xref: /openbmc/linux/io_uring/io_uring.c (revision 55e43d6abd078ed6d219902ce8cb4d68e3c993ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <linux/anon_inodes.h>
64 #include <linux/sched/mm.h>
65 #include <linux/uaccess.h>
66 #include <linux/nospec.h>
67 #include <linux/highmem.h>
68 #include <linux/fsnotify.h>
69 #include <linux/fadvise.h>
70 #include <linux/task_work.h>
71 #include <linux/io_uring.h>
72 #include <linux/audit.h>
73 #include <linux/security.h>
74 #include <asm/shmparam.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78 
79 #include <uapi/linux/io_uring.h>
80 
81 #include "io-wq.h"
82 
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 
95 #include "timeout.h"
96 #include "poll.h"
97 #include "rw.h"
98 #include "alloc_cache.h"
99 
100 #define IORING_MAX_ENTRIES	32768
101 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
102 
103 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
104 				 IORING_REGISTER_LAST + IORING_OP_LAST)
105 
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108 
109 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111 
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 				REQ_F_ASYNC_DATA)
115 
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 				 IO_REQ_CLEAN_FLAGS)
118 
119 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
120 
121 #define IO_COMPL_BATCH			32
122 #define IO_REQ_ALLOC_BATCH		8
123 
124 enum {
125 	IO_CHECK_CQ_OVERFLOW_BIT,
126 	IO_CHECK_CQ_DROPPED_BIT,
127 };
128 
129 enum {
130 	IO_EVENTFD_OP_SIGNAL_BIT,
131 	IO_EVENTFD_OP_FREE_BIT,
132 };
133 
134 struct io_defer_entry {
135 	struct list_head	list;
136 	struct io_kiocb		*req;
137 	u32			seq;
138 };
139 
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143 
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 					 struct task_struct *task,
146 					 bool cancel_all);
147 
148 static void io_queue_sqe(struct io_kiocb *req);
149 
150 struct kmem_cache *req_cachep;
151 static struct workqueue_struct *iou_wq __ro_after_init;
152 
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155 
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 	{
159 		.procname	= "io_uring_disabled",
160 		.data		= &sysctl_io_uring_disabled,
161 		.maxlen		= sizeof(sysctl_io_uring_disabled),
162 		.mode		= 0644,
163 		.proc_handler	= proc_dointvec_minmax,
164 		.extra1		= SYSCTL_ZERO,
165 		.extra2		= SYSCTL_TWO,
166 	},
167 	{
168 		.procname	= "io_uring_group",
169 		.data		= &sysctl_io_uring_group,
170 		.maxlen		= sizeof(gid_t),
171 		.mode		= 0644,
172 		.proc_handler	= proc_dointvec,
173 	},
174 	{},
175 };
176 #endif
177 
io_submit_flush_completions(struct io_ring_ctx * ctx)178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
179 {
180 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
181 	    ctx->submit_state.cqes_count)
182 		__io_submit_flush_completions(ctx);
183 }
184 
__io_cqring_events(struct io_ring_ctx * ctx)185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
186 {
187 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
188 }
189 
__io_cqring_events_user(struct io_ring_ctx * ctx)190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
191 {
192 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
193 }
194 
io_match_linked(struct io_kiocb * head)195 static bool io_match_linked(struct io_kiocb *head)
196 {
197 	struct io_kiocb *req;
198 
199 	io_for_each_link(req, head) {
200 		if (req->flags & REQ_F_INFLIGHT)
201 			return true;
202 	}
203 	return false;
204 }
205 
206 /*
207  * As io_match_task() but protected against racing with linked timeouts.
208  * User must not hold timeout_lock.
209  */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
211 			bool cancel_all)
212 {
213 	bool matched;
214 
215 	if (task && head->task != task)
216 		return false;
217 	if (cancel_all)
218 		return true;
219 
220 	if (head->flags & REQ_F_LINK_TIMEOUT) {
221 		struct io_ring_ctx *ctx = head->ctx;
222 
223 		/* protect against races with linked timeouts */
224 		spin_lock_irq(&ctx->timeout_lock);
225 		matched = io_match_linked(head);
226 		spin_unlock_irq(&ctx->timeout_lock);
227 	} else {
228 		matched = io_match_linked(head);
229 	}
230 	return matched;
231 }
232 
req_fail_link_node(struct io_kiocb * req,int res)233 static inline void req_fail_link_node(struct io_kiocb *req, int res)
234 {
235 	req_set_fail(req);
236 	io_req_set_res(req, res, 0);
237 }
238 
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
240 {
241 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
242 }
243 
io_ring_ctx_ref_free(struct percpu_ref * ref)244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
245 {
246 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
247 
248 	complete(&ctx->ref_comp);
249 }
250 
io_fallback_req_func(struct work_struct * work)251 static __cold void io_fallback_req_func(struct work_struct *work)
252 {
253 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
254 						fallback_work.work);
255 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
256 	struct io_kiocb *req, *tmp;
257 	struct io_tw_state ts = { .locked = true, };
258 
259 	percpu_ref_get(&ctx->refs);
260 	mutex_lock(&ctx->uring_lock);
261 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
262 		req->io_task_work.func(req, &ts);
263 	if (WARN_ON_ONCE(!ts.locked))
264 		return;
265 	io_submit_flush_completions(ctx);
266 	mutex_unlock(&ctx->uring_lock);
267 	percpu_ref_put(&ctx->refs);
268 }
269 
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
271 {
272 	unsigned hash_buckets = 1U << bits;
273 	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
274 
275 	table->hbs = kmalloc(hash_size, GFP_KERNEL);
276 	if (!table->hbs)
277 		return -ENOMEM;
278 
279 	table->hash_bits = bits;
280 	init_hash_table(table, hash_buckets);
281 	return 0;
282 }
283 
io_ring_ctx_alloc(struct io_uring_params * p)284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 	struct io_ring_ctx *ctx;
287 	int hash_bits;
288 
289 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
290 	if (!ctx)
291 		return NULL;
292 
293 	xa_init(&ctx->io_bl_xa);
294 
295 	/*
296 	 * Use 5 bits less than the max cq entries, that should give us around
297 	 * 32 entries per hash list if totally full and uniformly spread, but
298 	 * don't keep too many buckets to not overconsume memory.
299 	 */
300 	hash_bits = ilog2(p->cq_entries) - 5;
301 	hash_bits = clamp(hash_bits, 1, 8);
302 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
303 		goto err;
304 	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
305 		goto err;
306 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 			    0, GFP_KERNEL))
308 		goto err;
309 
310 	ctx->flags = p->flags;
311 	init_waitqueue_head(&ctx->sqo_sq_wait);
312 	INIT_LIST_HEAD(&ctx->sqd_list);
313 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
314 	INIT_LIST_HEAD(&ctx->io_buffers_cache);
315 	INIT_HLIST_HEAD(&ctx->io_buf_list);
316 	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
317 			    sizeof(struct io_rsrc_node));
318 	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
319 			    sizeof(struct async_poll));
320 	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
321 			    sizeof(struct io_async_msghdr));
322 	init_completion(&ctx->ref_comp);
323 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
324 	mutex_init(&ctx->uring_lock);
325 	init_waitqueue_head(&ctx->cq_wait);
326 	init_waitqueue_head(&ctx->poll_wq);
327 	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
328 	spin_lock_init(&ctx->completion_lock);
329 	spin_lock_init(&ctx->timeout_lock);
330 	INIT_WQ_LIST(&ctx->iopoll_list);
331 	INIT_LIST_HEAD(&ctx->io_buffers_pages);
332 	INIT_LIST_HEAD(&ctx->io_buffers_comp);
333 	INIT_LIST_HEAD(&ctx->defer_list);
334 	INIT_LIST_HEAD(&ctx->timeout_list);
335 	INIT_LIST_HEAD(&ctx->ltimeout_list);
336 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
337 	init_llist_head(&ctx->work_llist);
338 	INIT_LIST_HEAD(&ctx->tctx_list);
339 	ctx->submit_state.free_list.next = NULL;
340 	INIT_WQ_LIST(&ctx->locked_free_list);
341 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
342 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
343 	return ctx;
344 err:
345 	kfree(ctx->cancel_table.hbs);
346 	kfree(ctx->cancel_table_locked.hbs);
347 	xa_destroy(&ctx->io_bl_xa);
348 	kfree(ctx);
349 	return NULL;
350 }
351 
io_account_cq_overflow(struct io_ring_ctx * ctx)352 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353 {
354 	struct io_rings *r = ctx->rings;
355 
356 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 	ctx->cq_extra--;
358 }
359 
req_need_defer(struct io_kiocb * req,u32 seq)360 static bool req_need_defer(struct io_kiocb *req, u32 seq)
361 {
362 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
363 		struct io_ring_ctx *ctx = req->ctx;
364 
365 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
366 	}
367 
368 	return false;
369 }
370 
io_clean_op(struct io_kiocb * req)371 static void io_clean_op(struct io_kiocb *req)
372 {
373 	if (req->flags & REQ_F_BUFFER_SELECTED) {
374 		spin_lock(&req->ctx->completion_lock);
375 		io_put_kbuf_comp(req);
376 		spin_unlock(&req->ctx->completion_lock);
377 	}
378 
379 	if (req->flags & REQ_F_NEED_CLEANUP) {
380 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
381 
382 		if (def->cleanup)
383 			def->cleanup(req);
384 	}
385 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
386 		kfree(req->apoll->double_poll);
387 		kfree(req->apoll);
388 		req->apoll = NULL;
389 	}
390 	if (req->flags & REQ_F_INFLIGHT) {
391 		struct io_uring_task *tctx = req->task->io_uring;
392 
393 		atomic_dec(&tctx->inflight_tracked);
394 	}
395 	if (req->flags & REQ_F_CREDS)
396 		put_cred(req->creds);
397 	if (req->flags & REQ_F_ASYNC_DATA) {
398 		kfree(req->async_data);
399 		req->async_data = NULL;
400 	}
401 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
402 }
403 
io_req_track_inflight(struct io_kiocb * req)404 static inline void io_req_track_inflight(struct io_kiocb *req)
405 {
406 	if (!(req->flags & REQ_F_INFLIGHT)) {
407 		req->flags |= REQ_F_INFLIGHT;
408 		atomic_inc(&req->task->io_uring->inflight_tracked);
409 	}
410 }
411 
__io_prep_linked_timeout(struct io_kiocb * req)412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
413 {
414 	if (WARN_ON_ONCE(!req->link))
415 		return NULL;
416 
417 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
418 	req->flags |= REQ_F_LINK_TIMEOUT;
419 
420 	/* linked timeouts should have two refs once prep'ed */
421 	io_req_set_refcount(req);
422 	__io_req_set_refcount(req->link, 2);
423 	return req->link;
424 }
425 
io_prep_linked_timeout(struct io_kiocb * req)426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
427 {
428 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
429 		return NULL;
430 	return __io_prep_linked_timeout(req);
431 }
432 
__io_arm_ltimeout(struct io_kiocb * req)433 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
434 {
435 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
436 }
437 
io_arm_ltimeout(struct io_kiocb * req)438 static inline void io_arm_ltimeout(struct io_kiocb *req)
439 {
440 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
441 		__io_arm_ltimeout(req);
442 }
443 
io_prep_async_work(struct io_kiocb * req)444 static void io_prep_async_work(struct io_kiocb *req)
445 {
446 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
447 	struct io_ring_ctx *ctx = req->ctx;
448 
449 	if (!(req->flags & REQ_F_CREDS)) {
450 		req->flags |= REQ_F_CREDS;
451 		req->creds = get_current_cred();
452 	}
453 
454 	req->work.list.next = NULL;
455 	req->work.flags = 0;
456 	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
457 	if (req->flags & REQ_F_FORCE_ASYNC)
458 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
459 
460 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
461 		req->flags |= io_file_get_flags(req->file);
462 
463 	if (req->file && (req->flags & REQ_F_ISREG)) {
464 		bool should_hash = def->hash_reg_file;
465 
466 		/* don't serialize this request if the fs doesn't need it */
467 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
468 		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
469 			should_hash = false;
470 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
471 			io_wq_hash_work(&req->work, file_inode(req->file));
472 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
473 		if (def->unbound_nonreg_file)
474 			req->work.flags |= IO_WQ_WORK_UNBOUND;
475 	}
476 }
477 
io_prep_async_link(struct io_kiocb * req)478 static void io_prep_async_link(struct io_kiocb *req)
479 {
480 	struct io_kiocb *cur;
481 
482 	if (req->flags & REQ_F_LINK_TIMEOUT) {
483 		struct io_ring_ctx *ctx = req->ctx;
484 
485 		spin_lock_irq(&ctx->timeout_lock);
486 		io_for_each_link(cur, req)
487 			io_prep_async_work(cur);
488 		spin_unlock_irq(&ctx->timeout_lock);
489 	} else {
490 		io_for_each_link(cur, req)
491 			io_prep_async_work(cur);
492 	}
493 }
494 
io_queue_iowq(struct io_kiocb * req)495 static void io_queue_iowq(struct io_kiocb *req)
496 {
497 	struct io_kiocb *link = io_prep_linked_timeout(req);
498 	struct io_uring_task *tctx = req->task->io_uring;
499 
500 	BUG_ON(!tctx);
501 
502 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
503 		io_req_task_queue_fail(req, -ECANCELED);
504 		return;
505 	}
506 
507 	/* init ->work of the whole link before punting */
508 	io_prep_async_link(req);
509 
510 	/*
511 	 * Not expected to happen, but if we do have a bug where this _can_
512 	 * happen, catch it here and ensure the request is marked as
513 	 * canceled. That will make io-wq go through the usual work cancel
514 	 * procedure rather than attempt to run this request (or create a new
515 	 * worker for it).
516 	 */
517 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
518 		req->work.flags |= IO_WQ_WORK_CANCEL;
519 
520 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
521 	io_wq_enqueue(tctx->io_wq, &req->work);
522 	if (link)
523 		io_queue_linked_timeout(link);
524 }
525 
io_queue_deferred(struct io_ring_ctx * ctx)526 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
527 {
528 	while (!list_empty(&ctx->defer_list)) {
529 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
530 						struct io_defer_entry, list);
531 
532 		if (req_need_defer(de->req, de->seq))
533 			break;
534 		list_del_init(&de->list);
535 		io_req_task_queue(de->req);
536 		kfree(de);
537 	}
538 }
539 
540 
io_eventfd_ops(struct rcu_head * rcu)541 static void io_eventfd_ops(struct rcu_head *rcu)
542 {
543 	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
544 	int ops = atomic_xchg(&ev_fd->ops, 0);
545 
546 	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
547 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
548 
549 	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
550 	 * ordering in a race but if references are 0 we know we have to free
551 	 * it regardless.
552 	 */
553 	if (atomic_dec_and_test(&ev_fd->refs)) {
554 		eventfd_ctx_put(ev_fd->cq_ev_fd);
555 		kfree(ev_fd);
556 	}
557 }
558 
io_eventfd_signal(struct io_ring_ctx * ctx)559 static void io_eventfd_signal(struct io_ring_ctx *ctx)
560 {
561 	struct io_ev_fd *ev_fd = NULL;
562 
563 	rcu_read_lock();
564 	/*
565 	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
566 	 * and eventfd_signal
567 	 */
568 	ev_fd = rcu_dereference(ctx->io_ev_fd);
569 
570 	/*
571 	 * Check again if ev_fd exists incase an io_eventfd_unregister call
572 	 * completed between the NULL check of ctx->io_ev_fd at the start of
573 	 * the function and rcu_read_lock.
574 	 */
575 	if (unlikely(!ev_fd))
576 		goto out;
577 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
578 		goto out;
579 	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
580 		goto out;
581 
582 	if (likely(eventfd_signal_allowed())) {
583 		eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
584 	} else {
585 		atomic_inc(&ev_fd->refs);
586 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
587 			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
588 		else
589 			atomic_dec(&ev_fd->refs);
590 	}
591 
592 out:
593 	rcu_read_unlock();
594 }
595 
io_eventfd_flush_signal(struct io_ring_ctx * ctx)596 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
597 {
598 	bool skip;
599 
600 	spin_lock(&ctx->completion_lock);
601 
602 	/*
603 	 * Eventfd should only get triggered when at least one event has been
604 	 * posted. Some applications rely on the eventfd notification count
605 	 * only changing IFF a new CQE has been added to the CQ ring. There's
606 	 * no depedency on 1:1 relationship between how many times this
607 	 * function is called (and hence the eventfd count) and number of CQEs
608 	 * posted to the CQ ring.
