xref: /openbmc/qemu/target/sh4/helper.c (revision da4f7b8561e69112171f52279d23b9014902a398)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "exec/log.h"
26 
27 #if !defined(CONFIG_USER_ONLY)
28 #include "hw/sh4/sh_intc.h"
29 #include "sysemu/runstate.h"
30 #endif
31 
32 #define MMU_OK                   0
33 #define MMU_ITLB_MISS            (-1)
34 #define MMU_ITLB_MULTIPLE        (-2)
35 #define MMU_ITLB_VIOLATION       (-3)
36 #define MMU_DTLB_MISS_READ       (-4)
37 #define MMU_DTLB_MISS_WRITE      (-5)
38 #define MMU_DTLB_INITIAL_WRITE   (-6)
39 #define MMU_DTLB_VIOLATION_READ  (-7)
40 #define MMU_DTLB_VIOLATION_WRITE (-8)
41 #define MMU_DTLB_MULTIPLE        (-9)
42 #define MMU_DTLB_MISS            (-10)
43 #define MMU_IADDR_ERROR          (-11)
44 #define MMU_DADDR_ERROR_READ     (-12)
45 #define MMU_DADDR_ERROR_WRITE    (-13)
46 
47 #if defined(CONFIG_USER_ONLY)
48 
cpu_sh4_is_cached(CPUSH4State * env,target_ulong addr)49 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
50 {
51     /* For user mode, only U0 area is cacheable. */
52     return !(addr & 0x80000000);
53 }
54 
55 #else /* !CONFIG_USER_ONLY */
56 
superh_cpu_do_interrupt(CPUState * cs)57 void superh_cpu_do_interrupt(CPUState *cs)
58 {
59     CPUSH4State *env = cpu_env(cs);
60     int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
61     int do_exp, irq_vector = cs->exception_index;
62 
63     /* prioritize exceptions over interrupts */
64 
65     do_exp = cs->exception_index != -1;
66     do_irq = do_irq && (cs->exception_index == -1);
67 
68     if (env->sr & (1u << SR_BL)) {
69         if (do_exp && cs->exception_index != 0x1e0) {
70             /* In theory a masked exception generates a reset exception,
71                which in turn jumps to the reset vector. However this only
72                works when using a bootloader. When using a kernel and an
73                initrd, they need to be reloaded and the program counter
74                should be loaded with the kernel entry point.
75                qemu_system_reset_request takes care of that.  */
76             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
77             return;
78         }
79         if (do_irq && !env->in_sleep) {
80             return; /* masked */
81         }
82     }
83     env->in_sleep = 0;
84 
85     if (do_irq) {
86         irq_vector = sh_intc_get_pending_vector(env->intc_handle,
87                                                 (env->sr >> 4) & 0xf);
88         if (irq_vector == -1) {
89             return; /* masked */
90         }
91     }
92 
93     if (qemu_loglevel_mask(CPU_LOG_INT)) {
94         const char *expname;
95         switch (cs->exception_index) {
96         case 0x0e0:
97             expname = "addr_error";
98             break;
99         case 0x040:
100             expname = "tlb_miss";
101             break;
102         case 0x0a0:
103             expname = "tlb_violation";
104             break;
105         case 0x180:
106             expname = "illegal_instruction";
107             break;
108         case 0x1a0:
109             expname = "slot_illegal_instruction";
110             break;
111         case 0x800:
112             expname = "fpu_disable";
113             break;
114         case 0x820:
115             expname = "slot_fpu";
116             break;
117         case 0x100:
118             expname = "data_write";
119             break;
120         case 0x060:
121             expname = "dtlb_miss_write";
122             break;
123         case 0x0c0:
124             expname = "dtlb_violation_write";
125             break;
126         case 0x120:
127             expname = "fpu_exception";
128             break;
129         case 0x080:
130             expname = "initial_page_write";
131             break;
132         case 0x160:
133             expname = "trapa";
134             break;
135         default:
136             expname = do_irq ? "interrupt" : "???";
137             break;
138         }
139         qemu_log("exception 0x%03x [%s] raised\n",
140                   irq_vector, expname);
141         log_cpu_state(cs, 0);
142     }
143 
144     env->ssr = cpu_read_sr(env);
145     env->spc = env->pc;
146     env->sgr = env->gregs[15];
147     env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
148     env->lock_addr = -1;
149 
150     if (env->flags & TB_FLAG_DELAY_SLOT_MASK) {
