xref: /openbmc/qemu/hw/ppc/pnv_lpc.c (revision 3583e93223fe534dce511b3b5b902b76bb136968)
1 /*
2  * QEMU PowerPC PowerNV LPC controller
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "target/ppc/cpu.h"
22 #include "qapi/error.h"
23 #include "qemu/log.h"
24 #include "qemu/module.h"
25 #include "hw/irq.h"
26 #include "hw/isa/isa.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ppc/pnv.h"
29 #include "hw/ppc/pnv_chip.h"
30 #include "hw/ppc/pnv_lpc.h"
31 #include "hw/ppc/pnv_xscom.h"
32 #include "hw/ppc/fdt.h"
33 
34 #include <libfdt.h>
35 
36 enum {
37     ECCB_CTL    = 0,
38     ECCB_RESET  = 1,
39     ECCB_STAT   = 2,
40     ECCB_DATA   = 3,
41 };
42 
43 /* OPB Master LS registers */
44 #define OPB_MASTER_LS_ROUTE0    0x8
45 #define OPB_MASTER_LS_ROUTE1    0xC
46 #define OPB_MASTER_LS_IRQ_STAT  0x50
47 #define   OPB_MASTER_IRQ_LPC            0x00000800
48 #define OPB_MASTER_LS_IRQ_MASK  0x54
49 #define OPB_MASTER_LS_IRQ_POL   0x58
50 #define OPB_MASTER_LS_IRQ_INPUT 0x5c
51 
52 /* LPC HC registers */
53 #define LPC_HC_FW_SEG_IDSEL     0x24
54 #define LPC_HC_FW_RD_ACC_SIZE   0x28
55 #define   LPC_HC_FW_RD_1B               0x00000000
56 #define   LPC_HC_FW_RD_2B               0x01000000
57 #define   LPC_HC_FW_RD_4B               0x02000000
58 #define   LPC_HC_FW_RD_16B              0x04000000
59 #define   LPC_HC_FW_RD_128B             0x07000000
60 #define LPC_HC_IRQSER_CTRL      0x30
61 #define   LPC_HC_IRQSER_EN              0x80000000
62 #define   LPC_HC_IRQSER_QMODE           0x40000000
63 #define   LPC_HC_IRQSER_START_MASK      0x03000000
64 #define   LPC_HC_IRQSER_START_4CLK      0x00000000
65 #define   LPC_HC_IRQSER_START_6CLK      0x01000000
66 #define   LPC_HC_IRQSER_START_8CLK      0x02000000
67 #define   LPC_HC_IRQSER_AUTO_CLEAR      0x00800000
68 #define LPC_HC_IRQMASK          0x34    /* same bit defs as LPC_HC_IRQSTAT */
69 #define LPC_HC_IRQSTAT          0x38
70 #define   LPC_HC_IRQ_SERIRQ0            0x80000000 /* all bits down to ... */
71 #define   LPC_HC_IRQ_SERIRQ16           0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
72 #define   LPC_HC_IRQ_SERIRQ_ALL         0xffff8000
73 #define   LPC_HC_IRQ_LRESET             0x00000400
74 #define   LPC_HC_IRQ_SYNC_ABNORM_ERR    0x00000080
75 #define   LPC_HC_IRQ_SYNC_NORESP_ERR    0x00000040
76 #define   LPC_HC_IRQ_SYNC_NORM_ERR      0x00000020
77 #define   LPC_HC_IRQ_SYNC_TIMEOUT_ERR   0x00000010
78 #define   LPC_HC_IRQ_SYNC_TARG_TAR_ERR  0x00000008
79 #define   LPC_HC_IRQ_SYNC_BM_TAR_ERR    0x00000004
80 #define   LPC_HC_IRQ_SYNC_BM0_REQ       0x00000002
81 #define   LPC_HC_IRQ_SYNC_BM1_REQ       0x00000001
82 #define LPC_HC_ERROR_ADDRESS    0x40
83 
84 #define LPC_OPB_SIZE            0x100000000ull
85 
86 #define ISA_IO_SIZE             0x00010000
87 #define ISA_MEM_SIZE            0x10000000
88 #define ISA_FW_SIZE             0x10000000
89 #define LPC_IO_OPB_ADDR         0xd0010000
90 #define LPC_IO_OPB_SIZE         0x00010000
91 #define LPC_MEM_OPB_ADDR        0xe0000000
92 #define LPC_MEM_OPB_SIZE        0x10000000
93 #define LPC_FW_OPB_ADDR         0xf0000000
94 #define LPC_FW_OPB_SIZE         0x10000000
95 
96 #define LPC_OPB_REGS_OPB_ADDR   0xc0010000
97 #define LPC_OPB_REGS_OPB_SIZE   0x00000060
98 #define LPC_OPB_REGS_OPBA_ADDR  0xc0011000
99 #define LPC_OPB_REGS_OPBA_SIZE  0x00000008
100 #define LPC_HC_REGS_OPB_ADDR    0xc0012000
101 #define LPC_HC_REGS_OPB_SIZE    0x00000100
102 
pnv_lpc_dt_xscom(PnvXScomInterface * dev,void * fdt,int xscom_offset)103 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
104 {
105     const char compat[] = "ibm,power8-lpc\0ibm,lpc";
106     char *name;
107     int offset;
108     uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
109     uint32_t reg[] = {
110         cpu_to_be32(lpc_pcba),
111         cpu_to_be32(PNV_XSCOM_LPC_SIZE)
112     };
113 
114     name = g_strdup_printf("isa@%x", lpc_pcba);
115     offset = fdt_add_subnode(fdt, xscom_offset, name);
116     _FDT(offset);
117     g_free(name);
118 
119     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
120     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
121     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
122     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
123     return 0;
124 }
125 
126 /* POWER9 only */
pnv_dt_lpc(PnvChip * chip,void * fdt,int root_offset,uint64_t lpcm_addr,uint64_t lpcm_size)127 int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr,
128                uint64_t lpcm_size)
129 {
130     const char compat[] = "ibm,power9-lpcm-opb\0simple-bus";
