xref: /openbmc/linux/fs/f2fs/super.c (revision af9b2ff010f593d81e2f5fb04155e9fc25b9dfd0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/fs_context.h>
12 #include <linux/sched/mm.h>
13 #include <linux/statfs.h>
14 #include <linux/buffer_head.h>
15 #include <linux/kthread.h>
16 #include <linux/parser.h>
17 #include <linux/mount.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/random.h>
21 #include <linux/exportfs.h>
22 #include <linux/blkdev.h>
23 #include <linux/quotaops.h>
24 #include <linux/f2fs_fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/quota.h>
27 #include <linux/unicode.h>
28 #include <linux/part_stat.h>
29 #include <linux/zstd.h>
30 #include <linux/lz4.h>
31 
32 #include "f2fs.h"
33 #include "node.h"
34 #include "segment.h"
35 #include "xattr.h"
36 #include "gc.h"
37 #include "iostat.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/f2fs.h>
41 
42 static struct kmem_cache *f2fs_inode_cachep;
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 
46 const char *f2fs_fault_name[FAULT_MAX] = {
47 	[FAULT_KMALLOC]		= "kmalloc",
48 	[FAULT_KVMALLOC]	= "kvmalloc",
49 	[FAULT_PAGE_ALLOC]	= "page alloc",
50 	[FAULT_PAGE_GET]	= "page get",
51 	[FAULT_ALLOC_NID]	= "alloc nid",
52 	[FAULT_ORPHAN]		= "orphan",
53 	[FAULT_BLOCK]		= "no more block",
54 	[FAULT_DIR_DEPTH]	= "too big dir depth",
55 	[FAULT_EVICT_INODE]	= "evict_inode fail",
56 	[FAULT_TRUNCATE]	= "truncate fail",
57 	[FAULT_READ_IO]		= "read IO error",
58 	[FAULT_CHECKPOINT]	= "checkpoint error",
59 	[FAULT_DISCARD]		= "discard error",
60 	[FAULT_WRITE_IO]	= "write IO error",
61 	[FAULT_SLAB_ALLOC]	= "slab alloc",
62 	[FAULT_DQUOT_INIT]	= "dquot initialize",
63 	[FAULT_LOCK_OP]		= "lock_op",
64 	[FAULT_BLKADDR]		= "invalid blkaddr",
65 };
66 
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)67 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
68 							unsigned long type)
69 {
70 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
71 
72 	if (rate) {
73 		if (rate > INT_MAX)
74 			return -EINVAL;
75 		atomic_set(&ffi->inject_ops, 0);
76 		ffi->inject_rate = (int)rate;
77 	}
78 
79 	if (type) {
80 		if (type >= BIT(FAULT_MAX))
81 			return -EINVAL;
82 		ffi->inject_type = (unsigned int)type;
83 	}
84 
85 	if (!rate && !type)
86 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
87 	else
88 		f2fs_info(sbi,
89 			"build fault injection attr: rate: %lu, type: 0x%lx",
90 								rate, type);
91 	return 0;
92 }
93 #endif
94 
95 /* f2fs-wide shrinker description */
96 static struct shrinker f2fs_shrinker_info = {
97 	.scan_objects = f2fs_shrink_scan,
98 	.count_objects = f2fs_shrink_count,
99 	.seeks = DEFAULT_SEEKS,
100 };
101 
102 enum {
103 	Opt_gc_background,
104 	Opt_disable_roll_forward,
105 	Opt_norecovery,
106 	Opt_discard,
107 	Opt_nodiscard,
108 	Opt_noheap,
109 	Opt_heap,
110 	Opt_user_xattr,
111 	Opt_nouser_xattr,
112 	Opt_acl,
113 	Opt_noacl,
114 	Opt_active_logs,
115 	Opt_disable_ext_identify,
116 	Opt_inline_xattr,
117 	Opt_noinline_xattr,
118 	Opt_inline_xattr_size,
119 	Opt_inline_data,
120 	Opt_inline_dentry,
121 	Opt_noinline_dentry,
122 	Opt_flush_merge,
123 	Opt_noflush_merge,
124 	Opt_barrier,
125 	Opt_nobarrier,
126 	Opt_fastboot,
127 	Opt_extent_cache,
128 	Opt_noextent_cache,
129 	Opt_noinline_data,
130 	Opt_data_flush,
131 	Opt_reserve_root,
132 	Opt_resgid,
133 	Opt_resuid,
134 	Opt_mode,
135 	Opt_fault_injection,
136 	Opt_fault_type,
137 	Opt_lazytime,
138 	Opt_nolazytime,
139 	Opt_quota,
140 	Opt_noquota,
141 	Opt_usrquota,
142 	Opt_grpquota,
143 	Opt_prjquota,
144 	Opt_usrjquota,
145 	Opt_grpjquota,
146 	Opt_prjjquota,
147 	Opt_offusrjquota,
148 	Opt_offgrpjquota,
149 	Opt_offprjjquota,
150 	Opt_jqfmt_vfsold,
151 	Opt_jqfmt_vfsv0,
152 	Opt_jqfmt_vfsv1,
153 	Opt_alloc,
154 	Opt_fsync,
155 	Opt_test_dummy_encryption,
156 	Opt_inlinecrypt,
157 	Opt_checkpoint_disable,
158 	Opt_checkpoint_disable_cap,
159 	Opt_checkpoint_disable_cap_perc,
