1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <linux/anon_inodes.h>
64 #include <linux/sched/mm.h>
65 #include <linux/uaccess.h>
66 #include <linux/nospec.h>
67 #include <linux/highmem.h>
68 #include <linux/fsnotify.h>
69 #include <linux/fadvise.h>
70 #include <linux/task_work.h>
71 #include <linux/io_uring.h>
72 #include <linux/audit.h>
73 #include <linux/security.h>
74 #include <asm/shmparam.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
78
79 #include <uapi/linux/io_uring.h>
80
81 #include "io-wq.h"
82
83 #include "io_uring.h"
84 #include "opdef.h"
85 #include "refs.h"
86 #include "tctx.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94
95 #include "timeout.h"
96 #include "poll.h"
97 #include "rw.h"
98 #include "alloc_cache.h"
99
100 #define IORING_MAX_ENTRIES 32768
101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
102
103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
104 IORING_REGISTER_LAST + IORING_OP_LAST)
105
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108
109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 REQ_F_ASYNC_DATA)
115
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 IO_REQ_CLEAN_FLAGS)
118
119 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
120
121 #define IO_COMPL_BATCH 32
122 #define IO_REQ_ALLOC_BATCH 8
123
124 enum {
125 IO_CHECK_CQ_OVERFLOW_BIT,
126 IO_CHECK_CQ_DROPPED_BIT,
127 };
128
129 enum {
130 IO_EVENTFD_OP_SIGNAL_BIT,
131 IO_EVENTFD_OP_FREE_BIT,
132 };
133
134 struct io_defer_entry {
135 struct list_head list;
136 struct io_kiocb *req;
137 u32 seq;
138 };
139
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 struct task_struct *task,
146 bool cancel_all);
147
148 static void io_queue_sqe(struct io_kiocb *req);
149
150 struct kmem_cache *req_cachep;
151 static struct workqueue_struct *iou_wq __ro_after_init;
152
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
155
156 #ifdef CONFIG_SYSCTL
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
158 {
159 .procname = "io_uring_disabled",
160 .data = &sysctl_io_uring_disabled,
161 .maxlen = sizeof(sysctl_io_uring_disabled),
162 .mode = 0644,
163 .proc_handler = proc_dointvec_minmax,
164 .extra1 = SYSCTL_ZERO,
165 .extra2 = SYSCTL_TWO,
166 },
167 {
168 .procname = "io_uring_group",
169 .data = &sysctl_io_uring_group,
170 .maxlen = sizeof(gid_t),
171 .mode = 0644,
172 .proc_handler = proc_dointvec,
173 },
174 {},
175 };
176 #endif
177
io_submit_flush_completions(struct io_ring_ctx * ctx)178 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
179 {
180 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
181 ctx->submit_state.cqes_count)
182 __io_submit_flush_completions(ctx);
183 }
184
__io_cqring_events(struct io_ring_ctx * ctx)185 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
186 {
187 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
188 }
189
__io_cqring_events_user(struct io_ring_ctx * ctx)190 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
191 {
192 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
193 }
194
io_match_linked(struct io_kiocb * head)195 static bool io_match_linked(struct io_kiocb *head)
196 {
197 struct io_kiocb *req;
198
199 io_for_each_link(req, head) {
200 if (req->flags & REQ_F_INFLIGHT)
201 return true;
202 }
203 return false;
204 }
205
206 /*
207 * As io_match_task() but protected against racing with linked timeouts.
208 * User must not hold timeout_lock.
209 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)210 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
211 bool cancel_all)
212 {
213 bool matched;
214
215 if (task && head->task != task)
216 return false;
217 if (cancel_all)
218 return true;
219
220 if (head->flags & REQ_F_LINK_TIMEOUT) {
221 struct io_ring_ctx *ctx = head->ctx;
222
223 /* protect against races with linked timeouts */
224 spin_lock_irq(&ctx->timeout_lock);
225 matched = io_match_linked(head);
226 spin_unlock_irq(&ctx->timeout_lock);
227 } else {
228 matched = io_match_linked(head);
229 }
230 return matched;
231 }
232
req_fail_link_node(struct io_kiocb * req,int res)233 static inline void req_fail_link_node(struct io_kiocb *req, int res)
234 {
235 req_set_fail(req);
236 io_req_set_res(req, res, 0);
237 }
238
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)239 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
240 {
241 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
242 }
243
io_ring_ctx_ref_free(struct percpu_ref * ref)244 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
245 {
246 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
247
248 complete(&ctx->ref_comp);
249 }
250
io_fallback_req_func(struct work_struct * work)251 static __cold void io_fallback_req_func(struct work_struct *work)
252 {
253 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
254 fallback_work.work);
255 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
256 struct io_kiocb *req, *tmp;
257 struct io_tw_state ts = { .locked = true, };
258
259 percpu_ref_get(&ctx->refs);
260 mutex_lock(&ctx->uring_lock);
261 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
262 req->io_task_work.func(req, &ts);
263 if (WARN_ON_ONCE(!ts.locked))
264 return;
265 io_submit_flush_completions(ctx);
266 mutex_unlock(&ctx->uring_lock);
267 percpu_ref_put(&ctx->refs);
268 }
269
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)270 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
271 {
272 unsigned hash_buckets = 1U << bits;
273 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
274
275 table->hbs = kmalloc(hash_size, GFP_KERNEL);
276 if (!table->hbs)
277 return -ENOMEM;
278
279 table->hash_bits = bits;
280 init_hash_table(table, hash_buckets);
281 return 0;
282 }
283
io_ring_ctx_alloc(struct io_uring_params * p)284 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
285 {
286 struct io_ring_ctx *ctx;
287 int hash_bits;
288
289 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
290 if (!ctx)
291 return NULL;
292
293 xa_init(&ctx->io_bl_xa);
294
295 /*
296 * Use 5 bits less than the max cq entries, that should give us around
297 * 32 entries per hash list if totally full and uniformly spread, but
298 * don't keep too many buckets to not overconsume memory.
299 */
300 hash_bits = ilog2(p->cq_entries) - 5;
301 hash_bits = clamp(hash_bits, 1, 8);
302 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
303 goto err;
304 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
305 goto err;
306 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 0, GFP_KERNEL))
308 goto err;
309
310 ctx->flags = p->flags;
311 init_waitqueue_head(&ctx->sqo_sq_wait);
312 INIT_LIST_HEAD(&ctx->sqd_list);
313 INIT_LIST_HEAD(&ctx->cq_overflow_list);
314 INIT_LIST_HEAD(&ctx->io_buffers_cache);
315 INIT_HLIST_HEAD(&ctx->io_buf_list);
316 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
317 sizeof(struct io_rsrc_node));
318 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
319 sizeof(struct async_poll));
320 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_async_msghdr));
322 init_completion(&ctx->ref_comp);
323 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
324 mutex_init(&ctx->uring_lock);
325 init_waitqueue_head(&ctx->cq_wait);
326 init_waitqueue_head(&ctx->poll_wq);
327 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
328 spin_lock_init(&ctx->completion_lock);
329 spin_lock_init(&ctx->timeout_lock);
330 INIT_WQ_LIST(&ctx->iopoll_list);
331 INIT_LIST_HEAD(&ctx->io_buffers_pages);
332 INIT_LIST_HEAD(&ctx->io_buffers_comp);
333 INIT_LIST_HEAD(&ctx->defer_list);
334 INIT_LIST_HEAD(&ctx->timeout_list);
335 INIT_LIST_HEAD(&ctx->ltimeout_list);
336 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
337 init_llist_head(&ctx->work_llist);
338 INIT_LIST_HEAD(&ctx->tctx_list);
339 ctx->submit_state.free_list.next = NULL;
340 INIT_WQ_LIST(&ctx->locked_free_list);
341 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
342 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
343 return ctx;
344 err:
345 kfree(ctx->cancel_table.hbs);
346 kfree(ctx->cancel_table_locked.hbs);
347 xa_destroy(&ctx->io_bl_xa);
348 kfree(ctx);
349 return NULL;
350 }
351
io_account_cq_overflow(struct io_ring_ctx * ctx)352 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353 {
354 struct io_rings *r = ctx->rings;
355
356 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 ctx->cq_extra--;
358 }
359
req_need_defer(struct io_kiocb * req,u32 seq)360 static bool req_need_defer(struct io_kiocb *req, u32 seq)
361 {
362 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
363 struct io_ring_ctx *ctx = req->ctx;
364
365 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
366 }
367
368 return false;
369 }
370
io_clean_op(struct io_kiocb * req)371 static void io_clean_op(struct io_kiocb *req)
372 {
373 if (req->flags & REQ_F_BUFFER_SELECTED) {
374 spin_lock(&req->ctx->completion_lock);
375 io_put_kbuf_comp(req);
376 spin_unlock(&req->ctx->completion_lock);
377 }
378
379 if (req->flags & REQ_F_NEED_CLEANUP) {
380 const struct io_cold_def *def = &io_cold_defs[req->opcode];
381
382 if (def->cleanup)
383 def->cleanup(req);
384 }
385 if ((req->flags & REQ_F_POLLED) && req->apoll) {
386 kfree(req->apoll->double_poll);
387 kfree(req->apoll);
388 req->apoll = NULL;
389 }
390 if (req->flags & REQ_F_INFLIGHT) {
391 struct io_uring_task *tctx = req->task->io_uring;
392
393 atomic_dec(&tctx->inflight_tracked);
394 }
395 if (req->flags & REQ_F_CREDS)
396 put_cred(req->creds);
397 if (req->flags & REQ_F_ASYNC_DATA) {
398 kfree(req->async_data);
399 req->async_data = NULL;
400 }
401 req->flags &= ~IO_REQ_CLEAN_FLAGS;
402 }
403
io_req_track_inflight(struct io_kiocb * req)404 static inline void io_req_track_inflight(struct io_kiocb *req)
405 {
406 if (!(req->flags & REQ_F_INFLIGHT)) {
407 req->flags |= REQ_F_INFLIGHT;
408 atomic_inc(&req->task->io_uring->inflight_tracked);
409 }
410 }
411
__io_prep_linked_timeout(struct io_kiocb * req)412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
413 {
414 if (WARN_ON_ONCE(!req->link))
415 return NULL;
416
417 req->flags &= ~REQ_F_ARM_LTIMEOUT;
418 req->flags |= REQ_F_LINK_TIMEOUT;
419
420 /* linked timeouts should have two refs once prep'ed */
421 io_req_set_refcount(req);
422 __io_req_set_refcount(req->link, 2);
423 return req->link;
424 }
425
io_prep_linked_timeout(struct io_kiocb * req)426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
427 {
428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
429 return NULL;
430 return __io_prep_linked_timeout(req);
431 }
432
__io_arm_ltimeout(struct io_kiocb * req)433 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
434 {
435 io_queue_linked_timeout(__io_prep_linked_timeout(req));
436 }
437
io_arm_ltimeout(struct io_kiocb * req)438 static inline void io_arm_ltimeout(struct io_kiocb *req)
439 {
440 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
441 __io_arm_ltimeout(req);
442 }
443
io_prep_async_work(struct io_kiocb * req)444 static void io_prep_async_work(struct io_kiocb *req)
445 {
446 const struct io_issue_def *def = &io_issue_defs[req->opcode];
447 struct io_ring_ctx *ctx = req->ctx;
448
449 if (!(req->flags & REQ_F_CREDS)) {
450 req->flags |= REQ_F_CREDS;
451 req->creds = get_current_cred();
452 }
453
454 req->work.list.next = NULL;
455 req->work.flags = 0;
456 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
457 if (req->flags & REQ_F_FORCE_ASYNC)
458 req->work.flags |= IO_WQ_WORK_CONCURRENT;
459
460 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
461 req->flags |= io_file_get_flags(req->file);
462
463 if (req->file && (req->flags & REQ_F_ISREG)) {
464 bool should_hash = def->hash_reg_file;
465
466 /* don't serialize this request if the fs doesn't need it */
467 if (should_hash && (req->file->f_flags & O_DIRECT) &&
468 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
469 should_hash = false;
470 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
471 io_wq_hash_work(&req->work, file_inode(req->file));
472 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
473 if (def->unbound_nonreg_file)
474 req->work.flags |= IO_WQ_WORK_UNBOUND;
475 }
476 }
477
io_prep_async_link(struct io_kiocb * req)478 static void io_prep_async_link(struct io_kiocb *req)
479 {
480 struct io_kiocb *cur;
481
482 if (req->flags & REQ_F_LINK_TIMEOUT) {
483 struct io_ring_ctx *ctx = req->ctx;
484
485 spin_lock_irq(&ctx->timeout_lock);
486 io_for_each_link(cur, req)
487 io_prep_async_work(cur);
488 spin_unlock_irq(&ctx->timeout_lock);
489 } else {
490 io_for_each_link(cur, req)
491 io_prep_async_work(cur);
492 }
493 }
494
io_queue_iowq(struct io_kiocb * req)495 static void io_queue_iowq(struct io_kiocb *req)
496 {
497 struct io_kiocb *link = io_prep_linked_timeout(req);
498 struct io_uring_task *tctx = req->task->io_uring;
499
500 BUG_ON(!tctx);
501
502 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
503 io_req_task_queue_fail(req, -ECANCELED);
504 return;
505 }
506
507 /* init ->work of the whole link before punting */
508 io_prep_async_link(req);
509
510 /*
511 * Not expected to happen, but if we do have a bug where this _can_
512 * happen, catch it here and ensure the request is marked as
513 * canceled. That will make io-wq go through the usual work cancel
514 * procedure rather than attempt to run this request (or create a new
515 * worker for it).
516 */
517 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
518 req->work.flags |= IO_WQ_WORK_CANCEL;
519
520 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
521 io_wq_enqueue(tctx->io_wq, &req->work);
522 if (link)
523 io_queue_linked_timeout(link);
524 }
525
io_queue_deferred(struct io_ring_ctx * ctx)526 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
527 {
528 while (!list_empty(&ctx->defer_list)) {
529 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
530 struct io_defer_entry, list);
531
532 if (req_need_defer(de->req, de->seq))
533 break;
534 list_del_init(&de->list);
535 io_req_task_queue(de->req);
536 kfree(de);
537 }
538 }
539
io_eventfd_free(struct rcu_head * rcu)540 static void io_eventfd_free(struct rcu_head *rcu)
541 {
542 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
543
544 eventfd_ctx_put(ev_fd->cq_ev_fd);
545 kfree(ev_fd);
546 }
547
io_eventfd_ops(struct rcu_head * rcu)548 static void io_eventfd_ops(struct rcu_head *rcu)
549 {
550 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
551 int ops = atomic_xchg(&ev_fd->ops, 0);
552
553 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
554 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
555
556 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
557 * ordering in a race but if references are 0 we know we have to free
558 * it regardless.
559 */
560 if (atomic_dec_and_test(&ev_fd->refs))
561 call_rcu(&ev_fd->rcu, io_eventfd_free);
562 }
563
io_eventfd_signal(struct io_ring_ctx * ctx)564 static void io_eventfd_signal(struct io_ring_ctx *ctx)
565 {
566 struct io_ev_fd *ev_fd = NULL;
567
568 rcu_read_lock();
569 /*
570 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
571 * and eventfd_signal
572 */
573 ev_fd = rcu_dereference(ctx->io_ev_fd);
574
575 /*
576 * Check again if ev_fd exists incase an io_eventfd_unregister call
577 * completed between the NULL check of ctx->io_ev_fd at the start of
578 * the function and rcu_read_lock.
579 */
580 if (unlikely(!ev_fd))
581 goto out;
582 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
583 goto out;
584 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
585 goto out;
586
587 if (likely(eventfd_signal_allowed())) {
588 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
589 } else {
590 atomic_inc(&ev_fd->refs);
591 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
592 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
593 else
594 atomic_dec(&ev_fd->refs);
595 }
596
597 out:
598 rcu_read_unlock();
599 }
600
io_eventfd_flush_signal(struct io_ring_ctx * ctx)601 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
602 {
603 bool skip;
604
605 spin_lock(&ctx->completion_lock);
606
607 /*
608 * Eventfd should only get triggered when at least one event has been
609 * posted. Some applications rely on the eventfd notification count
610 * only changing IFF a new CQE has been added to the CQ ring. There's
611 * no depedency on 1:1 relationship between how many times this
612 * function is called (and hence the eventfd count) and number of CQEs
613 * posted to the CQ ring.