131     const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc";
132     char *name;
133     int offset, lpcm_offset;
134     uint32_t opb_ranges[8] = { 0,
135                                cpu_to_be32(lpcm_addr >> 32),
136                                cpu_to_be32((uint32_t)lpcm_addr),
137                                cpu_to_be32(lpcm_size / 2),
138                                cpu_to_be32(lpcm_size / 2),
139                                cpu_to_be32(lpcm_addr >> 32),
140                                cpu_to_be32(lpcm_size / 2),
141                                cpu_to_be32(lpcm_size / 2),
142     };
143     uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32),
144                             cpu_to_be32((uint32_t)lpcm_addr),
145                             cpu_to_be32(lpcm_size >> 32),
146                             cpu_to_be32((uint32_t)lpcm_size),
147     };
148     uint32_t lpc_ranges[12] = { 0, 0,
149                                 cpu_to_be32(LPC_MEM_OPB_ADDR),
150                                 cpu_to_be32(LPC_MEM_OPB_SIZE),
151                                 cpu_to_be32(1), 0,
152                                 cpu_to_be32(LPC_IO_OPB_ADDR),
153                                 cpu_to_be32(LPC_IO_OPB_SIZE),
154                                 cpu_to_be32(3), 0,
155                                 cpu_to_be32(LPC_FW_OPB_ADDR),
156                                 cpu_to_be32(LPC_FW_OPB_SIZE),
157     };
158     uint32_t reg[2];
159 
160     /*
161      * OPB bus
162      */
163     name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr);
164     lpcm_offset = fdt_add_subnode(fdt, root_offset, name);
165     _FDT(lpcm_offset);
166     g_free(name);
167 
168     _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg))));
169     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1)));
170     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1)));
171     _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat))));
172     _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id)));
173     _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges,
174                       sizeof(opb_ranges))));
175 
176     /*
177      * OPB Master registers
178      */
179     name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR);
180     offset = fdt_add_subnode(fdt, lpcm_offset, name);
181     _FDT(offset);
182     g_free(name);
183 
184     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR);
185     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE);
186     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
187     _FDT((fdt_setprop_string(fdt, offset, "compatible",
188                              "ibm,power9-lpcm-opb-master")));
189 
190     /*
191      * OPB arbitrer registers
192      */
193     name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR);
194     offset = fdt_add_subnode(fdt, lpcm_offset, name);
195     _FDT(offset);
196     g_free(name);
197 
198     reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR);
199     reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE);
200     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
201     _FDT((fdt_setprop_string(fdt, offset, "compatible",
202                              "ibm,power9-lpcm-opb-arbiter")));
203 
204     /*
205      * LPC Host Controller registers
206      */
207     name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR);
208     offset = fdt_add_subnode(fdt, lpcm_offset, name);
209     _FDT(offset);
210     g_free(name);
211 
212     reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR);
213     reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE);
214     _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
215     _FDT((fdt_setprop_string(fdt, offset, "compatible",
216                              "ibm,power9-lpc-controller")));
217 
218     name = g_strdup_printf("lpc@0");
219     offset = fdt_add_subnode(fdt, lpcm_offset, name);
220     _FDT(offset);
221     g_free(name);
222     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
223     _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
224     _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat,
225                       sizeof(lpc_compat))));
226     _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges,
227                       sizeof(lpc_ranges))));
228 
229     return 0;
230 }
231 
232 /*
233  * These read/write handlers of the OPB address space should be common
234  * with the P9 LPC Controller which uses direct MMIOs.
