1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 #include <trace/events/sock.h>
18
19 #include "nvme.h"
20 #include "fabrics.h"
21
22 struct nvme_tcp_queue;
23
24 /* Define the socket priority to use for connections were it is desirable
25 * that the NIC consider performing optimized packet processing or filtering.
26 * A non-zero value being sufficient to indicate general consideration of any
27 * possible optimization. Making it a module param allows for alternative
28 * values that may be unique for some NIC implementations.
29 */
30 static int so_priority;
31 module_param(so_priority, int, 0644);
32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
33
34 #ifdef CONFIG_DEBUG_LOCK_ALLOC
35 /* lockdep can detect a circular dependency of the form
36 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
37 * because dependencies are tracked for both nvme-tcp and user contexts. Using
38 * a separate class prevents lockdep from conflating nvme-tcp socket use with
39 * user-space socket API use.
40 */
41 static struct lock_class_key nvme_tcp_sk_key[2];
42 static struct lock_class_key nvme_tcp_slock_key[2];
43
nvme_tcp_reclassify_socket(struct socket * sock)44 static void nvme_tcp_reclassify_socket(struct socket *sock)
45 {
46 struct sock *sk = sock->sk;
47
48 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
49 return;
50
51 switch (sk->sk_family) {
52 case AF_INET:
53 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
54 &nvme_tcp_slock_key[0],
55 "sk_lock-AF_INET-NVME",
56 &nvme_tcp_sk_key[0]);
57 break;
58 case AF_INET6:
59 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
60 &nvme_tcp_slock_key[1],
61 "sk_lock-AF_INET6-NVME",
62 &nvme_tcp_sk_key[1]);
63 break;
64 default:
65 WARN_ON_ONCE(1);
66 }
67 }
68 #else
nvme_tcp_reclassify_socket(struct socket * sock)69 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
70 #endif
71
72 enum nvme_tcp_send_state {
73 NVME_TCP_SEND_CMD_PDU = 0,
74 NVME_TCP_SEND_H2C_PDU,
75 NVME_TCP_SEND_DATA,
76 NVME_TCP_SEND_DDGST,
77 };
78
79 struct nvme_tcp_request {
80 struct nvme_request req;
81 void *pdu;
82 struct nvme_tcp_queue *queue;
83 u32 data_len;
84 u32 pdu_len;
85 u32 pdu_sent;
86 u32 h2cdata_left;
87 u32 h2cdata_offset;
88 u16 ttag;
89 __le16 status;
90 struct list_head entry;
91 struct llist_node lentry;
92 __le32 ddgst;
93
94 struct bio *curr_bio;
95 struct iov_iter iter;
96
97 /* send state */
98 size_t offset;
99 size_t data_sent;
100 enum nvme_tcp_send_state state;
101 };
102
103 enum nvme_tcp_queue_flags {
104 NVME_TCP_Q_ALLOCATED = 0,
105 NVME_TCP_Q_LIVE = 1,
106 NVME_TCP_Q_POLLING = 2,
107 };
108
109 enum nvme_tcp_recv_state {
110 NVME_TCP_RECV_PDU = 0,
111 NVME_TCP_RECV_DATA,
112 NVME_TCP_RECV_DDGST,
113 };
114
115 struct nvme_tcp_ctrl;
116 struct nvme_tcp_queue {
117 struct socket *sock;
118 struct work_struct io_work;
119 int io_cpu;
120
121 struct mutex queue_lock;
122 struct mutex send_mutex;
123 struct llist_head req_list;
124 struct list_head send_list;
125
126 /* recv state */
127 void *pdu;
128 int pdu_remaining;
129 int pdu_offset;
130 size_t data_remaining;
131 size_t ddgst_remaining;
132 unsigned int nr_cqe;
133
134 /* send state */
135 struct nvme_tcp_request *request;
136
137 u32 maxh2cdata;
138 size_t cmnd_capsule_len;
139 struct nvme_tcp_ctrl *ctrl;
140 unsigned long flags;
141 bool rd_enabled;
142
143 bool hdr_digest;
144 bool data_digest;
145 struct ahash_request *rcv_hash;
146 struct ahash_request *snd_hash;
147 __le32 exp_ddgst;
148 __le32 recv_ddgst;
149
150 struct page_frag_cache pf_cache;
151
152 void (*state_change)(struct sock *);
153 void (*data_ready)(struct sock *);
154 void (*write_space)(struct sock *);
155 };
156
157 struct nvme_tcp_ctrl {
158 /* read only in the hot path */
159 struct nvme_tcp_queue *queues;
160 struct blk_mq_tag_set tag_set;
161
162 /* other member variables */
163 struct list_head list;
164 struct blk_mq_tag_set admin_tag_set;
165 struct sockaddr_storage addr;
166 struct sockaddr_storage src_addr;
167 struct nvme_ctrl ctrl;
168
169 struct work_struct err_work;
170 struct delayed_work connect_work;
171 struct nvme_tcp_request async_req;
172 u32 io_queues[HCTX_MAX_TYPES];
173 };
174
175 static LIST_HEAD(nvme_tcp_ctrl_list);
176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
177 static struct workqueue_struct *nvme_tcp_wq;
178 static const struct blk_mq_ops nvme_tcp_mq_ops;
179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
181
to_tcp_ctrl(struct nvme_ctrl * ctrl)182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
183 {
184 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
185 }
186
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
188 {
189 return queue - queue->ctrl->queues;
190 }
191
nvme_tcp_tagset(struct nvme_tcp_queue * queue)192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
193 {
194 u32 queue_idx = nvme_tcp_queue_id(queue);
195
196 if (queue_idx == 0)
197 return queue->ctrl->admin_tag_set.tags[queue_idx];
198 return queue->ctrl->tag_set.tags[queue_idx - 1];
199 }
200
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
202 {
203 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
204 }
205
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
207 {
208 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
209 }
210
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)211 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
212 {
213 return req->pdu;
214 }
215
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)216 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
217 {
218 /* use the pdu space in the back for the data pdu */
219 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
220 sizeof(struct nvme_tcp_data_pdu);
221 }
222
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)223 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
224 {
225 if (nvme_is_fabrics(req->req.cmd))
226 return NVME_TCP_ADMIN_CCSZ;
227 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
228 }
229
nvme_tcp_async_req(struct nvme_tcp_request * req)230 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
231 {
232 return req == &req->queue->ctrl->async_req;
233 }
234
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)235 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
236 {
237 struct request *rq;
238
239 if (unlikely(nvme_tcp_async_req(req)))
240 return false; /* async events don't have a request */
241
242 rq = blk_mq_rq_from_pdu(req);
243
244 return rq_data_dir(rq) == WRITE && req->data_len &&
245 req->data_len <= nvme_tcp_inline_data_size(req);
246 }
247
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)248 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
249 {
250 return req->iter.bvec->bv_page;
251 }
252
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)253 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
254 {
255 return req->iter.bvec->bv_offset + req->iter.iov_offset;
256 }
257
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)258 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
259 {
260 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
261 req->pdu_len - req->pdu_sent);
262 }
263
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)264 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
265 {
266 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
267 req->pdu_len - req->pdu_sent : 0;
268 }
269
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)270 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
271 int len)
272 {
273 return nvme_tcp_pdu_data_left(req) <= len;
274 }
275
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)276 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
277 unsigned int dir)
278 {
279 struct request *rq = blk_mq_rq_from_pdu(req);
280 struct bio_vec *vec;
281 unsigned int size;
282 int nr_bvec;
283 size_t offset;
284
285 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
286 vec = &rq->special_vec;
287 nr_bvec = 1;
288 size = blk_rq_payload_bytes(rq);
289 offset = 0;
290 } else {
291 struct bio *bio = req->curr_bio;
292 struct bvec_iter bi;
293 struct bio_vec bv;
294
295 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
296 nr_bvec = 0;
297 bio_for_each_bvec(bv, bio, bi) {
298 nr_bvec++;
299 }
300 size = bio->bi_iter.bi_size;
301 offset = bio->bi_iter.bi_bvec_done;
302 }
303
304 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
305 req->iter.iov_offset = offset;
306 }
307
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)308 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
309 int len)
310 {
311 req->data_sent += len;
312 req->pdu_sent += len;
313 iov_iter_advance(&req->iter, len);
314 if (!iov_iter_count(&req->iter) &&
315 req->data_sent < req->data_len) {
316 req->curr_bio = req->curr_bio->bi_next;
317 nvme_tcp_init_iter(req, ITER_SOURCE);
318 }
319 }
320
nvme_tcp_send_all(struct nvme_tcp_queue * queue)321 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
322 {
323 int ret;
324
325 /* drain the send queue as much as we can... */
326 do {
327 ret = nvme_tcp_try_send(queue);
328 } while (ret > 0);
329 }
330
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)331 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
332 {
333 return !list_empty(&queue->send_list) ||
334 !llist_empty(&queue->req_list);
335 }
336
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)337 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
338 bool sync, bool last)
339 {
340 struct nvme_tcp_queue *queue = req->queue;
341 bool empty;
342
343 empty = llist_add(&req->lentry, &queue->req_list) &&
344 list_empty(&queue->send_list) && !queue->request;
345
346 /*
347 * if we're the first on the send_list and we can try to send
348 * directly, otherwise queue io_work. Also, only do that if we
349 * are on the same cpu, so we don't introduce contention.
