Just return the requested submit count, and wake the thread if
3666 * we were asked to.
3667 */
3668 ret = 0;
3669 if (ctx->flags & IORING_SETUP_SQPOLL) {
3670 io_cqring_overflow_flush(ctx);
3671
3672 if (unlikely(ctx->sq_data->thread == NULL)) {
3673 ret = -EOWNERDEAD;
3674 goto out;
3675 }
3676 if (flags & IORING_ENTER_SQ_WAKEUP)
3677 wake_up(&ctx->sq_data->wait);
3678 if (flags & IORING_ENTER_SQ_WAIT)
3679 io_sqpoll_wait_sq(ctx);
3680
3681 ret = to_submit;
3682 } else if (to_submit) {
3683 ret = io_uring_add_tctx_node(ctx);
3684 if (unlikely(ret))
3685 goto out;
3686
3687 mutex_lock(&ctx->uring_lock);
3688 ret = io_submit_sqes(ctx, to_submit);
3689 if (ret != to_submit) {
3690 mutex_unlock(&ctx->uring_lock);
3691 goto out;
3692 }
3693 if (flags & IORING_ENTER_GETEVENTS) {
3694 if (ctx->syscall_iopoll)
3695 goto iopoll_locked;
3696 /*
3697 * Ignore errors, we'll soon call io_cqring_wait() and
3698 * it should handle ownership problems if any.
3699 */
3700 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3701 (void)io_run_local_work_locked(ctx, min_complete);
3702 }
3703 mutex_unlock(&ctx->uring_lock);
3704 }
3705
3706 if (flags & IORING_ENTER_GETEVENTS) {
3707 int ret2;
3708
3709 if (ctx->syscall_iopoll) {
3710 /*
3711 * We disallow the app entering submit/complete with
3712 * polling, but we still need to lock the ring to
3713 * prevent racing with polled issue that got punted to
3714 * a workqueue.
3715 */
3716 mutex_lock(&ctx->uring_lock);
3717 iopoll_locked:
3718 ret2 = io_validate_ext_arg(flags, argp, argsz);
3719 if (likely(!ret2)) {
3720 min_complete = min(min_complete,
3721 ctx->cq_entries);
3722 ret2 = io_iopoll_check(ctx, min_complete);
3723 }
3724 mutex_unlock(&ctx->uring_lock);
3725 } else {
3726 const sigset_t __user *sig;
3727 struct __kernel_timespec __user *ts;
3728
3729 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3730 if (likely(!ret2)) {
3731 min_complete = min(min_complete,
3732 ctx->cq_entries);
3733 ret2 = io_cqring_wait(ctx, min_complete, sig,
3734 argsz, ts);
3735 }
3736 }
3737
3738 if (!ret) {
3739 ret = ret2;
3740
3741 /*
3742 * EBADR indicates that one or more CQE were dropped.
3743 * Once the user has been informed we can clear the bit
3744 * as they are obviously ok with those drops.
3745 */
3746 if (unlikely(ret2 == -EBADR))
3747 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3748 &ctx->check_cq);
3749 }
3750 }
3751 out:
3752 if (!(flags & IORING_ENTER_REGISTERED_RING))
3753 fput(file);
3754 return ret;
3755 }
3756
3757 static const struct file_operations io_uring_fops = {
3758 .release = io_uring_release,
3759 .mmap = io_uring_mmap,
3760 #ifndef CONFIG_MMU
3761 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3762 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3763 #else
3764 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3765 #endif
3766 .poll = io_uring_poll,
3767 #ifdef CONFIG_PROC_FS
3768 .show_fdinfo = io_uring_show_fdinfo,
3769 #endif
3770 };
3771
io_is_uring_fops(struct file * file)3772 bool io_is_uring_fops(struct file *file)
3773 {
3774 return file->f_op == &io_uring_fops;
3775 }
3776
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3777 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3778 struct io_uring_params *p)
3779 {
3780 struct io_rings *rings;
3781 size_t size, sq_array_offset;
3782 void *ptr;
3783
3784 /* make sure these are sane, as we already accounted them */
3785 ctx->sq_entries = p->sq_entries;
3786 ctx->cq_entries = p->cq_entries;
3787
3788 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3789 if (size == SIZE_MAX)
3790 return -EOVERFLOW;
3791
3792 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3793 rings = io_mem_alloc(size);
3794 else
3795 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3796
3797 if (IS_ERR(rings))
3798 return PTR_ERR(rings);
3799
3800 ctx->rings = rings;
3801 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3802 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3803 rings->sq_ring_mask = p->sq_entries - 1;