235  *
236  * TODO: rework to use address_space_stq() and address_space_ldq()
237  * instead.
238  */
pnv_lpc_opb_read(PnvLpcController * lpc,uint32_t addr,uint8_t * data,int sz)239 bool pnv_lpc_opb_read(PnvLpcController *lpc, uint32_t addr,
240                       uint8_t *data, int sz)
241 {
242     /* XXX Handle access size limits and FW read caching here */
243     return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
244                                data, sz);
245 }
246 
pnv_lpc_opb_write(PnvLpcController * lpc,uint32_t addr,uint8_t * data,int sz)247 bool pnv_lpc_opb_write(PnvLpcController *lpc, uint32_t addr,
248                        uint8_t *data, int sz)
249 {
250     /* XXX Handle access size limits here */
251     return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
252                                 data, sz);
253 }
254 
255 #define ECCB_CTL_READ           PPC_BIT(15)
256 #define ECCB_CTL_SZ_LSH         (63 - 7)
257 #define ECCB_CTL_SZ_MASK        PPC_BITMASK(4, 7)
258 #define ECCB_CTL_ADDR_MASK      PPC_BITMASK(32, 63)
259 
260 #define ECCB_STAT_OP_DONE       PPC_BIT(52)
261 #define ECCB_STAT_OP_ERR        PPC_BIT(52)
262 #define ECCB_STAT_RD_DATA_LSH   (63 - 37)
263 #define ECCB_STAT_RD_DATA_MASK  (0xffffffff << ECCB_STAT_RD_DATA_LSH)
264 
pnv_lpc_do_eccb(PnvLpcController * lpc,uint64_t cmd)265 static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
266 {
267     /* XXX Check for magic bits at the top, addr size etc... */
268     unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
269     uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
270     uint8_t data[8];
271     bool success;
272 
273     if (sz > sizeof(data)) {
274         qemu_log_mask(LOG_GUEST_ERROR,
275             "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz);
276         return;
277     }
278 
279     if (cmd & ECCB_CTL_READ) {
280         success = pnv_lpc_opb_read(lpc, opb_addr, data, sz);
281         if (success) {
282             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
283                     (((uint64_t)data[0]) << 24 |
284                      ((uint64_t)data[1]) << 16 |
285                      ((uint64_t)data[2]) <<  8 |
286                      ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
287         } else {
288             lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
289                     (0xffffffffull << ECCB_STAT_RD_DATA_LSH);
290         }
291     } else {
292         data[0] = lpc->eccb_data_reg >> 24;
293         data[1] = lpc->eccb_data_reg >> 16;
294         data[2] = lpc->eccb_data_reg >>  8;
295         data[3] = lpc->eccb_data_reg;
296 
297         success = pnv_lpc_opb_write(lpc, opb_addr, data, sz);
298         lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
299     }
300     /* XXX Which error bit (if any) to signal OPB error ? */
301 }
302 
pnv_lpc_xscom_read(void * opaque,hwaddr addr,unsigned size)303 static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
304 {
305     PnvLpcController *lpc = PNV_LPC(opaque);
306     uint32_t offset = addr >> 3;
307     uint64_t val = 0;
308 
309     switch (offset & 3) {
310     case ECCB_CTL:
311     case ECCB_RESET:
312         val = 0;
313         break;
314     case ECCB_STAT:
315         val = lpc->eccb_stat_reg;
316         lpc->eccb_stat_reg = 0;
317         break;
318     case ECCB_DATA:
319         val = ((uint64_t)lpc->eccb_data_reg) << 32;
320         break;
321     }
322     return val;
323 }
324 
pnv_lpc_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)325 static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
326                                 uint64_t val, unsigned size)
327 {
328     PnvLpcController *lpc = PNV_LPC(opaque);
329     uint32_t offset = addr >> 3;
330 
331     switch (offset & 3) {
332     case ECCB_CTL:
333         pnv_lpc_do_eccb(lpc, val);
334         break;
335     case ECCB_RESET:
336         /*  XXXX  */
337         break;
338     case ECCB_STAT:
339         break;
340     case ECCB_DATA:
341         lpc->eccb_data_reg = val >> 32;
342         break;
343     }
344 }
345 
346 static const MemoryRegionOps pnv_lpc_xscom_ops = {
347     .read = pnv_lpc_xscom_read,
348     .write = pnv_lpc_xscom_write,
349     .valid.min_access_size = 8,
350     .valid.max_access_size = 8,
351     .impl.min_access_size = 8,
352     .impl.max_access_size = 8,
353     .endianness = DEVICE_BIG_ENDIAN,