151         /* Branch instruction should be executed again before delay slot. */
152         env->spc -= 2;
153         /* Clear flags for exception/interrupt routine. */
154         env->flags &= ~TB_FLAG_DELAY_SLOT_MASK;
155     }
156 
157     if (do_exp) {
158         env->expevt = cs->exception_index;
159         switch (cs->exception_index) {
160         case 0x000:
161         case 0x020:
162         case 0x140:
163             env->sr &= ~(1u << SR_FD);
164             env->sr |= 0xf << 4; /* IMASK */
165             env->pc = 0xa0000000;
166             break;
167         case 0x040:
168         case 0x060:
169             env->pc = env->vbr + 0x400;
170             break;
171         case 0x160:
172             env->spc += 2; /* special case for TRAPA */
173             /* fall through */
174         default:
175             env->pc = env->vbr + 0x100;
176             break;
177         }
178         return;
179     }
180 
181     if (do_irq) {
182         env->intevt = irq_vector;
183         env->pc = env->vbr + 0x600;
184         return;
185     }
186 }
187 
update_itlb_use(CPUSH4State * env,int itlbnb)188 static void update_itlb_use(CPUSH4State * env, int itlbnb)
189 {
190     uint32_t or_mask = 0, and_mask = 0xff;
191 
192     switch (itlbnb) {
193     case 0:
194         and_mask = 0x1f;
195         break;
196     case 1:
197         and_mask = 0xe7;
198         or_mask = 0x80;
199         break;
200     case 2:
201         and_mask = 0xfb;
202         or_mask = 0x50;
203         break;
204     case 3:
205         or_mask = 0x2c;
206         break;
207     }
208 
209     env->mmucr &= (and_mask << 24) | 0x00ffffff;
210     env->mmucr |= (or_mask << 24);
211 }
212 
itlb_replacement(CPUSH4State * env)213 static int itlb_replacement(CPUSH4State * env)
214 {
215     if ((env->mmucr & 0xe0000000) == 0xe0000000) {
216         return 0;
217     }
218     if ((env->mmucr & 0x98000000) == 0x18000000) {
219         return 1;
220     }
221     if ((env->mmucr & 0x54000000) == 0x04000000) {
222         return 2;
223     }
224     if ((env->mmucr & 0x2c000000) == 0x00000000) {
225         return 3;
226     }
227     cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
228 }
229 
230 /* Find the corresponding entry in the right TLB
231    Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
232 */
find_tlb_entry(CPUSH4State * env,target_ulong address,tlb_t * entries,uint8_t nbtlb,int use_asid)233 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
234                           tlb_t * entries, uint8_t nbtlb, int use_asid)
235 {
236     int match = MMU_DTLB_MISS;
237     uint32_t start, end;
238     uint8_t asid;
239     int i;
240 
241     asid = env->pteh & 0xff;
242 
243     for (i = 0; i < nbtlb; i++) {
244         if (!entries[i].v)
245             continue; /* Invalid entry */
246         if (!entries[i].sh && use_asid && entries[i].asid != asid)
247             continue; /* Bad ASID */
248         start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
249         end = start + entries[i].size - 1;
250         if (address >= start && address <= end) { /* Match */
251             if (match != MMU_DTLB_MISS)
252                 return MMU_DTLB_MULTIPLE; /* Multiple match */
253             match = i;
254         }
255     }
256     return match;
257 }
258 
increment_urc(CPUSH4State * env)259 static void increment_urc(CPUSH4State * env)
260 {
261     uint8_t urb, urc;
262 
263     /* Increment URC */
264     urb = ((env->mmucr) >> 18) & 0x3f;
265     urc = ((env->mmucr) >> 10) & 0x3f;
266     urc++;
267     if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
268         urc = 0;
269     env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
270 }
271 
272 /* Copy and utlb entry into itlb
273    Return entry
274 */
copy_utlb_entry_itlb(CPUSH4State * env,int utlb)275 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
276 {
277     int itlb;
278 
279     tlb_t * ientry;
280     itlb = itlb_replacement(env);
281     ientry = &env->itlb[itlb];
282     if (ientry->v) {
283         tlb_flush_page(env_cpu(env), ientry->vpn << 10);
284     }
285     *ientry = env->utlb[utlb];
286     update_itlb_use(env, itlb);
287     return itlb;
288 }
289 
290 /* Find itlb entry
291    Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
292 */