350 */
351 if (queue->io_cpu == raw_smp_processor_id() &&
352 sync && empty && mutex_trylock(&queue->send_mutex)) {
353 nvme_tcp_send_all(queue);
354 mutex_unlock(&queue->send_mutex);
355 }
356
357 if (last && nvme_tcp_queue_more(queue))
358 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
359 }
360
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)361 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
362 {
363 struct nvme_tcp_request *req;
364 struct llist_node *node;
365
366 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
367 req = llist_entry(node, struct nvme_tcp_request, lentry);
368 list_add(&req->entry, &queue->send_list);
369 }
370 }
371
372 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)373 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
374 {
375 struct nvme_tcp_request *req;
376
377 req = list_first_entry_or_null(&queue->send_list,
378 struct nvme_tcp_request, entry);
379 if (!req) {
380 nvme_tcp_process_req_list(queue);
381 req = list_first_entry_or_null(&queue->send_list,
382 struct nvme_tcp_request, entry);
383 if (unlikely(!req))
384 return NULL;
385 }
386
387 list_del(&req->entry);
388 return req;
389 }
390
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)391 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
392 __le32 *dgst)
393 {
394 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
395 crypto_ahash_final(hash);
396 }
397
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)398 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
399 struct page *page, off_t off, size_t len)
400 {
401 struct scatterlist sg;
402
403 sg_init_table(&sg, 1);
404 sg_set_page(&sg, page, len, off);
405 ahash_request_set_crypt(hash, &sg, NULL, len);
406 crypto_ahash_update(hash);
407 }
408
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)409 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
410 void *pdu, size_t len)
411 {
412 struct scatterlist sg;
413
414 sg_init_one(&sg, pdu, len);
415 ahash_request_set_crypt(hash, &sg, pdu + len, len);
416 crypto_ahash_digest(hash);
417 }
418
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)419 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
420 void *pdu, size_t pdu_len)
421 {
422 struct nvme_tcp_hdr *hdr = pdu;
423 __le32 recv_digest;
424 __le32 exp_digest;
425
426 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
427 dev_err(queue->ctrl->ctrl.device,
428 "queue %d: header digest flag is cleared\n",
429 nvme_tcp_queue_id(queue));
430 return -EPROTO;
431 }
432
433 recv_digest = *(__le32 *)(pdu + hdr->hlen);
434 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
435 exp_digest = *(__le32 *)(pdu + hdr->hlen);
436 if (recv_digest != exp_digest) {
437 dev_err(queue->ctrl->ctrl.device,
438 "header digest error: recv %#x expected %#x\n",
439 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
440 return -EIO;
441 }
442
443 return 0;
444 }
445
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)446 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
447 {
448 struct nvme_tcp_hdr *hdr = pdu;
449 u8 digest_len = nvme_tcp_hdgst_len(queue);
450 u32 len;
451
452 len = le32_to_cpu(hdr->plen) - hdr->hlen -
453 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
454
455 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
456 dev_err(queue->ctrl->ctrl.device,
457 "queue %d: data digest flag is cleared\n",
458 nvme_tcp_queue_id(queue));
459 return -EPROTO;
460 }
461 crypto_ahash_init(queue->rcv_hash);
462
463 return 0;
464 }
465
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)466 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
467 struct request *rq, unsigned int hctx_idx)
468 {
469 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
470
471 page_frag_free(req->pdu);
472 }
473
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)474 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
475 struct request *rq, unsigned int hctx_idx,
476 unsigned int numa_node)
477 {
478 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
479 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
480 struct nvme_tcp_cmd_pdu *pdu;
481 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
482 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
483 u8 hdgst = nvme_tcp_hdgst_len(queue);
484
485 req->pdu = page_frag_alloc(&queue->pf_cache,
486 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
487 GFP_KERNEL | __GFP_ZERO);
488 if (!req->pdu)
489 return -ENOMEM;
490
491 pdu = req->pdu;
492 req->queue = queue;
493 nvme_req(rq)->ctrl = &ctrl->ctrl;
494 nvme_req(rq)->cmd = &pdu->cmd;
495
496 return 0;
497 }
498
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)499 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
500 unsigned int hctx_idx)
501 {
502 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
503 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
504
505 hctx->driver_data = queue;
506 return 0;
507 }
508
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)509 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
510 unsigned int hctx_idx)
511 {
512 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
513 struct nvme_tcp_queue *queue = &ctrl->queues[0];
514
515 hctx->driver_data = queue;
516 return 0;
517 }
518
519 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)520 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
521 {
522 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
523 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
524 NVME_TCP_RECV_DATA;
525 }
526
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)527 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
528 {
529 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
530 nvme_tcp_hdgst_len(queue);
531 queue->pdu_offset = 0;
532 queue->data_remaining = -1;
533 queue->ddgst_remaining = 0;
534 }
535
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)536 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
537 {
538 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
539 return;
540
541 dev_warn(ctrl->device, "starting error recovery\n");
542 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
543 }
544
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)545 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
546 struct nvme_completion *cqe)
547 {
548 struct nvme_tcp_request *req;
549 struct request *rq;
550
551 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
552 if (!rq) {
553 dev_err(queue->ctrl->ctrl.device,
554 "got bad cqe.command_id %#x on queue %d\n",
555 cqe->command_id, nvme_tcp_queue_id(queue));
556 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
557 return -EINVAL;
558 }
559
560 req = blk_mq_rq_to_pdu(rq);
561 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
562 req->status = cqe->status;
563
564 if (!nvme_try_complete_req(rq, req->status, cqe->result))
565 nvme_complete_rq(rq);
566 queue->nr_cqe++;
567
568 return 0;
569 }
570
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)571 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
572 struct nvme_tcp_data_pdu *pdu)
573 {
574 struct request *rq;
575
576 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
577 if (!rq) {
578 dev_err(queue->ctrl->ctrl.device,
579 "got bad c2hdata.command_id %#x on queue %d\n",
580 pdu->command_id, nvme_tcp_queue_id(queue));
581 return -ENOENT;
582 }
583
584 if (!blk_rq_payload_bytes(rq)) {
585 dev_err(queue->ctrl->ctrl.device,
586 "queue %d tag %#x unexpected data\n",
587 nvme_tcp_queue_id(queue), rq->tag);
588 return -EIO;
589 }
590
591 queue->data_remaining = le32_to_cpu(pdu->data_length);
592
593 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
594 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
595 dev_err(queue->ctrl->ctrl.device,
596 "queue %d tag %#x SUCCESS set but not last PDU\n",
597 nvme_tcp_queue_id(queue), rq->tag);
598 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
599 return -EPROTO;
600 }
601
602 return 0;
603 }
604
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)605 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
606 struct nvme_tcp_rsp_pdu *pdu)
607 {
608 struct nvme_completion *cqe = &pdu->cqe;
609 int ret = 0;
610
611 /*
612 * AEN requests are special as they don't time out and can
613 * survive any kind of queue freeze and often don't respond to
614 * aborts. We don't even bother to allocate a struct request
615 * for them but rather special case them here.
616 */
617 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
618 cqe->command_id)))
619 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
620 &cqe->result);
621 else
622 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
623
624 return ret;
625 }
626
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)627 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
628 {
629 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
630 struct nvme_tcp_queue *queue = req->queue;
631 struct request *rq = blk_mq_rq_from_pdu(req);
632 u32 h2cdata_sent = req->pdu_len;
633 u8 hdgst = nvme_tcp_hdgst_len(queue);
634 u8 ddgst = nvme_tcp_ddgst_len(queue);
635
636 req->state = NVME_TCP_SEND_H2C_PDU;
637 req->offset = 0;
638 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
639 req->pdu_sent = 0;
640 req->h2cdata_left -= req->pdu_len;
641 req->h2cdata_offset += h2cdata_sent;
642
643 memset(data, 0, sizeof(*data));
644 data->hdr.type = nvme_tcp_h2c_data;
645 if (!req->h2cdata_left)
646 data->hdr.flags = NVME_TCP_F_DATA_LAST;
647 if (queue->hdr_digest)
648 data->hdr.flags |= NVME_TCP_F_HDGST;
649 if (queue->data_digest)
650 data->hdr.flags |= NVME_TCP_F_DDGST;
651 data->hdr.hlen = sizeof(*data);
652 data->hdr.pdo = data->hdr.hlen + hdgst;
653 data->hdr.plen =
654 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
655 data->ttag = req->ttag;
656 data->command_id = nvme_cid(rq);
657 data->data_offset = cpu_to_le32(req->h2cdata_offset);
658 data->data_length = cpu_to_le32(req->pdu_len);
659 }
660
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)661 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
662 struct nvme_tcp_r2t_pdu *pdu)
663 {
664 struct nvme_tcp_request *req;
665 struct request *rq;
666 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
667 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
668
669 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
670 if (!rq) {
671 dev_err(queue->ctrl->ctrl.device,
672 "got bad r2t.command_id %#x on queue %d\n",
673 pdu->command_id, nvme_tcp_queue_id(queue));
674 return -ENOENT;
675 }
676 req = blk_mq_rq_to_pdu(rq);
677
678 if (unlikely(!r2t_length)) {
679 dev_err(queue->ctrl->ctrl.device,
680 "req %d r2t len is %u, probably a bug...\n",
681 rq->tag, r2t_length);
682 return -EPROTO;
683 }
684
685 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
686 dev_err(queue->ctrl->ctrl.device,
687 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
688 rq->tag, r2t_length, req->data_len, req->data_sent);
689 return -EPROTO;
690 }
691
692 if (unlikely(r2t_offset < req->data_sent)) {
693 dev_err(queue->ctrl->ctrl.device,
694 "req %d unexpected r2t offset %u (expected %zu)\n",
695 rq->tag, r2t_offset, req->data_sent);
696 return -EPROTO;
697 }
698
699 req->pdu_len = 0;
700 req->h2cdata_left = r2t_length;
701 req->h2cdata_offset = r2t_offset;
702 req->ttag = pdu->ttag;
703
704 nvme_tcp_setup_h2c_data_pdu(req);
705 nvme_tcp_queue_request(req, false, true);
706
707 return 0;
708 }
709
nvme_tcp_handle_c2h_term(struct nvme_tcp_queue * queue,struct nvme_tcp_term_pdu * pdu)710 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
711 struct nvme_tcp_term_pdu *pdu)
712 {
713 u16 fes;
714 const char *msg;
715 u32 plen = le32_to_cpu(pdu->hdr.plen);
716
717 static const char * const msg_table[] = {
718 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
719 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
720 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
721 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
722 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
723 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
724 };
725
726 if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
727 plen > NVME_TCP_MAX_C2HTERM_PLEN) {
728 dev_err(queue->ctrl->ctrl.device,
729 "Received a malformed C2HTermReq PDU (plen = %u)\n",
730 plen);
731 return;
732 }
733
734 fes = le16_to_cpu(pdu->fes);
735 if (fes && fes < ARRAY_SIZE(msg_table))
736 msg = msg_table[fes];
737 else
738 msg = "Unknown";
739
740 dev_err(queue->ctrl->ctrl.device,
741 "Received C2HTermReq (FES = %s)\n", msg);
742 }
743
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)744 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
745 unsigned int *offset, size_t *len)
746 {
747 struct nvme_tcp_hdr *hdr;
748 char *pdu = queue->pdu;
749 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
750 int ret;
751
752 ret = skb_copy_bits(skb, *offset,
753 &pdu[queue->pdu_offset], rcv_len);
754 if (unlikely(ret))
755 return ret;
756
757 queue->pdu_remaining -= rcv_len;
758 queue->pdu_offset += rcv_len;
759 *offset += rcv_len;
760 *len -= rcv_len;
761 if (queue->pdu_remaining)
762 return 0;
763
764 hdr = queue->pdu;
765 if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
766 /*
767 * C2HTermReq never includes Header or Data digests.