354 };
355 
pnv_lpc_mmio_read(void * opaque,hwaddr addr,unsigned size)356 static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size)
357 {
358     PnvLpcController *lpc = PNV_LPC(opaque);
359     uint64_t val = 0;
360     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
361     MemTxResult result;
362 
363     switch (size) {
364     case 4:
365         val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
366                                 &result);
367         break;
368     case 1:
369         val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED,
370                                  &result);
371         break;
372     default:
373         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
374                       HWADDR_PRIx " invalid size %d\n", addr, size);
375         return 0;
376     }
377 
378     if (result != MEMTX_OK) {
379         qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%"
380                       HWADDR_PRIx "\n", addr);
381     }
382 
383     return val;
384 }
385 
pnv_lpc_mmio_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)386 static void pnv_lpc_mmio_write(void *opaque, hwaddr addr,
387                                 uint64_t val, unsigned size)
388 {
389     PnvLpcController *lpc = PNV_LPC(opaque);
390     uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK;
391     MemTxResult result;
392 
393     switch (size) {
394     case 4:
395         address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
396                           &result);
397          break;
398     case 1:
399         address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED,
400                           &result);
401         break;
402     default:
403         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
404                       HWADDR_PRIx " invalid size %d\n", addr, size);
405         return;
406     }
407 
408     if (result != MEMTX_OK) {
409         qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%"
410                       HWADDR_PRIx "\n", addr);
411     }
412 }
413 
414 static const MemoryRegionOps pnv_lpc_mmio_ops = {
415     .read = pnv_lpc_mmio_read,
416     .write = pnv_lpc_mmio_write,
417     .impl = {
418         .min_access_size = 1,
419         .max_access_size = 4,
420     },
421     .endianness = DEVICE_BIG_ENDIAN,
422 };
423 
424 /* Program the POWER9 LPC irq to PSI serirq routing table */
pnv_lpc_eval_serirq_routes(PnvLpcController * lpc)425 static void pnv_lpc_eval_serirq_routes(PnvLpcController *lpc)
426 {
427     int irq;
428 
429     if (!lpc->psi_has_serirq) {
430         if ((lpc->opb_irq_route0 & PPC_BITMASK32(8, 13)) ||
431             (lpc->opb_irq_route1 & PPC_BITMASK32(4, 31))) {
432             qemu_log_mask(LOG_GUEST_ERROR,
433                 "OPB: setting serirq routing on POWER8 system, ignoring.\n");
434         }
435         return;
436     }
437 
438     /*
439      * Each of the ISA irqs is routed to one of the 4 SERIRQ irqs with 2
440      * bits, split across 2 OPB registers.
441      */
442     for (irq = 0; irq <= 13; irq++) {
443         int serirq = extract32(lpc->opb_irq_route1,
444                                     PPC_BIT32_NR(5 + irq * 2), 2);
445         lpc->irq_to_serirq_route[irq] = serirq;
446     }
447 
448     for (irq = 14; irq < ISA_NUM_IRQS; irq++) {
449         int serirq = extract32(lpc->opb_irq_route0,
450                                PPC_BIT32_NR(9 + (irq - 14) * 2), 2);
451         lpc->irq_to_serirq_route[irq] = serirq;
452     }
453 }
454 
pnv_lpc_eval_irqs(PnvLpcController * lpc)455 static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
456 {
457     uint32_t active_irqs = 0;
458 
459     if (lpc->lpc_hc_irqstat & PPC_BITMASK32(16, 31)) {
460         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented irqs in IRQSTAT: "
461                                  "0x%08"PRIx32"\n", lpc->lpc_hc_irqstat);
462     }
463 
464     if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
465         active_irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
466     }
467 
468     /* Reflect the interrupt */
469     if (!lpc->psi_has_serirq) {
470         /*
471          * POWER8 ORs all irqs together (also with LPCHC internal interrupt
472          * sources) and outputs a single line that raises the PSI LPCHC irq
473          * which then latches an OPB IRQ status register that sends the irq
474          * to PSI.