find_itlb_entry(CPUSH4State * env,target_ulong address,int use_asid)293 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
294                            int use_asid)
295 {
296     int e;
297 
298     e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
299     if (e == MMU_DTLB_MULTIPLE) {
300         e = MMU_ITLB_MULTIPLE;
301     } else if (e == MMU_DTLB_MISS) {
302         e = MMU_ITLB_MISS;
303     } else if (e >= 0) {
304         update_itlb_use(env, e);
305     }
306     return e;
307 }
308 
309 /* Find utlb entry
310    Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
find_utlb_entry(CPUSH4State * env,target_ulong address,int use_asid)311 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
312 {
313     /* per utlb access */
314     increment_urc(env);
315 
316     /* Return entry */
317     return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
318 }
319 
320 /* Match address against MMU
321    Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
322    MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
323    MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
324    MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
325    MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
326 */
get_mmu_address(CPUSH4State * env,target_ulong * physical,int * prot,target_ulong address,MMUAccessType access_type)327 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
328                            int *prot, target_ulong address,
329                            MMUAccessType access_type)
330 {
331     int use_asid, n;
332     tlb_t *matching = NULL;
333 
334     use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
335 
336     if (access_type == MMU_INST_FETCH) {
337         n = find_itlb_entry(env, address, use_asid);
338         if (n >= 0) {
339             matching = &env->itlb[n];
340             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
341                 n = MMU_ITLB_VIOLATION;
342             } else {
343                 *prot = PAGE_EXEC;
344             }
345         } else {
346             n = find_utlb_entry(env, address, use_asid);
347             if (n >= 0) {
348                 n = copy_utlb_entry_itlb(env, n);
349                 matching = &env->itlb[n];
350                 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
351                     n = MMU_ITLB_VIOLATION;
352                 } else {
353                     *prot = PAGE_READ | PAGE_EXEC;
354                     if ((matching->pr & 1) && matching->d) {
355                         *prot |= PAGE_WRITE;
356                     }
357                 }
358             } else if (n == MMU_DTLB_MULTIPLE) {
359                 n = MMU_ITLB_MULTIPLE;
360             } else if (n == MMU_DTLB_MISS) {
361                 n = MMU_ITLB_MISS;
362             }
363         }
364     } else {
365         n = find_utlb_entry(env, address, use_asid);
366         if (n >= 0) {
367             matching = &env->utlb[n];
368             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
369                 n = (access_type == MMU_DATA_STORE)
370                     ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ;
371             } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) {
372                 n = MMU_DTLB_VIOLATION_WRITE;
373             } else if ((access_type == MMU_DATA_STORE) && !matching->d) {
374                 n = MMU_DTLB_INITIAL_WRITE;
375             } else {
376                 *prot = PAGE_READ;
377                 if ((matching->pr & 1) && matching->d) {
378                     *prot |= PAGE_WRITE;
379                 }
380             }
381         } else if (n == MMU_DTLB_MISS) {
382             n = (access_type == MMU_DATA_STORE)
383                 ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ;
384         }
385     }
386     if (n >= 0) {
387         n = MMU_OK;
388         *physical = ((matching->ppn << 10) & ~(matching->size - 1))
389                     | (address & (matching->size - 1));
390     }
391     return n;
392 }
393 
get_physical_address(CPUSH4State * env,target_ulong * physical,int * prot,target_ulong address,MMUAccessType access_type)394 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
395                                 int *prot, target_ulong address,
396                                 MMUAccessType access_type)
397 {
398     /* P1, P2 and P4 areas do not use translation */