768 * Skip the checks.
769 */
770 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
771 return -EINVAL;
772 }
773
774 if (queue->hdr_digest) {
775 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
776 if (unlikely(ret))
777 return ret;
778 }
779
780
781 if (queue->data_digest) {
782 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
783 if (unlikely(ret))
784 return ret;
785 }
786
787 switch (hdr->type) {
788 case nvme_tcp_c2h_data:
789 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
790 case nvme_tcp_rsp:
791 nvme_tcp_init_recv_ctx(queue);
792 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
793 case nvme_tcp_r2t:
794 nvme_tcp_init_recv_ctx(queue);
795 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
796 default:
797 dev_err(queue->ctrl->ctrl.device,
798 "unsupported pdu type (%d)\n", hdr->type);
799 return -EINVAL;
800 }
801 }
802
nvme_tcp_end_request(struct request * rq,u16 status)803 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
804 {
805 union nvme_result res = {};
806
807 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
808 nvme_complete_rq(rq);
809 }
810
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)811 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
812 unsigned int *offset, size_t *len)
813 {
814 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
815 struct request *rq =
816 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
817 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
818
819 while (true) {
820 int recv_len, ret;
821
822 recv_len = min_t(size_t, *len, queue->data_remaining);
823 if (!recv_len)
824 break;
825
826 if (!iov_iter_count(&req->iter)) {
827 req->curr_bio = req->curr_bio->bi_next;
828
829 /*
830 * If we don`t have any bios it means that controller
831 * sent more data than we requested, hence error
832 */
833 if (!req->curr_bio) {
834 dev_err(queue->ctrl->ctrl.device,
835 "queue %d no space in request %#x",
836 nvme_tcp_queue_id(queue), rq->tag);
837 nvme_tcp_init_recv_ctx(queue);
838 return -EIO;
839 }
840 nvme_tcp_init_iter(req, ITER_DEST);
841 }
842
843 /* we can read only from what is left in this bio */
844 recv_len = min_t(size_t, recv_len,
845 iov_iter_count(&req->iter));
846
847 if (queue->data_digest)
848 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
849 &req->iter, recv_len, queue->rcv_hash);
850 else
851 ret = skb_copy_datagram_iter(skb, *offset,
852 &req->iter, recv_len);
853 if (ret) {
854 dev_err(queue->ctrl->ctrl.device,
855 "queue %d failed to copy request %#x data",
856 nvme_tcp_queue_id(queue), rq->tag);
857 return ret;
858 }
859
860 *len -= recv_len;
861 *offset += recv_len;
862 queue->data_remaining -= recv_len;
863 }
864
865 if (!queue->data_remaining) {
866 if (queue->data_digest) {
867 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
868 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
869 } else {
870 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
871 nvme_tcp_end_request(rq,
872 le16_to_cpu(req->status));
873 queue->nr_cqe++;
874 }
875 nvme_tcp_init_recv_ctx(queue);
876 }
877 }
878
879 return 0;
880 }
881
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)882 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
883 struct sk_buff *skb, unsigned int *offset, size_t *len)
884 {
885 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
886 char *ddgst = (char *)&queue->recv_ddgst;
887 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
888 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
889 int ret;
890
891 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
892 if (unlikely(ret))
893 return ret;
894
895 queue->ddgst_remaining -= recv_len;
896 *offset += recv_len;
897 *len -= recv_len;
898 if (queue->ddgst_remaining)
899 return 0;
900
901 if (queue->recv_ddgst != queue->exp_ddgst) {
902 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
903 pdu->command_id);
904 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
905
906 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
907
908 dev_err(queue->ctrl->ctrl.device,
909 "data digest error: recv %#x expected %#x\n",
910 le32_to_cpu(queue->recv_ddgst),
911 le32_to_cpu(queue->exp_ddgst));
912 }
913
914 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
915 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
916 pdu->command_id);
917 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
918
919 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
920 queue->nr_cqe++;
921 }
922
923 nvme_tcp_init_recv_ctx(queue);
924 return 0;
925 }
926
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)927 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
928 unsigned int offset, size_t len)
929 {
930 struct nvme_tcp_queue *queue = desc->arg.data;
931 size_t consumed = len;
932 int result;
933
934 if (unlikely(!queue->rd_enabled))
935 return -EFAULT;
936
937 while (len) {
938 switch (nvme_tcp_recv_state(queue)) {
939 case NVME_TCP_RECV_PDU:
940 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
941 break;
942 case NVME_TCP_RECV_DATA:
943 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
944 break;
945 case NVME_TCP_RECV_DDGST:
946 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
947 break;
948 default:
949 result = -EFAULT;
950 }
951 if (result) {
952 dev_err(queue->ctrl->ctrl.device,
953 "receive failed: %d\n", result);
954 queue->rd_enabled = false;
955 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
956 return result;
957 }
958 }
959
960 return consumed;
961 }
962
nvme_tcp_data_ready(struct sock * sk)963 static void nvme_tcp_data_ready(struct sock *sk)
964 {
965 struct nvme_tcp_queue *queue;
966
967 trace_sk_data_ready(sk);
968
969 read_lock_bh(&sk->sk_callback_lock);
970 queue = sk->sk_user_data;
971 if (likely(queue && queue->rd_enabled) &&
972 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
973 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
974 read_unlock_bh(&sk->sk_callback_lock);
975 }
976
nvme_tcp_write_space(struct sock * sk)977 static void nvme_tcp_write_space(struct sock *sk)
978 {
979 struct nvme_tcp_queue *queue;
980
981 read_lock_bh(&sk->sk_callback_lock);
982 queue = sk->sk_user_data;
983 if (likely(queue && sk_stream_is_writeable(sk))) {
984 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
985 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
986 }
987 read_unlock_bh(&sk->sk_callback_lock);
988 }
989
nvme_tcp_state_change(struct sock * sk)990 static void nvme_tcp_state_change(struct sock *sk)
991 {
992 struct nvme_tcp_queue *queue;
993
994 read_lock_bh(&sk->sk_callback_lock);
995 queue = sk->sk_user_data;
996 if (!queue)
997 goto done;
998
999 switch (sk->sk_state) {
1000 case TCP_CLOSE:
1001 case TCP_CLOSE_WAIT:
1002 case TCP_LAST_ACK:
1003 case TCP_FIN_WAIT1:
1004 case TCP_FIN_WAIT2:
1005 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1006 break;
1007 default:
1008 dev_info(queue->ctrl->ctrl.device,
1009 "queue %d socket state %d\n",
1010 nvme_tcp_queue_id(queue), sk->sk_state);
1011 }
1012
1013 queue->state_change(sk);
1014 done:
1015 read_unlock_bh(&sk->sk_callback_lock);
1016 }
1017
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)1018 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1019 {
1020 queue->request = NULL;
1021 }
1022
nvme_tcp_fail_request(struct nvme_tcp_request * req)1023 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1024 {
1025 if (nvme_tcp_async_req(req)) {
1026 union nvme_result res = {};
1027
1028 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1029 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1030 } else {
1031 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1032 NVME_SC_HOST_PATH_ERROR);
1033 }
1034 }
1035
nvme_tcp_try_send_data(struct nvme_tcp_request * req)1036 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1037 {
1038 struct nvme_tcp_queue *queue = req->queue;
1039 int req_data_len = req->data_len;
1040 u32 h2cdata_left = req->h2cdata_left;
1041
1042 while (true) {
1043 struct bio_vec bvec;
1044 struct msghdr msg = {
1045 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1046 };
1047 struct page *page = nvme_tcp_req_cur_page(req);
1048 size_t offset = nvme_tcp_req_cur_offset(req);
1049 size_t len = nvme_tcp_req_cur_length(req);
1050 bool last = nvme_tcp_pdu_last_send(req, len);
1051 int req_data_sent = req->data_sent;
1052 int ret;
1053
1054 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1055 msg.msg_flags |= MSG_EOR;
1056 else
1057 msg.msg_flags |= MSG_MORE;
1058
1059 if (!sendpage_ok(page))
1060 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1061
1062 bvec_set_page(&bvec, page, len, offset);
1063 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1064 ret = sock_sendmsg(queue->sock, &msg);
1065 if (ret <= 0)
1066 return ret;
1067
1068 if (queue->data_digest)
1069 nvme_tcp_ddgst_update(queue->snd_hash, page,
1070 offset, ret);
1071
1072 /*
1073 * update the request iterator except for the last payload send
1074 * in the request where we don't want to modify it as we may
1075 * compete with the RX path completing the request.