475          *
476          * We don't honor the polarity register, it's pointless and unused
477          * anyway
478          */
479         if (active_irqs) {
480             lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
481         } else {
482             lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
483         }
484 
485         /* Update OPB internal latch */
486         lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
487 
488         qemu_set_irq(lpc->psi_irq_lpchc, lpc->opb_irq_stat != 0);
489     } else {
490         /*
491          * POWER9 and POWER10 have routing fields in OPB master registers that
492          * send LPC irqs to 4 output lines that raise the PSI SERIRQ irqs.
493          * These don't appear to get latched into an OPB register like the
494          * LPCHC irqs.
495          *
496          * POWER9 LPC controller internal irqs still go via the OPB
497          * and LPCHC PSI irqs like P8, but we have no such internal sources
498          * modelled yet.
499          */
500         bool serirq_out[4] = { false, false, false, false };
501         int irq;
502 
503         for (irq = 0; irq < ISA_NUM_IRQS; irq++) {
504             if (active_irqs & (LPC_HC_IRQ_SERIRQ0 >> irq)) {
505                 serirq_out[lpc->irq_to_serirq_route[irq]] = true;
506             }
507         }
508 
509         qemu_set_irq(lpc->psi_irq_serirq[0], serirq_out[0]);
510         qemu_set_irq(lpc->psi_irq_serirq[1], serirq_out[1]);
511         qemu_set_irq(lpc->psi_irq_serirq[2], serirq_out[2]);
512         qemu_set_irq(lpc->psi_irq_serirq[3], serirq_out[3]);
513     }
514 }
515 
lpc_hc_read(void * opaque,hwaddr addr,unsigned size)516 static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
517 {
518     PnvLpcController *lpc = opaque;
519     uint64_t val = 0xfffffffffffffffful;
520 
521     switch (addr) {
522     case LPC_HC_FW_SEG_IDSEL:
523         val =  lpc->lpc_hc_fw_seg_idsel;
524         break;
525     case LPC_HC_FW_RD_ACC_SIZE:
526         val =  lpc->lpc_hc_fw_rd_acc_size;
527         break;
528     case LPC_HC_IRQSER_CTRL:
529         val =  lpc->lpc_hc_irqser_ctrl;
530         break;
531     case LPC_HC_IRQMASK:
532         val =  lpc->lpc_hc_irqmask;
533         break;
534     case LPC_HC_IRQSTAT:
535         val =  lpc->lpc_hc_irqstat;
536         break;
537     case LPC_HC_ERROR_ADDRESS:
538         val =  lpc->lpc_hc_error_addr;
539         break;
540     default:
541         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
542                       HWADDR_PRIx "\n", addr);
543     }
544     return val;
545 }
546 
lpc_hc_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)547 static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
548                          unsigned size)
549 {
550     PnvLpcController *lpc = opaque;
551 
552     /* XXX Filter out reserved bits */
553 
554     switch (addr) {
555     case LPC_HC_FW_SEG_IDSEL:
556         /* XXX Actually figure out how that works as this impact
557          * memory regions/aliases
558          */
559         lpc->lpc_hc_fw_seg_idsel = val;
560         break;
561     case LPC_HC_FW_RD_ACC_SIZE:
562         lpc->lpc_hc_fw_rd_acc_size = val;
563         break;
564     case LPC_HC_IRQSER_CTRL:
565         lpc->lpc_hc_irqser_ctrl = val;
566         pnv_lpc_eval_irqs(lpc);
567         break;
568     case LPC_HC_IRQMASK:
569         lpc->lpc_hc_irqmask = val;
570         pnv_lpc_eval_irqs(lpc);
571         break;
572     case LPC_HC_IRQSTAT:
573         /*
574          * This register is write-to-clear for the IRQSER (LPC device IRQ)
575          * status. However if the device has not de-asserted its interrupt
576          * that will just raise this IRQ status bit again. Model this by
577          * keeping track of the inputs and only clearing if the inputs are
578          * deasserted.
