1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <linux/anon_inodes.h>
64 #include <linux/sched/mm.h>
65 #include <linux/uaccess.h>
66 #include <linux/nospec.h>
67 #include <linux/fsnotify.h>
68 #include <linux/fadvise.h>
69 #include <linux/task_work.h>
70 #include <linux/io_uring.h>
71 #include <linux/audit.h>
72 #include <linux/security.h>
73 #include <linux/vmalloc.h>
74 #include <asm/shmparam.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78
79 #include <uapi/linux/io_uring.h>
80
81 #include "io-wq.h"
82
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94
95 #include "timeout.h"
96 #include "poll.h"
97 #include "rw.h"
98 #include "alloc_cache.h"
99
100 #define IORING_MAX_ENTRIES 32768
101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
102
103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
104 IORING_REGISTER_LAST + IORING_OP_LAST)
105
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108
109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 REQ_F_ASYNC_DATA)
115
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 IO_REQ_CLEAN_FLAGS)
118
119 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
120
121 #define IO_COMPL_BATCH 32
122 #define IO_REQ_ALLOC_BATCH 8
123
124 enum {
125 IO_CHECK_CQ_OVERFLOW_BIT,
126 IO_CHECK_CQ_DROPPED_BIT,
127 };
128
129 enum {
130 IO_EVENTFD_OP_SIGNAL_BIT,
131 IO_EVENTFD_OP_FREE_BIT,
132 };
133
134 struct io_defer_entry {
135 struct list_head list;
136 struct io_kiocb *req;
137 u32 seq;
138 };
139
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 struct task_struct *task,
146 bool cancel_all);
147
148 static void io_queue_sqe(struct io_kiocb *req);
149
150 struct kmem_cache *req_cachep;
151 static struct workqueue_struct *iou_wq __ro_after_init;
152
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 {
159 .procname = "io_uring_disabled",
160 .data = &sysctl_io_uring_disabled,
161 .maxlen = sizeof(sysctl_io_uring_disabled),
162 .mode = 0644,
163 .proc_handler = proc_dointvec_minmax,
164 .extra1 = SYSCTL_ZERO,
165 .extra2 = SYSCTL_TWO,
166 },
167 {
168 .procname = "io_uring_group",
169 .data = &sysctl_io_uring_group,
170 .maxlen = sizeof(gid_t),
171 .mode = 0644,
172 .proc_handler = proc_dointvec,
173 },
174 {},
175 };
176 #endif
177
io_submit_flush_completions(struct io_ring_ctx * ctx)178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
179 {
180 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
181 ctx->submit_state.cqes_count)
182 __io_submit_flush_completions(ctx);
183 }
184
__io_cqring_events(struct io_ring_ctx * ctx)185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
186 {
187 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
188 }
189
__io_cqring_events_user(struct io_ring_ctx * ctx)190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
191 {
192 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
193 }
194
io_match_linked(struct io_kiocb * head)195 static bool io_match_linked(struct io_kiocb *head)
196 {
197 struct io_kiocb *req;
198
199 io_for_each_link(req, head) {
200 if (req->flags & REQ_F_INFLIGHT)
201 return true;
202 }
203 return false;
204 }
205
206 /*
207 * As io_match_task() but protected against racing with linked timeouts.
208 * User must not hold timeout_lock.
209 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
211 bool cancel_all)
212 {
213 bool matched;
214
215 if (task && head->task != task)
216 return false;
217 if (cancel_all)
218 return true;
219
220 if (head->flags & REQ_F_LINK_TIMEOUT) {
221 struct io_ring_ctx *ctx = head->ctx;
222
223 /* protect against races with linked timeouts */
224 spin_lock_irq(&ctx->timeout_lock);
225 matched = io_match_linked(head);
226 spin_unlock_irq(&ctx->timeout_lock);
227 } else {
228 matched = io_match_linked(head);
229 }
230 return matched;
231 }
232
req_fail_link_node(struct io_kiocb * req,int res)233 static inline void req_fail_link_node(struct io_kiocb *req, int res)
234 {
235 req_set_fail(req);
236 io_req_set_res(req, res, 0);
237 }
238
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
240 {
241 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
242 }
243
io_ring_ctx_ref_free(struct percpu_ref * ref)244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
245 {
246 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
247
248 complete(&ctx->ref_comp);
249 }
250
io_fallback_req_func(struct work_struct * work)251 static __cold void io_fallback_req_func(struct work_struct *work)
252 {
253 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
254 fallback_work.work);
255 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
256 struct io_kiocb *req, *tmp;
257 struct io_tw_state ts = { .locked = true, };
258
259 percpu_ref_get(&ctx->refs);
260 mutex_lock(&ctx->uring_lock);
261 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
262 req->io_task_work.func(req, &ts);
263 if (WARN_ON_ONCE(!ts.locked))
264 return;
265 io_submit_flush_completions(ctx);
266 mutex_unlock(&ctx->uring_lock);
267 percpu_ref_put(&ctx->refs);
268 }
269
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
271 {
272 unsigned hash_buckets = 1U << bits;
273 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
274
275 table->hbs = kmalloc(hash_size, GFP_KERNEL);
276 if (!table->hbs)
277 return -ENOMEM;
278
279 table->hash_bits = bits;
280 init_hash_table(table, hash_buckets);
281 return 0;
282 }
283
io_ring_ctx_alloc(struct io_uring_params * p)284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 struct io_ring_ctx *ctx;
287 int hash_bits;
288
289 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
290 if (!ctx)
291 return NULL;
292
293 xa_init(&ctx->io_bl_xa);
294
295 /*
296 * Use 5 bits less than the max cq entries, that should give us around
297 * 32 entries per hash list if totally full and uniformly spread, but
298 * don't keep too many buckets to not overconsume memory.
299 */
300 hash_bits = ilog2(p->cq_entries) - 5;
301 hash_bits = clamp(hash_bits, 1, 8);
302 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
303 goto err;
304 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
305 goto err;
306 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 0, GFP_KERNEL))
308 goto err;
309
310 ctx->flags = p->flags;
311 init_waitqueue_head(&ctx->sqo_sq_wait);
312 INIT_LIST_HEAD(&ctx->sqd_list);
313 INIT_LIST_HEAD(&ctx->cq_overflow_list);
314 INIT_LIST_HEAD(&ctx->io_buffers_cache);
315 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
316 sizeof(struct io_rsrc_node));
317 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
318 sizeof(struct async_poll));
319 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
320 sizeof(struct io_async_msghdr));
321 init_completion(&ctx->ref_comp);
322 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
323 mutex_init(&ctx->uring_lock);
324 init_waitqueue_head(&ctx->cq_wait);
325 init_waitqueue_head(&ctx->poll_wq);
326 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
327 spin_lock_init(&ctx->completion_lock);
328 spin_lock_init(&ctx->timeout_lock);
329 INIT_WQ_LIST(&ctx->iopoll_list);
330 INIT_LIST_HEAD(&ctx->io_buffers_pages);
331 INIT_LIST_HEAD(&ctx->io_buffers_comp);
332 INIT_LIST_HEAD(&ctx->defer_list);
333 INIT_LIST_HEAD(&ctx->timeout_list);
334 INIT_LIST_HEAD(&ctx->ltimeout_list);
335 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
336 init_llist_head(&ctx->work_llist);
337 INIT_LIST_HEAD(&ctx->tctx_list);
338 ctx->submit_state.free_list.next = NULL;
339 INIT_WQ_LIST(&ctx->locked_free_list);
340 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
341 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
342 return ctx;
343 err:
344 kfree(ctx->cancel_table.hbs);
345 kfree(ctx->cancel_table_locked.hbs);
346 xa_destroy(&ctx->io_bl_xa);
347 kfree(ctx);
348 return NULL;
349 }
350
io_account_cq_overflow(struct io_ring_ctx * ctx)351 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
352 {
353 struct io_rings *r = ctx->rings;
354
355 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
356 ctx->cq_extra--;
357 }
358
req_need_defer(struct io_kiocb * req,u32 seq)359 static bool req_need_defer(struct io_kiocb *req, u32 seq)
360 {
361 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
362 struct io_ring_ctx *ctx = req->ctx;
363
364 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
365 }
366
367 return false;
368 }
369
io_clean_op(struct io_kiocb * req)370 static void io_clean_op(struct io_kiocb *req)
371 {
372 if (req->flags & REQ_F_BUFFER_SELECTED) {
373 spin_lock(&req->ctx->completion_lock);
374 io_put_kbuf_comp(req);
375 spin_unlock(&req->ctx->completion_lock);
376 }
377
378 if (req->flags & REQ_F_NEED_CLEANUP) {
379 const struct io_cold_def *def = &io_cold_defs[req->opcode];
380
381 if (def->cleanup)
382 def->cleanup(req);
383 }
384 if ((req->flags & REQ_F_POLLED) && req->apoll) {
385 kfree(req->apoll->double_poll);
386 kfree(req->apoll);
387 req->apoll = NULL;
388 }
389 if (req->flags & REQ_F_INFLIGHT) {
390 struct io_uring_task *tctx = req->task->io_uring;
391
392 atomic_dec(&tctx->inflight_tracked);
393 }
394 if (req->flags & REQ_F_CREDS)
395 put_cred(req->creds);
396 if (req->flags & REQ_F_ASYNC_DATA) {
397 kfree(req->async_data);
398 req->async_data = NULL;
399 }
400 req->flags &= ~IO_REQ_CLEAN_FLAGS;
401 }
402
io_req_track_inflight(struct io_kiocb * req)403 static inline void io_req_track_inflight(struct io_kiocb *req)
404 {
405 if (!(req->flags & REQ_F_INFLIGHT)) {
406 req->flags |= REQ_F_INFLIGHT;
407 atomic_inc(&req->task->io_uring->inflight_tracked);
408 }
409 }
410
__io_prep_linked_timeout(struct io_kiocb * req)411 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
412 {
413 if (WARN_ON_ONCE(!req->link))
414 return NULL;
415
416 req->flags &= ~REQ_F_ARM_LTIMEOUT;
417 req->flags |= REQ_F_LINK_TIMEOUT;
418
419 /* linked timeouts should have two refs once prep'ed */
420 io_req_set_refcount(req);
421 __io_req_set_refcount(req->link, 2);
422 return req->link;
423 }
424
io_prep_linked_timeout(struct io_kiocb * req)425 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
426 {
427 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
428 return NULL;
429 return __io_prep_linked_timeout(req);
430 }
431
__io_arm_ltimeout(struct io_kiocb * req)432 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
433 {
434 io_queue_linked_timeout(__io_prep_linked_timeout(req));
435 }
436
io_arm_ltimeout(struct io_kiocb * req)437 static inline void io_arm_ltimeout(struct io_kiocb *req)
438 {
439 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
440 __io_arm_ltimeout(req);
441 }
442
io_prep_async_work(struct io_kiocb * req)443 static void io_prep_async_work(struct io_kiocb *req)
444 {
445 const struct io_issue_def *def = &io_issue_defs[req->opcode];
446 struct io_ring_ctx *ctx = req->ctx;
447
448 if (!(req->flags & REQ_F_CREDS)) {
449 req->flags |= REQ_F_CREDS;
450 req->creds = get_current_cred();
451 }
452
453 req->work.list.next = NULL;
454 req->work.flags = 0;
455 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
456 if (req->flags & REQ_F_FORCE_ASYNC)
457 req->work.flags |= IO_WQ_WORK_CONCURRENT;
458
459 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
460 req->flags |= io_file_get_flags(req->file);
461
462 if (req->file && (req->flags & REQ_F_ISREG)) {
463 bool should_hash = def->hash_reg_file;
464
465 /* don't serialize this request if the fs doesn't need it */
466 if (should_hash && (req->file->f_flags & O_DIRECT) &&
467 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
468 should_hash = false;
469 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
470 io_wq_hash_work(&req->work, file_inode(req->file));
471 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
472 if (def->unbound_nonreg_file)
473 req->work.flags |= IO_WQ_WORK_UNBOUND;
474 }
475 }
476
io_prep_async_link(struct io_kiocb * req)477 static void io_prep_async_link(struct io_kiocb *req)
478 {
479 struct io_kiocb *cur;
480
481 if (req->flags & REQ_F_LINK_TIMEOUT) {
482 struct io_ring_ctx *ctx = req->ctx;
483
484 spin_lock_irq(&ctx->timeout_lock);
485 io_for_each_link(cur, req)
486 io_prep_async_work(cur);
487 spin_unlock_irq(&ctx->timeout_lock);
488 } else {
489 io_for_each_link(cur, req)
490 io_prep_async_work(cur);
491 }
492 }
493
io_queue_iowq(struct io_kiocb * req)494 static void io_queue_iowq(struct io_kiocb *req)
495 {
496 struct io_kiocb *link = io_prep_linked_timeout(req);
497 struct io_uring_task *tctx = req->task->io_uring;
498
499 BUG_ON(!tctx);
500
501 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
502 io_req_task_queue_fail(req, -ECANCELED);
503 return;
504 }
505
506 /* init ->work of the whole link before punting */
507 io_prep_async_link(req);
508
509 /*
510 * Not expected to happen, but if we do have a bug where this _can_
511 * happen, catch it here and ensure the request is marked as
512 * canceled. That will make io-wq go through the usual work cancel
513 * procedure rather than attempt to run this request (or create a new
514 * worker for it).
515 */
516 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
517 req->work.flags |= IO_WQ_WORK_CANCEL;
518
519 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
520 io_wq_enqueue(tctx->io_wq, &req->work);
521 if (link)
522 io_queue_linked_timeout(link);
523 }
524
io_queue_deferred(struct io_ring_ctx * ctx)525 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
526 {
527 while (!list_empty(&ctx->defer_list)) {
528 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
529 struct io_defer_entry, list);
530
531 if (req_need_defer(de->req, de->seq))
532 break;
533 list_del_init(&de->list);
534 io_req_task_queue(de->req);
535 kfree(de);
536 }
537 }
538
io_eventfd_free(struct rcu_head * rcu)539 static void io_eventfd_free(struct rcu_head *rcu)
540 {
541 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
542
543 eventfd_ctx_put(ev_fd->cq_ev_fd);
544 kfree(ev_fd);
545 }
546
io_eventfd_ops(struct rcu_head * rcu)547 static void io_eventfd_ops(struct rcu_head *rcu)
548 {
549 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
550 int ops = atomic_xchg(&ev_fd->ops, 0);
551
552 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
553 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
554
555 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
556 * ordering in a race but if references are 0 we know we have to free
557 * it regardless.
558 */
559 if (atomic_dec_and_test(&ev_fd->refs))
560 call_rcu(&ev_fd->rcu, io_eventfd_free);
561 }
562
io_eventfd_signal(struct io_ring_ctx * ctx)563 static void io_eventfd_signal(struct io_ring_ctx *ctx)
564 {
565 struct io_ev_fd *ev_fd = NULL;
566
567 rcu_read_lock();
568 /*
569 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
570 * and eventfd_signal
571 */
572 ev_fd = rcu_dereference(ctx->io_ev_fd);
573
574 /*
575 * Check again if ev_fd exists incase an io_eventfd_unregister call
576 * completed between the NULL check of ctx->io_ev_fd at the start of
577 * the function and rcu_read_lock.
578 */
579 if (unlikely(!ev_fd))
580 goto out;
581 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
582 goto out;
583 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
584 goto out;
585
586 if (likely(eventfd_signal_allowed())) {
587 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
588 } else {
589 atomic_inc(&ev_fd->refs);
590 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
591 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
592 else
593 atomic_dec(&ev_fd->refs);
594 }
595
596 out:
597 rcu_read_unlock();
598 }
599
io_eventfd_flush_signal(struct io_ring_ctx * ctx)600 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
601 {
602 bool skip;
603
604 spin_lock(&ctx->completion_lock);
605
606 /*
607 * Eventfd should only get triggered when at least one event has been
608 * posted. Some applications rely on the eventfd notification count
609 * only changing IFF a new CQE has been added to the CQ ring. There's
610 * no depedency on 1:1 relationship between how many times this
611 * function is called (and hence the eventfd count) and number of CQEs
612 * posted to the CQ ring.
613 */
614 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
615 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
616 spin_unlock(&ctx->completion_lock);
617 if (skip)
618 return;
619
620 io_eventfd_signal(ctx);
621 }
622
__io_commit_cqring_flush(struct io_ring_ctx * ctx)623 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
624 {
625 if (ctx->poll_activated)
626 io_poll_wq_wake(ctx);
627 if (ctx->off_timeout_used)
628 io_flush_timeouts(ctx);
629 if (ctx->drain_active) {
630 spin_lock(&ctx->completion_lock);
631 io_queue_deferred(ctx);
632 spin_unlock(&ctx->completion_lock);
633 }
634 if (ctx->has_evfd)
635 io_eventfd_flush_signal(ctx);
636 }
637
__io_cq_lock(struct io_ring_ctx * ctx)638 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
639 {
640 if (!ctx->lockless_cq)
641 spin_lock(&ctx->completion_lock);
642 }
643
io_cq_lock(struct io_ring_ctx * ctx)644 static inline void io_cq_lock(struct io_ring_ctx *ctx)
645 __acquires(ctx->completion_lock)
646 {
647 spin_lock(&ctx->completion_lock);
648 }
649
__io_cq_unlock_post(struct io_ring_ctx * ctx)650 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
651 {
652 io_commit_cqring(ctx);
653 if (!ctx->task_complete) {
654 if (!ctx->lockless_cq)
655 spin_unlock(&ctx->completion_lock);
656 /* IOPOLL rings only need to wake up if it's also SQPOLL */
657 if (!ctx->syscall_iopoll)
658 io_cqring_wake(ctx);
659 }
660 io_commit_cqring_flush(ctx);
661 }
662
io_cq_unlock_post(struct io_ring_ctx * ctx)663 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
664 __releases(ctx->completion_lock)
665 {
666 io_commit_cqring(ctx);
667 spin_unlock(&ctx->completion_lock);
668 io_cqring_wake(ctx);
669 io_commit_cqring_flush(ctx);
670 }
671
672 /* Returns true if there are no backlogged entries after the flush */
io_cqring_overflow_kill(struct io_ring_ctx * ctx)673 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
674 {
675 struct io_overflow_cqe *ocqe;
676 LIST_HEAD(list);
677
678 lockdep_assert_held(&ctx->uring_lock);
679
680 spin_lock(&ctx->completion_lock);
681 list_splice_init(&ctx->cq_overflow_list, &list);
682 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
683 spin_unlock(&ctx->completion_lock);
684
685 while (!list_empty(&list)) {
686 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
687 list_del(&ocqe->list);
688 kfree(ocqe);
689 }
690 }
691
__io_cqring_overflow_flush(struct io_ring_ctx * ctx)692 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
693 {
694 size_t cqe_size = sizeof(struct io_uring_cqe);
695
696 lockdep_assert_held(&ctx->uring_lock);
697
698 if (__io_cqring_events(ctx) == ctx->cq_entries)
699 return;
700
701 if (ctx->flags & IORING_SETUP_CQE32)
702 cqe_size <<= 1;
703
704 io_cq_lock(ctx);
705 while (!list_empty(&ctx->cq_overflow_list)) {
706 struct io_uring_cqe *cqe;
707 struct io_overflow_cqe *ocqe;
708
709 if (!io_get_cqe_overflow(ctx, &cqe, true))
710 break;
711 ocqe = list_first_entry(&ctx->cq_overflow_list,
712 struct io_overflow_cqe, list);
713 memcpy(cqe, &ocqe->cqe, cqe_size);
714 list_del(&ocqe->list);
715 kfree(ocqe);
716
717 /*
718 * For silly syzbot cases that deliberately overflow by huge
719 * amounts, check if we need to resched and drop and
720 * reacquire the locks if so. Nothing real would ever hit this.