614 */
615 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
616 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
617 spin_unlock(&ctx->completion_lock);
618 if (skip)
619 return;
620
621 io_eventfd_signal(ctx);
622 }
623
__io_commit_cqring_flush(struct io_ring_ctx * ctx)624 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
625 {
626 if (ctx->poll_activated)
627 io_poll_wq_wake(ctx);
628 if (ctx->off_timeout_used)
629 io_flush_timeouts(ctx);
630 if (ctx->drain_active) {
631 spin_lock(&ctx->completion_lock);
632 io_queue_deferred(ctx);
633 spin_unlock(&ctx->completion_lock);
634 }
635 if (ctx->has_evfd)
636 io_eventfd_flush_signal(ctx);
637 }
638
__io_cq_lock(struct io_ring_ctx * ctx)639 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
640 {
641 if (!ctx->lockless_cq)
642 spin_lock(&ctx->completion_lock);
643 }
644
io_cq_lock(struct io_ring_ctx * ctx)645 static inline void io_cq_lock(struct io_ring_ctx *ctx)
646 __acquires(ctx->completion_lock)
647 {
648 spin_lock(&ctx->completion_lock);
649 }
650
__io_cq_unlock_post(struct io_ring_ctx * ctx)651 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
652 {
653 io_commit_cqring(ctx);
654 if (!ctx->task_complete) {
655 if (!ctx->lockless_cq)
656 spin_unlock(&ctx->completion_lock);
657 /* IOPOLL rings only need to wake up if it's also SQPOLL */
658 if (!ctx->syscall_iopoll)
659 io_cqring_wake(ctx);
660 }
661 io_commit_cqring_flush(ctx);
662 }
663
io_cq_unlock_post(struct io_ring_ctx * ctx)664 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
665 __releases(ctx->completion_lock)
666 {
667 io_commit_cqring(ctx);
668 spin_unlock(&ctx->completion_lock);
669 io_cqring_wake(ctx);
670 io_commit_cqring_flush(ctx);
671 }
672
673 /* Returns true if there are no backlogged entries after the flush */
io_cqring_overflow_kill(struct io_ring_ctx * ctx)674 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
675 {
676 struct io_overflow_cqe *ocqe;
677 LIST_HEAD(list);
678
679 lockdep_assert_held(&ctx->uring_lock);
680
681 spin_lock(&ctx->completion_lock);
682 list_splice_init(&ctx->cq_overflow_list, &list);
683 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
684 spin_unlock(&ctx->completion_lock);
685
686 while (!list_empty(&list)) {
687 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
688 list_del(&ocqe->list);
689 kfree(ocqe);
690 }
691 }
692
__io_cqring_overflow_flush(struct io_ring_ctx * ctx)693 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
694 {
695 size_t cqe_size = sizeof(struct io_uring_cqe);
696
697 lockdep_assert_held(&ctx->uring_lock);
698
699 if (__io_cqring_events(ctx) == ctx->cq_entries)
700 return;
701
702 if (ctx->flags & IORING_SETUP_CQE32)
703 cqe_size <<= 1;
704
705 io_cq_lock(ctx);
706 while (!list_empty(&ctx->cq_overflow_list)) {
707 struct io_uring_cqe *cqe;
708 struct io_overflow_cqe *ocqe;
709
710 if (!io_get_cqe_overflow(ctx, &cqe, true))
711 break;
712 ocqe = list_first_entry(&ctx->cq_overflow_list,
713 struct io_overflow_cqe, list);
714 memcpy(cqe, &ocqe->cqe, cqe_size);
715 list_del(&ocqe->list);
716 kfree(ocqe);
717
718 /*
719 * For silly syzbot cases that deliberately overflow by huge
720 * amounts, check if we need to resched and drop and
721 * reacquire the locks if so. Nothing real would ever hit this.
722 * Ideally we'd have a non-posting unlock for this, but hard
723 * to care for a non-real case.
724 */
725 if (need_resched()) {
726 io_cq_unlock_post(ctx);
727 mutex_unlock(&ctx->uring_lock);
728 cond_resched();
729 mutex_lock(&ctx->uring_lock);
730 io_cq_lock(ctx);
731 }
732 }
733
734 if (list_empty(&ctx->cq_overflow_list)) {
735 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
736 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
737 }
738 io_cq_unlock_post(ctx);
739 }
740
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)741 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
742 {
743 mutex_lock(&ctx->uring_lock);
744 __io_cqring_overflow_flush(ctx);
745 mutex_unlock(&ctx->uring_lock);
746 }
747
io_cqring_overflow_flush(struct io_ring_ctx * ctx)748 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
749 {
750 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
751 io_cqring_do_overflow_flush(ctx);
752 }
753
754 /* can be called by any task */
io_put_task_remote(struct task_struct * task)755 static void io_put_task_remote(struct task_struct *task)
756 {
757 struct io_uring_task *tctx = task->io_uring;
758
759 percpu_counter_sub(&tctx->inflight, 1);
760 if (unlikely(atomic_read(&tctx->in_cancel)))
761 wake_up(&tctx->wait);
762 put_task_struct(task);
763 }
764
765 /* used by a task to put its own references */
io_put_task_local(struct task_struct * task)766 static void io_put_task_local(struct task_struct *task)
767 {
768 task->io_uring->cached_refs++;
769 }
770
771 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task)772 static inline void io_put_task(struct task_struct *task)
773 {
774 if (likely(task == current))
775 io_put_task_local(task);
776 else
777 io_put_task_remote(task);
778 }
779
io_task_refs_refill(struct io_uring_task * tctx)780 void io_task_refs_refill(struct io_uring_task *tctx)
781 {
782 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
783
784 percpu_counter_add(&tctx->inflight, refill);
785 refcount_add(refill, ¤t->usage);
786 tctx->cached_refs += refill;
787 }
788
io_uring_drop_tctx_refs(struct task_struct * task)789 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
790 {
791 struct io_uring_task *tctx = task->io_uring;
792 unsigned int refs = tctx->cached_refs;
793
794 if (refs) {
795 tctx->cached_refs = 0;
796 percpu_counter_sub(&tctx->inflight, refs);
797 put_task_struct_many(task, refs);
798 }
799 }
800
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)801 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
802 s32 res, u32 cflags, u64 extra1, u64 extra2)
803 {
804 struct io_overflow_cqe *ocqe;
805 size_t ocq_size = sizeof(struct io_overflow_cqe);
806 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
807
808 lockdep_assert_held(&ctx->completion_lock);
809
810 if (is_cqe32)
811 ocq_size += sizeof(struct io_uring_cqe);
812
813 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
814 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
815 if (!ocqe) {
816 /*
817 * If we're in ring overflow flush mode, or in task cancel mode,
818 * or cannot allocate an overflow entry, then we need to drop it
819 * on the floor.
820 */
821 io_account_cq_overflow(ctx);
822 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
823 return false;
824 }
825 if (list_empty(&ctx->cq_overflow_list)) {
826 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
827 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
828
829 }
830 ocqe->cqe.user_data = user_data;
831 ocqe->cqe.res = res;
832 ocqe->cqe.flags = cflags;
833 if (is_cqe32) {
834 ocqe->cqe.big_cqe[0] = extra1;
835 ocqe->cqe.big_cqe[1] = extra2;
836 }
837 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
838 return true;
839 }
840
io_req_cqe_overflow(struct io_kiocb * req)841 void io_req_cqe_overflow(struct io_kiocb *req)
842 {
843 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
844 req->cqe.res, req->cqe.flags,
845 req->big_cqe.extra1, req->big_cqe.extra2);
846 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
847 }
848
849 /*
850 * writes to the cq entry need to come after reading head; the
851 * control dependency is enough as we're using WRITE_ONCE to
852 * fill the cq entry
853 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)854 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
855 {
856 struct io_rings *rings = ctx->rings;
857 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
858 unsigned int free, queued, len;
859
860 /*
861 * Posting into the CQ when there are pending overflowed CQEs may break
862 * ordering guarantees, which will affect links, F_MORE users and more.
863 * Force overflow the completion.
864 */
865 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
866 return false;
867
868 /* userspace may cheat modifying the tail, be safe and do min */
869 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
870 free = ctx->cq_entries - queued;
871 /* we need a contiguous range, limit based on the current array offset */
872 len = min(free, ctx->cq_entries - off);
873 if (!len)
874 return false;
875
876 if (ctx->flags & IORING_SETUP_CQE32) {
877 off <<= 1;
878 len <<= 1;
879 }
880
881 ctx->cqe_cached = &rings->cqes[off];
882 ctx->cqe_sentinel = ctx->cqe_cached + len;
883 return true;
884 }
885
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)886 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
887 u32 cflags)
888 {
889 struct io_uring_cqe *cqe;
890
891 ctx->cq_extra++;
892
893 /*
894 * If we can't get a cq entry, userspace overflowed the
895 * submission (by quite a lot). Increment the overflow count in
896 * the ring.
897 */
898 if (likely(io_get_cqe(ctx, &cqe))) {
899 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
900
901 WRITE_ONCE(cqe->user_data, user_data);
902 WRITE_ONCE(cqe->res, res);
903 WRITE_ONCE(cqe->flags, cflags);
904
905 if (ctx->flags & IORING_SETUP_CQE32) {
906 WRITE_ONCE(cqe->big_cqe[0], 0);
907 WRITE_ONCE(cqe->big_cqe[1], 0);
908 }
909 return true;
910 }
911 return false;
912 }
913
__io_flush_post_cqes(struct io_ring_ctx * ctx)914 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
915 __must_hold(&ctx->uring_lock)
916 {
917 struct io_submit_state *state = &ctx->submit_state;
918 unsigned int i;
919
920 lockdep_assert_held(&ctx->uring_lock);
921 for (i = 0; i < state->cqes_count; i++) {
922 struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
923
924 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
925 if (ctx->lockless_cq) {
926 spin_lock(&ctx->completion_lock);
927 io_cqring_event_overflow(ctx, cqe->user_data,
928 cqe->res, cqe->flags, 0, 0);
929 spin_unlock(&ctx->completion_lock);
930 } else {
931 io_cqring_event_overflow(ctx, cqe->user_data,
932 cqe->res, cqe->flags, 0, 0);
933 }
934 }
935 }
936 state->cqes_count = 0;
937 }
938
__io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)939 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
940 bool allow_overflow)
941 {
942 bool filled;
943
944 io_cq_lock(ctx);
945 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
946 if (!filled && allow_overflow)
947 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
948
949 io_cq_unlock_post(ctx);
950 return filled;
951 }
952
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)953 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
954 {
955 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
956 }
957
958 /*
959 * A helper for multishot requests posting additional CQEs.
960 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
961 */
io_fill_cqe_req_aux(struct io_kiocb * req,bool defer,s32 res,u32 cflags)962 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
963 {
964 struct io_ring_ctx *ctx = req->ctx;
965 u64 user_data = req->cqe.user_data;
966 struct io_uring_cqe *cqe;
967
968 if (!defer)
969 return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
970
971 lockdep_assert_held(&ctx->uring_lock);
972
973 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
974 __io_cq_lock(ctx);
975 __io_flush_post_cqes(ctx);
976 /* no need to flush - flush is deferred */
977 __io_cq_unlock_post(ctx);
978 }
979
980 /* For defered completions this is not as strict as it is otherwise,
981 * however it's main job is to prevent unbounded posted completions,
982 * and in that it works just as well.
983 */
984 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
985 return false;
986
987 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
988 cqe->user_data = user_data;
989 cqe->res = res;
990 cqe->flags = cflags;
991 return true;
992 }
993
__io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)994 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
995 {
996 struct io_ring_ctx *ctx = req->ctx;
997 struct io_rsrc_node *rsrc_node = NULL;
998
999 io_cq_lock(ctx);
1000 if (!(req->flags & REQ_F_CQE_SKIP)) {
1001 if (!io_fill_cqe_req(ctx, req))
1002 io_req_cqe_overflow(req);
1003 }
1004
1005 /*
1006 * If we're the last reference to this request, add to our locked
1007 * free_list cache.
1008 */
1009 if (req_ref_put_and_test(req)) {
1010 if (req->flags & IO_REQ_LINK_FLAGS) {
1011 if (req->flags & IO_DISARM_MASK)
1012 io_disarm_next(req);
1013 if (req->link) {
1014 io_req_task_queue(req->link);
1015 req->link = NULL;
1016 }
1017 }
1018 io_put_kbuf_comp(req);
1019 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1020 io_clean_op(req);
1021 io_put_file(req);
1022
1023 rsrc_node = req->rsrc_node;
1024 /*
1025 * Selected buffer deallocation in io_clean_op() assumes that
1026 * we don't hold ->completion_lock. Clean them here to avoid
1027 * deadlocks.
1028 */
1029 io_put_task_remote(req->task);
1030 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1031 ctx->locked_free_nr++;
1032 }
1033 io_cq_unlock_post(ctx);
1034
1035 if (rsrc_node) {
1036 io_ring_submit_lock(ctx, issue_flags);
1037 io_put_rsrc_node(ctx, rsrc_node);
1038 io_ring_submit_unlock(ctx, issue_flags);
1039 }
1040 }
1041
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)1042 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1043 {
1044 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1045 req->io_task_work.func = io_req_task_complete;
1046 io_req_task_work_add(req);
1047 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1048 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1049 __io_req_complete_post(req, issue_flags);
1050 } else {
1051 struct io_ring_ctx *ctx = req->ctx;
1052
1053 mutex_lock(&ctx->uring_lock);
1054 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1055 mutex_unlock(&ctx->uring_lock);
1056 }
1057 }
1058
io_req_defer_failed(struct io_kiocb * req,s32 res)1059 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1060 __must_hold(&ctx->uring_lock)
1061 {
1062 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1063
1064 lockdep_assert_held(&req->ctx->uring_lock);
1065
1066 req_set_fail(req);
1067 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1068 if (def->fail)
1069 def->fail(req);
1070 io_req_complete_defer(req);
1071 }
1072
1073 /*
1074 * Don't initialise the fields below on every allocation, but do that in
1075 * advance and keep them valid across allocations.
1076 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1077 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1078 {
1079 req->ctx = ctx;
1080 req->link = NULL;
1081 req->async_data = NULL;
1082 /* not necessary, but safer to zero */
1083 memset(&req->cqe, 0, sizeof(req->cqe));
1084 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1085 }
1086
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1087 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1088 struct io_submit_state *state)
1089 {
1090 spin_lock(&ctx->completion_lock);
1091 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1092 ctx->locked_free_nr = 0;
1093 spin_unlock(&ctx->completion_lock);
1094 }
1095
1096 /*
1097 * A request might get retired back into the request caches even before opcode
1098 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1099 * Because of that, io_alloc_req() should be called only under ->uring_lock
1100 * and with extra caution to not get a request that is still worked on.
1101 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)1102 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1103 __must_hold(&ctx->uring_lock)
1104 {
1105 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1106 void *reqs[IO_REQ_ALLOC_BATCH];
1107 int ret, i;
1108
1109 /*
1110 * If we have more than a batch's worth of requests in our IRQ side
1111 * locked cache, grab the lock and move them over to our submission
1112 * side cache.
1113 */
1114 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1115 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1116 if (!io_req_cache_empty(ctx))
1117 return true;
1118 }
1119
1120 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1121
1122 /*
1123 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1124 * retry single alloc to be on the safe side.
1125 */
1126 if (unlikely(ret <= 0)) {
1127 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1128 if (!reqs[0])
1129 return false;
1130 ret = 1;
1131 }
1132
1133 percpu_ref_get_many(&ctx->refs, ret);
1134 for (i = 0; i < ret; i++) {
1135 struct io_kiocb *req = reqs[i];
1136
1137 io_preinit_req(req, ctx);
1138 io_req_add_to_cache(req, ctx);
1139 }
1140 return true;
1141 }
1142
io_free_req(struct io_kiocb * req)1143 __cold void io_free_req(struct io_kiocb *req)
1144 {
1145 /* refs were already put, restore them for io_req_task_complete() */
1146 req->flags &= ~REQ_F_REFCOUNT;
1147 /* we only want to free it, don't post CQEs */
1148 req->flags |= REQ_F_CQE_SKIP;
1149 req->io_task_work.func = io_req_task_complete;
1150 io_req_task_work_add(req);
1151 }
1152
__io_req_find_next_prep(struct io_kiocb * req)1153 static void __io_req_find_next_prep(struct io_kiocb *req)
1154 {
1155 struct io_ring_ctx *ctx = req->ctx;
1156
1157 spin_lock(&ctx->completion_lock);
1158 io_disarm_next(req);
1159 spin_unlock(&ctx->completion_lock);
1160 }
1161
io_req_find_next(struct io_kiocb * req)1162 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1163 {
1164 struct io_kiocb *nxt;
1165
1166 /*
1167 * If LINK is set, we have dependent requests in this chain. If we
1168 * didn't fail this request, queue the first one up, moving any other
1169 * dependencies to the next request. In case of failure, fail the rest
1170 * of the chain.
1171 */
1172 if (unlikely(req->flags & IO_DISARM_MASK))
1173 __io_req_find_next_prep(req);
1174 nxt = req->link;
1175 req->link = NULL;
1176 return nxt;
1177 }
1178
ctx_flush_and_put(struct io_ring_ctx * ctx,struct io_tw_state * ts)1179 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1180 {
1181 if (!ctx)
1182 return;
1183 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1184 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1185 if (ts->locked) {
1186 io_submit_flush_completions(ctx);
1187 mutex_unlock(&ctx->uring_lock);
1188 ts->locked = false;
1189 }
1190 percpu_ref_put(&ctx->refs);
1191 }
1192
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,struct io_tw_state * ts)1193 static unsigned int handle_tw_list(struct llist_node *node,
1194 struct io_ring_ctx **ctx,
1195 struct io_tw_state *ts)
1196 {
1197 unsigned int count = 0;
1198
1199 do {
1200 struct llist_node *next = node->next;
1201 struct io_kiocb *req = container_of(node, struct io_kiocb,
1202 io_task_work.node);
1203
1204 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1205
1206 if (req->ctx != *ctx) {
1207 ctx_flush_and_put(*ctx, ts);
1208 *ctx = req->ctx;
1209 /* if not contended, grab and improve batching */
1210 ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1211 percpu_ref_get(&(*ctx)->refs);
1212 }
1213 INDIRECT_CALL_2(req->io_task_work.func,
1214 io_poll_task_func, io_req_rw_complete,
1215 req, ts);
1216 node = next;
1217 count++;
1218 if (unlikely(need_resched())) {
1219 ctx_flush_and_put(*ctx, ts);
1220 *ctx = NULL;
1221 cond_resched();
1222 }
1223 } while (node);
1224
1225 return count;
1226 }
1227
1228 /**
1229 * io_llist_xchg - swap all entries in a lock-less list
1230 * @head: the head of lock-less list to delete all entries
1231 * @new: new entry as the head of the list
1232 *
1233 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1234 * The order of entries returned is from the newest to the oldest added one.
