xref: /openbmc/linux/io_uring/io_uring.c (revision d37cf9b63113f13d742713881ce691fc615d8b3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <linux/anon_inodes.h>
64 #include <linux/sched/mm.h>
65 #include <linux/uaccess.h>
66 #include <linux/nospec.h>
67 #include <linux/highmem.h>
68 #include <linux/fsnotify.h>
69 #include <linux/fadvise.h>
70 #include <linux/task_work.h>
71 #include <linux/io_uring.h>
72 #include <linux/audit.h>
73 #include <linux/security.h>
74 #include <asm/shmparam.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "rw.h"
98 #include "alloc_cache.h"
99 
100 #define IORING_MAX_ENTRIES	32768
101 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
102 
103 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
104 				 IORING_REGISTER_LAST + IORING_OP_LAST)
105 
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108 
109 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111 
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 				REQ_F_ASYNC_DATA)
115 
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 				 IO_REQ_CLEAN_FLAGS)
118 
119 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
120 
121 #define IO_COMPL_BATCH			32
122 #define IO_REQ_ALLOC_BATCH		8
123 
124 enum {
125 	IO_CHECK_CQ_OVERFLOW_BIT,
126 	IO_CHECK_CQ_DROPPED_BIT,
127 };
128 
129 enum {
130 	IO_EVENTFD_OP_SIGNAL_BIT,
131 	IO_EVENTFD_OP_FREE_BIT,
132 };
133 
134 struct io_defer_entry {
135 	struct list_head	list;
136 	struct io_kiocb		*req;
137 	u32			seq;
138 };
139 
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct task_struct *task,
146 					 bool cancel_all);
147 
148 static void io_queue_sqe(struct io_kiocb *req);
149 
150 struct kmem_cache *req_cachep;
151 static struct workqueue_struct *iou_wq __ro_after_init;
152 
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155 
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 	{
159 		.procname	= "io_uring_disabled",
160 		.data		= &sysctl_io_uring_disabled,
161 		.maxlen		= sizeof(sysctl_io_uring_disabled),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec_minmax,
164 		.extra1		= SYSCTL_ZERO,
165 		.extra2		= SYSCTL_TWO,
166 	},
167 	{
168 		.procname	= "io_uring_group",
169 		.data		= &sysctl_io_uring_group,
170 		.maxlen		= sizeof(gid_t),
171 		.mode		= 0644,
172 		.proc_handler	= proc_dointvec,
173 	},
174 	{},
175 };
176 #endif
177 
io_submit_flush_completions(struct io_ring_ctx * ctx)178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
179 {
180 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
181 	    ctx->submit_state.cqes_count)
182 		__io_submit_flush_completions(ctx);
183 }
184 
__io_cqring_events(struct io_ring_ctx * ctx)185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
186 {
187 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
188 }
189 
__io_cqring_events_user(struct io_ring_ctx * ctx)190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
191 {
192 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
193 }
194 
io_match_linked(struct io_kiocb * head)195 static bool io_match_linked(struct io_kiocb *head)
196 {
197 	struct io_kiocb *req;
198 
199 	io_for_each_link(req, head) {
200 		if (req->flags & REQ_F_INFLIGHT)
201 			return true;
202 	}
203 	return false;
204 }
205 
206 /*
207  * As io_match_task() but protected against racing with linked timeouts.
208  * User must not hold timeout_lock.
209  */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
211 			bool cancel_all)
212 {
213 	bool matched;
214 
215 	if (task && head->task != task)
216 		return false;
217 	if (cancel_all)
218 		return true;
219 
220 	if (head->flags & REQ_F_LINK_TIMEOUT) {
221 		struct io_ring_ctx *ctx = head->ctx;
222 
223 		/* protect against races with linked timeouts */
224 		spin_lock_irq(&ctx->timeout_lock);
225 		matched = io_match_linked(head);
226 		spin_unlock_irq(&ctx->timeout_lock);
227 	} else {
228 		matched = io_match_linked(head);
229 	}
230 	return matched;
231 }
232 
req_fail_link_node(struct io_kiocb * req,int res)233 static inline void req_fail_link_node(struct io_kiocb *req, int res)
234 {
235 	req_set_fail(req);
236 	io_req_set_res(req, res, 0);
237 }
238 
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
240 {
241 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
242 }
243 
io_ring_ctx_ref_free(struct percpu_ref * ref)244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
245 {
246 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
247 
248 	complete(&ctx->ref_comp);
249 }
250 
io_fallback_req_func(struct work_struct * work)251 static __cold void io_fallback_req_func(struct work_struct *work)
252 {
253 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
254 						fallback_work.work);
255 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
256 	struct io_kiocb *req, *tmp;
257 	struct io_tw_state ts = { .locked = true, };
258 
259 	percpu_ref_get(&ctx->refs);
260 	mutex_lock(&ctx->uring_lock);
261 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
262 		req->io_task_work.func(req, &ts);
263 	if (WARN_ON_ONCE(!ts.locked))
264 		return;
265 	io_submit_flush_completions(ctx);
266 	mutex_unlock(&ctx->uring_lock);
267 	percpu_ref_put(&ctx->refs);
268 }
269 
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
271 {
272 	unsigned hash_buckets = 1U << bits;
273 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
274 
275 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
276 	if (!table->hbs)
277 		return -ENOMEM;
278 
279 	table->hash_bits = bits;
280 	init_hash_table(table, hash_buckets);
281 	return 0;
282 }
283 
io_ring_ctx_alloc(struct io_uring_params * p)284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 	struct io_ring_ctx *ctx;
287 	int hash_bits;
288 
289 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
290 	if (!ctx)
291 		return NULL;
292 
293 	xa_init(&ctx->io_bl_xa);
294 
295 	/*
296 	 * Use 5 bits less than the max cq entries, that should give us around
297 	 * 32 entries per hash list if totally full and uniformly spread, but
298 	 * don't keep too many buckets to not overconsume memory.
299 	 */
300 	hash_bits = ilog2(p->cq_entries) - 5;
301 	hash_bits = clamp(hash_bits, 1, 8);
302 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
303 		goto err;
304 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
305 		goto err;
306 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 			    0, GFP_KERNEL))
308 		goto err;
309 
310 	ctx->flags = p->flags;
311 	init_waitqueue_head(&ctx->sqo_sq_wait);
312 	INIT_LIST_HEAD(&ctx->sqd_list);
313 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
314 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
315 	INIT_HLIST_HEAD(&ctx->io_buf_list);
316 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
317 			    sizeof(struct io_rsrc_node));
318 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
319 			    sizeof(struct async_poll));
320 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
321 			    sizeof(struct io_async_msghdr));
322 	init_completion(&ctx->ref_comp);
323 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
324 	mutex_init(&ctx->uring_lock);
325 	init_waitqueue_head(&ctx->cq_wait);
326 	init_waitqueue_head(&ctx->poll_wq);
327 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
328 	spin_lock_init(&ctx->completion_lock);
329 	spin_lock_init(&ctx->timeout_lock);
330 	INIT_WQ_LIST(&ctx->iopoll_list);
331 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
332 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
333 	INIT_LIST_HEAD(&ctx->defer_list);
334 	INIT_LIST_HEAD(&ctx->timeout_list);
335 	INIT_LIST_HEAD(&ctx->ltimeout_list);
336 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
337 	init_llist_head(&ctx->work_llist);
338 	INIT_LIST_HEAD(&ctx->tctx_list);
339 	ctx->submit_state.free_list.next = NULL;
340 	INIT_WQ_LIST(&ctx->locked_free_list);
341 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
342 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
343 	return ctx;
344 err:
345 	kfree(ctx->cancel_table.hbs);
346 	kfree(ctx->cancel_table_locked.hbs);
347 	xa_destroy(&ctx->io_bl_xa);
348 	kfree(ctx);
349 	return NULL;
350 }
351 
io_account_cq_overflow(struct io_ring_ctx * ctx)352 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353 {
354 	struct io_rings *r = ctx->rings;
355 
356 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 	ctx->cq_extra--;
358 }
359 
req_need_defer(struct io_kiocb * req,u32 seq)360 static bool req_need_defer(struct io_kiocb *req, u32 seq)
361 {
362 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
363 		struct io_ring_ctx *ctx = req->ctx;
364 
365 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
366 	}
367 
368 	return false;
369 }
370 
io_clean_op(struct io_kiocb * req)371 static void io_clean_op(struct io_kiocb *req)
372 {
373 	if (req->flags & REQ_F_BUFFER_SELECTED) {
374 		spin_lock(&req->ctx->completion_lock);
375 		io_put_kbuf_comp(req);
376 		spin_unlock(&req->ctx->completion_lock);
377 	}
378 
379 	if (req->flags & REQ_F_NEED_CLEANUP) {
380 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
381 
382 		if (def->cleanup)
383 			def->cleanup(req);
384 	}
385 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
386 		kfree(req->apoll->double_poll);
387 		kfree(req->apoll);
388 		req->apoll = NULL;
389 	}
390 	if (req->flags & REQ_F_INFLIGHT) {
391 		struct io_uring_task *tctx = req->task->io_uring;
392 
393 		atomic_dec(&tctx->inflight_tracked);
394 	}
395 	if (req->flags & REQ_F_CREDS)
396 		put_cred(req->creds);
397 	if (req->flags & REQ_F_ASYNC_DATA) {
398 		kfree(req->async_data);
399 		req->async_data = NULL;
400 	}
401 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
402 }
403 
io_req_track_inflight(struct io_kiocb * req)404 static inline void io_req_track_inflight(struct io_kiocb *req)
405 {
406 	if (!(req->flags & REQ_F_INFLIGHT)) {
407 		req->flags |= REQ_F_INFLIGHT;
408 		atomic_inc(&req->task->io_uring->inflight_tracked);
409 	}
410 }
411 
__io_prep_linked_timeout(struct io_kiocb * req)412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
413 {
414 	if (WARN_ON_ONCE(!req->link))
415 		return NULL;
416 
417 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
418 	req->flags |= REQ_F_LINK_TIMEOUT;
419 
420 	/* linked timeouts should have two refs once prep'ed */
421 	io_req_set_refcount(req);
422 	__io_req_set_refcount(req->link, 2);
423 	return req->link;
424 }
425 
io_prep_linked_timeout(struct io_kiocb * req)426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
427 {
428 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
429 		return NULL;
430 	return __io_prep_linked_timeout(req);
431 }
432 
__io_arm_ltimeout(struct io_kiocb * req)433 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
434 {
435 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
436 }
437 
io_arm_ltimeout(struct io_kiocb * req)438 static inline void io_arm_ltimeout(struct io_kiocb *req)
439 {
440 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
441 		__io_arm_ltimeout(req);
442 }
443 
io_prep_async_work(struct io_kiocb * req)444 static void io_prep_async_work(struct io_kiocb *req)
445 {
446 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
447 	struct io_ring_ctx *ctx = req->ctx;
448 
449 	if (!(req->flags & REQ_F_CREDS)) {
450 		req->flags |= REQ_F_CREDS;
451 		req->creds = get_current_cred();
452 	}
453 
454 	req->work.list.next = NULL;
455 	req->work.flags = 0;
456 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
457 	if (req->flags & REQ_F_FORCE_ASYNC)
458 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
459 
460 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
461 		req->flags |= io_file_get_flags(req->file);
462 
463 	if (req->file && (req->flags & REQ_F_ISREG)) {
464 		bool should_hash = def->hash_reg_file;
465 
466 		/* don't serialize this request if the fs doesn't need it */
467 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
468 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
469 			should_hash = false;
470 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
471 			io_wq_hash_work(&req->work, file_inode(req->file));
472 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
473 		if (def->unbound_nonreg_file)
474 			req->work.flags |= IO_WQ_WORK_UNBOUND;
475 	}
476 }
477 
io_prep_async_link(struct io_kiocb * req)478 static void io_prep_async_link(struct io_kiocb *req)
479 {
480 	struct io_kiocb *cur;
481 
482 	if (req->flags & REQ_F_LINK_TIMEOUT) {
483 		struct io_ring_ctx *ctx = req->ctx;
484 
485 		spin_lock_irq(&ctx->timeout_lock);
486 		io_for_each_link(cur, req)
487 			io_prep_async_work(cur);
488 		spin_unlock_irq(&ctx->timeout_lock);
489 	} else {
490 		io_for_each_link(cur, req)
491 			io_prep_async_work(cur);
492 	}
493 }
494 
io_queue_iowq(struct io_kiocb * req)495 static void io_queue_iowq(struct io_kiocb *req)
496 {
497 	struct io_kiocb *link = io_prep_linked_timeout(req);
498 	struct io_uring_task *tctx = req->task->io_uring;
499 
500 	BUG_ON(!tctx);
501 
502 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
503 		io_req_task_queue_fail(req, -ECANCELED);
504 		return;
505 	}
506 
507 	/* init ->work of the whole link before punting */
508 	io_prep_async_link(req);
509 
510 	/*
511 	 * Not expected to happen, but if we do have a bug where this _can_
512 	 * happen, catch it here and ensure the request is marked as
513 	 * canceled. That will make io-wq go through the usual work cancel
514 	 * procedure rather than attempt to run this request (or create a new
515 	 * worker for it).
516 	 */
517 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
518 		req->work.flags |= IO_WQ_WORK_CANCEL;
519 
520 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
521 	io_wq_enqueue(tctx->io_wq, &req->work);
522 	if (link)
523 		io_queue_linked_timeout(link);
524 }
525 
io_queue_deferred(struct io_ring_ctx * ctx)526 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
527 {
528 	while (!list_empty(&ctx->defer_list)) {
529 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
530 						struct io_defer_entry, list);
531 
532 		if (req_need_defer(de->req, de->seq))
533 			break;
534 		list_del_init(&de->list);
535 		io_req_task_queue(de->req);
536 		kfree(de);
537 	}
538 }
539 
io_eventfd_free(struct rcu_head * rcu)540 static void io_eventfd_free(struct rcu_head *rcu)
541 {
542 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
543 
544 	eventfd_ctx_put(ev_fd->cq_ev_fd);
545 	kfree(ev_fd);
546 }
547 
io_eventfd_ops(struct rcu_head * rcu)548 static void io_eventfd_ops(struct rcu_head *rcu)
549 {
550 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
551 	int ops = atomic_xchg(&ev_fd->ops, 0);
552 
553 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
554 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
555 
556 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
557 	 * ordering in a race but if references are 0 we know we have to free
558 	 * it regardless.
559 	 */
560 	if (atomic_dec_and_test(&ev_fd->refs))
561 		call_rcu(&ev_fd->rcu, io_eventfd_free);
562 }
563 
io_eventfd_signal(struct io_ring_ctx * ctx)564 static void io_eventfd_signal(struct io_ring_ctx *ctx)
565 {
566 	struct io_ev_fd *ev_fd = NULL;
567 
568 	rcu_read_lock();
569 	/*
570 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
571 	 * and eventfd_signal
572 	 */
573 	ev_fd = rcu_dereference(ctx->io_ev_fd);
574 
575 	/*
576 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
577 	 * completed between the NULL check of ctx->io_ev_fd at the start of
578 	 * the function and rcu_read_lock.
579 	 */
580 	if (unlikely(!ev_fd))
581 		goto out;
582 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
583 		goto out;
584 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
585 		goto out;
586 
587 	if (likely(eventfd_signal_allowed())) {
588 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
589 	} else {
590 		atomic_inc(&ev_fd->refs);
591 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
592 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
593 		else
594 			atomic_dec(&ev_fd->refs);
595 	}
596 
597 out:
598 	rcu_read_unlock();
599 }
600 
io_eventfd_flush_signal(struct io_ring_ctx * ctx)601 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
602 {
603 	bool skip;
604 
605 	spin_lock(&ctx->completion_lock);
606 
607 	/*
608 	 * Eventfd should only get triggered when at least one event has been
609 	 * posted. Some applications rely on the eventfd notification count
610 	 * only changing IFF a new CQE has been added to the CQ ring. There's
611 	 * no depedency on 1:1 relationship between how many times this
612 	 * function is called (and hence the eventfd count) and number of CQEs
613 	 * posted to the CQ ring.
614 	 */
615 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
616 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
617 	spin_unlock(&ctx->completion_lock);
618 	if (skip)
619 		return;
620 
621 	io_eventfd_signal(ctx);
622 }
623 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)624 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
625 {
626 	if (ctx->poll_activated)
627 		io_poll_wq_wake(ctx);
628 	if (ctx->off_timeout_used)
629 		io_flush_timeouts(ctx);
630 	if (ctx->drain_active) {
631 		spin_lock(&ctx->completion_lock);
632 		io_queue_deferred(ctx);
633 		spin_unlock(&ctx->completion_lock);
634 	}
635 	if (ctx->has_evfd)
636 		io_eventfd_flush_signal(ctx);
637 }
638 
__io_cq_lock(struct io_ring_ctx * ctx)639 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
640 {
641 	if (!ctx->lockless_cq)
642 		spin_lock(&ctx->completion_lock);
643 }
644 
io_cq_lock(struct io_ring_ctx * ctx)645 static inline void io_cq_lock(struct io_ring_ctx *ctx)
646 	__acquires(ctx->completion_lock)
647 {
648 	spin_lock(&ctx->completion_lock);
649 }
650 
__io_cq_unlock_post(struct io_ring_ctx * ctx)651 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
652 {
653 	io_commit_cqring(ctx);
654 	if (!ctx->task_complete) {
655 		if (!ctx->lockless_cq)
656 			spin_unlock(&ctx->completion_lock);
657 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
658 		if (!ctx->syscall_iopoll)
659 			io_cqring_wake(ctx);
660 	}
661 	io_commit_cqring_flush(ctx);
662 }
663 
io_cq_unlock_post(struct io_ring_ctx * ctx)664 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
665 	__releases(ctx->completion_lock)
666 {
667 	io_commit_cqring(ctx);
668 	spin_unlock(&ctx->completion_lock);
669 	io_cqring_wake(ctx);
670 	io_commit_cqring_flush(ctx);
671 }
672 
673 /* Returns true if there are no backlogged entries after the flush */
io_cqring_overflow_kill(struct io_ring_ctx * ctx)674 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
675 {
676 	struct io_overflow_cqe *ocqe;
677 	LIST_HEAD(list);
678 
679 	lockdep_assert_held(&ctx->uring_lock);
680 
681 	spin_lock(&ctx->completion_lock);
682 	list_splice_init(&ctx->cq_overflow_list, &list);
683 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
684 	spin_unlock(&ctx->completion_lock);
685 
686 	while (!list_empty(&list)) {
687 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
688 		list_del(&ocqe->list);
689 		kfree(ocqe);
690 	}
691 }
692 
__io_cqring_overflow_flush(struct io_ring_ctx * ctx)693 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
694 {
695 	size_t cqe_size = sizeof(struct io_uring_cqe);
696 
697 	lockdep_assert_held(&ctx->uring_lock);
698 
699 	if (__io_cqring_events(ctx) == ctx->cq_entries)
700 		return;
701 
702 	if (ctx->flags & IORING_SETUP_CQE32)
703 		cqe_size <<= 1;
704 
705 	io_cq_lock(ctx);
706 	while (!list_empty(&ctx->cq_overflow_list)) {
707 		struct io_uring_cqe *cqe;
708 		struct io_overflow_cqe *ocqe;
709 
710 		if (!io_get_cqe_overflow(ctx, &cqe, true))
711 			break;
712 		ocqe = list_first_entry(&ctx->cq_overflow_list,
713 					struct io_overflow_cqe, list);
714 		memcpy(cqe, &ocqe->cqe, cqe_size);
715 		list_del(&ocqe->list);
716 		kfree(ocqe);
717 
718 		/*
719 		 * For silly syzbot cases that deliberately overflow by huge
720 		 * amounts, check if we need to resched and drop and
721 		 * reacquire the locks if so. Nothing real would ever hit this.