721 * Ideally we'd have a non-posting unlock for this, but hard
722 * to care for a non-real case.
723 */
724 if (need_resched()) {
725 io_cq_unlock_post(ctx);
726 mutex_unlock(&ctx->uring_lock);
727 cond_resched();
728 mutex_lock(&ctx->uring_lock);
729 io_cq_lock(ctx);
730 }
731 }
732
733 if (list_empty(&ctx->cq_overflow_list)) {
734 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
735 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
736 }
737 io_cq_unlock_post(ctx);
738 }
739
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)740 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
741 {
742 mutex_lock(&ctx->uring_lock);
743 __io_cqring_overflow_flush(ctx);
744 mutex_unlock(&ctx->uring_lock);
745 }
746
io_cqring_overflow_flush(struct io_ring_ctx * ctx)747 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
748 {
749 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
750 io_cqring_do_overflow_flush(ctx);
751 }
752
753 /* can be called by any task */
io_put_task_remote(struct task_struct * task)754 static void io_put_task_remote(struct task_struct *task)
755 {
756 struct io_uring_task *tctx = task->io_uring;
757
758 percpu_counter_sub(&tctx->inflight, 1);
759 if (unlikely(atomic_read(&tctx->in_cancel)))
760 wake_up(&tctx->wait);
761 put_task_struct(task);
762 }
763
764 /* used by a task to put its own references */
io_put_task_local(struct task_struct * task)765 static void io_put_task_local(struct task_struct *task)
766 {
767 task->io_uring->cached_refs++;
768 }
769
770 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task)771 static inline void io_put_task(struct task_struct *task)
772 {
773 if (likely(task == current))
774 io_put_task_local(task);
775 else
776 io_put_task_remote(task);
777 }
778
io_task_refs_refill(struct io_uring_task * tctx)779 void io_task_refs_refill(struct io_uring_task *tctx)
780 {
781 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
782
783 percpu_counter_add(&tctx->inflight, refill);
784 refcount_add(refill, ¤t->usage);
785 tctx->cached_refs += refill;
786 }
787
io_uring_drop_tctx_refs(struct task_struct * task)788 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
789 {
790 struct io_uring_task *tctx = task->io_uring;
791 unsigned int refs = tctx->cached_refs;
792
793 if (refs) {
794 tctx->cached_refs = 0;
795 percpu_counter_sub(&tctx->inflight, refs);
796 put_task_struct_many(task, refs);
797 }
798 }
799
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)800 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
801 s32 res, u32 cflags, u64 extra1, u64 extra2)
802 {
803 struct io_overflow_cqe *ocqe;
804 size_t ocq_size = sizeof(struct io_overflow_cqe);
805 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
806
807 lockdep_assert_held(&ctx->completion_lock);
808
809 if (is_cqe32)
810 ocq_size += sizeof(struct io_uring_cqe);
811
812 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
813 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
814 if (!ocqe) {
815 /*
816 * If we're in ring overflow flush mode, or in task cancel mode,
817 * or cannot allocate an overflow entry, then we need to drop it
818 * on the floor.
819 */
820 io_account_cq_overflow(ctx);
821 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
822 return false;
823 }
824 if (list_empty(&ctx->cq_overflow_list)) {
825 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
826 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
827
828 }
829 ocqe->cqe.user_data = user_data;
830 ocqe->cqe.res = res;
831 ocqe->cqe.flags = cflags;
832 if (is_cqe32) {
833 ocqe->cqe.big_cqe[0] = extra1;
834 ocqe->cqe.big_cqe[1] = extra2;
835 }
836 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
837 return true;
838 }
839
io_req_cqe_overflow(struct io_kiocb * req)840 void io_req_cqe_overflow(struct io_kiocb *req)
841 {
842 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
843 req->cqe.res, req->cqe.flags,
844 req->big_cqe.extra1, req->big_cqe.extra2);
845 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
846 }
847
848 /*
849 * writes to the cq entry need to come after reading head; the
850 * control dependency is enough as we're using WRITE_ONCE to
851 * fill the cq entry
852 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)853 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
854 {
855 struct io_rings *rings = ctx->rings;
856 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
857 unsigned int free, queued, len;
858
859 /*
860 * Posting into the CQ when there are pending overflowed CQEs may break
861 * ordering guarantees, which will affect links, F_MORE users and more.
862 * Force overflow the completion.
863 */
864 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
865 return false;
866
867 /* userspace may cheat modifying the tail, be safe and do min */
868 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
869 free = ctx->cq_entries - queued;
870 /* we need a contiguous range, limit based on the current array offset */
871 len = min(free, ctx->cq_entries - off);
872 if (!len)
873 return false;
874
875 if (ctx->flags & IORING_SETUP_CQE32) {
876 off <<= 1;
877 len <<= 1;
878 }
879
880 ctx->cqe_cached = &rings->cqes[off];
881 ctx->cqe_sentinel = ctx->cqe_cached + len;
882 return true;
883 }
884
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)885 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
886 u32 cflags)
887 {
888 struct io_uring_cqe *cqe;
889
890 ctx->cq_extra++;
891
892 /*
893 * If we can't get a cq entry, userspace overflowed the
894 * submission (by quite a lot). Increment the overflow count in
895 * the ring.
896 */
897 if (likely(io_get_cqe(ctx, &cqe))) {
898 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
899
900 WRITE_ONCE(cqe->user_data, user_data);
901 WRITE_ONCE(cqe->res, res);
902 WRITE_ONCE(cqe->flags, cflags);
903
904 if (ctx->flags & IORING_SETUP_CQE32) {
905 WRITE_ONCE(cqe->big_cqe[0], 0);
906 WRITE_ONCE(cqe->big_cqe[1], 0);
907 }
908 return true;
909 }
910 return false;
911 }
912
__io_flush_post_cqes(struct io_ring_ctx * ctx)913 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
914 __must_hold(&ctx->uring_lock)
915 {
916 struct io_submit_state *state = &ctx->submit_state;
917 unsigned int i;
918
919 lockdep_assert_held(&ctx->uring_lock);
920 for (i = 0; i < state->cqes_count; i++) {
921 struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
922
923 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
924 if (ctx->lockless_cq) {
925 spin_lock(&ctx->completion_lock);
926 io_cqring_event_overflow(ctx, cqe->user_data,
927 cqe->res, cqe->flags, 0, 0);
928 spin_unlock(&ctx->completion_lock);
929 } else {
930 io_cqring_event_overflow(ctx, cqe->user_data,
931 cqe->res, cqe->flags, 0, 0);
932 }
933 }
934 }
935 state->cqes_count = 0;
936 }
937
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)938 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
939 bool allow_overflow)
940 {
941 bool filled;
942
943 io_cq_lock(ctx);
944 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
945 if (!filled && allow_overflow)
946 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
947
948 io_cq_unlock_post(ctx);
949 return filled;
950 }
951
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)952 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
953 {
954 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
955 }
956
957 /*
958 * A helper for multishot requests posting additional CQEs.
959 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
960 */
io_fill_cqe_req_aux(struct io_kiocb * req,bool defer,s32 res,u32 cflags)961 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
962 {
963 struct io_ring_ctx *ctx = req->ctx;
964 u64 user_data = req->cqe.user_data;
965 struct io_uring_cqe *cqe;
966
967 if (!defer)
968 return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
969
970 lockdep_assert_held(&ctx->uring_lock);
971
972 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
973 __io_cq_lock(ctx);
974 __io_flush_post_cqes(ctx);
975 /* no need to flush - flush is deferred */
976 __io_cq_unlock_post(ctx);
977 }
978
979 /* For defered completions this is not as strict as it is otherwise,
980 * however it's main job is to prevent unbounded posted completions,
981 * and in that it works just as well.
982 */
983 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
984 return false;
985
986 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
987 cqe->user_data = user_data;
988 cqe->res = res;
989 cqe->flags = cflags;
990 return true;
991 }
992
__io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)993 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
994 {
995 struct io_ring_ctx *ctx = req->ctx;
996 struct io_rsrc_node *rsrc_node = NULL;
997
998 io_cq_lock(ctx);
999 if (!(req->flags & REQ_F_CQE_SKIP)) {
1000 if (!io_fill_cqe_req(ctx, req))
1001 io_req_cqe_overflow(req);
1002 }
1003
1004 /*
1005 * If we're the last reference to this request, add to our locked
1006 * free_list cache.
1007 */
1008 if (req_ref_put_and_test(req)) {
1009 if (req->flags & IO_REQ_LINK_FLAGS) {
1010 if (req->flags & IO_DISARM_MASK)
1011 io_disarm_next(req);
1012 if (req->link) {
1013 io_req_task_queue(req->link);
1014 req->link = NULL;
1015 }
1016 }
1017 io_put_kbuf_comp(req);
1018 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1019 io_clean_op(req);
1020 io_put_file(req);
1021
1022 rsrc_node = req->rsrc_node;
1023 /*
1024 * Selected buffer deallocation in io_clean_op() assumes that
1025 * we don't hold ->completion_lock. Clean them here to avoid
1026 * deadlocks.
1027 */
1028 io_put_task_remote(req->task);
1029 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1030 ctx->locked_free_nr++;
1031 }
1032 io_cq_unlock_post(ctx);
1033
1034 if (rsrc_node) {
1035 io_ring_submit_lock(ctx, issue_flags);
1036 io_put_rsrc_node(ctx, rsrc_node);
1037 io_ring_submit_unlock(ctx, issue_flags);
1038 }
1039 }
1040
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)1041 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1042 {
1043 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1044 req->io_task_work.func = io_req_task_complete;
1045 io_req_task_work_add(req);
1046 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1047 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1048 __io_req_complete_post(req, issue_flags);
1049 } else {
1050 struct io_ring_ctx *ctx = req->ctx;
1051
1052 mutex_lock(&ctx->uring_lock);
1053 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1054 mutex_unlock(&ctx->uring_lock);
1055 }
1056 }
1057
io_req_defer_failed(struct io_kiocb * req,s32 res)1058 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1059 __must_hold(&ctx->uring_lock)
1060 {
1061 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1062
1063 lockdep_assert_held(&req->ctx->uring_lock);
1064
1065 req_set_fail(req);
1066 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1067 if (def->fail)
1068 def->fail(req);
1069 io_req_complete_defer(req);
1070 }
1071
1072 /*
1073 * Don't initialise the fields below on every allocation, but do that in
1074 * advance and keep them valid across allocations.
1075 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1076 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1077 {
1078 req->ctx = ctx;
1079 req->link = NULL;
1080 req->async_data = NULL;
1081 /* not necessary, but safer to zero */
1082 memset(&req->cqe, 0, sizeof(req->cqe));
1083 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1084 }
1085
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1086 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1087 struct io_submit_state *state)
1088 {
1089 spin_lock(&ctx->completion_lock);
1090 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1091 ctx->locked_free_nr = 0;
1092 spin_unlock(&ctx->completion_lock);
1093 }
1094
1095 /*
1096 * A request might get retired back into the request caches even before opcode
1097 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1098 * Because of that, io_alloc_req() should be called only under ->uring_lock
1099 * and with extra caution to not get a request that is still worked on.
1100 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1101 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1102 __must_hold(&ctx->uring_lock)
1103 {
1104 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1105 void *reqs[IO_REQ_ALLOC_BATCH];
1106 int ret, i;
1107
1108 /*
1109 * If we have more than a batch's worth of requests in our IRQ side
1110 * locked cache, grab the lock and move them over to our submission
1111 * side cache.
1112 */
1113 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1114 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1115 if (!io_req_cache_empty(ctx))
1116 return true;
1117 }
1118
1119 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1120
1121 /*
1122 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1123 * retry single alloc to be on the safe side.
1124 */
1125 if (unlikely(ret <= 0)) {
1126 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1127 if (!reqs[0])
1128 return false;
1129 ret = 1;
1130 }
1131
1132 percpu_ref_get_many(&ctx->refs, ret);
1133 for (i = 0; i < ret; i++) {
1134 struct io_kiocb *req = reqs[i];
1135
1136 io_preinit_req(req, ctx);
1137 io_req_add_to_cache(req, ctx);
1138 }
1139 return true;
1140 }
1141
io_free_req(struct io_kiocb * req)1142 __cold void io_free_req(struct io_kiocb *req)
1143 {
1144 /* refs were already put, restore them for io_req_task_complete() */
1145 req->flags &= ~REQ_F_REFCOUNT;
1146 /* we only want to free it, don't post CQEs */
1147 req->flags |= REQ_F_CQE_SKIP;
1148 req->io_task_work.func = io_req_task_complete;
1149 io_req_task_work_add(req);
1150 }
1151
__io_req_find_next_prep(struct io_kiocb * req)1152 static void __io_req_find_next_prep(struct io_kiocb *req)
1153 {
1154 struct io_ring_ctx *ctx = req->ctx;
1155
1156 spin_lock(&ctx->completion_lock);
1157 io_disarm_next(req);
1158 spin_unlock(&ctx->completion_lock);
1159 }
1160
io_req_find_next(struct io_kiocb * req)1161 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1162 {
1163 struct io_kiocb *nxt;
1164
1165 /*
1166 * If LINK is set, we have dependent requests in this chain. If we
1167 * didn't fail this request, queue the first one up, moving any other
1168 * dependencies to the next request. In case of failure, fail the rest
1169 * of the chain.
1170 */
1171 if (unlikely(req->flags & IO_DISARM_MASK))
1172 __io_req_find_next_prep(req);
1173 nxt = req->link;
1174 req->link = NULL;
1175 return nxt;
1176 }
1177
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1178 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1179 {
1180 if (!ctx)
1181 return;
1182 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1183 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1184 if (ts->locked) {
1185 io_submit_flush_completions(ctx);
1186 mutex_unlock(&ctx->uring_lock);
1187 ts->locked = false;
1188 }
1189 percpu_ref_put(&ctx->refs);
1190 }
1191
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,struct io_tw_state * ts)1192 static unsigned int handle_tw_list(struct llist_node *node,
1193 struct io_ring_ctx **ctx,
1194 struct io_tw_state *ts)
1195 {
1196 unsigned int count = 0;
1197
1198 do {
1199 struct llist_node *next = node->next;
1200 struct io_kiocb *req = container_of(node, struct io_kiocb,
1201 io_task_work.node);
1202
1203 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1204
1205 if (req->ctx != *ctx) {
1206 ctx_flush_and_put(*ctx, ts);
1207 *ctx = req->ctx;
1208 /* if not contended, grab and improve batching */
1209 ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1210 percpu_ref_get(&(*ctx)->refs);
1211 }
1212 INDIRECT_CALL_2(req->io_task_work.func,
1213 io_poll_task_func, io_req_rw_complete,
1214 req, ts);
1215 node = next;
1216 count++;
1217 if (unlikely(need_resched())) {
1218 ctx_flush_and_put(*ctx, ts);
1219 *ctx = NULL;
1220 cond_resched();
1221 }
1222 } while (node);
1223
1224 return count;
1225 }
1226
1227 /**
1228 * io_llist_xchg - swap all entries in a lock-less list
1229 * @head: the head of lock-less list to delete all entries
1230 * @new: new entry as the head of the list
1231 *
1232 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1233 * The order of entries returned is from the newest to the oldest added one.