579          */
580         lpc->lpc_hc_irqstat &= ~(val & ~lpc->lpc_hc_irq_inputs);
581         pnv_lpc_eval_irqs(lpc);
582         break;
583     case LPC_HC_ERROR_ADDRESS:
584         break;
585     default:
586         qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%"
587                       HWADDR_PRIx "\n", addr);
588     }
589 }
590 
591 static const MemoryRegionOps lpc_hc_ops = {
592     .read = lpc_hc_read,
593     .write = lpc_hc_write,
594     .endianness = DEVICE_BIG_ENDIAN,
595     .valid = {
596         .min_access_size = 4,
597         .max_access_size = 4,
598     },
599     .impl = {
600         .min_access_size = 4,
601         .max_access_size = 4,
602     },
603 };
604 
opb_master_read(void * opaque,hwaddr addr,unsigned size)605 static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
606 {
607     PnvLpcController *lpc = opaque;
608     uint64_t val = 0xfffffffffffffffful;
609 
610     switch (addr) {
611     case OPB_MASTER_LS_ROUTE0:
612         val = lpc->opb_irq_route0;
613         break;
614     case OPB_MASTER_LS_ROUTE1:
615         val = lpc->opb_irq_route1;
616         break;
617     case OPB_MASTER_LS_IRQ_STAT:
618         val = lpc->opb_irq_stat;
619         break;
620     case OPB_MASTER_LS_IRQ_MASK:
621         val = lpc->opb_irq_mask;
622         break;
623     case OPB_MASTER_LS_IRQ_POL:
624         val = lpc->opb_irq_pol;
625         break;
626     case OPB_MASTER_LS_IRQ_INPUT:
627         val = lpc->opb_irq_input;
628         break;
629     default:
630         qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%"
631                       HWADDR_PRIx "\n", addr);
632     }
633 
634     return val;
635 }
636 
opb_master_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)637 static void opb_master_write(void *opaque, hwaddr addr,
638                              uint64_t val, unsigned size)
639 {
640     PnvLpcController *lpc = opaque;
641 
642     switch (addr) {
643     case OPB_MASTER_LS_ROUTE0:
644         lpc->opb_irq_route0 = val;
645         pnv_lpc_eval_serirq_routes(lpc);
646         pnv_lpc_eval_irqs(lpc);
647         break;
648     case OPB_MASTER_LS_ROUTE1:
649         lpc->opb_irq_route1 = val;
650         pnv_lpc_eval_serirq_routes(lpc);
651         pnv_lpc_eval_irqs(lpc);
652         break;
653     case OPB_MASTER_LS_IRQ_STAT:
654         lpc->opb_irq_stat &= ~val;
655         pnv_lpc_eval_irqs(lpc);
656         break;
657     case OPB_MASTER_LS_IRQ_MASK:
658         lpc->opb_irq_mask = val;
659         pnv_lpc_eval_irqs(lpc);
660         break;
661     case OPB_MASTER_LS_IRQ_POL:
662         lpc->opb_irq_pol = val;
663         pnv_lpc_eval_irqs(lpc);
664         break;
665     case OPB_MASTER_LS_IRQ_INPUT:
666         /* Read only */
667         break;
668     default:
669         qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%"
670                       HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val);
671     }
672 }
673 
674 static const MemoryRegionOps opb_master_ops = {
675     .read = opb_master_read,
676     .write = opb_master_write,
677     .endianness = DEVICE_BIG_ENDIAN,
678     .valid = {
679         .min_access_size = 4,
680         .max_access_size = 4,
681     },
682     .impl = {
683         .min_access_size = 4,
684         .max_access_size = 4,
685     },
686 };
687 
pnv_lpc_power8_realize(DeviceState * dev,Error ** errp)688 static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp)
689 {
690     PnvLpcController *lpc = PNV_LPC(dev);
691     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
692     Error *local_err = NULL;
693 
694     plc->parent_realize(dev, &local_err);
695     if (local_err) {
696         error_propagate(errp, local_err);
697         return;
698     }
699 
700     /* P8 uses a XSCOM region for LPC registers */
701     pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc),
702                           &pnv_lpc_xscom_ops, lpc, "xscom-lpc",
703                           PNV_XSCOM_LPC_SIZE);
704 }
705 
pnv_lpc_power8_class_init(ObjectClass * klass,void * data)706 static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data)
707 {
708     DeviceClass *dc = DEVICE_CLASS(klass);
709     PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
710     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
711 
712     dc->desc = "PowerNV LPC Controller POWER8";
713 
714     xdc->dt_xscom = pnv_lpc_dt_xscom;
715 
716     device_class_set_parent_realize(dc, pnv_lpc_power8_realize,
717                                     &plc->parent_realize);
718 }
719 
