xref: /openbmc/linux/io_uring/io_uring.h (revision 36db6e8484ed455bbb320d89a119378897ae991c)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/io_uring_types.h>
9 #include <uapi/linux/eventpoll.h>
10 #include "io-wq.h"
11 #include "slist.h"
12 #include "filetable.h"
13 
14 #ifndef CREATE_TRACE_POINTS
15 #include <trace/events/io_uring.h>
16 #endif
17 
18 enum {
19 	/*
20 	 * A hint to not wake right away but delay until there are enough of
21 	 * tw's queued to match the number of CQEs the task is waiting for.
22 	 *
23 	 * Must not be used wirh requests generating more than one CQE.
24 	 * It's also ignored unless IORING_SETUP_DEFER_TASKRUN is set.
25 	 */
26 	IOU_F_TWQ_LAZY_WAKE			= 1,
27 };
28 
29 enum {
30 	IOU_OK			= 0,
31 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
32 
33 	/*
34 	 * Requeue the task_work to restart operations on this request. The
35 	 * actual value isn't important, should just be not an otherwise
36 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
37 	 */
38 	IOU_REQUEUE		= -3072,
39 
40 	/*
41 	 * Intended only when both IO_URING_F_MULTISHOT is passed
42 	 * to indicate to the poll runner that multishot should be
43 	 * removed and the result is set on req->cqe.res.
44 	 */
45 	IOU_STOP_MULTISHOT	= -ECANCELED,
46 };
47 
48 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
49 void io_req_cqe_overflow(struct io_kiocb *req);
50 int io_run_task_work_sig(struct io_ring_ctx *ctx);
51 void io_req_defer_failed(struct io_kiocb *req, s32 res);
52 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
53 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
54 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags);
55 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
56 
57 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
58 int io_uring_mmap_pages(struct io_ring_ctx *ctx, struct vm_area_struct *vma,
59 			struct page **pages, int npages);
60 
61 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
62 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
63 			       unsigned issue_flags);
64 
65 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
66 bool io_alloc_async_data(struct io_kiocb *req);
67 void io_req_task_queue(struct io_kiocb *req);
68 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
69 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
70 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
71 void tctx_task_work(struct callback_head *cb);
72 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
73 int io_uring_alloc_task_context(struct task_struct *task,
74 				struct io_ring_ctx *ctx);
75 
76 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
77 				     int start, int end);
78 
79 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
80 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
81 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
82 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
83 int io_req_prep_async(struct io_kiocb *req);
84 
85 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
86 void io_wq_submit_work(struct io_wq_work *work);
87 
88 void io_free_req(struct io_kiocb *req);
89 void io_queue_next(struct io_kiocb *req);
90 void io_task_refs_refill(struct io_uring_task *tctx);
91 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
92 
93 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
94 			bool cancel_all);
95 
96 void *io_pages_map(struct page ***out_pages, unsigned short *npages,
97 		   size_t size);
98 void io_pages_unmap(void *ptr, struct page ***pages, unsigned short *npages,
99 		    bool put_pages);
100 
101 #if defined(CONFIG_PROVE_LOCKING)
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)102 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
103 {
104 	lockdep_assert(in_task());
105 
106 	if (ctx->flags & IORING_SETUP_IOPOLL) {
107 		lockdep_assert_held(&ctx->uring_lock);
108 	} else if (!ctx->task_complete) {
109 		lockdep_assert_held(&ctx->completion_lock);
110 	} else if (ctx->submitter_task) {
111 		/*
112 		 * ->submitter_task may be NULL and we can still post a CQE,
113 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
114 		 * Not from an SQE, as those cannot be submitted, but via
115 		 * updating tagged resources.
116 		 */
117 		if (ctx->submitter_task->flags & PF_EXITING)
118 			lockdep_assert(current_work());
119 		else
120 			lockdep_assert(current == ctx->submitter_task);
121 	}
122 }
123 #else
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)124 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
125 {
126 }
127 #endif
128 
io_req_task_work_add(struct io_kiocb * req)129 static inline void io_req_task_work_add(struct io_kiocb *req)
130 {
131 	__io_req_task_work_add(req, 0);
132 }
133 
134 #define io_for_each_link(pos, head) \
135 	for (pos = (head); pos; pos = pos->link)
136 
io_get_cqe_overflow(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret,bool overflow)137 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
138 					struct io_uring_cqe **ret,
139 					bool overflow)
140 {
141 	io_lockdep_assert_cq_locked(ctx);
142 
143 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
144 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
145 			return false;
146 	}
147 	*ret = ctx->cqe_cached;
148 	ctx->cached_cq_tail++;
149 	ctx->cqe_cached++;
150 	if (ctx->flags & IORING_SETUP_CQE32)
151 		ctx->cqe_cached++;
152 	return true;
153 }
154 
io_get_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret)155 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
156 {
157 	return io_get_cqe_overflow(ctx, ret, false);
158 }
159 
io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)160 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
161 					    struct io_kiocb *req)
162 {
163 	struct io_uring_cqe *cqe;
164 
165 	/*
166 	 * If we can't get a cq entry, userspace overflowed the
167 	 * submission (by quite a lot). Increment the overflow count in
168 	 * the ring.