1235 */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1236 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1237 struct llist_node *new)
1238 {
1239 return xchg(&head->first, new);
1240 }
1241
io_fallback_tw(struct io_uring_task * tctx,bool sync)1242 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1243 {
1244 struct llist_node *node = llist_del_all(&tctx->task_list);
1245 struct io_ring_ctx *last_ctx = NULL;
1246 struct io_kiocb *req;
1247
1248 while (node) {
1249 req = container_of(node, struct io_kiocb, io_task_work.node);
1250 node = node->next;
1251 if (sync && last_ctx != req->ctx) {
1252 if (last_ctx) {
1253 flush_delayed_work(&last_ctx->fallback_work);
1254 percpu_ref_put(&last_ctx->refs);
1255 }
1256 last_ctx = req->ctx;
1257 percpu_ref_get(&last_ctx->refs);
1258 }
1259 if (llist_add(&req->io_task_work.node,
1260 &req->ctx->fallback_llist))
1261 schedule_delayed_work(&req->ctx->fallback_work, 1);
1262 }
1263
1264 if (last_ctx) {
1265 flush_delayed_work(&last_ctx->fallback_work);
1266 percpu_ref_put(&last_ctx->refs);
1267 }
1268 }
1269
tctx_task_work(struct callback_head * cb)1270 void tctx_task_work(struct callback_head *cb)
1271 {
1272 struct io_tw_state ts = {};
1273 struct io_ring_ctx *ctx = NULL;
1274 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1275 task_work);
1276 struct llist_node *node;
1277 unsigned int count = 0;
1278
1279 if (unlikely(current->flags & PF_EXITING)) {
1280 io_fallback_tw(tctx, true);
1281 return;
1282 }
1283
1284 node = llist_del_all(&tctx->task_list);
1285 if (node)
1286 count = handle_tw_list(node, &ctx, &ts);
1287
1288 ctx_flush_and_put(ctx, &ts);
1289
1290 /* relaxed read is enough as only the task itself sets ->in_cancel */
1291 if (unlikely(atomic_read(&tctx->in_cancel)))
1292 io_uring_drop_tctx_refs(current);
1293
1294 trace_io_uring_task_work_run(tctx, count, 1);
1295 }
1296
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1297 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1298 {
1299 struct io_ring_ctx *ctx = req->ctx;
1300 unsigned nr_wait, nr_tw, nr_tw_prev;
1301 struct llist_node *first;
1302
1303 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1304 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1305
1306 first = READ_ONCE(ctx->work_llist.first);
1307 do {
1308 nr_tw_prev = 0;
1309 if (first) {
1310 struct io_kiocb *first_req = container_of(first,
1311 struct io_kiocb,
1312 io_task_work.node);
1313 /*
1314 * Might be executed at any moment, rely on
1315 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1316 */
1317 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1318 }
1319 nr_tw = nr_tw_prev + 1;
1320 /* Large enough to fail the nr_wait comparison below */
1321 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1322 nr_tw = INT_MAX;
1323
1324 req->nr_tw = nr_tw;
1325 req->io_task_work.node.next = first;
1326 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1327 &req->io_task_work.node));
1328
1329 if (!first) {
1330 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1331 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1332 if (ctx->has_evfd)
1333 io_eventfd_signal(ctx);
1334 }
1335
1336 nr_wait = atomic_read(&ctx->cq_wait_nr);
1337 /* no one is waiting */
1338 if (!nr_wait)
1339 return;
1340 /* either not enough or the previous add has already woken it up */
1341 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1342 return;
1343 /* pairs with set_current_state() in io_cqring_wait() */
1344 smp_mb__after_atomic();
1345 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1346 }
1347
io_req_normal_work_add(struct io_kiocb * req)1348 static void io_req_normal_work_add(struct io_kiocb *req)
1349 {
1350 struct io_uring_task *tctx = req->task->io_uring;
1351 struct io_ring_ctx *ctx = req->ctx;
1352
1353 /* task_work already pending, we're done */
1354 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1355 return;
1356
1357 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1358 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1359
1360 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1361 return;
1362
1363 io_fallback_tw(tctx, false);
1364 }
1365
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1366 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1367 {
1368 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1369 rcu_read_lock();
1370 io_req_local_work_add(req, flags);
1371 rcu_read_unlock();
1372 } else {
1373 io_req_normal_work_add(req);
1374 }
1375 }
1376
io_move_task_work_from_local(struct io_ring_ctx * ctx)1377 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1378 {
1379 struct llist_node *node;
1380
1381 node = llist_del_all(&ctx->work_llist);
1382 while (node) {
1383 struct io_kiocb *req = container_of(node, struct io_kiocb,
1384 io_task_work.node);
1385
1386 node = node->next;
1387 io_req_normal_work_add(req);
1388 }
1389 }
1390
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1391 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1392 int min_events)
1393 {
1394 if (llist_empty(&ctx->work_llist))
1395 return false;
1396 if (events < min_events)
1397 return true;
1398 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1399 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1400 return false;
1401 }
1402
__io_run_local_work(struct io_ring_ctx * ctx,struct io_tw_state * ts,int min_events)1403 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1404 int min_events)
1405 {
1406 struct llist_node *node;
1407 unsigned int loops = 0;
1408 int ret = 0;
1409
1410 if (WARN_ON_ONCE(ctx->submitter_task != current))
1411 return -EEXIST;
1412 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1413 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1414 again:
1415 /*
1416 * llists are in reverse order, flip it back the right way before
1417 * running the pending items.
1418 */
1419 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1420 while (node) {
1421 struct llist_node *next = node->next;
1422 struct io_kiocb *req = container_of(node, struct io_kiocb,
1423 io_task_work.node);
1424 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1425 INDIRECT_CALL_2(req->io_task_work.func,
1426 io_poll_task_func, io_req_rw_complete,
1427 req, ts);
1428 ret++;
1429 node = next;
1430 }
1431 loops++;
1432
1433 if (io_run_local_work_continue(ctx, ret, min_events))
1434 goto again;
1435 if (ts->locked) {
1436 io_submit_flush_completions(ctx);
1437 if (io_run_local_work_continue(ctx, ret, min_events))
1438 goto again;
1439 }
1440
1441 trace_io_uring_local_work_run(ctx, ret, loops);
1442 return ret;
1443 }
1444
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1445 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1446 int min_events)
1447 {
1448 struct io_tw_state ts = { .locked = true, };
1449 int ret;
1450
1451 if (llist_empty(&ctx->work_llist))
1452 return 0;
1453
1454 ret = __io_run_local_work(ctx, &ts, min_events);
1455 /* shouldn't happen! */
1456 if (WARN_ON_ONCE(!ts.locked))
1457 mutex_lock(&ctx->uring_lock);
1458 return ret;
1459 }
1460
io_run_local_work(struct io_ring_ctx * ctx,int min_events)1461 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1462 {
1463 struct io_tw_state ts = {};
1464 int ret;
1465
1466 ts.locked = mutex_trylock(&ctx->uring_lock);
1467 ret = __io_run_local_work(ctx, &ts, min_events);
1468 if (ts.locked)
1469 mutex_unlock(&ctx->uring_lock);
1470
1471 return ret;
1472 }
1473
io_req_task_cancel(struct io_kiocb * req,struct io_tw_state * ts)1474 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1475 {
1476 io_tw_lock(req->ctx, ts);
1477 io_req_defer_failed(req, req->cqe.res);
1478 }
1479
io_req_task_submit(struct io_kiocb * req,struct io_tw_state * ts)1480 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1481 {
1482 io_tw_lock(req->ctx, ts);
1483 /* req->task == current here, checking PF_EXITING is safe */
1484 if (unlikely(req->task->flags & PF_EXITING))
1485 io_req_defer_failed(req, -EFAULT);
1486 else if (req->flags & REQ_F_FORCE_ASYNC)
1487 io_queue_iowq(req);
1488 else
1489 io_queue_sqe(req);
1490 }
1491
io_req_task_queue_fail(struct io_kiocb * req,int ret)1492 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1493 {
1494 io_req_set_res(req, ret, 0);
1495 req->io_task_work.func = io_req_task_cancel;
1496 io_req_task_work_add(req);
1497 }
1498
io_req_task_queue(struct io_kiocb * req)1499 void io_req_task_queue(struct io_kiocb *req)
1500 {
1501 req->io_task_work.func = io_req_task_submit;
1502 io_req_task_work_add(req);
1503 }
1504
io_queue_next(struct io_kiocb * req)1505 void io_queue_next(struct io_kiocb *req)
1506 {
1507 struct io_kiocb *nxt = io_req_find_next(req);
1508
1509 if (nxt)
1510 io_req_task_queue(nxt);
1511 }
1512
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1513 static void io_free_batch_list(struct io_ring_ctx *ctx,
1514 struct io_wq_work_node *node)
1515 __must_hold(&ctx->uring_lock)
1516 {
1517 do {
1518 struct io_kiocb *req = container_of(node, struct io_kiocb,
1519 comp_list);
1520
1521 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1522 if (req->flags & REQ_F_REFCOUNT) {
1523 node = req->comp_list.next;
1524 if (!req_ref_put_and_test(req))
1525 continue;
1526 }
1527 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1528 struct async_poll *apoll = req->apoll;
1529
1530 if (apoll->double_poll)
1531 kfree(apoll->double_poll);
1532 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1533 kfree(apoll);
1534 req->flags &= ~REQ_F_POLLED;
1535 }
1536 if (req->flags & IO_REQ_LINK_FLAGS)
1537 io_queue_next(req);
1538 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1539 io_clean_op(req);
1540 }
1541 io_put_file(req);
1542
1543 io_req_put_rsrc_locked(req, ctx);
1544
1545 io_put_task(req->task);
1546 node = req->comp_list.next;
1547 io_req_add_to_cache(req, ctx);
1548 } while (node);
1549 }
1550
__io_submit_flush_completions(struct io_ring_ctx * ctx)1551 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1552 __must_hold(&ctx->uring_lock)
1553 {
1554 struct io_submit_state *state = &ctx->submit_state;
1555 struct io_wq_work_node *node;
1556
1557 __io_cq_lock(ctx);
1558 /* must come first to preserve CQE ordering in failure cases */
1559 if (state->cqes_count)
1560 __io_flush_post_cqes(ctx);
1561 __wq_list_for_each(node, &state->compl_reqs) {
1562 struct io_kiocb *req = container_of(node, struct io_kiocb,
1563 comp_list);
1564
1565 if (!(req->flags & REQ_F_CQE_SKIP) &&
1566 unlikely(!io_fill_cqe_req(ctx, req))) {
1567 if (ctx->lockless_cq) {
1568 spin_lock(&ctx->completion_lock);
1569 io_req_cqe_overflow(req);
1570 spin_unlock(&ctx->completion_lock);
1571 } else {
1572 io_req_cqe_overflow(req);
1573 }
1574 }
1575 }
1576 __io_cq_unlock_post(ctx);
1577
1578 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1579 io_free_batch_list(ctx, state->compl_reqs.first);
1580 INIT_WQ_LIST(&state->compl_reqs);
1581 }
1582 }
1583
io_cqring_events(struct io_ring_ctx * ctx)1584 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1585 {
1586 /* See comment at the top of this file */
1587 smp_rmb();
1588 return __io_cqring_events(ctx);
1589 }
1590
1591 /*
1592 * We can't just wait for polled events to come to us, we have to actively
1593 * find and complete them.
1594 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1595 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1596 {
1597 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1598 return;
1599
1600 mutex_lock(&ctx->uring_lock);
1601 while (!wq_list_empty(&ctx->iopoll_list)) {
1602 /* let it sleep and repeat later if can't complete a request */
1603 if (io_do_iopoll(ctx, true) == 0)
1604 break;
1605 /*
1606 * Ensure we allow local-to-the-cpu processing to take place,
1607 * in this case we need to ensure that we reap all events.
1608 * Also let task_work, etc. to progress by releasing the mutex
1609 */
1610 if (need_resched()) {
1611 mutex_unlock(&ctx->uring_lock);
1612 cond_resched();
1613 mutex_lock(&ctx->uring_lock);
1614 }
1615 }
1616 mutex_unlock(&ctx->uring_lock);
1617 }
1618
io_iopoll_check(struct io_ring_ctx * ctx,long min)1619 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1620 {
1621 unsigned int nr_events = 0;
1622 unsigned long check_cq;
1623
1624 lockdep_assert_held(&ctx->uring_lock);
1625
1626 if (!io_allowed_run_tw(ctx))
1627 return -EEXIST;
1628
1629 check_cq = READ_ONCE(ctx->check_cq);
1630 if (unlikely(check_cq)) {
1631 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1632 __io_cqring_overflow_flush(ctx);
1633 /*
1634 * Similarly do not spin if we have not informed the user of any
1635 * dropped CQE.
1636 */
1637 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1638 return -EBADR;
1639 }
1640 /*
1641 * Don't enter poll loop if we already have events pending.
1642 * If we do, we can potentially be spinning for commands that
1643 * already triggered a CQE (eg in error).
1644 */
1645 if (io_cqring_events(ctx))
1646 return 0;
1647
1648 do {
1649 int ret = 0;
1650
1651 /*
1652 * If a submit got punted to a workqueue, we can have the
1653 * application entering polling for a command before it gets
1654 * issued. That app will hold the uring_lock for the duration
1655 * of the poll right here, so we need to take a breather every
1656 * now and then to ensure that the issue has a chance to add
1657 * the poll to the issued list. Otherwise we can spin here
1658 * forever, while the workqueue is stuck trying to acquire the
1659 * very same mutex.
1660 */
1661 if (wq_list_empty(&ctx->iopoll_list) ||
1662 io_task_work_pending(ctx)) {
1663 u32 tail = ctx->cached_cq_tail;
1664
1665 (void) io_run_local_work_locked(ctx, min);
1666
1667 if (task_work_pending(current) ||
1668 wq_list_empty(&ctx->iopoll_list)) {
1669 mutex_unlock(&ctx->uring_lock);
1670 io_run_task_work();
1671 mutex_lock(&ctx->uring_lock);
1672 }
1673 /* some requests don't go through iopoll_list */
1674 if (tail != ctx->cached_cq_tail ||
1675 wq_list_empty(&ctx->iopoll_list))
1676 break;
1677 }
1678 ret = io_do_iopoll(ctx, !min);
1679 if (unlikely(ret < 0))
1680 return ret;
1681
1682 if (task_sigpending(current))
1683 return -EINTR;
1684 if (need_resched())
1685 break;
1686
1687 nr_events += ret;
1688 } while (nr_events < min);
1689
1690 return 0;
1691 }
1692
io_req_task_complete(struct io_kiocb * req,struct io_tw_state * ts)1693 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1694 {
1695 if (ts->locked)
1696 io_req_complete_defer(req);
1697 else
1698 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1699 }
1700
1701 /*
1702 * After the iocb has been issued, it's safe to be found on the poll list.
1703 * Adding the kiocb to the list AFTER submission ensures that we don't
1704 * find it from a io_do_iopoll() thread before the issuer is done
1705 * accessing the kiocb cookie.
1706 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1707 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1708 {
1709 struct io_ring_ctx *ctx = req->ctx;
1710 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1711
1712 /* workqueue context doesn't hold uring_lock, grab it now */
1713 if (unlikely(needs_lock))
1714 mutex_lock(&ctx->uring_lock);
1715
1716 /*
1717 * Track whether we have multiple files in our lists. This will impact
1718 * how we do polling eventually, not spinning if we're on potentially
1719 * different devices.
1720 */
1721 if (wq_list_empty(&ctx->iopoll_list)) {
1722 ctx->poll_multi_queue = false;
1723 } else if (!ctx->poll_multi_queue) {
1724 struct io_kiocb *list_req;
1725
1726 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1727 comp_list);
1728 if (list_req->file != req->file)
1729 ctx->poll_multi_queue = true;
1730 }
1731
1732 /*
1733 * For fast devices, IO may have already completed. If it has, add
1734 * it to the front so we find it first.
1735 */
1736 if (READ_ONCE(req->iopoll_completed))
1737 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1738 else
1739 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1740
1741 if (unlikely(needs_lock)) {
1742 /*
1743 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1744 * in sq thread task context or in io worker task context. If
1745 * current task context is sq thread, we don't need to check
1746 * whether should wake up sq thread.