399     if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) {
400         if (!(env->sr & (1u << SR_MD))
401                 && (address < 0xe0000000 || address >= 0xe4000000)) {
402             /* Unauthorized access in user mode (only store queues are available) */
403             qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
404             if (access_type == MMU_DATA_LOAD) {
405                 return MMU_DADDR_ERROR_READ;
406             } else if (access_type == MMU_DATA_STORE) {
407                 return MMU_DADDR_ERROR_WRITE;
408             } else {
409                 return MMU_IADDR_ERROR;
410             }
411         }
412         if (address >= 0x80000000 && address < 0xc0000000) {
413             /* Mask upper 3 bits for P1 and P2 areas */
414             *physical = address & 0x1fffffff;
415         } else {
416             *physical = address;
417         }
418         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
419         return MMU_OK;
420     }
421 
422     /* If MMU is disabled, return the corresponding physical page */
423     if (!(env->mmucr & MMUCR_AT)) {
424         *physical = address & 0x1FFFFFFF;
425         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
426         return MMU_OK;
427     }
428 
429     /* We need to resort to the MMU */
430     return get_mmu_address(env, physical, prot, address, access_type);
431 }
432 
superh_cpu_get_phys_page_debug(CPUState * cs,vaddr addr)433 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
434 {
435     target_ulong physical;
436     int prot;
437 
438     if (get_physical_address(cpu_env(cs), &physical, &prot, addr, MMU_DATA_LOAD)
439             == MMU_OK) {
440         return physical;
441     }
442 
443     return -1;
444 }
445 
cpu_load_tlb(CPUSH4State * env)446 void cpu_load_tlb(CPUSH4State * env)
447 {
448     CPUState *cs = env_cpu(env);
449     int n = cpu_mmucr_urc(env->mmucr);
450     tlb_t * entry = &env->utlb[n];
451 
452     if (entry->v) {
453         /* Overwriting valid entry in utlb. */
454         target_ulong address = entry->vpn << 10;
455         tlb_flush_page(cs, address);
456     }
457 
458     /* Take values into cpu status from registers. */
459     entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
460     entry->vpn  = cpu_pteh_vpn(env->pteh);
461     entry->v    = (uint8_t)cpu_ptel_v(env->ptel);
462     entry->ppn  = cpu_ptel_ppn(env->ptel);
463     entry->sz   = (uint8_t)cpu_ptel_sz(env->ptel);
464     switch (entry->sz) {
465     case 0: /* 00 */
466         entry->size = 1024; /* 1K */
467         break;
468     case 1: /* 01 */
469         entry->size = 1024 * 4; /* 4K */
470         break;
471     case 2: /* 10 */
472         entry->size = 1024 * 64; /* 64K */
473         break;
474     case 3: /* 11 */
475         entry->size = 1024 * 1024; /* 1M */
476         break;
477     default:
478         cpu_abort(cs, "Unhandled load_tlb");
479         break;
480     }
481     entry->sh   = (uint8_t)cpu_ptel_sh(env->ptel);
482     entry->c    = (uint8_t)cpu_ptel_c(env->ptel);
483     entry->pr   = (uint8_t)cpu_ptel_pr(env->ptel);
484     entry->d    = (uint8_t)cpu_ptel_d(env->ptel);
485     entry->wt   = (uint8_t)cpu_ptel_wt(env->ptel);
486     entry->sa   = (uint8_t)cpu_ptea_sa(env->ptea);
487     entry->tc   = (uint8_t)cpu_ptea_tc(env->ptea);
488 }
489 
cpu_sh4_invalidate_tlb(CPUSH4State * s)490  void cpu_sh4_invalidate_tlb(CPUSH4State *s)
491 {
492     int i;
493 
494     /* UTLB */
495     for (i = 0; i < UTLB_SIZE; i++) {
496         tlb_t * entry = &s->utlb[i];
497         entry->v = 0;
498     }
499     /* ITLB */
500     for (i = 0; i < ITLB_SIZE; i++) {
501         tlb_t * entry = &s->itlb[i];
502         entry->v = 0;
503     }
504 
505     tlb_flush(env_cpu(s));
506 }
507 
cpu_sh4_read_mmaped_itlb_addr(CPUSH4State * s,hwaddr addr)508 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
509                                        hwaddr addr)
510 {
511     int index = (addr & 0x00000300) >> 8;
512     tlb_t * entry = &s->itlb[index];
513 
514     return (entry->vpn  << 10) |
515            (entry->v    <<  8) |
516            (entry->asid);
517 }
518 
cpu_sh4_write_mmaped_itlb_addr(CPUSH4State * s,hwaddr addr,uint32_t mem_value)519 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