609 	 */
610 	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
611 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
612 	spin_unlock(&ctx->completion_lock);
613 	if (skip)
614 		return;
615 
616 	io_eventfd_signal(ctx);
617 }
618 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)619 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
620 {
621 	if (ctx->poll_activated)
622 		io_poll_wq_wake(ctx);
623 	if (ctx->off_timeout_used)
624 		io_flush_timeouts(ctx);
625 	if (ctx->drain_active) {
626 		spin_lock(&ctx->completion_lock);
627 		io_queue_deferred(ctx);
628 		spin_unlock(&ctx->completion_lock);
629 	}
630 	if (ctx->has_evfd)
631 		io_eventfd_flush_signal(ctx);
632 }
633 
__io_cq_lock(struct io_ring_ctx * ctx)634 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
635 {
636 	if (!ctx->lockless_cq)
637 		spin_lock(&ctx->completion_lock);
638 }
639 
io_cq_lock(struct io_ring_ctx * ctx)640 static inline void io_cq_lock(struct io_ring_ctx *ctx)
641 	__acquires(ctx->completion_lock)
642 {
643 	spin_lock(&ctx->completion_lock);
644 }
645 
__io_cq_unlock_post(struct io_ring_ctx * ctx)646 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
647 {
648 	io_commit_cqring(ctx);
649 	if (!ctx->task_complete) {
650 		if (!ctx->lockless_cq)
651 			spin_unlock(&ctx->completion_lock);
652 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
653 		if (!ctx->syscall_iopoll)
654 			io_cqring_wake(ctx);
655 	}
656 	io_commit_cqring_flush(ctx);
657 }
658 
io_cq_unlock_post(struct io_ring_ctx * ctx)659 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
660 	__releases(ctx->completion_lock)
661 {
662 	io_commit_cqring(ctx);
663 	spin_unlock(&ctx->completion_lock);
664 	io_cqring_wake(ctx);
665 	io_commit_cqring_flush(ctx);
666 }
667 
668 /* Returns true if there are no backlogged entries after the flush */
io_cqring_overflow_kill(struct io_ring_ctx * ctx)669 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
670 {
671 	struct io_overflow_cqe *ocqe;
672 	LIST_HEAD(list);
673 
674 	lockdep_assert_held(&ctx->uring_lock);
675 
676 	spin_lock(&ctx->completion_lock);
677 	list_splice_init(&ctx->cq_overflow_list, &list);
678 	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
679 	spin_unlock(&ctx->completion_lock);
680 
681 	while (!list_empty(&list)) {
682 		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
683 		list_del(&ocqe->list);
684 		kfree(ocqe);
685 	}
686 }
687 
__io_cqring_overflow_flush(struct io_ring_ctx * ctx)688 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
689 {
690 	size_t cqe_size = sizeof(struct io_uring_cqe);
691 
692 	lockdep_assert_held(&ctx->uring_lock);
693 
694 	if (__io_cqring_events(ctx) == ctx->cq_entries)
695 		return;
696 
697 	if (ctx->flags & IORING_SETUP_CQE32)
698 		cqe_size <<= 1;
699 
700 	io_cq_lock(ctx);
701 	while (!list_empty(&ctx->cq_overflow_list)) {
702 		struct io_uring_cqe *cqe;
703 		struct io_overflow_cqe *ocqe;
704 
705 		if (!io_get_cqe_overflow(ctx, &cqe, true))
706 			break;
707 		ocqe = list_first_entry(&ctx->cq_overflow_list,
708 					struct io_overflow_cqe, list);
709 		memcpy(cqe, &ocqe->cqe, cqe_size);
710 		list_del(&ocqe->list);
711 		kfree(ocqe);
712 
713 		/*
714 		 * For silly syzbot cases that deliberately overflow by huge
715 		 * amounts, check if we need to resched and drop and
716 		 * reacquire the locks if so. Nothing real would ever hit this.
717 		 * Ideally we'd have a non-posting unlock for this, but hard
718 		 * to care for a non-real case.
719 		 */
720 		if (need_resched()) {
721 			io_cq_unlock_post(ctx);
722 			mutex_unlock(&ctx->uring_lock);
723 			cond_resched();
724 			mutex_lock(&ctx->uring_lock);
725 			io_cq_lock(ctx);
726 		}
727 	}
728 
729 	if (list_empty(&ctx->cq_overflow_list)) {
730 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
731 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
732 	}
733 	io_cq_unlock_post(ctx);
734 }
735 
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)736 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
737 {
738 	mutex_lock(&ctx->uring_lock);
739 	__io_cqring_overflow_flush(ctx);
740 	mutex_unlock(&ctx->uring_lock);
741 }
742 
io_cqring_overflow_flush(struct io_ring_ctx * ctx)743 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
744 {
745 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
746 		io_cqring_do_overflow_flush(ctx);
747 }
748 
749 /* can be called by any task */
io_put_task_remote(struct task_struct * task)750 static void io_put_task_remote(struct task_struct *task)
751 {
752 	struct io_uring_task *tctx = task->io_uring;
753 
754 	percpu_counter_sub(&tctx->inflight, 1);
755 	if (unlikely(atomic_read(&tctx->in_cancel)))
756 		wake_up(&tctx->wait);
757 	put_task_struct(task);
758 }
759 
760 /* used by a task to put its own references */
io_put_task_local(struct task_struct * task)761 static void io_put_task_local(struct task_struct *task)
762 {
763 	task->io_uring->cached_refs++;
764 }
765 
766 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task)767 static inline void io_put_task(struct task_struct *task)
768 {
769 	if (likely(task == current))
770 		io_put_task_local(task);
771 	else
772 		io_put_task_remote(task);
773 }
774 
io_task_refs_refill(struct io_uring_task * tctx)775 void io_task_refs_refill(struct io_uring_task *tctx)
776 {
777 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
778 
779 	percpu_counter_add(&tctx->inflight, refill);
780 	refcount_add(refill, &current->usage);
781 	tctx->cached_refs += refill;
782 }
783 
io_uring_drop_tctx_refs(struct task_struct * task)784 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
785 {
786 	struct io_uring_task *tctx = task->io_uring;
787 	unsigned int refs = tctx->cached_refs;
788 
789 	if (refs) {
790 		tctx->cached_refs = 0;
791 		percpu_counter_sub(&tctx->inflight, refs);
792 		put_task_struct_many(task, refs);
793 	}
794 }
795 
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)796 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
797 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
798 {
799 	struct io_overflow_cqe *ocqe;
800 	size_t ocq_size = sizeof(struct io_overflow_cqe);
801 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
802 
803 	lockdep_assert_held(&ctx->completion_lock);
804 
805 	if (is_cqe32)
806 		ocq_size += sizeof(struct io_uring_cqe);
807 
808 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
809 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
810 	if (!ocqe) {
811 		/*
812 		 * If we're in ring overflow flush mode, or in task cancel mode,
813 		 * or cannot allocate an overflow entry, then we need to drop it
814 		 * on the floor.
815 		 */
816 		io_account_cq_overflow(ctx);
817 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
818 		return false;
819 	}
820 	if (list_empty(&ctx->cq_overflow_list)) {
821 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
822 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
823 
824 	}
825 	ocqe->cqe.user_data = user_data;
826 	ocqe->cqe.res = res;
827 	ocqe->cqe.flags = cflags;
828 	if (is_cqe32) {
829 		ocqe->cqe.big_cqe[0] = extra1;
830 		ocqe->cqe.big_cqe[1] = extra2;
831 	}
832 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
833 	return true;
834 }
835 
io_req_cqe_overflow(struct io_kiocb * req)836 void io_req_cqe_overflow(struct io_kiocb *req)
837 {
838 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
839 				req->cqe.res, req->cqe.flags,
840 				req->big_cqe.extra1, req->big_cqe.extra2);
841 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
842 }
843 
844 /*
845  * writes to the cq entry need to come after reading head; the
846  * control dependency is enough as we're using WRITE_ONCE to
847  * fill the cq entry
848  */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)849 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
850 {
851 	struct io_rings *rings = ctx->rings;
852 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
853 	unsigned int free, queued, len;
854 
855 	/*
856 	 * Posting into the CQ when there are pending overflowed CQEs may break
857 	 * ordering guarantees, which will affect links, F_MORE users and more.
858 	 * Force overflow the completion.
859 	 */
860 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
861 		return false;
862 
863 	/* userspace may cheat modifying the tail, be safe and do min */
864 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
865 	free = ctx->cq_entries - queued;
866 	/* we need a contiguous range, limit based on the current array offset */
867 	len = min(free, ctx->cq_entries - off);
868 	if (!len)
869 		return false;
870 
871 	if (ctx->flags & IORING_SETUP_CQE32) {
872 		off <<= 1;
873 		len <<= 1;
874 	}
875 
876 	ctx->cqe_cached = &rings->cqes[off];
877 	ctx->cqe_sentinel = ctx->cqe_cached + len;
878 	return true;
879 }
880 
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)881 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
882 			      u32 cflags)
883 {
884 	struct io_uring_cqe *cqe;
885 
886 	ctx->cq_extra++;
887 
888 	/*
889 	 * If we can't get a cq entry, userspace overflowed the
890 	 * submission (by quite a lot). Increment the overflow count in
891 	 * the ring.
892 	 */
893 	if (likely(io_get_cqe(ctx, &cqe))) {
894 		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
895 
896 		WRITE_ONCE(cqe->user_data, user_data);
897 		WRITE_ONCE(cqe->res, res);
898 		WRITE_ONCE(cqe->flags, cflags);
899 
900 		if (ctx->flags & IORING_SETUP_CQE32) {
901 			WRITE_ONCE(cqe->big_cqe[0], 0);
902 			WRITE_ONCE(cqe->big_cqe[1], 0);
903 		}
904 		return true;
905 	}
906 	return false;
907 }
908 
__io_flush_post_cqes(struct io_ring_ctx * ctx)909 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
910 	__must_hold(&ctx->uring_lock)
911 {
912 	struct io_submit_state *state = &ctx->submit_state;
913 	unsigned int i;
914 
915 	lockdep_assert_held(&ctx->uring_lock);
916 	for (i = 0; i < state->cqes_count; i++) {
917 		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
918 
919 		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
920 			if (ctx->lockless_cq) {
921 				spin_lock(&ctx->completion_lock);
922 				io_cqring_event_overflow(ctx, cqe->user_data,
923 							cqe->res, cqe->flags, 0, 0);
924 				spin_unlock(&ctx->completion_lock);
925 			} else {
926 				io_cqring_event_overflow(ctx, cqe->user_data,
927 							cqe->res, cqe->flags, 0, 0);
928 			}
929 		}
930 	}
931 	state->cqes_count = 0;
932 }
933 
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)934 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
935 			      bool allow_overflow)
936 {
937 	bool filled;
938 
939 	io_cq_lock(ctx);
940 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
941 	if (!filled && allow_overflow)
942 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
943 
944 	io_cq_unlock_post(ctx);
945 	return filled;
946 }
947 
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)948 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
949 {
950 	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
951 }
952 
953 /*
954  * A helper for multishot requests posting additional CQEs.
955  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
956  */
io_fill_cqe_req_aux(struct io_kiocb * req,bool defer,s32 res,u32 cflags)957 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
958 {
959 	struct io_ring_ctx *ctx = req->ctx;
960 	u64 user_data = req->cqe.user_data;
961 	struct io_uring_cqe *cqe;
962 
963 	if (!defer)
964 		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
965 
966 	lockdep_assert_held(&ctx->uring_lock);
967 
968 	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
969 		__io_cq_lock(ctx);
970 		__io_flush_post_cqes(ctx);
971 		/* no need to flush - flush is deferred */
972 		__io_cq_unlock_post(ctx);
973 	}
974 
975 	/* For defered completions this is not as strict as it is otherwise,
976 	 * however it's main job is to prevent unbounded posted completions,
977 	 * and in that it works just as well.
978 	 */
979 	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
980 		return false;
981 
982 	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
983 	cqe->user_data = user_data;
984 	cqe->res = res;
985 	cqe->flags = cflags;
986 	return true;
987 }
988 
__io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)989 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
990 {
991 	struct io_ring_ctx *ctx = req->ctx;
992 	struct io_rsrc_node *rsrc_node = NULL;
993 
994 	io_cq_lock(ctx);
995 	if (!(req->flags & REQ_F_CQE_SKIP)) {
996 		if (!io_fill_cqe_req(ctx, req))
997 			io_req_cqe_overflow(req);
998 	}
999 
1000 	/*
1001 	 * If we're the last reference to this request, add to our locked
1002 	 * free_list cache.
1003 	 */
1004 	if (req_ref_put_and_test(req)) {
1005 		if (req->flags & IO_REQ_LINK_FLAGS) {
1006 			if (req->flags & IO_DISARM_MASK)
1007 				io_disarm_next(req);
1008 			if (req->link) {
1009 				io_req_task_queue(req->link);
1010 				req->link = NULL;
1011 			}
1012 		}
1013 		io_put_kbuf_comp(req);
1014 		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1015 			io_clean_op(req);
1016 		io_put_file(req);
1017 
1018 		rsrc_node = req->rsrc_node;
1019 		/*
1020 		 * Selected buffer deallocation in io_clean_op() assumes that
1021 		 * we don't hold ->completion_lock. Clean them here to avoid
1022 		 * deadlocks.
1023 		 */
1024 		io_put_task_remote(req->task);
1025 		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1026 		ctx->locked_free_nr++;
1027 	}
1028 	io_cq_unlock_post(ctx);
1029 
1030 	if (rsrc_node) {
1031 		io_ring_submit_lock(ctx, issue_flags);
1032 		io_put_rsrc_node(ctx, rsrc_node);
1033 		io_ring_submit_unlock(ctx, issue_flags);
1034 	}
1035 }
1036 
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)1037 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1038 {
1039 	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1040 		req->io_task_work.func = io_req_task_complete;
1041 		io_req_task_work_add(req);
1042 	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1043 		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1044 		__io_req_complete_post(req, issue_flags);
1045 	} else {
1046 		struct io_ring_ctx *ctx = req->ctx;
1047 
1048 		mutex_lock(&ctx->uring_lock);
1049 		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1050 		mutex_unlock(&ctx->uring_lock);
1051 	}
1052 }
1053 
io_req_defer_failed(struct io_kiocb * req,s32 res)1054 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1055 	__must_hold(&ctx->uring_lock)
1056 {
1057 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1058 
1059 	lockdep_assert_held(&req->ctx->uring_lock);
1060 
1061 	req_set_fail(req);
1062 	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1063 	if (def->fail)
1064 		def->fail(req);
1065 	io_req_complete_defer(req);
1066 }
1067 
1068 /*
1069  * Don't initialise the fields below on every allocation, but do that in
1070  * advance and keep them valid across allocations.
1071  */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1072 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1073 {
1074 	req->ctx = ctx;
1075 	req->link = NULL;
1076 	req->async_data = NULL;
1077 	/* not necessary, but safer to zero */
1078 	memset(&req->cqe, 0, sizeof(req->cqe));
1079 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1080 }
1081 
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1082 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1083 					struct io_submit_state *state)
1084 {
1085 	spin_lock(&ctx->completion_lock);
1086 	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1087 	ctx->locked_free_nr = 0;
1088 	spin_unlock(&ctx->completion_lock);
1089 }
1090 
1091 /*
1092  * A request might get retired back into the request caches even before opcode
1093  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1094  * Because of that, io_alloc_req() should be called only under ->uring_lock
1095  * and with extra caution to not get a request that is still worked on.
1096  */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1097 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1098 	__must_hold(&ctx->uring_lock)
1099 {
1100 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1101 	void *reqs[IO_REQ_ALLOC_BATCH];
1102 	int ret, i;
1103 
1104 	/*
1105 	 * If we have more than a batch's worth of requests in our IRQ side
1106 	 * locked cache, grab the lock and move them over to our submission
1107 	 * side cache.
1108 	 */
1109 	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1110 		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1111 		if (!io_req_cache_empty(ctx))
1112 			return true;
1113 	}
1114 
1115 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1116 
1117 	/*
1118 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1119 	 * retry single alloc to be on the safe side.
1120 	 */
1121 	if (unlikely(ret <= 0)) {
1122 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1123 		if (!reqs[0])
1124 			return false;
1125 		ret = 1;
1126 	}
1127 
1128 	percpu_ref_get_many(&ctx->refs, ret);
1129 	for (i = 0; i < ret; i++) {
1130 		struct io_kiocb *req = reqs[i];
1131 
1132 		io_preinit_req(req, ctx);
1133 		io_req_add_to_cache(req, ctx);
1134 	}
1135 	return true;
1136 }
1137 
io_free_req(struct io_kiocb * req)1138 __cold void io_free_req(struct io_kiocb *req)
1139 {
1140 	/* refs were already put, restore them for io_req_task_complete() */
1141 	req->flags &= ~REQ_F_REFCOUNT;
1142 	/* we only want to free it, don't post CQEs */
1143 	req->flags |= REQ_F_CQE_SKIP;
1144 	req->io_task_work.func = io_req_task_complete;
1145 	io_req_task_work_add(req);
1146 }
1147 
__io_req_find_next_prep(struct io_kiocb * req)1148 static void __io_req_find_next_prep(struct io_kiocb *req)
1149 {
1150 	struct io_ring_ctx *ctx = req->ctx;
1151 
1152 	spin_lock(&ctx->completion_lock);
1153 	io_disarm_next(req);
1154 	spin_unlock(&ctx->completion_lock);
1155 }
1156 
io_req_find_next(struct io_kiocb * req)1157 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1158 {
1159 	struct io_kiocb *nxt;
1160 
1161 	/*
1162 	 * If LINK is set, we have dependent requests in this chain. If we
1163 	 * didn't fail this request, queue the first one up, moving any other
1164 	 * dependencies to the next request. In case of failure, fail the rest
1165 	 * of the chain.
1166 	 */
1167 	if (unlikely(req->flags & IO_DISARM_MASK))
1168 		__io_req_find_next_prep(req);
1169 	nxt = req->link;
1170 	req->link = NULL;
1171 	return nxt;
1172 }
1173 
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1174 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1175 {
1176 	if (!ctx)
1177 		return;
1178 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1179 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1180 	if (ts->locked) {
1181 		io_submit_flush_completions(ctx);
1182 		mutex_unlock(&ctx->uring_lock);
1183 		ts->locked = false;
1184 	}
1185 	percpu_ref_put(&ctx->refs);
1186 }
1187 
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,struct io_tw_state * ts)1188 static unsigned int handle_tw_list(struct llist_node *node,
1189 				   struct io_ring_ctx **ctx,
1190 				   struct io_tw_state *ts)
1191 {
1192 	unsigned int count = 0;
1193 
1194 	do {
1195 		struct llist_node *next = node->next;
1196 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1197 						    io_task_work.node);
1198 
1199 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1200 
1201 		if (req->ctx != *ctx) {
1202 			ctx_flush_and_put(*ctx, ts);
1203 			*ctx = req->ctx;
1204 			/* if not contended, grab and improve batching */
1205 			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1206 			percpu_ref_get(&(*ctx)->refs);
1207 		}
1208 		INDIRECT_CALL_2(req->io_task_work.func,
1209 				io_poll_task_func, io_req_rw_complete,
1210 				req, ts);
1211 		node = next;
1212 		count++;
1213 		if (unlikely(need_resched())) {
1214 			ctx_flush_and_put(*ctx, ts);
1215 			*ctx = NULL;
1216 			cond_resched();
1217 		}
1218 	} while (node);
1219 
1220 	return count;
1221 }
1222 
1223 /**
1224  * io_llist_xchg - swap all entries in a lock-less list
1225  * @head:	the head of lock-less list to delete all entries
1226  * @new:	new entry as the head of the list
1227  *
1228  * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1229  * The order of entries returned is from the newest to the oldest added one.