722 		 * Ideally we'd have a non-posting unlock for this, but hard
723 		 * to care for a non-real case.
724 		 */
725 		if (need_resched()) {
726 			io_cq_unlock_post(ctx);
727 			mutex_unlock(&ctx->uring_lock);
728 			cond_resched();
729 			mutex_lock(&ctx->uring_lock);
730 			io_cq_lock(ctx);
731 		}
732 	}
733 
734 	if (list_empty(&ctx->cq_overflow_list)) {
735 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
736 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
737 	}
738 	io_cq_unlock_post(ctx);
739 }
740 
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)741 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
742 {
743 	mutex_lock(&ctx->uring_lock);
744 	__io_cqring_overflow_flush(ctx);
745 	mutex_unlock(&ctx->uring_lock);
746 }
747 
io_cqring_overflow_flush(struct io_ring_ctx * ctx)748 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
749 {
750 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
751 		io_cqring_do_overflow_flush(ctx);
752 }
753 
754 /* can be called by any task */
io_put_task_remote(struct task_struct * task)755 static void io_put_task_remote(struct task_struct *task)
756 {
757 	struct io_uring_task *tctx = task->io_uring;
758 
759 	percpu_counter_sub(&tctx->inflight, 1);
760 	if (unlikely(atomic_read(&tctx->in_cancel)))
761 		wake_up(&tctx->wait);
762 	put_task_struct(task);
763 }
764 
765 /* used by a task to put its own references */
io_put_task_local(struct task_struct * task)766 static void io_put_task_local(struct task_struct *task)
767 {
768 	task->io_uring->cached_refs++;
769 }
770 
771 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task)772 static inline void io_put_task(struct task_struct *task)
773 {
774 	if (likely(task == current))
775 		io_put_task_local(task);
776 	else
777 		io_put_task_remote(task);
778 }
779 
io_task_refs_refill(struct io_uring_task * tctx)780 void io_task_refs_refill(struct io_uring_task *tctx)
781 {
782 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
783 
784 	percpu_counter_add(&tctx->inflight, refill);
785 	refcount_add(refill, &current->usage);
786 	tctx->cached_refs += refill;
787 }
788 
io_uring_drop_tctx_refs(struct task_struct * task)789 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
790 {
791 	struct io_uring_task *tctx = task->io_uring;
792 	unsigned int refs = tctx->cached_refs;
793 
794 	if (refs) {
795 		tctx->cached_refs = 0;
796 		percpu_counter_sub(&tctx->inflight, refs);
797 		put_task_struct_many(task, refs);
798 	}
799 }
800 
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)801 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
802 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
803 {
804 	struct io_overflow_cqe *ocqe;
805 	size_t ocq_size = sizeof(struct io_overflow_cqe);
806 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
807 
808 	lockdep_assert_held(&ctx->completion_lock);
809 
810 	if (is_cqe32)
811 		ocq_size += sizeof(struct io_uring_cqe);
812 
813 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
814 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
815 	if (!ocqe) {
816 		/*
817 		 * If we're in ring overflow flush mode, or in task cancel mode,
818 		 * or cannot allocate an overflow entry, then we need to drop it
819 		 * on the floor.
820 		 */
821 		io_account_cq_overflow(ctx);
822 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
823 		return false;
824 	}
825 	if (list_empty(&ctx->cq_overflow_list)) {
826 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
827 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
828 
829 	}
830 	ocqe->cqe.user_data = user_data;
831 	ocqe->cqe.res = res;
832 	ocqe->cqe.flags = cflags;
833 	if (is_cqe32) {
834 		ocqe->cqe.big_cqe[0] = extra1;
835 		ocqe->cqe.big_cqe[1] = extra2;
836 	}
837 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
838 	return true;
839 }
840 
io_req_cqe_overflow(struct io_kiocb * req)841 void io_req_cqe_overflow(struct io_kiocb *req)
842 {
843 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
844 				req->cqe.res, req->cqe.flags,
845 				req->big_cqe.extra1, req->big_cqe.extra2);
846 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
847 }
848 
849 /*
850  * writes to the cq entry need to come after reading head; the
851  * control dependency is enough as we're using WRITE_ONCE to
852  * fill the cq entry
853  */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)854 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
855 {
856 	struct io_rings *rings = ctx->rings;
857 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
858 	unsigned int free, queued, len;
859 
860 	/*
861 	 * Posting into the CQ when there are pending overflowed CQEs may break
862 	 * ordering guarantees, which will affect links, F_MORE users and more.
863 	 * Force overflow the completion.
864 	 */
865 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
866 		return false;
867 
868 	/* userspace may cheat modifying the tail, be safe and do min */
869 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
870 	free = ctx->cq_entries - queued;
871 	/* we need a contiguous range, limit based on the current array offset */
872 	len = min(free, ctx->cq_entries - off);
873 	if (!len)
874 		return false;
875 
876 	if (ctx->flags & IORING_SETUP_CQE32) {
877 		off <<= 1;
878 		len <<= 1;
879 	}
880 
881 	ctx->cqe_cached = &rings->cqes[off];
882 	ctx->cqe_sentinel = ctx->cqe_cached + len;
883 	return true;
884 }
885 
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)886 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
887 			      u32 cflags)
888 {
889 	struct io_uring_cqe *cqe;
890 
891 	ctx->cq_extra++;
892 
893 	/*
894 	 * If we can't get a cq entry, userspace overflowed the
895 	 * submission (by quite a lot). Increment the overflow count in
896 	 * the ring.
897 	 */
898 	if (likely(io_get_cqe(ctx, &cqe))) {
899 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
900 
901 		WRITE_ONCE(cqe->user_data, user_data);
902 		WRITE_ONCE(cqe->res, res);
903 		WRITE_ONCE(cqe->flags, cflags);
904 
905 		if (ctx->flags & IORING_SETUP_CQE32) {
906 			WRITE_ONCE(cqe->big_cqe[0], 0);
907 			WRITE_ONCE(cqe->big_cqe[1], 0);
908 		}
909 		return true;
910 	}
911 	return false;
912 }
913 
__io_flush_post_cqes(struct io_ring_ctx * ctx)914 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
915 	__must_hold(&ctx->uring_lock)
916 {
917 	struct io_submit_state *state = &ctx->submit_state;
918 	unsigned int i;
919 
920 	lockdep_assert_held(&ctx->uring_lock);
921 	for (i = 0; i < state->cqes_count; i++) {
922 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
923 
924 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
925 			if (ctx->lockless_cq) {
926 				spin_lock(&ctx->completion_lock);
927 				io_cqring_event_overflow(ctx, cqe->user_data,
928 							cqe->res, cqe->flags, 0, 0);
929 				spin_unlock(&ctx->completion_lock);
930 			} else {
931 				io_cqring_event_overflow(ctx, cqe->user_data,
932 							cqe->res, cqe->flags, 0, 0);
933 			}
934 		}
935 	}
936 	state->cqes_count = 0;
937 }
938 
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)939 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
940 			      bool allow_overflow)
941 {
942 	bool filled;
943 
944 	io_cq_lock(ctx);
945 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
946 	if (!filled && allow_overflow)
947 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
948 
949 	io_cq_unlock_post(ctx);
950 	return filled;
951 }
952 
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)953 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
954 {
955 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
956 }
957 
958 /*
959  * A helper for multishot requests posting additional CQEs.
960  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
961  */
io_fill_cqe_req_aux(struct io_kiocb * req,bool defer,s32 res,u32 cflags)962 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
963 {
964 	struct io_ring_ctx *ctx = req->ctx;
965 	u64 user_data = req->cqe.user_data;
966 	struct io_uring_cqe *cqe;
967 
968 	if (!defer)
969 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
970 
971 	lockdep_assert_held(&ctx->uring_lock);
972 
973 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
974 		__io_cq_lock(ctx);
975 		__io_flush_post_cqes(ctx);
976 		/* no need to flush - flush is deferred */
977 		__io_cq_unlock_post(ctx);
978 	}
979 
980 	/* For defered completions this is not as strict as it is otherwise,
981 	 * however it's main job is to prevent unbounded posted completions,
982 	 * and in that it works just as well.
983 	 */
984 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
985 		return false;
986 
987 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
988 	cqe->user_data = user_data;
989 	cqe->res = res;
990 	cqe->flags = cflags;
991 	return true;
992 }
993 
__io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)994 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
995 {
996 	struct io_ring_ctx *ctx = req->ctx;
997 	struct io_rsrc_node *rsrc_node = NULL;
998 
999 	io_cq_lock(ctx);
1000 	if (!(req->flags & REQ_F_CQE_SKIP)) {
1001 		if (!io_fill_cqe_req(ctx, req))
1002 			io_req_cqe_overflow(req);
1003 	}
1004 
1005 	/*
1006 	 * If we're the last reference to this request, add to our locked
1007 	 * free_list cache.
1008 	 */
1009 	if (req_ref_put_and_test(req)) {
1010 		if (req->flags & IO_REQ_LINK_FLAGS) {
1011 			if (req->flags & IO_DISARM_MASK)
1012 				io_disarm_next(req);
1013 			if (req->link) {
1014 				io_req_task_queue(req->link);
1015 				req->link = NULL;
1016 			}
1017 		}
1018 		io_put_kbuf_comp(req);
1019 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1020 			io_clean_op(req);
1021 		io_put_file(req);
1022 
1023 		rsrc_node = req->rsrc_node;
1024 		/*
1025 		 * Selected buffer deallocation in io_clean_op() assumes that
1026 		 * we don't hold ->completion_lock. Clean them here to avoid
1027 		 * deadlocks.
1028 		 */
1029 		io_put_task_remote(req->task);
1030 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1031 		ctx->locked_free_nr++;
1032 	}
1033 	io_cq_unlock_post(ctx);
1034 
1035 	if (rsrc_node) {
1036 		io_ring_submit_lock(ctx, issue_flags);
1037 		io_put_rsrc_node(ctx, rsrc_node);
1038 		io_ring_submit_unlock(ctx, issue_flags);
1039 	}
1040 }
1041 
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)1042 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1043 {
1044 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1045 		req->io_task_work.func = io_req_task_complete;
1046 		io_req_task_work_add(req);
1047 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1048 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1049 		__io_req_complete_post(req, issue_flags);
1050 	} else {
1051 		struct io_ring_ctx *ctx = req->ctx;
1052 
1053 		mutex_lock(&ctx->uring_lock);
1054 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1055 		mutex_unlock(&ctx->uring_lock);
1056 	}
1057 }
1058 
io_req_defer_failed(struct io_kiocb * req,s32 res)1059 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1060 	__must_hold(&ctx->uring_lock)
1061 {
1062 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1063 
1064 	lockdep_assert_held(&req->ctx->uring_lock);
1065 
1066 	req_set_fail(req);
1067 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1068 	if (def->fail)
1069 		def->fail(req);
1070 	io_req_complete_defer(req);
1071 }
1072 
1073 /*
1074  * Don't initialise the fields below on every allocation, but do that in
1075  * advance and keep them valid across allocations.
1076  */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1077 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1078 {
1079 	req->ctx = ctx;
1080 	req->link = NULL;
1081 	req->async_data = NULL;
1082 	/* not necessary, but safer to zero */
1083 	memset(&req->cqe, 0, sizeof(req->cqe));
1084 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1085 }
1086 
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1087 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1088 					struct io_submit_state *state)
1089 {
1090 	spin_lock(&ctx->completion_lock);
1091 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1092 	ctx->locked_free_nr = 0;
1093 	spin_unlock(&ctx->completion_lock);
1094 }
1095 
1096 /*
1097  * A request might get retired back into the request caches even before opcode
1098  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1099  * Because of that, io_alloc_req() should be called only under ->uring_lock
1100  * and with extra caution to not get a request that is still worked on.
1101  */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1102 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1103 	__must_hold(&ctx->uring_lock)
1104 {
1105 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1106 	void *reqs[IO_REQ_ALLOC_BATCH];
1107 	int ret, i;
1108 
1109 	/*
1110 	 * If we have more than a batch's worth of requests in our IRQ side
1111 	 * locked cache, grab the lock and move them over to our submission
1112 	 * side cache.
1113 	 */
1114 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1115 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1116 		if (!io_req_cache_empty(ctx))
1117 			return true;
1118 	}
1119 
1120 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1121 
1122 	/*
1123 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1124 	 * retry single alloc to be on the safe side.
1125 	 */
1126 	if (unlikely(ret <= 0)) {
1127 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1128 		if (!reqs[0])
1129 			return false;
1130 		ret = 1;
1131 	}
1132 
1133 	percpu_ref_get_many(&ctx->refs, ret);
1134 	for (i = 0; i < ret; i++) {
1135 		struct io_kiocb *req = reqs[i];
1136 
1137 		io_preinit_req(req, ctx);
1138 		io_req_add_to_cache(req, ctx);
1139 	}
1140 	return true;
1141 }
1142 
io_free_req(struct io_kiocb * req)1143 __cold void io_free_req(struct io_kiocb *req)
1144 {
1145 	/* refs were already put, restore them for io_req_task_complete() */
1146 	req->flags &= ~REQ_F_REFCOUNT;
1147 	/* we only want to free it, don't post CQEs */
1148 	req->flags |= REQ_F_CQE_SKIP;
1149 	req->io_task_work.func = io_req_task_complete;
1150 	io_req_task_work_add(req);
1151 }
1152 
__io_req_find_next_prep(struct io_kiocb * req)1153 static void __io_req_find_next_prep(struct io_kiocb *req)
1154 {
1155 	struct io_ring_ctx *ctx = req->ctx;
1156 
1157 	spin_lock(&ctx->completion_lock);
1158 	io_disarm_next(req);
1159 	spin_unlock(&ctx->completion_lock);
1160 }
1161 
io_req_find_next(struct io_kiocb * req)1162 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1163 {
1164 	struct io_kiocb *nxt;
1165 
1166 	/*
1167 	 * If LINK is set, we have dependent requests in this chain. If we
1168 	 * didn't fail this request, queue the first one up, moving any other
1169 	 * dependencies to the next request. In case of failure, fail the rest
1170 	 * of the chain.
1171 	 */
1172 	if (unlikely(req->flags & IO_DISARM_MASK))
1173 		__io_req_find_next_prep(req);
1174 	nxt = req->link;
1175 	req->link = NULL;
1176 	return nxt;
1177 }
1178 
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1179 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1180 {
1181 	if (!ctx)
1182 		return;
1183 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1184 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1185 	if (ts->locked) {
1186 		io_submit_flush_completions(ctx);
1187 		mutex_unlock(&ctx->uring_lock);
1188 		ts->locked = false;
1189 	}
1190 	percpu_ref_put(&ctx->refs);
1191 }
1192 
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,struct io_tw_state * ts)1193 static unsigned int handle_tw_list(struct llist_node *node,
1194 				   struct io_ring_ctx **ctx,
1195 				   struct io_tw_state *ts)
1196 {
1197 	unsigned int count = 0;
1198 
1199 	do {
1200 		struct llist_node *next = node->next;
1201 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1202 						    io_task_work.node);
1203 
1204 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1205 
1206 		if (req->ctx != *ctx) {
1207 			ctx_flush_and_put(*ctx, ts);
1208 			*ctx = req->ctx;
1209 			/* if not contended, grab and improve batching */
1210 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1211 			percpu_ref_get(&(*ctx)->refs);
1212 		}
1213 		INDIRECT_CALL_2(req->io_task_work.func,
1214 				io_poll_task_func, io_req_rw_complete,
1215 				req, ts);
1216 		node = next;
1217 		count++;
1218 		if (unlikely(need_resched())) {
1219 			ctx_flush_and_put(*ctx, ts);
1220 			*ctx = NULL;
1221 			cond_resched();
1222 		}
1223 	} while (node);
1224 
1225 	return count;
1226 }
1227 
1228 /**
1229  * io_llist_xchg - swap all entries in a lock-less list
1230  * @head:	the head of lock-less list to delete all entries
1231  * @new:	new entry as the head of the list
1232  *
1233  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1234  * The order of entries returned is from the newest to the oldest added one.