3804 rings->cq_ring_mask = p->cq_entries - 1;
3805 rings->sq_ring_entries = p->sq_entries;
3806 rings->cq_ring_entries = p->cq_entries;
3807
3808 if (p->flags & IORING_SETUP_SQE128)
3809 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3810 else
3811 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3812 if (size == SIZE_MAX) {
3813 io_rings_free(ctx);
3814 return -EOVERFLOW;
3815 }
3816
3817 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3818 ptr = io_mem_alloc(size);
3819 else
3820 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3821
3822 if (IS_ERR(ptr)) {
3823 io_rings_free(ctx);
3824 return PTR_ERR(ptr);
3825 }
3826
3827 ctx->sq_sqes = ptr;
3828 return 0;
3829 }
3830
io_uring_install_fd(struct file * file)3831 static int io_uring_install_fd(struct file *file)
3832 {
3833 int fd;
3834
3835 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3836 if (fd < 0)
3837 return fd;
3838 fd_install(fd, file);
3839 return fd;
3840 }
3841
3842 /*
3843 * Allocate an anonymous fd, this is what constitutes the application
3844 * visible backing of an io_uring instance. The application mmaps this
3845 * fd to gain access to the SQ/CQ ring details.
3846 */
io_uring_get_file(struct io_ring_ctx * ctx)3847 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3848 {
3849 return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3850 O_RDWR | O_CLOEXEC, NULL);
3851 }
3852
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3853 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3854 struct io_uring_params __user *params)
3855 {
3856 struct io_ring_ctx *ctx;
3857 struct io_uring_task *tctx;
3858 struct file *file;
3859 int ret;
3860
3861 if (!entries)
3862 return -EINVAL;
3863 if (entries > IORING_MAX_ENTRIES) {
3864 if (!(p->flags & IORING_SETUP_CLAMP))
3865 return -EINVAL;
3866 entries = IORING_MAX_ENTRIES;
3867 }
3868
3869 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3870 && !(p->flags & IORING_SETUP_NO_MMAP))
3871 return -EINVAL;
3872
3873 /*
3874 * Use twice as many entries for the CQ ring. It's possible for the
3875 * application to drive a higher depth than the size of the SQ ring,
3876 * since the sqes are only used at submission time. This allows for
3877 * some flexibility in overcommitting a bit. If the application has
3878 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3879 * of CQ ring entries manually.
3880 */
3881 p->sq_entries = roundup_pow_of_two(entries);
3882 if (p->flags & IORING_SETUP_CQSIZE) {
3883 /*
3884 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3885 * to a power-of-two, if it isn't already. We do NOT impose
3886 * any cq vs sq ring sizing.
3887 */
3888 if (!p->cq_entries)
3889 return -EINVAL;
3890 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3891 if (!(p->flags & IORING_SETUP_CLAMP))
3892 return -EINVAL;
3893 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3894 }
3895 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3896 if (p->cq_entries < p->sq_entries)
3897 return -EINVAL;
3898 } else {
3899 p->cq_entries = 2 * p->sq_entries;
3900 }
3901
3902 ctx = io_ring_ctx_alloc(p);
3903 if (!ctx)
3904 return -ENOMEM;
3905
3906 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3907 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3908 !(ctx->flags & IORING_SETUP_SQPOLL))
3909 ctx->task_complete = true;
3910
3911 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3912 ctx->lockless_cq = true;
3913
3914 /*
3915 * lazy poll_wq activation relies on ->task_complete for synchronisation
3916 * purposes, see io_activate_pollwq()
3917 */
3918 if (!ctx->task_complete)
3919 ctx->poll_activated = true;
3920
3921 /*
3922 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3923 * space applications don't need to do io completion events
3924 * polling again, they can rely on io_sq_thread to do polling
3925 * work, which can reduce cpu usage and uring_lock contention.
