xref: /openbmc/linux/drivers/nvme/host/tcp.c (revision 36db6e8484ed455bbb320d89a119378897ae991c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 #include <trace/events/sock.h>
18 
19 #include "nvme.h"
20 #include "fabrics.h"
21 
22 struct nvme_tcp_queue;
23 
24 /* Define the socket priority to use for connections were it is desirable
25  * that the NIC consider performing optimized packet processing or filtering.
26  * A non-zero value being sufficient to indicate general consideration of any
27  * possible optimization.  Making it a module param allows for alternative
28  * values that may be unique for some NIC implementations.
29  */
30 static int so_priority;
31 module_param(so_priority, int, 0644);
32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
33 
34 #ifdef CONFIG_DEBUG_LOCK_ALLOC
35 /* lockdep can detect a circular dependency of the form
36  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
37  * because dependencies are tracked for both nvme-tcp and user contexts. Using
38  * a separate class prevents lockdep from conflating nvme-tcp socket use with
39  * user-space socket API use.
40  */
41 static struct lock_class_key nvme_tcp_sk_key[2];
42 static struct lock_class_key nvme_tcp_slock_key[2];
43 
nvme_tcp_reclassify_socket(struct socket * sock)44 static void nvme_tcp_reclassify_socket(struct socket *sock)
45 {
46 	struct sock *sk = sock->sk;
47 
48 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
49 		return;
50 
51 	switch (sk->sk_family) {
52 	case AF_INET:
53 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
54 					      &nvme_tcp_slock_key[0],
55 					      "sk_lock-AF_INET-NVME",
56 					      &nvme_tcp_sk_key[0]);
57 		break;
58 	case AF_INET6:
59 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
60 					      &nvme_tcp_slock_key[1],
61 					      "sk_lock-AF_INET6-NVME",
62 					      &nvme_tcp_sk_key[1]);
63 		break;
64 	default:
65 		WARN_ON_ONCE(1);
66 	}
67 }
68 #else
nvme_tcp_reclassify_socket(struct socket * sock)69 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
70 #endif
71 
72 enum nvme_tcp_send_state {
73 	NVME_TCP_SEND_CMD_PDU = 0,
74 	NVME_TCP_SEND_H2C_PDU,
75 	NVME_TCP_SEND_DATA,
76 	NVME_TCP_SEND_DDGST,
77 };
78 
79 struct nvme_tcp_request {
80 	struct nvme_request	req;
81 	void			*pdu;
82 	struct nvme_tcp_queue	*queue;
83 	u32			data_len;
84 	u32			pdu_len;
85 	u32			pdu_sent;
86 	u32			h2cdata_left;
87 	u32			h2cdata_offset;
88 	u16			ttag;
89 	__le16			status;
90 	struct list_head	entry;
91 	struct llist_node	lentry;
92 	__le32			ddgst;
93 
94 	struct bio		*curr_bio;
95 	struct iov_iter		iter;
96 
97 	/* send state */
98 	size_t			offset;
99 	size_t			data_sent;
100 	enum nvme_tcp_send_state state;
101 };
102 
103 enum nvme_tcp_queue_flags {
104 	NVME_TCP_Q_ALLOCATED	= 0,
105 	NVME_TCP_Q_LIVE		= 1,
106 	NVME_TCP_Q_POLLING	= 2,
107 };
108 
109 enum nvme_tcp_recv_state {
110 	NVME_TCP_RECV_PDU = 0,
111 	NVME_TCP_RECV_DATA,
112 	NVME_TCP_RECV_DDGST,
113 };
114 
115 struct nvme_tcp_ctrl;
116 struct nvme_tcp_queue {
117 	struct socket		*sock;
118 	struct work_struct	io_work;
119 	int			io_cpu;
120 
121 	struct mutex		queue_lock;
122 	struct mutex		send_mutex;
123 	struct llist_head	req_list;
124 	struct list_head	send_list;
125 
126 	/* recv state */
127 	void			*pdu;
128 	int			pdu_remaining;
129 	int			pdu_offset;
130 	size_t			data_remaining;
131 	size_t			ddgst_remaining;
132 	unsigned int		nr_cqe;
133 
134 	/* send state */
135 	struct nvme_tcp_request *request;
136 
137 	u32			maxh2cdata;
138 	size_t			cmnd_capsule_len;
139 	struct nvme_tcp_ctrl	*ctrl;
140 	unsigned long		flags;
141 	bool			rd_enabled;
142 
143 	bool			hdr_digest;
144 	bool			data_digest;
145 	struct ahash_request	*rcv_hash;
146 	struct ahash_request	*snd_hash;
147 	__le32			exp_ddgst;
148 	__le32			recv_ddgst;
149 
150 	struct page_frag_cache	pf_cache;
151 
152 	void (*state_change)(struct sock *);
153 	void (*data_ready)(struct sock *);
154 	void (*write_space)(struct sock *);
155 };
156 
157 struct nvme_tcp_ctrl {
158 	/* read only in the hot path */
159 	struct nvme_tcp_queue	*queues;
160 	struct blk_mq_tag_set	tag_set;
161 
162 	/* other member variables */
163 	struct list_head	list;
164 	struct blk_mq_tag_set	admin_tag_set;
165 	struct sockaddr_storage addr;
166 	struct sockaddr_storage src_addr;
167 	struct nvme_ctrl	ctrl;
168 
169 	struct work_struct	err_work;
170 	struct delayed_work	connect_work;
171 	struct nvme_tcp_request async_req;
172 	u32			io_queues[HCTX_MAX_TYPES];
173 };
174 
175 static LIST_HEAD(nvme_tcp_ctrl_list);
176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
177 static struct workqueue_struct *nvme_tcp_wq;
178 static const struct blk_mq_ops nvme_tcp_mq_ops;
179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
181 
to_tcp_ctrl(struct nvme_ctrl * ctrl)182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
183 {
184 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
185 }
186 
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
188 {
189 	return queue - queue->ctrl->queues;
190 }
191 
nvme_tcp_tagset(struct nvme_tcp_queue * queue)192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
193 {
194 	u32 queue_idx = nvme_tcp_queue_id(queue);
195 
196 	if (queue_idx == 0)
197 		return queue->ctrl->admin_tag_set.tags[queue_idx];
198 	return queue->ctrl->tag_set.tags[queue_idx - 1];
199 }
200 
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
202 {
203 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
204 }
205 
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
207 {
208 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
209 }
210 
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)211 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
212 {
213 	return req->pdu;
214 }
215 
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)216 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
217 {
218 	/* use the pdu space in the back for the data pdu */
219 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
220 		sizeof(struct nvme_tcp_data_pdu);
221 }
222 
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)223 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
224 {
225 	if (nvme_is_fabrics(req->req.cmd))
226 		return NVME_TCP_ADMIN_CCSZ;
227 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
228 }
229 
nvme_tcp_async_req(struct nvme_tcp_request * req)230 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
231 {
232 	return req == &req->queue->ctrl->async_req;
233 }
234 
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)235 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
236 {
237 	struct request *rq;
238 
239 	if (unlikely(nvme_tcp_async_req(req)))
240 		return false; /* async events don't have a request */
241 
242 	rq = blk_mq_rq_from_pdu(req);
243 
244 	return rq_data_dir(rq) == WRITE && req->data_len &&
245 		req->data_len <= nvme_tcp_inline_data_size(req);
246 }
247 
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)248 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
249 {
250 	return req->iter.bvec->bv_page;
251 }
252 
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)253 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
254 {
255 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
256 }
257 
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)258 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
259 {
260 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
261 			req->pdu_len - req->pdu_sent);
262 }
263 
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)264 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
265 {
266 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
267 			req->pdu_len - req->pdu_sent : 0;
268 }
269 
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)270 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
271 		int len)
272 {
273 	return nvme_tcp_pdu_data_left(req) <= len;
274 }
275 
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)276 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
277 		unsigned int dir)
278 {
279 	struct request *rq = blk_mq_rq_from_pdu(req);
280 	struct bio_vec *vec;
281 	unsigned int size;
282 	int nr_bvec;
283 	size_t offset;
284 
285 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
286 		vec = &rq->special_vec;
287 		nr_bvec = 1;
288 		size = blk_rq_payload_bytes(rq);
289 		offset = 0;
290 	} else {
291 		struct bio *bio = req->curr_bio;
292 		struct bvec_iter bi;
293 		struct bio_vec bv;
294 
295 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
296 		nr_bvec = 0;
297 		bio_for_each_bvec(bv, bio, bi) {
298 			nr_bvec++;
299 		}
300 		size = bio->bi_iter.bi_size;
301 		offset = bio->bi_iter.bi_bvec_done;
302 	}
303 
304 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
305 	req->iter.iov_offset = offset;
306 }
307 
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)308 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
309 		int len)
310 {
311 	req->data_sent += len;
312 	req->pdu_sent += len;
313 	iov_iter_advance(&req->iter, len);
314 	if (!iov_iter_count(&req->iter) &&
315 	    req->data_sent < req->data_len) {
316 		req->curr_bio = req->curr_bio->bi_next;
317 		nvme_tcp_init_iter(req, ITER_SOURCE);
318 	}
319 }
320 
nvme_tcp_send_all(struct nvme_tcp_queue * queue)321 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
322 {
323 	int ret;
324 
325 	/* drain the send queue as much as we can... */
326 	do {
327 		ret = nvme_tcp_try_send(queue);
328 	} while (ret > 0);
329 }
330 
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)331 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
332 {
333 	return !list_empty(&queue->send_list) ||
334 		!llist_empty(&queue->req_list);
335 }
336 
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)337 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
338 		bool sync, bool last)
339 {
340 	struct nvme_tcp_queue *queue = req->queue;
341 	bool empty;
342 
343 	empty = llist_add(&req->lentry, &queue->req_list) &&
344 		list_empty(&queue->send_list) && !queue->request;
345 
346 	/*
347 	 * if we're the first on the send_list and we can try to send
348 	 * directly, otherwise queue io_work. Also, only do that if we
349 	 * are on the same cpu, so we don't introduce contention.