1234 */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1235 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1236 struct llist_node *new)
1237 {
1238 return xchg(&head->first, new);
1239 }
1240
io_fallback_tw(struct io_uring_task * tctx,bool sync)1241 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1242 {
1243 struct llist_node *node = llist_del_all(&tctx->task_list);
1244 struct io_ring_ctx *last_ctx = NULL;
1245 struct io_kiocb *req;
1246
1247 while (node) {
1248 req = container_of(node, struct io_kiocb, io_task_work.node);
1249 node = node->next;
1250 if (sync && last_ctx != req->ctx) {
1251 if (last_ctx) {
1252 flush_delayed_work(&last_ctx->fallback_work);
1253 percpu_ref_put(&last_ctx->refs);
1254 }
1255 last_ctx = req->ctx;
1256 percpu_ref_get(&last_ctx->refs);
1257 }
1258 if (llist_add(&req->io_task_work.node,
1259 &req->ctx->fallback_llist))
1260 schedule_delayed_work(&req->ctx->fallback_work, 1);
1261 }
1262
1263 if (last_ctx) {
1264 flush_delayed_work(&last_ctx->fallback_work);
1265 percpu_ref_put(&last_ctx->refs);
1266 }
1267 }
1268
tctx_task_work(struct callback_head * cb)1269 void tctx_task_work(struct callback_head *cb)
1270 {
1271 struct io_tw_state ts = {};
1272 struct io_ring_ctx *ctx = NULL;
1273 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1274 task_work);
1275 struct llist_node *node;
1276 unsigned int count = 0;
1277
1278 if (unlikely(current->flags & PF_EXITING)) {
1279 io_fallback_tw(tctx, true);
1280 return;
1281 }
1282
1283 node = llist_del_all(&tctx->task_list);
1284 if (node)
1285 count = handle_tw_list(node, &ctx, &ts);
1286
1287 ctx_flush_and_put(ctx, &ts);
1288
1289 /* relaxed read is enough as only the task itself sets ->in_cancel */
1290 if (unlikely(atomic_read(&tctx->in_cancel)))
1291 io_uring_drop_tctx_refs(current);
1292
1293 trace_io_uring_task_work_run(tctx, count, 1);
1294 }
1295
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1296 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1297 {
1298 struct io_ring_ctx *ctx = req->ctx;
1299 unsigned nr_wait, nr_tw, nr_tw_prev;
1300 struct llist_node *first;
1301
1302 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1303 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1304
1305 first = READ_ONCE(ctx->work_llist.first);
1306 do {
1307 nr_tw_prev = 0;
1308 if (first) {
1309 struct io_kiocb *first_req = container_of(first,
1310 struct io_kiocb,
1311 io_task_work.node);
1312 /*
1313 * Might be executed at any moment, rely on
1314 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1315 */
1316 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1317 }
1318 nr_tw = nr_tw_prev + 1;
1319 /* Large enough to fail the nr_wait comparison below */
1320 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1321 nr_tw = INT_MAX;
1322
1323 req->nr_tw = nr_tw;
1324 req->io_task_work.node.next = first;
1325 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1326 &req->io_task_work.node));
1327
1328 if (!first) {
1329 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1330 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1331 if (ctx->has_evfd)
1332 io_eventfd_signal(ctx);
1333 }
1334
1335 nr_wait = atomic_read(&ctx->cq_wait_nr);
1336 /* no one is waiting */
1337 if (!nr_wait)
1338 return;
1339 /* either not enough or the previous add has already woken it up */
1340 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1341 return;
1342 /* pairs with set_current_state() in io_cqring_wait() */
1343 smp_mb__after_atomic();
1344 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1345 }
1346
io_req_normal_work_add(struct io_kiocb * req)1347 static void io_req_normal_work_add(struct io_kiocb *req)
1348 {
1349 struct io_uring_task *tctx = req->task->io_uring;
1350 struct io_ring_ctx *ctx = req->ctx;
1351
1352 /* task_work already pending, we're done */
1353 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1354 return;
1355
1356 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1357 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1358
1359 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1360 return;
1361
1362 io_fallback_tw(tctx, false);
1363 }
1364
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1365 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1366 {
1367 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1368 rcu_read_lock();
1369 io_req_local_work_add(req, flags);
1370 rcu_read_unlock();
1371 } else {
1372 io_req_normal_work_add(req);
1373 }
1374 }
1375
io_move_task_work_from_local(struct io_ring_ctx * ctx)1376 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1377 {
1378 struct llist_node *node;
1379
1380 node = llist_del_all(&ctx->work_llist);
1381 while (node) {
1382 struct io_kiocb *req = container_of(node, struct io_kiocb,
1383 io_task_work.node);
1384
1385 node = node->next;
1386 io_req_normal_work_add(req);
1387 }
1388 }
1389
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1390 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1391 int min_events)
1392 {
1393 if (llist_empty(&ctx->work_llist))
1394 return false;
1395 if (events < min_events)
1396 return true;
1397 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1398 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1399 return false;
1400 }
1401
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events)1402 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1403 int min_events)
1404 {
1405 struct llist_node *node;
1406 unsigned int loops = 0;
1407 int ret = 0;
1408
1409 if (WARN_ON_ONCE(ctx->submitter_task != current))
1410 return -EEXIST;
1411 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1412 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1413 again:
1414 /*
1415 * llists are in reverse order, flip it back the right way before
1416 * running the pending items.
1417 */
1418 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1419 while (node) {
1420 struct llist_node *next = node->next;
1421 struct io_kiocb *req = container_of(node, struct io_kiocb,
1422 io_task_work.node);
1423 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1424 INDIRECT_CALL_2(req->io_task_work.func,
1425 io_poll_task_func, io_req_rw_complete,
1426 req, ts);
1427 ret++;
1428 node = next;
1429 }
1430 loops++;
1431
1432 if (io_run_local_work_continue(ctx, ret, min_events))
1433 goto again;
1434 if (ts->locked) {
1435 io_submit_flush_completions(ctx);
1436 if (io_run_local_work_continue(ctx, ret, min_events))
1437 goto again;
1438 }
1439
1440 trace_io_uring_local_work_run(ctx, ret, loops);
1441 return ret;
1442 }
1443
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1444 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1445 int min_events)
1446 {
1447 struct io_tw_state ts = { .locked = true, };
1448 int ret;
1449
1450 if (llist_empty(&ctx->work_llist))
1451 return 0;
1452
1453 ret = __io_run_local_work(ctx, &ts, min_events);
1454 /* shouldn't happen! */
1455 if (WARN_ON_ONCE(!ts.locked))
1456 mutex_lock(&ctx->uring_lock);
1457 return ret;
1458 }
1459
io_run_local_work(struct io_ring_ctx * ctx,int min_events)1460 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1461 {
1462 struct io_tw_state ts = {};
1463 int ret;
1464
1465 ts.locked = mutex_trylock(&ctx->uring_lock);
1466 ret = __io_run_local_work(ctx, &ts, min_events);
1467 if (ts.locked)
1468 mutex_unlock(&ctx->uring_lock);
1469
1470 return ret;
1471 }
1472
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1473 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1474 {
1475 io_tw_lock(req->ctx, ts);
1476 io_req_defer_failed(req, req->cqe.res);
1477 }
1478
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1479 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1480 {
1481 io_tw_lock(req->ctx, ts);
1482 /* req->task == current here, checking PF_EXITING is safe */
1483 if (unlikely(req->task->flags & PF_EXITING))
1484 io_req_defer_failed(req, -EFAULT);
1485 else if (req->flags & REQ_F_FORCE_ASYNC)
1486 io_queue_iowq(req);
1487 else
1488 io_queue_sqe(req);
1489 }
1490
io_req_task_queue_fail(struct io_kiocb * req,int ret)1491 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1492 {
1493 io_req_set_res(req, ret, 0);
1494 req->io_task_work.func = io_req_task_cancel;
1495 io_req_task_work_add(req);
1496 }
1497
io_req_task_queue(struct io_kiocb * req)1498 void io_req_task_queue(struct io_kiocb *req)
1499 {
1500 req->io_task_work.func = io_req_task_submit;
1501 io_req_task_work_add(req);
1502 }
1503
io_queue_next(struct io_kiocb * req)1504 void io_queue_next(struct io_kiocb *req)
1505 {
1506 struct io_kiocb *nxt = io_req_find_next(req);
1507
1508 if (nxt)
1509 io_req_task_queue(nxt);
1510 }
1511
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1512 static void io_free_batch_list(struct io_ring_ctx *ctx,
1513 struct io_wq_work_node *node)
1514 __must_hold(&ctx->uring_lock)
1515 {
1516 do {
1517 struct io_kiocb *req = container_of(node, struct io_kiocb,
1518 comp_list);
1519
1520 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1521 if (req->flags & REQ_F_REFCOUNT) {
1522 node = req->comp_list.next;
1523 if (!req_ref_put_and_test(req))
1524 continue;
1525 }
1526 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1527 struct async_poll *apoll = req->apoll;
1528
1529 if (apoll->double_poll)
1530 kfree(apoll->double_poll);
1531 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1532 kfree(apoll);
1533 req->flags &= ~REQ_F_POLLED;
1534 }
1535 if (req->flags & IO_REQ_LINK_FLAGS)
1536 io_queue_next(req);
1537 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1538 io_clean_op(req);
1539 }
1540 io_put_file(req);
1541
1542 io_req_put_rsrc_locked(req, ctx);
1543
1544 io_put_task(req->task);
1545 node = req->comp_list.next;
1546 io_req_add_to_cache(req, ctx);
1547 } while (node);
1548 }
1549
__io_submit_flush_completions(struct io_ring_ctx * ctx)1550 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1551 __must_hold(&ctx->uring_lock)
1552 {
1553 struct io_submit_state *state = &ctx->submit_state;
1554 struct io_wq_work_node *node;
1555
1556 __io_cq_lock(ctx);
1557 /* must come first to preserve CQE ordering in failure cases */
1558 if (state->cqes_count)
1559 __io_flush_post_cqes(ctx);
1560 __wq_list_for_each(node, &state->compl_reqs) {
1561 struct io_kiocb *req = container_of(node, struct io_kiocb,
1562 comp_list);
1563
1564 if (!(req->flags & REQ_F_CQE_SKIP) &&
1565 unlikely(!io_fill_cqe_req(ctx, req))) {
1566 if (ctx->lockless_cq) {
1567 spin_lock(&ctx->completion_lock);
1568 io_req_cqe_overflow(req);
1569 spin_unlock(&ctx->completion_lock);
1570 } else {
1571 io_req_cqe_overflow(req);
1572 }
1573 }
1574 }
1575 __io_cq_unlock_post(ctx);
1576
1577 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1578 io_free_batch_list(ctx, state->compl_reqs.first);
1579 INIT_WQ_LIST(&state->compl_reqs);
1580 }
1581 }
1582
io_cqring_events(struct io_ring_ctx * ctx)1583 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1584 {
1585 /* See comment at the top of this file */
1586 smp_rmb();
1587 return __io_cqring_events(ctx);
1588 }
1589
1590 /*
1591 * We can't just wait for polled events to come to us, we have to actively
1592 * find and complete them.
1593 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1594 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1595 {
1596 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1597 return;
1598
1599 mutex_lock(&ctx->uring_lock);
1600 while (!wq_list_empty(&ctx->iopoll_list)) {
1601 /* let it sleep and repeat later if can't complete a request */
1602 if (io_do_iopoll(ctx, true) == 0)
1603 break;
1604 /*
1605 * Ensure we allow local-to-the-cpu processing to take place,
1606 * in this case we need to ensure that we reap all events.
1607 * Also let task_work, etc. to progress by releasing the mutex
1608 */
1609 if (need_resched()) {
1610 mutex_unlock(&ctx->uring_lock);
1611 cond_resched();
1612 mutex_lock(&ctx->uring_lock);
1613 }
1614 }
1615 mutex_unlock(&ctx->uring_lock);
1616 }
1617
io_iopoll_check(struct io_ring_ctx * ctx,long min)1618 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1619 {
1620 unsigned int nr_events = 0;
1621 unsigned long check_cq;
1622
1623 lockdep_assert_held(&ctx->uring_lock);
1624
1625 if (!io_allowed_run_tw(ctx))
1626 return -EEXIST;
1627
1628 check_cq = READ_ONCE(ctx->check_cq);
1629 if (unlikely(check_cq)) {
1630 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1631 __io_cqring_overflow_flush(ctx);
1632 /*
1633 * Similarly do not spin if we have not informed the user of any
1634 * dropped CQE.
1635 */
1636 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1637 return -EBADR;
1638 }
1639 /*
1640 * Don't enter poll loop if we already have events pending.
1641 * If we do, we can potentially be spinning for commands that
1642 * already triggered a CQE (eg in error).
1643 */
1644 if (io_cqring_events(ctx))
1645 return 0;
1646
1647 do {
1648 int ret = 0;
1649
1650 /*
1651 * If a submit got punted to a workqueue, we can have the
1652 * application entering polling for a command before it gets
1653 * issued. That app will hold the uring_lock for the duration
1654 * of the poll right here, so we need to take a breather every
1655 * now and then to ensure that the issue has a chance to add
1656 * the poll to the issued list. Otherwise we can spin here
1657 * forever, while the workqueue is stuck trying to acquire the
1658 * very same mutex.
1659 */
1660 if (wq_list_empty(&ctx->iopoll_list) ||
1661 io_task_work_pending(ctx)) {
1662 u32 tail = ctx->cached_cq_tail;
1663
1664 (void) io_run_local_work_locked(ctx, min);
1665
1666 if (task_work_pending(current) ||
1667 wq_list_empty(&ctx->iopoll_list)) {
1668 mutex_unlock(&ctx->uring_lock);
1669 io_run_task_work();
1670 mutex_lock(&ctx->uring_lock);
1671 }
1672 /* some requests don't go through iopoll_list */
1673 if (tail != ctx->cached_cq_tail ||
1674 wq_list_empty(&ctx->iopoll_list))
1675 break;
1676 }
1677 ret = io_do_iopoll(ctx, !min);
1678 if (unlikely(ret < 0))
1679 return ret;
1680
1681 if (task_sigpending(current))
1682 return -EINTR;
1683 if (need_resched())
1684 break;
1685
1686 nr_events += ret;
1687 } while (nr_events < min);
1688
1689 return 0;
1690 }
1691
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1692 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1693 {
1694 if (ts->locked)
1695 io_req_complete_defer(req);
1696 else
1697 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1698 }
1699
1700 /*
1701 * After the iocb has been issued, it's safe to be found on the poll list.
1702 * Adding the kiocb to the list AFTER submission ensures that we don't
1703 * find it from a io_do_iopoll() thread before the issuer is done
1704 * accessing the kiocb cookie.
1705 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1706 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1707 {
1708 struct io_ring_ctx *ctx = req->ctx;
1709 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1710
1711 /* workqueue context doesn't hold uring_lock, grab it now */
1712 if (unlikely(needs_lock))
1713 mutex_lock(&ctx->uring_lock);
1714
1715 /*
1716 * Track whether we have multiple files in our lists. This will impact
1717 * how we do polling eventually, not spinning if we're on potentially
1718 * different devices.
1719 */
1720 if (wq_list_empty(&ctx->iopoll_list)) {
1721 ctx->poll_multi_queue = false;
1722 } else if (!ctx->poll_multi_queue) {
1723 struct io_kiocb *list_req;
1724
1725 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1726 comp_list);
1727 if (list_req->file != req->file)
1728 ctx->poll_multi_queue = true;
1729 }
1730
1731 /*
1732 * For fast devices, IO may have already completed. If it has, add
1733 * it to the front so we find it first.
1734 */
1735 if (READ_ONCE(req->iopoll_completed))
1736 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1737 else
1738 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1739
1740 if (unlikely(needs_lock)) {
1741 /*
1742 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1743 * in sq thread task context or in io worker task context. If
1744 * current task context is sq thread, we don't need to check
1745 * whether should wake up sq thread.