3926 */
3927 if (ctx->flags & IORING_SETUP_IOPOLL &&
3928 !(ctx->flags & IORING_SETUP_SQPOLL))
3929 ctx->syscall_iopoll = 1;
3930
3931 ctx->compat = in_compat_syscall();
3932 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3933 ctx->user = get_uid(current_user());
3934
3935 /*
3936 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3937 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3938 */
3939 ret = -EINVAL;
3940 if (ctx->flags & IORING_SETUP_SQPOLL) {
3941 /* IPI related flags don't make sense with SQPOLL */
3942 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3943 IORING_SETUP_TASKRUN_FLAG |
3944 IORING_SETUP_DEFER_TASKRUN))
3945 goto err;
3946 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3947 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3948 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3949 } else {
3950 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3951 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3952 goto err;
3953 ctx->notify_method = TWA_SIGNAL;
3954 }
3955
3956 /*
3957 * For DEFER_TASKRUN we require the completion task to be the same as the
3958 * submission task. This implies that there is only one submitter, so enforce
3959 * that.
3960 */
3961 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3962 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3963 goto err;
3964 }
3965
3966 /*
3967 * This is just grabbed for accounting purposes. When a process exits,
3968 * the mm is exited and dropped before the files, hence we need to hang
3969 * on to this mm purely for the purposes of being able to unaccount
3970 * memory (locked/pinned vm). It's not used for anything else.
3971 */
3972 mmgrab(current->mm);
3973 ctx->mm_account = current->mm;
3974
3975 ret = io_allocate_scq_urings(ctx, p);
3976 if (ret)
3977 goto err;
3978
3979 ret = io_sq_offload_create(ctx, p);
3980 if (ret)
3981 goto err;
3982
3983 ret = io_rsrc_init(ctx);
3984 if (ret)
3985 goto err;
3986
3987 p->sq_off.head = offsetof(struct io_rings, sq.head);
3988 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3989 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3990 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3991 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3992 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3993 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3994 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3995 p->sq_off.resv1 = 0;
3996 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3997 p->sq_off.user_addr = 0;
3998
3999 p->cq_off.head = offsetof(struct io_rings, cq.head);
4000 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4001 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4002 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4003 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4004 p->cq_off.cqes = offsetof(struct io_rings, cqes);
4005 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4006 p->cq_off.resv1 = 0;
4007 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4008 p->cq_off.user_addr = 0;
4009
4010 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4011 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4012 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4013 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4014 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4015 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4016 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4017
4018 if (copy_to_user(params, p, sizeof(*p))) {
4019 ret = -EFAULT;
4020 goto err;
4021 }
4022
4023 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4024 && !(ctx->flags & IORING_SETUP_R_DISABLED))
4025 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4026
4027 file = io_uring_get_file(ctx);
4028 if (IS_ERR(file)) {
4029 ret = PTR_ERR(file);
4030 goto err;
4031 }
4032
4033 ret = __io_uring_add_tctx_node(ctx);
4034 if (ret)
4035 goto err_fput;
4036 tctx = current->io_uring;
4037
4038 /*
4039 * Install ring fd as the very last thing, so we don't risk someone
4040 * having closed it before we finish setup
4041 */
4042 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4043 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4044 else
4045 ret = io_uring_install_fd(file);
4046 if (ret < 0)
4047 goto err_fput;
4048
4049 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4050 return ret;
4051 err:
4052 io_ring_ctx_wait_and_kill(ctx);
4053 return ret;
4054 err_fput:
4055 fput(file);
4056 return ret;
4057 }
4058
4059 /*
4060 * Sets up an aio uring context, and returns the fd. Applications asks for a
4061 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4062 * params structure passed in.