350 	 */
351 	if (queue->io_cpu == raw_smp_processor_id() &&
352 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
353 		nvme_tcp_send_all(queue);
354 		mutex_unlock(&queue->send_mutex);
355 	}
356 
357 	if (last && nvme_tcp_queue_more(queue))
358 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
359 }
360 
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)361 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
362 {
363 	struct nvme_tcp_request *req;
364 	struct llist_node *node;
365 
366 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
367 		req = llist_entry(node, struct nvme_tcp_request, lentry);
368 		list_add(&req->entry, &queue->send_list);
369 	}
370 }
371 
372 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)373 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
374 {
375 	struct nvme_tcp_request *req;
376 
377 	req = list_first_entry_or_null(&queue->send_list,
378 			struct nvme_tcp_request, entry);
379 	if (!req) {
380 		nvme_tcp_process_req_list(queue);
381 		req = list_first_entry_or_null(&queue->send_list,
382 				struct nvme_tcp_request, entry);
383 		if (unlikely(!req))
384 			return NULL;
385 	}
386 
387 	list_del(&req->entry);
388 	return req;
389 }
390 
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)391 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
392 		__le32 *dgst)
393 {
394 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
395 	crypto_ahash_final(hash);
396 }
397 
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)398 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
399 		struct page *page, off_t off, size_t len)
400 {
401 	struct scatterlist sg;
402 
403 	sg_init_table(&sg, 1);
404 	sg_set_page(&sg, page, len, off);
405 	ahash_request_set_crypt(hash, &sg, NULL, len);
406 	crypto_ahash_update(hash);
407 }
408 
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)409 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
410 		void *pdu, size_t len)
411 {
412 	struct scatterlist sg;
413 
414 	sg_init_one(&sg, pdu, len);
415 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
416 	crypto_ahash_digest(hash);
417 }
418 
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)419 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
420 		void *pdu, size_t pdu_len)
421 {
422 	struct nvme_tcp_hdr *hdr = pdu;
423 	__le32 recv_digest;
424 	__le32 exp_digest;
425 
426 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
427 		dev_err(queue->ctrl->ctrl.device,
428 			"queue %d: header digest flag is cleared\n",
429 			nvme_tcp_queue_id(queue));
430 		return -EPROTO;
431 	}
432 
433 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
434 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
435 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
436 	if (recv_digest != exp_digest) {
437 		dev_err(queue->ctrl->ctrl.device,
438 			"header digest error: recv %#x expected %#x\n",
439 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
440 		return -EIO;
441 	}
442 
443 	return 0;
444 }
445 
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)446 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
447 {
448 	struct nvme_tcp_hdr *hdr = pdu;
449 	u8 digest_len = nvme_tcp_hdgst_len(queue);
450 	u32 len;
451 
452 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
453 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
454 
455 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
456 		dev_err(queue->ctrl->ctrl.device,
457 			"queue %d: data digest flag is cleared\n",
458 		nvme_tcp_queue_id(queue));
459 		return -EPROTO;
460 	}
461 	crypto_ahash_init(queue->rcv_hash);
462 
463 	return 0;
464 }
465 
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)466 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
467 		struct request *rq, unsigned int hctx_idx)
468 {
469 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
470 
471 	page_frag_free(req->pdu);
472 }
473 
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)474 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
475 		struct request *rq, unsigned int hctx_idx,
476 		unsigned int numa_node)
477 {
478 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
479 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
480 	struct nvme_tcp_cmd_pdu *pdu;
481 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
482 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
483 	u8 hdgst = nvme_tcp_hdgst_len(queue);
484 
485 	req->pdu = page_frag_alloc(&queue->pf_cache,
486 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
487 		GFP_KERNEL | __GFP_ZERO);
488 	if (!req->pdu)
489 		return -ENOMEM;
490 
491 	pdu = req->pdu;
492 	req->queue = queue;
493 	nvme_req(rq)->ctrl = &ctrl->ctrl;
494 	nvme_req(rq)->cmd = &pdu->cmd;
495 
496 	return 0;
497 }
498 
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)499 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
500 		unsigned int hctx_idx)
501 {
502 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
503 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
504 
505 	hctx->driver_data = queue;
506 	return 0;
507 }
508 
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)509 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
510 		unsigned int hctx_idx)
511 {
512 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
513 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
514 
515 	hctx->driver_data = queue;
516 	return 0;
517 }
518 
519 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)520 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
521 {
522 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
523 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
524 		NVME_TCP_RECV_DATA;
525 }
526 
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)527 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
528 {
529 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
530 				nvme_tcp_hdgst_len(queue);
531 	queue->pdu_offset = 0;
532 	queue->data_remaining = -1;
533 	queue->ddgst_remaining = 0;
534 }
535 
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)536 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
537 {
538 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
539 		return;
540 
541 	dev_warn(ctrl->device, "starting error recovery\n");
542 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
543 }
544 
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)545 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
546 		struct nvme_completion *cqe)
547 {
548 	struct nvme_tcp_request *req;
549 	struct request *rq;
550 
551 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
552 	if (!rq) {
553 		dev_err(queue->ctrl->ctrl.device,
554 			"got bad cqe.command_id %#x on queue %d\n",
555 			cqe->command_id, nvme_tcp_queue_id(queue));
556 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
557 		return -EINVAL;
558 	}
559 
560 	req = blk_mq_rq_to_pdu(rq);
561 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
562 		req->status = cqe->status;
563 
564 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
565 		nvme_complete_rq(rq);
566 	queue->nr_cqe++;
567 
568 	return 0;
569 }
570 
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)571 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
572 		struct nvme_tcp_data_pdu *pdu)
573 {
574 	struct request *rq;
575 
576 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
577 	if (!rq) {
578 		dev_err(queue->ctrl->ctrl.device,
579 			"got bad c2hdata.command_id %#x on queue %d\n",
580 			pdu->command_id, nvme_tcp_queue_id(queue));
581 		return -ENOENT;
582 	}
583 
584 	if (!blk_rq_payload_bytes(rq)) {
585 		dev_err(queue->ctrl->ctrl.device,
586 			"queue %d tag %#x unexpected data\n",
587 			nvme_tcp_queue_id(queue), rq->tag);
588 		return -EIO;
589 	}
590 
591 	queue->data_remaining = le32_to_cpu(pdu->data_length);
592 
593 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
594 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
595 		dev_err(queue->ctrl->ctrl.device,
596 			"queue %d tag %#x SUCCESS set but not last PDU\n",
597 			nvme_tcp_queue_id(queue), rq->tag);
598 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
599 		return -EPROTO;
600 	}
601 
602 	return 0;
603 }
604 
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)605 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
606 		struct nvme_tcp_rsp_pdu *pdu)
607 {
608 	struct nvme_completion *cqe = &pdu->cqe;
609 	int ret = 0;
610 
611 	/*
612 	 * AEN requests are special as they don't time out and can
613 	 * survive any kind of queue freeze and often don't respond to
614 	 * aborts.  We don't even bother to allocate a struct request
615 	 * for them but rather special case them here.
616 	 */
617 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
618 				     cqe->command_id)))
619 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
620 				&cqe->result);
621 	else
622 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
623 
624 	return ret;
625 }
626 
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)627 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
628 {
629 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
630 	struct nvme_tcp_queue *queue = req->queue;
631 	struct request *rq = blk_mq_rq_from_pdu(req);
632 	u32 h2cdata_sent = req->pdu_len;
633 	u8 hdgst = nvme_tcp_hdgst_len(queue);
634 	u8 ddgst = nvme_tcp_ddgst_len(queue);
635 
636 	req->state = NVME_TCP_SEND_H2C_PDU;
637 	req->offset = 0;
638 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
639 	req->pdu_sent = 0;
640 	req->h2cdata_left -= req->pdu_len;
641 	req->h2cdata_offset += h2cdata_sent;
642 
643 	memset(data, 0, sizeof(*data));
644 	data->hdr.type = nvme_tcp_h2c_data;
645 	if (!req->h2cdata_left)
646 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
647 	if (queue->hdr_digest)
648 		data->hdr.flags |= NVME_TCP_F_HDGST;
649 	if (queue->data_digest)
650 		data->hdr.flags |= NVME_TCP_F_DDGST;
651 	data->hdr.hlen = sizeof(*data);
652 	data->hdr.pdo = data->hdr.hlen + hdgst;
653 	data->hdr.plen =
654 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
655 	data->ttag = req->ttag;
656 	data->command_id = nvme_cid(rq);
657 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
658 	data->data_length = cpu_to_le32(req->pdu_len);
659 }
660 
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)661 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
662 		struct nvme_tcp_r2t_pdu *pdu)
663 {
664 	struct nvme_tcp_request *req;
665 	struct request *rq;
666 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
667 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
668 
669 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
670 	if (!rq) {
671 		dev_err(queue->ctrl->ctrl.device,
672 			"got bad r2t.command_id %#x on queue %d\n",
673 			pdu->command_id, nvme_tcp_queue_id(queue));
674 		return -ENOENT;
675 	}
676 	req = blk_mq_rq_to_pdu(rq);
677 
678 	if (unlikely(!r2t_length)) {
679 		dev_err(queue->ctrl->ctrl.device,
680 			"req %d r2t len is %u, probably a bug...\n",
681 			rq->tag, r2t_length);
682 		return -EPROTO;
683 	}
684 
685 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
686 		dev_err(queue->ctrl->ctrl.device,
687 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
688 			rq->tag, r2t_length, req->data_len, req->data_sent);
689 		return -EPROTO;
690 	}
691 
692 	if (unlikely(r2t_offset < req->data_sent)) {
693 		dev_err(queue->ctrl->ctrl.device,
694 			"req %d unexpected r2t offset %u (expected %zu)\n",
695 			rq->tag, r2t_offset, req->data_sent);
696 		return -EPROTO;
697 	}
698 
699 	req->pdu_len = 0;
700 	req->h2cdata_left = r2t_length;
701 	req->h2cdata_offset = r2t_offset;
702 	req->ttag = pdu->ttag;
703 
704 	nvme_tcp_setup_h2c_data_pdu(req);
705 	nvme_tcp_queue_request(req, false, true);
706 
707 	return 0;
708 }
709 
nvme_tcp_handle_c2h_term(struct nvme_tcp_queue * queue,struct nvme_tcp_term_pdu * pdu)710 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
711 		struct nvme_tcp_term_pdu *pdu)
712 {
713 	u16 fes;
714 	const char *msg;
715 	u32 plen = le32_to_cpu(pdu->hdr.plen);
716 
717 	static const char * const msg_table[] = {
718 		[NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
719 		[NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
720 		[NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
721 		[NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
722 		[NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
723 		[NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
724 	};
725 
726 	if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
727 	    plen > NVME_TCP_MAX_C2HTERM_PLEN) {
728 		dev_err(queue->ctrl->ctrl.device,
729 			"Received a malformed C2HTermReq PDU (plen = %u)\n",
730 			plen);
731 		return;
732 	}
733 
734 	fes = le16_to_cpu(pdu->fes);
735 	if (fes && fes < ARRAY_SIZE(msg_table))
736 		msg = msg_table[fes];
737 	else
738 		msg = "Unknown";
739 
740 	dev_err(queue->ctrl->ctrl.device,
741 		"Received C2HTermReq (FES = %s)\n", msg);
742 }
743 
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)744 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
745 		unsigned int *offset, size_t *len)
746 {
747 	struct nvme_tcp_hdr *hdr;
748 	char *pdu = queue->pdu;
749 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
750 	int ret;
751 
752 	ret = skb_copy_bits(skb, *offset,
753 		&pdu[queue->pdu_offset], rcv_len);
754 	if (unlikely(ret))
755 		return ret;
756 
757 	queue->pdu_remaining -= rcv_len;
758 	queue->pdu_offset += rcv_len;
759 	*offset += rcv_len;
760 	*len -= rcv_len;
761 	if (queue->pdu_remaining)
762 		return 0;
763 
764 	hdr = queue->pdu;
765 	if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
766 		/*
767 		 * C2HTermReq never includes Header or Data digests.