160 	Opt_checkpoint_enable,
161 	Opt_checkpoint_merge,
162 	Opt_nocheckpoint_merge,
163 	Opt_compress_algorithm,
164 	Opt_compress_log_size,
165 	Opt_compress_extension,
166 	Opt_nocompress_extension,
167 	Opt_compress_chksum,
168 	Opt_compress_mode,
169 	Opt_compress_cache,
170 	Opt_atgc,
171 	Opt_gc_merge,
172 	Opt_nogc_merge,
173 	Opt_discard_unit,
174 	Opt_memory_mode,
175 	Opt_age_extent_cache,
176 	Opt_errors,
177 	Opt_err,
178 };
179 
180 static match_table_t f2fs_tokens = {
181 	{Opt_gc_background, "background_gc=%s"},
182 	{Opt_disable_roll_forward, "disable_roll_forward"},
183 	{Opt_norecovery, "norecovery"},
184 	{Opt_discard, "discard"},
185 	{Opt_nodiscard, "nodiscard"},
186 	{Opt_noheap, "no_heap"},
187 	{Opt_heap, "heap"},
188 	{Opt_user_xattr, "user_xattr"},
189 	{Opt_nouser_xattr, "nouser_xattr"},
190 	{Opt_acl, "acl"},
191 	{Opt_noacl, "noacl"},
192 	{Opt_active_logs, "active_logs=%u"},
193 	{Opt_disable_ext_identify, "disable_ext_identify"},
194 	{Opt_inline_xattr, "inline_xattr"},
195 	{Opt_noinline_xattr, "noinline_xattr"},
196 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
197 	{Opt_inline_data, "inline_data"},
198 	{Opt_inline_dentry, "inline_dentry"},
199 	{Opt_noinline_dentry, "noinline_dentry"},
200 	{Opt_flush_merge, "flush_merge"},
201 	{Opt_noflush_merge, "noflush_merge"},
202 	{Opt_barrier, "barrier"},
203 	{Opt_nobarrier, "nobarrier"},
204 	{Opt_fastboot, "fastboot"},
205 	{Opt_extent_cache, "extent_cache"},
206 	{Opt_noextent_cache, "noextent_cache"},
207 	{Opt_noinline_data, "noinline_data"},
208 	{Opt_data_flush, "data_flush"},
209 	{Opt_reserve_root, "reserve_root=%u"},
210 	{Opt_resgid, "resgid=%u"},
211 	{Opt_resuid, "resuid=%u"},
212 	{Opt_mode, "mode=%s"},
213 	{Opt_fault_injection, "fault_injection=%u"},
214 	{Opt_fault_type, "fault_type=%u"},
215 	{Opt_lazytime, "lazytime"},
216 	{Opt_nolazytime, "nolazytime"},
217 	{Opt_quota, "quota"},
218 	{Opt_noquota, "noquota"},
219 	{Opt_usrquota, "usrquota"},
220 	{Opt_grpquota, "grpquota"},
221 	{Opt_prjquota, "prjquota"},
222 	{Opt_usrjquota, "usrjquota=%s"},
223 	{Opt_grpjquota, "grpjquota=%s"},
224 	{Opt_prjjquota, "prjjquota=%s"},
225 	{Opt_offusrjquota, "usrjquota="},
226 	{Opt_offgrpjquota, "grpjquota="},
227 	{Opt_offprjjquota, "prjjquota="},
228 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
229 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
230 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
231 	{Opt_alloc, "alloc_mode=%s"},
232 	{Opt_fsync, "fsync_mode=%s"},
233 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
234 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
235 	{Opt_inlinecrypt, "inlinecrypt"},
236 	{Opt_checkpoint_disable, "checkpoint=disable"},
237 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
238 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
239 	{Opt_checkpoint_enable, "checkpoint=enable"},
240 	{Opt_checkpoint_merge, "checkpoint_merge"},
241 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
242 	{Opt_compress_algorithm, "compress_algorithm=%s"},
243 	{Opt_compress_log_size, "compress_log_size=%u"},
244 	{Opt_compress_extension, "compress_extension=%s"},
245 	{Opt_nocompress_extension, "nocompress_extension=%s"},
246 	{Opt_compress_chksum, "compress_chksum"},
247 	{Opt_compress_mode, "compress_mode=%s"},
248 	{Opt_compress_cache, "compress_cache"},
249 	{Opt_atgc, "atgc"},
250 	{Opt_gc_merge, "gc_merge"},
251 	{Opt_nogc_merge, "nogc_merge"},
252 	{Opt_discard_unit, "discard_unit=%s"},
253 	{Opt_memory_mode, "memory=%s"},
254 	{Opt_age_extent_cache, "age_extent_cache"},
255 	{Opt_errors, "errors=%s"},
256 	{Opt_err, NULL},
257 };
258 
f2fs_printk(struct f2fs_sb_info * sbi,bool limit_rate,const char * fmt,...)259 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate,
260 						const char *fmt, ...)
261 {
262 	struct va_format vaf;
263 	va_list args;
264 	int level;
265 
266 	va_start(args, fmt);
267 