1230  */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1231 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1232 					       struct llist_node *new)
1233 {
1234 	return xchg(&head->first, new);
1235 }
1236 
io_fallback_tw(struct io_uring_task * tctx,bool sync)1237 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1238 {
1239 	struct llist_node *node = llist_del_all(&tctx->task_list);
1240 	struct io_ring_ctx *last_ctx = NULL;
1241 	struct io_kiocb *req;
1242 
1243 	while (node) {
1244 		req = container_of(node, struct io_kiocb, io_task_work.node);
1245 		node = node->next;
1246 		if (sync && last_ctx != req->ctx) {
1247 			if (last_ctx) {
1248 				flush_delayed_work(&last_ctx->fallback_work);
1249 				percpu_ref_put(&last_ctx->refs);
1250 			}
1251 			last_ctx = req->ctx;
1252 			percpu_ref_get(&last_ctx->refs);
1253 		}
1254 		if (llist_add(&req->io_task_work.node,
1255 			      &req->ctx->fallback_llist))
1256 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1257 	}
1258 
1259 	if (last_ctx) {
1260 		flush_delayed_work(&last_ctx->fallback_work);
1261 		percpu_ref_put(&last_ctx->refs);
1262 	}
1263 }
1264 
tctx_task_work(struct callback_head * cb)1265 void tctx_task_work(struct callback_head *cb)
1266 {
1267 	struct io_tw_state ts = {};
1268 	struct io_ring_ctx *ctx = NULL;
1269 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1270 						  task_work);
1271 	struct llist_node *node;
1272 	unsigned int count = 0;
1273 
1274 	if (unlikely(current->flags & PF_EXITING)) {
1275 		io_fallback_tw(tctx, true);
1276 		return;
1277 	}
1278 
1279 	node = llist_del_all(&tctx->task_list);
1280 	if (node)
1281 		count = handle_tw_list(node, &ctx, &ts);
1282 
1283 	ctx_flush_and_put(ctx, &ts);
1284 
1285 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1286 	if (unlikely(atomic_read(&tctx->in_cancel)))
1287 		io_uring_drop_tctx_refs(current);
1288 
1289 	trace_io_uring_task_work_run(tctx, count, 1);
1290 }
1291 
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1292 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1293 {
1294 	struct io_ring_ctx *ctx = req->ctx;
1295 	unsigned nr_wait, nr_tw, nr_tw_prev;
1296 	struct llist_node *first;
1297 
1298 	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1299 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1300 
1301 	first = READ_ONCE(ctx->work_llist.first);
1302 	do {
1303 		nr_tw_prev = 0;
1304 		if (first) {
1305 			struct io_kiocb *first_req = container_of(first,
1306 							struct io_kiocb,
1307 							io_task_work.node);
1308 			/*
1309 			 * Might be executed at any moment, rely on
1310 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1311 			 */
1312 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1313 		}
1314 		nr_tw = nr_tw_prev + 1;
1315 		/* Large enough to fail the nr_wait comparison below */
1316 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1317 			nr_tw = INT_MAX;
1318 
1319 		req->nr_tw = nr_tw;
1320 		req->io_task_work.node.next = first;
1321 	} while (!try_cmpxchg(&ctx->work_llist.first, &first,
1322 			      &req->io_task_work.node));
1323 
1324 	if (!first) {
1325 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1326 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1327 		if (ctx->has_evfd)
1328 			io_eventfd_signal(ctx);
1329 	}
1330 
1331 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1332 	/* no one is waiting */
1333 	if (!nr_wait)
1334 		return;
1335 	/* either not enough or the previous add has already woken it up */
1336 	if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1337 		return;
1338 	/* pairs with set_current_state() in io_cqring_wait() */
1339 	smp_mb__after_atomic();
1340 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1341 }
1342 
io_req_normal_work_add(struct io_kiocb * req)1343 static void io_req_normal_work_add(struct io_kiocb *req)
1344 {
1345 	struct io_uring_task *tctx = req->task->io_uring;
1346 	struct io_ring_ctx *ctx = req->ctx;
1347 
1348 	/* task_work already pending, we're done */
1349 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1350 		return;
1351 
1352 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1353 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1354 
1355 	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1356 		return;
1357 
1358 	io_fallback_tw(tctx, false);
1359 }
1360 
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1361 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1362 {
1363 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1364 		rcu_read_lock();
1365 		io_req_local_work_add(req, flags);
1366 		rcu_read_unlock();
1367 	} else {
1368 		io_req_normal_work_add(req);
1369 	}
1370 }
1371 
io_move_task_work_from_local(struct io_ring_ctx * ctx)1372 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1373 {
1374 	struct llist_node *node;
1375 
1376 	node = llist_del_all(&ctx->work_llist);
1377 	while (node) {
1378 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1379 						    io_task_work.node);
1380 
1381 		node = node->next;
1382 		io_req_normal_work_add(req);
1383 	}
1384 }
1385 
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1386 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1387 				       int min_events)
1388 {
1389 	if (llist_empty(&ctx->work_llist))
1390 		return false;
1391 	if (events < min_events)
1392 		return true;
1393 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1394 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1395 	return false;
1396 }
1397 
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events)1398 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1399 			       int min_events)
1400 {
1401 	struct llist_node *node;
1402 	unsigned int loops = 0;
1403 	int ret = 0;
1404 
1405 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1406 		return -EEXIST;
1407 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1408 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1409 again:
1410 	/*
1411 	 * llists are in reverse order, flip it back the right way before
1412 	 * running the pending items.
1413 	 */
1414 	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1415 	while (node) {
1416 		struct llist_node *next = node->next;
1417 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1418 						    io_task_work.node);
1419 		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1420 		INDIRECT_CALL_2(req->io_task_work.func,
1421 				io_poll_task_func, io_req_rw_complete,
1422 				req, ts);
1423 		ret++;
1424 		node = next;
1425 	}
1426 	loops++;
1427 
1428 	if (io_run_local_work_continue(ctx, ret, min_events))
1429 		goto again;
1430 	if (ts->locked) {
1431 		io_submit_flush_completions(ctx);
1432 		if (io_run_local_work_continue(ctx, ret, min_events))
1433 			goto again;
1434 	}
1435 
1436 	trace_io_uring_local_work_run(ctx, ret, loops);
1437 	return ret;
1438 }
1439 
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1440 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1441 					   int min_events)
1442 {
1443 	struct io_tw_state ts = { .locked = true, };
1444 	int ret;
1445 
1446 	if (llist_empty(&ctx->work_llist))
1447 		return 0;
1448 
1449 	ret = __io_run_local_work(ctx, &ts, min_events);
1450 	/* shouldn't happen! */
1451 	if (WARN_ON_ONCE(!ts.locked))
1452 		mutex_lock(&ctx->uring_lock);
1453 	return ret;
1454 }
1455 
io_run_local_work(struct io_ring_ctx * ctx,int min_events)1456 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1457 {
1458 	struct io_tw_state ts = {};
1459 	int ret;
1460 
1461 	ts.locked = mutex_trylock(&ctx->uring_lock);
1462 	ret = __io_run_local_work(ctx, &ts, min_events);
1463 	if (ts.locked)
1464 		mutex_unlock(&ctx->uring_lock);
1465 
1466 	return ret;
1467 }
1468 
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1469 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1470 {
1471 	io_tw_lock(req->ctx, ts);
1472 	io_req_defer_failed(req, req->cqe.res);
1473 }
1474 
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1475 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1476 {
1477 	io_tw_lock(req->ctx, ts);
1478 	/* req->task == current here, checking PF_EXITING is safe */
1479 	if (unlikely(req->task->flags & PF_EXITING))
1480 		io_req_defer_failed(req, -EFAULT);
1481 	else if (req->flags & REQ_F_FORCE_ASYNC)
1482 		io_queue_iowq(req);
1483 	else
1484 		io_queue_sqe(req);
1485 }
1486 
io_req_task_queue_fail(struct io_kiocb * req,int ret)1487 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1488 {
1489 	io_req_set_res(req, ret, 0);
1490 	req->io_task_work.func = io_req_task_cancel;
1491 	io_req_task_work_add(req);
1492 }
1493 
io_req_task_queue(struct io_kiocb * req)1494 void io_req_task_queue(struct io_kiocb *req)
1495 {
1496 	req->io_task_work.func = io_req_task_submit;
1497 	io_req_task_work_add(req);
1498 }
1499 
io_queue_next(struct io_kiocb * req)1500 void io_queue_next(struct io_kiocb *req)
1501 {
1502 	struct io_kiocb *nxt = io_req_find_next(req);
1503 
1504 	if (nxt)
1505 		io_req_task_queue(nxt);
1506 }
1507 
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1508 static void io_free_batch_list(struct io_ring_ctx *ctx,
1509 			       struct io_wq_work_node *node)
1510 	__must_hold(&ctx->uring_lock)
1511 {
1512 	do {
1513 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1514 						    comp_list);
1515 
1516 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1517 			if (req->flags & REQ_F_REFCOUNT) {
1518 				node = req->comp_list.next;
1519 				if (!req_ref_put_and_test(req))
1520 					continue;
1521 			}
1522 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1523 				struct async_poll *apoll = req->apoll;
1524 
1525 				if (apoll->double_poll)
1526 					kfree(apoll->double_poll);
1527 				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1528 					kfree(apoll);
1529 				req->flags &= ~REQ_F_POLLED;
1530 			}
1531 			if (req->flags & IO_REQ_LINK_FLAGS)
1532 				io_queue_next(req);
1533 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1534 				io_clean_op(req);
1535 		}
1536 		io_put_file(req);
1537 
1538 		io_req_put_rsrc_locked(req, ctx);
1539 
1540 		io_put_task(req->task);
1541 		node = req->comp_list.next;
1542 		io_req_add_to_cache(req, ctx);
1543 	} while (node);
1544 }
1545 
__io_submit_flush_completions(struct io_ring_ctx * ctx)1546 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1547 	__must_hold(&ctx->uring_lock)
1548 {
1549 	struct io_submit_state *state = &ctx->submit_state;
1550 	struct io_wq_work_node *node;
1551 
1552 	__io_cq_lock(ctx);
1553 	/* must come first to preserve CQE ordering in failure cases */
1554 	if (state->cqes_count)
1555 		__io_flush_post_cqes(ctx);
1556 	__wq_list_for_each(node, &state->compl_reqs) {
1557 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1558 					    comp_list);
1559 
1560 		if (!(req->flags & REQ_F_CQE_SKIP) &&
1561 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1562 			if (ctx->lockless_cq) {
1563 				spin_lock(&ctx->completion_lock);
1564 				io_req_cqe_overflow(req);
1565 				spin_unlock(&ctx->completion_lock);
1566 			} else {
1567 				io_req_cqe_overflow(req);
1568 			}
1569 		}
1570 	}
1571 	__io_cq_unlock_post(ctx);
1572 
1573 	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1574 		io_free_batch_list(ctx, state->compl_reqs.first);
1575 		INIT_WQ_LIST(&state->compl_reqs);
1576 	}
1577 }
1578 
io_cqring_events(struct io_ring_ctx * ctx)1579 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1580 {
1581 	/* See comment at the top of this file */
1582 	smp_rmb();
1583 	return __io_cqring_events(ctx);
1584 }
1585 
1586 /*
1587  * We can't just wait for polled events to come to us, we have to actively
1588  * find and complete them.
1589  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1590 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1591 {
1592 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1593 		return;
1594 
1595 	mutex_lock(&ctx->uring_lock);
1596 	while (!wq_list_empty(&ctx->iopoll_list)) {
1597 		/* let it sleep and repeat later if can't complete a request */
1598 		if (io_do_iopoll(ctx, true) == 0)
1599 			break;
1600 		/*
1601 		 * Ensure we allow local-to-the-cpu processing to take place,
1602 		 * in this case we need to ensure that we reap all events.
1603 		 * Also let task_work, etc. to progress by releasing the mutex
1604 		 */
1605 		if (need_resched()) {
1606 			mutex_unlock(&ctx->uring_lock);
1607 			cond_resched();
1608 			mutex_lock(&ctx->uring_lock);
1609 		}
1610 	}
1611 	mutex_unlock(&ctx->uring_lock);
1612 }
1613 
io_iopoll_check(struct io_ring_ctx * ctx,long min)1614 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1615 {
1616 	unsigned int nr_events = 0;
1617 	unsigned long check_cq;
1618 
1619 	lockdep_assert_held(&ctx->uring_lock);
1620 
1621 	if (!io_allowed_run_tw(ctx))
1622 		return -EEXIST;
1623 
1624 	check_cq = READ_ONCE(ctx->check_cq);
1625 	if (unlikely(check_cq)) {
1626 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1627 			__io_cqring_overflow_flush(ctx);
1628 		/*
1629 		 * Similarly do not spin if we have not informed the user of any
1630 		 * dropped CQE.
1631 		 */
1632 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1633 			return -EBADR;
1634 	}
1635 	/*
1636 	 * Don't enter poll loop if we already have events pending.
1637 	 * If we do, we can potentially be spinning for commands that
1638 	 * already triggered a CQE (eg in error).
1639 	 */
1640 	if (io_cqring_events(ctx))
1641 		return 0;
1642 
1643 	do {
1644 		int ret = 0;
1645 
1646 		/*
1647 		 * If a submit got punted to a workqueue, we can have the
1648 		 * application entering polling for a command before it gets
1649 		 * issued. That app will hold the uring_lock for the duration
1650 		 * of the poll right here, so we need to take a breather every
1651 		 * now and then to ensure that the issue has a chance to add
1652 		 * the poll to the issued list. Otherwise we can spin here
1653 		 * forever, while the workqueue is stuck trying to acquire the
1654 		 * very same mutex.
1655 		 */
1656 		if (wq_list_empty(&ctx->iopoll_list) ||
1657 		    io_task_work_pending(ctx)) {
1658 			u32 tail = ctx->cached_cq_tail;
1659 
1660 			(void) io_run_local_work_locked(ctx, min);
1661 
1662 			if (task_work_pending(current) ||
1663 			    wq_list_empty(&ctx->iopoll_list)) {
1664 				mutex_unlock(&ctx->uring_lock);
1665 				io_run_task_work();
1666 				mutex_lock(&ctx->uring_lock);
1667 			}
1668 			/* some requests don't go through iopoll_list */
1669 			if (tail != ctx->cached_cq_tail ||
1670 			    wq_list_empty(&ctx->iopoll_list))
1671 				break;
1672 		}
1673 		ret = io_do_iopoll(ctx, !min);
1674 		if (unlikely(ret < 0))
1675 			return ret;
1676 
1677 		if (task_sigpending(current))
1678 			return -EINTR;
1679 		if (need_resched())
1680 			break;
1681 
1682 		nr_events += ret;
1683 	} while (nr_events < min);
1684 
1685 	return 0;
1686 }
1687 
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1688 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1689 {
1690 	if (ts->locked)
1691 		io_req_complete_defer(req);
1692 	else
1693 		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1694 }
1695 
1696 /*
1697  * After the iocb has been issued, it's safe to be found on the poll list.
1698  * Adding the kiocb to the list AFTER submission ensures that we don't
1699  * find it from a io_do_iopoll() thread before the issuer is done
1700  * accessing the kiocb cookie.
1701  */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1702 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1703 {
1704 	struct io_ring_ctx *ctx = req->ctx;
1705 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1706 
1707 	/* workqueue context doesn't hold uring_lock, grab it now */
1708 	if (unlikely(needs_lock))
1709 		mutex_lock(&ctx->uring_lock);
1710 
1711 	/*
1712 	 * Track whether we have multiple files in our lists. This will impact
1713 	 * how we do polling eventually, not spinning if we're on potentially
1714 	 * different devices.
1715 	 */
1716 	if (wq_list_empty(&ctx->iopoll_list)) {
1717 		ctx->poll_multi_queue = false;
1718 	} else if (!ctx->poll_multi_queue) {
1719 		struct io_kiocb *list_req;
1720 
1721 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1722 					comp_list);
1723 		if (list_req->file != req->file)
1724 			ctx->poll_multi_queue = true;
1725 	}
1726 
1727 	/*
1728 	 * For fast devices, IO may have already completed. If it has, add
1729 	 * it to the front so we find it first.
1730 	 */
1731 	if (READ_ONCE(req->iopoll_completed))
1732 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1733 	else
1734 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1735 
1736 	if (unlikely(needs_lock)) {
1737 		/*
1738 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1739 		 * in sq thread task context or in io worker task context. If
1740 		 * current task context is sq thread, we don't need to check
1741 		 * whether should wake up sq thread.