768 		 * Skip the checks.
769 		 */
770 		nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
771 		return -EINVAL;
772 	}
773 
774 	if (queue->hdr_digest) {
775 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
776 		if (unlikely(ret))
777 			return ret;
778 	}
779 
780 
781 	if (queue->data_digest) {
782 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
783 		if (unlikely(ret))
784 			return ret;
785 	}
786 
787 	switch (hdr->type) {
788 	case nvme_tcp_c2h_data:
789 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
790 	case nvme_tcp_rsp:
791 		nvme_tcp_init_recv_ctx(queue);
792 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
793 	case nvme_tcp_r2t:
794 		nvme_tcp_init_recv_ctx(queue);
795 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
796 	default:
797 		dev_err(queue->ctrl->ctrl.device,
798 			"unsupported pdu type (%d)\n", hdr->type);
799 		return -EINVAL;
800 	}
801 }
802 
nvme_tcp_end_request(struct request * rq,u16 status)803 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
804 {
805 	union nvme_result res = {};
806 
807 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
808 		nvme_complete_rq(rq);
809 }
810 
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)811 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
812 			      unsigned int *offset, size_t *len)
813 {
814 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
815 	struct request *rq =
816 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
817 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
818 
819 	while (true) {
820 		int recv_len, ret;
821 
822 		recv_len = min_t(size_t, *len, queue->data_remaining);
823 		if (!recv_len)
824 			break;
825 
826 		if (!iov_iter_count(&req->iter)) {
827 			req->curr_bio = req->curr_bio->bi_next;
828 
829 			/*
830 			 * If we don`t have any bios it means that controller
831 			 * sent more data than we requested, hence error
832 			 */
833 			if (!req->curr_bio) {
834 				dev_err(queue->ctrl->ctrl.device,
835 					"queue %d no space in request %#x",
836 					nvme_tcp_queue_id(queue), rq->tag);
837 				nvme_tcp_init_recv_ctx(queue);
838 				return -EIO;
839 			}
840 			nvme_tcp_init_iter(req, ITER_DEST);
841 		}
842 
843 		/* we can read only from what is left in this bio */
844 		recv_len = min_t(size_t, recv_len,
845 				iov_iter_count(&req->iter));
846 
847 		if (queue->data_digest)
848 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
849 				&req->iter, recv_len, queue->rcv_hash);
850 		else
851 			ret = skb_copy_datagram_iter(skb, *offset,
852 					&req->iter, recv_len);
853 		if (ret) {
854 			dev_err(queue->ctrl->ctrl.device,
855 				"queue %d failed to copy request %#x data",
856 				nvme_tcp_queue_id(queue), rq->tag);
857 			return ret;
858 		}
859 
860 		*len -= recv_len;
861 		*offset += recv_len;
862 		queue->data_remaining -= recv_len;
863 	}
864 
865 	if (!queue->data_remaining) {
866 		if (queue->data_digest) {
867 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
868 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
869 		} else {
870 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
871 				nvme_tcp_end_request(rq,
872 						le16_to_cpu(req->status));
873 				queue->nr_cqe++;
874 			}
875 			nvme_tcp_init_recv_ctx(queue);
876 		}
877 	}
878 
879 	return 0;
880 }
881 
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)882 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
883 		struct sk_buff *skb, unsigned int *offset, size_t *len)
884 {
885 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
886 	char *ddgst = (char *)&queue->recv_ddgst;
887 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
888 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
889 	int ret;
890 
891 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
892 	if (unlikely(ret))
893 		return ret;
894 
895 	queue->ddgst_remaining -= recv_len;
896 	*offset += recv_len;
897 	*len -= recv_len;
898 	if (queue->ddgst_remaining)
899 		return 0;
900 
901 	if (queue->recv_ddgst != queue->exp_ddgst) {
902 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
903 					pdu->command_id);
904 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
905 
906 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
907 
908 		dev_err(queue->ctrl->ctrl.device,
909 			"data digest error: recv %#x expected %#x\n",
910 			le32_to_cpu(queue->recv_ddgst),
911 			le32_to_cpu(queue->exp_ddgst));
912 	}
913 
914 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
915 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
916 					pdu->command_id);
917 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
918 
919 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
920 		queue->nr_cqe++;
921 	}
922 
923 	nvme_tcp_init_recv_ctx(queue);
924 	return 0;
925 }
926 
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)927 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
928 			     unsigned int offset, size_t len)
929 {
930 	struct nvme_tcp_queue *queue = desc->arg.data;
931 	size_t consumed = len;
932 	int result;
933 
934 	if (unlikely(!queue->rd_enabled))
935 		return -EFAULT;
936 
937 	while (len) {
938 		switch (nvme_tcp_recv_state(queue)) {
939 		case NVME_TCP_RECV_PDU:
940 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
941 			break;
942 		case NVME_TCP_RECV_DATA:
943 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
944 			break;
945 		case NVME_TCP_RECV_DDGST:
946 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
947 			break;
948 		default:
949 			result = -EFAULT;
950 		}
951 		if (result) {
952 			dev_err(queue->ctrl->ctrl.device,
953 				"receive failed:  %d\n", result);
954 			queue->rd_enabled = false;
955 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
956 			return result;
957 		}
958 	}
959 
960 	return consumed;
961 }
962 
nvme_tcp_data_ready(struct sock * sk)963 static void nvme_tcp_data_ready(struct sock *sk)
964 {
965 	struct nvme_tcp_queue *queue;
966 
967 	trace_sk_data_ready(sk);
968 
969 	read_lock_bh(&sk->sk_callback_lock);
970 	queue = sk->sk_user_data;
971 	if (likely(queue && queue->rd_enabled) &&
972 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
973 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
974 	read_unlock_bh(&sk->sk_callback_lock);
975 }
976 
nvme_tcp_write_space(struct sock * sk)977 static void nvme_tcp_write_space(struct sock *sk)
978 {
979 	struct nvme_tcp_queue *queue;
980 
981 	read_lock_bh(&sk->sk_callback_lock);
982 	queue = sk->sk_user_data;
983 	if (likely(queue && sk_stream_is_writeable(sk))) {
984 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
985 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
986 	}
987 	read_unlock_bh(&sk->sk_callback_lock);
988 }
989 
nvme_tcp_state_change(struct sock * sk)990 static void nvme_tcp_state_change(struct sock *sk)
991 {
992 	struct nvme_tcp_queue *queue;
993 
994 	read_lock_bh(&sk->sk_callback_lock);
995 	queue = sk->sk_user_data;
996 	if (!queue)
997 		goto done;
998 
999 	switch (sk->sk_state) {
1000 	case TCP_CLOSE:
1001 	case TCP_CLOSE_WAIT:
1002 	case TCP_LAST_ACK:
1003 	case TCP_FIN_WAIT1:
1004 	case TCP_FIN_WAIT2:
1005 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1006 		break;
1007 	default:
1008 		dev_info(queue->ctrl->ctrl.device,
1009 			"queue %d socket state %d\n",
1010 			nvme_tcp_queue_id(queue), sk->sk_state);
1011 	}
1012 
1013 	queue->state_change(sk);
1014 done:
1015 	read_unlock_bh(&sk->sk_callback_lock);
1016 }
1017 
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)1018 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1019 {
1020 	queue->request = NULL;
1021 }
1022 
nvme_tcp_fail_request(struct nvme_tcp_request * req)1023 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1024 {
1025 	if (nvme_tcp_async_req(req)) {
1026 		union nvme_result res = {};
1027 
1028 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1029 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1030 	} else {
1031 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1032 				NVME_SC_HOST_PATH_ERROR);
1033 	}
1034 }
1035 
nvme_tcp_try_send_data(struct nvme_tcp_request * req)1036 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1037 {
1038 	struct nvme_tcp_queue *queue = req->queue;
1039 	int req_data_len = req->data_len;
1040 	u32 h2cdata_left = req->h2cdata_left;
1041 
1042 	while (true) {
1043 		struct bio_vec bvec;
1044 		struct msghdr msg = {
1045 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1046 		};
1047 		struct page *page = nvme_tcp_req_cur_page(req);
1048 		size_t offset = nvme_tcp_req_cur_offset(req);
1049 		size_t len = nvme_tcp_req_cur_length(req);
1050 		bool last = nvme_tcp_pdu_last_send(req, len);
1051 		int req_data_sent = req->data_sent;
1052 		int ret;
1053 
1054 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1055 			msg.msg_flags |= MSG_EOR;
1056 		else
1057 			msg.msg_flags |= MSG_MORE;
1058 
1059 		if (!sendpage_ok(page))
1060 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1061 
1062 		bvec_set_page(&bvec, page, len, offset);
1063 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1064 		ret = sock_sendmsg(queue->sock, &msg);
1065 		if (ret <= 0)
1066 			return ret;
1067 
1068 		if (queue->data_digest)
1069 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1070 					offset, ret);
1071 
1072 		/*
1073 		 * update the request iterator except for the last payload send
1074 		 * in the request where we don't want to modify it as we may
1075 		 * compete with the RX path completing the request.