268 	level = printk_get_level(fmt);
269 	vaf.fmt = printk_skip_level(fmt);
270 	vaf.va = &args;
271 	if (limit_rate)
272 		printk_ratelimited("%c%cF2FS-fs (%s): %pV\n",
273 			KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
274 	else
275 		printk("%c%cF2FS-fs (%s): %pV\n",
276 			KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
277 
278 	va_end(args);
279 }
280 
281 #if IS_ENABLED(CONFIG_UNICODE)
282 static const struct f2fs_sb_encodings {
283 	__u16 magic;
284 	char *name;
285 	unsigned int version;
286 } f2fs_sb_encoding_map[] = {
287 	{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
288 };
289 
290 static const struct f2fs_sb_encodings *
f2fs_sb_read_encoding(const struct f2fs_super_block * sb)291 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
292 {
293 	__u16 magic = le16_to_cpu(sb->s_encoding);
294 	int i;
295 
296 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
297 		if (magic == f2fs_sb_encoding_map[i].magic)
298 			return &f2fs_sb_encoding_map[i];
299 
300 	return NULL;
301 }
302 
303 struct kmem_cache *f2fs_cf_name_slab;
f2fs_create_casefold_cache(void)304 static int __init f2fs_create_casefold_cache(void)
305 {
306 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
307 							F2FS_NAME_LEN);
308 	return f2fs_cf_name_slab ? 0 : -ENOMEM;
309 }
310 
f2fs_destroy_casefold_cache(void)311 static void f2fs_destroy_casefold_cache(void)
312 {
313 	kmem_cache_destroy(f2fs_cf_name_slab);
314 }
315 #else
f2fs_create_casefold_cache(void)316 static int __init f2fs_create_casefold_cache(void) { return 0; }
f2fs_destroy_casefold_cache(void)317 static void f2fs_destroy_casefold_cache(void) { }
318 #endif
319 
limit_reserve_root(struct f2fs_sb_info * sbi)320 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
321 {
322 	block_t limit = min((sbi->user_block_count >> 3),
323 			sbi->user_block_count - sbi->reserved_blocks);
324 
325 	/* limit is 12.5% */
326 	if (test_opt(sbi, RESERVE_ROOT) &&
327 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
328 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
329 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
330 			  F2FS_OPTION(sbi).root_reserved_blocks);
331 	}
332 	if (!test_opt(sbi, RESERVE_ROOT) &&
333 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
334 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
335 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
336 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
337 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
338 			  from_kuid_munged(&init_user_ns,
339 					   F2FS_OPTION(sbi).s_resuid),
340 			  from_kgid_munged(&init_user_ns,
341 					   F2FS_OPTION(sbi).s_resgid));
342 }
343 
adjust_unusable_cap_perc(struct f2fs_sb_info * sbi)344 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
345 {
346 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
347 		return;
348 
349 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
350 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
351 	else
352 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
353 					F2FS_OPTION(sbi).unusable_cap_perc;
354 
355 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
356 			F2FS_OPTION(sbi).unusable_cap,
357 			F2FS_OPTION(sbi).unusable_cap_perc);
358 }
359 
init_once(void * foo)360 static void init_once(void *foo)
361 {
362 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
363 
364 	inode_init_once(&fi->vfs_inode);
365 }
366 
367 #ifdef CONFIG_QUOTA
368 static const char * const quotatypes[] = INITQFNAMES;
369 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)370 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
371 							substring_t *args)
372 {
373 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
374 	char *qname;
375 	int ret = -EINVAL;
376 
377 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
378 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
379 		return -EINVAL;
380 	}