1746 */
1747 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1748 wq_has_sleeper(&ctx->sq_data->wait))
1749 wake_up(&ctx->sq_data->wait);
1750
1751 mutex_unlock(&ctx->uring_lock);
1752 }
1753 }
1754
io_file_get_flags(struct file * file)1755 unsigned int io_file_get_flags(struct file *file)
1756 {
1757 unsigned int res = 0;
1758
1759 if (S_ISREG(file_inode(file)->i_mode))
1760 res |= REQ_F_ISREG;
1761 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1762 res |= REQ_F_SUPPORT_NOWAIT;
1763 return res;
1764 }
1765
io_alloc_async_data(struct io_kiocb * req)1766 bool io_alloc_async_data(struct io_kiocb *req)
1767 {
1768 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1769 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1770 if (req->async_data) {
1771 req->flags |= REQ_F_ASYNC_DATA;
1772 return false;
1773 }
1774 return true;
1775 }
1776
io_req_prep_async(struct io_kiocb * req)1777 int io_req_prep_async(struct io_kiocb *req)
1778 {
1779 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1780 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1781 int ret;
1782
1783 /* assign early for deferred execution for non-fixed file */
1784 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1785 req->file = io_file_get_normal(req, req->cqe.fd);
1786 if (!cdef->prep_async)
1787 return 0;
1788 if (WARN_ON_ONCE(req_has_async_data(req)))
1789 return -EFAULT;
1790 if (!def->manual_alloc) {
1791 if (io_alloc_async_data(req))
1792 return -EAGAIN;
1793 }
1794 ret = cdef->prep_async(req);
1795 io_kbuf_recycle(req, 0);
1796 return ret;
1797 }
1798
io_get_sequence(struct io_kiocb * req)1799 static u32 io_get_sequence(struct io_kiocb *req)
1800 {
1801 u32 seq = req->ctx->cached_sq_head;
1802 struct io_kiocb *cur;
1803
1804 /* need original cached_sq_head, but it was increased for each req */
1805 io_for_each_link(cur, req)
1806 seq--;
1807 return seq;
1808 }
1809
io_drain_req(struct io_kiocb * req)1810 static __cold void io_drain_req(struct io_kiocb *req)
1811 __must_hold(&ctx->uring_lock)
1812 {
1813 struct io_ring_ctx *ctx = req->ctx;
1814 struct io_defer_entry *de;
1815 int ret;
1816 u32 seq = io_get_sequence(req);
1817
1818 /* Still need defer if there is pending req in defer list. */
1819 spin_lock(&ctx->completion_lock);
1820 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1821 spin_unlock(&ctx->completion_lock);
1822 queue:
1823 ctx->drain_active = false;
1824 io_req_task_queue(req);
1825 return;
1826 }
1827 spin_unlock(&ctx->completion_lock);
1828
1829 io_prep_async_link(req);
1830 de = kmalloc(sizeof(*de), GFP_KERNEL);
1831 if (!de) {
1832 ret = -ENOMEM;
1833 io_req_defer_failed(req, ret);
1834 return;
1835 }
1836
1837 spin_lock(&ctx->completion_lock);
1838 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1839 spin_unlock(&ctx->completion_lock);
1840 kfree(de);
1841 goto queue;
1842 }
1843
1844 trace_io_uring_defer(req);
1845 de->req = req;
1846 de->seq = seq;
1847 list_add_tail(&de->list, &ctx->defer_list);
1848 spin_unlock(&ctx->completion_lock);
1849 }
1850
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1851 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1852 unsigned int issue_flags)
1853 {
1854 if (req->file || !def->needs_file)
1855 return true;
1856
1857 if (req->flags & REQ_F_FIXED_FILE)
1858 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1859 else
1860 req->file = io_file_get_normal(req, req->cqe.fd);
1861
1862 return !!req->file;
1863 }
1864
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1865 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1866 {
1867 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1868 const struct cred *creds = NULL;
1869 int ret;
1870
1871 if (unlikely(!io_assign_file(req, def, issue_flags)))
1872 return -EBADF;
1873
1874 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1875 creds = override_creds(req->creds);
1876
1877 if (!def->audit_skip)
1878 audit_uring_entry(req->opcode);
1879
1880 ret = def->issue(req, issue_flags);
1881
1882 if (!def->audit_skip)
1883 audit_uring_exit(!ret, ret);
1884
1885 if (creds)
1886 revert_creds(creds);
1887
1888 if (ret == IOU_OK) {
1889 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1890 io_req_complete_defer(req);
1891 else
1892 io_req_complete_post(req, issue_flags);
1893
1894 return 0;
1895 }
1896
1897 if (ret != IOU_ISSUE_SKIP_COMPLETE)
1898 return ret;
1899
1900 /* If the op doesn't have a file, we're not polling for it */
1901 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1902 io_iopoll_req_issued(req, issue_flags);
1903
1904 return 0;
1905 }
1906
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1907 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1908 {
1909 io_tw_lock(req->ctx, ts);
1910 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1911 IO_URING_F_COMPLETE_DEFER);
1912 }
1913
io_wq_free_work(struct io_wq_work * work)1914 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1915 {
1916 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1917 struct io_kiocb *nxt = NULL;
1918
1919 if (req_ref_put_and_test(req)) {
1920 if (req->flags & IO_REQ_LINK_FLAGS)
1921 nxt = io_req_find_next(req);
1922 io_free_req(req);
1923 }
1924 return nxt ? &nxt->work : NULL;
1925 }
1926
io_wq_submit_work(struct io_wq_work * work)1927 void io_wq_submit_work(struct io_wq_work *work)
1928 {
1929 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1930 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1931 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1932 bool needs_poll = false;
1933 int ret = 0, err = -ECANCELED;
1934
1935 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1936 if (!(req->flags & REQ_F_REFCOUNT))
1937 __io_req_set_refcount(req, 2);
1938 else
1939 req_ref_get(req);
1940
1941 io_arm_ltimeout(req);
1942
1943 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1944 if (work->flags & IO_WQ_WORK_CANCEL) {
1945 fail:
1946 io_req_task_queue_fail(req, err);
1947 return;
1948 }
1949 if (!io_assign_file(req, def, issue_flags)) {
1950 err = -EBADF;
1951 work->flags |= IO_WQ_WORK_CANCEL;
1952 goto fail;
1953 }
1954
1955 if (req->flags & REQ_F_FORCE_ASYNC) {
1956 bool opcode_poll = def->pollin || def->pollout;
1957
1958 if (opcode_poll && file_can_poll(req->file)) {
1959 needs_poll = true;
1960 issue_flags |= IO_URING_F_NONBLOCK;
1961 }
1962 }
1963
1964 do {
1965 ret = io_issue_sqe(req, issue_flags);
1966 if (ret != -EAGAIN)
1967 break;
1968
1969 /*
1970 * If REQ_F_NOWAIT is set, then don't wait or retry with
1971 * poll. -EAGAIN is final for that case.
1972 */
1973 if (req->flags & REQ_F_NOWAIT)
1974 break;
1975
1976 /*
1977 * We can get EAGAIN for iopolled IO even though we're
1978 * forcing a sync submission from here, since we can't
1979 * wait for request slots on the block side.
1980 */
1981 if (!needs_poll) {
1982 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1983 break;
1984 if (io_wq_worker_stopped())
1985 break;
1986 cond_resched();
1987 continue;
1988 }
1989
1990 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1991 return;
1992 /* aborted or ready, in either case retry blocking */
1993 needs_poll = false;
1994 issue_flags &= ~IO_URING_F_NONBLOCK;
1995 } while (1);
1996
1997 /* avoid locking problems by failing it from a clean context */
1998 if (ret < 0)
1999 io_req_task_queue_fail(req, ret);
2000 }
2001
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)2002 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2003 unsigned int issue_flags)
2004 {
2005 struct io_ring_ctx *ctx = req->ctx;
2006 struct io_fixed_file *slot;
2007 struct file *file = NULL;
2008
2009 io_ring_submit_lock(ctx, issue_flags);
2010
2011 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2012 goto out;
2013 fd = array_index_nospec(fd, ctx->nr_user_files);
2014 slot = io_fixed_file_slot(&ctx->file_table, fd);
2015 file = io_slot_file(slot);
2016 req->flags |= io_slot_flags(slot);
2017 io_req_set_rsrc_node(req, ctx, 0);
2018 out:
2019 io_ring_submit_unlock(ctx, issue_flags);
2020 return file;
2021 }
2022
io_file_get_normal(struct io_kiocb * req,int fd)2023 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2024 {
2025 struct file *file = fget(fd);
2026
2027 trace_io_uring_file_get(req, fd);
2028
2029 /* we don't allow fixed io_uring files */
2030 if (file && io_is_uring_fops(file))
2031 io_req_track_inflight(req);
2032 return file;
2033 }
2034
io_queue_async(struct io_kiocb * req,int ret)2035 static void io_queue_async(struct io_kiocb *req, int ret)
2036 __must_hold(&req->ctx->uring_lock)
2037 {
2038 struct io_kiocb *linked_timeout;
2039
2040 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2041 io_req_defer_failed(req, ret);
2042 return;
2043 }
2044
2045 linked_timeout = io_prep_linked_timeout(req);
2046
2047 switch (io_arm_poll_handler(req, 0)) {
2048 case IO_APOLL_READY:
2049 io_kbuf_recycle(req, 0);
2050 io_req_task_queue(req);
2051 break;
2052 case IO_APOLL_ABORTED:
2053 io_kbuf_recycle(req, 0);
2054 io_queue_iowq(req);
2055 break;
2056 case IO_APOLL_OK:
2057 break;
2058 }
2059
2060 if (linked_timeout)
2061 io_queue_linked_timeout(linked_timeout);
2062 }
2063
io_queue_sqe(struct io_kiocb * req)2064 static inline void io_queue_sqe(struct io_kiocb *req)
2065 __must_hold(&req->ctx->uring_lock)
2066 {
2067 int ret;
2068
2069 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2070
2071 /*
2072 * We async punt it if the file wasn't marked NOWAIT, or if the file
2073 * doesn't support non-blocking read/write attempts
2074 */
2075 if (likely(!ret))
2076 io_arm_ltimeout(req);
2077 else
2078 io_queue_async(req, ret);
2079 }
2080
io_queue_sqe_fallback(struct io_kiocb * req)2081 static void io_queue_sqe_fallback(struct io_kiocb *req)
2082 __must_hold(&req->ctx->uring_lock)
2083 {
2084 if (unlikely(req->flags & REQ_F_FAIL)) {
2085 /*
2086 * We don't submit, fail them all, for that replace hardlinks
2087 * with normal links. Extra REQ_F_LINK is tolerated.
2088 */
2089 req->flags &= ~REQ_F_HARDLINK;
2090 req->flags |= REQ_F_LINK;
2091 io_req_defer_failed(req, req->cqe.res);
2092 } else {
2093 int ret = io_req_prep_async(req);
2094
2095 if (unlikely(ret)) {
2096 io_req_defer_failed(req, ret);
2097 return;
2098 }
2099
2100 if (unlikely(req->ctx->drain_active))
2101 io_drain_req(req);
2102 else
2103 io_queue_iowq(req);
2104 }
2105 }
2106
2107 /*
2108 * Check SQE restrictions (opcode and flags).
2109 *
2110 * Returns 'true' if SQE is allowed, 'false' otherwise.
2111 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2112 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2113 struct io_kiocb *req,
2114 unsigned int sqe_flags)
2115 {
2116 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2117 return false;
2118
2119 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2120 ctx->restrictions.sqe_flags_required)
2121 return false;
2122
2123 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2124 ctx->restrictions.sqe_flags_required))
2125 return false;
2126
2127 return true;
2128 }
2129
io_init_req_drain(struct io_kiocb * req)2130 static void io_init_req_drain(struct io_kiocb *req)
2131 {
2132 struct io_ring_ctx *ctx = req->ctx;
2133 struct io_kiocb *head = ctx->submit_state.link.head;
2134
2135 ctx->drain_active = true;
2136 if (head) {
2137 /*
2138 * If we need to drain a request in the middle of a link, drain
2139 * the head request and the next request/link after the current
2140 * link. Considering sequential execution of links,
2141 * REQ_F_IO_DRAIN will be maintained for every request of our
2142 * link.
2143 */
2144 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2145 ctx->drain_next = true;
2146 }
2147 }
2148
io_init_fail_req(struct io_kiocb * req,int err)2149 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2150 {
2151 /* ensure per-opcode data is cleared if we fail before prep */
2152 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2153 return err;
2154 }
2155
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2156 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2157 const struct io_uring_sqe *sqe)
2158 __must_hold(&ctx->uring_lock)
2159 {
2160 const struct io_issue_def *def;
2161 unsigned int sqe_flags;
2162 int personality;
2163 u8 opcode;
2164
2165 /* req is partially pre-initialised, see io_preinit_req() */
2166 req->opcode = opcode = READ_ONCE(sqe->opcode);
2167 /* same numerical values with corresponding REQ_F_*, safe to copy */
2168 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2169 req->cqe.user_data = READ_ONCE(sqe->user_data);
2170 req->file = NULL;
2171 req->rsrc_node = NULL;
2172 req->task = current;
2173
2174 if (unlikely(opcode >= IORING_OP_LAST)) {
2175 req->opcode = 0;
2176 return io_init_fail_req(req, -EINVAL);
2177 }
2178 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2179
2180 def = &io_issue_defs[opcode];
2181 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2182 /* enforce forwards compatibility on users */
2183 if (sqe_flags & ~SQE_VALID_FLAGS)
2184 return io_init_fail_req(req, -EINVAL);
2185 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2186 if (!def->buffer_select)
2187 return io_init_fail_req(req, -EOPNOTSUPP);
2188 req->buf_index = READ_ONCE(sqe->buf_group);
2189 }
2190 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2191 ctx->drain_disabled = true;
2192 if (sqe_flags & IOSQE_IO_DRAIN) {
2193 if (ctx->drain_disabled)
2194 return io_init_fail_req(req, -EOPNOTSUPP);
2195 io_init_req_drain(req);
2196 }
2197 }
2198 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2199 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2200 return io_init_fail_req(req, -EACCES);
2201 /* knock it to the slow queue path, will be drained there */
2202 if (ctx->drain_active)
2203 req->flags |= REQ_F_FORCE_ASYNC;
2204 /* if there is no link, we're at "next" request and need to drain */
2205 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2206 ctx->drain_next = false;
2207 ctx->drain_active = true;
2208 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2209 }
2210 }
2211
2212 if (!def->ioprio && sqe->ioprio)
2213 return io_init_fail_req(req, -EINVAL);
2214 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2215 return io_init_fail_req(req, -EINVAL);
2216
2217 if (def->needs_file) {
2218 struct io_submit_state *state = &ctx->submit_state;
2219
2220 req->cqe.fd = READ_ONCE(sqe->fd);
2221
2222 /*
2223 * Plug now if we have more than 2 IO left after this, and the
2224 * target is potentially a read/write to block based storage.
2225 */
2226 if (state->need_plug && def->plug) {
2227 state->plug_started = true;
2228 state->need_plug = false;
2229 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2230 }
2231 }
2232
2233 personality = READ_ONCE(sqe->personality);
2234 if (personality) {
2235 int ret;
2236
2237 req->creds = xa_load(&ctx->personalities, personality);
2238 if (!req->creds)
2239 return io_init_fail_req(req, -EINVAL);
2240 get_cred(req->creds);
2241 ret = security_uring_override_creds(req->creds);
2242 if (ret) {
2243 put_cred(req->creds);
2244 return io_init_fail_req(req, ret);
2245 }
2246 req->flags |= REQ_F_CREDS;
2247 }
2248
2249 return def->prep(req, sqe);
2250 }
2251
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2252 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2253 struct io_kiocb *req, int ret)
2254 {
2255 struct io_ring_ctx *ctx = req->ctx;
2256 struct io_submit_link *link = &ctx->submit_state.link;
2257 struct io_kiocb *head = link->head;
2258
2259 trace_io_uring_req_failed(sqe, req, ret);
2260
2261 /*
2262 * Avoid breaking links in the middle as it renders links with SQPOLL
2263 * unusable. Instead of failing eagerly, continue assembling the link if
2264 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2265 * should find the flag and handle the rest.
2266 */
2267 req_fail_link_node(req, ret);
2268 if (head && !(head->flags & REQ_F_FAIL))
2269 req_fail_link_node(head, -ECANCELED);
2270
2271 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2272 if (head) {
2273 link->last->link = req;
2274 link->head = NULL;
2275 req = head;
2276 }
2277 io_queue_sqe_fallback(req);
2278 return ret;
2279 }
2280
2281 if (head)
2282 link->last->link = req;
2283 else
2284 link->head = req;
2285 link->last = req;
2286 return 0;
2287 }
2288
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2289 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2290 const struct io_uring_sqe *sqe)
2291 __must_hold(&ctx->uring_lock)
2292 {
2293 struct io_submit_link *link = &ctx->submit_state.link;
2294 int ret;
2295
2296 ret = io_init_req(ctx, req, sqe);
2297 if (unlikely(ret))
2298 return io_submit_fail_init(sqe, req, ret);
2299
2300 trace_io_uring_submit_req(req);
2301
2302 /*
2303 * If we already have a head request, queue this one for async
2304 * submittal once the head completes. If we don't have a head but
2305 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2306 * submitted sync once the chain is complete. If none of those
2307 * conditions are true (normal request), then just queue it.
2308 */
2309 if (unlikely(link->head)) {
2310 ret = io_req_prep_async(req);
2311 if (unlikely(ret))
2312 return io_submit_fail_init(sqe, req, ret);
2313
2314 trace_io_uring_link(req, link->head);
2315 link->last->link = req;
2316 link->last = req;
2317
2318 if (req->flags & IO_REQ_LINK_FLAGS)
2319 return 0;
2320 /* last request of the link, flush it */
2321 req = link->head;
2322 link->head = NULL;
2323 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2324 goto fallback;
2325
2326 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2327 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2328 if (req->flags & IO_REQ_LINK_FLAGS) {
2329 link->head = req;
2330 link->last = req;
2331 } else {
2332 fallback:
2333 io_queue_sqe_fallback(req);
2334 }
2335 return 0;
2336 }
2337
2338 io_queue_sqe(req);
2339 return 0;
2340 }
2341
2342 /*
2343 * Batched submission is done, ensure local IO is flushed out.
2344 */
io_submit_state_end(struct io_ring_ctx * ctx)2345 static void io_submit_state_end(struct io_ring_ctx *ctx)
2346 {
2347 struct io_submit_state *state = &ctx->submit_state;
2348
2349 if (unlikely(state->link.head))
2350 io_queue_sqe_fallback(state->link.head);
2351 /* flush only after queuing links as they can generate completions */
2352 io_submit_flush_completions(ctx);
2353 if (state->plug_started)
2354 blk_finish_plug(&state->plug);
2355 }
2356
2357 /*
2358 * Start submission side cache.
2359 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2360 static void io_submit_state_start(struct io_submit_state *state,
2361 unsigned int max_ios)
2362 {
2363 state->plug_started = false;
2364 state->need_plug = max_ios > 2;
2365 state->submit_nr = max_ios;
2366 /* set only head, no need to init link_last in advance */
2367 state->link.head = NULL;
2368 }
2369
io_commit_sqring(struct io_ring_ctx * ctx)2370 static void io_commit_sqring(struct io_ring_ctx *ctx)
2371 {
2372 struct io_rings *rings = ctx->rings;
2373
2374 /*
2375 * Ensure any loads from the SQEs are done at this point,
2376 * since once we write the new head, the application could
2377 * write new data to them.
2378 */
2379 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2380 }
2381
2382 /*
2383 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2384 * that is mapped by userspace. This means that care needs to be taken to
2385 * ensure that reads are stable, as we cannot rely on userspace always
2386 * being a good citizen. If members of the sqe are validated and then later
2387 * used, it's important that those reads are done through READ_ONCE() to
2388 * prevent a re-load down the line.
2389 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2390 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2391 {
2392 unsigned mask = ctx->sq_entries - 1;
2393 unsigned head = ctx->cached_sq_head++ & mask;
2394
2395 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2396 head = READ_ONCE(ctx->sq_array[head]);
2397 if (unlikely(head >= ctx->sq_entries)) {
2398 /* drop invalid entries */
2399 spin_lock(&ctx->completion_lock);
2400 ctx->cq_extra--;
2401 spin_unlock(&ctx->completion_lock);
2402 WRITE_ONCE(ctx->rings->sq_dropped,
2403 READ_ONCE(ctx->rings->sq_dropped) + 1);
2404 return false;
2405 }
2406 }
2407
2408 /*
2409 * The cached sq head (or cq tail) serves two purposes:
2410 *
2411 * 1) allows us to batch the cost of updating the user visible
2412 * head updates.
2413 * 2) allows the kernel side to track the head on its own, even
2414 * though the application is the one updating it.