4063 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)4064 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4065 {
4066 struct io_uring_params p;
4067 int i;
4068
4069 if (copy_from_user(&p, params, sizeof(p)))
4070 return -EFAULT;
4071 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4072 if (p.resv[i])
4073 return -EINVAL;
4074 }
4075
4076 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4077 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4078 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4079 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4080 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4081 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4082 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4083 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4084 IORING_SETUP_NO_SQARRAY))
4085 return -EINVAL;
4086
4087 return io_uring_create(entries, &p, params);
4088 }
4089
io_uring_allowed(void)4090 static inline bool io_uring_allowed(void)
4091 {
4092 int disabled = READ_ONCE(sysctl_io_uring_disabled);
4093 kgid_t io_uring_group;
4094
4095 if (disabled == 2)
4096 return false;
4097
4098 if (disabled == 0 || capable(CAP_SYS_ADMIN))
4099 return true;
4100
4101 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4102 if (!gid_valid(io_uring_group))
4103 return false;
4104
4105 return in_group_p(io_uring_group);
4106 }
4107
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)4108 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4109 struct io_uring_params __user *, params)
4110 {
4111 if (!io_uring_allowed())
4112 return -EPERM;
4113
4114 return io_uring_setup(entries, params);
4115 }
4116
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)4117 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4118 unsigned nr_args)
4119 {
4120 struct io_uring_probe *p;
4121 size_t size;
4122 int i, ret;
4123
4124 size = struct_size(p, ops, nr_args);
4125 if (size == SIZE_MAX)
4126 return -EOVERFLOW;
4127 p = kzalloc(size, GFP_KERNEL);
4128 if (!p)
4129 return -ENOMEM;
4130
4131 ret = -EFAULT;
4132 if (copy_from_user(p, arg, size))
4133 goto out;
4134 ret = -EINVAL;
4135 if (memchr_inv(p, 0, size))
4136 goto out;
4137
4138 p->last_op = IORING_OP_LAST - 1;
4139 if (nr_args > IORING_OP_LAST)
4140 nr_args = IORING_OP_LAST;
4141
4142 for (i = 0; i < nr_args; i++) {
4143 p->ops[i].op = i;
4144 if (!io_issue_defs[i].not_supported)
4145 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4146 }
4147 p->ops_len = i;
4148
4149 ret = 0;
4150 if (copy_to_user(arg, p, size))
4151 ret = -EFAULT;
4152 out:
4153 kfree(p);
4154 return ret;
4155 }
4156
io_register_personality(struct io_ring_ctx * ctx)4157 static int io_register_personality(struct io_ring_ctx *ctx)
4158 {
4159 const struct cred *creds;
4160 u32 id;
4161 int ret;
4162
4163 creds = get_current_cred();
4164
4165 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4166 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4167 if (ret < 0) {
4168 put_cred(creds);
4169 return ret;
4170 }
4171 return id;
4172 }
4173
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)4174 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4175 void __user *arg, unsigned int nr_args)
4176 {
4177 struct io_uring_restriction *res;
4178 size_t size;
4179 int i, ret;
4180
4181 /* Restrictions allowed only if rings started disabled */
4182 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4183 return -EBADFD;
4184
4185 /* We allow only a single restrictions registration */
4186 if (ctx->restrictions.registered)
4187 return -EBUSY;
4188
4189 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4190 return -EINVAL;
4191
4192 size = array_size(nr_args, sizeof(*res));
4193 if (size == SIZE_MAX)
4194 return -EOVERFLOW;
4195
4196 res = memdup_user(arg, size);
4197 if (IS_ERR(res))
4198 return PTR_ERR(res);
4199
4200 ret = 0;
4201
4202 for (i = 0; i < nr_args; i++) {
4203 switch (res[i].opcode) {
4204 case IORING_RESTRICTION_REGISTER_OP:
4205 if (res[i].register_op >= IORING_REGISTER_LAST) {
4206 ret = -EINVAL;
4207 goto out;
4208 }
4209
4210 __set_bit(res[i].register_op,
4211 ctx->restrictions.register_op);
4212 break;
4213 case IORING_RESTRICTION_SQE_OP:
4214 if (res[i].sqe_op >= IORING_OP_LAST) {
4215 ret = -EINVAL;
4216 goto out;
4217 }
4218
4219 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4220 break;
4221 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4222 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4223 break;
4224 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4225 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4226 break;
4227 default:
4228 ret = -EINVAL;
4229 goto out;
4230 }
4231 }
4232
4233 out:
4234 /* Reset all restrictions if an error happened */
4235 if (ret != 0)
4236 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4237 else
4238 ctx->restrictions.registered = true;
4239
4240 kfree(res);
4241 return ret;
4242 }
4243
io_register_enable_rings(struct io_ring_ctx * ctx)4244 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4245 {
4246 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4247 return -EBADFD;
4248
4249 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4250 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4251 /*
4252 * Lazy activation attempts would fail if it was polled before
4253 * submitter_task is set.