720 static const TypeInfo pnv_lpc_power8_info = {
721     .name          = TYPE_PNV8_LPC,
722     .parent        = TYPE_PNV_LPC,
723     .class_init    = pnv_lpc_power8_class_init,
724     .interfaces = (InterfaceInfo[]) {
725         { TYPE_PNV_XSCOM_INTERFACE },
726         { }
727     }
728 };
729 
pnv_lpc_power9_realize(DeviceState * dev,Error ** errp)730 static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp)
731 {
732     PnvLpcController *lpc = PNV_LPC(dev);
733     PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev);
734     Error *local_err = NULL;
735 
736     object_property_set_bool(OBJECT(lpc), "psi-serirq", true, &error_abort);
737 
738     plc->parent_realize(dev, &local_err);
739     if (local_err) {
740         error_propagate(errp, local_err);
741         return;
742     }
743 
744     /* P9 uses a MMIO region */
745     memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops,
746                           lpc, "lpcm", PNV9_LPCM_SIZE);
747 
748     /* P9 LPC routes ISA irqs to 4 PSI SERIRQ lines */
749     qdev_init_gpio_out_named(dev, lpc->psi_irq_serirq, "SERIRQ", 4);
750 }
751 
pnv_lpc_power9_class_init(ObjectClass * klass,void * data)752 static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data)
753 {
754     DeviceClass *dc = DEVICE_CLASS(klass);
755     PnvLpcClass *plc = PNV_LPC_CLASS(klass);
756 
757     dc->desc = "PowerNV LPC Controller POWER9";
758 
759     device_class_set_parent_realize(dc, pnv_lpc_power9_realize,
760                                     &plc->parent_realize);
761 }
762 
763 static const TypeInfo pnv_lpc_power9_info = {
764     .name          = TYPE_PNV9_LPC,
765     .parent        = TYPE_PNV_LPC,
766     .class_init    = pnv_lpc_power9_class_init,
767 };
768 
pnv_lpc_power10_class_init(ObjectClass * klass,void * data)769 static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data)
770 {
771     DeviceClass *dc = DEVICE_CLASS(klass);
772 
773     dc->desc = "PowerNV LPC Controller POWER10";
774 }
775 
776 static const TypeInfo pnv_lpc_power10_info = {
777     .name          = TYPE_PNV10_LPC,
778     .parent        = TYPE_PNV9_LPC,
779     .class_init    = pnv_lpc_power10_class_init,
780 };
781 
pnv_lpc_realize(DeviceState * dev,Error ** errp)782 static void pnv_lpc_realize(DeviceState *dev, Error **errp)
783 {
784     PnvLpcController *lpc = PNV_LPC(dev);
785 
786     /* Reg inits */
787     lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
788 
789     /* Create address space and backing MR for the OPB bus */
790     memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
791     address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
792 
793     /* Create ISA IO and Mem space regions which are the root of
794      * the ISA bus (ie, ISA address spaces). We don't create a
795      * separate one for FW which we alias to memory.
796      */
797     memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
798     memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
799     memory_region_init(&lpc->isa_fw, OBJECT(dev),  "isa-fw", ISA_FW_SIZE);
800 
801     /* Create windows from the OPB space to the ISA space */
802     memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
803                              &lpc->isa_io, 0, LPC_IO_OPB_SIZE);
804     memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
805                                 &lpc->opb_isa_io);
806     memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
807                              &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
808     memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
809                                 &lpc->opb_isa_mem);
810     memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
811                              &lpc->isa_fw, 0, LPC_FW_OPB_SIZE);
812     memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
813                                 &lpc->opb_isa_fw);
814 
815     /* Create MMIO regions for LPC HC and OPB registers */
816     memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
817                           lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
818     lpc->opb_master_regs.disable_reentrancy_guard = true;
819     memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
820                                 &lpc->opb_master_regs);
821     memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
822                           "lpc-hc", LPC_HC_REGS_OPB_SIZE);
823     /* xscom writes to lpc-hc. As such mark lpc-hc re-entrancy safe */
824     lpc->lpc_hc_regs.disable_reentrancy_guard = true;