1747 */
1748 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1749 wq_has_sleeper(&ctx->sq_data->wait))
1750 wake_up(&ctx->sq_data->wait);
1751
1752 mutex_unlock(&ctx->uring_lock);
1753 }
1754 }
1755
io_file_get_flags(struct file * file)1756 unsigned int io_file_get_flags(struct file *file)
1757 {
1758 unsigned int res = 0;
1759
1760 if (S_ISREG(file_inode(file)->i_mode))
1761 res |= REQ_F_ISREG;
1762 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1763 res |= REQ_F_SUPPORT_NOWAIT;
1764 return res;
1765 }
1766
io_alloc_async_data(struct io_kiocb * req)1767 bool io_alloc_async_data(struct io_kiocb *req)
1768 {
1769 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1770 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1771 if (req->async_data) {
1772 req->flags |= REQ_F_ASYNC_DATA;
1773 return false;
1774 }
1775 return true;
1776 }
1777
io_req_prep_async(struct io_kiocb * req)1778 int io_req_prep_async(struct io_kiocb *req)
1779 {
1780 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1781 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1782 int ret;
1783
1784 /* assign early for deferred execution for non-fixed file */
1785 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1786 req->file = io_file_get_normal(req, req->cqe.fd);
1787 if (!cdef->prep_async)
1788 return 0;
1789 if (WARN_ON_ONCE(req_has_async_data(req)))
1790 return -EFAULT;
1791 if (!def->manual_alloc) {
1792 if (io_alloc_async_data(req))
1793 return -EAGAIN;
1794 }
1795 ret = cdef->prep_async(req);
1796 io_kbuf_recycle(req, 0);
1797 return ret;
1798 }
1799
io_get_sequence(struct io_kiocb * req)1800 static u32 io_get_sequence(struct io_kiocb *req)
1801 {
1802 u32 seq = req->ctx->cached_sq_head;
1803 struct io_kiocb *cur;
1804
1805 /* need original cached_sq_head, but it was increased for each req */
1806 io_for_each_link(cur, req)
1807 seq--;
1808 return seq;
1809 }
1810
io_drain_req(struct io_kiocb * req)1811 static __cold void io_drain_req(struct io_kiocb *req)
1812 __must_hold(&ctx->uring_lock)
1813 {
1814 struct io_ring_ctx *ctx = req->ctx;
1815 struct io_defer_entry *de;
1816 int ret;
1817 u32 seq = io_get_sequence(req);
1818
1819 /* Still need defer if there is pending req in defer list. */
1820 spin_lock(&ctx->completion_lock);
1821 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1822 spin_unlock(&ctx->completion_lock);
1823 queue:
1824 ctx->drain_active = false;
1825 io_req_task_queue(req);
1826 return;
1827 }
1828 spin_unlock(&ctx->completion_lock);
1829
1830 io_prep_async_link(req);
1831 de = kmalloc(sizeof(*de), GFP_KERNEL);
1832 if (!de) {
1833 ret = -ENOMEM;
1834 io_req_defer_failed(req, ret);
1835 return;
1836 }
1837
1838 spin_lock(&ctx->completion_lock);
1839 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1840 spin_unlock(&ctx->completion_lock);
1841 kfree(de);
1842 goto queue;
1843 }
1844
1845 trace_io_uring_defer(req);
1846 de->req = req;
1847 de->seq = seq;
1848 list_add_tail(&de->list, &ctx->defer_list);
1849 spin_unlock(&ctx->completion_lock);
1850 }
1851
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1852 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1853 unsigned int issue_flags)
1854 {
1855 if (req->file || !def->needs_file)
1856 return true;
1857
1858 if (req->flags & REQ_F_FIXED_FILE)
1859 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1860 else
1861 req->file = io_file_get_normal(req, req->cqe.fd);
1862
1863 return !!req->file;
1864 }
1865
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1866 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1867 {
1868 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1869 const struct cred *creds = NULL;
1870 int ret;
1871
1872 if (unlikely(!io_assign_file(req, def, issue_flags)))
1873 return -EBADF;
1874
1875 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1876 creds = override_creds(req->creds);
1877
1878 if (!def->audit_skip)
1879 audit_uring_entry(req->opcode);
1880
1881 ret = def->issue(req, issue_flags);
1882
1883 if (!def->audit_skip)
1884 audit_uring_exit(!ret, ret);
1885
1886 if (creds)
1887 revert_creds(creds);
1888
1889 if (ret == IOU_OK) {
1890 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1891 io_req_complete_defer(req);
1892 else
1893 io_req_complete_post(req, issue_flags);
1894
1895 return 0;
1896 }
1897
1898 if (ret != IOU_ISSUE_SKIP_COMPLETE)
1899 return ret;
1900
1901 /* If the op doesn't have a file, we're not polling for it */
1902 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1903 io_iopoll_req_issued(req, issue_flags);
1904
1905 return 0;
1906 }
1907
io_poll_issue(struct io_kiocb * req,struct io_tw_state * ts)1908 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1909 {
1910 io_tw_lock(req->ctx, ts);
1911 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1912 IO_URING_F_COMPLETE_DEFER);
1913 }
1914
io_wq_free_work(struct io_wq_work * work)1915 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1916 {
1917 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1918 struct io_kiocb *nxt = NULL;
1919
1920 if (req_ref_put_and_test(req)) {
1921 if (req->flags & IO_REQ_LINK_FLAGS)
1922 nxt = io_req_find_next(req);
1923 io_free_req(req);
1924 }
1925 return nxt ? &nxt->work : NULL;
1926 }
1927
io_wq_submit_work(struct io_wq_work * work)1928 void io_wq_submit_work(struct io_wq_work *work)
1929 {
1930 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1931 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1932 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1933 bool needs_poll = false;
1934 int ret = 0, err = -ECANCELED;
1935
1936 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1937 if (!(req->flags & REQ_F_REFCOUNT))
1938 __io_req_set_refcount(req, 2);
1939 else
1940 req_ref_get(req);
1941
1942 io_arm_ltimeout(req);
1943
1944 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1945 if (work->flags & IO_WQ_WORK_CANCEL) {
1946 fail:
1947 io_req_task_queue_fail(req, err);
1948 return;
1949 }
1950 if (!io_assign_file(req, def, issue_flags)) {
1951 err = -EBADF;
1952 work->flags |= IO_WQ_WORK_CANCEL;
1953 goto fail;
1954 }
1955
1956 if (req->flags & REQ_F_FORCE_ASYNC) {
1957 bool opcode_poll = def->pollin || def->pollout;
1958
1959 if (opcode_poll && file_can_poll(req->file)) {
1960 needs_poll = true;
1961 issue_flags |= IO_URING_F_NONBLOCK;
1962 }
1963 }
1964
1965 do {
1966 ret = io_issue_sqe(req, issue_flags);
1967 if (ret != -EAGAIN)
1968 break;
1969
1970 /*
1971 * If REQ_F_NOWAIT is set, then don't wait or retry with
1972 * poll. -EAGAIN is final for that case.
1973 */
1974 if (req->flags & REQ_F_NOWAIT)
1975 break;
1976
1977 /*
1978 * We can get EAGAIN for iopolled IO even though we're
1979 * forcing a sync submission from here, since we can't
1980 * wait for request slots on the block side.
1981 */
1982 if (!needs_poll) {
1983 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1984 break;
1985 if (io_wq_worker_stopped())
1986 break;
1987 cond_resched();
1988 continue;
1989 }
1990
1991 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1992 return;
1993 /* aborted or ready, in either case retry blocking */
1994 needs_poll = false;
1995 issue_flags &= ~IO_URING_F_NONBLOCK;
1996 } while (1);
1997
1998 /* avoid locking problems by failing it from a clean context */
1999 if (ret < 0)
2000 io_req_task_queue_fail(req, ret);
2001 }
2002
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)2003 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2004 unsigned int issue_flags)
2005 {
2006 struct io_ring_ctx *ctx = req->ctx;
2007 struct io_fixed_file *slot;
2008 struct file *file = NULL;
2009
2010 io_ring_submit_lock(ctx, issue_flags);
2011
2012 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2013 goto out;
2014 fd = array_index_nospec(fd, ctx->nr_user_files);
2015 slot = io_fixed_file_slot(&ctx->file_table, fd);
2016 file = io_slot_file(slot);
2017 req->flags |= io_slot_flags(slot);
2018 io_req_set_rsrc_node(req, ctx, 0);
2019 out:
2020 io_ring_submit_unlock(ctx, issue_flags);
2021 return file;
2022 }
2023
io_file_get_normal(struct io_kiocb * req,int fd)2024 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2025 {
2026 struct file *file = fget(fd);
2027
2028 trace_io_uring_file_get(req, fd);
2029
2030 /* we don't allow fixed io_uring files */
2031 if (file && io_is_uring_fops(file))
2032 io_req_track_inflight(req);
2033 return file;
2034 }
2035
io_queue_async(struct io_kiocb * req,int ret)2036 static void io_queue_async(struct io_kiocb *req, int ret)
2037 __must_hold(&req->ctx->uring_lock)
2038 {
2039 struct io_kiocb *linked_timeout;
2040
2041 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2042 io_req_defer_failed(req, ret);
2043 return;
2044 }
2045
2046 linked_timeout = io_prep_linked_timeout(req);
2047
2048 switch (io_arm_poll_handler(req, 0)) {
2049 case IO_APOLL_READY:
2050 io_kbuf_recycle(req, 0);
2051 io_req_task_queue(req);
2052 break;
2053 case IO_APOLL_ABORTED:
2054 io_kbuf_recycle(req, 0);
2055 io_queue_iowq(req);
2056 break;
2057 case IO_APOLL_OK:
2058 break;
2059 }
2060
2061 if (linked_timeout)
2062 io_queue_linked_timeout(linked_timeout);
2063 }
2064
io_queue_sqe(struct io_kiocb * req)2065 static inline void io_queue_sqe(struct io_kiocb *req)
2066 __must_hold(&req->ctx->uring_lock)
2067 {
2068 int ret;
2069
2070 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2071
2072 /*
2073 * We async punt it if the file wasn't marked NOWAIT, or if the file
2074 * doesn't support non-blocking read/write attempts
2075 */
2076 if (likely(!ret))
2077 io_arm_ltimeout(req);
2078 else
2079 io_queue_async(req, ret);
2080 }
2081
io_queue_sqe_fallback(struct io_kiocb * req)2082 static void io_queue_sqe_fallback(struct io_kiocb *req)
2083 __must_hold(&req->ctx->uring_lock)
2084 {
2085 if (unlikely(req->flags & REQ_F_FAIL)) {
2086 /*
2087 * We don't submit, fail them all, for that replace hardlinks
2088 * with normal links. Extra REQ_F_LINK is tolerated.
2089 */
2090 req->flags &= ~REQ_F_HARDLINK;
2091 req->flags |= REQ_F_LINK;
2092 io_req_defer_failed(req, req->cqe.res);
2093 } else {
2094 int ret = io_req_prep_async(req);
2095
2096 if (unlikely(ret)) {
2097 io_req_defer_failed(req, ret);
2098 return;
2099 }
2100
2101 if (unlikely(req->ctx->drain_active))
2102 io_drain_req(req);
2103 else
2104 io_queue_iowq(req);
2105 }
2106 }
2107
2108 /*
2109 * Check SQE restrictions (opcode and flags).
2110 *
2111 * Returns 'true' if SQE is allowed, 'false' otherwise.
2112 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)2113 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2114 struct io_kiocb *req,
2115 unsigned int sqe_flags)
2116 {
2117 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2118 return false;
2119
2120 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2121 ctx->restrictions.sqe_flags_required)
2122 return false;
2123
2124 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2125 ctx->restrictions.sqe_flags_required))
2126 return false;
2127
2128 return true;
2129 }
2130
io_init_req_drain(struct io_kiocb * req)2131 static void io_init_req_drain(struct io_kiocb *req)
2132 {
2133 struct io_ring_ctx *ctx = req->ctx;
2134 struct io_kiocb *head = ctx->submit_state.link.head;
2135
2136 ctx->drain_active = true;
2137 if (head) {
2138 /*
2139 * If we need to drain a request in the middle of a link, drain
2140 * the head request and the next request/link after the current
2141 * link. Considering sequential execution of links,
2142 * REQ_F_IO_DRAIN will be maintained for every request of our
2143 * link.
2144 */
2145 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2146 ctx->drain_next = true;
2147 }
2148 }
2149
io_init_fail_req(struct io_kiocb * req,int err)2150 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2151 {
2152 /* ensure per-opcode data is cleared if we fail before prep */
2153 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2154 return err;
2155 }
2156
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2157 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2158 const struct io_uring_sqe *sqe)
2159 __must_hold(&ctx->uring_lock)
2160 {
2161 const struct io_issue_def *def;
2162 unsigned int sqe_flags;
2163 int personality;
2164 u8 opcode;
2165
2166 /* req is partially pre-initialised, see io_preinit_req() */
2167 req->opcode = opcode = READ_ONCE(sqe->opcode);
2168 /* same numerical values with corresponding REQ_F_*, safe to copy */
2169 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2170 req->cqe.user_data = READ_ONCE(sqe->user_data);
2171 req->file = NULL;
2172 req->rsrc_node = NULL;
2173 req->task = current;
2174
2175 if (unlikely(opcode >= IORING_OP_LAST)) {
2176 req->opcode = 0;
2177 return io_init_fail_req(req, -EINVAL);
2178 }
2179 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2180
2181 def = &io_issue_defs[opcode];
2182 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2183 /* enforce forwards compatibility on users */
2184 if (sqe_flags & ~SQE_VALID_FLAGS)
2185 return io_init_fail_req(req, -EINVAL);
2186 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2187 if (!def->buffer_select)
2188 return io_init_fail_req(req, -EOPNOTSUPP);
2189 req->buf_index = READ_ONCE(sqe->buf_group);
2190 }
2191 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2192 ctx->drain_disabled = true;
2193 if (sqe_flags & IOSQE_IO_DRAIN) {
2194 if (ctx->drain_disabled)
2195 return io_init_fail_req(req, -EOPNOTSUPP);
2196 io_init_req_drain(req);
2197 }
2198 }
2199 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2200 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2201 return io_init_fail_req(req, -EACCES);
2202 /* knock it to the slow queue path, will be drained there */
2203 if (ctx->drain_active)
2204 req->flags |= REQ_F_FORCE_ASYNC;
2205 /* if there is no link, we're at "next" request and need to drain */
2206 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2207 ctx->drain_next = false;
2208 ctx->drain_active = true;
2209 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2210 }
2211 }
2212
2213 if (!def->ioprio && sqe->ioprio)
2214 return io_init_fail_req(req, -EINVAL);
2215 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2216 return io_init_fail_req(req, -EINVAL);
2217
2218 if (def->needs_file) {
2219 struct io_submit_state *state = &ctx->submit_state;
2220
2221 req->cqe.fd = READ_ONCE(sqe->fd);
2222
2223 /*
2224 * Plug now if we have more than 2 IO left after this, and the
2225 * target is potentially a read/write to block based storage.
2226 */
2227 if (state->need_plug && def->plug) {
2228 state->plug_started = true;
2229 state->need_plug = false;
2230 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2231 }
2232 }
2233
2234 personality = READ_ONCE(sqe->personality);
2235 if (personality) {
2236 int ret;
2237
2238 req->creds = xa_load(&ctx->personalities, personality);
2239 if (!req->creds)
2240 return io_init_fail_req(req, -EINVAL);
2241 get_cred(req->creds);
2242 ret = security_uring_override_creds(req->creds);
2243 if (ret) {
2244 put_cred(req->creds);
2245 return io_init_fail_req(req, ret);
2246 }
2247 req->flags |= REQ_F_CREDS;
2248 }
2249
2250 return def->prep(req, sqe);
2251 }
2252
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2253 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2254 struct io_kiocb *req, int ret)
2255 {
2256 struct io_ring_ctx *ctx = req->ctx;
2257 struct io_submit_link *link = &ctx->submit_state.link;
2258 struct io_kiocb *head = link->head;
2259
2260 trace_io_uring_req_failed(sqe, req, ret);
2261
2262 /*
2263 * Avoid breaking links in the middle as it renders links with SQPOLL
2264 * unusable. Instead of failing eagerly, continue assembling the link if
2265 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2266 * should find the flag and handle the rest.
2267 */
2268 req_fail_link_node(req, ret);
2269 if (head && !(head->flags & REQ_F_FAIL))
2270 req_fail_link_node(head, -ECANCELED);
2271
2272 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2273 if (head) {
2274 link->last->link = req;
2275 link->head = NULL;
2276 req = head;
2277 }
2278 io_queue_sqe_fallback(req);
2279 return ret;
2280 }
2281
2282 if (head)
2283 link->last->link = req;
2284 else
2285 link->head = req;
2286 link->last = req;
2287 return 0;
2288 }
2289
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2290 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2291 const struct io_uring_sqe *sqe)
2292 __must_hold(&ctx->uring_lock)
2293 {
2294 struct io_submit_link *link = &ctx->submit_state.link;
2295 int ret;
2296
2297 ret = io_init_req(ctx, req, sqe);
2298 if (unlikely(ret))
2299 return io_submit_fail_init(sqe, req, ret);
2300
2301 trace_io_uring_submit_req(req);
2302
2303 /*
2304 * If we already have a head request, queue this one for async
2305 * submittal once the head completes. If we don't have a head but
2306 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2307 * submitted sync once the chain is complete. If none of those
2308 * conditions are true (normal request), then just queue it.
2309 */
2310 if (unlikely(link->head)) {
2311 ret = io_req_prep_async(req);
2312 if (unlikely(ret))
2313 return io_submit_fail_init(sqe, req, ret);
2314
2315 trace_io_uring_link(req, link->head);
2316 link->last->link = req;
2317 link->last = req;
2318
2319 if (req->flags & IO_REQ_LINK_FLAGS)
2320 return 0;
2321 /* last request of the link, flush it */
2322 req = link->head;
2323 link->head = NULL;
2324 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2325 goto fallback;
2326
2327 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2328 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2329 if (req->flags & IO_REQ_LINK_FLAGS) {
2330 link->head = req;
2331 link->last = req;
2332 } else {
2333 fallback:
2334 io_queue_sqe_fallback(req);
2335 }
2336 return 0;
2337 }
2338
2339 io_queue_sqe(req);
2340 return 0;
2341 }
2342
2343 /*
2344 * Batched submission is done, ensure local IO is flushed out.
2345 */
io_submit_state_end(struct io_ring_ctx * ctx)2346 static void io_submit_state_end(struct io_ring_ctx *ctx)
2347 {
2348 struct io_submit_state *state = &ctx->submit_state;
2349
2350 if (unlikely(state->link.head))
2351 io_queue_sqe_fallback(state->link.head);
2352 /* flush only after queuing links as they can generate completions */
2353 io_submit_flush_completions(ctx);
2354 if (state->plug_started)
2355 blk_finish_plug(&state->plug);
2356 }
2357
2358 /*
2359 * Start submission side cache.