169 	 */
170 	if (unlikely(!io_get_cqe(ctx, &cqe)))
171 		return false;
172 
173 	if (trace_io_uring_complete_enabled())
174 		trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
175 					req->cqe.res, req->cqe.flags,
176 					req->big_cqe.extra1, req->big_cqe.extra2);
177 
178 	memcpy(cqe, &req->cqe, sizeof(*cqe));
179 	if (ctx->flags & IORING_SETUP_CQE32) {
180 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
181 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
182 	}
183 	return true;
184 }
185 
req_set_fail(struct io_kiocb * req)186 static inline void req_set_fail(struct io_kiocb *req)
187 {
188 	req->flags |= REQ_F_FAIL;
189 	if (req->flags & REQ_F_CQE_SKIP) {
190 		req->flags &= ~REQ_F_CQE_SKIP;
191 		req->flags |= REQ_F_SKIP_LINK_CQES;
192 	}
193 }
194 
io_req_set_res(struct io_kiocb * req,s32 res,u32 cflags)195 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
196 {
197 	req->cqe.res = res;
198 	req->cqe.flags = cflags;
199 }
200 
req_has_async_data(struct io_kiocb * req)201 static inline bool req_has_async_data(struct io_kiocb *req)
202 {
203 	return req->flags & REQ_F_ASYNC_DATA;
204 }
205 
io_put_file(struct io_kiocb * req)206 static inline void io_put_file(struct io_kiocb *req)
207 {
208 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
209 		fput(req->file);
210 }
211 
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)212 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
213 					 unsigned issue_flags)
214 {
215 	lockdep_assert_held(&ctx->uring_lock);
216 	if (issue_flags & IO_URING_F_UNLOCKED)
217 		mutex_unlock(&ctx->uring_lock);
218 }
219 
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)220 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
221 				       unsigned issue_flags)
222 {
223 	/*
224 	 * "Normal" inline submissions always hold the uring_lock, since we
225 	 * grab it from the system call. Same is true for the SQPOLL offload.
226 	 * The only exception is when we've detached the request and issue it
227 	 * from an async worker thread, grab the lock for that case.
228 	 */
229 	if (issue_flags & IO_URING_F_UNLOCKED)
230 		mutex_lock(&ctx->uring_lock);
231 	lockdep_assert_held(&ctx->uring_lock);
232 }
233 
io_commit_cqring(struct io_ring_ctx * ctx)234 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
235 {
236 	/* order cqe stores with ring update */
237 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
238 }
239 
io_poll_wq_wake(struct io_ring_ctx * ctx)240 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
241 {
242 	if (wq_has_sleeper(&ctx->poll_wq))
243 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
244 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
245 }
246 
io_cqring_wake(struct io_ring_ctx * ctx)247 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
248 {
249 	/*
250 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
251 	 * won't necessarily wake up all the tasks, io_should_wake() will make
252 	 * that decision.
253 	 *
254 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
255 	 * set in the mask so that if we recurse back into our own poll
256 	 * waitqueue handlers, we know we have a dependency between eventfd or
257 	 * epoll and should terminate multishot poll at that point.
258 	 */
259 	if (wq_has_sleeper(&ctx->cq_wait))
260 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
261 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
262 }
263 
io_sqring_full(struct io_ring_ctx * ctx)264 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
265 {
266 	struct io_rings *r = ctx->rings;
267 
268 	/*
269 	 * SQPOLL must use the actual sqring head, as using the cached_sq_head
270 	 * is race prone if the SQPOLL thread has grabbed entries but not yet
271 	 * committed them to the ring. For !SQPOLL, this doesn't matter, but
272 	 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
273 	 * just read the actual sqring head unconditionally.