381 	if (f2fs_sb_has_quota_ino(sbi)) {
382 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
383 		return 0;
384 	}
385 
386 	qname = match_strdup(args);
387 	if (!qname) {
388 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
389 		return -ENOMEM;
390 	}
391 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
392 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
393 			ret = 0;
394 		else
395 			f2fs_err(sbi, "%s quota file already specified",
396 				 QTYPE2NAME(qtype));
397 		goto errout;
398 	}
399 	if (strchr(qname, '/')) {
400 		f2fs_err(sbi, "quotafile must be on filesystem root");
401 		goto errout;
402 	}
403 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
404 	set_opt(sbi, QUOTA);
405 	return 0;
406 errout:
407 	kfree(qname);
408 	return ret;
409 }
410 
f2fs_clear_qf_name(struct super_block * sb,int qtype)411 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
412 {
413 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
414 
415 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
416 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
417 		return -EINVAL;
418 	}
419 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
420 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
421 	return 0;
422 }
423 
f2fs_check_quota_options(struct f2fs_sb_info * sbi)424 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
425 {
426 	/*
427 	 * We do the test below only for project quotas. 'usrquota' and
428 	 * 'grpquota' mount options are allowed even without quota feature
429 	 * to support legacy quotas in quota files.
430 	 */
431 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
432 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
433 		return -1;
434 	}
435 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
436 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
437 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
438 		if (test_opt(sbi, USRQUOTA) &&
439 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
440 			clear_opt(sbi, USRQUOTA);
441 
442 		if (test_opt(sbi, GRPQUOTA) &&
443 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
444 			clear_opt(sbi, GRPQUOTA);
445 
446 		if (test_opt(sbi, PRJQUOTA) &&
447 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
448 			clear_opt(sbi, PRJQUOTA);
449 
450 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
451 				test_opt(sbi, PRJQUOTA)) {
452 			f2fs_err(sbi, "old and new quota format mixing");
453 			return -1;
454 		}
455 
456 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
457 			f2fs_err(sbi, "journaled quota format not specified");
458 			return -1;
459 		}
460 	}
461 
462 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
463 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
464 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
465 	}
466 	return 0;
467 }
468 #endif
469 
f2fs_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)470 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
471 					  const char *opt,
472 					  const substring_t *arg,
473 					  bool is_remount)
474 {
475 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
476 	struct fs_parameter param = {
477 		.type = fs_value_is_string,
478 		.string = arg->from ? arg->from : "",
479 	};
480 	struct fscrypt_dummy_policy *policy =
481 		&F2FS_OPTION(sbi).dummy_enc_policy;
482 	int err;
483 
484 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
485 		f2fs_warn(sbi, "test_dummy_encryption option not supported");
486 		return -EINVAL;
487 	}
488 
489 	if (!f2fs_sb_has_encrypt(sbi)) {
490 		f2fs_err(sbi, "Encrypt feature is off");
491 		return -EINVAL;
492 	}
493 
494 	/*
495 	 * This mount option is just for testing, and it's not worthwhile to
496 	 * implement the extra complexity (e.g. RCU protection) that would be
497 	 * needed to allow it to be set or changed during remount.  We do allow
498 	 * it to be specified during remount, but only if there is no change.