520                                     uint32_t mem_value)
521 {
522     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
523     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
524     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
525 
526     int index = (addr & 0x00000300) >> 8;
527     tlb_t * entry = &s->itlb[index];
528     if (entry->v) {
529         /* Overwriting valid entry in itlb. */
530         target_ulong address = entry->vpn << 10;
531         tlb_flush_page(env_cpu(s), address);
532     }
533     entry->asid = asid;
534     entry->vpn = vpn;
535     entry->v = v;
536 }
537 
cpu_sh4_read_mmaped_itlb_data(CPUSH4State * s,hwaddr addr)538 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
539                                        hwaddr addr)
540 {
541     int array = (addr & 0x00800000) >> 23;
542     int index = (addr & 0x00000300) >> 8;
543     tlb_t * entry = &s->itlb[index];
544 
545     if (array == 0) {
546         /* ITLB Data Array 1 */
547         return (entry->ppn << 10) |
548                (entry->v   <<  8) |
549                (entry->pr  <<  5) |
550                ((entry->sz & 1) <<  6) |
551                ((entry->sz & 2) <<  4) |
552                (entry->c   <<  3) |
553                (entry->sh  <<  1);
554     } else {
555         /* ITLB Data Array 2 */
556         return (entry->tc << 1) |
557                (entry->sa);
558     }
559 }
560 
cpu_sh4_write_mmaped_itlb_data(CPUSH4State * s,hwaddr addr,uint32_t mem_value)561 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
562                                     uint32_t mem_value)
563 {
564     int array = (addr & 0x00800000) >> 23;
565     int index = (addr & 0x00000300) >> 8;
566     tlb_t * entry = &s->itlb[index];
567 
568     if (array == 0) {
569         /* ITLB Data Array 1 */
570         if (entry->v) {
571             /* Overwriting valid entry in utlb. */
572             target_ulong address = entry->vpn << 10;
573             tlb_flush_page(env_cpu(s), address);
574         }
575         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
576         entry->v   = (mem_value & 0x00000100) >> 8;
577         entry->sz  = (mem_value & 0x00000080) >> 6 |
578                      (mem_value & 0x00000010) >> 4;
579         entry->pr  = (mem_value & 0x00000040) >> 5;
580         entry->c   = (mem_value & 0x00000008) >> 3;
581         entry->sh  = (mem_value & 0x00000002) >> 1;
582     } else {
583         /* ITLB Data Array 2 */
584         entry->tc  = (mem_value & 0x00000008) >> 3;
585         entry->sa  = (mem_value & 0x00000007);
586     }
587 }
588 
cpu_sh4_read_mmaped_utlb_addr(CPUSH4State * s,hwaddr addr)589 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
590                                        hwaddr addr)
591 {
592     int index = (addr & 0x00003f00) >> 8;
593     tlb_t * entry = &s->utlb[index];
594 
595     increment_urc(s); /* per utlb access */
596 
597     return (entry->vpn  << 10) |
598            (entry->v    <<  8) |
599            (entry->asid);
600 }
601 
cpu_sh4_write_mmaped_utlb_addr(CPUSH4State * s,hwaddr addr,uint32_t mem_value)602 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
603                                     uint32_t mem_value)
604 {
605     int associate = addr & 0x0000080;
606     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
607     uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
608     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
609     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
610     int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
611 
612     if (associate) {
613         int i;
614         tlb_t * utlb_match_entry = NULL;
615         int needs_tlb_flush = 0;
616 
617         /* search UTLB */
618         for (i = 0; i < UTLB_SIZE; i++) {
619             tlb_t * entry = &s->utlb[i];
620             if (!entry->v)
621                 continue;
622 
623             if (entry->vpn == vpn
624                 && (!use_asid || entry->asid == asid || entry->sh)) {
625                 if (utlb_match_entry) {
626                     CPUState *cs = env_cpu(s);
627 
628                     /* Multiple TLB Exception */
629                     cs->exception_index = 0x140;
630                     s->tea = addr;
631                     break;
632                 }
633                 if (entry->v && !v)