2360 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2361 static void io_submit_state_start(struct io_submit_state *state,
2362 unsigned int max_ios)
2363 {
2364 state->plug_started = false;
2365 state->need_plug = max_ios > 2;
2366 state->submit_nr = max_ios;
2367 /* set only head, no need to init link_last in advance */
2368 state->link.head = NULL;
2369 }
2370
io_commit_sqring(struct io_ring_ctx * ctx)2371 static void io_commit_sqring(struct io_ring_ctx *ctx)
2372 {
2373 struct io_rings *rings = ctx->rings;
2374
2375 /*
2376 * Ensure any loads from the SQEs are done at this point,
2377 * since once we write the new head, the application could
2378 * write new data to them.
2379 */
2380 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2381 }
2382
2383 /*
2384 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2385 * that is mapped by userspace. This means that care needs to be taken to
2386 * ensure that reads are stable, as we cannot rely on userspace always
2387 * being a good citizen. If members of the sqe are validated and then later
2388 * used, it's important that those reads are done through READ_ONCE() to
2389 * prevent a re-load down the line.
2390 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2391 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2392 {
2393 unsigned mask = ctx->sq_entries - 1;
2394 unsigned head = ctx->cached_sq_head++ & mask;
2395
2396 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2397 head = READ_ONCE(ctx->sq_array[head]);
2398 if (unlikely(head >= ctx->sq_entries)) {
2399 /* drop invalid entries */
2400 spin_lock(&ctx->completion_lock);
2401 ctx->cq_extra--;
2402 spin_unlock(&ctx->completion_lock);
2403 WRITE_ONCE(ctx->rings->sq_dropped,
2404 READ_ONCE(ctx->rings->sq_dropped) + 1);
2405 return false;
2406 }
2407 }
2408
2409 /*
2410 * The cached sq head (or cq tail) serves two purposes:
2411 *
2412 * 1) allows us to batch the cost of updating the user visible
2413 * head updates.
2414 * 2) allows the kernel side to track the head on its own, even
2415 * though the application is the one updating it.
2416 */
2417
2418 /* double index for 128-byte SQEs, twice as long */
2419 if (ctx->flags & IORING_SETUP_SQE128)
2420 head <<= 1;
2421 *sqe = &ctx->sq_sqes[head];
2422 return true;
2423 }
2424
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2425 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2426 __must_hold(&ctx->uring_lock)
2427 {
2428 unsigned int entries = io_sqring_entries(ctx);
2429 unsigned int left;
2430 int ret;
2431
2432 if (unlikely(!entries))
2433 return 0;
2434 /* make sure SQ entry isn't read before tail */
2435 ret = left = min(nr, entries);
2436 io_get_task_refs(left);
2437 io_submit_state_start(&ctx->submit_state, left);
2438
2439 do {
2440 const struct io_uring_sqe *sqe;
2441 struct io_kiocb *req;
2442
2443 if (unlikely(!io_alloc_req(ctx, &req)))
2444 break;
2445 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2446 io_req_add_to_cache(req, ctx);
2447 break;
2448 }
2449
2450 /*
2451 * Continue submitting even for sqe failure if the
2452 * ring was setup with IORING_SETUP_SUBMIT_ALL
2453 */
2454 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2455 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2456 left--;
2457 break;
2458 }
2459 } while (--left);
2460
2461 if (unlikely(left)) {
2462 ret -= left;
2463 /* try again if it submitted nothing and can't allocate a req */
2464 if (!ret && io_req_cache_empty(ctx))
2465 ret = -EAGAIN;
2466 current->io_uring->cached_refs += left;
2467 }
2468
2469 io_submit_state_end(ctx);
2470 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2471 io_commit_sqring(ctx);
2472 return ret;
2473 }
2474
2475 struct io_wait_queue {
2476 struct wait_queue_entry wq;
2477 struct io_ring_ctx *ctx;
2478 unsigned cq_tail;
2479 unsigned nr_timeouts;
2480 ktime_t timeout;
2481 };
2482
io_has_work(struct io_ring_ctx * ctx)2483 static inline bool io_has_work(struct io_ring_ctx *ctx)
2484 {
2485 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2486 !llist_empty(&ctx->work_llist);
2487 }
2488
io_should_wake(struct io_wait_queue * iowq)2489 static inline bool io_should_wake(struct io_wait_queue *iowq)
2490 {
2491 struct io_ring_ctx *ctx = iowq->ctx;
2492 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2493
2494 /*
2495 * Wake up if we have enough events, or if a timeout occurred since we
2496 * started waiting. For timeouts, we always want to return to userspace,
2497 * regardless of event count.
2498 */
2499 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2500 }
2501
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2502 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2503 int wake_flags, void *key)
2504 {
2505 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2506
2507 /*
2508 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2509 * the task, and the next invocation will do it.
2510 */
2511 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2512 return autoremove_wake_function(curr, mode, wake_flags, key);
2513 return -1;
2514 }
2515
io_run_task_work_sig(struct io_ring_ctx * ctx)2516 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2517 {
2518 if (!llist_empty(&ctx->work_llist)) {
2519 __set_current_state(TASK_RUNNING);
2520 if (io_run_local_work(ctx, INT_MAX) > 0)
2521 return 0;
2522 }
2523 if (io_run_task_work() > 0)
2524 return 0;
2525 if (task_sigpending(current))
2526 return -EINTR;
2527 return 0;
2528 }
2529
current_pending_io(void)2530 static bool current_pending_io(void)
2531 {
2532 struct io_uring_task *tctx = current->io_uring;
2533
2534 if (!tctx)
2535 return false;
2536 return percpu_counter_read_positive(&tctx->inflight);
2537 }
2538
2539 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq)2540 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2541 struct io_wait_queue *iowq)
2542 {
2543 int ret;
2544
2545 if (unlikely(READ_ONCE(ctx->check_cq)))
2546 return 1;
2547 if (unlikely(!llist_empty(&ctx->work_llist)))
2548 return 1;
2549 if (unlikely(task_work_pending(current)))
2550 return 1;
2551 if (unlikely(task_sigpending(current)))
2552 return -EINTR;
2553 if (unlikely(io_should_wake(iowq)))
2554 return 0;
2555
2556 /*
2557 * Mark us as being in io_wait if we have pending requests, so cpufreq
2558 * can take into account that the task is waiting for IO - turns out
2559 * to be important for low QD IO.
2560 */
2561 if (current_pending_io())
2562 current->in_iowait = 1;
2563 ret = 0;
2564 if (iowq->timeout == KTIME_MAX)
2565 schedule();
2566 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2567 ret = -ETIME;
2568 current->in_iowait = 0;
2569 return ret;
2570 }
2571
2572 /*
2573 * Wait until events become available, if we don't already have some. The
2574 * application must reap them itself, as they reside on the shared cq ring.
2575 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2576 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2577 const sigset_t __user *sig, size_t sigsz,
2578 struct __kernel_timespec __user *uts)
2579 {
2580 struct io_wait_queue iowq;
2581 struct io_rings *rings = ctx->rings;
2582 int ret;
2583
2584 if (!io_allowed_run_tw(ctx))
2585 return -EEXIST;
2586 if (!llist_empty(&ctx->work_llist))
2587 io_run_local_work(ctx, min_events);
2588 io_run_task_work();
2589 io_cqring_overflow_flush(ctx);
2590 /* if user messes with these they will just get an early return */
2591 if (__io_cqring_events_user(ctx) >= min_events)
2592 return 0;
2593
2594 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2595 iowq.wq.private = current;
2596 INIT_LIST_HEAD(&iowq.wq.entry);
2597 iowq.ctx = ctx;
2598 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2599 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2600 iowq.timeout = KTIME_MAX;
2601
2602 if (uts) {
2603 struct timespec64 ts;
2604
2605 if (get_timespec64(&ts, uts))
2606 return -EFAULT;
2607 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2608 }
2609
2610 if (sig) {
2611 #ifdef CONFIG_COMPAT
2612 if (in_compat_syscall())
2613 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2614 sigsz);
2615 else
2616 #endif
2617 ret = set_user_sigmask(sig, sigsz);
2618
2619 if (ret)
2620 return ret;
2621 }
2622
2623 trace_io_uring_cqring_wait(ctx, min_events);
2624 do {
2625 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2626 unsigned long check_cq;
2627
2628 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2629 atomic_set(&ctx->cq_wait_nr, nr_wait);
2630 set_current_state(TASK_INTERRUPTIBLE);
2631 } else {
2632 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2633 TASK_INTERRUPTIBLE);
2634 }
2635
2636 ret = io_cqring_wait_schedule(ctx, &iowq);
2637 __set_current_state(TASK_RUNNING);
2638 atomic_set(&ctx->cq_wait_nr, 0);
2639
2640 /*
2641 * Run task_work after scheduling and before io_should_wake().
2642 * If we got woken because of task_work being processed, run it
2643 * now rather than let the caller do another wait loop.
2644 */
2645 if (!llist_empty(&ctx->work_llist))
2646 io_run_local_work(ctx, nr_wait);
2647 io_run_task_work();
2648
2649 /*
2650 * Non-local task_work will be run on exit to userspace, but
2651 * if we're using DEFER_TASKRUN, then we could have waited
2652 * with a timeout for a number of requests. If the timeout
2653 * hits, we could have some requests ready to process. Ensure
2654 * this break is _after_ we have run task_work, to avoid
2655 * deferring running potentially pending requests until the
2656 * next time we wait for events.
2657 */
2658 if (ret < 0)
2659 break;
2660
2661 check_cq = READ_ONCE(ctx->check_cq);
2662 if (unlikely(check_cq)) {
2663 /* let the caller flush overflows, retry */
2664 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2665 io_cqring_do_overflow_flush(ctx);
2666 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2667 ret = -EBADR;
2668 break;
2669 }
2670 }
2671
2672 if (io_should_wake(&iowq)) {
2673 ret = 0;
2674 break;
2675 }
2676 cond_resched();
2677 } while (1);
2678
2679 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2680 finish_wait(&ctx->cq_wait, &iowq.wq);
2681 restore_saved_sigmask_unless(ret == -EINTR);
2682
2683 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2684 }
2685
io_mem_free(void * ptr)2686 void io_mem_free(void *ptr)
2687 {
2688 if (!ptr)
2689 return;
2690
2691 folio_put(virt_to_folio(ptr));
2692 }
2693
io_pages_free(struct page *** pages,int npages)2694 static void io_pages_free(struct page ***pages, int npages)
2695 {
2696 struct page **page_array;
2697 int i;
2698
2699 if (!pages)
2700 return;
2701
2702 page_array = *pages;
2703 if (!page_array)
2704 return;
2705
2706 for (i = 0; i < npages; i++)
2707 unpin_user_page(page_array[i]);
2708 kvfree(page_array);
2709 *pages = NULL;
2710 }
2711
__io_uaddr_map(struct page *** pages,unsigned short * npages,unsigned long uaddr,size_t size)2712 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2713 unsigned long uaddr, size_t size)
2714 {
2715 struct page **page_array;
2716 unsigned int nr_pages;
2717 void *page_addr;
2718 int ret, i, pinned;
2719
2720 *npages = 0;
2721
2722 if (uaddr & (PAGE_SIZE - 1) || !size)
2723 return ERR_PTR(-EINVAL);
2724
2725 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2726 if (nr_pages > USHRT_MAX)
2727 return ERR_PTR(-EINVAL);
2728 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2729 if (!page_array)
2730 return ERR_PTR(-ENOMEM);
2731
2732
2733 pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2734 page_array);
2735 if (pinned != nr_pages) {
2736 ret = (pinned < 0) ? pinned : -EFAULT;
2737 goto free_pages;
2738 }
2739
2740 page_addr = page_address(page_array[0]);
2741 for (i = 0; i < nr_pages; i++) {
2742 ret = -EINVAL;
2743
2744 /*
2745 * Can't support mapping user allocated ring memory on 32-bit
2746 * archs where it could potentially reside in highmem. Just
2747 * fail those with -EINVAL, just like we did on kernels that
2748 * didn't support this feature.
2749 */
2750 if (PageHighMem(page_array[i]))
2751 goto free_pages;
2752
2753 /*
2754 * No support for discontig pages for now, should either be a
2755 * single normal page, or a huge page. Later on we can add
2756 * support for remapping discontig pages, for now we will
2757 * just fail them with EINVAL.
2758 */
2759 if (page_address(page_array[i]) != page_addr)
2760 goto free_pages;
2761 page_addr += PAGE_SIZE;
2762 }
2763
2764 *pages = page_array;
2765 *npages = nr_pages;
2766 return page_to_virt(page_array[0]);
2767
2768 free_pages:
2769 io_pages_free(&page_array, pinned > 0 ? pinned : 0);
2770 return ERR_PTR(ret);
2771 }
2772
io_rings_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2773 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2774 size_t size)
2775 {
2776 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2777 size);
2778 }
2779
io_sqes_map(struct io_ring_ctx * ctx,unsigned long uaddr,size_t size)2780 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2781 size_t size)
2782 {
2783 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2784 size);
2785 }
2786
io_rings_free(struct io_ring_ctx * ctx)2787 static void io_rings_free(struct io_ring_ctx *ctx)
2788 {
2789 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2790 io_mem_free(ctx->rings);
2791 io_mem_free(ctx->sq_sqes);
2792 } else {
2793 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2794 ctx->n_ring_pages = 0;
2795 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2796 ctx->n_sqe_pages = 0;
2797 }
2798
2799 ctx->rings = NULL;
2800 ctx->sq_sqes = NULL;
2801 }
2802
io_mem_alloc(size_t size)2803 void *io_mem_alloc(size_t size)
2804 {
2805 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2806 void *ret;
2807
2808 ret = (void *) __get_free_pages(gfp, get_order(size));
2809 if (ret)
2810 return ret;
2811 return ERR_PTR(-ENOMEM);
2812 }
2813
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2814 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2815 unsigned int cq_entries, size_t *sq_offset)
2816 {
2817 struct io_rings *rings;
2818 size_t off, sq_array_size;
2819
2820 off = struct_size(rings, cqes, cq_entries);
2821 if (off == SIZE_MAX)
2822 return SIZE_MAX;
2823 if (ctx->flags & IORING_SETUP_CQE32) {
2824 if (check_shl_overflow(off, 1, &off))
2825 return SIZE_MAX;
2826 }
2827
2828 #ifdef CONFIG_SMP
2829 off = ALIGN(off, SMP_CACHE_BYTES);
2830 if (off == 0)
2831 return SIZE_MAX;
2832 #endif
2833
2834 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2835 if (sq_offset)
2836 *sq_offset = SIZE_MAX;
2837 return off;
2838 }
2839
2840 if (sq_offset)
2841 *sq_offset = off;
2842
2843 sq_array_size = array_size(sizeof(u32), sq_entries);
2844 if (sq_array_size == SIZE_MAX)
2845 return SIZE_MAX;
2846
2847 if (check_add_overflow(off, sq_array_size, &off))
2848 return SIZE_MAX;
2849
2850 return off;
2851 }
2852
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2853 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2854 unsigned int eventfd_async)
2855 {
2856 struct io_ev_fd *ev_fd;
2857 __s32 __user *fds = arg;
2858 int fd;
2859
2860 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2861 lockdep_is_held(&ctx->uring_lock));
2862 if (ev_fd)
2863 return -EBUSY;
2864
2865 if (copy_from_user(&fd, fds, sizeof(*fds)))
2866 return -EFAULT;
2867
2868 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2869 if (!ev_fd)
2870 return -ENOMEM;
2871
2872 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2873 if (IS_ERR(ev_fd->cq_ev_fd)) {
2874 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2875 kfree(ev_fd);
2876 return ret;
2877 }
2878
2879 spin_lock(&ctx->completion_lock);
2880 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2881 spin_unlock(&ctx->completion_lock);
2882
2883 ev_fd->eventfd_async = eventfd_async;
2884 ctx->has_evfd = true;
2885 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2886 atomic_set(&ev_fd->refs, 1);
2887 atomic_set(&ev_fd->ops, 0);
2888 return 0;
2889 }
2890
io_eventfd_unregister(struct io_ring_ctx * ctx)2891 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2892 {
2893 struct io_ev_fd *ev_fd;
2894
2895 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2896 lockdep_is_held(&ctx->uring_lock));
2897 if (ev_fd) {
2898 ctx->has_evfd = false;
2899 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2900 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2901 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2902 return 0;
2903 }
2904
2905 return -ENXIO;
2906 }
2907
io_req_caches_free(struct io_ring_ctx * ctx)2908 static void io_req_caches_free(struct io_ring_ctx *ctx)
2909 {
2910 struct io_kiocb *req;
2911 int nr = 0;
2912
2913 mutex_lock(&ctx->uring_lock);
2914 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2915
2916 while (!io_req_cache_empty(ctx)) {
2917 req = io_extract_req(ctx);
2918 kmem_cache_free(req_cachep, req);
2919 nr++;
2920 }
2921 if (nr)
2922 percpu_ref_put_many(&ctx->refs, nr);
2923 mutex_unlock(&ctx->uring_lock);
2924 }
2925
io_rsrc_node_cache_free(struct io_cache_entry * entry)2926 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2927 {
2928 kfree(container_of(entry, struct io_rsrc_node, cache));
2929 }
2930
io_ring_ctx_free(struct io_ring_ctx * ctx)2931 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2932 {
2933 io_sq_thread_finish(ctx);
2934 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2935 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2936 return;
2937
2938 mutex_lock(&ctx->uring_lock);
2939 if (ctx->buf_data)
2940 __io_sqe_buffers_unregister(ctx);
2941 if (ctx->file_data)
2942 __io_sqe_files_unregister(ctx);
2943 io_cqring_overflow_kill(ctx);
2944 io_eventfd_unregister(ctx);
2945 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2946 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2947 io_destroy_buffers(ctx);
2948 mutex_unlock(&ctx->uring_lock);
2949 if (ctx->sq_creds)
2950 put_cred(ctx->sq_creds);
2951 if (ctx->submitter_task)
2952 put_task_struct(ctx->submitter_task);
2953
2954 /* there are no registered resources left, nobody uses it */
2955 if (ctx->rsrc_node)
2956 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2957
2958 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2959 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2960
2961 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2962 if (ctx->mm_account) {
2963 mmdrop(ctx->mm_account);
2964 ctx->mm_account = NULL;
2965 }
2966 io_rings_free(ctx);
2967 io_kbuf_mmap_list_free(ctx);
2968
2969 percpu_ref_exit(&ctx->refs);
2970 free_uid(ctx->user);
2971 io_req_caches_free(ctx);
2972 if (ctx->hash_map)
2973 io_wq_put_hash(ctx->hash_map);
2974 kfree(ctx->cancel_table.hbs);
2975 kfree(ctx->cancel_table_locked.hbs);
2976 xa_destroy(&ctx->io_bl_xa);
2977 kfree(ctx);
2978 }
2979
io_activate_pollwq_cb(struct callback_head * cb)2980 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2981 {
2982 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2983 poll_wq_task_work);
2984
2985 mutex_lock(&ctx->uring_lock);
2986 ctx->poll_activated = true;
2987 mutex_unlock(&ctx->uring_lock);
2988
2989 /*
2990 * Wake ups for some events between start of polling and activation
2991 * might've been lost due to loose synchronisation.