1076 */
1077 if (req_data_sent + ret < req_data_len)
1078 nvme_tcp_advance_req(req, ret);
1079
1080 /* fully successful last send in current PDU */
1081 if (last && ret == len) {
1082 if (queue->data_digest) {
1083 nvme_tcp_ddgst_final(queue->snd_hash,
1084 &req->ddgst);
1085 req->state = NVME_TCP_SEND_DDGST;
1086 req->offset = 0;
1087 } else {
1088 if (h2cdata_left)
1089 nvme_tcp_setup_h2c_data_pdu(req);
1090 else
1091 nvme_tcp_done_send_req(queue);
1092 }
1093 return 1;
1094 }
1095 }
1096 return -EAGAIN;
1097 }
1098
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1099 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1100 {
1101 struct nvme_tcp_queue *queue = req->queue;
1102 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1103 struct bio_vec bvec;
1104 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1105 bool inline_data = nvme_tcp_has_inline_data(req);
1106 u8 hdgst = nvme_tcp_hdgst_len(queue);
1107 int len = sizeof(*pdu) + hdgst - req->offset;
1108 int ret;
1109
1110 if (inline_data || nvme_tcp_queue_more(queue))
1111 msg.msg_flags |= MSG_MORE;
1112 else
1113 msg.msg_flags |= MSG_EOR;
1114
1115 if (queue->hdr_digest && !req->offset)
1116 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1117
1118 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1119 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1120 ret = sock_sendmsg(queue->sock, &msg);
1121 if (unlikely(ret <= 0))
1122 return ret;
1123
1124 len -= ret;
1125 if (!len) {
1126 if (inline_data) {
1127 req->state = NVME_TCP_SEND_DATA;
1128 if (queue->data_digest)
1129 crypto_ahash_init(queue->snd_hash);
1130 } else {
1131 nvme_tcp_done_send_req(queue);
1132 }
1133 return 1;
1134 }
1135 req->offset += ret;
1136
1137 return -EAGAIN;
1138 }
1139
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1140 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1141 {
1142 struct nvme_tcp_queue *queue = req->queue;
1143 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1144 struct bio_vec bvec;
1145 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1146 u8 hdgst = nvme_tcp_hdgst_len(queue);
1147 int len = sizeof(*pdu) - req->offset + hdgst;
1148 int ret;
1149
1150 if (queue->hdr_digest && !req->offset)
1151 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1152
1153 if (!req->h2cdata_left)
1154 msg.msg_flags |= MSG_SPLICE_PAGES;
1155
1156 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1157 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1158 ret = sock_sendmsg(queue->sock, &msg);
1159 if (unlikely(ret <= 0))
1160 return ret;
1161
1162 len -= ret;
1163 if (!len) {
1164 req->state = NVME_TCP_SEND_DATA;
1165 if (queue->data_digest)
1166 crypto_ahash_init(queue->snd_hash);
1167 return 1;
1168 }
1169 req->offset += ret;
1170
1171 return -EAGAIN;
1172 }
1173
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1174 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1175 {
1176 struct nvme_tcp_queue *queue = req->queue;
1177 size_t offset = req->offset;
1178 u32 h2cdata_left = req->h2cdata_left;
1179 int ret;
1180 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1181 struct kvec iov = {
1182 .iov_base = (u8 *)&req->ddgst + req->offset,
1183 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1184 };
1185
1186 if (nvme_tcp_queue_more(queue))
1187 msg.msg_flags |= MSG_MORE;
1188 else
1189 msg.msg_flags |= MSG_EOR;
1190
1191 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1192 if (unlikely(ret <= 0))
1193 return ret;
1194
1195 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1196 if (h2cdata_left)
1197 nvme_tcp_setup_h2c_data_pdu(req);
1198 else
1199 nvme_tcp_done_send_req(queue);
1200 return 1;
1201 }
1202
1203 req->offset += ret;
1204 return -EAGAIN;
1205 }
1206
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1208 {
1209 struct nvme_tcp_request *req;
1210 unsigned int noreclaim_flag;
1211 int ret = 1;
1212
1213 if (!queue->request) {
1214 queue->request = nvme_tcp_fetch_request(queue);
1215 if (!queue->request)
1216 return 0;
1217 }
1218 req = queue->request;
1219
1220 noreclaim_flag = memalloc_noreclaim_save();
1221 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1222 ret = nvme_tcp_try_send_cmd_pdu(req);
1223 if (ret <= 0)
1224 goto done;
1225 if (!nvme_tcp_has_inline_data(req))
1226 goto out;
1227 }
1228
1229 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1230 ret = nvme_tcp_try_send_data_pdu(req);
1231 if (ret <= 0)
1232 goto done;
1233 }
1234
1235 if (req->state == NVME_TCP_SEND_DATA) {
1236 ret = nvme_tcp_try_send_data(req);
1237 if (ret <= 0)
1238 goto done;
1239 }
1240
1241 if (req->state == NVME_TCP_SEND_DDGST)
1242 ret = nvme_tcp_try_send_ddgst(req);
1243 done:
1244 if (ret == -EAGAIN) {
1245 ret = 0;
1246 } else if (ret < 0) {
1247 dev_err(queue->ctrl->ctrl.device,
1248 "failed to send request %d\n", ret);
1249 nvme_tcp_fail_request(queue->request);
1250 nvme_tcp_done_send_req(queue);
1251 }
1252 out:
1253 memalloc_noreclaim_restore(noreclaim_flag);
1254 return ret;
1255 }
1256
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1257 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1258 {
1259 struct socket *sock = queue->sock;
1260 struct sock *sk = sock->sk;
1261 read_descriptor_t rd_desc;
1262 int consumed;
1263
1264 rd_desc.arg.data = queue;
1265 rd_desc.count = 1;
1266 lock_sock(sk);
1267 queue->nr_cqe = 0;
1268 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1269 release_sock(sk);
1270 return consumed;
1271 }
1272
nvme_tcp_io_work(struct work_struct * w)1273 static void nvme_tcp_io_work(struct work_struct *w)
1274 {
1275 struct nvme_tcp_queue *queue =
1276 container_of(w, struct nvme_tcp_queue, io_work);
1277 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1278
1279 do {
1280 bool pending = false;
1281 int result;
1282
1283 if (mutex_trylock(&queue->send_mutex)) {
1284 result = nvme_tcp_try_send(queue);
1285 mutex_unlock(&queue->send_mutex);
1286 if (result > 0)
1287 pending = true;
1288 else if (unlikely(result < 0))
1289 break;
1290 }
1291
1292 result = nvme_tcp_try_recv(queue);
1293 if (result > 0)
1294 pending = true;
1295 else if (unlikely(result < 0))
1296 return;
1297
1298 if (!pending || !queue->rd_enabled)
1299 return;
1300
1301 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1302
1303 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1304 }
1305
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1306 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1307 {
1308 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1309
1310 ahash_request_free(queue->rcv_hash);
1311 ahash_request_free(queue->snd_hash);
1312 crypto_free_ahash(tfm);
1313 }
1314
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1315 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1316 {
1317 struct crypto_ahash *tfm;
1318
1319 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1320 if (IS_ERR(tfm))
1321 return PTR_ERR(tfm);
1322
1323 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1324 if (!queue->snd_hash)
1325 goto free_tfm;
1326 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1327
1328 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1329 if (!queue->rcv_hash)
1330 goto free_snd_hash;
1331 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1332
1333 return 0;
1334 free_snd_hash:
1335 ahash_request_free(queue->snd_hash);
1336 free_tfm:
1337 crypto_free_ahash(tfm);
1338 return -ENOMEM;
1339 }
1340
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1341 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1342 {
1343 struct nvme_tcp_request *async = &ctrl->async_req;
1344
1345 page_frag_free(async->pdu);
1346 }
1347
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1348 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1349 {
1350 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1351 struct nvme_tcp_request *async = &ctrl->async_req;
1352 u8 hdgst = nvme_tcp_hdgst_len(queue);
1353
1354 async->pdu = page_frag_alloc(&queue->pf_cache,
1355 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1356 GFP_KERNEL | __GFP_ZERO);
1357 if (!async->pdu)
1358 return -ENOMEM;
1359
1360 async->queue = &ctrl->queues[0];
1361 return 0;
1362 }
1363
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1364 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1365 {
1366 struct page *page;
1367 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1368 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1369 unsigned int noreclaim_flag;
1370
1371 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1372 return;
1373
1374 if (queue->hdr_digest || queue->data_digest)
1375 nvme_tcp_free_crypto(queue);
1376
1377 if (queue->pf_cache.va) {
1378 page = virt_to_head_page(queue->pf_cache.va);
1379 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1380 queue->pf_cache.va = NULL;
1381 }
1382
1383 noreclaim_flag = memalloc_noreclaim_save();
1384 sock_release(queue->sock);
1385 memalloc_noreclaim_restore(noreclaim_flag);
1386
1387 kfree(queue->pdu);
1388 mutex_destroy(&queue->send_mutex);
1389 mutex_destroy(&queue->queue_lock);
1390 }
1391
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1392 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1393 {
1394 struct nvme_tcp_icreq_pdu *icreq;
1395 struct nvme_tcp_icresp_pdu *icresp;
1396 struct msghdr msg = {};
1397 struct kvec iov;
1398 bool ctrl_hdgst, ctrl_ddgst;
1399 u32 maxh2cdata;
1400 int ret;
1401
1402 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1403 if (!icreq)
1404 return -ENOMEM;
1405
1406 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1407 if (!icresp) {
1408 ret = -ENOMEM;
1409 goto free_icreq;
1410 }
1411
1412 icreq->hdr.type = nvme_tcp_icreq;
1413 icreq->hdr.hlen = sizeof(*icreq);
1414 icreq->hdr.pdo = 0;
1415 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1416 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1417 icreq->maxr2t = 0; /* single inflight r2t supported */
1418 icreq->hpda = 0; /* no alignment constraint */
1419 if (queue->hdr_digest)
1420 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1421 if (queue->data_digest)
1422 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1423
1424 iov.iov_base = icreq;
1425 iov.iov_len = sizeof(*icreq);
1426 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1427 if (ret < 0)