1742 		 */
1743 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1744 		    wq_has_sleeper(&ctx->sq_data->wait))
1745 			wake_up(&ctx->sq_data->wait);
1746 
1747 		mutex_unlock(&ctx->uring_lock);
1748 	}
1749 }
1750 
io_file_get_flags(struct file * file)1751 unsigned int io_file_get_flags(struct file *file)
1752 {
1753 	unsigned int res = 0;
1754 
1755 	if (S_ISREG(file_inode(file)->i_mode))
1756 		res |= REQ_F_ISREG;
1757 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1758 		res |= REQ_F_SUPPORT_NOWAIT;
1759 	return res;
1760 }
1761 
io_alloc_async_data(struct io_kiocb * req)1762 bool io_alloc_async_data(struct io_kiocb *req)
1763 {
1764 	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1765 	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1766 	if (req->async_data) {
1767 		req->flags |= REQ_F_ASYNC_DATA;
1768 		return false;
1769 	}
1770 	return true;
1771 }
1772 
io_req_prep_async(struct io_kiocb * req)1773 int io_req_prep_async(struct io_kiocb *req)
1774 {
1775 	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1776 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1777 
1778 	/* assign early for deferred execution for non-fixed file */
1779 	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1780 		req->file = io_file_get_normal(req, req->cqe.fd);
1781 	if (!cdef->prep_async)
1782 		return 0;
1783 	if (WARN_ON_ONCE(req_has_async_data(req)))
1784 		return -EFAULT;
1785 	if (!def->manual_alloc) {
1786 		if (io_alloc_async_data(req))
1787 			return -EAGAIN;
1788 	}
1789 	return cdef->prep_async(req);
1790 }
1791 
io_get_sequence(struct io_kiocb * req)1792 static u32 io_get_sequence(struct io_kiocb *req)
1793 {
1794 	u32 seq = req->ctx->cached_sq_head;
1795 	struct io_kiocb *cur;
1796 
1797 	/* need original cached_sq_head, but it was increased for each req */
1798 	io_for_each_link(cur, req)
1799 		seq--;
1800 	return seq;
1801 }
1802 
io_drain_req(struct io_kiocb * req)1803 static __cold void io_drain_req(struct io_kiocb *req)
1804 	__must_hold(&ctx->uring_lock)
1805 {
1806 	struct io_ring_ctx *ctx = req->ctx;
1807 	struct io_defer_entry *de;
1808 	int ret;
1809 	u32 seq = io_get_sequence(req);
1810 
1811 	/* Still need defer if there is pending req in defer list. */
1812 	spin_lock(&ctx->completion_lock);
1813 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1814 		spin_unlock(&ctx->completion_lock);
1815 queue:
1816 		ctx->drain_active = false;
1817 		io_req_task_queue(req);
1818 		return;
1819 	}
1820 	spin_unlock(&ctx->completion_lock);
1821 
1822 	io_prep_async_link(req);
1823 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1824 	if (!de) {
1825 		ret = -ENOMEM;
1826 		io_req_defer_failed(req, ret);
1827 		return;
1828 	}
1829 
1830 	spin_lock(&ctx->completion_lock);
1831 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1832 		spin_unlock(&ctx->completion_lock);
1833 		kfree(de);
1834 		goto queue;
1835 	}
1836 
1837 	trace_io_uring_defer(req);
1838 	de->req = req;
1839 	de->seq = seq;
1840 	list_add_tail(&de->list, &ctx->defer_list);
1841 	spin_unlock(&ctx->completion_lock);
1842 }
1843 
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1844 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1845 			   unsigned int issue_flags)
1846 {
1847 	if (req->file || !def->needs_file)
1848 		return true;
1849 
1850 	if (req->flags & REQ_F_FIXED_FILE)
1851 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1852 	else
1853 		req->file = io_file_get_normal(req, req->cqe.fd);
1854 
1855 	return !!req->file;
1856 }
1857 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1858 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1859 {
1860 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1861 	const struct cred *creds = NULL;
1862 	int ret;
1863 
1864 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1865 		return -EBADF;
1866 
1867 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1868 		creds = override_creds(req->creds);
1869 
1870 	if (!def->audit_skip)
1871 		audit_uring_entry(req->opcode);
1872 
1873 	ret = def->issue(req, issue_flags);
1874 
1875 	if (!def->audit_skip)
1876 		audit_uring_exit(!ret, ret);
1877 
1878 	if (creds)
1879 		revert_creds(creds);
1880 
1881 	if (ret == IOU_OK) {
1882 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1883 			io_req_complete_defer(req);
1884 		else
1885 			io_req_complete_post(req, issue_flags);
1886 
1887 		return 0;
1888 	}
1889 
1890 	if (ret != IOU_ISSUE_SKIP_COMPLETE)
1891 		return ret;
1892 
1893 	/* If the op doesn't have a file, we're not polling for it */
1894 	if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1895 		io_iopoll_req_issued(req, issue_flags);
1896 
1897 	return 0;
1898 }
1899 
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1900 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1901 {
1902 	io_tw_lock(req->ctx, ts);
1903 	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1904 				 IO_URING_F_COMPLETE_DEFER);
1905 }
1906 
io_wq_free_work(struct io_wq_work * work)1907 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1908 {
1909 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1910 	struct io_kiocb *nxt = NULL;
1911 
1912 	if (req_ref_put_and_test(req)) {
1913 		if (req->flags & IO_REQ_LINK_FLAGS)
1914 			nxt = io_req_find_next(req);
1915 		io_free_req(req);
1916 	}
1917 	return nxt ? &nxt->work : NULL;
1918 }
1919 
io_wq_submit_work(struct io_wq_work * work)1920 void io_wq_submit_work(struct io_wq_work *work)
1921 {
1922 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1923 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1924 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1925 	bool needs_poll = false;
1926 	int ret = 0, err = -ECANCELED;
1927 
1928 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1929 	if (!(req->flags & REQ_F_REFCOUNT))
1930 		__io_req_set_refcount(req, 2);
1931 	else
1932 		req_ref_get(req);
1933 
1934 	io_arm_ltimeout(req);
1935 
1936 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1937 	if (work->flags & IO_WQ_WORK_CANCEL) {
1938 fail:
1939 		io_req_task_queue_fail(req, err);
1940 		return;
1941 	}
1942 	if (!io_assign_file(req, def, issue_flags)) {
1943 		err = -EBADF;
1944 		work->flags |= IO_WQ_WORK_CANCEL;
1945 		goto fail;
1946 	}
1947 
1948 	if (req->flags & REQ_F_FORCE_ASYNC) {
1949 		bool opcode_poll = def->pollin || def->pollout;
1950 
1951 		if (opcode_poll && file_can_poll(req->file)) {
1952 			needs_poll = true;
1953 			issue_flags |= IO_URING_F_NONBLOCK;
1954 		}
1955 	}
1956 
1957 	do {
1958 		ret = io_issue_sqe(req, issue_flags);
1959 		if (ret != -EAGAIN)
1960 			break;
1961 
1962 		/*
1963 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1964 		 * poll. -EAGAIN is final for that case.
1965 		 */
1966 		if (req->flags & REQ_F_NOWAIT)
1967 			break;
1968 
1969 		/*
1970 		 * We can get EAGAIN for iopolled IO even though we're
1971 		 * forcing a sync submission from here, since we can't
1972 		 * wait for request slots on the block side.
1973 		 */
1974 		if (!needs_poll) {
1975 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1976 				break;
1977 			if (io_wq_worker_stopped())
1978 				break;
1979 			cond_resched();
1980 			continue;
1981 		}
1982 
1983 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1984 			return;
1985 		/* aborted or ready, in either case retry blocking */
1986 		needs_poll = false;
1987 		issue_flags &= ~IO_URING_F_NONBLOCK;
1988 	} while (1);
1989 
1990 	/* avoid locking problems by failing it from a clean context */
1991 	if (ret < 0)
1992 		io_req_task_queue_fail(req, ret);
1993 }
1994 
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1995 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1996 				      unsigned int issue_flags)
1997 {
1998 	struct io_ring_ctx *ctx = req->ctx;
1999 	struct io_fixed_file *slot;
2000 	struct file *file = NULL;
2001 
2002 	io_ring_submit_lock(ctx, issue_flags);
2003 
2004 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2005 		goto out;
2006 	fd = array_index_nospec(fd, ctx->nr_user_files);
2007 	slot = io_fixed_file_slot(&ctx->file_table, fd);
2008 	file = io_slot_file(slot);
2009 	req->flags |= io_slot_flags(slot);
2010 	io_req_set_rsrc_node(req, ctx, 0);
2011 out:
2012 	io_ring_submit_unlock(ctx, issue_flags);
2013 	return file;
2014 }
2015 
io_file_get_normal(struct io_kiocb * req,int fd)2016 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2017 {
2018 	struct file *file = fget(fd);
2019 
2020 	trace_io_uring_file_get(req, fd);
2021 
2022 	/* we don't allow fixed io_uring files */
2023 	if (file && io_is_uring_fops(file))
2024 		io_req_track_inflight(req);
2025 	return file;
2026 }
2027 
io_queue_async(struct io_kiocb * req,int ret)2028 static void io_queue_async(struct io_kiocb *req, int ret)
2029 	__must_hold(&req->ctx->uring_lock)
2030 {
2031 	struct io_kiocb *linked_timeout;
2032 
2033 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2034 		io_req_defer_failed(req, ret);
2035 		return;
2036 	}
2037 
2038 	linked_timeout = io_prep_linked_timeout(req);
2039 
2040 	switch (io_arm_poll_handler(req, 0)) {
2041 	case IO_APOLL_READY:
2042 		io_kbuf_recycle(req, 0);
2043 		io_req_task_queue(req);
2044 		break;
2045 	case IO_APOLL_ABORTED:
2046 		io_kbuf_recycle(req, 0);
2047 		io_queue_iowq(req);
2048 		break;
2049 	case IO_APOLL_OK:
2050 		break;
2051 	}
2052 
2053 	if (linked_timeout)
2054 		io_queue_linked_timeout(linked_timeout);
2055 }
2056 
io_queue_sqe(struct io_kiocb * req)2057 static inline void io_queue_sqe(struct io_kiocb *req)
2058 	__must_hold(&req->ctx->uring_lock)
2059 {
2060 	int ret;
2061 
2062 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2063 
2064 	/*
2065 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2066 	 * doesn't support non-blocking read/write attempts
2067 	 */
2068 	if (likely(!ret))
2069 		io_arm_ltimeout(req);
2070 	else
2071 		io_queue_async(req, ret);
2072 }
2073 
io_queue_sqe_fallback(struct io_kiocb * req)2074 static void io_queue_sqe_fallback(struct io_kiocb *req)
2075 	__must_hold(&req->ctx->uring_lock)
2076 {
2077 	if (unlikely(req->flags & REQ_F_FAIL)) {
2078 		/*
2079 		 * We don't submit, fail them all, for that replace hardlinks
2080 		 * with normal links. Extra REQ_F_LINK is tolerated.
2081 		 */
2082 		req->flags &= ~REQ_F_HARDLINK;
2083 		req->flags |= REQ_F_LINK;
2084 		io_req_defer_failed(req, req->cqe.res);
2085 	} else {
2086 		int ret = io_req_prep_async(req);
2087 
2088 		if (unlikely(ret)) {
2089 			io_req_defer_failed(req, ret);
2090 			return;
2091 		}
2092 
2093 		if (unlikely(req->ctx->drain_active))
2094 			io_drain_req(req);
2095 		else
2096 			io_queue_iowq(req);
2097 	}
2098 }
2099 
2100 /*
2101  * Check SQE restrictions (opcode and flags).
2102  *
2103  * Returns 'true' if SQE is allowed, 'false' otherwise.
2104  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2105 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2106 					struct io_kiocb *req,
2107 					unsigned int sqe_flags)
2108 {
2109 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2110 		return false;
2111 
2112 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2113 	    ctx->restrictions.sqe_flags_required)
2114 		return false;
2115 
2116 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2117 			  ctx->restrictions.sqe_flags_required))
2118 		return false;
2119 
2120 	return true;
2121 }
2122 
io_init_req_drain(struct io_kiocb * req)2123 static void io_init_req_drain(struct io_kiocb *req)
2124 {
2125 	struct io_ring_ctx *ctx = req->ctx;
2126 	struct io_kiocb *head = ctx->submit_state.link.head;
2127 
2128 	ctx->drain_active = true;
2129 	if (head) {
2130 		/*
2131 		 * If we need to drain a request in the middle of a link, drain
2132 		 * the head request and the next request/link after the current
2133 		 * link. Considering sequential execution of links,
2134 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2135 		 * link.
2136 		 */
2137 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2138 		ctx->drain_next = true;
2139 	}
2140 }
2141 
io_init_fail_req(struct io_kiocb * req,int err)2142 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2143 {
2144 	/* ensure per-opcode data is cleared if we fail before prep */
2145 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2146 	return err;
2147 }
2148 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2149 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2150 		       const struct io_uring_sqe *sqe)
2151 	__must_hold(&ctx->uring_lock)
2152 {
2153 	const struct io_issue_def *def;
2154 	unsigned int sqe_flags;
2155 	int personality;
2156 	u8 opcode;
2157 
2158 	/* req is partially pre-initialised, see io_preinit_req() */
2159 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2160 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2161 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2162 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2163 	req->file = NULL;
2164 	req->rsrc_node = NULL;
2165 	req->task = current;
2166 
2167 	if (unlikely(opcode >= IORING_OP_LAST)) {
2168 		req->opcode = 0;
2169 		return io_init_fail_req(req, -EINVAL);
2170 	}
2171 	def = &io_issue_defs[opcode];
2172 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2173 		/* enforce forwards compatibility on users */
2174 		if (sqe_flags & ~SQE_VALID_FLAGS)
2175 			return io_init_fail_req(req, -EINVAL);
2176 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2177 			if (!def->buffer_select)
2178 				return io_init_fail_req(req, -EOPNOTSUPP);
2179 			req->buf_index = READ_ONCE(sqe->buf_group);
2180 		}
2181 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2182 			ctx->drain_disabled = true;
2183 		if (sqe_flags & IOSQE_IO_DRAIN) {
2184 			if (ctx->drain_disabled)
2185 				return io_init_fail_req(req, -EOPNOTSUPP);
2186 			io_init_req_drain(req);
2187 		}
2188 	}
2189 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2190 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2191 			return io_init_fail_req(req, -EACCES);
2192 		/* knock it to the slow queue path, will be drained there */
2193 		if (ctx->drain_active)
2194 			req->flags |= REQ_F_FORCE_ASYNC;
2195 		/* if there is no link, we're at "next" request and need to drain */
2196 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2197 			ctx->drain_next = false;
2198 			ctx->drain_active = true;
2199 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2200 		}
2201 	}
2202 
2203 	if (!def->ioprio && sqe->ioprio)
2204 		return io_init_fail_req(req, -EINVAL);
2205 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2206 		return io_init_fail_req(req, -EINVAL);
2207 
2208 	if (def->needs_file) {
2209 		struct io_submit_state *state = &ctx->submit_state;
2210 
2211 		req->cqe.fd = READ_ONCE(sqe->fd);
2212 
2213 		/*
2214 		 * Plug now if we have more than 2 IO left after this, and the
2215 		 * target is potentially a read/write to block based storage.
2216 		 */
2217 		if (state->need_plug && def->plug) {
2218 			state->plug_started = true;
2219 			state->need_plug = false;
2220 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2221 		}
2222 	}
2223 
2224 	personality = READ_ONCE(sqe->personality);
2225 	if (personality) {
2226 		int ret;
2227 
2228 		req->creds = xa_load(&ctx->personalities, personality);
2229 		if (!req->creds)
2230 			return io_init_fail_req(req, -EINVAL);
2231 		get_cred(req->creds);
2232 		ret = security_uring_override_creds(req->creds);
2233 		if (ret) {
2234 			put_cred(req->creds);
2235 			return io_init_fail_req(req, ret);
2236 		}
2237 		req->flags |= REQ_F_CREDS;
2238 	}
2239 
2240 	return def->prep(req, sqe);
2241 }
2242 
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2243 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2244 				      struct io_kiocb *req, int ret)
2245 {
2246 	struct io_ring_ctx *ctx = req->ctx;
2247 	struct io_submit_link *link = &ctx->submit_state.link;
2248 	struct io_kiocb *head = link->head;
2249 
2250 	trace_io_uring_req_failed(sqe, req, ret);
2251 
2252 	/*
2253 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2254 	 * unusable. Instead of failing eagerly, continue assembling the link if
2255 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2256 	 * should find the flag and handle the rest.
2257 	 */
2258 	req_fail_link_node(req, ret);
2259 	if (head && !(head->flags & REQ_F_FAIL))
2260 		req_fail_link_node(head, -ECANCELED);
2261 
2262 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2263 		if (head) {
2264 			link->last->link = req;
2265 			link->head = NULL;
2266 			req = head;
2267 		}
2268 		io_queue_sqe_fallback(req);
2269 		return ret;
2270 	}
2271 
2272 	if (head)
2273 		link->last->link = req;
2274 	else
2275 		link->head = req;
2276 	link->last = req;
2277 	return 0;
2278 }
2279 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2280 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2281 			 const struct io_uring_sqe *sqe)
2282 	__must_hold(&ctx->uring_lock)
2283 {
2284 	struct io_submit_link *link = &ctx->submit_state.link;
2285 	int ret;
2286 
2287 	ret = io_init_req(ctx, req, sqe);
2288 	if (unlikely(ret))
2289 		return io_submit_fail_init(sqe, req, ret);
2290 
2291 	trace_io_uring_submit_req(req);
2292 
2293 	/*
2294 	 * If we already have a head request, queue this one for async
2295 	 * submittal once the head completes. If we don't have a head but
2296 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2297 	 * submitted sync once the chain is complete. If none of those
2298 	 * conditions are true (normal request), then just queue it.
2299 	 */
2300 	if (unlikely(link->head)) {
2301 		ret = io_req_prep_async(req);
2302 		if (unlikely(ret))
2303 			return io_submit_fail_init(sqe, req, ret);
2304 
2305 		trace_io_uring_link(req, link->head);
2306 		link->last->link = req;
2307 		link->last = req;
2308 
2309 		if (req->flags & IO_REQ_LINK_FLAGS)
2310 			return 0;
2311 		/* last request of the link, flush it */
2312 		req = link->head;
2313 		link->head = NULL;
2314 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2315 			goto fallback;
2316 
2317 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2318 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2319 		if (req->flags & IO_REQ_LINK_FLAGS) {
2320 			link->head = req;
2321 			link->last = req;
2322 		} else {
2323 fallback:
2324 			io_queue_sqe_fallback(req);
2325 		}
2326 		return 0;
2327 	}
2328 
2329 	io_queue_sqe(req);
2330 	return 0;
2331 }
2332 
2333 /*
2334  * Batched submission is done, ensure local IO is flushed out.
2335  */
io_submit_state_end(struct io_ring_ctx * ctx)2336 static void io_submit_state_end(struct io_ring_ctx *ctx)
2337 {
2338 	struct io_submit_state *state = &ctx->submit_state;
2339 
2340 	if (unlikely(state->link.head))
2341 		io_queue_sqe_fallback(state->link.head);
2342 	/* flush only after queuing links as they can generate completions */
2343 	io_submit_flush_completions(ctx);
2344 	if (state->plug_started)
2345 		blk_finish_plug(&state->plug);
2346 }
2347 
2348 /*
2349  * Start submission side cache.
2350  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2351 static void io_submit_state_start(struct io_submit_state *state,
2352 				  unsigned int max_ios)
2353 {
2354 	state->plug_started = false;
2355 	state->need_plug = max_ios > 2;
2356 	state->submit_nr = max_ios;
2357 	/* set only head, no need to init link_last in advance */
2358 	state->link.head = NULL;
2359 }
2360 
io_commit_sqring(struct io_ring_ctx * ctx)2361 static void io_commit_sqring(struct io_ring_ctx *ctx)
2362 {
2363 	struct io_rings *rings = ctx->rings;
2364 
2365 	/*
2366 	 * Ensure any loads from the SQEs are done at this point,
2367 	 * since once we write the new head, the application could
2368 	 * write new data to them.