634                     needs_tlb_flush = 1;
635                 entry->v = v;
636                 entry->d = d;
637                 utlb_match_entry = entry;
638             }
639             increment_urc(s); /* per utlb access */
640         }
641 
642         /* search ITLB */
643         for (i = 0; i < ITLB_SIZE; i++) {
644             tlb_t * entry = &s->itlb[i];
645             if (entry->vpn == vpn
646                 && (!use_asid || entry->asid == asid || entry->sh)) {
647                 if (entry->v && !v)
648                     needs_tlb_flush = 1;
649                 if (utlb_match_entry)
650                     *entry = *utlb_match_entry;
651                 else
652                     entry->v = v;
653                 break;
654             }
655         }
656 
657         if (needs_tlb_flush) {
658             tlb_flush_page(env_cpu(s), vpn << 10);
659         }
660     } else {
661         int index = (addr & 0x00003f00) >> 8;
662         tlb_t * entry = &s->utlb[index];
663         if (entry->v) {
664             CPUState *cs = env_cpu(s);
665 
666             /* Overwriting valid entry in utlb. */
667             target_ulong address = entry->vpn << 10;
668             tlb_flush_page(cs, address);
669         }
670         entry->asid = asid;
671         entry->vpn = vpn;
672         entry->d = d;
673         entry->v = v;
674         increment_urc(s);
675     }
676 }
677 
cpu_sh4_read_mmaped_utlb_data(CPUSH4State * s,hwaddr addr)678 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
679                                        hwaddr addr)
680 {
681     int array = (addr & 0x00800000) >> 23;
682     int index = (addr & 0x00003f00) >> 8;
683     tlb_t * entry = &s->utlb[index];
684 
685     increment_urc(s); /* per utlb access */
686 
687     if (array == 0) {
688         /* ITLB Data Array 1 */
689         return (entry->ppn << 10) |
690                (entry->v   <<  8) |
691                (entry->pr  <<  5) |
692                ((entry->sz & 1) <<  6) |
693                ((entry->sz & 2) <<  4) |
694                (entry->c   <<  3) |
695                (entry->d   <<  2) |
696                (entry->sh  <<  1) |
697                (entry->wt);
698     } else {
699         /* ITLB Data Array 2 */
700         return (entry->tc << 1) |
701                (entry->sa);
702     }
703 }
704 
cpu_sh4_write_mmaped_utlb_data(CPUSH4State * s,hwaddr addr,uint32_t mem_value)705 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
706                                     uint32_t mem_value)
707 {
708     int array = (addr & 0x00800000) >> 23;
709     int index = (addr & 0x00003f00) >> 8;
710     tlb_t * entry = &s->utlb[index];
711 
712     increment_urc(s); /* per utlb access */
713 
714     if (array == 0) {
715         /* UTLB Data Array 1 */
716         if (entry->v) {
717             /* Overwriting valid entry in utlb. */
718             target_ulong address = entry->vpn << 10;
719             tlb_flush_page(env_cpu(s), address);
720         }
721         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
722         entry->v   = (mem_value & 0x00000100) >> 8;
723         entry->sz  = (mem_value & 0x00000080) >> 6 |
724                      (mem_value & 0x00000010) >> 4;
725         entry->pr  = (mem_value & 0x00000060) >> 5;
726         entry->c   = (mem_value & 0x00000008) >> 3;
727         entry->d   = (mem_value & 0x00000004) >> 2;
728         entry->sh  = (mem_value & 0x00000002) >> 1;
729         entry->wt  = (mem_value & 0x00000001);
730     } else {
731         /* UTLB Data Array 2 */
732         entry->tc = (mem_value & 0x00000008) >> 3;
733         entry->sa = (mem_value & 0x00000007);
734     }
735 }
736 
cpu_sh4_is_cached(CPUSH4State * env,target_ulong addr)737 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
738 {
739     int n;
740     int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
741 
742     /* check area */
743     if (env->sr & (1u << SR_MD)) {
744         /* For privileged mode, P2 and P4 area is not cacheable. */
745         if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
746             return 0;
747     } else {
748         /* For user mode, only U0 area is cacheable. */
749         if (0x80000000 <= addr)
750             return 0;
751     }
752 
753     /*
754      * TODO : Evaluate CCR and check if the cache is on or off.