1428 goto free_icresp;
1429
1430 memset(&msg, 0, sizeof(msg));
1431 iov.iov_base = icresp;
1432 iov.iov_len = sizeof(*icresp);
1433 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1434 iov.iov_len, msg.msg_flags);
1435 if (ret < 0)
1436 goto free_icresp;
1437
1438 ret = -EINVAL;
1439 if (icresp->hdr.type != nvme_tcp_icresp) {
1440 pr_err("queue %d: bad type returned %d\n",
1441 nvme_tcp_queue_id(queue), icresp->hdr.type);
1442 goto free_icresp;
1443 }
1444
1445 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1446 pr_err("queue %d: bad pdu length returned %d\n",
1447 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1448 goto free_icresp;
1449 }
1450
1451 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1452 pr_err("queue %d: bad pfv returned %d\n",
1453 nvme_tcp_queue_id(queue), icresp->pfv);
1454 goto free_icresp;
1455 }
1456
1457 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1458 if ((queue->data_digest && !ctrl_ddgst) ||
1459 (!queue->data_digest && ctrl_ddgst)) {
1460 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1461 nvme_tcp_queue_id(queue),
1462 queue->data_digest ? "enabled" : "disabled",
1463 ctrl_ddgst ? "enabled" : "disabled");
1464 goto free_icresp;
1465 }
1466
1467 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1468 if ((queue->hdr_digest && !ctrl_hdgst) ||
1469 (!queue->hdr_digest && ctrl_hdgst)) {
1470 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1471 nvme_tcp_queue_id(queue),
1472 queue->hdr_digest ? "enabled" : "disabled",
1473 ctrl_hdgst ? "enabled" : "disabled");
1474 goto free_icresp;
1475 }
1476
1477 if (icresp->cpda != 0) {
1478 pr_err("queue %d: unsupported cpda returned %d\n",
1479 nvme_tcp_queue_id(queue), icresp->cpda);
1480 goto free_icresp;
1481 }
1482
1483 maxh2cdata = le32_to_cpu(icresp->maxdata);
1484 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1485 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1486 nvme_tcp_queue_id(queue), maxh2cdata);
1487 goto free_icresp;
1488 }
1489 queue->maxh2cdata = maxh2cdata;
1490
1491 ret = 0;
1492 free_icresp:
1493 kfree(icresp);
1494 free_icreq:
1495 kfree(icreq);
1496 return ret;
1497 }
1498
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1499 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1500 {
1501 return nvme_tcp_queue_id(queue) == 0;
1502 }
1503
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1504 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1505 {
1506 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1507 int qid = nvme_tcp_queue_id(queue);
1508
1509 return !nvme_tcp_admin_queue(queue) &&
1510 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1511 }
1512
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1513 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1514 {
1515 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1516 int qid = nvme_tcp_queue_id(queue);
1517
1518 return !nvme_tcp_admin_queue(queue) &&
1519 !nvme_tcp_default_queue(queue) &&
1520 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1521 ctrl->io_queues[HCTX_TYPE_READ];
1522 }
1523
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1524 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1525 {
1526 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1527 int qid = nvme_tcp_queue_id(queue);
1528
1529 return !nvme_tcp_admin_queue(queue) &&
1530 !nvme_tcp_default_queue(queue) &&
1531 !nvme_tcp_read_queue(queue) &&
1532 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1533 ctrl->io_queues[HCTX_TYPE_READ] +
1534 ctrl->io_queues[HCTX_TYPE_POLL];
1535 }
1536
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1537 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1538 {
1539 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1540 int qid = nvme_tcp_queue_id(queue);
1541 int n = 0;
1542
1543 if (nvme_tcp_default_queue(queue))
1544 n = qid - 1;
1545 else if (nvme_tcp_read_queue(queue))
1546 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1547 else if (nvme_tcp_poll_queue(queue))
1548 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1549 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1550 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1551 }
1552
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid)1553 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
1554 {
1555 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1556 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1557 int ret, rcv_pdu_size;
1558
1559 mutex_init(&queue->queue_lock);
1560 queue->ctrl = ctrl;
1561 init_llist_head(&queue->req_list);
1562 INIT_LIST_HEAD(&queue->send_list);
1563 mutex_init(&queue->send_mutex);
1564 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1565
1566 if (qid > 0)
1567 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1568 else
1569 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1570 NVME_TCP_ADMIN_CCSZ;
1571
1572 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1573 IPPROTO_TCP, &queue->sock);
1574 if (ret) {
1575 dev_err(nctrl->device,
1576 "failed to create socket: %d\n", ret);
1577 goto err_destroy_mutex;
1578 }
1579
1580 nvme_tcp_reclassify_socket(queue->sock);
1581
1582 /* Single syn retry */
1583 tcp_sock_set_syncnt(queue->sock->sk, 1);
1584
1585 /* Set TCP no delay */
1586 tcp_sock_set_nodelay(queue->sock->sk);
1587
1588 /*
1589 * Cleanup whatever is sitting in the TCP transmit queue on socket
1590 * close. This is done to prevent stale data from being sent should
1591 * the network connection be restored before TCP times out.
1592 */
1593 sock_no_linger(queue->sock->sk);
1594
1595 if (so_priority > 0)
1596 sock_set_priority(queue->sock->sk, so_priority);
1597
1598 /* Set socket type of service */
1599 if (nctrl->opts->tos >= 0)
1600 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1601
1602 /* Set 10 seconds timeout for icresp recvmsg */
1603 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1604
1605 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1606 queue->sock->sk->sk_use_task_frag = false;
1607 nvme_tcp_set_queue_io_cpu(queue);
1608 queue->request = NULL;
1609 queue->data_remaining = 0;
1610 queue->ddgst_remaining = 0;
1611 queue->pdu_remaining = 0;
1612 queue->pdu_offset = 0;
1613 sk_set_memalloc(queue->sock->sk);
1614
1615 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1616 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1617 sizeof(ctrl->src_addr));
1618 if (ret) {
1619 dev_err(nctrl->device,
1620 "failed to bind queue %d socket %d\n",
1621 qid, ret);
1622 goto err_sock;
1623 }
1624 }
1625
1626 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1627 char *iface = nctrl->opts->host_iface;
1628 sockptr_t optval = KERNEL_SOCKPTR(iface);
1629
1630 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1631 optval, strlen(iface));
1632 if (ret) {
1633 dev_err(nctrl->device,
1634 "failed to bind to interface %s queue %d err %d\n",
1635 iface, qid, ret);
1636 goto err_sock;
1637 }
1638 }
1639
1640 queue->hdr_digest = nctrl->opts->hdr_digest;
1641 queue->data_digest = nctrl->opts->data_digest;
1642 if (queue->hdr_digest || queue->data_digest) {
1643 ret = nvme_tcp_alloc_crypto(queue);
1644 if (ret) {
1645 dev_err(nctrl->device,
1646 "failed to allocate queue %d crypto\n", qid);
1647 goto err_sock;
1648 }
1649 }
1650
1651 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1652 nvme_tcp_hdgst_len(queue);
1653 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1654 if (!queue->pdu) {
1655 ret = -ENOMEM;
1656 goto err_crypto;
1657 }
1658
1659 dev_dbg(nctrl->device, "connecting queue %d\n",
1660 nvme_tcp_queue_id(queue));
1661
1662 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1663 sizeof(ctrl->addr), 0);
1664 if (ret) {
1665 dev_err(nctrl->device,
1666 "failed to connect socket: %d\n", ret);
1667 goto err_rcv_pdu;
1668 }
1669
1670 ret = nvme_tcp_init_connection(queue);
1671 if (ret)
1672 goto err_init_connect;
1673
1674 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1675
1676 return 0;
1677
1678 err_init_connect:
1679 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1680 err_rcv_pdu:
1681 kfree(queue->pdu);
1682 err_crypto:
1683 if (queue->hdr_digest || queue->data_digest)
1684 nvme_tcp_free_crypto(queue);
1685 err_sock:
1686 sock_release(queue->sock);
1687 queue->sock = NULL;
1688 err_destroy_mutex:
1689 mutex_destroy(&queue->send_mutex);
1690 mutex_destroy(&queue->queue_lock);
1691 return ret;
1692 }
1693
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1694 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1695 {
1696 struct socket *sock = queue->sock;
1697
1698 write_lock_bh(&sock->sk->sk_callback_lock);
1699 sock->sk->sk_user_data = NULL;
1700 sock->sk->sk_data_ready = queue->data_ready;
1701 sock->sk->sk_state_change = queue->state_change;
1702 sock->sk->sk_write_space = queue->write_space;
1703 write_unlock_bh(&sock->sk->sk_callback_lock);
1704 }
1705
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1706 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1707 {
1708 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1709 nvme_tcp_restore_sock_ops(queue);
1710 cancel_work_sync(&queue->io_work);
1711 }
1712
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1713 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1714 {
1715 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1716 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1717
1718 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1719 return;
1720
1721 mutex_lock(&queue->queue_lock);
1722 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1723 __nvme_tcp_stop_queue(queue);
1724 mutex_unlock(&queue->queue_lock);
1725 }
1726
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1727 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1728 {
1729 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1730 queue->sock->sk->sk_user_data = queue;
1731 queue->state_change = queue->sock->sk->sk_state_change;
1732 queue->data_ready = queue->sock->sk->sk_data_ready;
1733 queue->write_space = queue->sock->sk->sk_write_space;
1734 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1735 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1736 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1737 #ifdef CONFIG_NET_RX_BUSY_POLL
1738 queue->sock->sk->sk_ll_usec = 1;
1739 #endif