1076 		 */
1077 		if (req_data_sent + ret < req_data_len)
1078 			nvme_tcp_advance_req(req, ret);
1079 
1080 		/* fully successful last send in current PDU */
1081 		if (last && ret == len) {
1082 			if (queue->data_digest) {
1083 				nvme_tcp_ddgst_final(queue->snd_hash,
1084 					&req->ddgst);
1085 				req->state = NVME_TCP_SEND_DDGST;
1086 				req->offset = 0;
1087 			} else {
1088 				if (h2cdata_left)
1089 					nvme_tcp_setup_h2c_data_pdu(req);
1090 				else
1091 					nvme_tcp_done_send_req(queue);
1092 			}
1093 			return 1;
1094 		}
1095 	}
1096 	return -EAGAIN;
1097 }
1098 
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1099 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1100 {
1101 	struct nvme_tcp_queue *queue = req->queue;
1102 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1103 	struct bio_vec bvec;
1104 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1105 	bool inline_data = nvme_tcp_has_inline_data(req);
1106 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1107 	int len = sizeof(*pdu) + hdgst - req->offset;
1108 	int ret;
1109 
1110 	if (inline_data || nvme_tcp_queue_more(queue))
1111 		msg.msg_flags |= MSG_MORE;
1112 	else
1113 		msg.msg_flags |= MSG_EOR;
1114 
1115 	if (queue->hdr_digest && !req->offset)
1116 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1117 
1118 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1119 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1120 	ret = sock_sendmsg(queue->sock, &msg);
1121 	if (unlikely(ret <= 0))
1122 		return ret;
1123 
1124 	len -= ret;
1125 	if (!len) {
1126 		if (inline_data) {
1127 			req->state = NVME_TCP_SEND_DATA;
1128 			if (queue->data_digest)
1129 				crypto_ahash_init(queue->snd_hash);
1130 		} else {
1131 			nvme_tcp_done_send_req(queue);
1132 		}
1133 		return 1;
1134 	}
1135 	req->offset += ret;
1136 
1137 	return -EAGAIN;
1138 }
1139 
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1140 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1141 {
1142 	struct nvme_tcp_queue *queue = req->queue;
1143 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1144 	struct bio_vec bvec;
1145 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1146 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1147 	int len = sizeof(*pdu) - req->offset + hdgst;
1148 	int ret;
1149 
1150 	if (queue->hdr_digest && !req->offset)
1151 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1152 
1153 	if (!req->h2cdata_left)
1154 		msg.msg_flags |= MSG_SPLICE_PAGES;
1155 
1156 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1157 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1158 	ret = sock_sendmsg(queue->sock, &msg);
1159 	if (unlikely(ret <= 0))
1160 		return ret;
1161 
1162 	len -= ret;
1163 	if (!len) {
1164 		req->state = NVME_TCP_SEND_DATA;
1165 		if (queue->data_digest)
1166 			crypto_ahash_init(queue->snd_hash);
1167 		return 1;
1168 	}
1169 	req->offset += ret;
1170 
1171 	return -EAGAIN;
1172 }
1173 
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1174 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1175 {
1176 	struct nvme_tcp_queue *queue = req->queue;
1177 	size_t offset = req->offset;
1178 	u32 h2cdata_left = req->h2cdata_left;
1179 	int ret;
1180 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1181 	struct kvec iov = {
1182 		.iov_base = (u8 *)&req->ddgst + req->offset,
1183 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1184 	};
1185 
1186 	if (nvme_tcp_queue_more(queue))
1187 		msg.msg_flags |= MSG_MORE;
1188 	else
1189 		msg.msg_flags |= MSG_EOR;
1190 
1191 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1192 	if (unlikely(ret <= 0))
1193 		return ret;
1194 
1195 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1196 		if (h2cdata_left)
1197 			nvme_tcp_setup_h2c_data_pdu(req);
1198 		else
1199 			nvme_tcp_done_send_req(queue);
1200 		return 1;
1201 	}
1202 
1203 	req->offset += ret;
1204 	return -EAGAIN;
1205 }
1206 
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1208 {
1209 	struct nvme_tcp_request *req;
1210 	unsigned int noreclaim_flag;
1211 	int ret = 1;
1212 
1213 	if (!queue->request) {
1214 		queue->request = nvme_tcp_fetch_request(queue);
1215 		if (!queue->request)
1216 			return 0;
1217 	}
1218 	req = queue->request;
1219 
1220 	noreclaim_flag = memalloc_noreclaim_save();
1221 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1222 		ret = nvme_tcp_try_send_cmd_pdu(req);
1223 		if (ret <= 0)
1224 			goto done;
1225 		if (!nvme_tcp_has_inline_data(req))
1226 			goto out;
1227 	}
1228 
1229 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1230 		ret = nvme_tcp_try_send_data_pdu(req);
1231 		if (ret <= 0)
1232 			goto done;
1233 	}
1234 
1235 	if (req->state == NVME_TCP_SEND_DATA) {
1236 		ret = nvme_tcp_try_send_data(req);
1237 		if (ret <= 0)
1238 			goto done;
1239 	}
1240 
1241 	if (req->state == NVME_TCP_SEND_DDGST)
1242 		ret = nvme_tcp_try_send_ddgst(req);
1243 done:
1244 	if (ret == -EAGAIN) {
1245 		ret = 0;
1246 	} else if (ret < 0) {
1247 		dev_err(queue->ctrl->ctrl.device,
1248 			"failed to send request %d\n", ret);
1249 		nvme_tcp_fail_request(queue->request);
1250 		nvme_tcp_done_send_req(queue);
1251 	}
1252 out:
1253 	memalloc_noreclaim_restore(noreclaim_flag);
1254 	return ret;
1255 }
1256 
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1257 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1258 {
1259 	struct socket *sock = queue->sock;
1260 	struct sock *sk = sock->sk;
1261 	read_descriptor_t rd_desc;
1262 	int consumed;
1263 
1264 	rd_desc.arg.data = queue;
1265 	rd_desc.count = 1;
1266 	lock_sock(sk);
1267 	queue->nr_cqe = 0;
1268 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1269 	release_sock(sk);
1270 	return consumed;
1271 }
1272 
nvme_tcp_io_work(struct work_struct * w)1273 static void nvme_tcp_io_work(struct work_struct *w)
1274 {
1275 	struct nvme_tcp_queue *queue =
1276 		container_of(w, struct nvme_tcp_queue, io_work);
1277 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1278 
1279 	do {
1280 		bool pending = false;
1281 		int result;
1282 
1283 		if (mutex_trylock(&queue->send_mutex)) {
1284 			result = nvme_tcp_try_send(queue);
1285 			mutex_unlock(&queue->send_mutex);
1286 			if (result > 0)
1287 				pending = true;
1288 			else if (unlikely(result < 0))
1289 				break;
1290 		}
1291 
1292 		result = nvme_tcp_try_recv(queue);
1293 		if (result > 0)
1294 			pending = true;
1295 		else if (unlikely(result < 0))
1296 			return;
1297 
1298 		if (!pending || !queue->rd_enabled)
1299 			return;
1300 
1301 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1302 
1303 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1304 }
1305 
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1306 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1307 {
1308 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1309 
1310 	ahash_request_free(queue->rcv_hash);
1311 	ahash_request_free(queue->snd_hash);
1312 	crypto_free_ahash(tfm);
1313 }
1314 
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1315 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1316 {
1317 	struct crypto_ahash *tfm;
1318 
1319 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1320 	if (IS_ERR(tfm))
1321 		return PTR_ERR(tfm);
1322 
1323 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1324 	if (!queue->snd_hash)
1325 		goto free_tfm;
1326 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1327 
1328 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1329 	if (!queue->rcv_hash)
1330 		goto free_snd_hash;
1331 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1332 
1333 	return 0;
1334 free_snd_hash:
1335 	ahash_request_free(queue->snd_hash);
1336 free_tfm:
1337 	crypto_free_ahash(tfm);
1338 	return -ENOMEM;
1339 }
1340 
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1341 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1342 {
1343 	struct nvme_tcp_request *async = &ctrl->async_req;
1344 
1345 	page_frag_free(async->pdu);
1346 }
1347 
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1348 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1349 {
1350 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1351 	struct nvme_tcp_request *async = &ctrl->async_req;
1352 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1353 
1354 	async->pdu = page_frag_alloc(&queue->pf_cache,
1355 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1356 		GFP_KERNEL | __GFP_ZERO);
1357 	if (!async->pdu)
1358 		return -ENOMEM;
1359 
1360 	async->queue = &ctrl->queues[0];
1361 	return 0;
1362 }
1363 
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1364 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1365 {
1366 	struct page *page;
1367 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1368 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1369 	unsigned int noreclaim_flag;
1370 
1371 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1372 		return;
1373 
1374 	if (queue->hdr_digest || queue->data_digest)
1375 		nvme_tcp_free_crypto(queue);
1376 
1377 	if (queue->pf_cache.va) {
1378 		page = virt_to_head_page(queue->pf_cache.va);
1379 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1380 		queue->pf_cache.va = NULL;
1381 	}
1382 
1383 	noreclaim_flag = memalloc_noreclaim_save();
1384 	sock_release(queue->sock);
1385 	memalloc_noreclaim_restore(noreclaim_flag);
1386 
1387 	kfree(queue->pdu);
1388 	mutex_destroy(&queue->send_mutex);
1389 	mutex_destroy(&queue->queue_lock);
1390 }
1391 
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1392 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1393 {
1394 	struct nvme_tcp_icreq_pdu *icreq;
1395 	struct nvme_tcp_icresp_pdu *icresp;
1396 	struct msghdr msg = {};
1397 	struct kvec iov;
1398 	bool ctrl_hdgst, ctrl_ddgst;
1399 	u32 maxh2cdata;
1400 	int ret;
1401 
1402 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1403 	if (!icreq)
1404 		return -ENOMEM;
1405 
1406 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1407 	if (!icresp) {
1408 		ret = -ENOMEM;
1409 		goto free_icreq;
1410 	}
1411 
1412 	icreq->hdr.type = nvme_tcp_icreq;
1413 	icreq->hdr.hlen = sizeof(*icreq);
1414 	icreq->hdr.pdo = 0;
1415 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1416 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1417 	icreq->maxr2t = 0; /* single inflight r2t supported */
1418 	icreq->hpda = 0; /* no alignment constraint */
1419 	if (queue->hdr_digest)
1420 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1421 	if (queue->data_digest)
1422 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1423 
1424 	iov.iov_base = icreq;
1425 	iov.iov_len = sizeof(*icreq);
1426 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1427 	if (ret < 0)