2992 */
2993 wake_up_all(&ctx->poll_wq);
2994 percpu_ref_put(&ctx->refs);
2995 }
2996
io_activate_pollwq(struct io_ring_ctx * ctx)2997 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2998 {
2999 spin_lock(&ctx->completion_lock);
3000 /* already activated or in progress */
3001 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
3002 goto out;
3003 if (WARN_ON_ONCE(!ctx->task_complete))
3004 goto out;
3005 if (!ctx->submitter_task)
3006 goto out;
3007 /*
3008 * with ->submitter_task only the submitter task completes requests, we
3009 * only need to sync with it, which is done by injecting a tw
3010 */
3011 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
3012 percpu_ref_get(&ctx->refs);
3013 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
3014 percpu_ref_put(&ctx->refs);
3015 out:
3016 spin_unlock(&ctx->completion_lock);
3017 }
3018
io_uring_poll(struct file * file,poll_table * wait)3019 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3020 {
3021 struct io_ring_ctx *ctx = file->private_data;
3022 __poll_t mask = 0;
3023
3024 if (unlikely(!ctx->poll_activated))
3025 io_activate_pollwq(ctx);
3026
3027 poll_wait(file, &ctx->poll_wq, wait);
3028 /*
3029 * synchronizes with barrier from wq_has_sleeper call in
3030 * io_commit_cqring
3031 */
3032 smp_rmb();
3033 if (!io_sqring_full(ctx))
3034 mask |= EPOLLOUT | EPOLLWRNORM;
3035
3036 /*
3037 * Don't flush cqring overflow list here, just do a simple check.
3038 * Otherwise there could possible be ABBA deadlock:
3039 * CPU0 CPU1
3040 * ---- ----
3041 * lock(&ctx->uring_lock);
3042 * lock(&ep->mtx);
3043 * lock(&ctx->uring_lock);
3044 * lock(&ep->mtx);
3045 *
3046 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3047 * pushes them to do the flush.
3048 */
3049
3050 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3051 mask |= EPOLLIN | EPOLLRDNORM;
3052
3053 return mask;
3054 }
3055
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)3056 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3057 {
3058 const struct cred *creds;
3059
3060 creds = xa_erase(&ctx->personalities, id);
3061 if (creds) {
3062 put_cred(creds);
3063 return 0;
3064 }
3065
3066 return -EINVAL;
3067 }
3068
3069 struct io_tctx_exit {
3070 struct callback_head task_work;
3071 struct completion completion;
3072 struct io_ring_ctx *ctx;
3073 };
3074
io_tctx_exit_cb(struct callback_head * cb)3075 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3076 {
3077 struct io_uring_task *tctx = current->io_uring;
3078 struct io_tctx_exit *work;
3079
3080 work = container_of(cb, struct io_tctx_exit, task_work);
3081 /*
3082 * When @in_cancel, we're in cancellation and it's racy to remove the
3083 * node. It'll be removed by the end of cancellation, just ignore it.
3084 * tctx can be NULL if the queueing of this task_work raced with
3085 * work cancelation off the exec path.
3086 */
3087 if (tctx && !atomic_read(&tctx->in_cancel))
3088 io_uring_del_tctx_node((unsigned long)work->ctx);
3089 complete(&work->completion);
3090 }
3091
io_cancel_ctx_cb(struct io_wq_work * work,void * data)3092 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3093 {
3094 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3095
3096 return req->ctx == data;
3097 }
3098
io_ring_exit_work(struct work_struct * work)3099 static __cold void io_ring_exit_work(struct work_struct *work)
3100 {
3101 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3102 unsigned long timeout = jiffies + HZ * 60 * 5;
3103 unsigned long interval = HZ / 20;
3104 struct io_tctx_exit exit;
3105 struct io_tctx_node *node;
3106 int ret;
3107
3108 /*
3109 * If we're doing polled IO and end up having requests being
3110 * submitted async (out-of-line), then completions can come in while
3111 * we're waiting for refs to drop. We need to reap these manually,
3112 * as nobody else will be looking for them.
3113 */
3114 do {
3115 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3116 mutex_lock(&ctx->uring_lock);
3117 io_cqring_overflow_kill(ctx);
3118 mutex_unlock(&ctx->uring_lock);
3119 }
3120
3121 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3122 io_move_task_work_from_local(ctx);
3123
3124 while (io_uring_try_cancel_requests(ctx, NULL, true))
3125 cond_resched();
3126
3127 if (ctx->sq_data) {
3128 struct io_sq_data *sqd = ctx->sq_data;
3129 struct task_struct *tsk;
3130
3131 io_sq_thread_park(sqd);
3132 tsk = sqd->thread;
3133 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3134 io_wq_cancel_cb(tsk->io_uring->io_wq,
3135 io_cancel_ctx_cb, ctx, true);
3136 io_sq_thread_unpark(sqd);
3137 }
3138
3139 io_req_caches_free(ctx);
3140
3141 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3142 /* there is little hope left, don't run it too often */
3143 interval = HZ * 60;
3144 }
3145 /*
3146 * This is really an uninterruptible wait, as it has to be
3147 * complete. But it's also run from a kworker, which doesn't
3148 * take signals, so it's fine to make it interruptible. This
3149 * avoids scenarios where we knowingly can wait much longer
3150 * on completions, for example if someone does a SIGSTOP on
3151 * a task that needs to finish task_work to make this loop
3152 * complete. That's a synthetic situation that should not
3153 * cause a stuck task backtrace, and hence a potential panic
3154 * on stuck tasks if that is enabled.
3155 */
3156 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3157
3158 init_completion(&exit.completion);
3159 init_task_work(&exit.task_work, io_tctx_exit_cb);
3160 exit.ctx = ctx;
3161
3162 mutex_lock(&ctx->uring_lock);
3163 while (!list_empty(&ctx->tctx_list)) {
3164 WARN_ON_ONCE(time_after(jiffies, timeout));
3165
3166 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3167 ctx_node);
3168 /* don't spin on a single task if cancellation failed */
3169 list_rotate_left(&ctx->tctx_list);
3170 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3171 if (WARN_ON_ONCE(ret))
3172 continue;
3173
3174 mutex_unlock(&ctx->uring_lock);
3175 /*
3176 * See comment above for
3177 * wait_for_completion_interruptible_timeout() on why this
3178 * wait is marked as interruptible.
3179 */
3180 wait_for_completion_interruptible(&exit.completion);
3181 mutex_lock(&ctx->uring_lock);
3182 }
3183 mutex_unlock(&ctx->uring_lock);
3184 spin_lock(&ctx->completion_lock);
3185 spin_unlock(&ctx->completion_lock);
3186
3187 /* pairs with RCU read section in io_req_local_work_add() */
3188 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3189 synchronize_rcu();
3190
3191 io_ring_ctx_free(ctx);
3192 }
3193
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)3194 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3195 {
3196 unsigned long index;
3197 struct creds *creds;
3198
3199 mutex_lock(&ctx->uring_lock);
3200 percpu_ref_kill(&ctx->refs);
3201 xa_for_each(&ctx->personalities, index, creds)
3202 io_unregister_personality(ctx, index);
3203 if (ctx->rings)
3204 io_poll_remove_all(ctx, NULL, true);
3205 mutex_unlock(&ctx->uring_lock);
3206
3207 /*
3208 * If we failed setting up the ctx, we might not have any rings
3209 * and therefore did not submit any requests
3210 */
3211 if (ctx->rings)
3212 io_kill_timeouts(ctx, NULL, true);
3213
3214 flush_delayed_work(&ctx->fallback_work);
3215
3216 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3217 /*
3218 * Use system_unbound_wq to avoid spawning tons of event kworkers
3219 * if we're exiting a ton of rings at the same time. It just adds
3220 * noise and overhead, there's no discernable change in runtime
3221 * over using system_wq.
3222 */
3223 queue_work(iou_wq, &ctx->exit_work);
3224 }
3225
io_uring_release(struct inode * inode,struct file * file)3226 static int io_uring_release(struct inode *inode, struct file *file)
3227 {
3228 struct io_ring_ctx *ctx = file->private_data;
3229
3230 file->private_data = NULL;
3231 io_ring_ctx_wait_and_kill(ctx);
3232 return 0;
3233 }
3234
3235 struct io_task_cancel {
3236 struct task_struct *task;
3237 bool all;
3238 };
3239
io_cancel_task_cb(struct io_wq_work * work,void * data)3240 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3241 {
3242 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3243 struct io_task_cancel *cancel = data;
3244
3245 return io_match_task_safe(req, cancel->task, cancel->all);
3246 }
3247
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3248 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3249 struct task_struct *task,
3250 bool cancel_all)
3251 {
3252 struct io_defer_entry *de;
3253 LIST_HEAD(list);
3254
3255 spin_lock(&ctx->completion_lock);
3256 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3257 if (io_match_task_safe(de->req, task, cancel_all)) {
3258 list_cut_position(&list, &ctx->defer_list, &de->list);
3259 break;
3260 }
3261 }
3262 spin_unlock(&ctx->completion_lock);
3263 if (list_empty(&list))
3264 return false;
3265
3266 while (!list_empty(&list)) {
3267 de = list_first_entry(&list, struct io_defer_entry, list);
3268 list_del_init(&de->list);
3269 io_req_task_queue_fail(de->req, -ECANCELED);
3270 kfree(de);
3271 }
3272 return true;
3273 }
3274
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3275 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3276 {
3277 struct io_tctx_node *node;
3278 enum io_wq_cancel cret;
3279 bool ret = false;
3280
3281 mutex_lock(&ctx->uring_lock);
3282 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3283 struct io_uring_task *tctx = node->task->io_uring;
3284
3285 /*
3286 * io_wq will stay alive while we hold uring_lock, because it's
3287 * killed after ctx nodes, which requires to take the lock.
3288 */
3289 if (!tctx || !tctx->io_wq)
3290 continue;
3291 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3292 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3293 }
3294 mutex_unlock(&ctx->uring_lock);
3295
3296 return ret;
3297 }
3298
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)3299 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3300 struct task_struct *task,
3301 bool cancel_all)
3302 {
3303 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3304 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3305 enum io_wq_cancel cret;
3306 bool ret = false;
3307
3308 /* set it so io_req_local_work_add() would wake us up */
3309 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3310 atomic_set(&ctx->cq_wait_nr, 1);
3311 smp_mb();
3312 }
3313
3314 /* failed during ring init, it couldn't have issued any requests */
3315 if (!ctx->rings)
3316 return false;
3317
3318 if (!task) {
3319 ret |= io_uring_try_cancel_iowq(ctx);
3320 } else if (tctx && tctx->io_wq) {
3321 /*
3322 * Cancels requests of all rings, not only @ctx, but
3323 * it's fine as the task is in exit/exec.
3324 */
3325 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3326 &cancel, true);
3327 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3328 }
3329
3330 /* SQPOLL thread does its own polling */
3331 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3332 (ctx->sq_data && ctx->sq_data->thread == current)) {
3333 while (!wq_list_empty(&ctx->iopoll_list)) {
3334 io_iopoll_try_reap_events(ctx);
3335 ret = true;
3336 cond_resched();
3337 }
3338 }
3339
3340 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3341 io_allowed_defer_tw_run(ctx))
3342 ret |= io_run_local_work(ctx, INT_MAX) > 0;
3343 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3344 mutex_lock(&ctx->uring_lock);
3345 ret |= io_poll_remove_all(ctx, task, cancel_all);
3346 mutex_unlock(&ctx->uring_lock);
3347 ret |= io_kill_timeouts(ctx, task, cancel_all);
3348 if (task)
3349 ret |= io_run_task_work() > 0;
3350 return ret;
3351 }
3352
tctx_inflight(struct io_uring_task * tctx,bool tracked)3353 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3354 {
3355 if (tracked)
3356 return atomic_read(&tctx->inflight_tracked);
3357 return percpu_counter_sum(&tctx->inflight);
3358 }
3359
3360 /*
3361 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3362 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3363 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3364 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3365 {
3366 struct io_uring_task *tctx = current->io_uring;
3367 struct io_ring_ctx *ctx;
3368 struct io_tctx_node *node;
3369 unsigned long index;
3370 s64 inflight;
3371 DEFINE_WAIT(wait);
3372
3373 WARN_ON_ONCE(sqd && sqd->thread != current);
3374
3375 if (!current->io_uring)
3376 return;
3377 if (tctx->io_wq)
3378 io_wq_exit_start(tctx->io_wq);
3379
3380 atomic_inc(&tctx->in_cancel);
3381 do {
3382 bool loop = false;
3383
3384 io_uring_drop_tctx_refs(current);
3385 if (!tctx_inflight(tctx, !cancel_all))
3386 break;
3387
3388 /* read completions before cancelations */
3389 inflight = tctx_inflight(tctx, false);
3390 if (!inflight)
3391 break;
3392
3393 if (!sqd) {
3394 xa_for_each(&tctx->xa, index, node) {
3395 /* sqpoll task will cancel all its requests */
3396 if (node->ctx->sq_data)
3397 continue;
3398 loop |= io_uring_try_cancel_requests(node->ctx,
3399 current, cancel_all);
3400 }
3401 } else {
3402 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3403 loop |= io_uring_try_cancel_requests(ctx,
3404 current,
3405 cancel_all);
3406 }
3407
3408 if (loop) {
3409 cond_resched();
3410 continue;
3411 }
3412
3413 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3414 io_run_task_work();
3415 io_uring_drop_tctx_refs(current);
3416 xa_for_each(&tctx->xa, index, node) {
3417 if (!llist_empty(&node->ctx->work_llist)) {
3418 WARN_ON_ONCE(node->ctx->submitter_task &&
3419 node->ctx->submitter_task != current);
3420 goto end_wait;
3421 }
3422 }
3423 /*
3424 * If we've seen completions, retry without waiting. This
3425 * avoids a race where a completion comes in before we did
3426 * prepare_to_wait().
3427 */
3428 if (inflight == tctx_inflight(tctx, !cancel_all))
3429 schedule();
3430 end_wait:
3431 finish_wait(&tctx->wait, &wait);
3432 } while (1);
3433
3434 io_uring_clean_tctx(tctx);
3435 if (cancel_all) {
3436 /*
3437 * We shouldn't run task_works after cancel, so just leave
3438 * ->in_cancel set for normal exit.
3439 */
3440 atomic_dec(&tctx->in_cancel);
3441 /* for exec all current's requests should be gone, kill tctx */
3442 __io_uring_free(current);
3443 }
3444 }
3445
__io_uring_cancel(bool cancel_all)3446 void __io_uring_cancel(bool cancel_all)
3447 {
3448 io_uring_unreg_ringfd();
3449 io_uring_cancel_generic(cancel_all, NULL);
3450 }
3451
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3452 static void *io_uring_validate_mmap_request(struct file *file,
3453 loff_t pgoff, size_t sz)
3454 {
3455 struct io_ring_ctx *ctx = file->private_data;
3456 loff_t offset = pgoff << PAGE_SHIFT;
3457 struct page *page;
3458 void *ptr;
3459
3460 switch (offset & IORING_OFF_MMAP_MASK) {
3461 case IORING_OFF_SQ_RING:
3462 case IORING_OFF_CQ_RING:
3463 /* Don't allow mmap if the ring was setup without it */
3464 if (ctx->flags & IORING_SETUP_NO_MMAP)
3465 return ERR_PTR(-EINVAL);
3466 ptr = ctx->rings;
3467 break;
3468 case IORING_OFF_SQES:
3469 /* Don't allow mmap if the ring was setup without it */
3470 if (ctx->flags & IORING_SETUP_NO_MMAP)
3471 return ERR_PTR(-EINVAL);
3472 ptr = ctx->sq_sqes;
3473 break;
3474 case IORING_OFF_PBUF_RING: {
3475 struct io_buffer_list *bl;
3476 unsigned int bgid;
3477
3478 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3479 bl = io_pbuf_get_bl(ctx, bgid);
3480 if (IS_ERR(bl))
3481 return bl;
3482 ptr = bl->buf_ring;
3483 io_put_bl(ctx, bl);
3484 break;
3485 }
3486 default:
3487 return ERR_PTR(-EINVAL);
3488 }
3489
3490 page = virt_to_head_page(ptr);
3491 if (sz > page_size(page))
3492 return ERR_PTR(-EINVAL);
3493
3494 return ptr;
3495 }
3496
3497 #ifdef CONFIG_MMU
3498
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3499 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3500 {
3501 size_t sz = vma->vm_end - vma->vm_start;
3502 unsigned long pfn;
3503 void *ptr;
3504
3505 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3506 if (IS_ERR(ptr))
3507 return PTR_ERR(ptr);
3508
3509 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3510 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3511 }
3512
io_uring_mmu_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3513 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3514 unsigned long addr, unsigned long len,
3515 unsigned long pgoff, unsigned long flags)
3516 {
3517 void *ptr;
3518
3519 /*
3520 * Do not allow to map to user-provided address to avoid breaking the
3521 * aliasing rules. Userspace is not able to guess the offset address of
3522 * kernel kmalloc()ed memory area.