1235  */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1236 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1237 					       struct llist_node *new)
1238 {
1239 	return xchg(&head->first, new);
1240 }
1241 
io_fallback_tw(struct io_uring_task * tctx,bool sync)1242 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1243 {
1244 	struct llist_node *node = llist_del_all(&tctx->task_list);
1245 	struct io_ring_ctx *last_ctx = NULL;
1246 	struct io_kiocb *req;
1247 
1248 	while (node) {
1249 		req = container_of(node, struct io_kiocb, io_task_work.node);
1250 		node = node->next;
1251 		if (sync && last_ctx != req->ctx) {
1252 			if (last_ctx) {
1253 				flush_delayed_work(&last_ctx->fallback_work);
1254 				percpu_ref_put(&last_ctx->refs);
1255 			}
1256 			last_ctx = req->ctx;
1257 			percpu_ref_get(&last_ctx->refs);
1258 		}
1259 		if (llist_add(&req->io_task_work.node,
1260 			      &req->ctx->fallback_llist))
1261 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1262 	}
1263 
1264 	if (last_ctx) {
1265 		flush_delayed_work(&last_ctx->fallback_work);
1266 		percpu_ref_put(&last_ctx->refs);
1267 	}
1268 }
1269 
tctx_task_work(struct callback_head * cb)1270 void tctx_task_work(struct callback_head *cb)
1271 {
1272 	struct io_tw_state ts = {};
1273 	struct io_ring_ctx *ctx = NULL;
1274 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1275 						  task_work);
1276 	struct llist_node *node;
1277 	unsigned int count = 0;
1278 
1279 	if (unlikely(current->flags & PF_EXITING)) {
1280 		io_fallback_tw(tctx, true);
1281 		return;
1282 	}
1283 
1284 	node = llist_del_all(&tctx->task_list);
1285 	if (node)
1286 		count = handle_tw_list(node, &ctx, &ts);
1287 
1288 	ctx_flush_and_put(ctx, &ts);
1289 
1290 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1291 	if (unlikely(atomic_read(&tctx->in_cancel)))
1292 		io_uring_drop_tctx_refs(current);
1293 
1294 	trace_io_uring_task_work_run(tctx, count, 1);
1295 }
1296 
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1297 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1298 {
1299 	struct io_ring_ctx *ctx = req->ctx;
1300 	unsigned nr_wait, nr_tw, nr_tw_prev;
1301 	struct llist_node *first;
1302 
1303 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1304 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1305 
1306 	first = READ_ONCE(ctx->work_llist.first);
1307 	do {
1308 		nr_tw_prev = 0;
1309 		if (first) {
1310 			struct io_kiocb *first_req = container_of(first,
1311 							struct io_kiocb,
1312 							io_task_work.node);
1313 			/*
1314 			 * Might be executed at any moment, rely on
1315 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1316 			 */
1317 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1318 		}
1319 		nr_tw = nr_tw_prev + 1;
1320 		/* Large enough to fail the nr_wait comparison below */
1321 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1322 			nr_tw = INT_MAX;
1323 
1324 		req->nr_tw = nr_tw;
1325 		req->io_task_work.node.next = first;
1326 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1327 			      &req->io_task_work.node));
1328 
1329 	if (!first) {
1330 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1331 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1332 		if (ctx->has_evfd)
1333 			io_eventfd_signal(ctx);
1334 	}
1335 
1336 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1337 	/* no one is waiting */
1338 	if (!nr_wait)
1339 		return;
1340 	/* either not enough or the previous add has already woken it up */
1341 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1342 		return;
1343 	/* pairs with set_current_state() in io_cqring_wait() */
1344 	smp_mb__after_atomic();
1345 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1346 }
1347 
io_req_normal_work_add(struct io_kiocb * req)1348 static void io_req_normal_work_add(struct io_kiocb *req)
1349 {
1350 	struct io_uring_task *tctx = req->task->io_uring;
1351 	struct io_ring_ctx *ctx = req->ctx;
1352 
1353 	/* task_work already pending, we're done */
1354 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1355 		return;
1356 
1357 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1358 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1359 
1360 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1361 		return;
1362 
1363 	io_fallback_tw(tctx, false);
1364 }
1365 
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1366 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1367 {
1368 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1369 		rcu_read_lock();
1370 		io_req_local_work_add(req, flags);
1371 		rcu_read_unlock();
1372 	} else {
1373 		io_req_normal_work_add(req);
1374 	}
1375 }
1376 
io_move_task_work_from_local(struct io_ring_ctx * ctx)1377 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1378 {
1379 	struct llist_node *node;
1380 
1381 	node = llist_del_all(&ctx->work_llist);
1382 	while (node) {
1383 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1384 						    io_task_work.node);
1385 
1386 		node = node->next;
1387 		io_req_normal_work_add(req);
1388 	}
1389 }
1390 
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1391 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1392 				       int min_events)
1393 {
1394 	if (llist_empty(&ctx->work_llist))
1395 		return false;
1396 	if (events < min_events)
1397 		return true;
1398 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1399 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1400 	return false;
1401 }
1402 
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events)1403 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1404 			       int min_events)
1405 {
1406 	struct llist_node *node;
1407 	unsigned int loops = 0;
1408 	int ret = 0;
1409 
1410 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1411 		return -EEXIST;
1412 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1413 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1414 again:
1415 	/*
1416 	 * llists are in reverse order, flip it back the right way before
1417 	 * running the pending items.
1418 	 */
1419 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1420 	while (node) {
1421 		struct llist_node *next = node->next;
1422 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1423 						    io_task_work.node);
1424 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1425 		INDIRECT_CALL_2(req->io_task_work.func,
1426 				io_poll_task_func, io_req_rw_complete,
1427 				req, ts);
1428 		ret++;
1429 		node = next;
1430 	}
1431 	loops++;
1432 
1433 	if (io_run_local_work_continue(ctx, ret, min_events))
1434 		goto again;
1435 	if (ts->locked) {
1436 		io_submit_flush_completions(ctx);
1437 		if (io_run_local_work_continue(ctx, ret, min_events))
1438 			goto again;
1439 	}
1440 
1441 	trace_io_uring_local_work_run(ctx, ret, loops);
1442 	return ret;
1443 }
1444 
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1445 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1446 					   int min_events)
1447 {
1448 	struct io_tw_state ts = { .locked = true, };
1449 	int ret;
1450 
1451 	if (llist_empty(&ctx->work_llist))
1452 		return 0;
1453 
1454 	ret = __io_run_local_work(ctx, &ts, min_events);
1455 	/* shouldn't happen! */
1456 	if (WARN_ON_ONCE(!ts.locked))
1457 		mutex_lock(&ctx->uring_lock);
1458 	return ret;
1459 }
1460 
io_run_local_work(struct io_ring_ctx * ctx,int min_events)1461 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1462 {
1463 	struct io_tw_state ts = {};
1464 	int ret;
1465 
1466 	ts.locked = mutex_trylock(&ctx->uring_lock);
1467 	ret = __io_run_local_work(ctx, &ts, min_events);
1468 	if (ts.locked)
1469 		mutex_unlock(&ctx->uring_lock);
1470 
1471 	return ret;
1472 }
1473 
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1474 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1475 {
1476 	io_tw_lock(req->ctx, ts);
1477 	io_req_defer_failed(req, req->cqe.res);
1478 }
1479 
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1480 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1481 {
1482 	io_tw_lock(req->ctx, ts);
1483 	/* req->task == current here, checking PF_EXITING is safe */
1484 	if (unlikely(req->task->flags & PF_EXITING))
1485 		io_req_defer_failed(req, -EFAULT);
1486 	else if (req->flags & REQ_F_FORCE_ASYNC)
1487 		io_queue_iowq(req);
1488 	else
1489 		io_queue_sqe(req);
1490 }
1491 
io_req_task_queue_fail(struct io_kiocb * req,int ret)1492 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1493 {
1494 	io_req_set_res(req, ret, 0);
1495 	req->io_task_work.func = io_req_task_cancel;
1496 	io_req_task_work_add(req);
1497 }
1498 
io_req_task_queue(struct io_kiocb * req)1499 void io_req_task_queue(struct io_kiocb *req)
1500 {
1501 	req->io_task_work.func = io_req_task_submit;
1502 	io_req_task_work_add(req);
1503 }
1504 
io_queue_next(struct io_kiocb * req)1505 void io_queue_next(struct io_kiocb *req)
1506 {
1507 	struct io_kiocb *nxt = io_req_find_next(req);
1508 
1509 	if (nxt)
1510 		io_req_task_queue(nxt);
1511 }
1512 
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1513 static void io_free_batch_list(struct io_ring_ctx *ctx,
1514 			       struct io_wq_work_node *node)
1515 	__must_hold(&ctx->uring_lock)
1516 {
1517 	do {
1518 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1519 						    comp_list);
1520 
1521 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1522 			if (req->flags & REQ_F_REFCOUNT) {
1523 				node = req->comp_list.next;
1524 				if (!req_ref_put_and_test(req))
1525 					continue;
1526 			}
1527 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1528 				struct async_poll *apoll = req->apoll;
1529 
1530 				if (apoll->double_poll)
1531 					kfree(apoll->double_poll);
1532 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1533 					kfree(apoll);
1534 				req->flags &= ~REQ_F_POLLED;
1535 			}
1536 			if (req->flags & IO_REQ_LINK_FLAGS)
1537 				io_queue_next(req);
1538 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1539 				io_clean_op(req);
1540 		}
1541 		io_put_file(req);
1542 
1543 		io_req_put_rsrc_locked(req, ctx);
1544 
1545 		io_put_task(req->task);
1546 		node = req->comp_list.next;
1547 		io_req_add_to_cache(req, ctx);
1548 	} while (node);
1549 }
1550 
__io_submit_flush_completions(struct io_ring_ctx * ctx)1551 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1552 	__must_hold(&ctx->uring_lock)
1553 {
1554 	struct io_submit_state *state = &ctx->submit_state;
1555 	struct io_wq_work_node *node;
1556 
1557 	__io_cq_lock(ctx);
1558 	/* must come first to preserve CQE ordering in failure cases */
1559 	if (state->cqes_count)
1560 		__io_flush_post_cqes(ctx);
1561 	__wq_list_for_each(node, &state->compl_reqs) {
1562 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1563 					    comp_list);
1564 
1565 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1566 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1567 			if (ctx->lockless_cq) {
1568 				spin_lock(&ctx->completion_lock);
1569 				io_req_cqe_overflow(req);
1570 				spin_unlock(&ctx->completion_lock);
1571 			} else {
1572 				io_req_cqe_overflow(req);
1573 			}
1574 		}
1575 	}
1576 	__io_cq_unlock_post(ctx);
1577 
1578 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1579 		io_free_batch_list(ctx, state->compl_reqs.first);
1580 		INIT_WQ_LIST(&state->compl_reqs);
1581 	}
1582 }
1583 
io_cqring_events(struct io_ring_ctx * ctx)1584 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1585 {
1586 	/* See comment at the top of this file */
1587 	smp_rmb();
1588 	return __io_cqring_events(ctx);
1589 }
1590 
1591 /*
1592  * We can't just wait for polled events to come to us, we have to actively
1593  * find and complete them.
1594  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1595 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1596 {
1597 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1598 		return;
1599 
1600 	mutex_lock(&ctx->uring_lock);
1601 	while (!wq_list_empty(&ctx->iopoll_list)) {
1602 		/* let it sleep and repeat later if can't complete a request */
1603 		if (io_do_iopoll(ctx, true) == 0)
1604 			break;
1605 		/*
1606 		 * Ensure we allow local-to-the-cpu processing to take place,
1607 		 * in this case we need to ensure that we reap all events.
1608 		 * Also let task_work, etc. to progress by releasing the mutex
1609 		 */
1610 		if (need_resched()) {
1611 			mutex_unlock(&ctx->uring_lock);
1612 			cond_resched();
1613 			mutex_lock(&ctx->uring_lock);
1614 		}
1615 	}
1616 	mutex_unlock(&ctx->uring_lock);
1617 }
1618 
io_iopoll_check(struct io_ring_ctx * ctx,long min)1619 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1620 {
1621 	unsigned int nr_events = 0;
1622 	unsigned long check_cq;
1623 
1624 	lockdep_assert_held(&ctx->uring_lock);
1625 
1626 	if (!io_allowed_run_tw(ctx))
1627 		return -EEXIST;
1628 
1629 	check_cq = READ_ONCE(ctx->check_cq);
1630 	if (unlikely(check_cq)) {
1631 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1632 			__io_cqring_overflow_flush(ctx);
1633 		/*
1634 		 * Similarly do not spin if we have not informed the user of any
1635 		 * dropped CQE.
1636 		 */
1637 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1638 			return -EBADR;
1639 	}
1640 	/*
1641 	 * Don't enter poll loop if we already have events pending.
1642 	 * If we do, we can potentially be spinning for commands that
1643 	 * already triggered a CQE (eg in error).
1644 	 */
1645 	if (io_cqring_events(ctx))
1646 		return 0;
1647 
1648 	do {
1649 		int ret = 0;
1650 
1651 		/*
1652 		 * If a submit got punted to a workqueue, we can have the
1653 		 * application entering polling for a command before it gets
1654 		 * issued. That app will hold the uring_lock for the duration
1655 		 * of the poll right here, so we need to take a breather every
1656 		 * now and then to ensure that the issue has a chance to add
1657 		 * the poll to the issued list. Otherwise we can spin here
1658 		 * forever, while the workqueue is stuck trying to acquire the
1659 		 * very same mutex.
1660 		 */
1661 		if (wq_list_empty(&ctx->iopoll_list) ||
1662 		    io_task_work_pending(ctx)) {
1663 			u32 tail = ctx->cached_cq_tail;
1664 
1665 			(void) io_run_local_work_locked(ctx, min);
1666 
1667 			if (task_work_pending(current) ||
1668 			    wq_list_empty(&ctx->iopoll_list)) {
1669 				mutex_unlock(&ctx->uring_lock);
1670 				io_run_task_work();
1671 				mutex_lock(&ctx->uring_lock);
1672 			}
1673 			/* some requests don't go through iopoll_list */
1674 			if (tail != ctx->cached_cq_tail ||
1675 			    wq_list_empty(&ctx->iopoll_list))
1676 				break;
1677 		}
1678 		ret = io_do_iopoll(ctx, !min);
1679 		if (unlikely(ret < 0))
1680 			return ret;
1681 
1682 		if (task_sigpending(current))
1683 			return -EINTR;
1684 		if (need_resched())
1685 			break;
1686 
1687 		nr_events += ret;
1688 	} while (nr_events < min);
1689 
1690 	return 0;
1691 }
1692 
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1693 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1694 {
1695 	if (ts->locked)
1696 		io_req_complete_defer(req);
1697 	else
1698 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1699 }
1700 
1701 /*
1702  * After the iocb has been issued, it's safe to be found on the poll list.
1703  * Adding the kiocb to the list AFTER submission ensures that we don't
1704  * find it from a io_do_iopoll() thread before the issuer is done
1705  * accessing the kiocb cookie.
1706  */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1707 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1708 {
1709 	struct io_ring_ctx *ctx = req->ctx;
1710 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1711 
1712 	/* workqueue context doesn't hold uring_lock, grab it now */
1713 	if (unlikely(needs_lock))
1714 		mutex_lock(&ctx->uring_lock);
1715 
1716 	/*
1717 	 * Track whether we have multiple files in our lists. This will impact
1718 	 * how we do polling eventually, not spinning if we're on potentially
1719 	 * different devices.
1720 	 */
1721 	if (wq_list_empty(&ctx->iopoll_list)) {
1722 		ctx->poll_multi_queue = false;
1723 	} else if (!ctx->poll_multi_queue) {
1724 		struct io_kiocb *list_req;
1725 
1726 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1727 					comp_list);
1728 		if (list_req->file != req->file)
1729 			ctx->poll_multi_queue = true;
1730 	}
1731 
1732 	/*
1733 	 * For fast devices, IO may have already completed. If it has, add
1734 	 * it to the front so we find it first.
1735 	 */
1736 	if (READ_ONCE(req->iopoll_completed))
1737 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1738 	else
1739 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1740 
1741 	if (unlikely(needs_lock)) {
1742 		/*
1743 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1744 		 * in sq thread task context or in io worker task context. If
1745 		 * current task context is sq thread, we don't need to check
1746 		 * whether should wake up sq thread.