1428 		goto free_icresp;
1429 
1430 	memset(&msg, 0, sizeof(msg));
1431 	iov.iov_base = icresp;
1432 	iov.iov_len = sizeof(*icresp);
1433 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1434 			iov.iov_len, msg.msg_flags);
1435 	if (ret < 0)
1436 		goto free_icresp;
1437 
1438 	ret = -EINVAL;
1439 	if (icresp->hdr.type != nvme_tcp_icresp) {
1440 		pr_err("queue %d: bad type returned %d\n",
1441 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1442 		goto free_icresp;
1443 	}
1444 
1445 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1446 		pr_err("queue %d: bad pdu length returned %d\n",
1447 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1448 		goto free_icresp;
1449 	}
1450 
1451 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1452 		pr_err("queue %d: bad pfv returned %d\n",
1453 			nvme_tcp_queue_id(queue), icresp->pfv);
1454 		goto free_icresp;
1455 	}
1456 
1457 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1458 	if ((queue->data_digest && !ctrl_ddgst) ||
1459 	    (!queue->data_digest && ctrl_ddgst)) {
1460 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1461 			nvme_tcp_queue_id(queue),
1462 			queue->data_digest ? "enabled" : "disabled",
1463 			ctrl_ddgst ? "enabled" : "disabled");
1464 		goto free_icresp;
1465 	}
1466 
1467 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1468 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1469 	    (!queue->hdr_digest && ctrl_hdgst)) {
1470 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1471 			nvme_tcp_queue_id(queue),
1472 			queue->hdr_digest ? "enabled" : "disabled",
1473 			ctrl_hdgst ? "enabled" : "disabled");
1474 		goto free_icresp;
1475 	}
1476 
1477 	if (icresp->cpda != 0) {
1478 		pr_err("queue %d: unsupported cpda returned %d\n",
1479 			nvme_tcp_queue_id(queue), icresp->cpda);
1480 		goto free_icresp;
1481 	}
1482 
1483 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1484 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1485 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1486 		       nvme_tcp_queue_id(queue), maxh2cdata);
1487 		goto free_icresp;
1488 	}
1489 	queue->maxh2cdata = maxh2cdata;
1490 
1491 	ret = 0;
1492 free_icresp:
1493 	kfree(icresp);
1494 free_icreq:
1495 	kfree(icreq);
1496 	return ret;
1497 }
1498 
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1499 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1500 {
1501 	return nvme_tcp_queue_id(queue) == 0;
1502 }
1503 
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1504 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1505 {
1506 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1507 	int qid = nvme_tcp_queue_id(queue);
1508 
1509 	return !nvme_tcp_admin_queue(queue) &&
1510 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1511 }
1512 
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1513 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1514 {
1515 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1516 	int qid = nvme_tcp_queue_id(queue);
1517 
1518 	return !nvme_tcp_admin_queue(queue) &&
1519 		!nvme_tcp_default_queue(queue) &&
1520 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1521 			  ctrl->io_queues[HCTX_TYPE_READ];
1522 }
1523 
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1524 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1525 {
1526 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1527 	int qid = nvme_tcp_queue_id(queue);
1528 
1529 	return !nvme_tcp_admin_queue(queue) &&
1530 		!nvme_tcp_default_queue(queue) &&
1531 		!nvme_tcp_read_queue(queue) &&
1532 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1533 			  ctrl->io_queues[HCTX_TYPE_READ] +
1534 			  ctrl->io_queues[HCTX_TYPE_POLL];
1535 }
1536 
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1537 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1538 {
1539 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1540 	int qid = nvme_tcp_queue_id(queue);
1541 	int n = 0;
1542 
1543 	if (nvme_tcp_default_queue(queue))
1544 		n = qid - 1;
1545 	else if (nvme_tcp_read_queue(queue))
1546 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1547 	else if (nvme_tcp_poll_queue(queue))
1548 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1549 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1550 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1551 }
1552 
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid)1553 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
1554 {
1555 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1556 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1557 	int ret, rcv_pdu_size;
1558 
1559 	mutex_init(&queue->queue_lock);
1560 	queue->ctrl = ctrl;
1561 	init_llist_head(&queue->req_list);
1562 	INIT_LIST_HEAD(&queue->send_list);
1563 	mutex_init(&queue->send_mutex);
1564 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1565 
1566 	if (qid > 0)
1567 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1568 	else
1569 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1570 						NVME_TCP_ADMIN_CCSZ;
1571 
1572 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1573 			IPPROTO_TCP, &queue->sock);
1574 	if (ret) {
1575 		dev_err(nctrl->device,
1576 			"failed to create socket: %d\n", ret);
1577 		goto err_destroy_mutex;
1578 	}
1579 
1580 	nvme_tcp_reclassify_socket(queue->sock);
1581 
1582 	/* Single syn retry */
1583 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1584 
1585 	/* Set TCP no delay */
1586 	tcp_sock_set_nodelay(queue->sock->sk);
1587 
1588 	/*
1589 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1590 	 * close. This is done to prevent stale data from being sent should
1591 	 * the network connection be restored before TCP times out.
1592 	 */
1593 	sock_no_linger(queue->sock->sk);
1594 
1595 	if (so_priority > 0)
1596 		sock_set_priority(queue->sock->sk, so_priority);
1597 
1598 	/* Set socket type of service */
1599 	if (nctrl->opts->tos >= 0)
1600 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1601 
1602 	/* Set 10 seconds timeout for icresp recvmsg */
1603 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1604 
1605 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1606 	queue->sock->sk->sk_use_task_frag = false;
1607 	nvme_tcp_set_queue_io_cpu(queue);
1608 	queue->request = NULL;
1609 	queue->data_remaining = 0;
1610 	queue->ddgst_remaining = 0;
1611 	queue->pdu_remaining = 0;
1612 	queue->pdu_offset = 0;
1613 	sk_set_memalloc(queue->sock->sk);
1614 
1615 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1616 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1617 			sizeof(ctrl->src_addr));
1618 		if (ret) {
1619 			dev_err(nctrl->device,
1620 				"failed to bind queue %d socket %d\n",
1621 				qid, ret);
1622 			goto err_sock;
1623 		}
1624 	}
1625 
1626 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1627 		char *iface = nctrl->opts->host_iface;
1628 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1629 
1630 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1631 				      optval, strlen(iface));
1632 		if (ret) {
1633 			dev_err(nctrl->device,
1634 			  "failed to bind to interface %s queue %d err %d\n",
1635 			  iface, qid, ret);
1636 			goto err_sock;
1637 		}
1638 	}
1639 
1640 	queue->hdr_digest = nctrl->opts->hdr_digest;
1641 	queue->data_digest = nctrl->opts->data_digest;
1642 	if (queue->hdr_digest || queue->data_digest) {
1643 		ret = nvme_tcp_alloc_crypto(queue);
1644 		if (ret) {
1645 			dev_err(nctrl->device,
1646 				"failed to allocate queue %d crypto\n", qid);
1647 			goto err_sock;
1648 		}
1649 	}
1650 
1651 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1652 			nvme_tcp_hdgst_len(queue);
1653 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1654 	if (!queue->pdu) {
1655 		ret = -ENOMEM;
1656 		goto err_crypto;
1657 	}
1658 
1659 	dev_dbg(nctrl->device, "connecting queue %d\n",
1660 			nvme_tcp_queue_id(queue));
1661 
1662 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1663 		sizeof(ctrl->addr), 0);
1664 	if (ret) {
1665 		dev_err(nctrl->device,
1666 			"failed to connect socket: %d\n", ret);
1667 		goto err_rcv_pdu;
1668 	}
1669 
1670 	ret = nvme_tcp_init_connection(queue);
1671 	if (ret)
1672 		goto err_init_connect;
1673 
1674 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1675 
1676 	return 0;
1677 
1678 err_init_connect:
1679 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1680 err_rcv_pdu:
1681 	kfree(queue->pdu);
1682 err_crypto:
1683 	if (queue->hdr_digest || queue->data_digest)
1684 		nvme_tcp_free_crypto(queue);
1685 err_sock:
1686 	sock_release(queue->sock);
1687 	queue->sock = NULL;
1688 err_destroy_mutex:
1689 	mutex_destroy(&queue->send_mutex);
1690 	mutex_destroy(&queue->queue_lock);
1691 	return ret;
1692 }
1693 
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1694 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1695 {
1696 	struct socket *sock = queue->sock;
1697 
1698 	write_lock_bh(&sock->sk->sk_callback_lock);
1699 	sock->sk->sk_user_data  = NULL;
1700 	sock->sk->sk_data_ready = queue->data_ready;
1701 	sock->sk->sk_state_change = queue->state_change;
1702 	sock->sk->sk_write_space  = queue->write_space;
1703 	write_unlock_bh(&sock->sk->sk_callback_lock);
1704 }
1705 
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1706 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1707 {
1708 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1709 	nvme_tcp_restore_sock_ops(queue);
1710 	cancel_work_sync(&queue->io_work);
1711 }
1712 
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1713 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1714 {
1715 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1716 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1717 
1718 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1719 		return;
1720 
1721 	mutex_lock(&queue->queue_lock);
1722 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1723 		__nvme_tcp_stop_queue(queue);
1724 	mutex_unlock(&queue->queue_lock);
1725 }
1726 
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1727 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1728 {
1729 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1730 	queue->sock->sk->sk_user_data = queue;
1731 	queue->state_change = queue->sock->sk->sk_state_change;
1732 	queue->data_ready = queue->sock->sk->sk_data_ready;
1733 	queue->write_space = queue->sock->sk->sk_write_space;
1734 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1735 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1736 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1737 #ifdef CONFIG_NET_RX_BUSY_POLL
1738 	queue->sock->sk->sk_ll_usec = 1;
1739 #endif