499 	 */
500 	if (is_remount && !fscrypt_is_dummy_policy_set(policy)) {
501 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
502 		return -EINVAL;
503 	}
504 
505 	err = fscrypt_parse_test_dummy_encryption(&param, policy);
506 	if (err) {
507 		if (err == -EEXIST)
508 			f2fs_warn(sbi,
509 				  "Can't change test_dummy_encryption on remount");
510 		else if (err == -EINVAL)
511 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
512 				  opt);
513 		else
514 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
515 				  opt, err);
516 		return -EINVAL;
517 	}
518 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
519 	return 0;
520 }
521 
522 #ifdef CONFIG_F2FS_FS_COMPRESSION
is_compress_extension_exist(struct f2fs_sb_info * sbi,const char * new_ext,bool is_ext)523 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi,
524 					const char *new_ext, bool is_ext)
525 {
526 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
527 	int ext_cnt;
528 	int i;
529 
530 	if (is_ext) {
531 		ext = F2FS_OPTION(sbi).extensions;
532 		ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
533 	} else {
534 		ext = F2FS_OPTION(sbi).noextensions;
535 		ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
536 	}
537 
538 	for (i = 0; i < ext_cnt; i++) {
539 		if (!strcasecmp(new_ext, ext[i]))
540 			return true;
541 	}
542 
543 	return false;
544 }
545 
546 /*
547  * 1. The same extension name cannot not appear in both compress and non-compress extension
548  * at the same time.
549  * 2. If the compress extension specifies all files, the types specified by the non-compress
550  * extension will be treated as special cases and will not be compressed.
551  * 3. Don't allow the non-compress extension specifies all files.
552  */
f2fs_test_compress_extension(struct f2fs_sb_info * sbi)553 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
554 {
555 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
556 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
557 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
558 
559 	ext = F2FS_OPTION(sbi).extensions;
560 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
561 	noext = F2FS_OPTION(sbi).noextensions;
562 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
563 
564 	if (!noext_cnt)
565 		return 0;
566 
567 	for (no_index = 0; no_index < noext_cnt; no_index++) {
568 		if (!strcasecmp("*", noext[no_index])) {
569 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
570 			return -EINVAL;
571 		}
572 		for (index = 0; index < ext_cnt; index++) {
573 			if (!strcasecmp(ext[index], noext[no_index])) {
574 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
575 						ext[index]);
576 				return -EINVAL;
577 			}
578 		}
579 	}
580 	return 0;
581 }
582 
583 #ifdef CONFIG_F2FS_FS_LZ4
f2fs_set_lz4hc_level(struct f2fs_sb_info * sbi,const char * str)584 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
585 {
586 #ifdef CONFIG_F2FS_FS_LZ4HC
587 	unsigned int level;
588 
589 	if (strlen(str) == 3) {
590 		F2FS_OPTION(sbi).compress_level = 0;
591 		return 0;
592 	}
593 
594 	str += 3;
595 
596 	if (str[0] != ':') {
597 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
598 		return -EINVAL;
599 	}
600 	if (kstrtouint(str + 1, 10, &level))
601 		return -EINVAL;
602 
603 	if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) {
604 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
605 		return -EINVAL;
606 	}
607 
608 	F2FS_OPTION(sbi).compress_level = level;
609 	return 0;
610 #else
611 	if (strlen(str) == 3) {
612 		F2FS_OPTION(sbi).compress_level = 0;
613 		return 0;
614 	}
615 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
616 	return -EINVAL;
617 #endif
618 }
619 #endif
620 
621 #ifdef CONFIG_F2FS_FS_ZSTD
f2fs_set_zstd_level(struct f2fs_sb_info * sbi,const char * str)622 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
623 {
624 	int level;
625 	int len = 4;
626 
627 	if (strlen(str) == len) {
628 		F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
629 		return 0;
630 	}
631 
632 	str += len;
633 
634 	if (str[0] != ':') {
635 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
636 		return -EINVAL;
637 	}
638 	if (kstrtoint(str + 1, 10, &level))
639 		return -EINVAL;
640 
641 	/* f2fs does not support negative compress level now */
642 	if (level < 0) {
643 		f2fs_info(sbi, "do not support negative compress level: %d", level);
644 		return -ERANGE;
645 	}
646 
647 	if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) {
648 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
649 		return -EINVAL;
650 	}
651 
652 	F2FS_OPTION(sbi).compress_level = level;
653 	return 0;
654 }
655 #endif
656 #endif
657 
parse_options(struct super_block * sb,char * options,bool is_remount)658 static int parse_options(struct super_block *sb, char *options, bool is_remount)
659 {
660 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
661 	substring_t args[MAX_OPT_ARGS];
662 #ifdef CONFIG_F2FS_FS_COMPRESSION
663 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
664 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
665 	int ext_cnt, noext_cnt;
666 #endif
667 	char *p, *name;
668 	int arg = 0;
669 	kuid_t uid;
670 	kgid_t gid;
671 	int ret;
672 
673 	if (!options)
674 		goto default_check;
675 
676 	while ((p = strsep(&options, ",")) != NULL) {
677 		int token;
678 
679 		if (!*p)
680 			continue;
681 		/*
682 		 * Initialize args struct so we know whether arg was
683 		 * found; some options take optional arguments.