2415 */
2416
2417 /* double index for 128-byte SQEs, twice as long */
2418 if (ctx->flags & IORING_SETUP_SQE128)
2419 head <<= 1;
2420 *sqe = &ctx->sq_sqes[head];
2421 return true;
2422 }
2423
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2424 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2425 __must_hold(&ctx->uring_lock)
2426 {
2427 unsigned int entries = io_sqring_entries(ctx);
2428 unsigned int left;
2429 int ret;
2430
2431 if (unlikely(!entries))
2432 return 0;
2433 /* make sure SQ entry isn't read before tail */
2434 ret = left = min(nr, entries);
2435 io_get_task_refs(left);
2436 io_submit_state_start(&ctx->submit_state, left);
2437
2438 do {
2439 const struct io_uring_sqe *sqe;
2440 struct io_kiocb *req;
2441
2442 if (unlikely(!io_alloc_req(ctx, &req)))
2443 break;
2444 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2445 io_req_add_to_cache(req, ctx);
2446 break;
2447 }
2448
2449 /*
2450 * Continue submitting even for sqe failure if the
2451 * ring was setup with IORING_SETUP_SUBMIT_ALL
2452 */
2453 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2454 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2455 left--;
2456 break;
2457 }
2458 } while (--left);
2459
2460 if (unlikely(left)) {
2461 ret -= left;
2462 /* try again if it submitted nothing and can't allocate a req */
2463 if (!ret && io_req_cache_empty(ctx))
2464 ret = -EAGAIN;
2465 current->io_uring->cached_refs += left;
2466 }
2467
2468 io_submit_state_end(ctx);
2469 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2470 io_commit_sqring(ctx);
2471 return ret;
2472 }
2473
2474 struct io_wait_queue {
2475 struct wait_queue_entry wq;
2476 struct io_ring_ctx *ctx;
2477 unsigned cq_tail;
2478 unsigned nr_timeouts;
2479 ktime_t timeout;
2480 };
2481
io_has_work(struct io_ring_ctx * ctx)2482 static inline bool io_has_work(struct io_ring_ctx *ctx)
2483 {
2484 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2485 !llist_empty(&ctx->work_llist);
2486 }
2487
io_should_wake(struct io_wait_queue * iowq)2488 static inline bool io_should_wake(struct io_wait_queue *iowq)
2489 {
2490 struct io_ring_ctx *ctx = iowq->ctx;
2491 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2492
2493 /*
2494 * Wake up if we have enough events, or if a timeout occurred since we
2495 * started waiting. For timeouts, we always want to return to userspace,
2496 * regardless of event count.
2497 */
2498 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2499 }
2500
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2501 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2502 int wake_flags, void *key)
2503 {
2504 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2505
2506 /*
2507 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2508 * the task, and the next invocation will do it.
2509 */
2510 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2511 return autoremove_wake_function(curr, mode, wake_flags, key);
2512 return -1;
2513 }
2514
io_run_task_work_sig(struct io_ring_ctx * ctx)2515 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2516 {
2517 if (!llist_empty(&ctx->work_llist)) {
2518 __set_current_state(TASK_RUNNING);
2519 if (io_run_local_work(ctx, INT_MAX) > 0)
2520 return 0;
2521 }
2522 if (io_run_task_work() > 0)
2523 return 0;
2524 if (task_sigpending(current))
2525 return -EINTR;
2526 return 0;
2527 }
2528
current_pending_io(void)2529 static bool current_pending_io(void)
2530 {
2531 struct io_uring_task *tctx = current->io_uring;
2532
2533 if (!tctx)
2534 return false;
2535 return percpu_counter_read_positive(&tctx->inflight);
2536 }
2537
2538 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq)2539 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2540 struct io_wait_queue *iowq)
2541 {
2542 int ret;
2543
2544 if (unlikely(READ_ONCE(ctx->check_cq)))
2545 return 1;
2546 if (unlikely(!llist_empty(&ctx->work_llist)))
2547 return 1;
2548 if (unlikely(task_work_pending(current)))
2549 return 1;
2550 if (unlikely(task_sigpending(current)))
2551 return -EINTR;
2552 if (unlikely(io_should_wake(iowq)))
2553 return 0;
2554
2555 /*
2556 * Mark us as being in io_wait if we have pending requests, so cpufreq
2557 * can take into account that the task is waiting for IO - turns out
2558 * to be important for low QD IO.
2559 */
2560 if (current_pending_io())
2561 current->in_iowait = 1;
2562 ret = 0;
2563 if (iowq->timeout == KTIME_MAX)
2564 schedule();
2565 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2566 ret = -ETIME;
2567 current->in_iowait = 0;
2568 return ret;
2569 }
2570
2571 /*
2572 * Wait until events become available, if we don't already have some. The
2573 * application must reap them itself, as they reside on the shared cq ring.
2574 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2575 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2576 const sigset_t __user *sig, size_t sigsz,
2577 struct __kernel_timespec __user *uts)
2578 {
2579 struct io_wait_queue iowq;
2580 struct io_rings *rings = ctx->rings;
2581 int ret;
2582
2583 if (!io_allowed_run_tw(ctx))
2584 return -EEXIST;
2585 if (!llist_empty(&ctx->work_llist))
2586 io_run_local_work(ctx, min_events);
2587 io_run_task_work();
2588 io_cqring_overflow_flush(ctx);
2589 /* if user messes with these they will just get an early return */
2590 if (__io_cqring_events_user(ctx) >= min_events)
2591 return 0;
2592
2593 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2594 iowq.wq.private = current;
2595 INIT_LIST_HEAD(&iowq.wq.entry);
2596 iowq.ctx = ctx;
2597 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2598 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2599 iowq.timeout = KTIME_MAX;
2600
2601 if (uts) {
2602 struct timespec64 ts;
2603
2604 if (get_timespec64(&ts, uts))
2605 return -EFAULT;
2606 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2607 }
2608
2609 if (sig) {
2610 #ifdef CONFIG_COMPAT
2611 if (in_compat_syscall())
2612 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2613 sigsz);
2614 else
2615 #endif
2616 ret = set_user_sigmask(sig, sigsz);
2617
2618 if (ret)
2619 return ret;
2620 }
2621
2622 trace_io_uring_cqring_wait(ctx, min_events);
2623 do {
2624 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2625 unsigned long check_cq;
2626
2627 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2628 atomic_set(&ctx->cq_wait_nr, nr_wait);
2629 set_current_state(TASK_INTERRUPTIBLE);
2630 } else {
2631 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2632 TASK_INTERRUPTIBLE);
2633 }
2634
2635 ret = io_cqring_wait_schedule(ctx, &iowq);
2636 __set_current_state(TASK_RUNNING);
2637 atomic_set(&ctx->cq_wait_nr, 0);
2638
2639 /*
2640 * Run task_work after scheduling and before io_should_wake().
2641 * If we got woken because of task_work being processed, run it
2642 * now rather than let the caller do another wait loop.
2643 */
2644 if (!llist_empty(&ctx->work_llist))
2645 io_run_local_work(ctx, nr_wait);
2646 io_run_task_work();
2647
2648 /*
2649 * Non-local task_work will be run on exit to userspace, but
2650 * if we're using DEFER_TASKRUN, then we could have waited
2651 * with a timeout for a number of requests. If the timeout
2652 * hits, we could have some requests ready to process. Ensure
2653 * this break is _after_ we have run task_work, to avoid
2654 * deferring running potentially pending requests until the
2655 * next time we wait for events.
2656 */
2657 if (ret < 0)
2658 break;
2659
2660 check_cq = READ_ONCE(ctx->check_cq);
2661 if (unlikely(check_cq)) {
2662 /* let the caller flush overflows, retry */
2663 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2664 io_cqring_do_overflow_flush(ctx);
2665 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2666 ret = -EBADR;
2667 break;
2668 }
2669 }
2670
2671 if (io_should_wake(&iowq)) {
2672 ret = 0;
2673 break;
2674 }
2675 cond_resched();
2676 } while (1);
2677
2678 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2679 finish_wait(&ctx->cq_wait, &iowq.wq);
2680 restore_saved_sigmask_unless(ret == -EINTR);
2681
2682 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2683 }
2684
io_pages_unmap(void * ptr,struct page *** pages,unsigned short * npages,bool put_pages)2685 void io_pages_unmap(void *ptr, struct page ***pages, unsigned short *npages,
2686 bool put_pages)
2687 {
2688 bool do_vunmap = false;
2689
2690 if (!ptr)
2691 return;
2692
2693 if (put_pages && *npages) {
2694 struct page **to_free = *pages;
2695 int i;
2696
2697 /*
2698 * Only did vmap for the non-compound multiple page case.
2699 * For the compound page, we just need to put the head.
2700 */
2701 if (PageCompound(to_free[0]))
2702 *npages = 1;
2703 else if (*npages > 1)
2704 do_vunmap = true;
2705 for (i = 0; i < *npages; i++)
2706 put_page(to_free[i]);
2707 }
2708 if (do_vunmap)
2709 vunmap(ptr);
2710 kvfree(*pages);
2711 *pages = NULL;
2712 *npages = 0;
2713 }
2714
io_pages_free(struct page *** pages,int npages)2715 static void io_pages_free(struct page ***pages, int npages)
2716 {
2717 struct page **page_array;
2718 int i;
2719
2720 if (!pages)
2721 return;
2722
2723 page_array = *pages;
2724 if (!page_array)
2725 return;
2726
2727 for (i = 0; i < npages; i++)
2728 unpin_user_page(page_array[i]);
2729 kvfree(page_array);
2730 *pages = NULL;
2731 }
2732
io_pin_pages(unsigned long uaddr,unsigned long len,int * npages)2733 struct page **io_pin_pages(unsigned long uaddr, unsigned long len, int *npages)
2734 {
2735 unsigned long start, end, nr_pages;
2736 struct page **pages;
2737 int ret;
2738
2739 end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2740 start = uaddr >> PAGE_SHIFT;
2741 nr_pages = end - start;
2742 if (WARN_ON_ONCE(!nr_pages))
2743 return ERR_PTR(-EINVAL);
2744
2745 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2746 if (!pages)
2747 return ERR_PTR(-ENOMEM);
2748
2749 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2750 pages);
2751 /* success, mapped all pages */
2752 if (ret == nr_pages) {
2753 *npages = nr_pages;
2754 return pages;
2755 }
2756
2757 /* partial map, or didn't map anything */
2758 if (ret >= 0) {
2759 /* if we did partial map, release any pages we did get */
2760 if (ret)
2761 unpin_user_pages(pages, ret);
2762 ret = -EFAULT;
2763 }
2764 kvfree(pages);
2765 return ERR_PTR(ret);
2766 }
2767
__io_uaddr_map(struct page *** pages,unsigned short * npages,unsigned long uaddr,size_t size)2768 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2769 unsigned long uaddr, size_t size)
2770 {
2771 struct page **page_array;
2772 unsigned int nr_pages;
2773 void *page_addr;
2774
2775 *npages = 0;
2776
2777 if (uaddr & (PAGE_SIZE - 1) || !size)
2778 return ERR_PTR(-EINVAL);
2779
2780 nr_pages = 0;
2781 page_array = io_pin_pages(uaddr, size, &nr_pages);
2782 if (IS_ERR(page_array))
2783 return page_array;
2784
2785 page_addr = vmap(page_array, nr_pages, VM_MAP, PAGE_KERNEL);
2786 if (page_addr) {
2787 *pages = page_array;
2788 *npages = nr_pages;
2789 return page_addr;
2790 }
2791
2792 io_pages_free(&page_array, nr_pages);
2793 return ERR_PTR(-ENOMEM);
2794 }
2795
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2796 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2797 size_t size)
2798 {
2799 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2800 size);
2801 }
2802
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2803 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2804 size_t size)
2805 {
2806 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2807 size);
2808 }
2809
io_rings_free(struct io_ring_ctx * ctx)2810 static void io_rings_free(struct io_ring_ctx *ctx)
2811 {
2812 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2813 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2814 true);
2815 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2816 true);
2817 } else {
2818 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2819 ctx->n_ring_pages = 0;
2820 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2821 ctx->n_sqe_pages = 0;
2822 vunmap(ctx->rings);
2823 vunmap(ctx->sq_sqes);
2824 }
2825
2826 ctx->rings = NULL;
2827 ctx->sq_sqes = NULL;
2828 }
2829
io_mem_alloc_compound(struct page ** pages,int nr_pages,size_t size,gfp_t gfp)2830 static void *io_mem_alloc_compound(struct page **pages, int nr_pages,
2831 size_t size, gfp_t gfp)
2832 {
2833 struct page *page;
2834 int i, order;
2835
2836 order = get_order(size);
2837 if (order > 10)
2838 return ERR_PTR(-ENOMEM);
2839 else if (order)
2840 gfp |= __GFP_COMP;
2841
2842 page = alloc_pages(gfp, order);
2843 if (!page)
2844 return ERR_PTR(-ENOMEM);
2845
2846 for (i = 0; i < nr_pages; i++)
2847 pages[i] = page + i;
2848
2849 return page_address(page);
2850 }
2851
io_mem_alloc_single(struct page ** pages,int nr_pages,size_t size,gfp_t gfp)2852 static void *io_mem_alloc_single(struct page **pages, int nr_pages, size_t size,
2853 gfp_t gfp)
2854 {
2855 void *ret;
2856 int i;
2857
2858 for (i = 0; i < nr_pages; i++) {
2859 pages[i] = alloc_page(gfp);
2860 if (!pages[i])
2861 goto err;
2862 }
2863
2864 ret = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL);
2865 if (ret)
2866 return ret;
2867 err:
2868 while (i--)
2869 put_page(pages[i]);
2870 return ERR_PTR(-ENOMEM);
2871 }
2872
io_pages_map(struct page *** out_pages,unsigned short * npages,size_t size)2873 void *io_pages_map(struct page ***out_pages, unsigned short *npages,
2874 size_t size)
2875 {
2876 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN;
2877 struct page **pages;
2878 int nr_pages;
2879 void *ret;
2880
2881 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2882 pages = kvmalloc_array(nr_pages, sizeof(struct page *), gfp);
2883 if (!pages)
2884 return ERR_PTR(-ENOMEM);
2885
2886 ret = io_mem_alloc_compound(pages, nr_pages, size, gfp);
2887 if (!IS_ERR(ret))
2888 goto done;
2889 if (nr_pages == 1)
2890 goto fail;
2891
2892 ret = io_mem_alloc_single(pages, nr_pages, size, gfp);
2893 if (!IS_ERR(ret)) {
2894 done:
2895 *out_pages = pages;
2896 *npages = nr_pages;
2897 return ret;
2898 }
2899 fail:
2900 kvfree(pages);
2901 *out_pages = NULL;
2902 *npages = 0;
2903 return ret;
2904 }
2905
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2906 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2907 unsigned int cq_entries, size_t *sq_offset)
2908 {
2909 struct io_rings *rings;
2910 size_t off, sq_array_size;
2911
2912 off = struct_size(rings, cqes, cq_entries);
2913 if (off == SIZE_MAX)
2914 return SIZE_MAX;
2915 if (ctx->flags & IORING_SETUP_CQE32) {
2916 if (check_shl_overflow(off, 1, &off))
2917 return SIZE_MAX;
2918 }
2919
2920 #ifdef CONFIG_SMP
2921 off = ALIGN(off, SMP_CACHE_BYTES);
2922 if (off == 0)
2923 return SIZE_MAX;
2924 #endif
2925
2926 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2927 if (sq_offset)
2928 *sq_offset = SIZE_MAX;
2929 return off;
2930 }
2931
2932 if (sq_offset)
2933 *sq_offset = off;
2934
2935 sq_array_size = array_size(sizeof(u32), sq_entries);
2936 if (sq_array_size == SIZE_MAX)
2937 return SIZE_MAX;
2938
2939 if (check_add_overflow(off, sq_array_size, &off))
2940 return SIZE_MAX;
2941
2942 return off;
2943 }
2944
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2945 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2946 unsigned int eventfd_async)
2947 {
2948 struct io_ev_fd *ev_fd;
2949 __s32 __user *fds = arg;
2950 int fd;
2951
2952 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2953 lockdep_is_held(&ctx->uring_lock));
2954 if (ev_fd)
2955 return -EBUSY;
2956
2957 if (copy_from_user(&fd, fds, sizeof(*fds)))
2958 return -EFAULT;
2959
2960 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2961 if (!ev_fd)
2962 return -ENOMEM;
2963
2964 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2965 if (IS_ERR(ev_fd->cq_ev_fd)) {
2966 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2967 kfree(ev_fd);
2968 return ret;
2969 }
2970
2971 spin_lock(&ctx->completion_lock);
2972 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2973 spin_unlock(&ctx->completion_lock);
2974
2975 ev_fd->eventfd_async = eventfd_async;
2976 ctx->has_evfd = true;
2977 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2978 atomic_set(&ev_fd->refs, 1);
2979 atomic_set(&ev_fd->ops, 0);
2980 return 0;
2981 }
2982
io_eventfd_unregister(struct io_ring_ctx * ctx)2983 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2984 {
2985 struct io_ev_fd *ev_fd;
2986
2987 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2988 lockdep_is_held(&ctx->uring_lock));
2989 if (ev_fd) {
2990 ctx->has_evfd = false;
2991 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2992 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2993 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2994 return 0;
2995 }
2996
2997 return -ENXIO;
2998 }
2999
io_req_caches_free(struct io_ring_ctx * ctx)3000 static void io_req_caches_free(struct io_ring_ctx *ctx)
3001 {
3002 struct io_kiocb *req;
3003 int nr = 0;
3004
3005 mutex_lock(&ctx->uring_lock);
3006 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
3007
3008 while (!io_req_cache_empty(ctx)) {
3009 req = io_extract_req(ctx);
3010 kmem_cache_free(req_cachep, req);
3011 nr++;
3012 }
3013 if (nr)
3014 percpu_ref_put_many(&ctx->refs, nr);
3015 mutex_unlock(&ctx->uring_lock);
3016 }
3017
io_rsrc_node_cache_free(struct io_cache_entry * entry)3018 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
3019 {
3020 kfree(container_of(entry, struct io_rsrc_node, cache));
3021 }
3022
io_ring_ctx_free(struct io_ring_ctx * ctx)3023 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
3024 {
3025 io_sq_thread_finish(ctx);
3026 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
3027 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
3028 return;
3029
3030 mutex_lock(&ctx->uring_lock);
3031 if (ctx->buf_data)
3032 __io_sqe_buffers_unregister(ctx);
3033 if (ctx->file_data)
3034 __io_sqe_files_unregister(ctx);
3035 io_cqring_overflow_kill(ctx);
3036 io_eventfd_unregister(ctx);
3037 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
3038 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
3039 io_destroy_buffers(ctx);
3040 mutex_unlock(&ctx->uring_lock);
3041 if (ctx->sq_creds)
3042 put_cred(ctx->sq_creds);
3043 if (ctx->submitter_task)
3044 put_task_struct(ctx->submitter_task);
3045
3046 /* there are no registered resources left, nobody uses it */
3047 if (ctx->rsrc_node)
3048 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
3049
3050 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
3051 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
3052
3053 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
3054 if (ctx->mm_account) {
3055 mmdrop(ctx->mm_account);
3056 ctx->mm_account = NULL;
3057 }
3058 io_rings_free(ctx);
3059
3060 percpu_ref_exit(&ctx->refs);
3061 free_uid(ctx->user);
3062 io_req_caches_free(ctx);
3063 if (ctx->hash_map)
3064 io_wq_put_hash(ctx->hash_map);
3065 kfree(ctx->cancel_table.hbs);
3066 kfree(ctx->cancel_table_locked.hbs);
3067 xa_destroy(&ctx->io_bl_xa);
3068 kfree(ctx);
3069 }
3070
io_activate_pollwq_cb(struct callback_head * cb)3071 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
3072 {
3073 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
3074 poll_wq_task_work);
3075
3076 mutex_lock(&ctx->uring_lock);
3077 ctx->poll_activated = true;
3078 mutex_unlock(&ctx->uring_lock);
3079
3080 /*
3081 * Wake ups for some events between start of polling and activation
3082 * might've been lost due to loose synchronisation.