1747 		 */
1748 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1749 		    wq_has_sleeper(&ctx->sq_data->wait))
1750 			wake_up(&ctx->sq_data->wait);
1751 
1752 		mutex_unlock(&ctx->uring_lock);
1753 	}
1754 }
1755 
io_file_get_flags(struct file * file)1756 unsigned int io_file_get_flags(struct file *file)
1757 {
1758 	unsigned int res = 0;
1759 
1760 	if (S_ISREG(file_inode(file)->i_mode))
1761 		res |= REQ_F_ISREG;
1762 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1763 		res |= REQ_F_SUPPORT_NOWAIT;
1764 	return res;
1765 }
1766 
io_alloc_async_data(struct io_kiocb * req)1767 bool io_alloc_async_data(struct io_kiocb *req)
1768 {
1769 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1770 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1771 	if (req->async_data) {
1772 		req->flags |= REQ_F_ASYNC_DATA;
1773 		return false;
1774 	}
1775 	return true;
1776 }
1777 
io_req_prep_async(struct io_kiocb * req)1778 int io_req_prep_async(struct io_kiocb *req)
1779 {
1780 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1781 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1782 	int ret;
1783 
1784 	/* assign early for deferred execution for non-fixed file */
1785 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1786 		req->file = io_file_get_normal(req, req->cqe.fd);
1787 	if (!cdef->prep_async)
1788 		return 0;
1789 	if (WARN_ON_ONCE(req_has_async_data(req)))
1790 		return -EFAULT;
1791 	if (!def->manual_alloc) {
1792 		if (io_alloc_async_data(req))
1793 			return -EAGAIN;
1794 	}
1795 	ret = cdef->prep_async(req);
1796 	io_kbuf_recycle(req, 0);
1797 	return ret;
1798 }
1799 
io_get_sequence(struct io_kiocb * req)1800 static u32 io_get_sequence(struct io_kiocb *req)
1801 {
1802 	u32 seq = req->ctx->cached_sq_head;
1803 	struct io_kiocb *cur;
1804 
1805 	/* need original cached_sq_head, but it was increased for each req */
1806 	io_for_each_link(cur, req)
1807 		seq--;
1808 	return seq;
1809 }
1810 
io_drain_req(struct io_kiocb * req)1811 static __cold void io_drain_req(struct io_kiocb *req)
1812 	__must_hold(&ctx->uring_lock)
1813 {
1814 	struct io_ring_ctx *ctx = req->ctx;
1815 	struct io_defer_entry *de;
1816 	int ret;
1817 	u32 seq = io_get_sequence(req);
1818 
1819 	/* Still need defer if there is pending req in defer list. */
1820 	spin_lock(&ctx->completion_lock);
1821 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1822 		spin_unlock(&ctx->completion_lock);
1823 queue:
1824 		ctx->drain_active = false;
1825 		io_req_task_queue(req);
1826 		return;
1827 	}
1828 	spin_unlock(&ctx->completion_lock);
1829 
1830 	io_prep_async_link(req);
1831 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1832 	if (!de) {
1833 		ret = -ENOMEM;
1834 		io_req_defer_failed(req, ret);
1835 		return;
1836 	}
1837 
1838 	spin_lock(&ctx->completion_lock);
1839 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1840 		spin_unlock(&ctx->completion_lock);
1841 		kfree(de);
1842 		goto queue;
1843 	}
1844 
1845 	trace_io_uring_defer(req);
1846 	de->req = req;
1847 	de->seq = seq;
1848 	list_add_tail(&de->list, &ctx->defer_list);
1849 	spin_unlock(&ctx->completion_lock);
1850 }
1851 
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1852 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1853 			   unsigned int issue_flags)
1854 {
1855 	if (req->file || !def->needs_file)
1856 		return true;
1857 
1858 	if (req->flags & REQ_F_FIXED_FILE)
1859 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1860 	else
1861 		req->file = io_file_get_normal(req, req->cqe.fd);
1862 
1863 	return !!req->file;
1864 }
1865 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1866 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1867 {
1868 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1869 	const struct cred *creds = NULL;
1870 	int ret;
1871 
1872 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1873 		return -EBADF;
1874 
1875 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1876 		creds = override_creds(req->creds);
1877 
1878 	if (!def->audit_skip)
1879 		audit_uring_entry(req->opcode);
1880 
1881 	ret = def->issue(req, issue_flags);
1882 
1883 	if (!def->audit_skip)
1884 		audit_uring_exit(!ret, ret);
1885 
1886 	if (creds)
1887 		revert_creds(creds);
1888 
1889 	if (ret == IOU_OK) {
1890 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1891 			io_req_complete_defer(req);
1892 		else
1893 			io_req_complete_post(req, issue_flags);
1894 
1895 		return 0;
1896 	}
1897 
1898 	if (ret != IOU_ISSUE_SKIP_COMPLETE)
1899 		return ret;
1900 
1901 	/* If the op doesn't have a file, we're not polling for it */
1902 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1903 		io_iopoll_req_issued(req, issue_flags);
1904 
1905 	return 0;
1906 }
1907 
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1908 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1909 {
1910 	io_tw_lock(req->ctx, ts);
1911 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1912 				 IO_URING_F_COMPLETE_DEFER);
1913 }
1914 
io_wq_free_work(struct io_wq_work * work)1915 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1916 {
1917 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1918 	struct io_kiocb *nxt = NULL;
1919 
1920 	if (req_ref_put_and_test(req)) {
1921 		if (req->flags & IO_REQ_LINK_FLAGS)
1922 			nxt = io_req_find_next(req);
1923 		io_free_req(req);
1924 	}
1925 	return nxt ? &nxt->work : NULL;
1926 }
1927 
io_wq_submit_work(struct io_wq_work * work)1928 void io_wq_submit_work(struct io_wq_work *work)
1929 {
1930 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1931 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1932 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1933 	bool needs_poll = false;
1934 	int ret = 0, err = -ECANCELED;
1935 
1936 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1937 	if (!(req->flags & REQ_F_REFCOUNT))
1938 		__io_req_set_refcount(req, 2);
1939 	else
1940 		req_ref_get(req);
1941 
1942 	io_arm_ltimeout(req);
1943 
1944 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1945 	if (work->flags & IO_WQ_WORK_CANCEL) {
1946 fail:
1947 		io_req_task_queue_fail(req, err);
1948 		return;
1949 	}
1950 	if (!io_assign_file(req, def, issue_flags)) {
1951 		err = -EBADF;
1952 		work->flags |= IO_WQ_WORK_CANCEL;
1953 		goto fail;
1954 	}
1955 
1956 	if (req->flags & REQ_F_FORCE_ASYNC) {
1957 		bool opcode_poll = def->pollin || def->pollout;
1958 
1959 		if (opcode_poll && file_can_poll(req->file)) {
1960 			needs_poll = true;
1961 			issue_flags |= IO_URING_F_NONBLOCK;
1962 		}
1963 	}
1964 
1965 	do {
1966 		ret = io_issue_sqe(req, issue_flags);
1967 		if (ret != -EAGAIN)
1968 			break;
1969 
1970 		/*
1971 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1972 		 * poll. -EAGAIN is final for that case.
1973 		 */
1974 		if (req->flags & REQ_F_NOWAIT)
1975 			break;
1976 
1977 		/*
1978 		 * We can get EAGAIN for iopolled IO even though we're
1979 		 * forcing a sync submission from here, since we can't
1980 		 * wait for request slots on the block side.
1981 		 */
1982 		if (!needs_poll) {
1983 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1984 				break;
1985 			if (io_wq_worker_stopped())
1986 				break;
1987 			cond_resched();
1988 			continue;
1989 		}
1990 
1991 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1992 			return;
1993 		/* aborted or ready, in either case retry blocking */
1994 		needs_poll = false;
1995 		issue_flags &= ~IO_URING_F_NONBLOCK;
1996 	} while (1);
1997 
1998 	/* avoid locking problems by failing it from a clean context */
1999 	if (ret < 0)
2000 		io_req_task_queue_fail(req, ret);
2001 }
2002 
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)2003 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2004 				      unsigned int issue_flags)
2005 {
2006 	struct io_ring_ctx *ctx = req->ctx;
2007 	struct io_fixed_file *slot;
2008 	struct file *file = NULL;
2009 
2010 	io_ring_submit_lock(ctx, issue_flags);
2011 
2012 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2013 		goto out;
2014 	fd = array_index_nospec(fd, ctx->nr_user_files);
2015 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2016 	file = io_slot_file(slot);
2017 	req->flags |= io_slot_flags(slot);
2018 	io_req_set_rsrc_node(req, ctx, 0);
2019 out:
2020 	io_ring_submit_unlock(ctx, issue_flags);
2021 	return file;
2022 }
2023 
io_file_get_normal(struct io_kiocb * req,int fd)2024 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2025 {
2026 	struct file *file = fget(fd);
2027 
2028 	trace_io_uring_file_get(req, fd);
2029 
2030 	/* we don't allow fixed io_uring files */
2031 	if (file && io_is_uring_fops(file))
2032 		io_req_track_inflight(req);
2033 	return file;
2034 }
2035 
io_queue_async(struct io_kiocb * req,int ret)2036 static void io_queue_async(struct io_kiocb *req, int ret)
2037 	__must_hold(&req->ctx->uring_lock)
2038 {
2039 	struct io_kiocb *linked_timeout;
2040 
2041 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2042 		io_req_defer_failed(req, ret);
2043 		return;
2044 	}
2045 
2046 	linked_timeout = io_prep_linked_timeout(req);
2047 
2048 	switch (io_arm_poll_handler(req, 0)) {
2049 	case IO_APOLL_READY:
2050 		io_kbuf_recycle(req, 0);
2051 		io_req_task_queue(req);
2052 		break;
2053 	case IO_APOLL_ABORTED:
2054 		io_kbuf_recycle(req, 0);
2055 		io_queue_iowq(req);
2056 		break;
2057 	case IO_APOLL_OK:
2058 		break;
2059 	}
2060 
2061 	if (linked_timeout)
2062 		io_queue_linked_timeout(linked_timeout);
2063 }
2064 
io_queue_sqe(struct io_kiocb * req)2065 static inline void io_queue_sqe(struct io_kiocb *req)
2066 	__must_hold(&req->ctx->uring_lock)
2067 {
2068 	int ret;
2069 
2070 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2071 
2072 	/*
2073 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2074 	 * doesn't support non-blocking read/write attempts
2075 	 */
2076 	if (likely(!ret))
2077 		io_arm_ltimeout(req);
2078 	else
2079 		io_queue_async(req, ret);
2080 }
2081 
io_queue_sqe_fallback(struct io_kiocb * req)2082 static void io_queue_sqe_fallback(struct io_kiocb *req)
2083 	__must_hold(&req->ctx->uring_lock)
2084 {
2085 	if (unlikely(req->flags & REQ_F_FAIL)) {
2086 		/*
2087 		 * We don't submit, fail them all, for that replace hardlinks
2088 		 * with normal links. Extra REQ_F_LINK is tolerated.
2089 		 */
2090 		req->flags &= ~REQ_F_HARDLINK;
2091 		req->flags |= REQ_F_LINK;
2092 		io_req_defer_failed(req, req->cqe.res);
2093 	} else {
2094 		int ret = io_req_prep_async(req);
2095 
2096 		if (unlikely(ret)) {
2097 			io_req_defer_failed(req, ret);
2098 			return;
2099 		}
2100 
2101 		if (unlikely(req->ctx->drain_active))
2102 			io_drain_req(req);
2103 		else
2104 			io_queue_iowq(req);
2105 	}
2106 }
2107 
2108 /*
2109  * Check SQE restrictions (opcode and flags).
2110  *
2111  * Returns 'true' if SQE is allowed, 'false' otherwise.
2112  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2113 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2114 					struct io_kiocb *req,
2115 					unsigned int sqe_flags)
2116 {
2117 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2118 		return false;
2119 
2120 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2121 	    ctx->restrictions.sqe_flags_required)
2122 		return false;
2123 
2124 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2125 			  ctx->restrictions.sqe_flags_required))
2126 		return false;
2127 
2128 	return true;
2129 }
2130 
io_init_req_drain(struct io_kiocb * req)2131 static void io_init_req_drain(struct io_kiocb *req)
2132 {
2133 	struct io_ring_ctx *ctx = req->ctx;
2134 	struct io_kiocb *head = ctx->submit_state.link.head;
2135 
2136 	ctx->drain_active = true;
2137 	if (head) {
2138 		/*
2139 		 * If we need to drain a request in the middle of a link, drain
2140 		 * the head request and the next request/link after the current
2141 		 * link. Considering sequential execution of links,
2142 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2143 		 * link.
2144 		 */
2145 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2146 		ctx->drain_next = true;
2147 	}
2148 }
2149 
io_init_fail_req(struct io_kiocb * req,int err)2150 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2151 {
2152 	/* ensure per-opcode data is cleared if we fail before prep */
2153 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2154 	return err;
2155 }
2156 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2157 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2158 		       const struct io_uring_sqe *sqe)
2159 	__must_hold(&ctx->uring_lock)
2160 {
2161 	const struct io_issue_def *def;
2162 	unsigned int sqe_flags;
2163 	int personality;
2164 	u8 opcode;
2165 
2166 	/* req is partially pre-initialised, see io_preinit_req() */
2167 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2168 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2169 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2170 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2171 	req->file = NULL;
2172 	req->rsrc_node = NULL;
2173 	req->task = current;
2174 
2175 	if (unlikely(opcode >= IORING_OP_LAST)) {
2176 		req->opcode = 0;
2177 		return io_init_fail_req(req, -EINVAL);
2178 	}
2179 	opcode = array_index_nospec(opcode, IORING_OP_LAST);
2180 
2181 	def = &io_issue_defs[opcode];
2182 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2183 		/* enforce forwards compatibility on users */
2184 		if (sqe_flags & ~SQE_VALID_FLAGS)
2185 			return io_init_fail_req(req, -EINVAL);
2186 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2187 			if (!def->buffer_select)
2188 				return io_init_fail_req(req, -EOPNOTSUPP);
2189 			req->buf_index = READ_ONCE(sqe->buf_group);
2190 		}
2191 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2192 			ctx->drain_disabled = true;
2193 		if (sqe_flags & IOSQE_IO_DRAIN) {
2194 			if (ctx->drain_disabled)
2195 				return io_init_fail_req(req, -EOPNOTSUPP);
2196 			io_init_req_drain(req);
2197 		}
2198 	}
2199 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2200 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2201 			return io_init_fail_req(req, -EACCES);
2202 		/* knock it to the slow queue path, will be drained there */
2203 		if (ctx->drain_active)
2204 			req->flags |= REQ_F_FORCE_ASYNC;
2205 		/* if there is no link, we're at "next" request and need to drain */
2206 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2207 			ctx->drain_next = false;
2208 			ctx->drain_active = true;
2209 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2210 		}
2211 	}
2212 
2213 	if (!def->ioprio && sqe->ioprio)
2214 		return io_init_fail_req(req, -EINVAL);
2215 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2216 		return io_init_fail_req(req, -EINVAL);
2217 
2218 	if (def->needs_file) {
2219 		struct io_submit_state *state = &ctx->submit_state;
2220 
2221 		req->cqe.fd = READ_ONCE(sqe->fd);
2222 
2223 		/*
2224 		 * Plug now if we have more than 2 IO left after this, and the
2225 		 * target is potentially a read/write to block based storage.
2226 		 */
2227 		if (state->need_plug && def->plug) {
2228 			state->plug_started = true;
2229 			state->need_plug = false;
2230 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2231 		}
2232 	}
2233 
2234 	personality = READ_ONCE(sqe->personality);
2235 	if (personality) {
2236 		int ret;
2237 
2238 		req->creds = xa_load(&ctx->personalities, personality);
2239 		if (!req->creds)
2240 			return io_init_fail_req(req, -EINVAL);
2241 		get_cred(req->creds);
2242 		ret = security_uring_override_creds(req->creds);
2243 		if (ret) {
2244 			put_cred(req->creds);
2245 			return io_init_fail_req(req, ret);
2246 		}
2247 		req->flags |= REQ_F_CREDS;
2248 	}
2249 
2250 	return def->prep(req, sqe);
2251 }
2252 
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2253 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2254 				      struct io_kiocb *req, int ret)
2255 {
2256 	struct io_ring_ctx *ctx = req->ctx;
2257 	struct io_submit_link *link = &ctx->submit_state.link;
2258 	struct io_kiocb *head = link->head;
2259 
2260 	trace_io_uring_req_failed(sqe, req, ret);
2261 
2262 	/*
2263 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2264 	 * unusable. Instead of failing eagerly, continue assembling the link if
2265 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2266 	 * should find the flag and handle the rest.
2267 	 */
2268 	req_fail_link_node(req, ret);
2269 	if (head && !(head->flags & REQ_F_FAIL))
2270 		req_fail_link_node(head, -ECANCELED);
2271 
2272 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2273 		if (head) {
2274 			link->last->link = req;
2275 			link->head = NULL;
2276 			req = head;
2277 		}
2278 		io_queue_sqe_fallback(req);
2279 		return ret;
2280 	}
2281 
2282 	if (head)
2283 		link->last->link = req;
2284 	else
2285 		link->head = req;
2286 	link->last = req;
2287 	return 0;
2288 }
2289 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2290 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2291 			 const struct io_uring_sqe *sqe)
2292 	__must_hold(&ctx->uring_lock)
2293 {
2294 	struct io_submit_link *link = &ctx->submit_state.link;
2295 	int ret;
2296 
2297 	ret = io_init_req(ctx, req, sqe);
2298 	if (unlikely(ret))
2299 		return io_submit_fail_init(sqe, req, ret);
2300 
2301 	trace_io_uring_submit_req(req);
2302 
2303 	/*
2304 	 * If we already have a head request, queue this one for async
2305 	 * submittal once the head completes. If we don't have a head but
2306 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2307 	 * submitted sync once the chain is complete. If none of those
2308 	 * conditions are true (normal request), then just queue it.
2309 	 */
2310 	if (unlikely(link->head)) {
2311 		ret = io_req_prep_async(req);
2312 		if (unlikely(ret))
2313 			return io_submit_fail_init(sqe, req, ret);
2314 
2315 		trace_io_uring_link(req, link->head);
2316 		link->last->link = req;
2317 		link->last = req;
2318 
2319 		if (req->flags & IO_REQ_LINK_FLAGS)
2320 			return 0;
2321 		/* last request of the link, flush it */
2322 		req = link->head;
2323 		link->head = NULL;
2324 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2325 			goto fallback;
2326 
2327 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2328 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2329 		if (req->flags & IO_REQ_LINK_FLAGS) {
2330 			link->head = req;
2331 			link->last = req;
2332 		} else {
2333 fallback:
2334 			io_queue_sqe_fallback(req);
2335 		}
2336 		return 0;
2337 	}
2338 
2339 	io_queue_sqe(req);
2340 	return 0;
2341 }
2342 
2343 /*
2344  * Batched submission is done, ensure local IO is flushed out.
2345  */
io_submit_state_end(struct io_ring_ctx * ctx)2346 static void io_submit_state_end(struct io_ring_ctx *ctx)
2347 {
2348 	struct io_submit_state *state = &ctx->submit_state;
2349 
2350 	if (unlikely(state->link.head))
2351 		io_queue_sqe_fallback(state->link.head);
2352 	/* flush only after queuing links as they can generate completions */
2353 	io_submit_flush_completions(ctx);
2354 	if (state->plug_started)
2355 		blk_finish_plug(&state->plug);
2356 }
2357 
2358 /*
2359  * Start submission side cache.