2369 	 */
2370 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2371 }
2372 
2373 /*
2374  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2375  * that is mapped by userspace. This means that care needs to be taken to
2376  * ensure that reads are stable, as we cannot rely on userspace always
2377  * being a good citizen. If members of the sqe are validated and then later
2378  * used, it's important that those reads are done through READ_ONCE() to
2379  * prevent a re-load down the line.
2380  */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2381 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2382 {
2383 	unsigned mask = ctx->sq_entries - 1;
2384 	unsigned head = ctx->cached_sq_head++ & mask;
2385 
2386 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2387 		head = READ_ONCE(ctx->sq_array[head]);
2388 		if (unlikely(head >= ctx->sq_entries)) {
2389 			/* drop invalid entries */
2390 			spin_lock(&ctx->completion_lock);
2391 			ctx->cq_extra--;
2392 			spin_unlock(&ctx->completion_lock);
2393 			WRITE_ONCE(ctx->rings->sq_dropped,
2394 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2395 			return false;
2396 		}
2397 	}
2398 
2399 	/*
2400 	 * The cached sq head (or cq tail) serves two purposes:
2401 	 *
2402 	 * 1) allows us to batch the cost of updating the user visible
2403 	 *    head updates.
2404 	 * 2) allows the kernel side to track the head on its own, even
2405 	 *    though the application is the one updating it.
2406 	 */
2407 
2408 	/* double index for 128-byte SQEs, twice as long */
2409 	if (ctx->flags & IORING_SETUP_SQE128)
2410 		head <<= 1;
2411 	*sqe = &ctx->sq_sqes[head];
2412 	return true;
2413 }
2414 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2415 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2416 	__must_hold(&ctx->uring_lock)
2417 {
2418 	unsigned int entries = io_sqring_entries(ctx);
2419 	unsigned int left;
2420 	int ret;
2421 
2422 	if (unlikely(!entries))
2423 		return 0;
2424 	/* make sure SQ entry isn't read before tail */
2425 	ret = left = min(nr, entries);
2426 	io_get_task_refs(left);
2427 	io_submit_state_start(&ctx->submit_state, left);
2428 
2429 	do {
2430 		const struct io_uring_sqe *sqe;
2431 		struct io_kiocb *req;
2432 
2433 		if (unlikely(!io_alloc_req(ctx, &req)))
2434 			break;
2435 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2436 			io_req_add_to_cache(req, ctx);
2437 			break;
2438 		}
2439 
2440 		/*
2441 		 * Continue submitting even for sqe failure if the
2442 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2443 		 */
2444 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2445 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2446 			left--;
2447 			break;
2448 		}
2449 	} while (--left);
2450 
2451 	if (unlikely(left)) {
2452 		ret -= left;
2453 		/* try again if it submitted nothing and can't allocate a req */
2454 		if (!ret && io_req_cache_empty(ctx))
2455 			ret = -EAGAIN;
2456 		current->io_uring->cached_refs += left;
2457 	}
2458 
2459 	io_submit_state_end(ctx);
2460 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2461 	io_commit_sqring(ctx);
2462 	return ret;
2463 }
2464 
2465 struct io_wait_queue {
2466 	struct wait_queue_entry wq;
2467 	struct io_ring_ctx *ctx;
2468 	unsigned cq_tail;
2469 	unsigned nr_timeouts;
2470 	ktime_t timeout;
2471 };
2472 
io_has_work(struct io_ring_ctx * ctx)2473 static inline bool io_has_work(struct io_ring_ctx *ctx)
2474 {
2475 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2476 	       !llist_empty(&ctx->work_llist);
2477 }
2478 
io_should_wake(struct io_wait_queue * iowq)2479 static inline bool io_should_wake(struct io_wait_queue *iowq)
2480 {
2481 	struct io_ring_ctx *ctx = iowq->ctx;
2482 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2483 
2484 	/*
2485 	 * Wake up if we have enough events, or if a timeout occurred since we
2486 	 * started waiting. For timeouts, we always want to return to userspace,
2487 	 * regardless of event count.
2488 	 */
2489 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2490 }
2491 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2492 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2493 			    int wake_flags, void *key)
2494 {
2495 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2496 
2497 	/*
2498 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2499 	 * the task, and the next invocation will do it.
2500 	 */
2501 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2502 		return autoremove_wake_function(curr, mode, wake_flags, key);
2503 	return -1;
2504 }
2505 
io_run_task_work_sig(struct io_ring_ctx * ctx)2506 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2507 {
2508 	if (!llist_empty(&ctx->work_llist)) {
2509 		__set_current_state(TASK_RUNNING);
2510 		if (io_run_local_work(ctx, INT_MAX) > 0)
2511 			return 0;
2512 	}
2513 	if (io_run_task_work() > 0)
2514 		return 0;
2515 	if (task_sigpending(current))
2516 		return -EINTR;
2517 	return 0;
2518 }
2519 
current_pending_io(void)2520 static bool current_pending_io(void)
2521 {
2522 	struct io_uring_task *tctx = current->io_uring;
2523 
2524 	if (!tctx)
2525 		return false;
2526 	return percpu_counter_read_positive(&tctx->inflight);
2527 }
2528 
2529 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq)2530 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2531 					  struct io_wait_queue *iowq)
2532 {
2533 	int ret;
2534 
2535 	if (unlikely(READ_ONCE(ctx->check_cq)))
2536 		return 1;
2537 	if (unlikely(!llist_empty(&ctx->work_llist)))
2538 		return 1;
2539 	if (unlikely(task_work_pending(current)))
2540 		return 1;
2541 	if (unlikely(task_sigpending(current)))
2542 		return -EINTR;
2543 	if (unlikely(io_should_wake(iowq)))
2544 		return 0;
2545 
2546 	/*
2547 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2548 	 * can take into account that the task is waiting for IO - turns out
2549 	 * to be important for low QD IO.
2550 	 */
2551 	if (current_pending_io())
2552 		current->in_iowait = 1;
2553 	ret = 0;
2554 	if (iowq->timeout == KTIME_MAX)
2555 		schedule();
2556 	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2557 		ret = -ETIME;
2558 	current->in_iowait = 0;
2559 	return ret;
2560 }
2561 
2562 /*
2563  * Wait until events become available, if we don't already have some. The
2564  * application must reap them itself, as they reside on the shared cq ring.
2565  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2566 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2567 			  const sigset_t __user *sig, size_t sigsz,
2568 			  struct __kernel_timespec __user *uts)
2569 {
2570 	struct io_wait_queue iowq;
2571 	struct io_rings *rings = ctx->rings;
2572 	int ret;
2573 
2574 	if (!io_allowed_run_tw(ctx))
2575 		return -EEXIST;
2576 	if (!llist_empty(&ctx->work_llist))
2577 		io_run_local_work(ctx, min_events);
2578 	io_run_task_work();
2579 	io_cqring_overflow_flush(ctx);
2580 	/* if user messes with these they will just get an early return */
2581 	if (__io_cqring_events_user(ctx) >= min_events)
2582 		return 0;
2583 
2584 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2585 	iowq.wq.private = current;
2586 	INIT_LIST_HEAD(&iowq.wq.entry);
2587 	iowq.ctx = ctx;
2588 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2589 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2590 	iowq.timeout = KTIME_MAX;
2591 
2592 	if (uts) {
2593 		struct timespec64 ts;
2594 
2595 		if (get_timespec64(&ts, uts))
2596 			return -EFAULT;
2597 		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2598 	}
2599 
2600 	if (sig) {
2601 #ifdef CONFIG_COMPAT
2602 		if (in_compat_syscall())
2603 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2604 						      sigsz);
2605 		else
2606 #endif
2607 			ret = set_user_sigmask(sig, sigsz);
2608 
2609 		if (ret)
2610 			return ret;
2611 	}
2612 
2613 	trace_io_uring_cqring_wait(ctx, min_events);
2614 	do {
2615 		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2616 		unsigned long check_cq;
2617 
2618 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2619 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2620 			set_current_state(TASK_INTERRUPTIBLE);
2621 		} else {
2622 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2623 							TASK_INTERRUPTIBLE);
2624 		}
2625 
2626 		ret = io_cqring_wait_schedule(ctx, &iowq);
2627 		__set_current_state(TASK_RUNNING);
2628 		atomic_set(&ctx->cq_wait_nr, 0);
2629 
2630 		/*
2631 		 * Run task_work after scheduling and before io_should_wake().
2632 		 * If we got woken because of task_work being processed, run it
2633 		 * now rather than let the caller do another wait loop.
2634 		 */
2635 		if (!llist_empty(&ctx->work_llist))
2636 			io_run_local_work(ctx, nr_wait);
2637 		io_run_task_work();
2638 
2639 		/*
2640 		 * Non-local task_work will be run on exit to userspace, but
2641 		 * if we're using DEFER_TASKRUN, then we could have waited
2642 		 * with a timeout for a number of requests. If the timeout
2643 		 * hits, we could have some requests ready to process. Ensure
2644 		 * this break is _after_ we have run task_work, to avoid
2645 		 * deferring running potentially pending requests until the
2646 		 * next time we wait for events.
2647 		 */
2648 		if (ret < 0)
2649 			break;
2650 
2651 		check_cq = READ_ONCE(ctx->check_cq);
2652 		if (unlikely(check_cq)) {
2653 			/* let the caller flush overflows, retry */
2654 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2655 				io_cqring_do_overflow_flush(ctx);
2656 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2657 				ret = -EBADR;
2658 				break;
2659 			}
2660 		}
2661 
2662 		if (io_should_wake(&iowq)) {
2663 			ret = 0;
2664 			break;
2665 		}
2666 		cond_resched();
2667 	} while (1);
2668 
2669 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2670 		finish_wait(&ctx->cq_wait, &iowq.wq);
2671 	restore_saved_sigmask_unless(ret == -EINTR);
2672 
2673 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2674 }
2675 
io_mem_free(void * ptr)2676 void io_mem_free(void *ptr)
2677 {
2678 	if (!ptr)
2679 		return;
2680 
2681 	folio_put(virt_to_folio(ptr));
2682 }
2683 
io_pages_free(struct page *** pages,int npages)2684 static void io_pages_free(struct page ***pages, int npages)
2685 {
2686 	struct page **page_array;
2687 	int i;
2688 
2689 	if (!pages)
2690 		return;
2691 
2692 	page_array = *pages;
2693 	if (!page_array)
2694 		return;
2695 
2696 	for (i = 0; i < npages; i++)
2697 		unpin_user_page(page_array[i]);
2698 	kvfree(page_array);
2699 	*pages = NULL;
2700 }
2701 
__io_uaddr_map(struct page *** pages,unsigned short * npages,unsigned long uaddr,size_t size)2702 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2703 			    unsigned long uaddr, size_t size)
2704 {
2705 	struct page **page_array;
2706 	unsigned int nr_pages;
2707 	void *page_addr;
2708 	int ret, i, pinned;
2709 
2710 	*npages = 0;
2711 
2712 	if (uaddr & (PAGE_SIZE - 1) || !size)
2713 		return ERR_PTR(-EINVAL);
2714 
2715 	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2716 	if (nr_pages > USHRT_MAX)
2717 		return ERR_PTR(-EINVAL);
2718 	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2719 	if (!page_array)
2720 		return ERR_PTR(-ENOMEM);
2721 
2722 
2723 	pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2724 				     page_array);
2725 	if (pinned != nr_pages) {
2726 		ret = (pinned < 0) ? pinned : -EFAULT;
2727 		goto free_pages;
2728 	}
2729 
2730 	page_addr = page_address(page_array[0]);
2731 	for (i = 0; i < nr_pages; i++) {
2732 		ret = -EINVAL;
2733 
2734 		/*
2735 		 * Can't support mapping user allocated ring memory on 32-bit
2736 		 * archs where it could potentially reside in highmem. Just
2737 		 * fail those with -EINVAL, just like we did on kernels that
2738 		 * didn't support this feature.
2739 		 */
2740 		if (PageHighMem(page_array[i]))
2741 			goto free_pages;
2742 
2743 		/*
2744 		 * No support for discontig pages for now, should either be a
2745 		 * single normal page, or a huge page. Later on we can add
2746 		 * support for remapping discontig pages, for now we will
2747 		 * just fail them with EINVAL.
2748 		 */
2749 		if (page_address(page_array[i]) != page_addr)
2750 			goto free_pages;
2751 		page_addr += PAGE_SIZE;
2752 	}
2753 
2754 	*pages = page_array;
2755 	*npages = nr_pages;
2756 	return page_to_virt(page_array[0]);
2757 
2758 free_pages:
2759 	io_pages_free(&page_array, pinned > 0 ? pinned : 0);
2760 	return ERR_PTR(ret);
2761 }
2762 
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2763 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2764 			  size_t size)
2765 {
2766 	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2767 				size);
2768 }
2769 
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2770 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2771 			 size_t size)
2772 {
2773 	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2774 				size);
2775 }
2776 
io_rings_free(struct io_ring_ctx * ctx)2777 static void io_rings_free(struct io_ring_ctx *ctx)
2778 {
2779 	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2780 		io_mem_free(ctx->rings);
2781 		io_mem_free(ctx->sq_sqes);
2782 	} else {
2783 		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2784 		ctx->n_ring_pages = 0;
2785 		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2786 		ctx->n_sqe_pages = 0;
2787 	}
2788 
2789 	ctx->rings = NULL;
2790 	ctx->sq_sqes = NULL;
2791 }
2792 
io_mem_alloc(size_t size)2793 void *io_mem_alloc(size_t size)
2794 {
2795 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2796 	void *ret;
2797 
2798 	ret = (void *) __get_free_pages(gfp, get_order(size));
2799 	if (ret)
2800 		return ret;
2801 	return ERR_PTR(-ENOMEM);
2802 }
2803 
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2804 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2805 				unsigned int cq_entries, size_t *sq_offset)
2806 {
2807 	struct io_rings *rings;
2808 	size_t off, sq_array_size;
2809 
2810 	off = struct_size(rings, cqes, cq_entries);
2811 	if (off == SIZE_MAX)
2812 		return SIZE_MAX;
2813 	if (ctx->flags & IORING_SETUP_CQE32) {
2814 		if (check_shl_overflow(off, 1, &off))
2815 			return SIZE_MAX;
2816 	}
2817 
2818 #ifdef CONFIG_SMP
2819 	off = ALIGN(off, SMP_CACHE_BYTES);
2820 	if (off == 0)
2821 		return SIZE_MAX;
2822 #endif
2823 
2824 	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2825 		if (sq_offset)
2826 			*sq_offset = SIZE_MAX;
2827 		return off;
2828 	}
2829 
2830 	if (sq_offset)
2831 		*sq_offset = off;
2832 
2833 	sq_array_size = array_size(sizeof(u32), sq_entries);
2834 	if (sq_array_size == SIZE_MAX)
2835 		return SIZE_MAX;
2836 
2837 	if (check_add_overflow(off, sq_array_size, &off))
2838 		return SIZE_MAX;
2839 
2840 	return off;
2841 }
2842 
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2843 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2844 			       unsigned int eventfd_async)
2845 {
2846 	struct io_ev_fd *ev_fd;
2847 	__s32 __user *fds = arg;
2848 	int fd;
2849 
2850 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2851 					lockdep_is_held(&ctx->uring_lock));
2852 	if (ev_fd)
2853 		return -EBUSY;
2854 
2855 	if (copy_from_user(&fd, fds, sizeof(*fds)))
2856 		return -EFAULT;
2857 
2858 	ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2859 	if (!ev_fd)
2860 		return -ENOMEM;
2861 
2862 	ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2863 	if (IS_ERR(ev_fd->cq_ev_fd)) {
2864 		int ret = PTR_ERR(ev_fd->cq_ev_fd);
2865 		kfree(ev_fd);
2866 		return ret;
2867 	}
2868 
2869 	spin_lock(&ctx->completion_lock);
2870 	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2871 	spin_unlock(&ctx->completion_lock);
2872 
2873 	ev_fd->eventfd_async = eventfd_async;
2874 	ctx->has_evfd = true;
2875 	rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2876 	atomic_set(&ev_fd->refs, 1);
2877 	atomic_set(&ev_fd->ops, 0);
2878 	return 0;
2879 }
2880 
io_eventfd_unregister(struct io_ring_ctx * ctx)2881 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2882 {
2883 	struct io_ev_fd *ev_fd;
2884 
2885 	ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2886 					lockdep_is_held(&ctx->uring_lock));
2887 	if (ev_fd) {
2888 		ctx->has_evfd = false;
2889 		rcu_assign_pointer(ctx->io_ev_fd, NULL);
2890 		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2891 			call_rcu(&ev_fd->rcu, io_eventfd_ops);
2892 		return 0;
2893 	}
2894 
2895 	return -ENXIO;
2896 }
2897 
io_req_caches_free(struct io_ring_ctx * ctx)2898 static void io_req_caches_free(struct io_ring_ctx *ctx)
2899 {
2900 	struct io_kiocb *req;
2901 	int nr = 0;
2902 
2903 	mutex_lock(&ctx->uring_lock);
2904 	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2905 
2906 	while (!io_req_cache_empty(ctx)) {
2907 		req = io_extract_req(ctx);
2908 		kmem_cache_free(req_cachep, req);
2909 		nr++;
2910 	}
2911 	if (nr)
2912 		percpu_ref_put_many(&ctx->refs, nr);
2913 	mutex_unlock(&ctx->uring_lock);
2914 }
2915 
io_rsrc_node_cache_free(struct io_cache_entry * entry)2916 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2917 {
2918 	kfree(container_of(entry, struct io_rsrc_node, cache));
2919 }
2920 
io_ring_ctx_free(struct io_ring_ctx * ctx)2921 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2922 {
2923 	io_sq_thread_finish(ctx);
2924 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2925 	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2926 		return;
2927 
2928 	mutex_lock(&ctx->uring_lock);
2929 	if (ctx->buf_data)
2930 		__io_sqe_buffers_unregister(ctx);
2931 	if (ctx->file_data)
2932 		__io_sqe_files_unregister(ctx);
2933 	io_cqring_overflow_kill(ctx);
2934 	io_eventfd_unregister(ctx);
2935 	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2936 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2937 	io_destroy_buffers(ctx);
2938 	mutex_unlock(&ctx->uring_lock);
2939 	if (ctx->sq_creds)
2940 		put_cred(ctx->sq_creds);
2941 	if (ctx->submitter_task)
2942 		put_task_struct(ctx->submitter_task);
2943 
2944 	/* there are no registered resources left, nobody uses it */
2945 	if (ctx->rsrc_node)
2946 		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2947 
2948 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2949 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2950 
2951 	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2952 	if (ctx->mm_account) {
2953 		mmdrop(ctx->mm_account);
2954 		ctx->mm_account = NULL;
2955 	}
2956 	io_rings_free(ctx);
2957 	io_kbuf_mmap_list_free(ctx);
2958 
2959 	percpu_ref_exit(&ctx->refs);
2960 	free_uid(ctx->user);
2961 	io_req_caches_free(ctx);
2962 	if (ctx->hash_map)
2963 		io_wq_put_hash(ctx->hash_map);
2964 	kfree(ctx->cancel_table.hbs);
2965 	kfree(ctx->cancel_table_locked.hbs);
2966 	xa_destroy(&ctx->io_bl_xa);
2967 	kfree(ctx);
2968 }
2969 
io_activate_pollwq_cb(struct callback_head * cb)2970 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2971 {
2972 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2973 					       poll_wq_task_work);
2974 
2975 	mutex_lock(&ctx->uring_lock);
2976 	ctx->poll_activated = true;
2977 	mutex_unlock(&ctx->uring_lock);
2978 
2979 	/*
2980 	 * Wake ups for some events between start of polling and activation
2981 	 * might've been lost due to loose synchronisation.