3083 */
3084 wake_up_all(&ctx->poll_wq);
3085 percpu_ref_put(&ctx->refs);
3086 }
3087
io_activate_pollwq(struct io_ring_ctx * ctx)3088 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
3089 {
3090 spin_lock(&ctx->completion_lock);
3091 /* already activated or in progress */
3092 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
3093 goto out;
3094 if (WARN_ON_ONCE(!ctx->task_complete))
3095 goto out;
3096 if (!ctx->submitter_task)
3097 goto out;
3098 /*
3099 * with ->submitter_task only the submitter task completes requests, we
3100 * only need to sync with it, which is done by injecting a tw
3101 */
3102 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3103 percpu_ref_get(&ctx->refs);
3104 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3105 percpu_ref_put(&ctx->refs);
3106 out:
3107 spin_unlock(&ctx->completion_lock);
3108 }
3109
io_uring_poll(struct file * file,poll_table * wait)3110 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3111 {
3112 struct io_ring_ctx *ctx = file->private_data;
3113 __poll_t mask = 0;
3114
3115 if (unlikely(!ctx->poll_activated))
3116 io_activate_pollwq(ctx);
3117
3118 poll_wait(file, &ctx->poll_wq, wait);
3119 /*
3120 * synchronizes with barrier from wq_has_sleeper call in
3121 * io_commit_cqring
3122 */
3123 smp_rmb();
3124 if (!io_sqring_full(ctx))
3125 mask |= EPOLLOUT | EPOLLWRNORM;
3126
3127 /*
3128 * Don't flush cqring overflow list here, just do a simple check.
3129 * Otherwise there could possible be ABBA deadlock:
3130 * CPU0 CPU1
3131 * ---- ----
3132 * lock(&ctx->uring_lock);
3133 * lock(&ep->mtx);
3134 * lock(&ctx->uring_lock);
3135 * lock(&ep->mtx);
3136 *
3137 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3138 * pushes them to do the flush.
3139 */
3140
3141 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3142 mask |= EPOLLIN | EPOLLRDNORM;
3143
3144 return mask;
3145 }
3146
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)3147 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3148 {
3149 const struct cred *creds;
3150
3151 creds = xa_erase(&ctx->personalities, id);
3152 if (creds) {
3153 put_cred(creds);
3154 return 0;
3155 }
3156
3157 return -EINVAL;
3158 }
3159
3160 struct io_tctx_exit {
3161 struct callback_head task_work;
3162 struct completion completion;
3163 struct io_ring_ctx *ctx;
3164 };
3165
io_tctx_exit_cb(struct callback_head * cb)3166 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3167 {
3168 struct io_uring_task *tctx = current->io_uring;
3169 struct io_tctx_exit *work;
3170
3171 work = container_of(cb, struct io_tctx_exit, task_work);
3172 /*
3173 * When @in_cancel, we're in cancellation and it's racy to remove the
3174 * node. It'll be removed by the end of cancellation, just ignore it.
3175 * tctx can be NULL if the queueing of this task_work raced with
3176 * work cancelation off the exec path.
3177 */
3178 if (tctx && !atomic_read(&tctx->in_cancel))
3179 io_uring_del_tctx_node((unsigned long)work->ctx);
3180 complete(&work->completion);
3181 }
3182
io_cancel_ctx_cb(struct io_wq_work * work,void * data)3183 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3184 {
3185 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3186
3187 return req->ctx == data;
3188 }
3189
io_ring_exit_work(struct work_struct * work)3190 static __cold void io_ring_exit_work(struct work_struct *work)
3191 {
3192 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3193 unsigned long timeout = jiffies + HZ * 60 * 5;
3194 unsigned long interval = HZ / 20;
3195 struct io_tctx_exit exit;
3196 struct io_tctx_node *node;
3197 int ret;
3198
3199 /*
3200 * If we're doing polled IO and end up having requests being
3201 * submitted async (out-of-line), then completions can come in while
3202 * we're waiting for refs to drop. We need to reap these manually,
3203 * as nobody else will be looking for them.
3204 */
3205 do {
3206 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3207 mutex_lock(&ctx->uring_lock);
3208 io_cqring_overflow_kill(ctx);
3209 mutex_unlock(&ctx->uring_lock);
3210 }
3211
3212 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3213 io_move_task_work_from_local(ctx);
3214
3215 while (io_uring_try_cancel_requests(ctx, NULL, true))
3216 cond_resched();
3217
3218 if (ctx->sq_data) {
3219 struct io_sq_data *sqd = ctx->sq_data;
3220 struct task_struct *tsk;
3221
3222 io_sq_thread_park(sqd);
3223 tsk = sqd->thread;
3224 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3225 io_wq_cancel_cb(tsk->io_uring->io_wq,
3226 io_cancel_ctx_cb, ctx, true);
3227 io_sq_thread_unpark(sqd);
3228 }
3229
3230 io_req_caches_free(ctx);
3231
3232 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3233 /* there is little hope left, don't run it too often */
3234 interval = HZ * 60;
3235 }
3236 /*
3237 * This is really an uninterruptible wait, as it has to be
3238 * complete. But it's also run from a kworker, which doesn't
3239 * take signals, so it's fine to make it interruptible. This
3240 * avoids scenarios where we knowingly can wait much longer
3241 * on completions, for example if someone does a SIGSTOP on
3242 * a task that needs to finish task_work to make this loop
3243 * complete. That's a synthetic situation that should not
3244 * cause a stuck task backtrace, and hence a potential panic
3245 * on stuck tasks if that is enabled.
3246 */
3247 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3248
3249 init_completion(&exit.completion);
3250 init_task_work(&exit.task_work, io_tctx_exit_cb);
3251 exit.ctx = ctx;
3252
3253 mutex_lock(&ctx->uring_lock);
3254 while (!list_empty(&ctx->tctx_list)) {
3255 WARN_ON_ONCE(time_after(jiffies, timeout));
3256
3257 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3258 ctx_node);
3259 /* don't spin on a single task if cancellation failed */
3260 list_rotate_left(&ctx->tctx_list);
3261 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3262 if (WARN_ON_ONCE(ret))
3263 continue;
3264
3265 mutex_unlock(&ctx->uring_lock);
3266 /*
3267 * See comment above for
3268 * wait_for_completion_interruptible_timeout() on why this
3269 * wait is marked as interruptible.
3270 */
3271 wait_for_completion_interruptible(&exit.completion);
3272 mutex_lock(&ctx->uring_lock);
3273 }
3274 mutex_unlock(&ctx->uring_lock);
3275 spin_lock(&ctx->completion_lock);
3276 spin_unlock(&ctx->completion_lock);
3277
3278 /* pairs with RCU read section in io_req_local_work_add() */
3279 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3280 synchronize_rcu();
3281
3282 io_ring_ctx_free(ctx);
3283 }
3284
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3285 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3286 {
3287 unsigned long index;
3288 struct creds *creds;
3289
3290 mutex_lock(&ctx->uring_lock);
3291 percpu_ref_kill(&ctx->refs);
3292 xa_for_each(&ctx->personalities, index, creds)
3293 io_unregister_personality(ctx, index);
3294 if (ctx->rings)
3295 io_poll_remove_all(ctx, NULL, true);
3296 mutex_unlock(&ctx->uring_lock);
3297
3298 /*
3299 * If we failed setting up the ctx, we might not have any rings
3300 * and therefore did not submit any requests
3301 */
3302 if (ctx->rings)
3303 io_kill_timeouts(ctx, NULL, true);
3304
3305 flush_delayed_work(&ctx->fallback_work);
3306
3307 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3308 /*
3309 * Use system_unbound_wq to avoid spawning tons of event kworkers
3310 * if we're exiting a ton of rings at the same time. It just adds
3311 * noise and overhead, there's no discernable change in runtime
3312 * over using system_wq.
3313 */
3314 queue_work(iou_wq, &ctx->exit_work);
3315 }
3316
io_uring_release(struct inode * inode,struct file * file)3317 static int io_uring_release(struct inode *inode, struct file *file)
3318 {
3319 struct io_ring_ctx *ctx = file->private_data;
3320
3321 file->private_data = NULL;
3322 io_ring_ctx_wait_and_kill(ctx);
3323 return 0;
3324 }
3325
3326 struct io_task_cancel {
3327 struct task_struct *task;
3328 bool all;
3329 };
3330
io_cancel_task_cb(struct io_wq_work * work,void * data)3331 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3332 {
3333 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3334 struct io_task_cancel *cancel = data;
3335
3336 return io_match_task_safe(req, cancel->task, cancel->all);
3337 }
3338
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3339 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3340 struct task_struct *task,
3341 bool cancel_all)
3342 {
3343 struct io_defer_entry *de;
3344 LIST_HEAD(list);
3345
3346 spin_lock(&ctx->completion_lock);
3347 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3348 if (io_match_task_safe(de->req, task, cancel_all)) {
3349 list_cut_position(&list, &ctx->defer_list, &de->list);
3350 break;
3351 }
3352 }
3353 spin_unlock(&ctx->completion_lock);
3354 if (list_empty(&list))
3355 return false;
3356
3357 while (!list_empty(&list)) {
3358 de = list_first_entry(&list, struct io_defer_entry, list);
3359 list_del_init(&de->list);
3360 io_req_task_queue_fail(de->req, -ECANCELED);
3361 kfree(de);
3362 }
3363 return true;
3364 }
3365
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3366 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3367 {
3368 struct io_tctx_node *node;
3369 enum io_wq_cancel cret;
3370 bool ret = false;
3371
3372 mutex_lock(&ctx->uring_lock);
3373 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3374 struct io_uring_task *tctx = node->task->io_uring;
3375
3376 /*
3377 * io_wq will stay alive while we hold uring_lock, because it's
3378 * killed after ctx nodes, which requires to take the lock.
3379 */
3380 if (!tctx || !tctx->io_wq)
3381 continue;
3382 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3383 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3384 }
3385 mutex_unlock(&ctx->uring_lock);
3386
3387 return ret;
3388 }
3389
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3390 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3391 struct task_struct *task,
3392 bool cancel_all)
3393 {
3394 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3395 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3396 enum io_wq_cancel cret;
3397 bool ret = false;
3398
3399 /* set it so io_req_local_work_add() would wake us up */
3400 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3401 atomic_set(&ctx->cq_wait_nr, 1);
3402 smp_mb();
3403 }
3404
3405 /* failed during ring init, it couldn't have issued any requests */
3406 if (!ctx->rings)
3407 return false;
3408
3409 if (!task) {
3410 ret |= io_uring_try_cancel_iowq(ctx);
3411 } else if (tctx && tctx->io_wq) {
3412 /*
3413 * Cancels requests of all rings, not only @ctx, but
3414 * it's fine as the task is in exit/exec.
3415 */
3416 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3417 &cancel, true);
3418 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3419 }
3420
3421 /* SQPOLL thread does its own polling */
3422 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3423 (ctx->sq_data && ctx->sq_data->thread == current)) {
3424 while (!wq_list_empty(&ctx->iopoll_list)) {
3425 io_iopoll_try_reap_events(ctx);
3426 ret = true;
3427 cond_resched();
3428 }
3429 }
3430
3431 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3432 io_allowed_defer_tw_run(ctx))
3433 ret |= io_run_local_work(ctx, INT_MAX) > 0;
3434 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3435 mutex_lock(&ctx->uring_lock);
3436 ret |= io_poll_remove_all(ctx, task, cancel_all);
3437 mutex_unlock(&ctx->uring_lock);
3438 ret |= io_kill_timeouts(ctx, task, cancel_all);
3439 if (task)
3440 ret |= io_run_task_work() > 0;
3441 return ret;
3442 }
3443
tctx_inflight(struct io_uring_task * tctx,bool tracked)3444 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3445 {
3446 if (tracked)
3447 return atomic_read(&tctx->inflight_tracked);
3448 return percpu_counter_sum(&tctx->inflight);
3449 }
3450
3451 /*
3452 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3453 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3454 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3455 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3456 {
3457 struct io_uring_task *tctx = current->io_uring;
3458 struct io_ring_ctx *ctx;
3459 struct io_tctx_node *node;
3460 unsigned long index;
3461 s64 inflight;
3462 DEFINE_WAIT(wait);
3463
3464 WARN_ON_ONCE(sqd && sqd->thread != current);
3465
3466 if (!current->io_uring)
3467 return;
3468 if (tctx->io_wq)
3469 io_wq_exit_start(tctx->io_wq);
3470
3471 atomic_inc(&tctx->in_cancel);
3472 do {
3473 bool loop = false;
3474
3475 io_uring_drop_tctx_refs(current);
3476 if (!tctx_inflight(tctx, !cancel_all))
3477 break;
3478
3479 /* read completions before cancelations */
3480 inflight = tctx_inflight(tctx, false);
3481 if (!inflight)
3482 break;
3483
3484 if (!sqd) {
3485 xa_for_each(&tctx->xa, index, node) {
3486 /* sqpoll task will cancel all its requests */
3487 if (node->ctx->sq_data)
3488 continue;
3489 loop |= io_uring_try_cancel_requests(node->ctx,
3490 current, cancel_all);
3491 }
3492 } else {
3493 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3494 loop |= io_uring_try_cancel_requests(ctx,
3495 current,
3496 cancel_all);
3497 }
3498
3499 if (loop) {
3500 cond_resched();
3501 continue;
3502 }
3503
3504 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3505 io_run_task_work();
3506 io_uring_drop_tctx_refs(current);
3507 xa_for_each(&tctx->xa, index, node) {
3508 if (!llist_empty(&node->ctx->work_llist)) {
3509 WARN_ON_ONCE(node->ctx->submitter_task &&
3510 node->ctx->submitter_task != current);
3511 goto end_wait;
3512 }
3513 }
3514 /*
3515 * If we've seen completions, retry without waiting. This
3516 * avoids a race where a completion comes in before we did
3517 * prepare_to_wait().
3518 */
3519 if (inflight == tctx_inflight(tctx, !cancel_all))
3520 schedule();
3521 end_wait:
3522 finish_wait(&tctx->wait, &wait);
3523 } while (1);
3524
3525 io_uring_clean_tctx(tctx);
3526 if (cancel_all) {
3527 /*
3528 * We shouldn't run task_works after cancel, so just leave
3529 * ->in_cancel set for normal exit.
3530 */
3531 atomic_dec(&tctx->in_cancel);
3532 /* for exec all current's requests should be gone, kill tctx */
3533 __io_uring_free(current);
3534 }
3535 }
3536
__io_uring_cancel(bool cancel_all)3537 void __io_uring_cancel(bool cancel_all)
3538 {
3539 io_uring_unreg_ringfd();
3540 io_uring_cancel_generic(cancel_all, NULL);
3541 }
3542
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3543 static void *io_uring_validate_mmap_request(struct file *file,
3544 loff_t pgoff, size_t sz)
3545 {
3546 struct io_ring_ctx *ctx = file->private_data;
3547 loff_t offset = pgoff << PAGE_SHIFT;
3548
3549 switch ((pgoff << PAGE_SHIFT) & IORING_OFF_MMAP_MASK) {
3550 case IORING_OFF_SQ_RING:
3551 case IORING_OFF_CQ_RING:
3552 /* Don't allow mmap if the ring was setup without it */
3553 if (ctx->flags & IORING_SETUP_NO_MMAP)
3554 return ERR_PTR(-EINVAL);
3555 return ctx->rings;
3556 case IORING_OFF_SQES:
3557 /* Don't allow mmap if the ring was setup without it */
3558 if (ctx->flags & IORING_SETUP_NO_MMAP)
3559 return ERR_PTR(-EINVAL);
3560 return ctx->sq_sqes;
3561 case IORING_OFF_PBUF_RING: {
3562 struct io_buffer_list *bl;
3563 unsigned int bgid;
3564 void *ptr;
3565
3566 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3567 bl = io_pbuf_get_bl(ctx, bgid);
3568 if (IS_ERR(bl))
3569 return bl;
3570 ptr = bl->buf_ring;
3571 io_put_bl(ctx, bl);
3572 return ptr;
3573 }
3574 }
3575
3576 return ERR_PTR(-EINVAL);
3577 }
3578
io_uring_mmap_pages(struct io_ring_ctx * ctx,struct vm_area_struct * vma,struct page ** pages,int npages)3579 int io_uring_mmap_pages(struct io_ring_ctx *ctx, struct vm_area_struct *vma,
3580 struct page **pages, int npages)
3581 {
3582 unsigned long nr_pages = npages;
3583
3584 vm_flags_set(vma, VM_DONTEXPAND);
3585 return vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
3586 }
3587
3588 #ifdef CONFIG_MMU
3589
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3590 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3591 {
3592 struct io_ring_ctx *ctx = file->private_data;
3593 size_t sz = vma->vm_end - vma->vm_start;
3594 long offset = vma->vm_pgoff << PAGE_SHIFT;
3595 unsigned int npages;
3596 void *ptr;
3597
3598 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3599 if (IS_ERR(ptr))
3600 return PTR_ERR(ptr);
3601
3602 switch (offset & IORING_OFF_MMAP_MASK) {
3603 case IORING_OFF_SQ_RING:
3604 case IORING_OFF_CQ_RING:
3605 npages = min(ctx->n_ring_pages, (sz + PAGE_SIZE - 1) >> PAGE_SHIFT);
3606 return io_uring_mmap_pages(ctx, vma, ctx->ring_pages, npages);
3607 case IORING_OFF_SQES:
3608 return io_uring_mmap_pages(ctx, vma, ctx->sqe_pages,
3609 ctx->n_sqe_pages);
3610 case IORING_OFF_PBUF_RING:
3611 return io_pbuf_mmap(file, vma);
3612 }
3613
3614 return -EINVAL;
3615 }
3616
io_uring_mmu_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3617 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3618 unsigned long addr, unsigned long len,
3619 unsigned long pgoff, unsigned long flags)
3620 {
3621 void *ptr;
3622
3623 /*
3624 * Do not allow to map to user-provided address to avoid breaking the
3625 * aliasing rules. Userspace is not able to guess the offset address of
3626 * kernel kmalloc()ed memory area.