2360  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2361 static void io_submit_state_start(struct io_submit_state *state,
2362 				  unsigned int max_ios)
2363 {
2364 	state->plug_started = false;
2365 	state->need_plug = max_ios > 2;
2366 	state->submit_nr = max_ios;
2367 	/* set only head, no need to init link_last in advance */
2368 	state->link.head = NULL;
2369 }
2370 
io_commit_sqring(struct io_ring_ctx * ctx)2371 static void io_commit_sqring(struct io_ring_ctx *ctx)
2372 {
2373 	struct io_rings *rings = ctx->rings;
2374 
2375 	/*
2376 	 * Ensure any loads from the SQEs are done at this point,
2377 	 * since once we write the new head, the application could
2378 	 * write new data to them.
2379 	 */
2380 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2381 }
2382 
2383 /*
2384  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2385  * that is mapped by userspace. This means that care needs to be taken to
2386  * ensure that reads are stable, as we cannot rely on userspace always
2387  * being a good citizen. If members of the sqe are validated and then later
2388  * used, it's important that those reads are done through READ_ONCE() to
2389  * prevent a re-load down the line.
2390  */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2391 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2392 {
2393 	unsigned mask = ctx->sq_entries - 1;
2394 	unsigned head = ctx->cached_sq_head++ & mask;
2395 
2396 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2397 		head = READ_ONCE(ctx->sq_array[head]);
2398 		if (unlikely(head >= ctx->sq_entries)) {
2399 			/* drop invalid entries */
2400 			spin_lock(&ctx->completion_lock);
2401 			ctx->cq_extra--;
2402 			spin_unlock(&ctx->completion_lock);
2403 			WRITE_ONCE(ctx->rings->sq_dropped,
2404 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2405 			return false;
2406 		}
2407 	}
2408 
2409 	/*
2410 	 * The cached sq head (or cq tail) serves two purposes:
2411 	 *
2412 	 * 1) allows us to batch the cost of updating the user visible
2413 	 *    head updates.
2414 	 * 2) allows the kernel side to track the head on its own, even
2415 	 *    though the application is the one updating it.
2416 	 */
2417 
2418 	/* double index for 128-byte SQEs, twice as long */
2419 	if (ctx->flags & IORING_SETUP_SQE128)
2420 		head <<= 1;
2421 	*sqe = &ctx->sq_sqes[head];
2422 	return true;
2423 }
2424 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2425 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2426 	__must_hold(&ctx->uring_lock)
2427 {
2428 	unsigned int entries = io_sqring_entries(ctx);
2429 	unsigned int left;
2430 	int ret;
2431 
2432 	if (unlikely(!entries))
2433 		return 0;
2434 	/* make sure SQ entry isn't read before tail */
2435 	ret = left = min(nr, entries);
2436 	io_get_task_refs(left);
2437 	io_submit_state_start(&ctx->submit_state, left);
2438 
2439 	do {
2440 		const struct io_uring_sqe *sqe;
2441 		struct io_kiocb *req;
2442 
2443 		if (unlikely(!io_alloc_req(ctx, &req)))
2444 			break;
2445 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2446 			io_req_add_to_cache(req, ctx);
2447 			break;
2448 		}
2449 
2450 		/*
2451 		 * Continue submitting even for sqe failure if the
2452 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2453 		 */
2454 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2455 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2456 			left--;
2457 			break;
2458 		}
2459 	} while (--left);
2460 
2461 	if (unlikely(left)) {
2462 		ret -= left;
2463 		/* try again if it submitted nothing and can't allocate a req */
2464 		if (!ret && io_req_cache_empty(ctx))
2465 			ret = -EAGAIN;
2466 		current->io_uring->cached_refs += left;
2467 	}
2468 
2469 	io_submit_state_end(ctx);
2470 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2471 	io_commit_sqring(ctx);
2472 	return ret;
2473 }
2474 
2475 struct io_wait_queue {
2476 	struct wait_queue_entry wq;
2477 	struct io_ring_ctx *ctx;
2478 	unsigned cq_tail;
2479 	unsigned nr_timeouts;
2480 	ktime_t timeout;
2481 };
2482 
io_has_work(struct io_ring_ctx * ctx)2483 static inline bool io_has_work(struct io_ring_ctx *ctx)
2484 {
2485 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2486 	       !llist_empty(&ctx->work_llist);
2487 }
2488 
io_should_wake(struct io_wait_queue * iowq)2489 static inline bool io_should_wake(struct io_wait_queue *iowq)
2490 {
2491 	struct io_ring_ctx *ctx = iowq->ctx;
2492 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2493 
2494 	/*
2495 	 * Wake up if we have enough events, or if a timeout occurred since we
2496 	 * started waiting. For timeouts, we always want to return to userspace,
2497 	 * regardless of event count.
2498 	 */
2499 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2500 }
2501 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2502 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2503 			    int wake_flags, void *key)
2504 {
2505 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2506 
2507 	/*
2508 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2509 	 * the task, and the next invocation will do it.
2510 	 */
2511 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2512 		return autoremove_wake_function(curr, mode, wake_flags, key);
2513 	return -1;
2514 }
2515 
io_run_task_work_sig(struct io_ring_ctx * ctx)2516 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2517 {
2518 	if (!llist_empty(&ctx->work_llist)) {
2519 		__set_current_state(TASK_RUNNING);
2520 		if (io_run_local_work(ctx, INT_MAX) > 0)
2521 			return 0;
2522 	}
2523 	if (io_run_task_work() > 0)
2524 		return 0;
2525 	if (task_sigpending(current))
2526 		return -EINTR;
2527 	return 0;
2528 }
2529 
current_pending_io(void)2530 static bool current_pending_io(void)
2531 {
2532 	struct io_uring_task *tctx = current->io_uring;
2533 
2534 	if (!tctx)
2535 		return false;
2536 	return percpu_counter_read_positive(&tctx->inflight);
2537 }
2538 
2539 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq)2540 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2541 					  struct io_wait_queue *iowq)
2542 {
2543 	int ret;
2544 
2545 	if (unlikely(READ_ONCE(ctx->check_cq)))
2546 		return 1;
2547 	if (unlikely(!llist_empty(&ctx->work_llist)))
2548 		return 1;
2549 	if (unlikely(task_work_pending(current)))
2550 		return 1;
2551 	if (unlikely(task_sigpending(current)))
2552 		return -EINTR;
2553 	if (unlikely(io_should_wake(iowq)))
2554 		return 0;
2555 
2556 	/*
2557 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2558 	 * can take into account that the task is waiting for IO - turns out
2559 	 * to be important for low QD IO.
2560 	 */
2561 	if (current_pending_io())
2562 		current->in_iowait = 1;
2563 	ret = 0;
2564 	if (iowq->timeout == KTIME_MAX)
2565 		schedule();
2566 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2567 		ret = -ETIME;
2568 	current->in_iowait = 0;
2569 	return ret;
2570 }
2571 
2572 /*
2573  * Wait until events become available, if we don't already have some. The
2574  * application must reap them itself, as they reside on the shared cq ring.
2575  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2576 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2577 			  const sigset_t __user *sig, size_t sigsz,
2578 			  struct __kernel_timespec __user *uts)
2579 {
2580 	struct io_wait_queue iowq;
2581 	struct io_rings *rings = ctx->rings;
2582 	int ret;
2583 
2584 	if (!io_allowed_run_tw(ctx))
2585 		return -EEXIST;
2586 	if (!llist_empty(&ctx->work_llist))
2587 		io_run_local_work(ctx, min_events);
2588 	io_run_task_work();
2589 	io_cqring_overflow_flush(ctx);
2590 	/* if user messes with these they will just get an early return */
2591 	if (__io_cqring_events_user(ctx) >= min_events)
2592 		return 0;
2593 
2594 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2595 	iowq.wq.private = current;
2596 	INIT_LIST_HEAD(&iowq.wq.entry);
2597 	iowq.ctx = ctx;
2598 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2599 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2600 	iowq.timeout = KTIME_MAX;
2601 
2602 	if (uts) {
2603 		struct timespec64 ts;
2604 
2605 		if (get_timespec64(&ts, uts))
2606 			return -EFAULT;
2607 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2608 	}
2609 
2610 	if (sig) {
2611 #ifdef CONFIG_COMPAT
2612 		if (in_compat_syscall())
2613 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2614 						      sigsz);
2615 		else
2616 #endif
2617 			ret = set_user_sigmask(sig, sigsz);
2618 
2619 		if (ret)
2620 			return ret;
2621 	}
2622 
2623 	trace_io_uring_cqring_wait(ctx, min_events);
2624 	do {
2625 		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2626 		unsigned long check_cq;
2627 
2628 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2629 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2630 			set_current_state(TASK_INTERRUPTIBLE);
2631 		} else {
2632 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2633 							TASK_INTERRUPTIBLE);
2634 		}
2635 
2636 		ret = io_cqring_wait_schedule(ctx, &iowq);
2637 		__set_current_state(TASK_RUNNING);
2638 		atomic_set(&ctx->cq_wait_nr, 0);
2639 
2640 		/*
2641 		 * Run task_work after scheduling and before io_should_wake().
2642 		 * If we got woken because of task_work being processed, run it
2643 		 * now rather than let the caller do another wait loop.
2644 		 */
2645 		if (!llist_empty(&ctx->work_llist))
2646 			io_run_local_work(ctx, nr_wait);
2647 		io_run_task_work();
2648 
2649 		/*
2650 		 * Non-local task_work will be run on exit to userspace, but
2651 		 * if we're using DEFER_TASKRUN, then we could have waited
2652 		 * with a timeout for a number of requests. If the timeout
2653 		 * hits, we could have some requests ready to process. Ensure
2654 		 * this break is _after_ we have run task_work, to avoid
2655 		 * deferring running potentially pending requests until the
2656 		 * next time we wait for events.
2657 		 */
2658 		if (ret < 0)
2659 			break;
2660 
2661 		check_cq = READ_ONCE(ctx->check_cq);
2662 		if (unlikely(check_cq)) {
2663 			/* let the caller flush overflows, retry */
2664 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2665 				io_cqring_do_overflow_flush(ctx);
2666 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2667 				ret = -EBADR;
2668 				break;
2669 			}
2670 		}
2671 
2672 		if (io_should_wake(&iowq)) {
2673 			ret = 0;
2674 			break;
2675 		}
2676 		cond_resched();
2677 	} while (1);
2678 
2679 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2680 		finish_wait(&ctx->cq_wait, &iowq.wq);
2681 	restore_saved_sigmask_unless(ret == -EINTR);
2682 
2683 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2684 }
2685 
io_mem_free(void * ptr)2686 void io_mem_free(void *ptr)
2687 {
2688 	if (!ptr)
2689 		return;
2690 
2691 	folio_put(virt_to_folio(ptr));
2692 }
2693 
io_pages_free(struct page *** pages,int npages)2694 static void io_pages_free(struct page ***pages, int npages)
2695 {
2696 	struct page **page_array;
2697 	int i;
2698 
2699 	if (!pages)
2700 		return;
2701 
2702 	page_array = *pages;
2703 	if (!page_array)
2704 		return;
2705 
2706 	for (i = 0; i < npages; i++)
2707 		unpin_user_page(page_array[i]);
2708 	kvfree(page_array);
2709 	*pages = NULL;
2710 }
2711 
__io_uaddr_map(struct page *** pages,unsigned short * npages,unsigned long uaddr,size_t size)2712 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2713 			    unsigned long uaddr, size_t size)
2714 {
2715 	struct page **page_array;
2716 	unsigned int nr_pages;
2717 	void *page_addr;
2718 	int ret, i, pinned;
2719 
2720 	*npages = 0;
2721 
2722 	if (uaddr & (PAGE_SIZE - 1) || !size)
2723 		return ERR_PTR(-EINVAL);
2724 
2725 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2726 	if (nr_pages > USHRT_MAX)
2727 		return ERR_PTR(-EINVAL);
2728 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2729 	if (!page_array)
2730 		return ERR_PTR(-ENOMEM);
2731 
2732 
2733 	pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2734 				     page_array);
2735 	if (pinned != nr_pages) {
2736 		ret = (pinned < 0) ? pinned : -EFAULT;
2737 		goto free_pages;
2738 	}
2739 
2740 	page_addr = page_address(page_array[0]);
2741 	for (i = 0; i < nr_pages; i++) {
2742 		ret = -EINVAL;
2743 
2744 		/*
2745 		 * Can't support mapping user allocated ring memory on 32-bit
2746 		 * archs where it could potentially reside in highmem. Just
2747 		 * fail those with -EINVAL, just like we did on kernels that
2748 		 * didn't support this feature.
2749 		 */
2750 		if (PageHighMem(page_array[i]))
2751 			goto free_pages;
2752 
2753 		/*
2754 		 * No support for discontig pages for now, should either be a
2755 		 * single normal page, or a huge page. Later on we can add
2756 		 * support for remapping discontig pages, for now we will
2757 		 * just fail them with EINVAL.
2758 		 */
2759 		if (page_address(page_array[i]) != page_addr)
2760 			goto free_pages;
2761 		page_addr += PAGE_SIZE;
2762 	}
2763 
2764 	*pages = page_array;
2765 	*npages = nr_pages;
2766 	return page_to_virt(page_array[0]);
2767 
2768 free_pages:
2769 	io_pages_free(&page_array, pinned > 0 ? pinned : 0);
2770 	return ERR_PTR(ret);
2771 }
2772 
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2773 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2774 			  size_t size)
2775 {
2776 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2777 				size);
2778 }
2779 
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2780 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2781 			 size_t size)
2782 {
2783 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2784 				size);
2785 }
2786 
io_rings_free(struct io_ring_ctx * ctx)2787 static void io_rings_free(struct io_ring_ctx *ctx)
2788 {
2789 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2790 		io_mem_free(ctx->rings);
2791 		io_mem_free(ctx->sq_sqes);
2792 	} else {
2793 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2794 		ctx->n_ring_pages = 0;
2795 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2796 		ctx->n_sqe_pages = 0;
2797 	}
2798 
2799 	ctx->rings = NULL;
2800 	ctx->sq_sqes = NULL;
2801 }
2802 
io_mem_alloc(size_t size)2803 void *io_mem_alloc(size_t size)
2804 {
2805 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2806 	void *ret;
2807 
2808 	ret = (void *) __get_free_pages(gfp, get_order(size));
2809 	if (ret)
2810 		return ret;
2811 	return ERR_PTR(-ENOMEM);
2812 }
2813 
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2814 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2815 				unsigned int cq_entries, size_t *sq_offset)
2816 {
2817 	struct io_rings *rings;
2818 	size_t off, sq_array_size;
2819 
2820 	off = struct_size(rings, cqes, cq_entries);
2821 	if (off == SIZE_MAX)
2822 		return SIZE_MAX;
2823 	if (ctx->flags & IORING_SETUP_CQE32) {
2824 		if (check_shl_overflow(off, 1, &off))
2825 			return SIZE_MAX;
2826 	}
2827 
2828 #ifdef CONFIG_SMP
2829 	off = ALIGN(off, SMP_CACHE_BYTES);
2830 	if (off == 0)
2831 		return SIZE_MAX;
2832 #endif
2833 
2834 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2835 		if (sq_offset)
2836 			*sq_offset = SIZE_MAX;
2837 		return off;
2838 	}
2839 
2840 	if (sq_offset)
2841 		*sq_offset = off;
2842 
2843 	sq_array_size = array_size(sizeof(u32), sq_entries);
2844 	if (sq_array_size == SIZE_MAX)
2845 		return SIZE_MAX;
2846 
2847 	if (check_add_overflow(off, sq_array_size, &off))
2848 		return SIZE_MAX;
2849 
2850 	return off;
2851 }
2852 
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2853 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2854 			       unsigned int eventfd_async)
2855 {
2856 	struct io_ev_fd *ev_fd;
2857 	__s32 __user *fds = arg;
2858 	int fd;
2859 
2860 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2861 					lockdep_is_held(&ctx->uring_lock));
2862 	if (ev_fd)
2863 		return -EBUSY;
2864 
2865 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2866 		return -EFAULT;
2867 
2868 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2869 	if (!ev_fd)
2870 		return -ENOMEM;
2871 
2872 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2873 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2874 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2875 		kfree(ev_fd);
2876 		return ret;
2877 	}
2878 
2879 	spin_lock(&ctx->completion_lock);
2880 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2881 	spin_unlock(&ctx->completion_lock);
2882 
2883 	ev_fd->eventfd_async = eventfd_async;
2884 	ctx->has_evfd = true;
2885 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2886 	atomic_set(&ev_fd->refs, 1);
2887 	atomic_set(&ev_fd->ops, 0);
2888 	return 0;
2889 }
2890 
io_eventfd_unregister(struct io_ring_ctx * ctx)2891 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2892 {
2893 	struct io_ev_fd *ev_fd;
2894 
2895 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2896 					lockdep_is_held(&ctx->uring_lock));
2897 	if (ev_fd) {
2898 		ctx->has_evfd = false;
2899 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2900 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2901 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2902 		return 0;
2903 	}
2904 
2905 	return -ENXIO;
2906 }
2907 
io_req_caches_free(struct io_ring_ctx * ctx)2908 static void io_req_caches_free(struct io_ring_ctx *ctx)
2909 {
2910 	struct io_kiocb *req;
2911 	int nr = 0;
2912 
2913 	mutex_lock(&ctx->uring_lock);
2914 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2915 
2916 	while (!io_req_cache_empty(ctx)) {
2917 		req = io_extract_req(ctx);
2918 		kmem_cache_free(req_cachep, req);
2919 		nr++;
2920 	}
2921 	if (nr)
2922 		percpu_ref_put_many(&ctx->refs, nr);
2923 	mutex_unlock(&ctx->uring_lock);
2924 }
2925 
io_rsrc_node_cache_free(struct io_cache_entry * entry)2926 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2927 {
2928 	kfree(container_of(entry, struct io_rsrc_node, cache));
2929 }
2930 
io_ring_ctx_free(struct io_ring_ctx * ctx)2931 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2932 {
2933 	io_sq_thread_finish(ctx);
2934 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2935 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2936 		return;
2937 
2938 	mutex_lock(&ctx->uring_lock);
2939 	if (ctx->buf_data)
2940 		__io_sqe_buffers_unregister(ctx);
2941 	if (ctx->file_data)
2942 		__io_sqe_files_unregister(ctx);
2943 	io_cqring_overflow_kill(ctx);
2944 	io_eventfd_unregister(ctx);
2945 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2946 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2947 	io_destroy_buffers(ctx);
2948 	mutex_unlock(&ctx->uring_lock);
2949 	if (ctx->sq_creds)
2950 		put_cred(ctx->sq_creds);
2951 	if (ctx->submitter_task)
2952 		put_task_struct(ctx->submitter_task);
2953 
2954 	/* there are no registered resources left, nobody uses it */
2955 	if (ctx->rsrc_node)
2956 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2957 
2958 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2959 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2960 
2961 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2962 	if (ctx->mm_account) {
2963 		mmdrop(ctx->mm_account);
2964 		ctx->mm_account = NULL;
2965 	}
2966 	io_rings_free(ctx);
2967 	io_kbuf_mmap_list_free(ctx);
2968 
2969 	percpu_ref_exit(&ctx->refs);
2970 	free_uid(ctx->user);
2971 	io_req_caches_free(ctx);
2972 	if (ctx->hash_map)
2973 		io_wq_put_hash(ctx->hash_map);
2974 	kfree(ctx->cancel_table.hbs);
2975 	kfree(ctx->cancel_table_locked.hbs);
2976 	xa_destroy(&ctx->io_bl_xa);
2977 	kfree(ctx);
2978 }
2979 
io_activate_pollwq_cb(struct callback_head * cb)2980 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2981 {
2982 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2983 					       poll_wq_task_work);
2984 
2985 	mutex_lock(&ctx->uring_lock);
2986 	ctx->poll_activated = true;
2987 	mutex_unlock(&ctx->uring_lock);
2988 
2989 	/*
2990 	 * Wake ups for some events between start of polling and activation
2991 	 * might've been lost due to loose synchronisation.