4254 */
4255 if (wq_has_sleeper(&ctx->poll_wq))
4256 io_activate_pollwq(ctx);
4257 }
4258
4259 if (ctx->restrictions.registered)
4260 ctx->restricted = 1;
4261
4262 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4263 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4264 wake_up(&ctx->sq_data->wait);
4265 return 0;
4266 }
4267
__io_register_iowq_aff(struct io_ring_ctx * ctx,cpumask_var_t new_mask)4268 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4269 cpumask_var_t new_mask)
4270 {
4271 int ret;
4272
4273 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4274 ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4275 } else {
4276 mutex_unlock(&ctx->uring_lock);
4277 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4278 mutex_lock(&ctx->uring_lock);
4279 }
4280
4281 return ret;
4282 }
4283
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)4284 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4285 void __user *arg, unsigned len)
4286 {
4287 cpumask_var_t new_mask;
4288 int ret;
4289
4290 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4291 return -ENOMEM;
4292
4293 cpumask_clear(new_mask);
4294 if (len > cpumask_size())
4295 len = cpumask_size();
4296
4297 if (in_compat_syscall()) {
4298 ret = compat_get_bitmap(cpumask_bits(new_mask),
4299 (const compat_ulong_t __user *)arg,
4300 len * 8 /* CHAR_BIT */);
4301 } else {
4302 ret = copy_from_user(new_mask, arg, len);
4303 }
4304
4305 if (ret) {
4306 free_cpumask_var(new_mask);
4307 return -EFAULT;
4308 }
4309
4310 ret = __io_register_iowq_aff(ctx, new_mask);
4311 free_cpumask_var(new_mask);
4312 return ret;
4313 }
4314
io_unregister_iowq_aff(struct io_ring_ctx * ctx)4315 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4316 {
4317 return __io_register_iowq_aff(ctx, NULL);
4318 }
4319
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)4320 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4321 void __user *arg)
4322 __must_hold(&ctx->uring_lock)
4323 {
4324 struct io_tctx_node *node;
4325 struct io_uring_task *tctx = NULL;
4326 struct io_sq_data *sqd = NULL;
4327 __u32 new_count[2];
4328 int i, ret;
4329
4330 if (copy_from_user(new_count, arg, sizeof(new_count)))
4331 return -EFAULT;
4332 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4333 if (new_count[i] > INT_MAX)
4334 return -EINVAL;
4335
4336 if (ctx->flags & IORING_SETUP_SQPOLL) {
4337 sqd = ctx->sq_data;
4338 if (sqd) {
4339 /*
4340 * Observe the correct sqd->lock -> ctx->uring_lock
4341 * ordering. Fine to drop uring_lock here, we hold
4342 * a ref to the ctx.
4343 */
4344 refcount_inc(&sqd->refs);
4345 mutex_unlock(&ctx->uring_lock);
4346 mutex_lock(&sqd->lock);
4347 mutex_lock(&ctx->uring_lock);
4348 if (sqd->thread)
4349 tctx = sqd->thread->io_uring;
4350 }
4351 } else {
4352 tctx = current->io_uring;
4353 }
4354
4355 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4356
4357 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4358 if (new_count[i])
4359 ctx->iowq_limits[i] = new_count[i];
4360 ctx->iowq_limits_set = true;
4361
4362 if (tctx && tctx->io_wq) {
4363 ret = io_wq_max_workers(tctx->io_wq, new_count);
4364 if (ret)
4365 goto err;
4366 } else {
4367 memset(new_count, 0, sizeof(new_count));
4368 }
4369
4370 if (sqd) {
4371 mutex_unlock(&ctx->uring_lock);
4372 mutex_unlock(&sqd->lock);
4373 io_put_sq_data(sqd);
4374 mutex_lock(&ctx->uring_lock);
4375 }
4376
4377 if (copy_to_user(arg, new_count, sizeof(new_count)))
4378 return -EFAULT;
4379
4380 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4381 if (sqd)
4382 return 0;
4383
4384 /* now propagate the restriction to all registered users */
4385 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4386 struct io_uring_task *tctx = node->task->io_uring;
4387
4388 if (WARN_ON_ONCE(!tctx->io_wq))
4389 continue;
4390
4391 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4392 new_count[i] = ctx->iowq_limits[i];
4393 /* ignore errors, it always returns zero anyway */
4394 (void)io_wq_max_workers(tctx->io_wq, new_count);
4395 }
4396 return 0;
4397 err:
4398 if (sqd) {
4399 mutex_unlock(&ctx->uring_lock);
4400 mutex_unlock(&sqd->lock);
4401 io_put_sq_data(sqd);
4402 mutex_lock(&ctx->uring_lock);
4403
4404 }
4405 return ret;
4406 }
4407
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)4408 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4409 void __user *arg, unsigned nr_args)
4410 __releases(ctx->uring_lock)
4411 __acquires(ctx->uring_lock)
4412 {
4413 int ret;
4414
4415 /*
4416 * We don't quiesce the refs for register anymore and so it can't be
4417 * dying as we're holding a file ref here.