3627 */
3628 if (addr)
3629 return -EINVAL;
3630
3631 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3632 if (IS_ERR(ptr))
3633 return -ENOMEM;
3634
3635 /*
3636 * Some architectures have strong cache aliasing requirements.
3637 * For such architectures we need a coherent mapping which aliases
3638 * kernel memory *and* userspace memory. To achieve that:
3639 * - use a NULL file pointer to reference physical memory, and
3640 * - use the kernel virtual address of the shared io_uring context
3641 * (instead of the userspace-provided address, which has to be 0UL
3642 * anyway).
3643 * - use the same pgoff which the get_unmapped_area() uses to
3644 * calculate the page colouring.
3645 * For architectures without such aliasing requirements, the
3646 * architecture will return any suitable mapping because addr is 0.
3647 */
3648 filp = NULL;
3649 flags |= MAP_SHARED;
3650 pgoff = 0; /* has been translated to ptr above */
3651 #ifdef SHM_COLOUR
3652 addr = (uintptr_t) ptr;
3653 pgoff = addr >> PAGE_SHIFT;
3654 #else
3655 addr = 0UL;
3656 #endif
3657 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3658 }
3659
3660 #else /* !CONFIG_MMU */
3661
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3662 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3663 {
3664 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3665 }
3666
io_uring_nommu_mmap_capabilities(struct file * file)3667 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3668 {
3669 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3670 }
3671
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3672 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3673 unsigned long addr, unsigned long len,
3674 unsigned long pgoff, unsigned long flags)
3675 {
3676 void *ptr;
3677
3678 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3679 if (IS_ERR(ptr))
3680 return PTR_ERR(ptr);
3681
3682 return (unsigned long) ptr;
3683 }
3684
3685 #endif /* !CONFIG_MMU */
3686
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3687 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3688 {
3689 if (flags & IORING_ENTER_EXT_ARG) {
3690 struct io_uring_getevents_arg arg;
3691
3692 if (argsz != sizeof(arg))
3693 return -EINVAL;
3694 if (copy_from_user(&arg, argp, sizeof(arg)))
3695 return -EFAULT;
3696 }
3697 return 0;
3698 }
3699
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3700 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3701 struct __kernel_timespec __user **ts,
3702 const sigset_t __user **sig)
3703 {
3704 struct io_uring_getevents_arg arg;
3705
3706 /*
3707 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3708 * is just a pointer to the sigset_t.
3709 */
3710 if (!(flags & IORING_ENTER_EXT_ARG)) {
3711 *sig = (const sigset_t __user *) argp;
3712 *ts = NULL;
3713 return 0;
3714 }
3715
3716 /*
3717 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3718 * timespec and sigset_t pointers if good.
3719 */
3720 if (*argsz != sizeof(arg))
3721 return -EINVAL;
3722 if (copy_from_user(&arg, argp, sizeof(arg)))
3723 return -EFAULT;
3724 if (arg.pad)
3725 return -EINVAL;
3726 *sig = u64_to_user_ptr(arg.sigmask);
3727 *argsz = arg.sigmask_sz;
3728 *ts = u64_to_user_ptr(arg.ts);
3729 return 0;
3730 }
3731
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3732 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3733 u32, min_complete, u32, flags, const void __user *, argp,
3734 size_t, argsz)
3735 {
3736 struct io_ring_ctx *ctx;
3737 struct file *file;
3738 long ret;
3739
3740 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3741 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3742 IORING_ENTER_REGISTERED_RING)))
3743 return -EINVAL;
3744
3745 /*
3746 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3747 * need only dereference our task private array to find it.
3748 */
3749 if (flags & IORING_ENTER_REGISTERED_RING) {
3750 struct io_uring_task *tctx = current->io_uring;
3751
3752 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3753 return -EINVAL;
3754 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3755 file = tctx->registered_rings[fd];
3756 if (unlikely(!file))
3757 return -EBADF;
3758 } else {
3759 file = fget(fd);
3760 if (unlikely(!file))
3761 return -EBADF;
3762 ret = -EOPNOTSUPP;
3763 if (unlikely(!io_is_uring_fops(file)))
3764 goto out;
3765 }
3766
3767 ctx = file->private_data;
3768 ret = -EBADFD;
3769 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3770 goto out;
3771
3772 /*
3773 * For SQ polling, the thread will do all submissions and completions.
3774 * Just return the requested submit count, and wake the thread if
3775 * we were asked to.
3776 */
3777 ret = 0;
3778 if (ctx->flags & IORING_SETUP_SQPOLL) {
3779 io_cqring_overflow_flush(ctx);
3780
3781 if (unlikely(ctx->sq_data->thread == NULL)) {
3782 ret = -EOWNERDEAD;
3783 goto out;
3784 }
3785 if (flags & IORING_ENTER_SQ_WAKEUP)
3786 wake_up(&ctx->sq_data->wait);
3787 if (flags & IORING_ENTER_SQ_WAIT)
3788 io_sqpoll_wait_sq(ctx);
3789
3790 ret = to_submit;
3791 } else if (to_submit) {
3792 ret = io_uring_add_tctx_node(ctx);
3793 if (unlikely(ret))
3794 goto out;
3795
3796 mutex_lock(&ctx->uring_lock);
3797 ret = io_submit_sqes(ctx, to_submit);
3798 if (ret != to_submit) {
3799 mutex_unlock(&ctx->uring_lock);
3800 goto out;
3801 }
3802 if (flags & IORING_ENTER_GETEVENTS) {
3803 if (ctx->syscall_iopoll)
3804 goto iopoll_locked;
3805 /*
3806 * Ignore errors, we'll soon call io_cqring_wait() and
3807 * it should handle ownership problems if any.
3808 */
3809 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3810 (void)io_run_local_work_locked(ctx, min_complete);
3811 }
3812 mutex_unlock(&ctx->uring_lock);
3813 }
3814
3815 if (flags & IORING_ENTER_GETEVENTS) {
3816 int ret2;
3817
3818 if (ctx->syscall_iopoll) {
3819 /*
3820 * We disallow the app entering submit/complete with
3821 * polling, but we still need to lock the ring to
3822 * prevent racing with polled issue that got punted to
3823 * a workqueue.
3824 */
3825 mutex_lock(&ctx->uring_lock);
3826 iopoll_locked:
3827 ret2 = io_validate_ext_arg(flags, argp, argsz);
3828 if (likely(!ret2)) {
3829 min_complete = min(min_complete,
3830 ctx->cq_entries);
3831 ret2 = io_iopoll_check(ctx, min_complete);
3832 }
3833 mutex_unlock(&ctx->uring_lock);
3834 } else {
3835 const sigset_t __user *sig;
3836 struct __kernel_timespec __user *ts;
3837
3838 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3839 if (likely(!ret2)) {
3840 min_complete = min(min_complete,
3841 ctx->cq_entries);
3842 ret2 = io_cqring_wait(ctx, min_complete, sig,
3843 argsz, ts);
3844 }
3845 }
3846
3847 if (!ret) {
3848 ret = ret2;
3849
3850 /*
3851 * EBADR indicates that one or more CQE were dropped.
3852 * Once the user has been informed we can clear the bit
3853 * as they are obviously ok with those drops.
3854 */
3855 if (unlikely(ret2 == -EBADR))
3856 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3857 &ctx->check_cq);
3858 }
3859 }
3860 out:
3861 if (!(flags & IORING_ENTER_REGISTERED_RING))
3862 fput(file);
3863 return ret;
3864 }
3865
3866 static const struct file_operations io_uring_fops = {
3867 .release = io_uring_release,
3868 .mmap = io_uring_mmap,
3869 #ifndef CONFIG_MMU
3870 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3871 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3872 #else
3873 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3874 #endif
3875 .poll = io_uring_poll,
3876 #ifdef CONFIG_PROC_FS
3877 .show_fdinfo = io_uring_show_fdinfo,
3878 #endif
3879 };
3880
io_is_uring_fops(struct file * file)3881 bool io_is_uring_fops(struct file *file)
3882 {
3883 return file->f_op == &io_uring_fops;
3884 }
3885
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3886 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3887 struct io_uring_params *p)
3888 {
3889 struct io_rings *rings;
3890 size_t size, sq_array_offset;
3891 void *ptr;
3892
3893 /* make sure these are sane, as we already accounted them */
3894 ctx->sq_entries = p->sq_entries;
3895 ctx->cq_entries = p->cq_entries;
3896
3897 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3898 if (size == SIZE_MAX)
3899 return -EOVERFLOW;
3900
3901 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3902 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3903 else
3904 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3905
3906 if (IS_ERR(rings))
3907 return PTR_ERR(rings);
3908
3909 ctx->rings = rings;
3910 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3911 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3912 rings->sq_ring_mask = p->sq_entries - 1;
3913 rings->cq_ring_mask = p->cq_entries - 1;
3914 rings->sq_ring_entries = p->sq_entries;
3915 rings->cq_ring_entries = p->cq_entries;
3916
3917 if (p->flags & IORING_SETUP_SQE128)
3918 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3919 else
3920 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3921 if (size == SIZE_MAX) {
3922 io_rings_free(ctx);
3923 return -EOVERFLOW;
3924 }
3925
3926 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3927 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3928 else
3929 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3930
3931 if (IS_ERR(ptr)) {
3932 io_rings_free(ctx);
3933 return PTR_ERR(ptr);
3934 }
3935
3936 ctx->sq_sqes = ptr;
3937 return 0;
3938 }
3939
io_uring_install_fd(struct file * file)3940 static int io_uring_install_fd(struct file *file)
3941 {
3942 int fd;
3943
3944 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3945 if (fd < 0)
3946 return fd;
3947 fd_install(fd, file);
3948 return fd;
3949 }
3950
3951 /*
3952 * Allocate an anonymous fd, this is what constitutes the application
3953 * visible backing of an io_uring instance. The application mmaps this
3954 * fd to gain access to the SQ/CQ ring details.
3955 */
io_uring_get_file(struct io_ring_ctx * ctx)3956 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3957 {
3958 return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3959 O_RDWR | O_CLOEXEC, NULL);
3960 }
3961
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3962 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3963 struct io_uring_params __user *params)
3964 {
3965 struct io_ring_ctx *ctx;
3966 struct io_uring_task *tctx;
3967 struct file *file;
3968 int ret;
3969
3970 if (!entries)
3971 return -EINVAL;
3972 if (entries > IORING_MAX_ENTRIES) {
3973 if (!(p->flags & IORING_SETUP_CLAMP))
3974 return -EINVAL;
3975 entries = IORING_MAX_ENTRIES;
3976 }
3977
3978 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3979 && !(p->flags & IORING_SETUP_NO_MMAP))
3980 return -EINVAL;
3981
3982 /*
3983 * Use twice as many entries for the CQ ring. It's possible for the
3984 * application to drive a higher depth than the size of the SQ ring,
3985 * since the sqes are only used at submission time. This allows for
3986 * some flexibility in overcommitting a bit. If the application has
3987 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3988 * of CQ ring entries manually.
3989 */
3990 p->sq_entries = roundup_pow_of_two(entries);
3991 if (p->flags & IORING_SETUP_CQSIZE) {
3992 /*
3993 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3994 * to a power-of-two, if it isn't already. We do NOT impose
3995 * any cq vs sq ring sizing.
3996 */
3997 if (!p->cq_entries)
3998 return -EINVAL;
3999 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
4000 if (!(p->flags & IORING_SETUP_CLAMP))
4001 return -EINVAL;
4002 p->cq_entries = IORING_MAX_CQ_ENTRIES;
4003 }
4004 p->cq_entries = roundup_pow_of_two(p->cq_entries);
4005 if (p->cq_entries < p->sq_entries)
4006 return -EINVAL;
4007 } else {
4008 p->cq_entries = 2 * p->sq_entries;
4009 }
4010
4011 ctx = io_ring_ctx_alloc(p);
4012 if (!ctx)
4013 return -ENOMEM;
4014
4015 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
4016 !(ctx->flags & IORING_SETUP_IOPOLL) &&
4017 !(ctx->flags & IORING_SETUP_SQPOLL))
4018 ctx->task_complete = true;
4019
4020 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
4021 ctx->lockless_cq = true;
4022
4023 /*
4024 * lazy poll_wq activation relies on ->task_complete for synchronisation
4025 * purposes, see io_activate_pollwq()
4026 */
4027 if (!ctx->task_complete)
4028 ctx->poll_activated = true;
4029
4030 /*
4031 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
4032 * space applications don't need to do io completion events
4033 * polling again, they can rely on io_sq_thread to do polling
4034 * work, which can reduce cpu usage and uring_lock contention.
4035 */
4036 if (ctx->flags & IORING_SETUP_IOPOLL &&
4037 !(ctx->flags & IORING_SETUP_SQPOLL))
4038 ctx->syscall_iopoll = 1;
4039
4040 ctx->compat = in_compat_syscall();
4041 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
4042 ctx->user = get_uid(current_user());
4043
4044 /*
4045 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
4046 * COOP_TASKRUN is set, then IPIs are never needed by the app.
4047 */
4048 ret = -EINVAL;
4049 if (ctx->flags & IORING_SETUP_SQPOLL) {
4050 /* IPI related flags don't make sense with SQPOLL */
4051 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
4052 IORING_SETUP_TASKRUN_FLAG |
4053 IORING_SETUP_DEFER_TASKRUN))
4054 goto err;
4055 ctx->notify_method = TWA_SIGNAL_NO_IPI;
4056 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
4057 ctx->notify_method = TWA_SIGNAL_NO_IPI;
4058 } else {
4059 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
4060 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
4061 goto err;
4062 ctx->notify_method = TWA_SIGNAL;
4063 }
4064
4065 /*
4066 * For DEFER_TASKRUN we require the completion task to be the same as the
4067 * submission task. This implies that there is only one submitter, so enforce
4068 * that.
4069 */
4070 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
4071 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
4072 goto err;
4073 }
4074
4075 /*
4076 * This is just grabbed for accounting purposes. When a process exits,
4077 * the mm is exited and dropped before the files, hence we need to hang
4078 * on to this mm purely for the purposes of being able to unaccount
4079 * memory (locked/pinned vm). It's not used for anything else.
4080 */
4081 mmgrab(current->mm);
4082 ctx->mm_account = current->mm;
4083
4084 ret = io_allocate_scq_urings(ctx, p);
4085 if (ret)
4086 goto err;
4087
4088 ret = io_sq_offload_create(ctx, p);
4089 if (ret)
4090 goto err;
4091
4092 ret = io_rsrc_init(ctx);
4093 if (ret)
4094 goto err;
4095
4096 p->sq_off.head = offsetof(struct io_rings, sq.head);
4097 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
4098 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
4099 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
4100 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
4101 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
4102 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
4103 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4104 p->sq_off.resv1 = 0;
4105 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4106 p->sq_off.user_addr = 0;
4107
4108 p->cq_off.head = offsetof(struct io_rings, cq.head);
4109 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4110 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4111 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4112 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4113 p->cq_off.cqes = offsetof(struct io_rings, cqes);
4114 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4115 p->cq_off.resv1 = 0;
4116 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4117 p->cq_off.user_addr = 0;
4118
4119 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4120 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4121 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4122 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4123 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4124 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4125 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4126
4127 if (copy_to_user(params, p, sizeof(*p))) {
4128 ret = -EFAULT;
4129 goto err;
4130 }
4131
4132 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4133 && !(ctx->flags & IORING_SETUP_R_DISABLED))
4134 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4135
4136 file = io_uring_get_file(ctx);
4137 if (IS_ERR(file)) {
4138 ret = PTR_ERR(file);
4139 goto err;
4140 }
4141
4142 ret = __io_uring_add_tctx_node(ctx);
4143 if (ret)
4144 goto err_fput;
4145 tctx = current->io_uring;
4146
4147 /*
4148 * Install ring fd as the very last thing, so we don't risk someone
4149 * having closed it before we finish setup
4150 */
4151 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4152 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4153 else
4154 ret = io_uring_install_fd(file);
4155 if (ret < 0)
4156 goto err_fput;
4157
4158 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4159 return ret;
4160 err:
4161 io_ring_ctx_wait_and_kill(ctx);
4162 return ret;
4163 err_fput:
4164 fput(file);
4165 return ret;
4166 }
4167
4168 /*
4169 * Sets up an aio uring context, and returns the fd. Applications asks for a
4170 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4171 * params structure passed in.