2992 	 */
2993 	wake_up_all(&ctx->poll_wq);
2994 	percpu_ref_put(&ctx->refs);
2995 }
2996 
io_activate_pollwq(struct io_ring_ctx * ctx)2997 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2998 {
2999 	spin_lock(&ctx->completion_lock);
3000 	/* already activated or in progress */
3001 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
3002 		goto out;
3003 	if (WARN_ON_ONCE(!ctx->task_complete))
3004 		goto out;
3005 	if (!ctx->submitter_task)
3006 		goto out;
3007 	/*
3008 	 * with ->submitter_task only the submitter task completes requests, we
3009 	 * only need to sync with it, which is done by injecting a tw
3010 	 */
3011 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3012 	percpu_ref_get(&ctx->refs);
3013 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3014 		percpu_ref_put(&ctx->refs);
3015 out:
3016 	spin_unlock(&ctx->completion_lock);
3017 }
3018 
io_uring_poll(struct file * file,poll_table * wait)3019 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3020 {
3021 	struct io_ring_ctx *ctx = file->private_data;
3022 	__poll_t mask = 0;
3023 
3024 	if (unlikely(!ctx->poll_activated))
3025 		io_activate_pollwq(ctx);
3026 
3027 	poll_wait(file, &ctx->poll_wq, wait);
3028 	/*
3029 	 * synchronizes with barrier from wq_has_sleeper call in
3030 	 * io_commit_cqring
3031 	 */
3032 	smp_rmb();
3033 	if (!io_sqring_full(ctx))
3034 		mask |= EPOLLOUT | EPOLLWRNORM;
3035 
3036 	/*
3037 	 * Don't flush cqring overflow list here, just do a simple check.
3038 	 * Otherwise there could possible be ABBA deadlock:
3039 	 *      CPU0                    CPU1
3040 	 *      ----                    ----
3041 	 * lock(&ctx->uring_lock);
3042 	 *                              lock(&ep->mtx);
3043 	 *                              lock(&ctx->uring_lock);
3044 	 * lock(&ep->mtx);
3045 	 *
3046 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3047 	 * pushes them to do the flush.
3048 	 */
3049 
3050 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3051 		mask |= EPOLLIN | EPOLLRDNORM;
3052 
3053 	return mask;
3054 }
3055 
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)3056 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3057 {
3058 	const struct cred *creds;
3059 
3060 	creds = xa_erase(&ctx->personalities, id);
3061 	if (creds) {
3062 		put_cred(creds);
3063 		return 0;
3064 	}
3065 
3066 	return -EINVAL;
3067 }
3068 
3069 struct io_tctx_exit {
3070 	struct callback_head		task_work;
3071 	struct completion		completion;
3072 	struct io_ring_ctx		*ctx;
3073 };
3074 
io_tctx_exit_cb(struct callback_head * cb)3075 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3076 {
3077 	struct io_uring_task *tctx = current->io_uring;
3078 	struct io_tctx_exit *work;
3079 
3080 	work = container_of(cb, struct io_tctx_exit, task_work);
3081 	/*
3082 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3083 	 * node. It'll be removed by the end of cancellation, just ignore it.
3084 	 * tctx can be NULL if the queueing of this task_work raced with
3085 	 * work cancelation off the exec path.
3086 	 */
3087 	if (tctx && !atomic_read(&tctx->in_cancel))
3088 		io_uring_del_tctx_node((unsigned long)work->ctx);
3089 	complete(&work->completion);
3090 }
3091 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)3092 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3093 {
3094 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3095 
3096 	return req->ctx == data;
3097 }
3098 
io_ring_exit_work(struct work_struct * work)3099 static __cold void io_ring_exit_work(struct work_struct *work)
3100 {
3101 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3102 	unsigned long timeout = jiffies + HZ * 60 * 5;
3103 	unsigned long interval = HZ / 20;
3104 	struct io_tctx_exit exit;
3105 	struct io_tctx_node *node;
3106 	int ret;
3107 
3108 	/*
3109 	 * If we're doing polled IO and end up having requests being
3110 	 * submitted async (out-of-line), then completions can come in while
3111 	 * we're waiting for refs to drop. We need to reap these manually,
3112 	 * as nobody else will be looking for them.
3113 	 */
3114 	do {
3115 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3116 			mutex_lock(&ctx->uring_lock);
3117 			io_cqring_overflow_kill(ctx);
3118 			mutex_unlock(&ctx->uring_lock);
3119 		}
3120 
3121 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3122 			io_move_task_work_from_local(ctx);
3123 
3124 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3125 			cond_resched();
3126 
3127 		if (ctx->sq_data) {
3128 			struct io_sq_data *sqd = ctx->sq_data;
3129 			struct task_struct *tsk;
3130 
3131 			io_sq_thread_park(sqd);
3132 			tsk = sqd->thread;
3133 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3134 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3135 						io_cancel_ctx_cb, ctx, true);
3136 			io_sq_thread_unpark(sqd);
3137 		}
3138 
3139 		io_req_caches_free(ctx);
3140 
3141 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3142 			/* there is little hope left, don't run it too often */
3143 			interval = HZ * 60;
3144 		}
3145 		/*
3146 		 * This is really an uninterruptible wait, as it has to be
3147 		 * complete. But it's also run from a kworker, which doesn't
3148 		 * take signals, so it's fine to make it interruptible. This
3149 		 * avoids scenarios where we knowingly can wait much longer
3150 		 * on completions, for example if someone does a SIGSTOP on
3151 		 * a task that needs to finish task_work to make this loop
3152 		 * complete. That's a synthetic situation that should not
3153 		 * cause a stuck task backtrace, and hence a potential panic
3154 		 * on stuck tasks if that is enabled.
3155 		 */
3156 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3157 
3158 	init_completion(&exit.completion);
3159 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3160 	exit.ctx = ctx;
3161 
3162 	mutex_lock(&ctx->uring_lock);
3163 	while (!list_empty(&ctx->tctx_list)) {
3164 		WARN_ON_ONCE(time_after(jiffies, timeout));
3165 
3166 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3167 					ctx_node);
3168 		/* don't spin on a single task if cancellation failed */
3169 		list_rotate_left(&ctx->tctx_list);
3170 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3171 		if (WARN_ON_ONCE(ret))
3172 			continue;
3173 
3174 		mutex_unlock(&ctx->uring_lock);
3175 		/*
3176 		 * See comment above for
3177 		 * wait_for_completion_interruptible_timeout() on why this
3178 		 * wait is marked as interruptible.
3179 		 */
3180 		wait_for_completion_interruptible(&exit.completion);
3181 		mutex_lock(&ctx->uring_lock);
3182 	}
3183 	mutex_unlock(&ctx->uring_lock);
3184 	spin_lock(&ctx->completion_lock);
3185 	spin_unlock(&ctx->completion_lock);
3186 
3187 	/* pairs with RCU read section in io_req_local_work_add() */
3188 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3189 		synchronize_rcu();
3190 
3191 	io_ring_ctx_free(ctx);
3192 }
3193 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3194 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3195 {
3196 	unsigned long index;
3197 	struct creds *creds;
3198 
3199 	mutex_lock(&ctx->uring_lock);
3200 	percpu_ref_kill(&ctx->refs);
3201 	xa_for_each(&ctx->personalities, index, creds)
3202 		io_unregister_personality(ctx, index);
3203 	if (ctx->rings)
3204 		io_poll_remove_all(ctx, NULL, true);
3205 	mutex_unlock(&ctx->uring_lock);
3206 
3207 	/*
3208 	 * If we failed setting up the ctx, we might not have any rings
3209 	 * and therefore did not submit any requests
3210 	 */
3211 	if (ctx->rings)
3212 		io_kill_timeouts(ctx, NULL, true);
3213 
3214 	flush_delayed_work(&ctx->fallback_work);
3215 
3216 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3217 	/*
3218 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3219 	 * if we're exiting a ton of rings at the same time. It just adds
3220 	 * noise and overhead, there's no discernable change in runtime
3221 	 * over using system_wq.
3222 	 */
3223 	queue_work(iou_wq, &ctx->exit_work);
3224 }
3225 
io_uring_release(struct inode * inode,struct file * file)3226 static int io_uring_release(struct inode *inode, struct file *file)
3227 {
3228 	struct io_ring_ctx *ctx = file->private_data;
3229 
3230 	file->private_data = NULL;
3231 	io_ring_ctx_wait_and_kill(ctx);
3232 	return 0;
3233 }
3234 
3235 struct io_task_cancel {
3236 	struct task_struct *task;
3237 	bool all;
3238 };
3239 
io_cancel_task_cb(struct io_wq_work * work,void * data)3240 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3241 {
3242 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3243 	struct io_task_cancel *cancel = data;
3244 
3245 	return io_match_task_safe(req, cancel->task, cancel->all);
3246 }
3247 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3248 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3249 					 struct task_struct *task,
3250 					 bool cancel_all)
3251 {
3252 	struct io_defer_entry *de;
3253 	LIST_HEAD(list);
3254 
3255 	spin_lock(&ctx->completion_lock);
3256 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3257 		if (io_match_task_safe(de->req, task, cancel_all)) {
3258 			list_cut_position(&list, &ctx->defer_list, &de->list);
3259 			break;
3260 		}
3261 	}
3262 	spin_unlock(&ctx->completion_lock);
3263 	if (list_empty(&list))
3264 		return false;
3265 
3266 	while (!list_empty(&list)) {
3267 		de = list_first_entry(&list, struct io_defer_entry, list);
3268 		list_del_init(&de->list);
3269 		io_req_task_queue_fail(de->req, -ECANCELED);
3270 		kfree(de);
3271 	}
3272 	return true;
3273 }
3274 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3275 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3276 {
3277 	struct io_tctx_node *node;
3278 	enum io_wq_cancel cret;
3279 	bool ret = false;
3280 
3281 	mutex_lock(&ctx->uring_lock);
3282 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3283 		struct io_uring_task *tctx = node->task->io_uring;
3284 
3285 		/*
3286 		 * io_wq will stay alive while we hold uring_lock, because it's
3287 		 * killed after ctx nodes, which requires to take the lock.
3288 		 */
3289 		if (!tctx || !tctx->io_wq)
3290 			continue;
3291 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3292 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3293 	}
3294 	mutex_unlock(&ctx->uring_lock);
3295 
3296 	return ret;
3297 }
3298 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3299 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3300 						struct task_struct *task,
3301 						bool cancel_all)
3302 {
3303 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3304 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3305 	enum io_wq_cancel cret;
3306 	bool ret = false;
3307 
3308 	/* set it so io_req_local_work_add() would wake us up */
3309 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3310 		atomic_set(&ctx->cq_wait_nr, 1);
3311 		smp_mb();
3312 	}
3313 
3314 	/* failed during ring init, it couldn't have issued any requests */
3315 	if (!ctx->rings)
3316 		return false;
3317 
3318 	if (!task) {
3319 		ret |= io_uring_try_cancel_iowq(ctx);
3320 	} else if (tctx && tctx->io_wq) {
3321 		/*
3322 		 * Cancels requests of all rings, not only @ctx, but
3323 		 * it's fine as the task is in exit/exec.
3324 		 */
3325 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3326 				       &cancel, true);
3327 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3328 	}
3329 
3330 	/* SQPOLL thread does its own polling */
3331 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3332 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3333 		while (!wq_list_empty(&ctx->iopoll_list)) {
3334 			io_iopoll_try_reap_events(ctx);
3335 			ret = true;
3336 			cond_resched();
3337 		}
3338 	}
3339 
3340 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3341 	    io_allowed_defer_tw_run(ctx))
3342 		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3343 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3344 	mutex_lock(&ctx->uring_lock);
3345 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3346 	mutex_unlock(&ctx->uring_lock);
3347 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3348 	if (task)
3349 		ret |= io_run_task_work() > 0;
3350 	return ret;
3351 }
3352 
tctx_inflight(struct io_uring_task * tctx,bool tracked)3353 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3354 {
3355 	if (tracked)
3356 		return atomic_read(&tctx->inflight_tracked);
3357 	return percpu_counter_sum(&tctx->inflight);
3358 }
3359 
3360 /*
3361  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3362  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3363  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3364 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3365 {
3366 	struct io_uring_task *tctx = current->io_uring;
3367 	struct io_ring_ctx *ctx;
3368 	struct io_tctx_node *node;
3369 	unsigned long index;
3370 	s64 inflight;
3371 	DEFINE_WAIT(wait);
3372 
3373 	WARN_ON_ONCE(sqd && sqd->thread != current);
3374 
3375 	if (!current->io_uring)
3376 		return;
3377 	if (tctx->io_wq)
3378 		io_wq_exit_start(tctx->io_wq);
3379 
3380 	atomic_inc(&tctx->in_cancel);
3381 	do {
3382 		bool loop = false;
3383 
3384 		io_uring_drop_tctx_refs(current);
3385 		if (!tctx_inflight(tctx, !cancel_all))
3386 			break;
3387 
3388 		/* read completions before cancelations */
3389 		inflight = tctx_inflight(tctx, false);
3390 		if (!inflight)
3391 			break;
3392 
3393 		if (!sqd) {
3394 			xa_for_each(&tctx->xa, index, node) {
3395 				/* sqpoll task will cancel all its requests */
3396 				if (node->ctx->sq_data)
3397 					continue;
3398 				loop |= io_uring_try_cancel_requests(node->ctx,
3399 							current, cancel_all);
3400 			}
3401 		} else {
3402 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3403 				loop |= io_uring_try_cancel_requests(ctx,
3404 								     current,
3405 								     cancel_all);
3406 		}
3407 
3408 		if (loop) {
3409 			cond_resched();
3410 			continue;
3411 		}
3412 
3413 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3414 		io_run_task_work();
3415 		io_uring_drop_tctx_refs(current);
3416 		xa_for_each(&tctx->xa, index, node) {
3417 			if (!llist_empty(&node->ctx->work_llist)) {
3418 				WARN_ON_ONCE(node->ctx->submitter_task &&
3419 					     node->ctx->submitter_task != current);
3420 				goto end_wait;
3421 			}
3422 		}
3423 		/*
3424 		 * If we've seen completions, retry without waiting. This
3425 		 * avoids a race where a completion comes in before we did
3426 		 * prepare_to_wait().
3427 		 */
3428 		if (inflight == tctx_inflight(tctx, !cancel_all))
3429 			schedule();
3430 end_wait:
3431 		finish_wait(&tctx->wait, &wait);
3432 	} while (1);
3433 
3434 	io_uring_clean_tctx(tctx);
3435 	if (cancel_all) {
3436 		/*
3437 		 * We shouldn't run task_works after cancel, so just leave
3438 		 * ->in_cancel set for normal exit.