4418 */
4419 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4420 return -ENXIO;
4421
4422 if (ctx->submitter_task && ctx->submitter_task != current)
4423 return -EEXIST;
4424
4425 if (ctx->restricted) {
4426 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4427 if (!test_bit(opcode, ctx->restrictions.register_op))
4428 return -EACCES;
4429 }
4430
4431 switch (opcode) {
4432 case IORING_REGISTER_BUFFERS:
4433 ret = -EFAULT;
4434 if (!arg)
4435 break;
4436 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4437 break;
4438 case IORING_UNREGISTER_BUFFERS:
4439 ret = -EINVAL;
4440 if (arg || nr_args)
4441 break;
4442 ret = io_sqe_buffers_unregister(ctx);
4443 break;
4444 case IORING_REGISTER_FILES:
4445 ret = -EFAULT;
4446 if (!arg)
4447 break;
4448 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4449 break;
4450 case IORING_UNREGISTER_FILES:
4451 ret = -EINVAL;
4452 if (arg || nr_args)
4453 break;
4454 ret = io_sqe_files_unregister(ctx);
4455 break;
4456 case IORING_REGISTER_FILES_UPDATE:
4457 ret = io_register_files_update(ctx, arg, nr_args);
4458 break;
4459 case IORING_REGISTER_EVENTFD:
4460 ret = -EINVAL;
4461 if (nr_args != 1)
4462 break;
4463 ret = io_eventfd_register(ctx, arg, 0);
4464 break;
4465 case IORING_REGISTER_EVENTFD_ASYNC:
4466 ret = -EINVAL;
4467 if (nr_args != 1)
4468 break;
4469 ret = io_eventfd_register(ctx, arg, 1);
4470 break;
4471 case IORING_UNREGISTER_EVENTFD:
4472 ret = -EINVAL;
4473 if (arg || nr_args)
4474 break;
4475 ret = io_eventfd_unregister(ctx);
4476 break;
4477 case IORING_REGISTER_PROBE:
4478 ret = -EINVAL;
4479 if (!arg || nr_args > 256)
4480 break;
4481 ret = io_probe(ctx, arg, nr_args);
4482 break;
4483 case IORING_REGISTER_PERSONALITY:
4484 ret = -EINVAL;
4485 if (arg || nr_args)
4486 break;
4487 ret = io_register_personality(ctx);
4488 break;
4489 case IORING_UNREGISTER_PERSONALITY:
4490 ret = -EINVAL;
4491 if (arg)
4492 break;
4493 ret = io_unregister_personality(ctx, nr_args);
4494 break;
4495 case IORING_REGISTER_ENABLE_RINGS:
4496 ret = -EINVAL;
4497 if (arg || nr_args)
4498 break;
4499 ret = io_register_enable_rings(ctx);
4500 break;
4501 case IORING_REGISTER_RESTRICTIONS:
4502 ret = io_register_restrictions(ctx, arg, nr_args);
4503 break;
4504 case IORING_REGISTER_FILES2:
4505 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4506 break;
4507 case IORING_REGISTER_FILES_UPDATE2:
4508 ret = io_register_rsrc_update(ctx, arg, nr_args,
4509 IORING_RSRC_FILE);
4510 break;
4511 case IORING_REGISTER_BUFFERS2:
4512 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4513 break;
4514 case IORING_REGISTER_BUFFERS_UPDATE:
4515 ret = io_register_rsrc_update(ctx, arg, nr_args,
4516 IORING_RSRC_BUFFER);
4517 break;
4518 case IORING_REGISTER_IOWQ_AFF:
4519 ret = -EINVAL;
4520 if (!arg || !nr_args)
4521 break;
4522 ret = io_register_iowq_aff(ctx, arg, nr_args);
4523 break;
4524 case IORING_UNREGISTER_IOWQ_AFF:
4525 ret = -EINVAL;
4526 if (arg || nr_args)
4527 break;
4528 ret = io_unregister_iowq_aff(ctx);
4529 break;
4530 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4531 ret = -EINVAL;
4532 if (!arg || nr_args != 2)
4533 break;
4534 ret = io_register_iowq_max_workers(ctx, arg);
4535 break;
4536 case IORING_REGISTER_RING_FDS:
4537 ret = io_ringfd_register(ctx, arg, nr_args);
4538 break;
4539 case IORING_UNREGISTER_RING_FDS:
4540 ret = io_ringfd_unregister(ctx, arg, nr_args);
4541 break;
4542 case IORING_REGISTER_PBUF_RING:
4543 ret = -EINVAL;
4544 if (!arg || nr_args != 1)
4545 break;
4546 ret = io_register_pbuf_ring(ctx, arg);
4547 break;
4548 case IORING_UNREGISTER_PBUF_RING:
4549 ret = -EINVAL;
4550 if (!arg || nr_args != 1)
4551 break;
4552 ret = io_unregister_pbuf_ring(ctx, arg);
4553 break;
4554 case IORING_REGISTER_SYNC_CANCEL:
4555 ret = -EINVAL;
4556 if (!arg || nr_args != 1)
4557 break;
4558 ret = io_sync_cancel(ctx, arg);
4559 break;
4560 case IORING_REGISTER_FILE_ALLOC_RANGE:
4561 ret = -EINVAL;
4562 if (!arg || nr_args)
4563 break;
4564 ret = io_register_file_alloc_range(ctx, arg);
4565 break;
4566 default:
4567 ret = -EINVAL;
4568 break;
4569 }
4570
4571 return ret;
4572 }
4573
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4574 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4575 void __user *, arg, unsigned int, nr_args)
4576 {
4577 struct io_ring_ctx *ctx;
4578 long ret = -EBADF;
4579 struct file *file;
4580 bool use_registered_ring;
4581
4582 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4583 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4584
4585 if (opcode >= IORING_REGISTER_LAST)
4586 return -EINVAL;
4587
4588 if (use_registered_ring) {
4589 /*
4590 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4591 * need only dereference our task private array to find it.
4592 */
4593 struct io_uring_task *tctx = current->io_uring;
4594
4595 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4596 return -EINVAL;
4597 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4598 file = tctx->registered_rings[fd];
4599 if (unlikely(!file))
4600 return -EBADF;
4601 } else {
4602 file = fget(fd);