1740 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1741 }
1742 
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1743 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1744 {
1745 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1746 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1747 	int ret;
1748 
1749 	queue->rd_enabled = true;
1750 	nvme_tcp_init_recv_ctx(queue);
1751 	nvme_tcp_setup_sock_ops(queue);
1752 
1753 	if (idx)
1754 		ret = nvmf_connect_io_queue(nctrl, idx);
1755 	else
1756 		ret = nvmf_connect_admin_queue(nctrl);
1757 
1758 	if (!ret) {
1759 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1760 	} else {
1761 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1762 			__nvme_tcp_stop_queue(queue);
1763 		dev_err(nctrl->device,
1764 			"failed to connect queue: %d ret=%d\n", idx, ret);
1765 	}
1766 	return ret;
1767 }
1768 
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1769 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1770 {
1771 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1772 		cancel_work_sync(&ctrl->async_event_work);
1773 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1774 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1775 	}
1776 
1777 	nvme_tcp_free_queue(ctrl, 0);
1778 }
1779 
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1780 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1781 {
1782 	int i;
1783 
1784 	for (i = 1; i < ctrl->queue_count; i++)
1785 		nvme_tcp_free_queue(ctrl, i);
1786 }
1787 
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1788 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1789 {
1790 	int i;
1791 
1792 	for (i = 1; i < ctrl->queue_count; i++)
1793 		nvme_tcp_stop_queue(ctrl, i);
1794 }
1795 
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)1796 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1797 				    int first, int last)
1798 {
1799 	int i, ret;
1800 
1801 	for (i = first; i < last; i++) {
1802 		ret = nvme_tcp_start_queue(ctrl, i);
1803 		if (ret)
1804 			goto out_stop_queues;
1805 	}
1806 
1807 	return 0;
1808 
1809 out_stop_queues:
1810 	for (i--; i >= first; i--)
1811 		nvme_tcp_stop_queue(ctrl, i);
1812 	return ret;
1813 }
1814 
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1815 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1816 {
1817 	int ret;
1818 
1819 	ret = nvme_tcp_alloc_queue(ctrl, 0);
1820 	if (ret)
1821 		return ret;
1822 
1823 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1824 	if (ret)
1825 		goto out_free_queue;
1826 
1827 	return 0;
1828 
1829 out_free_queue:
1830 	nvme_tcp_free_queue(ctrl, 0);
1831 	return ret;
1832 }
1833 
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1834 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1835 {
1836 	int i, ret;
1837 
1838 	for (i = 1; i < ctrl->queue_count; i++) {
1839 		ret = nvme_tcp_alloc_queue(ctrl, i);
1840 		if (ret)
1841 			goto out_free_queues;
1842 	}
1843 
1844 	return 0;
1845 
1846 out_free_queues:
1847 	for (i--; i >= 1; i--)
1848 		nvme_tcp_free_queue(ctrl, i);
1849 
1850 	return ret;
1851 }
1852 
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1853 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1854 {
1855 	unsigned int nr_io_queues;
1856 	int ret;
1857 
1858 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1859 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1860 	if (ret)
1861 		return ret;
1862 
1863 	if (nr_io_queues == 0) {
1864 		dev_err(ctrl->device,
1865 			"unable to set any I/O queues\n");
1866 		return -ENOMEM;
1867 	}
1868 
1869 	ctrl->queue_count = nr_io_queues + 1;
1870 	dev_info(ctrl->device,
1871 		"creating %d I/O queues.\n", nr_io_queues);
1872 
1873 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1874 			   to_tcp_ctrl(ctrl)->io_queues);
1875 	return __nvme_tcp_alloc_io_queues(ctrl);
1876 }
1877 
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1878 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1879 {
1880 	nvme_tcp_stop_io_queues(ctrl);
1881 	if (remove)
1882 		nvme_remove_io_tag_set(ctrl);
1883 	nvme_tcp_free_io_queues(ctrl);
1884 }
1885 
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1886 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1887 {
1888 	int ret, nr_queues;
1889 
1890 	ret = nvme_tcp_alloc_io_queues(ctrl);
1891 	if (ret)
1892 		return ret;
1893 
1894 	if (new) {
1895 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
1896 				&nvme_tcp_mq_ops,
1897 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
1898 				sizeof(struct nvme_tcp_request));
1899 		if (ret)
1900 			goto out_free_io_queues;
1901 	}
1902 
1903 	/*
1904 	 * Only start IO queues for which we have allocated the tagset
1905 	 * and limitted it to the available queues. On reconnects, the
1906 	 * queue number might have changed.
1907 	 */
1908 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
1909 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
1910 	if (ret)
1911 		goto out_cleanup_connect_q;
1912 
1913 	if (!new) {
1914 		nvme_start_freeze(ctrl);
1915 		nvme_unquiesce_io_queues(ctrl);
1916 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1917 			/*
1918 			 * If we timed out waiting for freeze we are likely to
1919 			 * be stuck.  Fail the controller initialization just
1920 			 * to be safe.
1921 			 */
1922 			ret = -ENODEV;
1923 			nvme_unfreeze(ctrl);
1924 			goto out_wait_freeze_timed_out;
1925 		}
1926 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1927 			ctrl->queue_count - 1);
1928 		nvme_unfreeze(ctrl);
1929 	}
1930 
1931 	/*
1932 	 * If the number of queues has increased (reconnect case)
1933 	 * start all new queues now.
1934 	 */
1935 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
1936 				       ctrl->tagset->nr_hw_queues + 1);
1937 	if (ret)
1938 		goto out_wait_freeze_timed_out;
1939 
1940 	return 0;
1941 
1942 out_wait_freeze_timed_out:
1943 	nvme_quiesce_io_queues(ctrl);
1944 	nvme_sync_io_queues(ctrl);
1945 	nvme_tcp_stop_io_queues(ctrl);
1946 out_cleanup_connect_q:
1947 	nvme_cancel_tagset(ctrl);
1948 	if (new)
1949 		nvme_remove_io_tag_set(ctrl);
1950 out_free_io_queues:
1951 	nvme_tcp_free_io_queues(ctrl);
1952 	return ret;
1953 }
1954 
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1955 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1956 {
1957 	nvme_tcp_stop_queue(ctrl, 0);
1958 	if (remove)
1959 		nvme_remove_admin_tag_set(ctrl);
1960 	nvme_tcp_free_admin_queue(ctrl);
1961 }
1962 
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1963 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1964 {
1965 	int error;
1966 
1967 	error = nvme_tcp_alloc_admin_queue(ctrl);
1968 	if (error)
1969 		return error;
1970 
1971 	if (new) {
1972 		error = nvme_alloc_admin_tag_set(ctrl,
1973 				&to_tcp_ctrl(ctrl)->admin_tag_set,
1974 				&nvme_tcp_admin_mq_ops,
1975 				sizeof(struct nvme_tcp_request));
1976 		if (error)
1977 			goto out_free_queue;
1978 	}
1979 
1980 	error = nvme_tcp_start_queue(ctrl, 0);
1981 	if (error)
1982 		goto out_cleanup_tagset;
1983 
1984 	error = nvme_enable_ctrl(ctrl);
1985 	if (error)
1986 		goto out_stop_queue;
1987 
1988 	nvme_unquiesce_admin_queue(ctrl);
1989 
1990 	error = nvme_init_ctrl_finish(ctrl, false);
1991 	if (error)
1992 		goto out_quiesce_queue;
1993 
1994 	return 0;
1995 
1996 out_quiesce_queue:
1997 	nvme_quiesce_admin_queue(ctrl);
1998 	blk_sync_queue(ctrl->admin_q);
1999 out_stop_queue:
2000 	nvme_tcp_stop_queue(ctrl, 0);
2001 	nvme_cancel_admin_tagset(ctrl);
2002 out_cleanup_tagset:
2003 	if (new)
2004 		nvme_remove_admin_tag_set(ctrl);
2005 out_free_queue:
2006 	nvme_tcp_free_admin_queue(ctrl);
2007 	return error;
2008 }
2009 
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2010 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2011 		bool remove)
2012 {
2013 	nvme_quiesce_admin_queue(ctrl);
2014 	blk_sync_queue(ctrl->admin_q);
2015 	nvme_tcp_stop_queue(ctrl, 0);
2016 	nvme_cancel_admin_tagset(ctrl);
2017 	if (remove)
2018 		nvme_unquiesce_admin_queue(ctrl);
2019 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2020 }
2021 
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2022 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2023 		bool remove)
2024 {
2025 	if (ctrl->queue_count <= 1)
2026 		return;
2027 	nvme_quiesce_admin_queue(ctrl);
2028 	nvme_quiesce_io_queues(ctrl);
2029 	nvme_sync_io_queues(ctrl);
2030 	nvme_tcp_stop_io_queues(ctrl);
2031 	nvme_cancel_tagset(ctrl);
2032 	if (remove)
2033 		nvme_unquiesce_io_queues(ctrl);
2034 	nvme_tcp_destroy_io_queues(ctrl, remove);
2035 }
2036 
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)2037 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2038 {
2039 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2040 
2041 	/* If we are resetting/deleting then do nothing */
2042 	if (state != NVME_CTRL_CONNECTING) {
2043 		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2044 		return;
2045 	}
2046 
2047 	if (nvmf_should_reconnect(ctrl)) {
2048 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2049 			ctrl->opts->reconnect_delay);
2050 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2051 				ctrl->opts->reconnect_delay * HZ);
2052 	} else {
2053 		dev_info(ctrl->device, "Removing controller...\n");
2054 		nvme_delete_ctrl(ctrl);
2055 	}
2056 }
2057 
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2058 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2059 {
2060 	struct nvmf_ctrl_options *opts = ctrl->opts;
2061 	int ret;
2062 
2063 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2064 	if (ret)
2065 		return ret;
2066 
2067 	if (ctrl->icdoff) {
2068 		ret = -EOPNOTSUPP;
2069 		dev_err(ctrl->device, "icdoff is not supported!\n");
2070 		goto destroy_admin;
2071 	}
2072 
2073 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2074 		ret = -EOPNOTSUPP;
2075 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2076 		goto destroy_admin;
2077 	}
2078 
2079 	if (opts->queue_size > ctrl->sqsize + 1)
2080 		dev_warn(ctrl->device,
2081 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2082 			opts->queue_size, ctrl->sqsize + 1);
2083 
2084 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2085 		dev_warn(ctrl->device,
2086 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2087 			ctrl->sqsize + 1, ctrl->maxcmd);
2088 		ctrl->sqsize = ctrl->maxcmd - 1;
2089 	}
2090 
2091 	if (ctrl->queue_count > 1) {
2092 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2093 		if (ret)
2094 			goto destroy_admin;
2095 	}
2096 
2097 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2098 		/*
2099 		 * state change failure is ok if we started ctrl delete,
2100 		 * unless we're during creation of a new controller to
2101 		 * avoid races with teardown flow.