825     memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
826                                 &lpc->lpc_hc_regs);
827 
828     qdev_init_gpio_out_named(dev, &lpc->psi_irq_lpchc, "LPCHC", 1);
829 }
830 
831 static Property pnv_lpc_properties[] = {
832     DEFINE_PROP_BOOL("psi-serirq", PnvLpcController, psi_has_serirq, false),
833     DEFINE_PROP_END_OF_LIST(),
834 };
835 
pnv_lpc_class_init(ObjectClass * klass,void * data)836 static void pnv_lpc_class_init(ObjectClass *klass, void *data)
837 {
838     DeviceClass *dc = DEVICE_CLASS(klass);
839 
840     device_class_set_props(dc, pnv_lpc_properties);
841     dc->realize = pnv_lpc_realize;
842     dc->desc = "PowerNV LPC Controller";
843     dc->user_creatable = false;
844 }
845 
846 static const TypeInfo pnv_lpc_info = {
847     .name          = TYPE_PNV_LPC,
848     .parent        = TYPE_DEVICE,
849     .instance_size = sizeof(PnvLpcController),
850     .class_init    = pnv_lpc_class_init,
851     .class_size    = sizeof(PnvLpcClass),
852     .abstract      = true,
853 };
854 
pnv_lpc_register_types(void)855 static void pnv_lpc_register_types(void)
856 {
857     type_register_static(&pnv_lpc_info);
858     type_register_static(&pnv_lpc_power8_info);
859     type_register_static(&pnv_lpc_power9_info);
860     type_register_static(&pnv_lpc_power10_info);
861 }
862 
type_init(pnv_lpc_register_types)863 type_init(pnv_lpc_register_types)
864 
865 /* If we don't use the built-in LPC interrupt deserializer, we need
866  * to provide a set of qirqs for the ISA bus or things will go bad.
867  *
868  * Most machines using pre-Naples chips (without said deserializer)
869  * have a CPLD that will collect the SerIRQ and shoot them as a
870  * single level interrupt to the P8 chip. So let's setup a hook
871  * for doing just that.
872  */
873 static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
874 {
875     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
876     uint32_t old_state = pnv->cpld_irqstate;
877     PnvLpcController *lpc = PNV_LPC(opaque);
878 
879     if (level) {
880         pnv->cpld_irqstate |= 1u << n;
881     } else {
882         pnv->cpld_irqstate &= ~(1u << n);
883     }
884 
885     if (pnv->cpld_irqstate != old_state) {
886         qemu_set_irq(lpc->psi_irq_lpchc, pnv->cpld_irqstate != 0);
887     }
888 }
889 
pnv_lpc_isa_irq_handler(void * opaque,int n,int level)890 static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
891 {
892     PnvLpcController *lpc = PNV_LPC(opaque);
893     uint32_t irq_bit = LPC_HC_IRQ_SERIRQ0 >> n;
894 
895     if (level) {
896         lpc->lpc_hc_irq_inputs |= irq_bit;
897 
898         /*
899          * The LPC HC in Naples and later latches LPC IRQ into a bit field in
900          * the IRQSTAT register, and that drives the PSI IRQ to the IC.
901          * Software clears this bit manually (see LPC_HC_IRQSTAT handler).
902          */
903         lpc->lpc_hc_irqstat |= irq_bit;
904         pnv_lpc_eval_irqs(lpc);
905     } else {
906         lpc->lpc_hc_irq_inputs &= ~irq_bit;
907 
908         /* POWER9 adds an auto-clear mode that clears IRQSTAT bits on EOI */
909         if (lpc->psi_has_serirq &&
910             (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_AUTO_CLEAR)) {
911             lpc->lpc_hc_irqstat &= ~irq_bit;
912             pnv_lpc_eval_irqs(lpc);
913         }
914     }
915 }
916 
pnv_lpc_isa_create(PnvLpcController * lpc,bool use_cpld,Error ** errp)917 ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp)
918 {
919     Error *local_err = NULL;
920     ISABus *isa_bus;
921     qemu_irq *irqs;
922     qemu_irq_handler handler;
923 
924     /* let isa_bus_new() create its own bridge on SysBus otherwise
925      * devices specified on the command line won't find the bus and
926      * will fail to create.
927      */
928     isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err);
929     if (local_err) {
930         error_propagate(errp, local_err);
931         return NULL;
932     }
933 
934     /* Not all variants have a working serial irq decoder. If not,
935      * handling of LPC interrupts becomes a platform issue (some
936      * platforms have a CPLD to do it).
937      */
938     if (use_cpld) {
939         handler = pnv_lpc_isa_irq_handler_cpld;
940     } else {
941         handler = pnv_lpc_isa_irq_handler;
942     }
943 
944     /* POWER has a 17th irq, QEMU only implements the 16 regular device irqs */
945     irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS);
946 
947     isa_bus_register_input_irqs(isa_bus, irqs);
948 
949     return isa_bus;
950 }
951