3523 */
3524 if (addr)
3525 return -EINVAL;
3526
3527 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3528 if (IS_ERR(ptr))
3529 return -ENOMEM;
3530
3531 /*
3532 * Some architectures have strong cache aliasing requirements.
3533 * For such architectures we need a coherent mapping which aliases
3534 * kernel memory *and* userspace memory. To achieve that:
3535 * - use a NULL file pointer to reference physical memory, and
3536 * - use the kernel virtual address of the shared io_uring context
3537 * (instead of the userspace-provided address, which has to be 0UL
3538 * anyway).
3539 * - use the same pgoff which the get_unmapped_area() uses to
3540 * calculate the page colouring.
3541 * For architectures without such aliasing requirements, the
3542 * architecture will return any suitable mapping because addr is 0.
3543 */
3544 filp = NULL;
3545 flags |= MAP_SHARED;
3546 pgoff = 0; /* has been translated to ptr above */
3547 #ifdef SHM_COLOUR
3548 addr = (uintptr_t) ptr;
3549 pgoff = addr >> PAGE_SHIFT;
3550 #else
3551 addr = 0UL;
3552 #endif
3553 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3554 }
3555
3556 #else /* !CONFIG_MMU */
3557
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3558 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3559 {
3560 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3561 }
3562
io_uring_nommu_mmap_capabilities(struct file * file)3563 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3564 {
3565 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3566 }
3567
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3568 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3569 unsigned long addr, unsigned long len,
3570 unsigned long pgoff, unsigned long flags)
3571 {
3572 void *ptr;
3573
3574 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3575 if (IS_ERR(ptr))
3576 return PTR_ERR(ptr);
3577
3578 return (unsigned long) ptr;
3579 }
3580
3581 #endif /* !CONFIG_MMU */
3582
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3583 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3584 {
3585 if (flags & IORING_ENTER_EXT_ARG) {
3586 struct io_uring_getevents_arg arg;
3587
3588 if (argsz != sizeof(arg))
3589 return -EINVAL;
3590 if (copy_from_user(&arg, argp, sizeof(arg)))
3591 return -EFAULT;
3592 }
3593 return 0;
3594 }
3595
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3596 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3597 struct __kernel_timespec __user **ts,
3598 const sigset_t __user **sig)
3599 {
3600 struct io_uring_getevents_arg arg;
3601
3602 /*
3603 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3604 * is just a pointer to the sigset_t.
3605 */
3606 if (!(flags & IORING_ENTER_EXT_ARG)) {
3607 *sig = (const sigset_t __user *) argp;
3608 *ts = NULL;
3609 return 0;
3610 }
3611
3612 /*
3613 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3614 * timespec and sigset_t pointers if good.
3615 */
3616 if (*argsz != sizeof(arg))
3617 return -EINVAL;
3618 if (copy_from_user(&arg, argp, sizeof(arg)))
3619 return -EFAULT;
3620 if (arg.pad)
3621 return -EINVAL;
3622 *sig = u64_to_user_ptr(arg.sigmask);
3623 *argsz = arg.sigmask_sz;
3624 *ts = u64_to_user_ptr(arg.ts);
3625 return 0;
3626 }
3627
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3628 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3629 u32, min_complete, u32, flags, const void __user *, argp,
3630 size_t, argsz)
3631 {
3632 struct io_ring_ctx *ctx;
3633 struct file *file;
3634 long ret;
3635
3636 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3637 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3638 IORING_ENTER_REGISTERED_RING)))
3639 return -EINVAL;
3640
3641 /*
3642 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3643 * need only dereference our task private array to find it.
3644 */
3645 if (flags & IORING_ENTER_REGISTERED_RING) {
3646 struct io_uring_task *tctx = current->io_uring;
3647
3648 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3649 return -EINVAL;
3650 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3651 file = tctx->registered_rings[fd];
3652 if (unlikely(!file))
3653 return -EBADF;
3654 } else {
3655 file = fget(fd);
3656 if (unlikely(!file))
3657 return -EBADF;
3658 ret = -EOPNOTSUPP;
3659 if (unlikely(!io_is_uring_fops(file)))
3660 goto out;
3661 }
3662
3663 ctx = file->private_data;
3664 ret = -EBADFD;
3665 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3666 goto out;
3667
3668 /*
3669 * For SQ polling, the thread will do all submissions and completions.
3670 * Just return the requested submit count, and wake the thread if
3671 * we were asked to.
3672 */
3673 ret = 0;
3674 if (ctx->flags & IORING_SETUP_SQPOLL) {
3675 io_cqring_overflow_flush(ctx);
3676
3677 if (unlikely(ctx->sq_data->thread == NULL)) {
3678 ret = -EOWNERDEAD;
3679 goto out;
3680 }
3681 if (flags & IORING_ENTER_SQ_WAKEUP)
3682 wake_up(&ctx->sq_data->wait);
3683 if (flags & IORING_ENTER_SQ_WAIT)
3684 io_sqpoll_wait_sq(ctx);
3685
3686 ret = to_submit;
3687 } else if (to_submit) {
3688 ret = io_uring_add_tctx_node(ctx);
3689 if (unlikely(ret))
3690 goto out;
3691
3692 mutex_lock(&ctx->uring_lock);
3693 ret = io_submit_sqes(ctx, to_submit);
3694 if (ret != to_submit) {
3695 mutex_unlock(&ctx->uring_lock);
3696 goto out;
3697 }
3698 if (flags & IORING_ENTER_GETEVENTS) {
3699 if (ctx->syscall_iopoll)
3700 goto iopoll_locked;
3701 /*
3702 * Ignore errors, we'll soon call io_cqring_wait() and
3703 * it should handle ownership problems if any.
3704 */
3705 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3706 (void)io_run_local_work_locked(ctx, min_complete);
3707 }
3708 mutex_unlock(&ctx->uring_lock);
3709 }
3710
3711 if (flags & IORING_ENTER_GETEVENTS) {
3712 int ret2;
3713
3714 if (ctx->syscall_iopoll) {
3715 /*
3716 * We disallow the app entering submit/complete with
3717 * polling, but we still need to lock the ring to
3718 * prevent racing with polled issue that got punted to
3719 * a workqueue.
3720 */
3721 mutex_lock(&ctx->uring_lock);
3722 iopoll_locked:
3723 ret2 = io_validate_ext_arg(flags, argp, argsz);
3724 if (likely(!ret2)) {
3725 min_complete = min(min_complete,
3726 ctx->cq_entries);
3727 ret2 = io_iopoll_check(ctx, min_complete);
3728 }
3729 mutex_unlock(&ctx->uring_lock);
3730 } else {
3731 const sigset_t __user *sig;
3732 struct __kernel_timespec __user *ts;
3733
3734 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3735 if (likely(!ret2)) {
3736 min_complete = min(min_complete,
3737 ctx->cq_entries);
3738 ret2 = io_cqring_wait(ctx, min_complete, sig,
3739 argsz, ts);
3740 }
3741 }
3742
3743 if (!ret) {
3744 ret = ret2;
3745
3746 /*
3747 * EBADR indicates that one or more CQE were dropped.
3748 * Once the user has been informed we can clear the bit
3749 * as they are obviously ok with those drops.
3750 */
3751 if (unlikely(ret2 == -EBADR))
3752 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3753 &ctx->check_cq);
3754 }
3755 }
3756 out:
3757 if (!(flags & IORING_ENTER_REGISTERED_RING))
3758 fput(file);
3759 return ret;
3760 }
3761
3762 static const struct file_operations io_uring_fops = {
3763 .release = io_uring_release,
3764 .mmap = io_uring_mmap,
3765 #ifndef CONFIG_MMU
3766 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3767 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3768 #else
3769 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3770 #endif
3771 .poll = io_uring_poll,
3772 #ifdef CONFIG_PROC_FS
3773 .show_fdinfo = io_uring_show_fdinfo,
3774 #endif
3775 };
3776
io_is_uring_fops(struct file * file)3777 bool io_is_uring_fops(struct file *file)
3778 {
3779 return file->f_op == &io_uring_fops;
3780 }
3781
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3782 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3783 struct io_uring_params *p)
3784 {
3785 struct io_rings *rings;
3786 size_t size, sq_array_offset;
3787 void *ptr;
3788
3789 /* make sure these are sane, as we already accounted them */
3790 ctx->sq_entries = p->sq_entries;
3791 ctx->cq_entries = p->cq_entries;
3792
3793 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3794 if (size == SIZE_MAX)
3795 return -EOVERFLOW;
3796
3797 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3798 rings = io_mem_alloc(size);
3799 else
3800 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3801
3802 if (IS_ERR(rings))
3803 return PTR_ERR(rings);
3804
3805 ctx->rings = rings;
3806 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3807 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3808 rings->sq_ring_mask = p->sq_entries - 1;
3809 rings->cq_ring_mask = p->cq_entries - 1;
3810 rings->sq_ring_entries = p->sq_entries;
3811 rings->cq_ring_entries = p->cq_entries;
3812
3813 if (p->flags & IORING_SETUP_SQE128)
3814 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3815 else
3816 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3817 if (size == SIZE_MAX) {
3818 io_rings_free(ctx);
3819 return -EOVERFLOW;
3820 }
3821
3822 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3823 ptr = io_mem_alloc(size);
3824 else
3825 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3826
3827 if (IS_ERR(ptr)) {
3828 io_rings_free(ctx);
3829 return PTR_ERR(ptr);
3830 }
3831
3832 ctx->sq_sqes = ptr;
3833 return 0;
3834 }
3835
io_uring_install_fd(struct file * file)3836 static int io_uring_install_fd(struct file *file)
3837 {
3838 int fd;
3839
3840 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3841 if (fd < 0)
3842 return fd;
3843 fd_install(fd, file);
3844 return fd;
3845 }
3846
3847 /*
3848 * Allocate an anonymous fd, this is what constitutes the application
3849 * visible backing of an io_uring instance. The application mmaps this
3850 * fd to gain access to the SQ/CQ ring details.
3851 */
io_uring_get_file(struct io_ring_ctx * ctx)3852 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3853 {
3854 return anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3855 O_RDWR | O_CLOEXEC, NULL);
3856 }
3857
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3858 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3859 struct io_uring_params __user *params)
3860 {
3861 struct io_ring_ctx *ctx;
3862 struct io_uring_task *tctx;
3863 struct file *file;
3864 int ret;
3865
3866 if (!entries)
3867 return -EINVAL;
3868 if (entries > IORING_MAX_ENTRIES) {
3869 if (!(p->flags & IORING_SETUP_CLAMP))
3870 return -EINVAL;
3871 entries = IORING_MAX_ENTRIES;
3872 }
3873
3874 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3875 && !(p->flags & IORING_SETUP_NO_MMAP))
3876 return -EINVAL;
3877
3878 /*
3879 * Use twice as many entries for the CQ ring. It's possible for the
3880 * application to drive a higher depth than the size of the SQ ring,
3881 * since the sqes are only used at submission time. This allows for
3882 * some flexibility in overcommitting a bit. If the application has
3883 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3884 * of CQ ring entries manually.
3885 */
3886 p->sq_entries = roundup_pow_of_two(entries);
3887 if (p->flags & IORING_SETUP_CQSIZE) {
3888 /*
3889 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3890 * to a power-of-two, if it isn't already. We do NOT impose
3891 * any cq vs sq ring sizing.
3892 */
3893 if (!p->cq_entries)
3894 return -EINVAL;
3895 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3896 if (!(p->flags & IORING_SETUP_CLAMP))
3897 return -EINVAL;
3898 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3899 }
3900 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3901 if (p->cq_entries < p->sq_entries)
3902 return -EINVAL;
3903 } else {
3904 p->cq_entries = 2 * p->sq_entries;
3905 }
3906
3907 ctx = io_ring_ctx_alloc(p);
3908 if (!ctx)
3909 return -ENOMEM;
3910
3911 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3912 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3913 !(ctx->flags & IORING_SETUP_SQPOLL))
3914 ctx->task_complete = true;
3915
3916 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3917 ctx->lockless_cq = true;
3918
3919 /*
3920 * lazy poll_wq activation relies on ->task_complete for synchronisation
3921 * purposes, see io_activate_pollwq()
3922 */
3923 if (!ctx->task_complete)
3924 ctx->poll_activated = true;
3925
3926 /*
3927 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3928 * space applications don't need to do io completion events
3929 * polling again, they can rely on io_sq_thread to do polling
3930 * work, which can reduce cpu usage and uring_lock contention.
3931 */
3932 if (ctx->flags & IORING_SETUP_IOPOLL &&
3933 !(ctx->flags & IORING_SETUP_SQPOLL))
3934 ctx->syscall_iopoll = 1;
3935
3936 ctx->compat = in_compat_syscall();
3937 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3938 ctx->user = get_uid(current_user());
3939
3940 /*
3941 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3942 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3943 */
3944 ret = -EINVAL;
3945 if (ctx->flags & IORING_SETUP_SQPOLL) {
3946 /* IPI related flags don't make sense with SQPOLL */
3947 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3948 IORING_SETUP_TASKRUN_FLAG |
3949 IORING_SETUP_DEFER_TASKRUN))
3950 goto err;
3951 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3952 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3953 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3954 } else {
3955 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3956 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3957 goto err;
3958 ctx->notify_method = TWA_SIGNAL;
3959 }
3960
3961 /*
3962 * For DEFER_TASKRUN we require the completion task to be the same as the
3963 * submission task. This implies that there is only one submitter, so enforce
3964 * that.
3965 */
3966 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3967 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3968 goto err;
3969 }
3970
3971 /*
3972 * This is just grabbed for accounting purposes. When a process exits,
3973 * the mm is exited and dropped before the files, hence we need to hang
3974 * on to this mm purely for the purposes of being able to unaccount
3975 * memory (locked/pinned vm). It's not used for anything else.
3976 */
3977 mmgrab(current->mm);
3978 ctx->mm_account = current->mm;
3979
3980 ret = io_allocate_scq_urings(ctx, p);
3981 if (ret)
3982 goto err;
3983
3984 ret = io_sq_offload_create(ctx, p);
3985 if (ret)
3986 goto err;
3987
3988 ret = io_rsrc_init(ctx);
3989 if (ret)
3990 goto err;
3991
3992 p->sq_off.head = offsetof(struct io_rings, sq.head);
3993 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3994 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3995 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3996 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3997 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3998 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3999 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
4000 p->sq_off.resv1 = 0;
4001 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4002 p->sq_off.user_addr = 0;
4003
4004 p->cq_off.head = offsetof(struct io_rings, cq.head);
4005 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
4006 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
4007 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
4008 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
4009 p->cq_off.cqes = offsetof(struct io_rings, cqes);
4010 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
4011 p->cq_off.resv1 = 0;
4012 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4013 p->cq_off.user_addr = 0;
4014
4015 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4016 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4017 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4018 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4019 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4020 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4021 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4022
4023 if (copy_to_user(params, p, sizeof(*p))) {
4024 ret = -EFAULT;
4025 goto err;
4026 }
4027
4028 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4029 && !(ctx->flags & IORING_SETUP_R_DISABLED))
4030 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4031
4032 file = io_uring_get_file(ctx);
4033 if (IS_ERR(file)) {
4034 ret = PTR_ERR(file);
4035 goto err;
4036 }
4037
4038 ret = __io_uring_add_tctx_node(ctx);
4039 if (ret)
4040 goto err_fput;
4041 tctx = current->io_uring;
4042
4043 /*
4044 * Install ring fd as the very last thing, so we don't risk someone
4045 * having closed it before we finish setup
4046 */
4047 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4048 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4049 else
4050 ret = io_uring_install_fd(file);
4051 if (ret < 0)
4052 goto err_fput;
4053
4054 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4055 return ret;
4056 err:
4057 io_ring_ctx_wait_and_kill(ctx);
4058 return ret;
4059 err_fput:
4060 fput(file);
4061 return ret;
4062 }
4063
4064 /*
4065 * Sets up an aio uring context, and returns the fd. Applications asks for a
4066 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4067 * params structure passed in.