3439 		 */
3440 		atomic_dec(&tctx->in_cancel);
3441 		/* for exec all current's requests should be gone, kill tctx */
3442 		__io_uring_free(current);
3443 	}
3444 }
3445 
__io_uring_cancel(bool cancel_all)3446 void __io_uring_cancel(bool cancel_all)
3447 {
3448 	io_uring_unreg_ringfd();
3449 	io_uring_cancel_generic(cancel_all, NULL);
3450 }
3451 
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3452 static void *io_uring_validate_mmap_request(struct file *file,
3453 					    loff_t pgoff, size_t sz)
3454 {
3455 	struct io_ring_ctx *ctx = file->private_data;
3456 	loff_t offset = pgoff << PAGE_SHIFT;
3457 	struct page *page;
3458 	void *ptr;
3459 
3460 	switch (offset & IORING_OFF_MMAP_MASK) {
3461 	case IORING_OFF_SQ_RING:
3462 	case IORING_OFF_CQ_RING:
3463 		/* Don't allow mmap if the ring was setup without it */
3464 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3465 			return ERR_PTR(-EINVAL);
3466 		ptr = ctx->rings;
3467 		break;
3468 	case IORING_OFF_SQES:
3469 		/* Don't allow mmap if the ring was setup without it */
3470 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3471 			return ERR_PTR(-EINVAL);
3472 		ptr = ctx->sq_sqes;
3473 		break;
3474 	case IORING_OFF_PBUF_RING: {
3475 		struct io_buffer_list *bl;
3476 		unsigned int bgid;
3477 
3478 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3479 		bl = io_pbuf_get_bl(ctx, bgid);
3480 		if (IS_ERR(bl))
3481 			return bl;
3482 		ptr = bl->buf_ring;
3483 		io_put_bl(ctx, bl);
3484 		break;
3485 		}
3486 	default:
3487 		return ERR_PTR(-EINVAL);
3488 	}
3489 
3490 	page = virt_to_head_page(ptr);
3491 	if (sz > page_size(page))
3492 		return ERR_PTR(-EINVAL);
3493 
3494 	return ptr;
3495 }
3496 
3497 #ifdef CONFIG_MMU
3498 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3499 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3500 {
3501 	size_t sz = vma->vm_end - vma->vm_start;
3502 	unsigned long pfn;
3503 	void *ptr;
3504 
3505 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3506 	if (IS_ERR(ptr))
3507 		return PTR_ERR(ptr);
3508 
3509 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3510 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3511 }
3512 
io_uring_mmu_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3513 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3514 			unsigned long addr, unsigned long len,
3515 			unsigned long pgoff, unsigned long flags)
3516 {
3517 	void *ptr;
3518 
3519 	/*
3520 	 * Do not allow to map to user-provided address to avoid breaking the
3521 	 * aliasing rules. Userspace is not able to guess the offset address of
3522 	 * kernel kmalloc()ed memory area.
3523 	 */
3524 	if (addr)
3525 		return -EINVAL;
3526 
3527 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3528 	if (IS_ERR(ptr))
3529 		return -ENOMEM;
3530 
3531 	/*
3532 	 * Some architectures have strong cache aliasing requirements.
3533 	 * For such architectures we need a coherent mapping which aliases
3534 	 * kernel memory *and* userspace memory. To achieve that:
3535 	 * - use a NULL file pointer to reference physical memory, and
3536 	 * - use the kernel virtual address of the shared io_uring context
3537 	 *   (instead of the userspace-provided address, which has to be 0UL
3538 	 *   anyway).
3539 	 * - use the same pgoff which the get_unmapped_area() uses to
3540 	 *   calculate the page colouring.
3541 	 * For architectures without such aliasing requirements, the
3542 	 * architecture will return any suitable mapping because addr is 0.
3543 	 */
3544 	filp = NULL;
3545 	flags |= MAP_SHARED;
3546 	pgoff = 0;	/* has been translated to ptr above */
3547 #ifdef SHM_COLOUR
3548 	addr = (uintptr_t) ptr;
3549 	pgoff = addr >> PAGE_SHIFT;
3550 #else
3551 	addr = 0UL;
3552 #endif
3553 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3554 }
3555 
3556 #else /* !CONFIG_MMU */
3557 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3558 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3559 {
3560 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3561 }
3562 
io_uring_nommu_mmap_capabilities(struct file * file)3563 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3564 {
3565 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3566 }
3567 
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3568 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3569 	unsigned long addr, unsigned long len,
3570 	unsigned long pgoff, unsigned long flags)
3571 {
3572 	void *ptr;
3573 
3574 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3575 	if (IS_ERR(ptr))
3576 		return PTR_ERR(ptr);
3577 
3578 	return (unsigned long) ptr;
3579 }
3580 
3581 #endif /* !CONFIG_MMU */
3582 
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3583 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3584 {
3585 	if (flags & IORING_ENTER_EXT_ARG) {
3586 		struct io_uring_getevents_arg arg;
3587 
3588 		if (argsz != sizeof(arg))
3589 			return -EINVAL;
3590 		if (copy_from_user(&arg, argp, sizeof(arg)))
3591 			return -EFAULT;
3592 	}
3593 	return 0;
3594 }
3595 
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3596 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3597 			  struct __kernel_timespec __user **ts,
3598 			  const sigset_t __user **sig)
3599 {
3600 	struct io_uring_getevents_arg arg;
3601 
3602 	/*
3603 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3604 	 * is just a pointer to the sigset_t.
3605 	 */
3606 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3607 		*sig = (const sigset_t __user *) argp;
3608 		*ts = NULL;
3609 		return 0;
3610 	}
3611 
3612 	/*
3613 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3614 	 * timespec and sigset_t pointers if good.
3615 	 */
3616 	if (*argsz != sizeof(arg))
3617 		return -EINVAL;
3618 	if (copy_from_user(&arg, argp, sizeof(arg)))
3619 		return -EFAULT;
3620 	if (arg.pad)
3621 		return -EINVAL;
3622 	*sig = u64_to_user_ptr(arg.sigmask);
3623 	*argsz = arg.sigmask_sz;
3624 	*ts = u64_to_user_ptr(arg.ts);
3625 	return 0;
3626 }
3627 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3628 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3629 		u32, min_complete, u32, flags, const void __user *, argp,
3630 		size_t, argsz)
3631 {
3632 	struct io_ring_ctx *ctx;
3633 	struct file *file;
3634 	long ret;
3635 
3636 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3637 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3638 			       IORING_ENTER_REGISTERED_RING)))
3639 		return -EINVAL;
3640 
3641 	/*
3642 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3643 	 * need only dereference our task private array to find it.
3644 	 */
3645 	if (flags & IORING_ENTER_REGISTERED_RING) {
3646 		struct io_uring_task *tctx = current->io_uring;
3647 
3648 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3649 			return -EINVAL;
3650 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3651 		file = tctx->registered_rings[fd];
3652 		if (unlikely(!file))
3653 			return -EBADF;
3654 	} else {
3655 		file = fget(fd);
3656 		if (unlikely(!file))
3657 			return -EBADF;
3658 		ret = -EOPNOTSUPP;
3659 		if (unlikely(!io_is_uring_fops(file)))
3660 			goto out;
3661 	}
3662 
3663 	ctx = file->private_data;
3664 	ret = -EBADFD;
3665 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3666 		goto out;
3667 
3668 	/*
3669 	 * For SQ polling, the thread will do all submissions and completions.
3670 	 * Just return the requested submit count, and wake the thread if
3671 	 * we were asked to.
3672 	 */
3673 	ret = 0;
3674 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3675 		io_cqring_overflow_flush(ctx);
3676 
3677 		if (unlikely(ctx->sq_data->thread == NULL)) {
3678 			ret = -EOWNERDEAD;
3679 			goto out;
3680 		}
3681 		if (flags & IORING_ENTER_SQ_WAKEUP)
3682 			wake_up(&ctx->sq_data->wait);
3683 		if (flags & IORING_ENTER_SQ_WAIT)
3684 			io_sqpoll_wait_sq(ctx);
3685 
3686 		ret = to_submit;
3687 	} else if (to_submit) {
3688 		ret = io_uring_add_tctx_node(ctx);
3689 		if (unlikely(ret))
3690 			goto out;
3691 
3692 		mutex_lock(&ctx->uring_lock);
3693 		ret = io_submit_sqes(ctx, to_submit);
3694 		if (ret != to_submit) {
3695 			mutex_unlock(&ctx->uring_lock);
3696 			goto out;
3697 		}
3698 		if (flags & IORING_ENTER_GETEVENTS) {
3699 			if (ctx->syscall_iopoll)
3700 				goto iopoll_locked;
3701 			/*
3702 			 * Ignore errors, we'll soon call io_cqring_wait() and
3703 			 * it should handle ownership problems if any.
3704 			 */
3705 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3706 				(void)io_run_local_work_locked(ctx, min_complete);
3707 		}
3708 		mutex_unlock(&ctx->uring_lock);
3709 	}
3710 
3711 	if (flags & IORING_ENTER_GETEVENTS) {
3712 		int ret2;
3713 
3714 		if (ctx->syscall_iopoll) {
3715 			/*
3716 			 * We disallow the app entering submit/complete with
3717 			 * polling, but we still need to lock the ring to
3718 			 * prevent racing with polled issue that got punted to
3719 			 * a workqueue.
3720 			 */
3721 			mutex_lock(&ctx->uring_lock);
3722 iopoll_locked:
3723 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3724 			if (likely(!ret2)) {
3725 				min_complete = min(min_complete,
3726 						   ctx->cq_entries);
3727 				ret2 = io_iopoll_check(ctx, min_complete);
3728 			}
3729 			mutex_unlock(&ctx->uring_lock);
3730 		} else {
3731 			const sigset_t __user *sig;
3732 			struct __kernel_timespec __user *ts;
3733 
3734 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3735 			if (likely(!ret2)) {
3736 				min_complete = min(min_complete,
3737 						   ctx->cq_entries);
3738 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3739 						      argsz, ts);
3740 			}
3741 		}
3742 
3743 		if (!ret) {
3744 			ret = ret2;
3745 
3746 			/*
3747 			 * EBADR indicates that one or more CQE were dropped.
3748 			 * Once the user has been informed we can clear the bit
3749 			 * as they are obviously ok with those drops.
3750 			 */
3751 			if (unlikely(ret2 == -EBADR))
3752 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3753 					  &ctx->check_cq);
3754 		}
3755 	}
3756 out:
3757 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3758 		fput(file);
3759 	return ret;
3760 }
3761 
3762 static const struct file_operations io_uring_fops = {
3763 	.release	= io_uring_release,
3764 	.mmap		= io_uring_mmap,
3765 #ifndef CONFIG_MMU
3766 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3767 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3768 #else
3769 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3770 #endif
3771 	.poll		= io_uring_poll,
3772 #ifdef CONFIG_PROC_FS
3773 	.show_fdinfo	= io_uring_show_fdinfo,
3774 #endif
3775 };
3776 
io_is_uring_fops(struct file * file)3777 bool io_is_uring_fops(struct file *file)
3778 {
3779 	return file->f_op == &io_uring_fops;
3780 }
3781 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3782 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3783 					 struct io_uring_params *p)
3784 {
3785 	struct io_rings *rings;
3786 	size_t size, sq_array_offset;
3787 	void *ptr;
3788 
3789 	/* make sure these are sane, as we already accounted them */
3790 	ctx->sq_entries = p->sq_entries;
3791 	ctx->cq_entries = p->cq_entries;
3792 
3793 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3794 	if (size == SIZE_MAX)
3795 		return -EOVERFLOW;
3796 
3797 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3798 		rings = io_mem_alloc(size);
3799 	else
3800 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3801 
3802 	if (IS_ERR(rings))
3803 		return PTR_ERR(rings);
3804 
3805 	ctx->rings = rings;
3806 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3807 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3808 	rings->sq_ring_mask = p->sq_entries - 1;
3809 	rings->cq_ring_mask = p->cq_entries - 1;
3810 	rings->sq_ring_entries = p->sq_entries;
3811 	rings->cq_ring_entries = p->cq_entries;
3812 
3813 	if (p->flags & IORING_SETUP_SQE128)
3814 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3815 	else
3816 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3817 	if (size == SIZE_MAX) {
3818 		io_rings_free(ctx);
3819 		return -EOVERFLOW;
3820 	}
3821 
3822 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3823 		ptr = io_mem_alloc(size);
3824 	else
3825 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3826 
3827 	if (IS_ERR(ptr)) {
3828 		io_rings_free(ctx);
3829 		return PTR_ERR(ptr);
3830 	}
3831 
3832 	ctx->sq_sqes = ptr;
3833 	return 0;
3834 }
3835 
io_uring_install_fd(struct file * file)3836 static int io_uring_install_fd(struct file *file)
3837 {
3838 	int fd;
3839 
3840 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3841 	if (fd < 0)
3842 		return fd;
3843 	fd_install(fd, file);
3844 	return fd;
3845 }
3846 
3847 /*
3848  * Allocate an anonymous fd, this is what constitutes the application
3849  * visible backing of an io_uring instance. The application mmaps this
3850  * fd to gain access to the SQ/CQ ring details.
3851  */
io_uring_get_file(struct io_ring_ctx * ctx)3852 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3853 {
3854 	return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3855 					 O_RDWR | O_CLOEXEC, NULL);
3856 }
3857 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3858 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3859 				  struct io_uring_params __user *params)
3860 {
3861 	struct io_ring_ctx *ctx;
3862 	struct io_uring_task *tctx;
3863 	struct file *file;
3864 	int ret;
3865 
3866 	if (!entries)
3867 		return -EINVAL;
3868 	if (entries > IORING_MAX_ENTRIES) {
3869 		if (!(p->flags & IORING_SETUP_CLAMP))
3870 			return -EINVAL;
3871 		entries = IORING_MAX_ENTRIES;
3872 	}
3873 
3874 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3875 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3876 		return -EINVAL;
3877 
3878 	/*
3879 	 * Use twice as many entries for the CQ ring. It's possible for the
3880 	 * application to drive a higher depth than the size of the SQ ring,
3881 	 * since the sqes are only used at submission time. This allows for
3882 	 * some flexibility in overcommitting a bit. If the application has
3883 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3884 	 * of CQ ring entries manually.
3885 	 */
3886 	p->sq_entries = roundup_pow_of_two(entries);
3887 	if (p->flags & IORING_SETUP_CQSIZE) {
3888 		/*
3889 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3890 		 * to a power-of-two, if it isn't already. We do NOT impose
3891 		 * any cq vs sq ring sizing.
3892 		 */
3893 		if (!p->cq_entries)
3894 			return -EINVAL;
3895 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3896 			if (!(p->flags & IORING_SETUP_CLAMP))
3897 				return -EINVAL;
3898 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3899 		}
3900 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3901 		if (p->cq_entries < p->sq_entries)
3902 			return -EINVAL;
3903 	} else {
3904 		p->cq_entries = 2 * p->sq_entries;
3905 	}
3906 
3907 	ctx = io_ring_ctx_alloc(p);
3908 	if (!ctx)
3909 		return -ENOMEM;
3910 
3911 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3912 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3913 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3914 		ctx->task_complete = true;
3915 
3916 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3917 		ctx->lockless_cq = true;
3918 
3919 	/*
3920 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3921 	 * purposes, see io_activate_pollwq()
3922 	 */
3923 	if (!ctx->task_complete)
3924 		ctx->poll_activated = true;
3925 
3926 	/*
3927 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3928 	 * space applications don't need to do io completion events
3929 	 * polling again, they can rely on io_sq_thread to do polling
3930 	 * work, which can reduce cpu usage and uring_lock contention.
3931 	 */
3932 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3933 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3934 		ctx->syscall_iopoll = 1;
3935 
3936 	ctx->compat = in_compat_syscall();
3937 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3938 		ctx->user = get_uid(current_user());
3939 
3940 	/*
3941 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3942 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3943 	 */
3944 	ret = -EINVAL;
3945 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3946 		/* IPI related flags don't make sense with SQPOLL */
3947 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3948 				  IORING_SETUP_TASKRUN_FLAG |
3949 				  IORING_SETUP_DEFER_TASKRUN))
3950 			goto err;
3951 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3952 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3953 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3954 	} else {
3955 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3956 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3957 			goto err;
3958 		ctx->notify_method = TWA_SIGNAL;
3959 	}
3960 
3961 	/*
3962 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3963 	 * submission task. This implies that there is only one submitter, so enforce
3964 	 * that.
3965 	 */
3966 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3967 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3968 		goto err;
3969 	}
3970 
3971 	/*
3972 	 * This is just grabbed for accounting purposes. When a process exits,
3973 	 * the mm is exited and dropped before the files, hence we need to hang
3974 	 * on to this mm purely for the purposes of being able to unaccount
3975 	 * memory (locked/pinned vm). It's not used for anything else.
3976 	 */
3977 	mmgrab(current->mm);
3978 	ctx->mm_account = current->mm;
3979 
3980 	ret = io_allocate_scq_urings(ctx, p);
3981 	if (ret)
3982 		goto err;
3983 
3984 	ret = io_sq_offload_create(ctx, p);
3985 	if (ret)
3986 		goto err;
3987 
3988 	ret = io_rsrc_init(ctx);
3989 	if (ret)
3990 		goto err;
3991 
3992 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3993 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3994 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3995 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3996 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3997 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3998 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3999 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4000 	p->sq_off.resv1 = 0;
4001 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4002 		p->sq_off.user_addr = 0;
4003 
4004 	p->cq_off.head = offsetof(struct io_rings, cq.head);
4005 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4006 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4007 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4008 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4009 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
4010 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4011 	p->cq_off.resv1 = 0;
4012 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4013 		p->cq_off.user_addr = 0;
4014 
4015 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4016 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4017 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4018 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4019 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4020 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4021 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4022 
4023 	if (copy_to_user(params, p, sizeof(*p))) {
4024 		ret = -EFAULT;
4025 		goto err;
4026 	}
4027 
4028 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4029 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4030 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4031 
4032 	file = io_uring_get_file(ctx);
4033 	if (IS_ERR(file)) {
4034 		ret = PTR_ERR(file);
4035 		goto err;
4036 	}
4037 
4038 	ret = __io_uring_add_tctx_node(ctx);
4039 	if (ret)
4040 		goto err_fput;
4041 	tctx = current->io_uring;
4042 
4043 	/*
4044 	 * Install ring fd as the very last thing, so we don't risk someone
4045 	 * having closed it before we finish setup
4046 	 */
4047 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4048 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4049 	else
4050 		ret = io_uring_install_fd(file);
4051 	if (ret < 0)
4052 		goto err_fput;
4053 
4054 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4055 	return ret;
4056 err:
4057 	io_ring_ctx_wait_and_kill(ctx);
4058 	return ret;
4059 err_fput:
4060 	fput(file);
4061 	return ret;
4062 }
4063 
4064 /*
4065  * Sets up an aio uring context, and returns the fd. Applications asks for a
4066  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4067  * params structure passed in.