4172 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)4173 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4174 {
4175 struct io_uring_params p;
4176 int i;
4177
4178 if (copy_from_user(&p, params, sizeof(p)))
4179 return -EFAULT;
4180 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4181 if (p.resv[i])
4182 return -EINVAL;
4183 }
4184
4185 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4186 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4187 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4188 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4189 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4190 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4191 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4192 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4193 IORING_SETUP_NO_SQARRAY))
4194 return -EINVAL;
4195
4196 return io_uring_create(entries, &p, params);
4197 }
4198
io_uring_allowed(void)4199 static inline bool io_uring_allowed(void)
4200 {
4201 int disabled = READ_ONCE(sysctl_io_uring_disabled);
4202 kgid_t io_uring_group;
4203
4204 if (disabled == 2)
4205 return false;
4206
4207 if (disabled == 0 || capable(CAP_SYS_ADMIN))
4208 return true;
4209
4210 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4211 if (!gid_valid(io_uring_group))
4212 return false;
4213
4214 return in_group_p(io_uring_group);
4215 }
4216
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)4217 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4218 struct io_uring_params __user *, params)
4219 {
4220 if (!io_uring_allowed())
4221 return -EPERM;
4222
4223 return io_uring_setup(entries, params);
4224 }
4225
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)4226 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4227 unsigned nr_args)
4228 {
4229 struct io_uring_probe *p;
4230 size_t size;
4231 int i, ret;
4232
4233 size = struct_size(p, ops, nr_args);
4234 if (size == SIZE_MAX)
4235 return -EOVERFLOW;
4236 p = kzalloc(size, GFP_KERNEL);
4237 if (!p)
4238 return -ENOMEM;
4239
4240 ret = -EFAULT;
4241 if (copy_from_user(p, arg, size))
4242 goto out;
4243 ret = -EINVAL;
4244 if (memchr_inv(p, 0, size))
4245 goto out;
4246
4247 p->last_op = IORING_OP_LAST - 1;
4248 if (nr_args > IORING_OP_LAST)
4249 nr_args = IORING_OP_LAST;
4250
4251 for (i = 0; i < nr_args; i++) {
4252 p->ops[i].op = i;
4253 if (!io_issue_defs[i].not_supported)
4254 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4255 }
4256 p->ops_len = i;
4257
4258 ret = 0;
4259 if (copy_to_user(arg, p, size))
4260 ret = -EFAULT;
4261 out:
4262 kfree(p);
4263 return ret;
4264 }
4265
io_register_personality(struct io_ring_ctx * ctx)4266 static int io_register_personality(struct io_ring_ctx *ctx)
4267 {
4268 const struct cred *creds;
4269 u32 id;
4270 int ret;
4271
4272 creds = get_current_cred();
4273
4274 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4275 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4276 if (ret < 0) {
4277 put_cred(creds);
4278 return ret;
4279 }
4280 return id;
4281 }
4282
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)4283 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4284 void __user *arg, unsigned int nr_args)
4285 {
4286 struct io_uring_restriction *res;
4287 size_t size;
4288 int i, ret;
4289
4290 /* Restrictions allowed only if rings started disabled */
4291 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4292 return -EBADFD;
4293
4294 /* We allow only a single restrictions registration */
4295 if (ctx->restrictions.registered)
4296 return -EBUSY;
4297
4298 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4299 return -EINVAL;
4300
4301 size = array_size(nr_args, sizeof(*res));
4302 if (size == SIZE_MAX)
4303 return -EOVERFLOW;
4304
4305 res = memdup_user(arg, size);
4306 if (IS_ERR(res))
4307 return PTR_ERR(res);
4308
4309 ret = 0;
4310
4311 for (i = 0; i < nr_args; i++) {
4312 switch (res[i].opcode) {
4313 case IORING_RESTRICTION_REGISTER_OP:
4314 if (res[i].register_op >= IORING_REGISTER_LAST) {
4315 ret = -EINVAL;
4316 goto out;
4317 }
4318
4319 __set_bit(res[i].register_op,
4320 ctx->restrictions.register_op);
4321 break;
4322 case IORING_RESTRICTION_SQE_OP:
4323 if (res[i].sqe_op >= IORING_OP_LAST) {
4324 ret = -EINVAL;
4325 goto out;
4326 }
4327
4328 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4329 break;
4330 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4331 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4332 break;
4333 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4334 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4335 break;
4336 default:
4337 ret = -EINVAL;
4338 goto out;
4339 }
4340 }
4341
4342 out:
4343 /* Reset all restrictions if an error happened */
4344 if (ret != 0)
4345 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4346 else
4347 ctx->restrictions.registered = true;
4348
4349 kfree(res);
4350 return ret;
4351 }
4352
io_register_enable_rings(struct io_ring_ctx * ctx)4353 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4354 {
4355 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4356 return -EBADFD;
4357
4358 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4359 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4360 /*
4361 * Lazy activation attempts would fail if it was polled before
4362 * submitter_task is set.
4363 */
4364 if (wq_has_sleeper(&ctx->poll_wq))
4365 io_activate_pollwq(ctx);
4366 }
4367
4368 if (ctx->restrictions.registered)
4369 ctx->restricted = 1;
4370
4371 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4372 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4373 wake_up(&ctx->sq_data->wait);
4374 return 0;
4375 }
4376
__io_register_iowq_aff(struct io_ring_ctx * ctx,cpumask_var_t new_mask)4377 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4378 cpumask_var_t new_mask)
4379 {
4380 int ret;
4381
4382 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4383 ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4384 } else {
4385 mutex_unlock(&ctx->uring_lock);
4386 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4387 mutex_lock(&ctx->uring_lock);
4388 }
4389
4390 return ret;
4391 }
4392
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)4393 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4394 void __user *arg, unsigned len)
4395 {
4396 cpumask_var_t new_mask;
4397 int ret;
4398
4399 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4400 return -ENOMEM;
4401
4402 cpumask_clear(new_mask);
4403 if (len > cpumask_size())
4404 len = cpumask_size();
4405
4406 if (in_compat_syscall()) {
4407 ret = compat_get_bitmap(cpumask_bits(new_mask),
4408 (const compat_ulong_t __user *)arg,
4409 len * 8 /* CHAR_BIT */);
4410 } else {
4411 ret = copy_from_user(new_mask, arg, len);
4412 }
4413
4414 if (ret) {
4415 free_cpumask_var(new_mask);
4416 return -EFAULT;
4417 }
4418
4419 ret = __io_register_iowq_aff(ctx, new_mask);
4420 free_cpumask_var(new_mask);
4421 return ret;
4422 }
4423
io_unregister_iowq_aff(struct io_ring_ctx * ctx)4424 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4425 {
4426 return __io_register_iowq_aff(ctx, NULL);
4427 }
4428
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)4429 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4430 void __user *arg)
4431 __must_hold(&ctx->uring_lock)
4432 {
4433 struct io_tctx_node *node;
4434 struct io_uring_task *tctx = NULL;
4435 struct io_sq_data *sqd = NULL;
4436 __u32 new_count[2];
4437 int i, ret;
4438
4439 if (copy_from_user(new_count, arg, sizeof(new_count)))
4440 return -EFAULT;
4441 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4442 if (new_count[i] > INT_MAX)
4443 return -EINVAL;
4444
4445 if (ctx->flags & IORING_SETUP_SQPOLL) {
4446 sqd = ctx->sq_data;
4447 if (sqd) {
4448 /*
4449 * Observe the correct sqd->lock -> ctx->uring_lock
4450 * ordering. Fine to drop uring_lock here, we hold
4451 * a ref to the ctx.
4452 */
4453 refcount_inc(&sqd->refs);
4454 mutex_unlock(&ctx->uring_lock);
4455 mutex_lock(&sqd->lock);
4456 mutex_lock(&ctx->uring_lock);
4457 if (sqd->thread)
4458 tctx = sqd->thread->io_uring;
4459 }
4460 } else {
4461 tctx = current->io_uring;
4462 }
4463
4464 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4465
4466 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4467 if (new_count[i])
4468 ctx->iowq_limits[i] = new_count[i];
4469 ctx->iowq_limits_set = true;
4470
4471 if (tctx && tctx->io_wq) {
4472 ret = io_wq_max_workers(tctx->io_wq, new_count);
4473 if (ret)
4474 goto err;
4475 } else {
4476 memset(new_count, 0, sizeof(new_count));
4477 }
4478
4479 if (sqd) {
4480 mutex_unlock(&ctx->uring_lock);
4481 mutex_unlock(&sqd->lock);
4482 io_put_sq_data(sqd);
4483 mutex_lock(&ctx->uring_lock);
4484 }
4485
4486 if (copy_to_user(arg, new_count, sizeof(new_count)))
4487 return -EFAULT;
4488
4489 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4490 if (sqd)
4491 return 0;
4492
4493 /* now propagate the restriction to all registered users */
4494 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4495 struct io_uring_task *tctx = node->task->io_uring;
4496
4497 if (WARN_ON_ONCE(!tctx->io_wq))
4498 continue;
4499
4500 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4501 new_count[i] = ctx->iowq_limits[i];
4502 /* ignore errors, it always returns zero anyway */
4503 (void)io_wq_max_workers(tctx->io_wq, new_count);
4504 }
4505 return 0;
4506 err:
4507 if (sqd) {
4508 mutex_unlock(&ctx->uring_lock);
4509 mutex_unlock(&sqd->lock);
4510 io_put_sq_data(sqd);
4511 mutex_lock(&ctx->uring_lock);
4512
4513 }
4514 return ret;
4515 }
4516
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)4517 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4518 void __user *arg, unsigned nr_args)
4519 __releases(ctx->uring_lock)
4520 __acquires(ctx->uring_lock)
4521 {
4522 int ret;
4523
4524 /*
4525 * We don't quiesce the refs for register anymore and so it can't be
4526 * dying as we're holding a file ref here.
4527 */
4528 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4529 return -ENXIO;
4530
4531 if (ctx->submitter_task && ctx->submitter_task != current)
4532 return -EEXIST;
4533
4534 if (ctx->restricted) {
4535 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4536 if (!test_bit(opcode, ctx->restrictions.register_op))
4537 return -EACCES;
4538 }
4539
4540 switch (opcode) {
4541 case IORING_REGISTER_BUFFERS:
4542 ret = -EFAULT;
4543 if (!arg)
4544 break;
4545 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4546 break;
4547 case IORING_UNREGISTER_BUFFERS:
4548 ret = -EINVAL;
4549 if (arg || nr_args)
4550 break;
4551 ret = io_sqe_buffers_unregister(ctx);
4552 break;
4553 case IORING_REGISTER_FILES:
4554 ret = -EFAULT;
4555 if (!arg)
4556 break;
4557 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4558 break;
4559 case IORING_UNREGISTER_FILES:
4560 ret = -EINVAL;
4561 if (arg || nr_args)
4562 break;
4563 ret = io_sqe_files_unregister(ctx);
4564 break;
4565 case IORING_REGISTER_FILES_UPDATE:
4566 ret = io_register_files_update(ctx, arg, nr_args);
4567 break;
4568 case IORING_REGISTER_EVENTFD:
4569 ret = -EINVAL;
4570 if (nr_args != 1)
4571 break;
4572 ret = io_eventfd_register(ctx, arg, 0);
4573 break;
4574 case IORING_REGISTER_EVENTFD_ASYNC:
4575 ret = -EINVAL;
4576 if (nr_args != 1)
4577 break;
4578 ret = io_eventfd_register(ctx, arg, 1);
4579 break;
4580 case IORING_UNREGISTER_EVENTFD:
4581 ret = -EINVAL;
4582 if (arg || nr_args)
4583 break;
4584 ret = io_eventfd_unregister(ctx);
4585 break;
4586 case IORING_REGISTER_PROBE:
4587 ret = -EINVAL;
4588 if (!arg || nr_args > 256)
4589 break;
4590 ret = io_probe(ctx, arg, nr_args);
4591 break;
4592 case IORING_REGISTER_PERSONALITY:
4593 ret = -EINVAL;
4594 if (arg || nr_args)
4595 break;
4596 ret = io_register_personality(ctx);
4597 break;
4598 case IORING_UNREGISTER_PERSONALITY:
4599 ret = -EINVAL;
4600 if (arg)
4601 break;
4602 ret = io_unregister_personality(ctx, nr_args);
4603 break;
4604 case IORING_REGISTER_ENABLE_RINGS:
4605 ret = -EINVAL;
4606 if (arg || nr_args)
4607 break;
4608 ret = io_register_enable_rings(ctx);
4609 break;
4610 case IORING_REGISTER_RESTRICTIONS:
4611 ret = io_register_restrictions(ctx, arg, nr_args);
4612 break;
4613 case IORING_REGISTER_FILES2:
4614 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4615 break;
4616 case IORING_REGISTER_FILES_UPDATE2:
4617 ret = io_register_rsrc_update(ctx, arg, nr_args,
4618 IORING_RSRC_FILE);
4619 break;
4620 case IORING_REGISTER_BUFFERS2:
4621 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4622 break;
4623 case IORING_REGISTER_BUFFERS_UPDATE:
4624 ret = io_register_rsrc_update(ctx, arg, nr_args,
4625 IORING_RSRC_BUFFER);
4626 break;
4627 case IORING_REGISTER_IOWQ_AFF:
4628 ret = -EINVAL;
4629 if (!arg || !nr_args)
4630 break;
4631 ret = io_register_iowq_aff(ctx, arg, nr_args);
4632 break;
4633 case IORING_UNREGISTER_IOWQ_AFF:
4634 ret = -EINVAL;
4635 if (arg || nr_args)
4636 break;
4637 ret = io_unregister_iowq_aff(ctx);
4638 break;
4639 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4640 ret = -EINVAL;
4641 if (!arg || nr_args != 2)
4642 break;
4643 ret = io_register_iowq_max_workers(ctx, arg);
4644 break;
4645 case IORING_REGISTER_RING_FDS:
4646 ret = io_ringfd_register(ctx, arg, nr_args);
4647 break;
4648 case IORING_UNREGISTER_RING_FDS:
4649 ret = io_ringfd_unregister(ctx, arg, nr_args);
4650 break;
4651 case IORING_REGISTER_PBUF_RING:
4652 ret = -EINVAL;
4653 if (!arg || nr_args != 1)
4654 break;
4655 ret = io_register_pbuf_ring(ctx, arg);
4656 break;
4657 case IORING_UNREGISTER_PBUF_RING:
4658 ret = -EINVAL;
4659 if (!arg || nr_args != 1)
4660 break;
4661 ret = io_unregister_pbuf_ring(ctx, arg);
4662 break;
4663 case IORING_REGISTER_SYNC_CANCEL:
4664 ret = -EINVAL;
4665 if (!arg || nr_args != 1)
4666 break;
4667 ret = io_sync_cancel(ctx, arg);
4668 break;
4669 case IORING_REGISTER_FILE_ALLOC_RANGE:
4670 ret = -EINVAL;
4671 if (!arg || nr_args)
4672 break;
4673 ret = io_register_file_alloc_range(ctx, arg);
4674 break;
4675 default:
4676 ret = -EINVAL;
4677 break;
4678 }
4679
4680 return ret;
4681 }
4682
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4683 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4684 void __user *, arg, unsigned int, nr_args)
4685 {
4686 struct io_ring_ctx *ctx;
4687 long ret = -EBADF;
4688 struct file *file;
4689 bool use_registered_ring;
4690
4691 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4692 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4693
4694 if (opcode >= IORING_REGISTER_LAST)
4695 return -EINVAL;
4696
4697 if (use_registered_ring) {
4698 /*
4699 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4700 * need only dereference our task private array to find it.
4701 */
4702 struct io_uring_task *tctx = current->io_uring;
4703
4704 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4705 return -EINVAL;
4706 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4707 file = tctx->registered_rings[fd];
4708 if (unlikely(!file))
4709 return -EBADF;
4710 } else {
4711 file = fget(fd);
4712 if (unlikely(!file))
4713 return -EBADF;
4714 ret = -EOPNOTSUPP;
4715 if (!io_is_uring_fops(file))
4716 goto out_fput;
4717 }
4718
4719 ctx = file->private_data;
4720
4721 mutex_lock(&ctx->uring_lock);
4722 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4723 mutex_unlock(&ctx->uring_lock);
4724 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4725 out_fput:
4726 if (!use_registered_ring)
4727 fput(file);
4728 return ret;
4729 }
4730
io_uring_init(void)4731 static int __init io_uring_init(void)
4732 {
4733 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4734 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4735 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4736 } while (0)
4737
4738 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4739 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4740 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4741 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4742 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4743 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4744 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4745 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4746 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4747 BUILD_BUG_SQE_ELEM(8, __u64, off);
4748 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4749 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4750 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4751 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4752 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4753 BUILD_BUG_SQE_ELEM(24, __u32, len);
4754 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4755 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4756 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4757 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4758 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4759 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4760 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4761 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4762 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4763 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4764 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4765 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4766 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4767 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4768 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4769 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4770 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4771 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4772 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4773 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4774 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4775 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4776 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4777 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4778 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4779 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4780 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4781 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4782 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4783 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4784 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4785
4786 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4787 sizeof(struct io_uring_rsrc_update));
4788 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4789 sizeof(struct io_uring_rsrc_update2));
4790
4791 /* ->buf_index is u16 */
4792 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4793 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4794 offsetof(struct io_uring_buf_ring, tail));
4795
4796 /* should fit into one byte */
4797 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4798 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4799 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4800
4801 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4802
4803 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4804
4805 io_uring_optable_init();
4806
4807 /*
4808 * Allow user copy in the per-command field, which starts after the
4809 * file in io_kiocb and until the opcode field. The openat2 handling
4810 * requires copying in user memory into the io_kiocb object in that
4811 * range, and HARDENED_USERCOPY will complain if we haven't
4812 * correctly annotated this range.
4813 */
4814 req_cachep = kmem_cache_create_usercopy("io_kiocb",
4815 sizeof(struct io_kiocb), 0,
4816 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4817 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4818 offsetof(struct io_kiocb, cmd.data),
4819 sizeof_field(struct io_kiocb, cmd.data), NULL);
4820
4821 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4822
4823 #ifdef CONFIG_SYSCTL
4824 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4825 #endif
4826
4827 return 0;
4828 };
4829 __initcall(io_uring_init);
4830