4603 if (unlikely(!file))
4604 return -EBADF;
4605 ret = -EOPNOTSUPP;
4606 if (!io_is_uring_fops(file))
4607 goto out_fput;
4608 }
4609
4610 ctx = file->private_data;
4611
4612 mutex_lock(&ctx->uring_lock);
4613 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4614 mutex_unlock(&ctx->uring_lock);
4615 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4616 out_fput:
4617 if (!use_registered_ring)
4618 fput(file);
4619 return ret;
4620 }
4621
io_uring_init(void)4622 static int __init io_uring_init(void)
4623 {
4624 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4625 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4626 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4627 } while (0)
4628
4629 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4630 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4631 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4632 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4633 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4634 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4635 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4636 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4637 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4638 BUILD_BUG_SQE_ELEM(8, __u64, off);
4639 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4640 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4641 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4642 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4643 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4644 BUILD_BUG_SQE_ELEM(24, __u32, len);
4645 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4646 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4647 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4648 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4649 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4650 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4651 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4652 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4653 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4654 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4655 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4656 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4657 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4658 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4659 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4660 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4661 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4662 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4663 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4664 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4665 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4666 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4667 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4668 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4669 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4670 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4671 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4672 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4673 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4674 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4675 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4676
4677 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4678 sizeof(struct io_uring_rsrc_update));
4679 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4680 sizeof(struct io_uring_rsrc_update2));
4681
4682 /* ->buf_index is u16 */
4683 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4684 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4685 offsetof(struct io_uring_buf_ring, tail));
4686
4687 /* should fit into one byte */
4688 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4689 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4690 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4691
4692 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4693
4694 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4695
4696 io_uring_optable_init();
4697
4698 /*
4699 * Allow user copy in the per-command field, which starts after the
4700 * file in io_kiocb and until the opcode field. The openat2 handling
4701 * requires copying in user memory into the io_kiocb object in that
4702 * range, and HARDENED_USERCOPY will complain if we haven't
4703 * correctly annotated this range.
4704 */
4705 req_cachep = kmem_cache_create_usercopy("io_kiocb",
4706 sizeof(struct io_kiocb), 0,
4707 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4708 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4709 offsetof(struct io_kiocb, cmd.data),
4710 sizeof_field(struct io_kiocb, cmd.data), NULL);
4711
4712 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4713
4714 #ifdef CONFIG_SYSCTL
4715 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4716 #endif
4717
4718 return 0;
4719 };
4720 __initcall(io_uring_init);
4721