1740 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1741 }
1742
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1743 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1744 {
1745 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1746 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1747 int ret;
1748
1749 queue->rd_enabled = true;
1750 nvme_tcp_init_recv_ctx(queue);
1751 nvme_tcp_setup_sock_ops(queue);
1752
1753 if (idx)
1754 ret = nvmf_connect_io_queue(nctrl, idx);
1755 else
1756 ret = nvmf_connect_admin_queue(nctrl);
1757
1758 if (!ret) {
1759 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1760 } else {
1761 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1762 __nvme_tcp_stop_queue(queue);
1763 dev_err(nctrl->device,
1764 "failed to connect queue: %d ret=%d\n", idx, ret);
1765 }
1766 return ret;
1767 }
1768
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1769 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1770 {
1771 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1772 cancel_work_sync(&ctrl->async_event_work);
1773 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1774 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1775 }
1776
1777 nvme_tcp_free_queue(ctrl, 0);
1778 }
1779
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1780 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1781 {
1782 int i;
1783
1784 for (i = 1; i < ctrl->queue_count; i++)
1785 nvme_tcp_free_queue(ctrl, i);
1786 }
1787
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1788 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1789 {
1790 int i;
1791
1792 for (i = 1; i < ctrl->queue_count; i++)
1793 nvme_tcp_stop_queue(ctrl, i);
1794 }
1795
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)1796 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1797 int first, int last)
1798 {
1799 int i, ret;
1800
1801 for (i = first; i < last; i++) {
1802 ret = nvme_tcp_start_queue(ctrl, i);
1803 if (ret)
1804 goto out_stop_queues;
1805 }
1806
1807 return 0;
1808
1809 out_stop_queues:
1810 for (i--; i >= first; i--)
1811 nvme_tcp_stop_queue(ctrl, i);
1812 return ret;
1813 }
1814
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1815 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1816 {
1817 int ret;
1818
1819 ret = nvme_tcp_alloc_queue(ctrl, 0);
1820 if (ret)
1821 return ret;
1822
1823 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1824 if (ret)
1825 goto out_free_queue;
1826
1827 return 0;
1828
1829 out_free_queue:
1830 nvme_tcp_free_queue(ctrl, 0);
1831 return ret;
1832 }
1833
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1834 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1835 {
1836 int i, ret;
1837
1838 for (i = 1; i < ctrl->queue_count; i++) {
1839 ret = nvme_tcp_alloc_queue(ctrl, i);
1840 if (ret)
1841 goto out_free_queues;
1842 }
1843
1844 return 0;
1845
1846 out_free_queues:
1847 for (i--; i >= 1; i--)
1848 nvme_tcp_free_queue(ctrl, i);
1849
1850 return ret;
1851 }
1852
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1853 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1854 {
1855 unsigned int nr_io_queues;
1856 int ret;
1857
1858 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1859 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1860 if (ret)
1861 return ret;
1862
1863 if (nr_io_queues == 0) {
1864 dev_err(ctrl->device,
1865 "unable to set any I/O queues\n");
1866 return -ENOMEM;
1867 }
1868
1869 ctrl->queue_count = nr_io_queues + 1;
1870 dev_info(ctrl->device,
1871 "creating %d I/O queues.\n", nr_io_queues);
1872
1873 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1874 to_tcp_ctrl(ctrl)->io_queues);
1875 return __nvme_tcp_alloc_io_queues(ctrl);
1876 }
1877
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1878 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1879 {
1880 nvme_tcp_stop_io_queues(ctrl);
1881 if (remove)
1882 nvme_remove_io_tag_set(ctrl);
1883 nvme_tcp_free_io_queues(ctrl);
1884 }
1885
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1886 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1887 {
1888 int ret, nr_queues;
1889
1890 ret = nvme_tcp_alloc_io_queues(ctrl);
1891 if (ret)
1892 return ret;
1893
1894 if (new) {
1895 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
1896 &nvme_tcp_mq_ops,
1897 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
1898 sizeof(struct nvme_tcp_request));
1899 if (ret)
1900 goto out_free_io_queues;
1901 }
1902
1903 /*
1904 * Only start IO queues for which we have allocated the tagset
1905 * and limitted it to the available queues. On reconnects, the
1906 * queue number might have changed.
1907 */
1908 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
1909 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
1910 if (ret)
1911 goto out_cleanup_connect_q;
1912
1913 if (!new) {
1914 nvme_start_freeze(ctrl);
1915 nvme_unquiesce_io_queues(ctrl);
1916 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1917 /*
1918 * If we timed out waiting for freeze we are likely to
1919 * be stuck. Fail the controller initialization just
1920 * to be safe.
1921 */
1922 ret = -ENODEV;
1923 nvme_unfreeze(ctrl);
1924 goto out_wait_freeze_timed_out;
1925 }
1926 blk_mq_update_nr_hw_queues(ctrl->tagset,
1927 ctrl->queue_count - 1);
1928 nvme_unfreeze(ctrl);
1929 }
1930
1931 /*
1932 * If the number of queues has increased (reconnect case)
1933 * start all new queues now.
1934 */
1935 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
1936 ctrl->tagset->nr_hw_queues + 1);
1937 if (ret)
1938 goto out_wait_freeze_timed_out;
1939
1940 return 0;
1941
1942 out_wait_freeze_timed_out:
1943 nvme_quiesce_io_queues(ctrl);
1944 nvme_sync_io_queues(ctrl);
1945 nvme_tcp_stop_io_queues(ctrl);
1946 out_cleanup_connect_q:
1947 nvme_cancel_tagset(ctrl);
1948 if (new)
1949 nvme_remove_io_tag_set(ctrl);
1950 out_free_io_queues:
1951 nvme_tcp_free_io_queues(ctrl);
1952 return ret;
1953 }
1954
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1955 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1956 {
1957 nvme_tcp_stop_queue(ctrl, 0);
1958 if (remove)
1959 nvme_remove_admin_tag_set(ctrl);
1960 nvme_tcp_free_admin_queue(ctrl);
1961 }
1962
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1963 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1964 {
1965 int error;
1966
1967 error = nvme_tcp_alloc_admin_queue(ctrl);
1968 if (error)
1969 return error;
1970
1971 if (new) {
1972 error = nvme_alloc_admin_tag_set(ctrl,
1973 &to_tcp_ctrl(ctrl)->admin_tag_set,
1974 &nvme_tcp_admin_mq_ops,
1975 sizeof(struct nvme_tcp_request));
1976 if (error)
1977 goto out_free_queue;
1978 }
1979
1980 error = nvme_tcp_start_queue(ctrl, 0);
1981 if (error)
1982 goto out_cleanup_tagset;
1983
1984 error = nvme_enable_ctrl(ctrl);
1985 if (error)
1986 goto out_stop_queue;
1987
1988 nvme_unquiesce_admin_queue(ctrl);
1989
1990 error = nvme_init_ctrl_finish(ctrl, false);
1991 if (error)
1992 goto out_quiesce_queue;
1993
1994 return 0;
1995
1996 out_quiesce_queue:
1997 nvme_quiesce_admin_queue(ctrl);
1998 blk_sync_queue(ctrl->admin_q);
1999 out_stop_queue:
2000 nvme_tcp_stop_queue(ctrl, 0);
2001 nvme_cancel_admin_tagset(ctrl);
2002 out_cleanup_tagset:
2003 if (new)
2004 nvme_remove_admin_tag_set(ctrl);
2005 out_free_queue:
2006 nvme_tcp_free_admin_queue(ctrl);
2007 return error;
2008 }
2009
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2010 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2011 bool remove)
2012 {
2013 nvme_quiesce_admin_queue(ctrl);
2014 blk_sync_queue(ctrl->admin_q);
2015 nvme_tcp_stop_queue(ctrl, 0);
2016 nvme_cancel_admin_tagset(ctrl);
2017 if (remove)
2018 nvme_unquiesce_admin_queue(ctrl);
2019 nvme_tcp_destroy_admin_queue(ctrl, remove);
2020 }
2021
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2022 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2023 bool remove)
2024 {
2025 if (ctrl->queue_count <= 1)
2026 return;
2027 nvme_quiesce_admin_queue(ctrl);
2028 nvme_quiesce_io_queues(ctrl);
2029 nvme_sync_io_queues(ctrl);
2030 nvme_tcp_stop_io_queues(ctrl);
2031 nvme_cancel_tagset(ctrl);
2032 if (remove)
2033 nvme_unquiesce_io_queues(ctrl);
2034 nvme_tcp_destroy_io_queues(ctrl, remove);
2035 }
2036
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)2037 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2038 {
2039 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2040
2041 /* If we are resetting/deleting then do nothing */
2042 if (state != NVME_CTRL_CONNECTING) {
2043 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2044 return;
2045 }
2046
2047 if (nvmf_should_reconnect(ctrl)) {
2048 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2049 ctrl->opts->reconnect_delay);
2050 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2051 ctrl->opts->reconnect_delay * HZ);
2052 } else {
2053 dev_info(ctrl->device, "Removing controller...\n");
2054 nvme_delete_ctrl(ctrl);
2055 }
2056 }
2057
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2058 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2059 {
2060 struct nvmf_ctrl_options *opts = ctrl->opts;
2061 int ret;
2062
2063 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2064 if (ret)
2065 return ret;
2066
2067 if (ctrl->icdoff) {
2068 ret = -EOPNOTSUPP;
2069 dev_err(ctrl->device, "icdoff is not supported!\n");
2070 goto destroy_admin;
2071 }
2072
2073 if (!nvme_ctrl_sgl_supported(ctrl)) {
2074 ret = -EOPNOTSUPP;
2075 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2076 goto destroy_admin;
2077 }
2078
2079 if (opts->queue_size > ctrl->sqsize + 1)
2080 dev_warn(ctrl->device,
2081 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2082 opts->queue_size, ctrl->sqsize + 1);
2083
2084 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2085 dev_warn(ctrl->device,
2086 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2087 ctrl->sqsize + 1, ctrl->maxcmd);
2088 ctrl->sqsize = ctrl->maxcmd - 1;
2089 }
2090
2091 if (ctrl->queue_count > 1) {
2092 ret = nvme_tcp_configure_io_queues(ctrl, new);
2093 if (ret)
2094 goto destroy_admin;
2095 }
2096
2097 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2098 /*
2099 * state change failure is ok if we started ctrl delete,
2100 * unless we're during creation of a new controller to
2101 * avoid races with teardown flow.