2982 	 */
2983 	wake_up_all(&ctx->poll_wq);
2984 	percpu_ref_put(&ctx->refs);
2985 }
2986 
io_activate_pollwq(struct io_ring_ctx * ctx)2987 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2988 {
2989 	spin_lock(&ctx->completion_lock);
2990 	/* already activated or in progress */
2991 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2992 		goto out;
2993 	if (WARN_ON_ONCE(!ctx->task_complete))
2994 		goto out;
2995 	if (!ctx->submitter_task)
2996 		goto out;
2997 	/*
2998 	 * with ->submitter_task only the submitter task completes requests, we
2999 	 * only need to sync with it, which is done by injecting a tw
3000 	 */
3001 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3002 	percpu_ref_get(&ctx->refs);
3003 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3004 		percpu_ref_put(&ctx->refs);
3005 out:
3006 	spin_unlock(&ctx->completion_lock);
3007 }
3008 
io_uring_poll(struct file * file,poll_table * wait)3009 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3010 {
3011 	struct io_ring_ctx *ctx = file->private_data;
3012 	__poll_t mask = 0;
3013 
3014 	if (unlikely(!ctx->poll_activated))
3015 		io_activate_pollwq(ctx);
3016 
3017 	poll_wait(file, &ctx->poll_wq, wait);
3018 	/*
3019 	 * synchronizes with barrier from wq_has_sleeper call in
3020 	 * io_commit_cqring
3021 	 */
3022 	smp_rmb();
3023 	if (!io_sqring_full(ctx))
3024 		mask |= EPOLLOUT | EPOLLWRNORM;
3025 
3026 	/*
3027 	 * Don't flush cqring overflow list here, just do a simple check.
3028 	 * Otherwise there could possible be ABBA deadlock:
3029 	 *      CPU0                    CPU1
3030 	 *      ----                    ----
3031 	 * lock(&ctx->uring_lock);
3032 	 *                              lock(&ep->mtx);
3033 	 *                              lock(&ctx->uring_lock);
3034 	 * lock(&ep->mtx);
3035 	 *
3036 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3037 	 * pushes them to do the flush.
3038 	 */
3039 
3040 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3041 		mask |= EPOLLIN | EPOLLRDNORM;
3042 
3043 	return mask;
3044 }
3045 
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)3046 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3047 {
3048 	const struct cred *creds;
3049 
3050 	creds = xa_erase(&ctx->personalities, id);
3051 	if (creds) {
3052 		put_cred(creds);
3053 		return 0;
3054 	}
3055 
3056 	return -EINVAL;
3057 }
3058 
3059 struct io_tctx_exit {
3060 	struct callback_head		task_work;
3061 	struct completion		completion;
3062 	struct io_ring_ctx		*ctx;
3063 };
3064 
io_tctx_exit_cb(struct callback_head * cb)3065 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3066 {
3067 	struct io_uring_task *tctx = current->io_uring;
3068 	struct io_tctx_exit *work;
3069 
3070 	work = container_of(cb, struct io_tctx_exit, task_work);
3071 	/*
3072 	 * When @in_cancel, we're in cancellation and it's racy to remove the
3073 	 * node. It'll be removed by the end of cancellation, just ignore it.
3074 	 * tctx can be NULL if the queueing of this task_work raced with
3075 	 * work cancelation off the exec path.
3076 	 */
3077 	if (tctx && !atomic_read(&tctx->in_cancel))
3078 		io_uring_del_tctx_node((unsigned long)work->ctx);
3079 	complete(&work->completion);
3080 }
3081 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)3082 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3083 {
3084 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3085 
3086 	return req->ctx == data;
3087 }
3088 
io_ring_exit_work(struct work_struct * work)3089 static __cold void io_ring_exit_work(struct work_struct *work)
3090 {
3091 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3092 	unsigned long timeout = jiffies + HZ * 60 * 5;
3093 	unsigned long interval = HZ / 20;
3094 	struct io_tctx_exit exit;
3095 	struct io_tctx_node *node;
3096 	int ret;
3097 
3098 	/*
3099 	 * If we're doing polled IO and end up having requests being
3100 	 * submitted async (out-of-line), then completions can come in while
3101 	 * we're waiting for refs to drop. We need to reap these manually,
3102 	 * as nobody else will be looking for them.
3103 	 */
3104 	do {
3105 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3106 			mutex_lock(&ctx->uring_lock);
3107 			io_cqring_overflow_kill(ctx);
3108 			mutex_unlock(&ctx->uring_lock);
3109 		}
3110 
3111 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3112 			io_move_task_work_from_local(ctx);
3113 
3114 		while (io_uring_try_cancel_requests(ctx, NULL, true))
3115 			cond_resched();
3116 
3117 		if (ctx->sq_data) {
3118 			struct io_sq_data *sqd = ctx->sq_data;
3119 			struct task_struct *tsk;
3120 
3121 			io_sq_thread_park(sqd);
3122 			tsk = sqd->thread;
3123 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3124 				io_wq_cancel_cb(tsk->io_uring->io_wq,
3125 						io_cancel_ctx_cb, ctx, true);
3126 			io_sq_thread_unpark(sqd);
3127 		}
3128 
3129 		io_req_caches_free(ctx);
3130 
3131 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3132 			/* there is little hope left, don't run it too often */
3133 			interval = HZ * 60;
3134 		}
3135 		/*
3136 		 * This is really an uninterruptible wait, as it has to be
3137 		 * complete. But it's also run from a kworker, which doesn't
3138 		 * take signals, so it's fine to make it interruptible. This
3139 		 * avoids scenarios where we knowingly can wait much longer
3140 		 * on completions, for example if someone does a SIGSTOP on
3141 		 * a task that needs to finish task_work to make this loop
3142 		 * complete. That's a synthetic situation that should not
3143 		 * cause a stuck task backtrace, and hence a potential panic
3144 		 * on stuck tasks if that is enabled.
3145 		 */
3146 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3147 
3148 	init_completion(&exit.completion);
3149 	init_task_work(&exit.task_work, io_tctx_exit_cb);
3150 	exit.ctx = ctx;
3151 
3152 	mutex_lock(&ctx->uring_lock);
3153 	while (!list_empty(&ctx->tctx_list)) {
3154 		WARN_ON_ONCE(time_after(jiffies, timeout));
3155 
3156 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3157 					ctx_node);
3158 		/* don't spin on a single task if cancellation failed */
3159 		list_rotate_left(&ctx->tctx_list);
3160 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3161 		if (WARN_ON_ONCE(ret))
3162 			continue;
3163 
3164 		mutex_unlock(&ctx->uring_lock);
3165 		/*
3166 		 * See comment above for
3167 		 * wait_for_completion_interruptible_timeout() on why this
3168 		 * wait is marked as interruptible.
3169 		 */
3170 		wait_for_completion_interruptible(&exit.completion);
3171 		mutex_lock(&ctx->uring_lock);
3172 	}
3173 	mutex_unlock(&ctx->uring_lock);
3174 	spin_lock(&ctx->completion_lock);
3175 	spin_unlock(&ctx->completion_lock);
3176 
3177 	/* pairs with RCU read section in io_req_local_work_add() */
3178 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3179 		synchronize_rcu();
3180 
3181 	io_ring_ctx_free(ctx);
3182 }
3183 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3184 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3185 {
3186 	unsigned long index;
3187 	struct creds *creds;
3188 
3189 	mutex_lock(&ctx->uring_lock);
3190 	percpu_ref_kill(&ctx->refs);
3191 	xa_for_each(&ctx->personalities, index, creds)
3192 		io_unregister_personality(ctx, index);
3193 	if (ctx->rings)
3194 		io_poll_remove_all(ctx, NULL, true);
3195 	mutex_unlock(&ctx->uring_lock);
3196 
3197 	/*
3198 	 * If we failed setting up the ctx, we might not have any rings
3199 	 * and therefore did not submit any requests
3200 	 */
3201 	if (ctx->rings)
3202 		io_kill_timeouts(ctx, NULL, true);
3203 
3204 	flush_delayed_work(&ctx->fallback_work);
3205 
3206 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3207 	/*
3208 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3209 	 * if we're exiting a ton of rings at the same time. It just adds
3210 	 * noise and overhead, there's no discernable change in runtime
3211 	 * over using system_wq.
3212 	 */
3213 	queue_work(iou_wq, &ctx->exit_work);
3214 }
3215 
io_uring_release(struct inode * inode,struct file * file)3216 static int io_uring_release(struct inode *inode, struct file *file)
3217 {
3218 	struct io_ring_ctx *ctx = file->private_data;
3219 
3220 	file->private_data = NULL;
3221 	io_ring_ctx_wait_and_kill(ctx);
3222 	return 0;
3223 }
3224 
3225 struct io_task_cancel {
3226 	struct task_struct *task;
3227 	bool all;
3228 };
3229 
io_cancel_task_cb(struct io_wq_work * work,void * data)3230 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3231 {
3232 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3233 	struct io_task_cancel *cancel = data;
3234 
3235 	return io_match_task_safe(req, cancel->task, cancel->all);
3236 }
3237 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3238 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3239 					 struct task_struct *task,
3240 					 bool cancel_all)
3241 {
3242 	struct io_defer_entry *de;
3243 	LIST_HEAD(list);
3244 
3245 	spin_lock(&ctx->completion_lock);
3246 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3247 		if (io_match_task_safe(de->req, task, cancel_all)) {
3248 			list_cut_position(&list, &ctx->defer_list, &de->list);
3249 			break;
3250 		}
3251 	}
3252 	spin_unlock(&ctx->completion_lock);
3253 	if (list_empty(&list))
3254 		return false;
3255 
3256 	while (!list_empty(&list)) {
3257 		de = list_first_entry(&list, struct io_defer_entry, list);
3258 		list_del_init(&de->list);
3259 		io_req_task_queue_fail(de->req, -ECANCELED);
3260 		kfree(de);
3261 	}
3262 	return true;
3263 }
3264 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3265 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3266 {
3267 	struct io_tctx_node *node;
3268 	enum io_wq_cancel cret;
3269 	bool ret = false;
3270 
3271 	mutex_lock(&ctx->uring_lock);
3272 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3273 		struct io_uring_task *tctx = node->task->io_uring;
3274 
3275 		/*
3276 		 * io_wq will stay alive while we hold uring_lock, because it's
3277 		 * killed after ctx nodes, which requires to take the lock.
3278 		 */
3279 		if (!tctx || !tctx->io_wq)
3280 			continue;
3281 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3282 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3283 	}
3284 	mutex_unlock(&ctx->uring_lock);
3285 
3286 	return ret;
3287 }
3288 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3289 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3290 						struct task_struct *task,
3291 						bool cancel_all)
3292 {
3293 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3294 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3295 	enum io_wq_cancel cret;
3296 	bool ret = false;
3297 
3298 	/* set it so io_req_local_work_add() would wake us up */
3299 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3300 		atomic_set(&ctx->cq_wait_nr, 1);
3301 		smp_mb();
3302 	}
3303 
3304 	/* failed during ring init, it couldn't have issued any requests */
3305 	if (!ctx->rings)
3306 		return false;
3307 
3308 	if (!task) {
3309 		ret |= io_uring_try_cancel_iowq(ctx);
3310 	} else if (tctx && tctx->io_wq) {
3311 		/*
3312 		 * Cancels requests of all rings, not only @ctx, but
3313 		 * it's fine as the task is in exit/exec.
3314 		 */
3315 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3316 				       &cancel, true);
3317 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3318 	}
3319 
3320 	/* SQPOLL thread does its own polling */
3321 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3322 	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3323 		while (!wq_list_empty(&ctx->iopoll_list)) {
3324 			io_iopoll_try_reap_events(ctx);
3325 			ret = true;
3326 			cond_resched();
3327 		}
3328 	}
3329 
3330 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3331 	    io_allowed_defer_tw_run(ctx))
3332 		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3333 	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3334 	mutex_lock(&ctx->uring_lock);
3335 	ret |= io_poll_remove_all(ctx, task, cancel_all);
3336 	mutex_unlock(&ctx->uring_lock);
3337 	ret |= io_kill_timeouts(ctx, task, cancel_all);
3338 	if (task)
3339 		ret |= io_run_task_work() > 0;
3340 	return ret;
3341 }
3342 
tctx_inflight(struct io_uring_task * tctx,bool tracked)3343 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3344 {
3345 	if (tracked)
3346 		return atomic_read(&tctx->inflight_tracked);
3347 	return percpu_counter_sum(&tctx->inflight);
3348 }
3349 
3350 /*
3351  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3352  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3353  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3354 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3355 {
3356 	struct io_uring_task *tctx = current->io_uring;
3357 	struct io_ring_ctx *ctx;
3358 	struct io_tctx_node *node;
3359 	unsigned long index;
3360 	s64 inflight;
3361 	DEFINE_WAIT(wait);
3362 
3363 	WARN_ON_ONCE(sqd && sqd->thread != current);
3364 
3365 	if (!current->io_uring)
3366 		return;
3367 	if (tctx->io_wq)
3368 		io_wq_exit_start(tctx->io_wq);
3369 
3370 	atomic_inc(&tctx->in_cancel);
3371 	do {
3372 		bool loop = false;
3373 
3374 		io_uring_drop_tctx_refs(current);
3375 		if (!tctx_inflight(tctx, !cancel_all))
3376 			break;
3377 
3378 		/* read completions before cancelations */
3379 		inflight = tctx_inflight(tctx, false);
3380 		if (!inflight)
3381 			break;
3382 
3383 		if (!sqd) {
3384 			xa_for_each(&tctx->xa, index, node) {
3385 				/* sqpoll task will cancel all its requests */
3386 				if (node->ctx->sq_data)
3387 					continue;
3388 				loop |= io_uring_try_cancel_requests(node->ctx,
3389 							current, cancel_all);
3390 			}
3391 		} else {
3392 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3393 				loop |= io_uring_try_cancel_requests(ctx,
3394 								     current,
3395 								     cancel_all);
3396 		}
3397 
3398 		if (loop) {
3399 			cond_resched();
3400 			continue;
3401 		}
3402 
3403 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3404 		io_run_task_work();
3405 		io_uring_drop_tctx_refs(current);
3406 		xa_for_each(&tctx->xa, index, node) {
3407 			if (!llist_empty(&node->ctx->work_llist)) {
3408 				WARN_ON_ONCE(node->ctx->submitter_task &&
3409 					     node->ctx->submitter_task != current);
3410 				goto end_wait;
3411 			}
3412 		}
3413 		/*
3414 		 * If we've seen completions, retry without waiting. This
3415 		 * avoids a race where a completion comes in before we did
3416 		 * prepare_to_wait().
3417 		 */
3418 		if (inflight == tctx_inflight(tctx, !cancel_all))
3419 			schedule();
3420 end_wait:
3421 		finish_wait(&tctx->wait, &wait);
3422 	} while (1);
3423 
3424 	io_uring_clean_tctx(tctx);
3425 	if (cancel_all) {
3426 		/*
3427 		 * We shouldn't run task_works after cancel, so just leave
3428 		 * ->in_cancel set for normal exit.
3429 		 */
3430 		atomic_dec(&tctx->in_cancel);
3431 		/* for exec all current's requests should be gone, kill tctx */
3432 		__io_uring_free(current);
3433 	}
3434 }
3435 
__io_uring_cancel(bool cancel_all)3436 void __io_uring_cancel(bool cancel_all)
3437 {
3438 	io_uring_unreg_ringfd();
3439 	io_uring_cancel_generic(cancel_all, NULL);
3440 }
3441 
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3442 static void *io_uring_validate_mmap_request(struct file *file,
3443 					    loff_t pgoff, size_t sz)
3444 {
3445 	struct io_ring_ctx *ctx = file->private_data;
3446 	loff_t offset = pgoff << PAGE_SHIFT;
3447 	struct page *page;
3448 	void *ptr;
3449 
3450 	switch (offset & IORING_OFF_MMAP_MASK) {
3451 	case IORING_OFF_SQ_RING:
3452 	case IORING_OFF_CQ_RING:
3453 		/* Don't allow mmap if the ring was setup without it */
3454 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3455 			return ERR_PTR(-EINVAL);
3456 		ptr = ctx->rings;
3457 		break;
3458 	case IORING_OFF_SQES:
3459 		/* Don't allow mmap if the ring was setup without it */
3460 		if (ctx->flags & IORING_SETUP_NO_MMAP)
3461 			return ERR_PTR(-EINVAL);
3462 		ptr = ctx->sq_sqes;
3463 		break;
3464 	case IORING_OFF_PBUF_RING: {
3465 		struct io_buffer_list *bl;
3466 		unsigned int bgid;
3467 
3468 		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3469 		bl = io_pbuf_get_bl(ctx, bgid);
3470 		if (IS_ERR(bl))
3471 			return bl;
3472 		ptr = bl->buf_ring;
3473 		io_put_bl(ctx, bl);
3474 		break;
3475 		}
3476 	default:
3477 		return ERR_PTR(-EINVAL);
3478 	}
3479 
3480 	page = virt_to_head_page(ptr);
3481 	if (sz > page_size(page))
3482 		return ERR_PTR(-EINVAL);
3483 
3484 	return ptr;
3485 }
3486 
3487 #ifdef CONFIG_MMU
3488 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3489 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3490 {
3491 	size_t sz = vma->vm_end - vma->vm_start;
3492 	unsigned long pfn;
3493 	void *ptr;
3494 
3495 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3496 	if (IS_ERR(ptr))
3497 		return PTR_ERR(ptr);
3498 
3499 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3500 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3501 }
3502 
io_uring_mmu_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3503 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3504 			unsigned long addr, unsigned long len,
3505 			unsigned long pgoff, unsigned long flags)
3506 {
3507 	void *ptr;
3508 
3509 	/*
3510 	 * Do not allow to map to user-provided address to avoid breaking the
3511 	 * aliasing rules. Userspace is not able to guess the offset address of
3512 	 * kernel kmalloc()ed memory area.