684 		 */
685 		args[0].to = args[0].from = NULL;
686 		token = match_token(p, f2fs_tokens, args);
687 
688 		switch (token) {
689 		case Opt_gc_background:
690 			name = match_strdup(&args[0]);
691 
692 			if (!name)
693 				return -ENOMEM;
694 			if (!strcmp(name, "on")) {
695 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
696 			} else if (!strcmp(name, "off")) {
697 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
698 			} else if (!strcmp(name, "sync")) {
699 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
700 			} else {
701 				kfree(name);
702 				return -EINVAL;
703 			}
704 			kfree(name);
705 			break;
706 		case Opt_disable_roll_forward:
707 			set_opt(sbi, DISABLE_ROLL_FORWARD);
708 			break;
709 		case Opt_norecovery:
710 			/* this option mounts f2fs with ro */
711 			set_opt(sbi, NORECOVERY);
712 			if (!f2fs_readonly(sb))
713 				return -EINVAL;
714 			break;
715 		case Opt_discard:
716 			if (!f2fs_hw_support_discard(sbi)) {
717 				f2fs_warn(sbi, "device does not support discard");
718 				break;
719 			}
720 			set_opt(sbi, DISCARD);
721 			break;
722 		case Opt_nodiscard:
723 			if (f2fs_hw_should_discard(sbi)) {
724 				f2fs_warn(sbi, "discard is required for zoned block devices");
725 				return -EINVAL;
726 			}
727 			clear_opt(sbi, DISCARD);
728 			break;
729 		case Opt_noheap:
730 		case Opt_heap:
731 			f2fs_warn(sbi, "heap/no_heap options were deprecated");
732 			break;
733 #ifdef CONFIG_F2FS_FS_XATTR
734 		case Opt_user_xattr:
735 			set_opt(sbi, XATTR_USER);
736 			break;
737 		case Opt_nouser_xattr:
738 			clear_opt(sbi, XATTR_USER);
739 			break;
740 		case Opt_inline_xattr:
741 			set_opt(sbi, INLINE_XATTR);
742 			break;
743 		case Opt_noinline_xattr:
744 			clear_opt(sbi, INLINE_XATTR);
745 			break;
746 		case Opt_inline_xattr_size:
747 			if (args->from && match_int(args, &arg))
748 				return -EINVAL;
749 			set_opt(sbi, INLINE_XATTR_SIZE);
750 			F2FS_OPTION(sbi).inline_xattr_size = arg;
751 			break;
752 #else
753 		case Opt_user_xattr:
754 			f2fs_info(sbi, "user_xattr options not supported");
755 			break;
756 		case Opt_nouser_xattr:
757 			f2fs_info(sbi, "nouser_xattr options not supported");
758 			break;
759 		case Opt_inline_xattr:
760 			f2fs_info(sbi, "inline_xattr options not supported");
761 			break;
762 		case Opt_noinline_xattr:
763 			f2fs_info(sbi, "noinline_xattr options not supported");
764 			break;
765 #endif
766 #ifdef CONFIG_F2FS_FS_POSIX_ACL
767 		case Opt_acl:
768 			set_opt(sbi, POSIX_ACL);
769 			break;
770 		case Opt_noacl:
771 			clear_opt(sbi, POSIX_ACL);
772 			break;
773 #else
774 		case Opt_acl:
775 			f2fs_info(sbi, "acl options not supported");
776 			break;
777 		case Opt_noacl:
778 			f2fs_info(sbi, "noacl options not supported");
779 			break;
780 #endif
781 		case Opt_active_logs:
782 			if (args->from && match_int(args, &arg))
783 				return -EINVAL;
784 			if (arg != 2 && arg != 4 &&
785 				arg != NR_CURSEG_PERSIST_TYPE)
786 				return -EINVAL;
787 			F2FS_OPTION(sbi).active_logs = arg;
788 			break;
789 		case Opt_disable_ext_identify:
790 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
791 			break;
792 		case Opt_inline_data:
793 			set_opt(sbi, INLINE_DATA);
794 			break;
795 		case Opt_inline_dentry:
796 			set_opt(sbi, INLINE_DENTRY);
797 			break;
798 		case Opt_noinline_dentry:
799 			clear_opt(sbi, INLINE_DENTRY);