2102 */
2103 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2104
2105 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2106 state != NVME_CTRL_DELETING_NOIO);
2107 WARN_ON_ONCE(new);
2108 ret = -EINVAL;
2109 goto destroy_io;
2110 }
2111
2112 nvme_start_ctrl(ctrl);
2113 return 0;
2114
2115 destroy_io:
2116 if (ctrl->queue_count > 1) {
2117 nvme_quiesce_io_queues(ctrl);
2118 nvme_sync_io_queues(ctrl);
2119 nvme_tcp_stop_io_queues(ctrl);
2120 nvme_cancel_tagset(ctrl);
2121 nvme_tcp_destroy_io_queues(ctrl, new);
2122 }
2123 destroy_admin:
2124 nvme_quiesce_admin_queue(ctrl);
2125 blk_sync_queue(ctrl->admin_q);
2126 nvme_tcp_stop_queue(ctrl, 0);
2127 nvme_cancel_admin_tagset(ctrl);
2128 nvme_tcp_destroy_admin_queue(ctrl, new);
2129 return ret;
2130 }
2131
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2132 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2133 {
2134 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2135 struct nvme_tcp_ctrl, connect_work);
2136 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2137
2138 ++ctrl->nr_reconnects;
2139
2140 if (nvme_tcp_setup_ctrl(ctrl, false))
2141 goto requeue;
2142
2143 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2144 ctrl->nr_reconnects);
2145
2146 ctrl->nr_reconnects = 0;
2147
2148 return;
2149
2150 requeue:
2151 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2152 ctrl->nr_reconnects);
2153 nvme_tcp_reconnect_or_remove(ctrl);
2154 }
2155
nvme_tcp_error_recovery_work(struct work_struct * work)2156 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2157 {
2158 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2159 struct nvme_tcp_ctrl, err_work);
2160 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2161
2162 nvme_stop_keep_alive(ctrl);
2163 flush_work(&ctrl->async_event_work);
2164 nvme_tcp_teardown_io_queues(ctrl, false);
2165 /* unquiesce to fail fast pending requests */
2166 nvme_unquiesce_io_queues(ctrl);
2167 nvme_tcp_teardown_admin_queue(ctrl, false);
2168 nvme_unquiesce_admin_queue(ctrl);
2169 nvme_auth_stop(ctrl);
2170
2171 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2172 /* state change failure is ok if we started ctrl delete */
2173 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2174
2175 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2176 state != NVME_CTRL_DELETING_NOIO);
2177 return;
2178 }
2179
2180 nvme_tcp_reconnect_or_remove(ctrl);
2181 }
2182
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2183 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2184 {
2185 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2186 nvme_quiesce_admin_queue(ctrl);
2187 nvme_disable_ctrl(ctrl, shutdown);
2188 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2189 }
2190
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2191 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2192 {
2193 nvme_tcp_teardown_ctrl(ctrl, true);
2194 }
2195
nvme_reset_ctrl_work(struct work_struct * work)2196 static void nvme_reset_ctrl_work(struct work_struct *work)
2197 {
2198 struct nvme_ctrl *ctrl =
2199 container_of(work, struct nvme_ctrl, reset_work);
2200
2201 nvme_stop_ctrl(ctrl);
2202 nvme_tcp_teardown_ctrl(ctrl, false);
2203
2204 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2205 /* state change failure is ok if we started ctrl delete */
2206 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2207
2208 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2209 state != NVME_CTRL_DELETING_NOIO);
2210 return;
2211 }
2212
2213 if (nvme_tcp_setup_ctrl(ctrl, false))
2214 goto out_fail;
2215
2216 return;
2217
2218 out_fail:
2219 ++ctrl->nr_reconnects;
2220 nvme_tcp_reconnect_or_remove(ctrl);
2221 }
2222
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2223 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2224 {
2225 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2226 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2227 }
2228
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2229 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2230 {
2231 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2232
2233 if (list_empty(&ctrl->list))
2234 goto free_ctrl;
2235
2236 mutex_lock(&nvme_tcp_ctrl_mutex);
2237 list_del(&ctrl->list);
2238 mutex_unlock(&nvme_tcp_ctrl_mutex);
2239
2240 nvmf_free_options(nctrl->opts);
2241 free_ctrl:
2242 kfree(ctrl->queues);
2243 kfree(ctrl);
2244 }
2245
nvme_tcp_set_sg_null(struct nvme_command * c)2246 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2247 {
2248 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2249
2250 sg->addr = 0;
2251 sg->length = 0;
2252 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2253 NVME_SGL_FMT_TRANSPORT_A;
2254 }
2255
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2256 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2257 struct nvme_command *c, u32 data_len)
2258 {
2259 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2260
2261 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2262 sg->length = cpu_to_le32(data_len);
2263 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2264 }
2265
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2266 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2267 u32 data_len)
2268 {
2269 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2270
2271 sg->addr = 0;
2272 sg->length = cpu_to_le32(data_len);
2273 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2274 NVME_SGL_FMT_TRANSPORT_A;
2275 }
2276
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2277 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2278 {
2279 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2280 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2281 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2282 struct nvme_command *cmd = &pdu->cmd;
2283 u8 hdgst = nvme_tcp_hdgst_len(queue);
2284
2285 memset(pdu, 0, sizeof(*pdu));
2286 pdu->hdr.type = nvme_tcp_cmd;
2287 if (queue->hdr_digest)
2288 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2289 pdu->hdr.hlen = sizeof(*pdu);
2290 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2291
2292 cmd->common.opcode = nvme_admin_async_event;
2293 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2294 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2295 nvme_tcp_set_sg_null(cmd);
2296
2297 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2298 ctrl->async_req.offset = 0;
2299 ctrl->async_req.curr_bio = NULL;
2300 ctrl->async_req.data_len = 0;
2301
2302 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2303 }
2304
nvme_tcp_complete_timed_out(struct request * rq)2305 static void nvme_tcp_complete_timed_out(struct request *rq)
2306 {
2307 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2308 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2309
2310 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2311 nvmf_complete_timed_out_request(rq);
2312 }
2313
nvme_tcp_timeout(struct request * rq)2314 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2315 {
2316 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2317 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2318 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2319 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
2320 int qid = nvme_tcp_queue_id(req->queue);
2321
2322 dev_warn(ctrl->device,
2323 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
2324 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
2325 opc, nvme_opcode_str(qid, opc, fctype));
2326
2327 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2328 /*
2329 * If we are resetting, connecting or deleting we should
2330 * complete immediately because we may block controller
2331 * teardown or setup sequence
2332 * - ctrl disable/shutdown fabrics requests
2333 * - connect requests
2334 * - initialization admin requests
2335 * - I/O requests that entered after unquiescing and
2336 * the controller stopped responding
2337 *
2338 * All other requests should be cancelled by the error
2339 * recovery work, so it's fine that we fail it here.
2340 */
2341 nvme_tcp_complete_timed_out(rq);
2342 return BLK_EH_DONE;
2343 }
2344
2345 /*
2346 * LIVE state should trigger the normal error recovery which will
2347 * handle completing this request.
2348 */
2349 nvme_tcp_error_recovery(ctrl);
2350 return BLK_EH_RESET_TIMER;
2351 }
2352
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2353 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2354 struct request *rq)
2355 {
2356 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2357 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2358 struct nvme_command *c = &pdu->cmd;
2359
2360 c->common.flags |= NVME_CMD_SGL_METABUF;
2361
2362 if (!blk_rq_nr_phys_segments(rq))
2363 nvme_tcp_set_sg_null(c);
2364 else if (rq_data_dir(rq) == WRITE &&
2365 req->data_len <= nvme_tcp_inline_data_size(req))
2366 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2367 else
2368 nvme_tcp_set_sg_host_data(c, req->data_len);
2369
2370 return 0;
2371 }
2372
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2373 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2374 struct request *rq)
2375 {
2376 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2377 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2378 struct nvme_tcp_queue *queue = req->queue;
2379 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2380 blk_status_t ret;
2381
2382 ret = nvme_setup_cmd(ns, rq);
2383 if (ret)
2384 return ret;
2385
2386 req->state = NVME_TCP_SEND_CMD_PDU;
2387 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2388 req->offset = 0;
2389 req->data_sent = 0;
2390 req->pdu_len = 0;
2391 req->pdu_sent = 0;
2392 req->h2cdata_left = 0;
2393 req->data_len = blk_rq_nr_phys_segments(rq) ?