3513 	 */
3514 	if (addr)
3515 		return -EINVAL;
3516 
3517 	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3518 	if (IS_ERR(ptr))
3519 		return -ENOMEM;
3520 
3521 	/*
3522 	 * Some architectures have strong cache aliasing requirements.
3523 	 * For such architectures we need a coherent mapping which aliases
3524 	 * kernel memory *and* userspace memory. To achieve that:
3525 	 * - use a NULL file pointer to reference physical memory, and
3526 	 * - use the kernel virtual address of the shared io_uring context
3527 	 *   (instead of the userspace-provided address, which has to be 0UL
3528 	 *   anyway).
3529 	 * - use the same pgoff which the get_unmapped_area() uses to
3530 	 *   calculate the page colouring.
3531 	 * For architectures without such aliasing requirements, the
3532 	 * architecture will return any suitable mapping because addr is 0.
3533 	 */
3534 	filp = NULL;
3535 	flags |= MAP_SHARED;
3536 	pgoff = 0;	/* has been translated to ptr above */
3537 #ifdef SHM_COLOUR
3538 	addr = (uintptr_t) ptr;
3539 	pgoff = addr >> PAGE_SHIFT;
3540 #else
3541 	addr = 0UL;
3542 #endif
3543 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3544 }
3545 
3546 #else /* !CONFIG_MMU */
3547 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3548 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3549 {
3550 	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3551 }
3552 
io_uring_nommu_mmap_capabilities(struct file * file)3553 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3554 {
3555 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3556 }
3557 
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3558 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3559 	unsigned long addr, unsigned long len,
3560 	unsigned long pgoff, unsigned long flags)
3561 {
3562 	void *ptr;
3563 
3564 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3565 	if (IS_ERR(ptr))
3566 		return PTR_ERR(ptr);
3567 
3568 	return (unsigned long) ptr;
3569 }
3570 
3571 #endif /* !CONFIG_MMU */
3572 
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3573 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3574 {
3575 	if (flags & IORING_ENTER_EXT_ARG) {
3576 		struct io_uring_getevents_arg arg;
3577 
3578 		if (argsz != sizeof(arg))
3579 			return -EINVAL;
3580 		if (copy_from_user(&arg, argp, sizeof(arg)))
3581 			return -EFAULT;
3582 	}
3583 	return 0;
3584 }
3585 
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3586 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3587 			  struct __kernel_timespec __user **ts,
3588 			  const sigset_t __user **sig)
3589 {
3590 	struct io_uring_getevents_arg arg;
3591 
3592 	/*
3593 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3594 	 * is just a pointer to the sigset_t.
3595 	 */
3596 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3597 		*sig = (const sigset_t __user *) argp;
3598 		*ts = NULL;
3599 		return 0;
3600 	}
3601 
3602 	/*
3603 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3604 	 * timespec and sigset_t pointers if good.
3605 	 */
3606 	if (*argsz != sizeof(arg))
3607 		return -EINVAL;
3608 	if (copy_from_user(&arg, argp, sizeof(arg)))
3609 		return -EFAULT;
3610 	if (arg.pad)
3611 		return -EINVAL;
3612 	*sig = u64_to_user_ptr(arg.sigmask);
3613 	*argsz = arg.sigmask_sz;
3614 	*ts = u64_to_user_ptr(arg.ts);
3615 	return 0;
3616 }
3617 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3618 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3619 		u32, min_complete, u32, flags, const void __user *, argp,
3620 		size_t, argsz)
3621 {
3622 	struct io_ring_ctx *ctx;
3623 	struct file *file;
3624 	long ret;
3625 
3626 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3627 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3628 			       IORING_ENTER_REGISTERED_RING)))
3629 		return -EINVAL;
3630 
3631 	/*
3632 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3633 	 * need only dereference our task private array to find it.
3634 	 */
3635 	if (flags & IORING_ENTER_REGISTERED_RING) {
3636 		struct io_uring_task *tctx = current->io_uring;
3637 
3638 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3639 			return -EINVAL;
3640 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3641 		file = tctx->registered_rings[fd];
3642 		if (unlikely(!file))
3643 			return -EBADF;
3644 	} else {
3645 		file = fget(fd);
3646 		if (unlikely(!file))
3647 			return -EBADF;
3648 		ret = -EOPNOTSUPP;
3649 		if (unlikely(!io_is_uring_fops(file)))
3650 			goto out;
3651 	}
3652 
3653 	ctx = file->private_data;
3654 	ret = -EBADFD;
3655 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3656 		goto out;
3657 
3658 	/*
3659 	 * For SQ polling, the thread will do all submissions and completions.
3660 	 * Just return the requested submit count, and wake the thread if
3661 	 * we were asked to.
3662 	 */
3663 	ret = 0;
3664 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3665 		io_cqring_overflow_flush(ctx);
3666 
3667 		if (unlikely(ctx->sq_data->thread == NULL)) {
3668 			ret = -EOWNERDEAD;
3669 			goto out;
3670 		}
3671 		if (flags & IORING_ENTER_SQ_WAKEUP)
3672 			wake_up(&ctx->sq_data->wait);
3673 		if (flags & IORING_ENTER_SQ_WAIT)
3674 			io_sqpoll_wait_sq(ctx);
3675 
3676 		ret = to_submit;
3677 	} else if (to_submit) {
3678 		ret = io_uring_add_tctx_node(ctx);
3679 		if (unlikely(ret))
3680 			goto out;
3681 
3682 		mutex_lock(&ctx->uring_lock);
3683 		ret = io_submit_sqes(ctx, to_submit);
3684 		if (ret != to_submit) {
3685 			mutex_unlock(&ctx->uring_lock);
3686 			goto out;
3687 		}
3688 		if (flags & IORING_ENTER_GETEVENTS) {
3689 			if (ctx->syscall_iopoll)
3690 				goto iopoll_locked;
3691 			/*
3692 			 * Ignore errors, we'll soon call io_cqring_wait() and
3693 			 * it should handle ownership problems if any.
3694 			 */
3695 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3696 				(void)io_run_local_work_locked(ctx, min_complete);
3697 		}
3698 		mutex_unlock(&ctx->uring_lock);
3699 	}
3700 
3701 	if (flags & IORING_ENTER_GETEVENTS) {
3702 		int ret2;
3703 
3704 		if (ctx->syscall_iopoll) {
3705 			/*
3706 			 * We disallow the app entering submit/complete with
3707 			 * polling, but we still need to lock the ring to
3708 			 * prevent racing with polled issue that got punted to
3709 			 * a workqueue.
3710 			 */
3711 			mutex_lock(&ctx->uring_lock);
3712 iopoll_locked:
3713 			ret2 = io_validate_ext_arg(flags, argp, argsz);
3714 			if (likely(!ret2)) {
3715 				min_complete = min(min_complete,
3716 						   ctx->cq_entries);
3717 				ret2 = io_iopoll_check(ctx, min_complete);
3718 			}
3719 			mutex_unlock(&ctx->uring_lock);
3720 		} else {
3721 			const sigset_t __user *sig;
3722 			struct __kernel_timespec __user *ts;
3723 
3724 			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3725 			if (likely(!ret2)) {
3726 				min_complete = min(min_complete,
3727 						   ctx->cq_entries);
3728 				ret2 = io_cqring_wait(ctx, min_complete, sig,
3729 						      argsz, ts);
3730 			}
3731 		}
3732 
3733 		if (!ret) {
3734 			ret = ret2;
3735 
3736 			/*
3737 			 * EBADR indicates that one or more CQE were dropped.
3738 			 * Once the user has been informed we can clear the bit
3739 			 * as they are obviously ok with those drops.
3740 			 */
3741 			if (unlikely(ret2 == -EBADR))
3742 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3743 					  &ctx->check_cq);
3744 		}
3745 	}
3746 out:
3747 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3748 		fput(file);
3749 	return ret;
3750 }
3751 
3752 static const struct file_operations io_uring_fops = {
3753 	.release	= io_uring_release,
3754 	.mmap		= io_uring_mmap,
3755 #ifndef CONFIG_MMU
3756 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3757 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3758 #else
3759 	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3760 #endif
3761 	.poll		= io_uring_poll,
3762 #ifdef CONFIG_PROC_FS
3763 	.show_fdinfo	= io_uring_show_fdinfo,
3764 #endif
3765 };
3766 
io_is_uring_fops(struct file * file)3767 bool io_is_uring_fops(struct file *file)
3768 {
3769 	return file->f_op == &io_uring_fops;
3770 }
3771 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3772 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3773 					 struct io_uring_params *p)
3774 {
3775 	struct io_rings *rings;
3776 	size_t size, sq_array_offset;
3777 	void *ptr;
3778 
3779 	/* make sure these are sane, as we already accounted them */
3780 	ctx->sq_entries = p->sq_entries;
3781 	ctx->cq_entries = p->cq_entries;
3782 
3783 	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3784 	if (size == SIZE_MAX)
3785 		return -EOVERFLOW;
3786 
3787 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3788 		rings = io_mem_alloc(size);
3789 	else
3790 		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3791 
3792 	if (IS_ERR(rings))
3793 		return PTR_ERR(rings);
3794 
3795 	ctx->rings = rings;
3796 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3797 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3798 	rings->sq_ring_mask = p->sq_entries - 1;
3799 	rings->cq_ring_mask = p->cq_entries - 1;
3800 	rings->sq_ring_entries = p->sq_entries;
3801 	rings->cq_ring_entries = p->cq_entries;
3802 
3803 	if (p->flags & IORING_SETUP_SQE128)
3804 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3805 	else
3806 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3807 	if (size == SIZE_MAX) {
3808 		io_rings_free(ctx);
3809 		return -EOVERFLOW;
3810 	}
3811 
3812 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3813 		ptr = io_mem_alloc(size);
3814 	else
3815 		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3816 
3817 	if (IS_ERR(ptr)) {
3818 		io_rings_free(ctx);
3819 		return PTR_ERR(ptr);
3820 	}
3821 
3822 	ctx->sq_sqes = ptr;
3823 	return 0;
3824 }
3825 
io_uring_install_fd(struct file * file)3826 static int io_uring_install_fd(struct file *file)
3827 {
3828 	int fd;
3829 
3830 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3831 	if (fd < 0)
3832 		return fd;
3833 	fd_install(fd, file);
3834 	return fd;
3835 }
3836 
3837 /*
3838  * Allocate an anonymous fd, this is what constitutes the application
3839  * visible backing of an io_uring instance. The application mmaps this
3840  * fd to gain access to the SQ/CQ ring details.
3841  */
io_uring_get_file(struct io_ring_ctx * ctx)3842 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3843 {
3844 	return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3845 					 O_RDWR | O_CLOEXEC, NULL);
3846 }
3847 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3848 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3849 				  struct io_uring_params __user *params)
3850 {
3851 	struct io_ring_ctx *ctx;
3852 	struct io_uring_task *tctx;
3853 	struct file *file;
3854 	int ret;
3855 
3856 	if (!entries)
3857 		return -EINVAL;
3858 	if (entries > IORING_MAX_ENTRIES) {
3859 		if (!(p->flags & IORING_SETUP_CLAMP))
3860 			return -EINVAL;
3861 		entries = IORING_MAX_ENTRIES;
3862 	}
3863 
3864 	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3865 	    && !(p->flags & IORING_SETUP_NO_MMAP))
3866 		return -EINVAL;
3867 
3868 	/*
3869 	 * Use twice as many entries for the CQ ring. It's possible for the
3870 	 * application to drive a higher depth than the size of the SQ ring,
3871 	 * since the sqes are only used at submission time. This allows for
3872 	 * some flexibility in overcommitting a bit. If the application has
3873 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3874 	 * of CQ ring entries manually.
3875 	 */
3876 	p->sq_entries = roundup_pow_of_two(entries);
3877 	if (p->flags & IORING_SETUP_CQSIZE) {
3878 		/*
3879 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3880 		 * to a power-of-two, if it isn't already. We do NOT impose
3881 		 * any cq vs sq ring sizing.
3882 		 */
3883 		if (!p->cq_entries)
3884 			return -EINVAL;
3885 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3886 			if (!(p->flags & IORING_SETUP_CLAMP))
3887 				return -EINVAL;
3888 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3889 		}
3890 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3891 		if (p->cq_entries < p->sq_entries)
3892 			return -EINVAL;
3893 	} else {
3894 		p->cq_entries = 2 * p->sq_entries;
3895 	}
3896 
3897 	ctx = io_ring_ctx_alloc(p);
3898 	if (!ctx)
3899 		return -ENOMEM;
3900 
3901 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3902 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3903 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3904 		ctx->task_complete = true;
3905 
3906 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3907 		ctx->lockless_cq = true;
3908 
3909 	/*
3910 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3911 	 * purposes, see io_activate_pollwq()
3912 	 */
3913 	if (!ctx->task_complete)
3914 		ctx->poll_activated = true;
3915 
3916 	/*
3917 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3918 	 * space applications don't need to do io completion events
3919 	 * polling again, they can rely on io_sq_thread to do polling
3920 	 * work, which can reduce cpu usage and uring_lock contention.
3921 	 */
3922 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3923 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3924 		ctx->syscall_iopoll = 1;
3925 
3926 	ctx->compat = in_compat_syscall();
3927 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3928 		ctx->user = get_uid(current_user());
3929 
3930 	/*
3931 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3932 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3933 	 */
3934 	ret = -EINVAL;
3935 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3936 		/* IPI related flags don't make sense with SQPOLL */
3937 		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3938 				  IORING_SETUP_TASKRUN_FLAG |
3939 				  IORING_SETUP_DEFER_TASKRUN))
3940 			goto err;
3941 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3942 	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3943 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3944 	} else {
3945 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3946 		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3947 			goto err;
3948 		ctx->notify_method = TWA_SIGNAL;
3949 	}
3950 
3951 	/*
3952 	 * For DEFER_TASKRUN we require the completion task to be the same as the
3953 	 * submission task. This implies that there is only one submitter, so enforce
3954 	 * that.
3955 	 */
3956 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3957 	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3958 		goto err;
3959 	}
3960 
3961 	/*
3962 	 * This is just grabbed for accounting purposes. When a process exits,
3963 	 * the mm is exited and dropped before the files, hence we need to hang
3964 	 * on to this mm purely for the purposes of being able to unaccount
3965 	 * memory (locked/pinned vm). It's not used for anything else.
3966 	 */
3967 	mmgrab(current->mm);
3968 	ctx->mm_account = current->mm;
3969 
3970 	ret = io_allocate_scq_urings(ctx, p);
3971 	if (ret)
3972 		goto err;
3973 
3974 	ret = io_sq_offload_create(ctx, p);
3975 	if (ret)
3976 		goto err;
3977 
3978 	ret = io_rsrc_init(ctx);
3979 	if (ret)
3980 		goto err;
3981 
3982 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3983 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3984 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3985 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3986 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3987 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3988 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3989 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3990 	p->sq_off.resv1 = 0;
3991 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3992 		p->sq_off.user_addr = 0;
3993 
3994 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3995 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3996 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3997 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3998 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3999 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
4000 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4001 	p->cq_off.resv1 = 0;
4002 	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4003 		p->cq_off.user_addr = 0;
4004 
4005 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4006 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4007 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4008 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4009 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4010 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4011 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4012 
4013 	if (copy_to_user(params, p, sizeof(*p))) {
4014 		ret = -EFAULT;
4015 		goto err;
4016 	}
4017 
4018 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4019 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4020 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4021 
4022 	file = io_uring_get_file(ctx);
4023 	if (IS_ERR(file)) {
4024 		ret = PTR_ERR(file);
4025 		goto err;
4026 	}
4027 
4028 	ret = __io_uring_add_tctx_node(ctx);
4029 	if (ret)
4030 		goto err_fput;
4031 	tctx = current->io_uring;
4032 
4033 	/*
4034 	 * Install ring fd as the very last thing, so we don't risk someone
4035 	 * having closed it before we finish setup
4036 	 */
4037 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4038 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4039 	else
4040 		ret = io_uring_install_fd(file);
4041 	if (ret < 0)
4042 		goto err_fput;
4043 
4044 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4045 	return ret;
4046 err:
4047 	io_ring_ctx_wait_and_kill(ctx);
4048 	return ret;
4049 err_fput:
4050 	fput(file);
4051 	return ret;
4052 }
4053 
4054 /*
4055  * Sets up an aio uring context, and returns the fd. Applications asks for a
4056  * ring size, we return the actual sq/cq ring sizes (among other things) in the
4057  * params structure passed in.