2102 		 */
2103 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2104 
2105 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2106 			     state != NVME_CTRL_DELETING_NOIO);
2107 		WARN_ON_ONCE(new);
2108 		ret = -EINVAL;
2109 		goto destroy_io;
2110 	}
2111 
2112 	nvme_start_ctrl(ctrl);
2113 	return 0;
2114 
2115 destroy_io:
2116 	if (ctrl->queue_count > 1) {
2117 		nvme_quiesce_io_queues(ctrl);
2118 		nvme_sync_io_queues(ctrl);
2119 		nvme_tcp_stop_io_queues(ctrl);
2120 		nvme_cancel_tagset(ctrl);
2121 		nvme_tcp_destroy_io_queues(ctrl, new);
2122 	}
2123 destroy_admin:
2124 	nvme_quiesce_admin_queue(ctrl);
2125 	blk_sync_queue(ctrl->admin_q);
2126 	nvme_tcp_stop_queue(ctrl, 0);
2127 	nvme_cancel_admin_tagset(ctrl);
2128 	nvme_tcp_destroy_admin_queue(ctrl, new);
2129 	return ret;
2130 }
2131 
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2132 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2133 {
2134 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2135 			struct nvme_tcp_ctrl, connect_work);
2136 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2137 
2138 	++ctrl->nr_reconnects;
2139 
2140 	if (nvme_tcp_setup_ctrl(ctrl, false))
2141 		goto requeue;
2142 
2143 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2144 			ctrl->nr_reconnects);
2145 
2146 	ctrl->nr_reconnects = 0;
2147 
2148 	return;
2149 
2150 requeue:
2151 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2152 			ctrl->nr_reconnects);
2153 	nvme_tcp_reconnect_or_remove(ctrl);
2154 }
2155 
nvme_tcp_error_recovery_work(struct work_struct * work)2156 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2157 {
2158 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2159 				struct nvme_tcp_ctrl, err_work);
2160 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2161 
2162 	nvme_stop_keep_alive(ctrl);
2163 	flush_work(&ctrl->async_event_work);
2164 	nvme_tcp_teardown_io_queues(ctrl, false);
2165 	/* unquiesce to fail fast pending requests */
2166 	nvme_unquiesce_io_queues(ctrl);
2167 	nvme_tcp_teardown_admin_queue(ctrl, false);
2168 	nvme_unquiesce_admin_queue(ctrl);
2169 	nvme_auth_stop(ctrl);
2170 
2171 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2172 		/* state change failure is ok if we started ctrl delete */
2173 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2174 
2175 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2176 			     state != NVME_CTRL_DELETING_NOIO);
2177 		return;
2178 	}
2179 
2180 	nvme_tcp_reconnect_or_remove(ctrl);
2181 }
2182 
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2183 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2184 {
2185 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2186 	nvme_quiesce_admin_queue(ctrl);
2187 	nvme_disable_ctrl(ctrl, shutdown);
2188 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2189 }
2190 
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2191 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2192 {
2193 	nvme_tcp_teardown_ctrl(ctrl, true);
2194 }
2195 
nvme_reset_ctrl_work(struct work_struct * work)2196 static void nvme_reset_ctrl_work(struct work_struct *work)
2197 {
2198 	struct nvme_ctrl *ctrl =
2199 		container_of(work, struct nvme_ctrl, reset_work);
2200 
2201 	nvme_stop_ctrl(ctrl);
2202 	nvme_tcp_teardown_ctrl(ctrl, false);
2203 
2204 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2205 		/* state change failure is ok if we started ctrl delete */
2206 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2207 
2208 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2209 			     state != NVME_CTRL_DELETING_NOIO);
2210 		return;
2211 	}
2212 
2213 	if (nvme_tcp_setup_ctrl(ctrl, false))
2214 		goto out_fail;
2215 
2216 	return;
2217 
2218 out_fail:
2219 	++ctrl->nr_reconnects;
2220 	nvme_tcp_reconnect_or_remove(ctrl);
2221 }
2222 
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2223 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2224 {
2225 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2226 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2227 }
2228 
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2229 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2230 {
2231 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2232 
2233 	if (list_empty(&ctrl->list))
2234 		goto free_ctrl;
2235 
2236 	mutex_lock(&nvme_tcp_ctrl_mutex);
2237 	list_del(&ctrl->list);
2238 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2239 
2240 	nvmf_free_options(nctrl->opts);
2241 free_ctrl:
2242 	kfree(ctrl->queues);
2243 	kfree(ctrl);
2244 }
2245 
nvme_tcp_set_sg_null(struct nvme_command * c)2246 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2247 {
2248 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2249 
2250 	sg->addr = 0;
2251 	sg->length = 0;
2252 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2253 			NVME_SGL_FMT_TRANSPORT_A;
2254 }
2255 
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2256 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2257 		struct nvme_command *c, u32 data_len)
2258 {
2259 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2260 
2261 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2262 	sg->length = cpu_to_le32(data_len);
2263 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2264 }
2265 
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2266 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2267 		u32 data_len)
2268 {
2269 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2270 
2271 	sg->addr = 0;
2272 	sg->length = cpu_to_le32(data_len);
2273 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2274 			NVME_SGL_FMT_TRANSPORT_A;
2275 }
2276 
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2277 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2278 {
2279 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2280 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2281 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2282 	struct nvme_command *cmd = &pdu->cmd;
2283 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2284 
2285 	memset(pdu, 0, sizeof(*pdu));
2286 	pdu->hdr.type = nvme_tcp_cmd;
2287 	if (queue->hdr_digest)
2288 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2289 	pdu->hdr.hlen = sizeof(*pdu);
2290 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2291 
2292 	cmd->common.opcode = nvme_admin_async_event;
2293 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2294 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2295 	nvme_tcp_set_sg_null(cmd);
2296 
2297 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2298 	ctrl->async_req.offset = 0;
2299 	ctrl->async_req.curr_bio = NULL;
2300 	ctrl->async_req.data_len = 0;
2301 
2302 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2303 }
2304 
nvme_tcp_complete_timed_out(struct request * rq)2305 static void nvme_tcp_complete_timed_out(struct request *rq)
2306 {
2307 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2308 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2309 
2310 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2311 	nvmf_complete_timed_out_request(rq);
2312 }
2313 
nvme_tcp_timeout(struct request * rq)2314 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2315 {
2316 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2317 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2318 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2319 	u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
2320 	int qid = nvme_tcp_queue_id(req->queue);
2321 
2322 	dev_warn(ctrl->device,
2323 		"queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
2324 		nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
2325 		opc, nvme_opcode_str(qid, opc, fctype));
2326 
2327 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2328 		/*
2329 		 * If we are resetting, connecting or deleting we should
2330 		 * complete immediately because we may block controller
2331 		 * teardown or setup sequence
2332 		 * - ctrl disable/shutdown fabrics requests
2333 		 * - connect requests
2334 		 * - initialization admin requests
2335 		 * - I/O requests that entered after unquiescing and
2336 		 *   the controller stopped responding
2337 		 *
2338 		 * All other requests should be cancelled by the error
2339 		 * recovery work, so it's fine that we fail it here.
2340 		 */
2341 		nvme_tcp_complete_timed_out(rq);
2342 		return BLK_EH_DONE;
2343 	}
2344 
2345 	/*
2346 	 * LIVE state should trigger the normal error recovery which will
2347 	 * handle completing this request.