755      *        Now CCR is not in CPUSH4State, but in SH7750State.
756      *        When you move the ccr into CPUSH4State, the code will be
757      *        as follows.
758      */
759 #if 0
760     /* check if operand cache is enabled or not. */
761     if (!(env->ccr & 1))
762         return 0;
763 #endif
764 
765     /* if MMU is off, no check for TLB. */
766     if (env->mmucr & MMUCR_AT)
767         return 1;
768 
769     /* check TLB */
770     n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
771     if (n >= 0)
772         return env->itlb[n].c;
773 
774     n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
775     if (n >= 0)
776         return env->utlb[n].c;
777 
778     return 0;
779 }
780 
superh_cpu_exec_interrupt(CPUState * cs,int interrupt_request)781 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
782 {
783     if (interrupt_request & CPU_INTERRUPT_HARD) {
784         /* Delay slots are indivisible, ignore interrupts */
785         if (cpu_env(cs)->flags & TB_FLAG_DELAY_SLOT_MASK) {
786             return false;
787         } else {
788             superh_cpu_do_interrupt(cs);
789             return true;
790         }
791     }
792     return false;
793 }
794 
superh_cpu_tlb_fill(CPUState * cs,vaddr address,int size,MMUAccessType access_type,int mmu_idx,bool probe,uintptr_t retaddr)795 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
796                          MMUAccessType access_type, int mmu_idx,
797                          bool probe, uintptr_t retaddr)
798 {
799     CPUSH4State *env = cpu_env(cs);
800     int ret;
801 
802     target_ulong physical;
803     int prot;
804 
805     ret = get_physical_address(env, &physical, &prot, address, access_type);
806 
807     if (ret == MMU_OK) {
808         address &= TARGET_PAGE_MASK;
809         physical &= TARGET_PAGE_MASK;
810         tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
811         return true;
812     }
813     if (probe) {
814         return false;
815     }
816 
817     if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
818         env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
819     }
820 
821     env->tea = address;
822     switch (ret) {
823     case MMU_ITLB_MISS:
824     case MMU_DTLB_MISS_READ:
825         cs->exception_index = 0x040;
826         break;
827     case MMU_DTLB_MULTIPLE:
828     case MMU_ITLB_MULTIPLE:
829         cs->exception_index = 0x140;
830         break;
831     case MMU_ITLB_VIOLATION:
832         cs->exception_index = 0x0a0;
833         break;
834     case MMU_DTLB_MISS_WRITE:
835         cs->exception_index = 0x060;
836         break;
837     case MMU_DTLB_INITIAL_WRITE:
838         cs->exception_index = 0x080;
839         break;
840     case MMU_DTLB_VIOLATION_READ:
841         cs->exception_index = 0x0a0;
842         break;
843     case MMU_DTLB_VIOLATION_WRITE:
844         cs->exception_index = 0x0c0;
845         break;
846     case MMU_IADDR_ERROR:
847     case MMU_DADDR_ERROR_READ:
848         cs->exception_index = 0x0e0;
849         break;
850     case MMU_DADDR_ERROR_WRITE:
851         cs->exception_index = 0x100;
852         break;
853     default:
854         cpu_abort(cs, "Unhandled MMU fault");
855     }
856     cpu_loop_exit_restore(cs, retaddr);
857 }
858 #endif /* !CONFIG_USER_ONLY */
859