4058  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)4059 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4060 {
4061 	struct io_uring_params p;
4062 	int i;
4063 
4064 	if (copy_from_user(&p, params, sizeof(p)))
4065 		return -EFAULT;
4066 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4067 		if (p.resv[i])
4068 			return -EINVAL;
4069 	}
4070 
4071 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4072 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4073 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4074 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4075 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4076 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4077 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4078 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4079 			IORING_SETUP_NO_SQARRAY))
4080 		return -EINVAL;
4081 
4082 	return io_uring_create(entries, &p, params);
4083 }
4084 
io_uring_allowed(void)4085 static inline bool io_uring_allowed(void)
4086 {
4087 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4088 	kgid_t io_uring_group;
4089 
4090 	if (disabled == 2)
4091 		return false;
4092 
4093 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4094 		return true;
4095 
4096 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4097 	if (!gid_valid(io_uring_group))
4098 		return false;
4099 
4100 	return in_group_p(io_uring_group);
4101 }
4102 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)4103 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4104 		struct io_uring_params __user *, params)
4105 {
4106 	if (!io_uring_allowed())
4107 		return -EPERM;
4108 
4109 	return io_uring_setup(entries, params);
4110 }
4111 
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)4112 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4113 			   unsigned nr_args)
4114 {
4115 	struct io_uring_probe *p;
4116 	size_t size;
4117 	int i, ret;
4118 
4119 	size = struct_size(p, ops, nr_args);
4120 	if (size == SIZE_MAX)
4121 		return -EOVERFLOW;
4122 	p = kzalloc(size, GFP_KERNEL);
4123 	if (!p)
4124 		return -ENOMEM;
4125 
4126 	ret = -EFAULT;
4127 	if (copy_from_user(p, arg, size))
4128 		goto out;
4129 	ret = -EINVAL;
4130 	if (memchr_inv(p, 0, size))
4131 		goto out;
4132 
4133 	p->last_op = IORING_OP_LAST - 1;
4134 	if (nr_args > IORING_OP_LAST)
4135 		nr_args = IORING_OP_LAST;
4136 
4137 	for (i = 0; i < nr_args; i++) {
4138 		p->ops[i].op = i;
4139 		if (!io_issue_defs[i].not_supported)
4140 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
4141 	}
4142 	p->ops_len = i;
4143 
4144 	ret = 0;
4145 	if (copy_to_user(arg, p, size))
4146 		ret = -EFAULT;
4147 out:
4148 	kfree(p);
4149 	return ret;
4150 }
4151 
io_register_personality(struct io_ring_ctx * ctx)4152 static int io_register_personality(struct io_ring_ctx *ctx)
4153 {
4154 	const struct cred *creds;
4155 	u32 id;
4156 	int ret;
4157 
4158 	creds = get_current_cred();
4159 
4160 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4161 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4162 	if (ret < 0) {
4163 		put_cred(creds);
4164 		return ret;
4165 	}
4166 	return id;
4167 }
4168 
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)4169 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4170 					   void __user *arg, unsigned int nr_args)
4171 {
4172 	struct io_uring_restriction *res;
4173 	size_t size;
4174 	int i, ret;
4175 
4176 	/* Restrictions allowed only if rings started disabled */
4177 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4178 		return -EBADFD;
4179 
4180 	/* We allow only a single restrictions registration */
4181 	if (ctx->restrictions.registered)
4182 		return -EBUSY;
4183 
4184 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4185 		return -EINVAL;
4186 
4187 	size = array_size(nr_args, sizeof(*res));
4188 	if (size == SIZE_MAX)
4189 		return -EOVERFLOW;
4190 
4191 	res = memdup_user(arg, size);
4192 	if (IS_ERR(res))
4193 		return PTR_ERR(res);
4194 
4195 	ret = 0;
4196 
4197 	for (i = 0; i < nr_args; i++) {
4198 		switch (res[i].opcode) {
4199 		case IORING_RESTRICTION_REGISTER_OP:
4200 			if (res[i].register_op >= IORING_REGISTER_LAST) {
4201 				ret = -EINVAL;
4202 				goto out;
4203 			}
4204 
4205 			__set_bit(res[i].register_op,
4206 				  ctx->restrictions.register_op);
4207 			break;
4208 		case IORING_RESTRICTION_SQE_OP:
4209 			if (res[i].sqe_op >= IORING_OP_LAST) {
4210 				ret = -EINVAL;
4211 				goto out;
4212 			}
4213 
4214 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4215 			break;
4216 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4217 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4218 			break;
4219 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4220 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4221 			break;
4222 		default:
4223 			ret = -EINVAL;
4224 			goto out;
4225 		}
4226 	}
4227 
4228 out:
4229 	/* Reset all restrictions if an error happened */
4230 	if (ret != 0)
4231 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4232 	else
4233 		ctx->restrictions.registered = true;
4234 
4235 	kfree(res);
4236 	return ret;
4237 }
4238 
io_register_enable_rings(struct io_ring_ctx * ctx)4239 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4240 {
4241 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4242 		return -EBADFD;
4243 
4244 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4245 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4246 		/*
4247 		 * Lazy activation attempts would fail if it was polled before
4248 		 * submitter_task is set.
4249 		 */
4250 		if (wq_has_sleeper(&ctx->poll_wq))
4251 			io_activate_pollwq(ctx);
4252 	}
4253 
4254 	if (ctx->restrictions.registered)
4255 		ctx->restricted = 1;
4256 
4257 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
4258 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4259 		wake_up(&ctx->sq_data->wait);
4260 	return 0;
4261 }
4262 
__io_register_iowq_aff(struct io_ring_ctx * ctx,cpumask_var_t new_mask)4263 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4264 					 cpumask_var_t new_mask)
4265 {
4266 	int ret;
4267 
4268 	if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4269 		ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4270 	} else {
4271 		mutex_unlock(&ctx->uring_lock);
4272 		ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4273 		mutex_lock(&ctx->uring_lock);
4274 	}
4275 
4276 	return ret;
4277 }
4278 
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)4279 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4280 				       void __user *arg, unsigned len)
4281 {
4282 	cpumask_var_t new_mask;
4283 	int ret;
4284 
4285 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4286 		return -ENOMEM;
4287 
4288 	cpumask_clear(new_mask);
4289 	if (len > cpumask_size())
4290 		len = cpumask_size();
4291 
4292 	if (in_compat_syscall()) {
4293 		ret = compat_get_bitmap(cpumask_bits(new_mask),
4294 					(const compat_ulong_t __user *)arg,
4295 					len * 8 /* CHAR_BIT */);
4296 	} else {
4297 		ret = copy_from_user(new_mask, arg, len);
4298 	}
4299 
4300 	if (ret) {
4301 		free_cpumask_var(new_mask);
4302 		return -EFAULT;
4303 	}
4304 
4305 	ret = __io_register_iowq_aff(ctx, new_mask);
4306 	free_cpumask_var(new_mask);
4307 	return ret;
4308 }
4309 
io_unregister_iowq_aff(struct io_ring_ctx * ctx)4310 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4311 {
4312 	return __io_register_iowq_aff(ctx, NULL);
4313 }
4314 
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)4315 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4316 					       void __user *arg)
4317 	__must_hold(&ctx->uring_lock)
4318 {
4319 	struct io_tctx_node *node;
4320 	struct io_uring_task *tctx = NULL;
4321 	struct io_sq_data *sqd = NULL;
4322 	__u32 new_count[2];
4323 	int i, ret;
4324 
4325 	if (copy_from_user(new_count, arg, sizeof(new_count)))
4326 		return -EFAULT;
4327 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4328 		if (new_count[i] > INT_MAX)
4329 			return -EINVAL;
4330 
4331 	if (ctx->flags & IORING_SETUP_SQPOLL) {
4332 		sqd = ctx->sq_data;
4333 		if (sqd) {
4334 			/*
4335 			 * Observe the correct sqd->lock -> ctx->uring_lock
4336 			 * ordering. Fine to drop uring_lock here, we hold
4337 			 * a ref to the ctx.
4338 			 */
4339 			refcount_inc(&sqd->refs);
4340 			mutex_unlock(&ctx->uring_lock);
4341 			mutex_lock(&sqd->lock);
4342 			mutex_lock(&ctx->uring_lock);
4343 			if (sqd->thread)
4344 				tctx = sqd->thread->io_uring;
4345 		}
4346 	} else {
4347 		tctx = current->io_uring;
4348 	}
4349 
4350 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4351 
4352 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
4353 		if (new_count[i])
4354 			ctx->iowq_limits[i] = new_count[i];
4355 	ctx->iowq_limits_set = true;
4356 
4357 	if (tctx && tctx->io_wq) {
4358 		ret = io_wq_max_workers(tctx->io_wq, new_count);
4359 		if (ret)
4360 			goto err;
4361 	} else {
4362 		memset(new_count, 0, sizeof(new_count));
4363 	}
4364 
4365 	if (sqd) {
4366 		mutex_unlock(&ctx->uring_lock);
4367 		mutex_unlock(&sqd->lock);
4368 		io_put_sq_data(sqd);
4369 		mutex_lock(&ctx->uring_lock);
4370 	}
4371 
4372 	if (copy_to_user(arg, new_count, sizeof(new_count)))
4373 		return -EFAULT;
4374 
4375 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
4376 	if (sqd)
4377 		return 0;
4378 
4379 	/* now propagate the restriction to all registered users */
4380 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4381 		struct io_uring_task *tctx = node->task->io_uring;
4382 
4383 		if (WARN_ON_ONCE(!tctx->io_wq))
4384 			continue;
4385 
4386 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
4387 			new_count[i] = ctx->iowq_limits[i];
4388 		/* ignore errors, it always returns zero anyway */
4389 		(void)io_wq_max_workers(tctx->io_wq, new_count);
4390 	}
4391 	return 0;
4392 err:
4393 	if (sqd) {
4394 		mutex_unlock(&ctx->uring_lock);
4395 		mutex_unlock(&sqd->lock);
4396 		io_put_sq_data(sqd);
4397 		mutex_lock(&ctx->uring_lock);
4398 
4399 	}
4400 	return ret;
4401 }
4402 
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)4403 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4404 			       void __user *arg, unsigned nr_args)
4405 	__releases(ctx->uring_lock)
4406 	__acquires(ctx->uring_lock)
4407 {
4408 	int ret;
4409 
4410 	/*
4411 	 * We don't quiesce the refs for register anymore and so it can't be
4412 	 * dying as we're holding a file ref here.
4413 	 */
4414 	if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4415 		return -ENXIO;
4416 
4417 	if (ctx->submitter_task && ctx->submitter_task != current)
4418 		return -EEXIST;
4419 
4420 	if (ctx->restricted) {
4421 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4422 		if (!test_bit(opcode, ctx->restrictions.register_op))
4423 			return -EACCES;
4424 	}
4425 
4426 	switch (opcode) {
4427 	case IORING_REGISTER_BUFFERS:
4428 		ret = -EFAULT;
4429 		if (!arg)
4430 			break;
4431 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4432 		break;
4433 	case IORING_UNREGISTER_BUFFERS:
4434 		ret = -EINVAL;
4435 		if (arg || nr_args)
4436 			break;
4437 		ret = io_sqe_buffers_unregister(ctx);
4438 		break;
4439 	case IORING_REGISTER_FILES:
4440 		ret = -EFAULT;
4441 		if (!arg)
4442 			break;
4443 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4444 		break;
4445 	case IORING_UNREGISTER_FILES:
4446 		ret = -EINVAL;
4447 		if (arg || nr_args)
4448 			break;
4449 		ret = io_sqe_files_unregister(ctx);
4450 		break;
4451 	case IORING_REGISTER_FILES_UPDATE:
4452 		ret = io_register_files_update(ctx, arg, nr_args);
4453 		break;
4454 	case IORING_REGISTER_EVENTFD:
4455 		ret = -EINVAL;
4456 		if (nr_args != 1)
4457 			break;
4458 		ret = io_eventfd_register(ctx, arg, 0);
4459 		break;
4460 	case IORING_REGISTER_EVENTFD_ASYNC:
4461 		ret = -EINVAL;
4462 		if (nr_args != 1)
4463 			break;
4464 		ret = io_eventfd_register(ctx, arg, 1);
4465 		break;
4466 	case IORING_UNREGISTER_EVENTFD:
4467 		ret = -EINVAL;
4468 		if (arg || nr_args)
4469 			break;
4470 		ret = io_eventfd_unregister(ctx);
4471 		break;
4472 	case IORING_REGISTER_PROBE:
4473 		ret = -EINVAL;
4474 		if (!arg || nr_args > 256)
4475 			break;
4476 		ret = io_probe(ctx, arg, nr_args);
4477 		break;
4478 	case IORING_REGISTER_PERSONALITY:
4479 		ret = -EINVAL;
4480 		if (arg || nr_args)
4481 			break;
4482 		ret = io_register_personality(ctx);
4483 		break;
4484 	case IORING_UNREGISTER_PERSONALITY:
4485 		ret = -EINVAL;
4486 		if (arg)
4487 			break;
4488 		ret = io_unregister_personality(ctx, nr_args);
4489 		break;
4490 	case IORING_REGISTER_ENABLE_RINGS:
4491 		ret = -EINVAL;
4492 		if (arg || nr_args)
4493 			break;
4494 		ret = io_register_enable_rings(ctx);
4495 		break;
4496 	case IORING_REGISTER_RESTRICTIONS:
4497 		ret = io_register_restrictions(ctx, arg, nr_args);
4498 		break;
4499 	case IORING_REGISTER_FILES2:
4500 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4501 		break;
4502 	case IORING_REGISTER_FILES_UPDATE2:
4503 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4504 					      IORING_RSRC_FILE);
4505 		break;
4506 	case IORING_REGISTER_BUFFERS2:
4507 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4508 		break;
4509 	case IORING_REGISTER_BUFFERS_UPDATE:
4510 		ret = io_register_rsrc_update(ctx, arg, nr_args,
4511 					      IORING_RSRC_BUFFER);
4512 		break;
4513 	case IORING_REGISTER_IOWQ_AFF:
4514 		ret = -EINVAL;
4515 		if (!arg || !nr_args)
4516 			break;
4517 		ret = io_register_iowq_aff(ctx, arg, nr_args);
4518 		break;
4519 	case IORING_UNREGISTER_IOWQ_AFF:
4520 		ret = -EINVAL;
4521 		if (arg || nr_args)
4522 			break;
4523 		ret = io_unregister_iowq_aff(ctx);
4524 		break;
4525 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
4526 		ret = -EINVAL;
4527 		if (!arg || nr_args != 2)
4528 			break;
4529 		ret = io_register_iowq_max_workers(ctx, arg);
4530 		break;
4531 	case IORING_REGISTER_RING_FDS:
4532 		ret = io_ringfd_register(ctx, arg, nr_args);
4533 		break;
4534 	case IORING_UNREGISTER_RING_FDS:
4535 		ret = io_ringfd_unregister(ctx, arg, nr_args);
4536 		break;
4537 	case IORING_REGISTER_PBUF_RING:
4538 		ret = -EINVAL;
4539 		if (!arg || nr_args != 1)
4540 			break;
4541 		ret = io_register_pbuf_ring(ctx, arg);
4542 		break;
4543 	case IORING_UNREGISTER_PBUF_RING:
4544 		ret = -EINVAL;
4545 		if (!arg || nr_args != 1)
4546 			break;
4547 		ret = io_unregister_pbuf_ring(ctx, arg);
4548 		break;
4549 	case IORING_REGISTER_SYNC_CANCEL:
4550 		ret = -EINVAL;
4551 		if (!arg || nr_args != 1)
4552 			break;
4553 		ret = io_sync_cancel(ctx, arg);
4554 		break;
4555 	case IORING_REGISTER_FILE_ALLOC_RANGE:
4556 		ret = -EINVAL;
4557 		if (!arg || nr_args)
4558 			break;
4559 		ret = io_register_file_alloc_range(ctx, arg);
4560 		break;
4561 	default:
4562 		ret = -EINVAL;
4563 		break;
4564 	}
4565 
4566 	return ret;
4567 }
4568 
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4569 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4570 		void __user *, arg, unsigned int, nr_args)
4571 {
4572 	struct io_ring_ctx *ctx;
4573 	long ret = -EBADF;
4574 	struct file *file;
4575 	bool use_registered_ring;
4576 
4577 	use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4578 	opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4579 
4580 	if (opcode >= IORING_REGISTER_LAST)
4581 		return -EINVAL;
4582 
4583 	if (use_registered_ring) {
4584 		/*
4585 		 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4586 		 * need only dereference our task private array to find it.
4587 		 */
4588 		struct io_uring_task *tctx = current->io_uring;
4589 
4590 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4591 			return -EINVAL;
4592 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4593 		file = tctx->registered_rings[fd];
4594 		if (unlikely(!file))
4595 			return -EBADF;
4596 	} else {
4597 		file = fget(fd);
4598 		if (unlikely(!file))
4599 			return -EBADF;
4600 		ret = -EOPNOTSUPP;
4601 		if (!io_is_uring_fops(file))
4602 			goto out_fput;
4603 	}
4604 
4605 	ctx = file->private_data;
4606 
4607 	mutex_lock(&ctx->uring_lock);
4608 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
4609 	mutex_unlock(&ctx->uring_lock);
4610 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4611 out_fput:
4612 	if (!use_registered_ring)
4613 		fput(file);
4614 	return ret;
4615 }
4616 
io_uring_init(void)4617 static int __init io_uring_init(void)
4618 {
4619 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4620 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4621 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4622 } while (0)
4623 
4624 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4625 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4626 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4627 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4628 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4629 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4630 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4631 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4632 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4633 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4634 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4635 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4636 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4637 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4638 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4639 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4640 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4641 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4642 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4643 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4644 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4645 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4646 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4647 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4648 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4649 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4650 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4651 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4652 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4653 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4654 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4655 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4656 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4657 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4658 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4659 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4660 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4661 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4662 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4663 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4664 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4665 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4666 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4667 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4668 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4669 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4670 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4671 
4672 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4673 		     sizeof(struct io_uring_rsrc_update));
4674 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4675 		     sizeof(struct io_uring_rsrc_update2));
4676 
4677 	/* ->buf_index is u16 */
4678 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4679 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4680 		     offsetof(struct io_uring_buf_ring, tail));
4681 
4682 	/* should fit into one byte */
4683 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4684 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4685 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4686 
4687 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4688 
4689 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4690 
4691 	io_uring_optable_init();
4692 
4693 	/*
4694 	 * Allow user copy in the per-command field, which starts after the
4695 	 * file in io_kiocb and until the opcode field. The openat2 handling
4696 	 * requires copying in user memory into the io_kiocb object in that
4697 	 * range, and HARDENED_USERCOPY will complain if we haven't
4698 	 * correctly annotated this range.
4699 	 */
4700 	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4701 				sizeof(struct io_kiocb), 0,
4702 				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4703 				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4704 				offsetof(struct io_kiocb, cmd.data),
4705 				sizeof_field(struct io_kiocb, cmd.data), NULL);
4706 
4707 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4708 
4709 #ifdef CONFIG_SYSCTL
4710 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4711 #endif
4712 
4713 	return 0;
4714 };
4715 __initcall(io_uring_init);
4716