2348 	 */
2349 	nvme_tcp_error_recovery(ctrl);
2350 	return BLK_EH_RESET_TIMER;
2351 }
2352 
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2353 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2354 			struct request *rq)
2355 {
2356 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2357 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2358 	struct nvme_command *c = &pdu->cmd;
2359 
2360 	c->common.flags |= NVME_CMD_SGL_METABUF;
2361 
2362 	if (!blk_rq_nr_phys_segments(rq))
2363 		nvme_tcp_set_sg_null(c);
2364 	else if (rq_data_dir(rq) == WRITE &&
2365 	    req->data_len <= nvme_tcp_inline_data_size(req))
2366 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2367 	else
2368 		nvme_tcp_set_sg_host_data(c, req->data_len);
2369 
2370 	return 0;
2371 }
2372 
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2373 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2374 		struct request *rq)
2375 {
2376 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2377 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2378 	struct nvme_tcp_queue *queue = req->queue;
2379 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2380 	blk_status_t ret;
2381 
2382 	ret = nvme_setup_cmd(ns, rq);
2383 	if (ret)
2384 		return ret;
2385 
2386 	req->state = NVME_TCP_SEND_CMD_PDU;
2387 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2388 	req->offset = 0;
2389 	req->data_sent = 0;
2390 	req->pdu_len = 0;
2391 	req->pdu_sent = 0;
2392 	req->h2cdata_left = 0;
2393 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2394 				blk_rq_payload_bytes(rq) : 0;
2395 	req->curr_bio = rq->bio;
2396 	if (req->curr_bio && req->data_len)
2397 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2398 
2399 	if (rq_data_dir(rq) == WRITE &&
2400 	    req->data_len <= nvme_tcp_inline_data_size(req))
2401 		req->pdu_len = req->data_len;
2402 
2403 	pdu->hdr.type = nvme_tcp_cmd;
2404 	pdu->hdr.flags = 0;
2405 	if (queue->hdr_digest)
2406 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2407 	if (queue->data_digest && req->pdu_len) {
2408 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2409 		ddgst = nvme_tcp_ddgst_len(queue);
2410 	}
2411 	pdu->hdr.hlen = sizeof(*pdu);
2412 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2413 	pdu->hdr.plen =
2414 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2415 
2416 	ret = nvme_tcp_map_data(queue, rq);
2417 	if (unlikely(ret)) {
2418 		nvme_cleanup_cmd(rq);
2419 		dev_err(queue->ctrl->ctrl.device,
2420 			"Failed to map data (%d)\n", ret);
2421 		return ret;
2422 	}
2423 
2424 	return 0;
2425 }
2426 
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2427 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2428 {
2429 	struct nvme_tcp_queue *queue = hctx->driver_data;
2430 
2431 	if (!llist_empty(&queue->req_list))
2432 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2433 }
2434 
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2435 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2436 		const struct blk_mq_queue_data *bd)
2437 {
2438 	struct nvme_ns *ns = hctx->queue->queuedata;
2439 	struct nvme_tcp_queue *queue = hctx->driver_data;
2440 	struct request *rq = bd->rq;
2441 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2442 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2443 	blk_status_t ret;
2444 
2445 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2446 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2447 
2448 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2449 	if (unlikely(ret))
2450 		return ret;
2451 
2452 	nvme_start_request(rq);
2453 
2454 	nvme_tcp_queue_request(req, true, bd->last);
2455 
2456 	return BLK_STS_OK;
2457 }
2458 
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2459 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2460 {
2461 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2462 
2463 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2464 }
2465 
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2466 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2467 {
2468 	struct nvme_tcp_queue *queue = hctx->driver_data;
2469 	struct sock *sk = queue->sock->sk;
2470 
2471 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2472 		return 0;
2473 
2474 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2475 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2476 		sk_busy_loop(sk, true);
2477 	nvme_tcp_try_recv(queue);
2478 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2479 	return queue->nr_cqe;
2480 }
2481 
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2482 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2483 {
2484 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2485 	struct sockaddr_storage src_addr;
2486 	int ret, len;
2487 
2488 	len = nvmf_get_address(ctrl, buf, size);
2489 
2490 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2491 		return len;
2492 
2493 	mutex_lock(&queue->queue_lock);
2494 
2495 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2496 	if (ret > 0) {
2497 		if (len > 0)
2498 			len--; /* strip trailing newline */
2499 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2500 				(len) ? "," : "", &src_addr);
2501 	}
2502 
2503 	mutex_unlock(&queue->queue_lock);
2504 
2505 	return len;
2506 }
2507 
2508 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2509 	.queue_rq	= nvme_tcp_queue_rq,
2510 	.commit_rqs	= nvme_tcp_commit_rqs,
2511 	.complete	= nvme_complete_rq,
2512 	.init_request	= nvme_tcp_init_request,
2513 	.exit_request	= nvme_tcp_exit_request,
2514 	.init_hctx	= nvme_tcp_init_hctx,
2515 	.timeout	= nvme_tcp_timeout,
2516 	.map_queues	= nvme_tcp_map_queues,
2517 	.poll		= nvme_tcp_poll,
2518 };
2519 
2520 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2521 	.queue_rq	= nvme_tcp_queue_rq,
2522 	.complete	= nvme_complete_rq,
2523 	.init_request	= nvme_tcp_init_request,
2524 	.exit_request	= nvme_tcp_exit_request,
2525 	.init_hctx	= nvme_tcp_init_admin_hctx,
2526 	.timeout	= nvme_tcp_timeout,
2527 };
2528 
2529 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2530 	.name			= "tcp",
2531 	.module			= THIS_MODULE,
2532 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2533 	.reg_read32		= nvmf_reg_read32,
2534 	.reg_read64		= nvmf_reg_read64,
2535 	.reg_write32		= nvmf_reg_write32,
2536 	.free_ctrl		= nvme_tcp_free_ctrl,
2537 	.submit_async_event	= nvme_tcp_submit_async_event,
2538 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2539 	.get_address		= nvme_tcp_get_address,
2540 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2541 };
2542 
2543 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2544 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2545 {
2546 	struct nvme_tcp_ctrl *ctrl;
2547 	bool found = false;
2548 
2549 	mutex_lock(&nvme_tcp_ctrl_mutex);
2550 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2551 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2552 		if (found)
2553 			break;
2554 	}
2555 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2556 
2557 	return found;
2558 }
2559 
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2560 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2561 		struct nvmf_ctrl_options *opts)
2562 {
2563 	struct nvme_tcp_ctrl *ctrl;
2564 	int ret;
2565 
2566 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2567 	if (!ctrl)
2568 		return ERR_PTR(-ENOMEM);
2569 
2570 	INIT_LIST_HEAD(&ctrl->list);
2571 	ctrl->ctrl.opts = opts;
2572 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2573 				opts->nr_poll_queues + 1;
2574 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2575 	ctrl->ctrl.kato = opts->kato;
2576 
2577 	INIT_DELAYED_WORK(&ctrl->connect_work,
2578 			nvme_tcp_reconnect_ctrl_work);
2579 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2580 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2581 
2582 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2583 		opts->trsvcid =
2584 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2585 		if (!opts->trsvcid) {
2586 			ret = -ENOMEM;
2587 			goto out_free_ctrl;
2588 		}
2589 		opts->mask |= NVMF_OPT_TRSVCID;
2590 	}
2591 
2592 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2593 			opts->traddr, opts->trsvcid, &ctrl->addr);
2594 	if (ret) {
2595 		pr_err("malformed address passed: %s:%s\n",
2596 			opts->traddr, opts->trsvcid);
2597 		goto out_free_ctrl;
2598 	}
2599 
2600 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2601 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2602 			opts->host_traddr, NULL, &ctrl->src_addr);
2603 		if (ret) {
2604 			pr_err("malformed src address passed: %s\n",
2605 			       opts->host_traddr);
2606 			goto out_free_ctrl;
2607 		}
2608 	}
2609 
2610 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2611 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2612 			pr_err("invalid interface passed: %s\n",
2613 			       opts->host_iface);
2614 			ret = -ENODEV;
2615 			goto out_free_ctrl;
2616 		}
2617 	}
2618 
2619 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2620 		ret = -EALREADY;
2621 		goto out_free_ctrl;
2622 	}
2623 
2624 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2625 				GFP_KERNEL);
2626 	if (!ctrl->queues) {
2627 		ret = -ENOMEM;
2628 		goto out_free_ctrl;
2629 	}
2630 
2631 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2632 	if (ret)
2633 		goto out_kfree_queues;
2634 
2635 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2636 		WARN_ON_ONCE(1);
2637 		ret = -EINTR;
2638 		goto out_uninit_ctrl;
2639 	}
2640 
2641 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2642 	if (ret)
2643 		goto out_uninit_ctrl;
2644 
2645 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2646 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2647 
2648 	mutex_lock(&nvme_tcp_ctrl_mutex);
2649 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2650 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2651 
2652 	return &ctrl->ctrl;
2653 
2654 out_uninit_ctrl:
2655 	nvme_uninit_ctrl(&ctrl->ctrl);
2656 	nvme_put_ctrl(&ctrl->ctrl);
2657 	if (ret > 0)
2658 		ret = -EIO;
2659 	return ERR_PTR(ret);
2660 out_kfree_queues:
2661 	kfree(ctrl->queues);
2662 out_free_ctrl:
2663 	kfree(ctrl);
2664 	return ERR_PTR(ret);
2665 }
2666 
2667 static struct nvmf_transport_ops nvme_tcp_transport = {
2668 	.name		= "tcp",
2669 	.module		= THIS_MODULE,
2670 	.required_opts	= NVMF_OPT_TRADDR,
2671 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2672 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2673 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2674 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2675 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2676 	.create_ctrl	= nvme_tcp_create_ctrl,
2677 };
2678 
nvme_tcp_init_module(void)2679 static int __init nvme_tcp_init_module(void)
2680 {
2681 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2682 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2683 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2684 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2685 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2686 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2687 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2688 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2689 
2690 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2691 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2692 	if (!nvme_tcp_wq)
2693 		return -ENOMEM;
2694 
2695 	nvmf_register_transport(&nvme_tcp_transport);
2696 	return 0;
2697 }
2698 
nvme_tcp_cleanup_module(void)2699 static void __exit nvme_tcp_cleanup_module(void)
2700 {
2701 	struct nvme_tcp_ctrl *ctrl;
2702 
2703 	nvmf_unregister_transport(&nvme_tcp_transport);
2704 
2705 	mutex_lock(&nvme_tcp_ctrl_mutex);
2706 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2707 		nvme_delete_ctrl(&ctrl->ctrl);
2708 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2709 	flush_workqueue(nvme_delete_wq);
2710 
2711 	destroy_workqueue(nvme_tcp_wq);
2712 }
2713 
2714 module_init(nvme_tcp_init_module);
2715 module_exit(nvme_tcp_cleanup_module);
2716 
2717 MODULE_LICENSE("GPL v2");
2718