4068 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)4069 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4070 {
4071 struct io_uring_params p;
4072 int i;
4073
4074 if (copy_from_user(&p, params, sizeof(p)))
4075 return -EFAULT;
4076 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4077 if (p.resv[i])
4078 return -EINVAL;
4079 }
4080
4081 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4082 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4083 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4084 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4085 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4086 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4087 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4088 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4089 IORING_SETUP_NO_SQARRAY))
4090 return -EINVAL;
4091
4092 return io_uring_create(entries, &p, params);
4093 }
4094
io_uring_allowed(void)4095 static inline bool io_uring_allowed(void)
4096 {
4097 int disabled = READ_ONCE(sysctl_io_uring_disabled);
4098 kgid_t io_uring_group;
4099
4100 if (disabled == 2)
4101 return false;
4102
4103 if (disabled == 0 || capable(CAP_SYS_ADMIN))
4104 return true;
4105
4106 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4107 if (!gid_valid(io_uring_group))
4108 return false;
4109
4110 return in_group_p(io_uring_group);
4111 }
4112
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)4113 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4114 struct io_uring_params __user *, params)
4115 {
4116 if (!io_uring_allowed())
4117 return -EPERM;
4118
4119 return io_uring_setup(entries, params);
4120 }
4121
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)4122 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4123 unsigned nr_args)
4124 {
4125 struct io_uring_probe *p;
4126 size_t size;
4127 int i, ret;
4128
4129 size = struct_size(p, ops, nr_args);
4130 if (size == SIZE_MAX)
4131 return -EOVERFLOW;
4132 p = kzalloc(size, GFP_KERNEL);
4133 if (!p)
4134 return -ENOMEM;
4135
4136 ret = -EFAULT;
4137 if (copy_from_user(p, arg, size))
4138 goto out;
4139 ret = -EINVAL;
4140 if (memchr_inv(p, 0, size))
4141 goto out;
4142
4143 p->last_op = IORING_OP_LAST - 1;
4144 if (nr_args > IORING_OP_LAST)
4145 nr_args = IORING_OP_LAST;
4146
4147 for (i = 0; i < nr_args; i++) {
4148 p->ops[i].op = i;
4149 if (!io_issue_defs[i].not_supported)
4150 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4151 }
4152 p->ops_len = i;
4153
4154 ret = 0;
4155 if (copy_to_user(arg, p, size))
4156 ret = -EFAULT;
4157 out:
4158 kfree(p);
4159 return ret;
4160 }
4161
io_register_personality(struct io_ring_ctx * ctx)4162 static int io_register_personality(struct io_ring_ctx *ctx)
4163 {
4164 const struct cred *creds;
4165 u32 id;
4166 int ret;
4167
4168 creds = get_current_cred();
4169
4170 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4171 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4172 if (ret < 0) {
4173 put_cred(creds);
4174 return ret;
4175 }
4176 return id;
4177 }
4178
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)4179 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4180 void __user *arg, unsigned int nr_args)
4181 {
4182 struct io_uring_restriction *res;
4183 size_t size;
4184 int i, ret;
4185
4186 /* Restrictions allowed only if rings started disabled */
4187 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4188 return -EBADFD;
4189
4190 /* We allow only a single restrictions registration */
4191 if (ctx->restrictions.registered)
4192 return -EBUSY;
4193
4194 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4195 return -EINVAL;
4196
4197 size = array_size(nr_args, sizeof(*res));
4198 if (size == SIZE_MAX)
4199 return -EOVERFLOW;
4200
4201 res = memdup_user(arg, size);
4202 if (IS_ERR(res))
4203 return PTR_ERR(res);
4204
4205 ret = 0;
4206
4207 for (i = 0; i < nr_args; i++) {
4208 switch (res[i].opcode) {
4209 case IORING_RESTRICTION_REGISTER_OP:
4210 if (res[i].register_op >= IORING_REGISTER_LAST) {
4211 ret = -EINVAL;
4212 goto out;
4213 }
4214
4215 __set_bit(res[i].register_op,
4216 ctx->restrictions.register_op);
4217 break;
4218 case IORING_RESTRICTION_SQE_OP:
4219 if (res[i].sqe_op >= IORING_OP_LAST) {
4220 ret = -EINVAL;
4221 goto out;
4222 }
4223
4224 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4225 break;
4226 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4227 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4228 break;
4229 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4230 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4231 break;
4232 default:
4233 ret = -EINVAL;
4234 goto out;
4235 }
4236 }
4237
4238 out:
4239 /* Reset all restrictions if an error happened */
4240 if (ret != 0)
4241 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4242 else
4243 ctx->restrictions.registered = true;
4244
4245 kfree(res);
4246 return ret;
4247 }
4248
io_register_enable_rings(struct io_ring_ctx * ctx)4249 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4250 {
4251 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4252 return -EBADFD;
4253
4254 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4255 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4256 /*
4257 * Lazy activation attempts would fail if it was polled before
4258 * submitter_task is set.
4259 */
4260 if (wq_has_sleeper(&ctx->poll_wq))
4261 io_activate_pollwq(ctx);
4262 }
4263
4264 if (ctx->restrictions.registered)
4265 ctx->restricted = 1;
4266
4267 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4268 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4269 wake_up(&ctx->sq_data->wait);
4270 return 0;
4271 }
4272
__io_register_iowq_aff(struct io_ring_ctx * ctx,cpumask_var_t new_mask)4273 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4274 cpumask_var_t new_mask)
4275 {
4276 int ret;
4277
4278 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4279 ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4280 } else {
4281 mutex_unlock(&ctx->uring_lock);
4282 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4283 mutex_lock(&ctx->uring_lock);
4284 }
4285
4286 return ret;
4287 }
4288
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)4289 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4290 void __user *arg, unsigned len)
4291 {
4292 cpumask_var_t new_mask;
4293 int ret;
4294
4295 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4296 return -ENOMEM;
4297
4298 cpumask_clear(new_mask);
4299 if (len > cpumask_size())
4300 len = cpumask_size();
4301
4302 if (in_compat_syscall()) {
4303 ret = compat_get_bitmap(cpumask_bits(new_mask),
4304 (const compat_ulong_t __user *)arg,
4305 len * 8 /* CHAR_BIT */);
4306 } else {
4307 ret = copy_from_user(new_mask, arg, len);
4308 }
4309
4310 if (ret) {
4311 free_cpumask_var(new_mask);
4312 return -EFAULT;
4313 }
4314
4315 ret = __io_register_iowq_aff(ctx, new_mask);
4316 free_cpumask_var(new_mask);
4317 return ret;
4318 }
4319
io_unregister_iowq_aff(struct io_ring_ctx * ctx)4320 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4321 {
4322 return __io_register_iowq_aff(ctx, NULL);
4323 }
4324
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)4325 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4326 void __user *arg)
4327 __must_hold(&ctx->uring_lock)
4328 {
4329 struct io_tctx_node *node;
4330 struct io_uring_task *tctx = NULL;
4331 struct io_sq_data *sqd = NULL;
4332 __u32 new_count[2];
4333 int i, ret;
4334
4335 if (copy_from_user(new_count, arg, sizeof(new_count)))
4336 return -EFAULT;
4337 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4338 if (new_count[i] > INT_MAX)
4339 return -EINVAL;
4340
4341 if (ctx->flags & IORING_SETUP_SQPOLL) {
4342 sqd = ctx->sq_data;
4343 if (sqd) {
4344 /*
4345 * Observe the correct sqd->lock -> ctx->uring_lock
4346 * ordering. Fine to drop uring_lock here, we hold
4347 * a ref to the ctx.
4348 */
4349 refcount_inc(&sqd->refs);
4350 mutex_unlock(&ctx->uring_lock);
4351 mutex_lock(&sqd->lock);
4352 mutex_lock(&ctx->uring_lock);
4353 if (sqd->thread)
4354 tctx = sqd->thread->io_uring;
4355 }
4356 } else {
4357 tctx = current->io_uring;
4358 }
4359
4360 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4361
4362 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4363 if (new_count[i])
4364 ctx->iowq_limits[i] = new_count[i];
4365 ctx->iowq_limits_set = true;
4366
4367 if (tctx && tctx->io_wq) {
4368 ret = io_wq_max_workers(tctx->io_wq, new_count);
4369 if (ret)
4370 goto err;
4371 } else {
4372 memset(new_count, 0, sizeof(new_count));
4373 }
4374
4375 if (sqd) {
4376 mutex_unlock(&ctx->uring_lock);
4377 mutex_unlock(&sqd->lock);
4378 io_put_sq_data(sqd);
4379 mutex_lock(&ctx->uring_lock);
4380 }
4381
4382 if (copy_to_user(arg, new_count, sizeof(new_count)))
4383 return -EFAULT;
4384
4385 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4386 if (sqd)
4387 return 0;
4388
4389 /* now propagate the restriction to all registered users */
4390 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4391 struct io_uring_task *tctx = node->task->io_uring;
4392
4393 if (WARN_ON_ONCE(!tctx->io_wq))
4394 continue;
4395
4396 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4397 new_count[i] = ctx->iowq_limits[i];
4398 /* ignore errors, it always returns zero anyway */
4399 (void)io_wq_max_workers(tctx->io_wq, new_count);
4400 }
4401 return 0;
4402 err:
4403 if (sqd) {
4404 mutex_unlock(&ctx->uring_lock);
4405 mutex_unlock(&sqd->lock);
4406 io_put_sq_data(sqd);
4407 mutex_lock(&ctx->uring_lock);
4408
4409 }
4410 return ret;
4411 }
4412
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)4413 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4414 void __user *arg, unsigned nr_args)
4415 __releases(ctx->uring_lock)
4416 __acquires(ctx->uring_lock)
4417 {
4418 int ret;
4419
4420 /*
4421 * We don't quiesce the refs for register anymore and so it can't be
4422 * dying as we're holding a file ref here.
4423 */
4424 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4425 return -ENXIO;
4426
4427 if (ctx->submitter_task && ctx->submitter_task != current)
4428 return -EEXIST;
4429
4430 if (ctx->restricted) {
4431 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4432 if (!test_bit(opcode, ctx->restrictions.register_op))
4433 return -EACCES;
4434 }
4435
4436 switch (opcode) {
4437 case IORING_REGISTER_BUFFERS:
4438 ret = -EFAULT;
4439 if (!arg)
4440 break;
4441 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4442 break;
4443 case IORING_UNREGISTER_BUFFERS:
4444 ret = -EINVAL;
4445 if (arg || nr_args)
4446 break;
4447 ret = io_sqe_buffers_unregister(ctx);
4448 break;
4449 case IORING_REGISTER_FILES:
4450 ret = -EFAULT;
4451 if (!arg)
4452 break;
4453 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4454 break;
4455 case IORING_UNREGISTER_FILES:
4456 ret = -EINVAL;
4457 if (arg || nr_args)
4458 break;
4459 ret = io_sqe_files_unregister(ctx);
4460 break;
4461 case IORING_REGISTER_FILES_UPDATE:
4462 ret = io_register_files_update(ctx, arg, nr_args);
4463 break;
4464 case IORING_REGISTER_EVENTFD:
4465 ret = -EINVAL;
4466 if (nr_args != 1)
4467 break;
4468 ret = io_eventfd_register(ctx, arg, 0);
4469 break;
4470 case IORING_REGISTER_EVENTFD_ASYNC:
4471 ret = -EINVAL;
4472 if (nr_args != 1)
4473 break;
4474 ret = io_eventfd_register(ctx, arg, 1);
4475 break;
4476 case IORING_UNREGISTER_EVENTFD:
4477 ret = -EINVAL;
4478 if (arg || nr_args)
4479 break;
4480 ret = io_eventfd_unregister(ctx);
4481 break;
4482 case IORING_REGISTER_PROBE:
4483 ret = -EINVAL;
4484 if (!arg || nr_args > 256)
4485 break;
4486 ret = io_probe(ctx, arg, nr_args);
4487 break;
4488 case IORING_REGISTER_PERSONALITY:
4489 ret = -EINVAL;
4490 if (arg || nr_args)
4491 break;
4492 ret = io_register_personality(ctx);
4493 break;
4494 case IORING_UNREGISTER_PERSONALITY:
4495 ret = -EINVAL;
4496 if (arg)
4497 break;
4498 ret = io_unregister_personality(ctx, nr_args);
4499 break;
4500 case IORING_REGISTER_ENABLE_RINGS:
4501 ret = -EINVAL;
4502 if (arg || nr_args)
4503 break;
4504 ret = io_register_enable_rings(ctx);
4505 break;
4506 case IORING_REGISTER_RESTRICTIONS:
4507 ret = io_register_restrictions(ctx, arg, nr_args);
4508 break;
4509 case IORING_REGISTER_FILES2:
4510 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4511 break;
4512 case IORING_REGISTER_FILES_UPDATE2:
4513 ret = io_register_rsrc_update(ctx, arg, nr_args,
4514 IORING_RSRC_FILE);
4515 break;
4516 case IORING_REGISTER_BUFFERS2:
4517 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4518 break;
4519 case IORING_REGISTER_BUFFERS_UPDATE:
4520 ret = io_register_rsrc_update(ctx, arg, nr_args,
4521 IORING_RSRC_BUFFER);
4522 break;
4523 case IORING_REGISTER_IOWQ_AFF:
4524 ret = -EINVAL;
4525 if (!arg || !nr_args)
4526 break;
4527 ret = io_register_iowq_aff(ctx, arg, nr_args);
4528 break;
4529 case IORING_UNREGISTER_IOWQ_AFF:
4530 ret = -EINVAL;
4531 if (arg || nr_args)
4532 break;
4533 ret = io_unregister_iowq_aff(ctx);
4534 break;
4535 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4536 ret = -EINVAL;
4537 if (!arg || nr_args != 2)
4538 break;
4539 ret = io_register_iowq_max_workers(ctx, arg);
4540 break;
4541 case IORING_REGISTER_RING_FDS:
4542 ret = io_ringfd_register(ctx, arg, nr_args);
4543 break;
4544 case IORING_UNREGISTER_RING_FDS:
4545 ret = io_ringfd_unregister(ctx, arg, nr_args);
4546 break;
4547 case IORING_REGISTER_PBUF_RING:
4548 ret = -EINVAL;
4549 if (!arg || nr_args != 1)
4550 break;
4551 ret = io_register_pbuf_ring(ctx, arg);
4552 break;
4553 case IORING_UNREGISTER_PBUF_RING:
4554 ret = -EINVAL;
4555 if (!arg || nr_args != 1)
4556 break;
4557 ret = io_unregister_pbuf_ring(ctx, arg);
4558 break;
4559 case IORING_REGISTER_SYNC_CANCEL:
4560 ret = -EINVAL;
4561 if (!arg || nr_args != 1)
4562 break;
4563 ret = io_sync_cancel(ctx, arg);
4564 break;
4565 case IORING_REGISTER_FILE_ALLOC_RANGE:
4566 ret = -EINVAL;
4567 if (!arg || nr_args)
4568 break;
4569 ret = io_register_file_alloc_range(ctx, arg);
4570 break;
4571 default:
4572 ret = -EINVAL;
4573 break;
4574 }
4575
4576 return ret;
4577 }
4578
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4579 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4580 void __user *, arg, unsigned int, nr_args)
4581 {
4582 struct io_ring_ctx *ctx;
4583 long ret = -EBADF;
4584 struct file *file;
4585 bool use_registered_ring;
4586
4587 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4588 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4589
4590 if (opcode >= IORING_REGISTER_LAST)
4591 return -EINVAL;
4592
4593 if (use_registered_ring) {
4594 /*
4595 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4596 * need only dereference our task private array to find it.
4597 */
4598 struct io_uring_task *tctx = current->io_uring;
4599
4600 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4601 return -EINVAL;
4602 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4603 file = tctx->registered_rings[fd];
4604 if (unlikely(!file))
4605 return -EBADF;
4606 } else {
4607 file = fget(fd);
4608 if (unlikely(!file))
4609 return -EBADF;
4610 ret = -EOPNOTSUPP;
4611 if (!io_is_uring_fops(file))
4612 goto out_fput;
4613 }
4614
4615 ctx = file->private_data;
4616
4617 mutex_lock(&ctx->uring_lock);
4618 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4619 mutex_unlock(&ctx->uring_lock);
4620 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4621 out_fput:
4622 if (!use_registered_ring)
4623 fput(file);
4624 return ret;
4625 }
4626
io_uring_init(void)4627 static int __init io_uring_init(void)
4628 {
4629 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4630 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4631 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4632 } while (0)
4633
4634 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4635 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4636 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4637 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4638 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4639 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4640 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4641 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4642 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4643 BUILD_BUG_SQE_ELEM(8, __u64, off);
4644 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4645 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4646 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4647 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4648 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4649 BUILD_BUG_SQE_ELEM(24, __u32, len);
4650 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4651 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4652 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4653 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4654 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4655 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4656 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4657 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4658 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4659 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4660 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4661 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4662 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4663 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4664 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4665 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4666 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4667 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4668 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4669 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4670 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4671 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4672 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4673 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4674 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4675 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4676 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4677 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4678 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4679 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4680 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4681
4682 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4683 sizeof(struct io_uring_rsrc_update));
4684 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4685 sizeof(struct io_uring_rsrc_update2));
4686
4687 /* ->buf_index is u16 */
4688 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4689 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4690 offsetof(struct io_uring_buf_ring, tail));
4691
4692 /* should fit into one byte */
4693 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4694 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4695 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4696
4697 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4698
4699 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4700
4701 io_uring_optable_init();
4702
4703 /*
4704 * Allow user copy in the per-command field, which starts after the
4705 * file in io_kiocb and until the opcode field. The openat2 handling
4706 * requires copying in user memory into the io_kiocb object in that
4707 * range, and HARDENED_USERCOPY will complain if we haven't
4708 * correctly annotated this range.
4709 */
4710 req_cachep = kmem_cache_create_usercopy("io_kiocb",
4711 sizeof(struct io_kiocb), 0,
4712 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4713 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4714 offsetof(struct io_kiocb, cmd.data),
4715 sizeof_field(struct io_kiocb, cmd.data), NULL);
4716
4717 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4718
4719 #ifdef CONFIG_SYSCTL
4720 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4721 #endif
4722
4723 return 0;
4724 };
4725 __initcall(io_uring_init);
4726