2394 blk_rq_payload_bytes(rq) : 0;
2395 req->curr_bio = rq->bio;
2396 if (req->curr_bio && req->data_len)
2397 nvme_tcp_init_iter(req, rq_data_dir(rq));
2398
2399 if (rq_data_dir(rq) == WRITE &&
2400 req->data_len <= nvme_tcp_inline_data_size(req))
2401 req->pdu_len = req->data_len;
2402
2403 pdu->hdr.type = nvme_tcp_cmd;
2404 pdu->hdr.flags = 0;
2405 if (queue->hdr_digest)
2406 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2407 if (queue->data_digest && req->pdu_len) {
2408 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2409 ddgst = nvme_tcp_ddgst_len(queue);
2410 }
2411 pdu->hdr.hlen = sizeof(*pdu);
2412 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2413 pdu->hdr.plen =
2414 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2415
2416 ret = nvme_tcp_map_data(queue, rq);
2417 if (unlikely(ret)) {
2418 nvme_cleanup_cmd(rq);
2419 dev_err(queue->ctrl->ctrl.device,
2420 "Failed to map data (%d)\n", ret);
2421 return ret;
2422 }
2423
2424 return 0;
2425 }
2426
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2427 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2428 {
2429 struct nvme_tcp_queue *queue = hctx->driver_data;
2430
2431 if (!llist_empty(&queue->req_list))
2432 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2433 }
2434
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2435 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2436 const struct blk_mq_queue_data *bd)
2437 {
2438 struct nvme_ns *ns = hctx->queue->queuedata;
2439 struct nvme_tcp_queue *queue = hctx->driver_data;
2440 struct request *rq = bd->rq;
2441 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2442 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2443 blk_status_t ret;
2444
2445 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2446 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2447
2448 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2449 if (unlikely(ret))
2450 return ret;
2451
2452 nvme_start_request(rq);
2453
2454 nvme_tcp_queue_request(req, true, bd->last);
2455
2456 return BLK_STS_OK;
2457 }
2458
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2459 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2460 {
2461 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2462
2463 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2464 }
2465
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2466 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2467 {
2468 struct nvme_tcp_queue *queue = hctx->driver_data;
2469 struct sock *sk = queue->sock->sk;
2470
2471 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2472 return 0;
2473
2474 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2475 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2476 sk_busy_loop(sk, true);
2477 nvme_tcp_try_recv(queue);
2478 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2479 return queue->nr_cqe;
2480 }
2481
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2482 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2483 {
2484 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2485 struct sockaddr_storage src_addr;
2486 int ret, len;
2487
2488 len = nvmf_get_address(ctrl, buf, size);
2489
2490 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2491 return len;
2492
2493 mutex_lock(&queue->queue_lock);
2494
2495 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2496 if (ret > 0) {
2497 if (len > 0)
2498 len--; /* strip trailing newline */
2499 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2500 (len) ? "," : "", &src_addr);
2501 }
2502
2503 mutex_unlock(&queue->queue_lock);
2504
2505 return len;
2506 }
2507
2508 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2509 .queue_rq = nvme_tcp_queue_rq,
2510 .commit_rqs = nvme_tcp_commit_rqs,
2511 .complete = nvme_complete_rq,
2512 .init_request = nvme_tcp_init_request,
2513 .exit_request = nvme_tcp_exit_request,
2514 .init_hctx = nvme_tcp_init_hctx,
2515 .timeout = nvme_tcp_timeout,
2516 .map_queues = nvme_tcp_map_queues,
2517 .poll = nvme_tcp_poll,
2518 };
2519
2520 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2521 .queue_rq = nvme_tcp_queue_rq,
2522 .complete = nvme_complete_rq,
2523 .init_request = nvme_tcp_init_request,
2524 .exit_request = nvme_tcp_exit_request,
2525 .init_hctx = nvme_tcp_init_admin_hctx,
2526 .timeout = nvme_tcp_timeout,
2527 };
2528
2529 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2530 .name = "tcp",
2531 .module = THIS_MODULE,
2532 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2533 .reg_read32 = nvmf_reg_read32,
2534 .reg_read64 = nvmf_reg_read64,
2535 .reg_write32 = nvmf_reg_write32,
2536 .free_ctrl = nvme_tcp_free_ctrl,
2537 .submit_async_event = nvme_tcp_submit_async_event,
2538 .delete_ctrl = nvme_tcp_delete_ctrl,
2539 .get_address = nvme_tcp_get_address,
2540 .stop_ctrl = nvme_tcp_stop_ctrl,
2541 };
2542
2543 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2544 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2545 {
2546 struct nvme_tcp_ctrl *ctrl;
2547 bool found = false;
2548
2549 mutex_lock(&nvme_tcp_ctrl_mutex);
2550 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2551 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2552 if (found)
2553 break;
2554 }
2555 mutex_unlock(&nvme_tcp_ctrl_mutex);
2556
2557 return found;
2558 }
2559
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2560 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2561 struct nvmf_ctrl_options *opts)
2562 {
2563 struct nvme_tcp_ctrl *ctrl;
2564 int ret;
2565
2566 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2567 if (!ctrl)
2568 return ERR_PTR(-ENOMEM);
2569
2570 INIT_LIST_HEAD(&ctrl->list);
2571 ctrl->ctrl.opts = opts;
2572 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2573 opts->nr_poll_queues + 1;
2574 ctrl->ctrl.sqsize = opts->queue_size - 1;
2575 ctrl->ctrl.kato = opts->kato;
2576
2577 INIT_DELAYED_WORK(&ctrl->connect_work,
2578 nvme_tcp_reconnect_ctrl_work);
2579 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2580 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2581
2582 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2583 opts->trsvcid =
2584 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2585 if (!opts->trsvcid) {
2586 ret = -ENOMEM;
2587 goto out_free_ctrl;
2588 }
2589 opts->mask |= NVMF_OPT_TRSVCID;
2590 }
2591
2592 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2593 opts->traddr, opts->trsvcid, &ctrl->addr);
2594 if (ret) {
2595 pr_err("malformed address passed: %s:%s\n",
2596 opts->traddr, opts->trsvcid);
2597 goto out_free_ctrl;
2598 }
2599
2600 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2601 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2602 opts->host_traddr, NULL, &ctrl->src_addr);
2603 if (ret) {
2604 pr_err("malformed src address passed: %s\n",
2605 opts->host_traddr);
2606 goto out_free_ctrl;
2607 }
2608 }
2609
2610 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2611 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2612 pr_err("invalid interface passed: %s\n",
2613 opts->host_iface);
2614 ret = -ENODEV;
2615 goto out_free_ctrl;
2616 }
2617 }
2618
2619 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2620 ret = -EALREADY;
2621 goto out_free_ctrl;
2622 }
2623
2624 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2625 GFP_KERNEL);
2626 if (!ctrl->queues) {
2627 ret = -ENOMEM;
2628 goto out_free_ctrl;
2629 }
2630
2631 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2632 if (ret)
2633 goto out_kfree_queues;
2634
2635 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2636 WARN_ON_ONCE(1);
2637 ret = -EINTR;
2638 goto out_uninit_ctrl;
2639 }
2640
2641 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2642 if (ret)
2643 goto out_uninit_ctrl;
2644
2645 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2646 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2647
2648 mutex_lock(&nvme_tcp_ctrl_mutex);
2649 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2650 mutex_unlock(&nvme_tcp_ctrl_mutex);
2651
2652 return &ctrl->ctrl;
2653
2654 out_uninit_ctrl:
2655 nvme_uninit_ctrl(&ctrl->ctrl);
2656 nvme_put_ctrl(&ctrl->ctrl);
2657 if (ret > 0)
2658 ret = -EIO;
2659 return ERR_PTR(ret);
2660 out_kfree_queues:
2661 kfree(ctrl->queues);
2662 out_free_ctrl:
2663 kfree(ctrl);
2664 return ERR_PTR(ret);
2665 }
2666
2667 static struct nvmf_transport_ops nvme_tcp_transport = {
2668 .name = "tcp",
2669 .module = THIS_MODULE,
2670 .required_opts = NVMF_OPT_TRADDR,
2671 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2672 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2673 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2674 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2675 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2676 .create_ctrl = nvme_tcp_create_ctrl,
2677 };
2678
nvme_tcp_init_module(void)2679 static int __init nvme_tcp_init_module(void)
2680 {
2681 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2682 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2683 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2684 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2685 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2686 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2687 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2688 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2689
2690 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2691 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2692 if (!nvme_tcp_wq)
2693 return -ENOMEM;
2694
2695 nvmf_register_transport(&nvme_tcp_transport);
2696 return 0;
2697 }
2698
nvme_tcp_cleanup_module(void)2699 static void __exit nvme_tcp_cleanup_module(void)
2700 {
2701 struct nvme_tcp_ctrl *ctrl;
2702
2703 nvmf_unregister_transport(&nvme_tcp_transport);
2704
2705 mutex_lock(&nvme_tcp_ctrl_mutex);
2706 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2707 nvme_delete_ctrl(&ctrl->ctrl);
2708 mutex_unlock(&nvme_tcp_ctrl_mutex);
2709 flush_workqueue(nvme_delete_wq);
2710
2711 destroy_workqueue(nvme_tcp_wq);
2712 }
2713
2714 module_init(nvme_tcp_init_module);
2715 module_exit(nvme_tcp_cleanup_module);
2716
2717 MODULE_LICENSE("GPL v2");
2718