274 	 */
275 	return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
276 }
277 
io_sqring_entries(struct io_ring_ctx * ctx)278 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
279 {
280 	struct io_rings *rings = ctx->rings;
281 	unsigned int entries;
282 
283 	/* make sure SQ entry isn't read before tail */
284 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
285 	return min(entries, ctx->sq_entries);
286 }
287 
io_run_task_work(void)288 static inline int io_run_task_work(void)
289 {
290 	/*
291 	 * Always check-and-clear the task_work notification signal. With how
292 	 * signaling works for task_work, we can find it set with nothing to
293 	 * run. We need to clear it for that case, like get_signal() does.
294 	 */
295 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
296 		clear_notify_signal();
297 	/*
298 	 * PF_IO_WORKER never returns to userspace, so check here if we have
299 	 * notify work that needs processing.
300 	 */
301 	if (current->flags & PF_IO_WORKER &&
302 	    test_thread_flag(TIF_NOTIFY_RESUME)) {
303 		__set_current_state(TASK_RUNNING);
304 		resume_user_mode_work(NULL);
305 	}
306 	if (task_work_pending(current)) {
307 		__set_current_state(TASK_RUNNING);
308 		task_work_run();
309 		return 1;
310 	}
311 
312 	return 0;
313 }
314 
io_task_work_pending(struct io_ring_ctx * ctx)315 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
316 {
317 	return task_work_pending(current) || !llist_empty(&ctx->work_llist);
318 }
319 
io_tw_lock(struct io_ring_ctx * ctx,struct io_tw_state * ts)320 static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
321 {
322 	if (!ts->locked) {
323 		mutex_lock(&ctx->uring_lock);
324 		ts->locked = true;
325 	}
326 }
327 
328 /*
329  * Don't complete immediately but use deferred completion infrastructure.
330  * Protected by ->uring_lock and can only be used either with
331  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
332  */
io_req_complete_defer(struct io_kiocb * req)333 static inline void io_req_complete_defer(struct io_kiocb *req)
334 	__must_hold(&req->ctx->uring_lock)
335 {
336 	struct io_submit_state *state = &req->ctx->submit_state;
337 
338 	lockdep_assert_held(&req->ctx->uring_lock);
339 
340 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
341 }
342 
io_commit_cqring_flush(struct io_ring_ctx * ctx)343 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
344 {
345 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
346 		     ctx->has_evfd || ctx->poll_activated))
347 		__io_commit_cqring_flush(ctx);
348 }
349 
io_get_task_refs(int nr)350 static inline void io_get_task_refs(int nr)
351 {
352 	struct io_uring_task *tctx = current->io_uring;
353 
354 	tctx->cached_refs -= nr;
355 	if (unlikely(tctx->cached_refs < 0))
356 		io_task_refs_refill(tctx);
357 }
358 
io_req_cache_empty(struct io_ring_ctx * ctx)359 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
360 {
361 	return !ctx->submit_state.free_list.next;
362 }
363 
364 extern struct kmem_cache *req_cachep;
365 
io_extract_req(struct io_ring_ctx * ctx)366 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
367 {
368 	struct io_kiocb *req;
369 
370 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
371 	wq_stack_extract(&ctx->submit_state.free_list);
372 	return req;
373 }
374 
io_alloc_req(struct io_ring_ctx * ctx,struct io_kiocb ** req)375 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
376 {
377 	if (unlikely(io_req_cache_empty(ctx))) {
378 		if (!__io_alloc_req_refill(ctx))
379 			return false;
380 	}
381 	*req = io_extract_req(ctx);
382 	return true;
383 }
384 
io_allowed_defer_tw_run(struct io_ring_ctx * ctx)385 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
386 {
387 	return likely(ctx->submitter_task == current);
388 }
389 
io_allowed_run_tw(struct io_ring_ctx * ctx)390 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
391 {
392 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
393 		      ctx->submitter_task == current);
394 }
395 
io_req_queue_tw_complete(struct io_kiocb * req,s32 res)396 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
397 {
398 	io_req_set_res(req, res, 0);
399 	req->io_task_work.func = io_req_task_complete;
400 	io_req_task_work_add(req);
401 }
402 
403 /*
404  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
405  * slot.
406  */
uring_sqe_size(struct io_ring_ctx * ctx)407 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
408 {
409 	if (ctx->flags & IORING_SETUP_SQE128)
410 		return 2 * sizeof(struct io_uring_sqe);
411 	return sizeof(struct io_uring_sqe);
412 }
413 #endif
414