4068  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)4069 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4070 {
4071 	struct io_uring_params p;
4072 	int i;
4073 
4074 	if (copy_from_user(&p, params, sizeof(p)))
4075 		return -EFAULT;
4076 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4077 		if (p.resv[i])
4078 			return -EINVAL;
4079 	}
4080 
4081 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4082 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4083 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4084 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4085 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4086 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4087 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4088 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4089 			IORING_SETUP_NO_SQARRAY))
4090 		return -EINVAL;
4091 
4092 	return io_uring_create(entries, &p, params);
4093 }
4094 
io_uring_allowed(void)4095 static inline bool io_uring_allowed(void)
4096 {
4097 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4098 	kgid_t io_uring_group;
4099 
4100 	if (disabled == 2)
4101 		return false;
4102 
4103 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4104 		return true;
4105 
4106 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4107 	if (!gid_valid(io_uring_group))
4108 		return false;
4109 
4110 	return in_group_p(io_uring_group);
4111 }
4112 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)4113 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4114 		struct io_uring_params __user *, params)
4115 {
4116 	if (!io_uring_allowed())
4117 		return -EPERM;
4118 
4119 	return io_uring_setup(entries, params);
4120 }
4121 
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)4122 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4123 			   unsigned nr_args)
4124 {
4125 	struct io_uring_probe *p;
4126 	size_t size;
4127 	int i, ret;
4128 
4129 	size = struct_size(p, ops, nr_args);
4130 	if (size == SIZE_MAX)
4131 		return -EOVERFLOW;
4132 	p = kzalloc(size, GFP_KERNEL);
4133 	if (!p)
4134 		return -ENOMEM;
4135 
4136 	ret = -EFAULT;
4137 	if (copy_from_user(p, arg, size))
4138 		goto out;
4139 	ret = -EINVAL;
4140 	if (memchr_inv(p, 0, size))
4141 		goto out;
4142 
4143 	p->last_op = IORING_OP_LAST - 1;
4144 	if (nr_args > IORING_OP_LAST)
4145 		nr_args = IORING_OP_LAST;
4146 
4147 	for (i = 0; i < nr_args; i++) {
4148 		p->ops[i].op = i;
4149 		if (!io_issue_defs[i].not_supported)
4150 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4151 	}
4152 	p->ops_len = i;
4153 
4154 	ret = 0;
4155 	if (copy_to_user(arg, p, size))
4156 		ret = -EFAULT;
4157 out:
4158 	kfree(p);
4159 	return ret;
4160 }
4161 
io_register_personality(struct io_ring_ctx * ctx)4162 static int io_register_personality(struct io_ring_ctx *ctx)
4163 {
4164 	const struct cred *creds;
4165 	u32 id;
4166 	int ret;
4167 
4168 	creds = get_current_cred();
4169 
4170 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4171 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4172 	if (ret < 0) {
4173 		put_cred(creds);
4174 		return ret;
4175 	}
4176 	return id;
4177 }
4178 
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)4179 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4180 					   void __user *arg, unsigned int nr_args)
4181 {
4182 	struct io_uring_restriction *res;
4183 	size_t size;
4184 	int i, ret;
4185 
4186 	/* Restrictions allowed only if rings started disabled */
4187 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4188 		return -EBADFD;
4189 
4190 	/* We allow only a single restrictions registration */
4191 	if (ctx->restrictions.registered)
4192 		return -EBUSY;
4193 
4194 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4195 		return -EINVAL;
4196 
4197 	size = array_size(nr_args, sizeof(*res));
4198 	if (size == SIZE_MAX)
4199 		return -EOVERFLOW;
4200 
4201 	res = memdup_user(arg, size);
4202 	if (IS_ERR(res))
4203 		return PTR_ERR(res);
4204 
4205 	ret = 0;
4206 
4207 	for (i = 0; i < nr_args; i++) {
4208 		switch (res[i].opcode) {
4209 		case IORING_RESTRICTION_REGISTER_OP:
4210 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4211 				ret = -EINVAL;
4212 				goto out;
4213 			}
4214 
4215 			__set_bit(res[i].register_op,
4216 				  ctx->restrictions.register_op);
4217 			break;
4218 		case IORING_RESTRICTION_SQE_OP:
4219 			if (res[i].sqe_op >= IORING_OP_LAST) {
4220 				ret = -EINVAL;
4221 				goto out;
4222 			}
4223 
4224 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4225 			break;
4226 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4227 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4228 			break;
4229 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4230 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4231 			break;
4232 		default:
4233 			ret = -EINVAL;
4234 			goto out;
4235 		}
4236 	}
4237 
4238 out:
4239 	/* Reset all restrictions if an error happened */
4240 	if (ret != 0)
4241 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4242 	else
4243 		ctx->restrictions.registered = true;
4244 
4245 	kfree(res);
4246 	return ret;
4247 }
4248 
io_register_enable_rings(struct io_ring_ctx * ctx)4249 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4250 {
4251 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4252 		return -EBADFD;
4253 
4254 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4255 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4256 		/*
4257 		 * Lazy activation attempts would fail if it was polled before
4258 		 * submitter_task is set.
4259 		 */
4260 		if (wq_has_sleeper(&ctx->poll_wq))
4261 			io_activate_pollwq(ctx);
4262 	}
4263 
4264 	if (ctx->restrictions.registered)
4265 		ctx->restricted = 1;
4266 
4267 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4268 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4269 		wake_up(&ctx->sq_data->wait);
4270 	return 0;
4271 }
4272 
__io_register_iowq_aff(struct io_ring_ctx * ctx,cpumask_var_t new_mask)4273 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4274 					 cpumask_var_t new_mask)
4275 {
4276 	int ret;
4277 
4278 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4279 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4280 	} else {
4281 		mutex_unlock(&ctx->uring_lock);
4282 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4283 		mutex_lock(&ctx->uring_lock);
4284 	}
4285 
4286 	return ret;
4287 }
4288 
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)4289 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4290 				       void __user *arg, unsigned len)
4291 {
4292 	cpumask_var_t new_mask;
4293 	int ret;
4294 
4295 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4296 		return -ENOMEM;
4297 
4298 	cpumask_clear(new_mask);
4299 	if (len > cpumask_size())
4300 		len = cpumask_size();
4301 
4302 	if (in_compat_syscall()) {
4303 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4304 					(const compat_ulong_t __user *)arg,
4305 					len * 8 /* CHAR_BIT */);
4306 	} else {
4307 		ret = copy_from_user(new_mask, arg, len);
4308 	}
4309 
4310 	if (ret) {
4311 		free_cpumask_var(new_mask);
4312 		return -EFAULT;
4313 	}
4314 
4315 	ret = __io_register_iowq_aff(ctx, new_mask);
4316 	free_cpumask_var(new_mask);
4317 	return ret;
4318 }
4319 
io_unregister_iowq_aff(struct io_ring_ctx * ctx)4320 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4321 {
4322 	return __io_register_iowq_aff(ctx, NULL);
4323 }
4324 
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)4325 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4326 					       void __user *arg)
4327 	__must_hold(&ctx->uring_lock)
4328 {
4329 	struct io_tctx_node *node;
4330 	struct io_uring_task *tctx = NULL;
4331 	struct io_sq_data *sqd = NULL;
4332 	__u32 new_count[2];
4333 	int i, ret;
4334 
4335 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4336 		return -EFAULT;
4337 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4338 		if (new_count[i] > INT_MAX)
4339 			return -EINVAL;
4340 
4341 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4342 		sqd = ctx->sq_data;
4343 		if (sqd) {
4344 			/*
4345 			 * Observe the correct sqd->lock -> ctx->uring_lock
4346 			 * ordering. Fine to drop uring_lock here, we hold
4347 			 * a ref to the ctx.
4348 			 */
4349 			refcount_inc(&sqd->refs);
4350 			mutex_unlock(&ctx->uring_lock);
4351 			mutex_lock(&sqd->lock);
4352 			mutex_lock(&ctx->uring_lock);
4353 			if (sqd->thread)
4354 				tctx = sqd->thread->io_uring;
4355 		}
4356 	} else {
4357 		tctx = current->io_uring;
4358 	}
4359 
4360 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4361 
4362 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4363 		if (new_count[i])
4364 			ctx->iowq_limits[i] = new_count[i];
4365 	ctx->iowq_limits_set = true;
4366 
4367 	if (tctx && tctx->io_wq) {
4368 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4369 		if (ret)
4370 			goto err;
4371 	} else {
4372 		memset(new_count, 0, sizeof(new_count));
4373 	}
4374 
4375 	if (sqd) {
4376 		mutex_unlock(&ctx->uring_lock);
4377 		mutex_unlock(&sqd->lock);
4378 		io_put_sq_data(sqd);
4379 		mutex_lock(&ctx->uring_lock);
4380 	}
4381 
4382 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4383 		return -EFAULT;
4384 
4385 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4386 	if (sqd)
4387 		return 0;
4388 
4389 	/* now propagate the restriction to all registered users */
4390 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4391 		struct io_uring_task *tctx = node->task->io_uring;
4392 
4393 		if (WARN_ON_ONCE(!tctx->io_wq))
4394 			continue;
4395 
4396 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4397 			new_count[i] = ctx->iowq_limits[i];
4398 		/* ignore errors, it always returns zero anyway */
4399 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4400 	}
4401 	return 0;
4402 err:
4403 	if (sqd) {
4404 		mutex_unlock(&ctx->uring_lock);
4405 		mutex_unlock(&sqd->lock);
4406 		io_put_sq_data(sqd);
4407 		mutex_lock(&ctx->uring_lock);
4408 
4409 	}
4410 	return ret;
4411 }
4412 
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)4413 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4414 			       void __user *arg, unsigned nr_args)
4415 	__releases(ctx->uring_lock)
4416 	__acquires(ctx->uring_lock)
4417 {
4418 	int ret;
4419 
4420 	/*
4421 	 * We don't quiesce the refs for register anymore and so it can't be
4422 	 * dying as we're holding a file ref here.
4423 	 */
4424 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4425 		return -ENXIO;
4426 
4427 	if (ctx->submitter_task && ctx->submitter_task != current)
4428 		return -EEXIST;
4429 
4430 	if (ctx->restricted) {
4431 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4432 		if (!test_bit(opcode, ctx->restrictions.register_op))
4433 			return -EACCES;
4434 	}
4435 
4436 	switch (opcode) {
4437 	case IORING_REGISTER_BUFFERS:
4438 		ret = -EFAULT;
4439 		if (!arg)
4440 			break;
4441 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4442 		break;
4443 	case IORING_UNREGISTER_BUFFERS:
4444 		ret = -EINVAL;
4445 		if (arg || nr_args)
4446 			break;
4447 		ret = io_sqe_buffers_unregister(ctx);
4448 		break;
4449 	case IORING_REGISTER_FILES:
4450 		ret = -EFAULT;
4451 		if (!arg)
4452 			break;
4453 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4454 		break;
4455 	case IORING_UNREGISTER_FILES:
4456 		ret = -EINVAL;
4457 		if (arg || nr_args)
4458 			break;
4459 		ret = io_sqe_files_unregister(ctx);
4460 		break;
4461 	case IORING_REGISTER_FILES_UPDATE:
4462 		ret = io_register_files_update(ctx, arg, nr_args);
4463 		break;
4464 	case IORING_REGISTER_EVENTFD:
4465 		ret = -EINVAL;
4466 		if (nr_args != 1)
4467 			break;
4468 		ret = io_eventfd_register(ctx, arg, 0);
4469 		break;
4470 	case IORING_REGISTER_EVENTFD_ASYNC:
4471 		ret = -EINVAL;
4472 		if (nr_args != 1)
4473 			break;
4474 		ret = io_eventfd_register(ctx, arg, 1);
4475 		break;
4476 	case IORING_UNREGISTER_EVENTFD:
4477 		ret = -EINVAL;
4478 		if (arg || nr_args)
4479 			break;
4480 		ret = io_eventfd_unregister(ctx);
4481 		break;
4482 	case IORING_REGISTER_PROBE:
4483 		ret = -EINVAL;
4484 		if (!arg || nr_args > 256)
4485 			break;
4486 		ret = io_probe(ctx, arg, nr_args);
4487 		break;
4488 	case IORING_REGISTER_PERSONALITY:
4489 		ret = -EINVAL;
4490 		if (arg || nr_args)
4491 			break;
4492 		ret = io_register_personality(ctx);
4493 		break;
4494 	case IORING_UNREGISTER_PERSONALITY:
4495 		ret = -EINVAL;
4496 		if (arg)
4497 			break;
4498 		ret = io_unregister_personality(ctx, nr_args);
4499 		break;
4500 	case IORING_REGISTER_ENABLE_RINGS:
4501 		ret = -EINVAL;
4502 		if (arg || nr_args)
4503 			break;
4504 		ret = io_register_enable_rings(ctx);
4505 		break;
4506 	case IORING_REGISTER_RESTRICTIONS:
4507 		ret = io_register_restrictions(ctx, arg, nr_args);
4508 		break;
4509 	case IORING_REGISTER_FILES2:
4510 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4511 		break;
4512 	case IORING_REGISTER_FILES_UPDATE2:
4513 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4514 					      IORING_RSRC_FILE);
4515 		break;
4516 	case IORING_REGISTER_BUFFERS2:
4517 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4518 		break;
4519 	case IORING_REGISTER_BUFFERS_UPDATE:
4520 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4521 					      IORING_RSRC_BUFFER);
4522 		break;
4523 	case IORING_REGISTER_IOWQ_AFF:
4524 		ret = -EINVAL;
4525 		if (!arg || !nr_args)
4526 			break;
4527 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4528 		break;
4529 	case IORING_UNREGISTER_IOWQ_AFF:
4530 		ret = -EINVAL;
4531 		if (arg || nr_args)
4532 			break;
4533 		ret = io_unregister_iowq_aff(ctx);
4534 		break;
4535 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4536 		ret = -EINVAL;
4537 		if (!arg || nr_args != 2)
4538 			break;
4539 		ret = io_register_iowq_max_workers(ctx, arg);
4540 		break;
4541 	case IORING_REGISTER_RING_FDS:
4542 		ret = io_ringfd_register(ctx, arg, nr_args);
4543 		break;
4544 	case IORING_UNREGISTER_RING_FDS:
4545 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4546 		break;
4547 	case IORING_REGISTER_PBUF_RING:
4548 		ret = -EINVAL;
4549 		if (!arg || nr_args != 1)
4550 			break;
4551 		ret = io_register_pbuf_ring(ctx, arg);
4552 		break;
4553 	case IORING_UNREGISTER_PBUF_RING:
4554 		ret = -EINVAL;
4555 		if (!arg || nr_args != 1)
4556 			break;
4557 		ret = io_unregister_pbuf_ring(ctx, arg);
4558 		break;
4559 	case IORING_REGISTER_SYNC_CANCEL:
4560 		ret = -EINVAL;
4561 		if (!arg || nr_args != 1)
4562 			break;
4563 		ret = io_sync_cancel(ctx, arg);
4564 		break;
4565 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4566 		ret = -EINVAL;
4567 		if (!arg || nr_args)
4568 			break;
4569 		ret = io_register_file_alloc_range(ctx, arg);
4570 		break;
4571 	default:
4572 		ret = -EINVAL;
4573 		break;
4574 	}
4575 
4576 	return ret;
4577 }
4578 
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4579 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4580 		void __user *, arg, unsigned int, nr_args)
4581 {
4582 	struct io_ring_ctx *ctx;
4583 	long ret = -EBADF;
4584 	struct file *file;
4585 	bool use_registered_ring;
4586 
4587 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4588 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4589 
4590 	if (opcode >= IORING_REGISTER_LAST)
4591 		return -EINVAL;
4592 
4593 	if (use_registered_ring) {
4594 		/*
4595 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4596 		 * need only dereference our task private array to find it.
4597 		 */
4598 		struct io_uring_task *tctx = current->io_uring;
4599 
4600 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4601 			return -EINVAL;
4602 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4603 		file = tctx->registered_rings[fd];
4604 		if (unlikely(!file))
4605 			return -EBADF;
4606 	} else {
4607 		file = fget(fd);
4608 		if (unlikely(!file))
4609 			return -EBADF;
4610 		ret = -EOPNOTSUPP;
4611 		if (!io_is_uring_fops(file))
4612 			goto out_fput;
4613 	}
4614 
4615 	ctx = file->private_data;
4616 
4617 	mutex_lock(&ctx->uring_lock);
4618 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4619 	mutex_unlock(&ctx->uring_lock);
4620 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4621 out_fput:
4622 	if (!use_registered_ring)
4623 		fput(file);
4624 	return ret;
4625 }
4626 
io_uring_init(void)4627 static int __init io_uring_init(void)
4628 {
4629 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4630 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4631 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4632 } while (0)
4633 
4634 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4635 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4636 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4637 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4638 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4639 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4640 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4641 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4642 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4643 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4644 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4645 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4646 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4647 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4648 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4649 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4650 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4651 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4652 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4653 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4654 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4655 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4656 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4657 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4658 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4659 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4660 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4661 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4662 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4663 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4664 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4665 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4666 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4667 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4668 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4669 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4670 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4671 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4672 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4673 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4674 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4675 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4676 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4677 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4678 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4679 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4680 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4681 
4682 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4683 		     sizeof(struct io_uring_rsrc_update));
4684 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4685 		     sizeof(struct io_uring_rsrc_update2));
4686 
4687 	/* ->buf_index is u16 */
4688 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4689 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4690 		     offsetof(struct io_uring_buf_ring, tail));
4691 
4692 	/* should fit into one byte */
4693 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4694 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4695 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4696 
4697 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4698 
4699 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4700 
4701 	io_uring_optable_init();
4702 
4703 	/*
4704 	 * Allow user copy in the per-command field, which starts after the
4705 	 * file in io_kiocb and until the opcode field. The openat2 handling
4706 	 * requires copying in user memory into the io_kiocb object in that
4707 	 * range, and HARDENED_USERCOPY will complain if we haven't
4708 	 * correctly annotated this range.
4709 	 */
4710 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4711 				sizeof(struct io_kiocb), 0,
4712 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4713 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4714 				offsetof(struct io_kiocb, cmd.data),
4715 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4716 
4717 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4718 
4719 #ifdef CONFIG_SYSCTL
4720 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4721 #endif
4722 
4723 	return 0;
4724 };
4725 __initcall(io_uring_init);
4726