800 			break;
801 		case Opt_flush_merge:
802 			set_opt(sbi, FLUSH_MERGE);
803 			break;
804 		case Opt_noflush_merge:
805 			clear_opt(sbi, FLUSH_MERGE);
806 			break;
807 		case Opt_nobarrier:
808 			set_opt(sbi, NOBARRIER);
809 			break;
810 		case Opt_barrier:
811 			clear_opt(sbi, NOBARRIER);
812 			break;
813 		case Opt_fastboot:
814 			set_opt(sbi, FASTBOOT);
815 			break;
816 		case Opt_extent_cache:
817 			set_opt(sbi, READ_EXTENT_CACHE);
818 			break;
819 		case Opt_noextent_cache:
820 			clear_opt(sbi, READ_EXTENT_CACHE);
821 			break;
822 		case Opt_noinline_data:
823 			clear_opt(sbi, INLINE_DATA);
824 			break;
825 		case Opt_data_flush:
826 			set_opt(sbi, DATA_FLUSH);
827 			break;
828 		case Opt_reserve_root:
829 			if (args->from && match_int(args, &arg))
830 				return -EINVAL;
831 			if (test_opt(sbi, RESERVE_ROOT)) {
832 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
833 					  F2FS_OPTION(sbi).root_reserved_blocks);
834 			} else {
835 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
836 				set_opt(sbi, RESERVE_ROOT);
837 			}
838 			break;
839 		case Opt_resuid:
840 			if (args->from && match_int(args, &arg))
841 				return -EINVAL;
842 			uid = make_kuid(current_user_ns(), arg);
843 			if (!uid_valid(uid)) {
844 				f2fs_err(sbi, "Invalid uid value %d", arg);
845 				return -EINVAL;
846 			}
847 			F2FS_OPTION(sbi).s_resuid = uid;
848 			break;
849 		case Opt_resgid:
850 			if (args->from && match_int(args, &arg))
851 				return -EINVAL;
852 			gid = make_kgid(current_user_ns(), arg);
853 			if (!gid_valid(gid)) {
854 				f2fs_err(sbi, "Invalid gid value %d", arg);
855 				return -EINVAL;
856 			}
857 			F2FS_OPTION(sbi).s_resgid = gid;
858 			break;
859 		case Opt_mode:
860 			name = match_strdup(&args[0]);
861 
862 			if (!name)
863 				return -ENOMEM;
864 			if (!strcmp(name, "adaptive")) {
865 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
866 			} else if (!strcmp(name, "lfs")) {
867 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
868 			} else if (!strcmp(name, "fragment:segment")) {
869 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
870 			} else if (!strcmp(name, "fragment:block")) {
871 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
872 			} else {
873 				kfree(name);
874 				return -EINVAL;
875 			}
876 			kfree(name);
877 			break;
878 #ifdef CONFIG_F2FS_FAULT_INJECTION
879 		case Opt_fault_injection:
880 			if (args->from && match_int(args, &arg))
881 				return -EINVAL;
882 			if (f2fs_build_fault_attr(sbi, arg,
883 					F2FS_ALL_FAULT_TYPE))
884 				return -EINVAL;
885 			set_opt(sbi, FAULT_INJECTION);
886 			break;
887 
888 		case Opt_fault_type:
889 			if (args->from && match_int(args, &arg))
890 				return -EINVAL;
891 			if (f2fs_build_fault_attr(sbi, 0, arg))
892 				return -EINVAL;
893 			set_opt(sbi, FAULT_INJECTION);
894 			break;
895 #else
896 		case Opt_fault_injection:
897 			f2fs_info(sbi, "fault_injection options not supported");
898 			break;
899 
900 		case Opt_fault_type:
901 			f2fs_info(sbi, "fault_type options not supported");
902 			break;
903 #endif
904 		case Opt_lazytime:
905 			sb->s_flags |= SB_LAZYTIME;
906 			break;
907 		case Opt_nolazytime:
908 			sb->s_flags &= ~SB_LAZYTIME;
909 			break;
910 #ifdef CONFIG_QUOTA
911 		case Opt_quota:
912 		case Opt_usrquota:
913 			set_opt(sbi, USRQUOTA);
914 			break;
915 		case Opt_grpquota:
916 			set_opt(sbi, GRPQUOTA);
917 			break;
918 		case Opt_prjquota:
919 			set_opt(sbi, PRJQUOTA);
920 			break;
921 		case Opt_usrjquota:
922 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
923 			if (ret)
924 				return ret;
925 			break;
926 		case Opt_grpjquota:
927 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
928 			if (ret)
929 				return ret;
930 			break;
931 		case Opt_prjjquota:
932 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
933 			if (ret)
934 				return ret;
935 			break;
936 		case Opt_offusrjquota:
937 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
938 			if (ret)
939 				return ret;
940 			break;
941 		case Opt_offgrpjquota:
942 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
943 			if (ret)
944 				return ret;
945 			break;
946 		case Opt_offprjjquota:
947 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
948 			if (ret)
949 				return ret;
950 			break;
951 		case Opt_jqfmt_vfsold:
952 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
953 			break;
954 		case Opt_jqfmt_vfsv0:
955 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
956 			break;
957 		case Opt_jqfmt_vfsv1:
958 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
959 			break;
960 		case Opt_noquota:
961 			clear_opt(sbi, QUOTA);
962 			clear_opt(sbi, USRQUOTA);
963 			clear_opt(sbi, GRPQUOTA);
964 			clear_opt(sbi, PRJQUOTA);
965 			break;
966 #else
967 		case Opt_quota:
968 		case Opt_usrquota:
969 		case Opt_grpquota:
970 		case Opt_prjquota:
971 		case Opt_usrjquota:
972 		case Opt_grpjquota:
973 		case Opt_prjjquota:
974 		case Opt_offusrjquota:
975 		case Opt_offgrpjquota:
976 		case Opt_offprjjquota:
977 		case Opt_jqfmt_vfsold:
978 		case Opt_jqfmt_vfsv0:
979 		case Opt_jqfmt_vfsv1:
980 		case Opt_noquota:
981 			f2fs_info(sbi, "quota operations not supported");
982 			break;
983 #endif
984 		case Opt_alloc:
985 			name = match_strdup(&args[0]);
986 			if (!name)
987 				return -ENOMEM;
988 
989 			if (!strcmp(name, "default")) {
990 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
991 			} else if (!strcmp(name, "reuse")) {
992 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
993 			} else {
994 				kfree(name);
995 				return -EINVAL;
996 			}
997 			kfree(name);
998 			break;
999 		case Opt_fsync:
1000 			name = match_strdup(&args[0]);
1001 			if (!name)
1002 				return -ENOMEM;
1003 			if (!strcmp(name, "posix")) {
1004 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1005 			} else if (!strcmp(name, "strict")) {
1006 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
1007 			} else if (!strcmp(name, "nobarrier")) {
1008 				F2FS_OPTION(sbi).fsync_mode =
1009 							FSYNC_MODE_NOBARRIER;
1010 			} else {
1011 				kfree(name);
1012 				return -EINVAL;
1013 			}
1014 			kfree(name);
1015 			break;
1016 		case Opt_test_dummy_encryption:
1017 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
1018 							     is_remount);
1019 			if (ret)
1020 				return ret;
1021 			break;
1022 		case Opt_inlinecrypt:
1023 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1024 			sb->s_flags |= SB_INLINECRYPT;
1025 #else
1026 			f2fs_info(sbi, "inline encryption not supported");
1027 #endif
1028 			break;
1029 		case Opt_checkpoint_disable_cap_perc:
1030 			if (args->from && match_int(args, &arg))
1031 				return -EINVAL;
1032 			if (arg < 0 || arg > 100)
1033 				return -EINVAL;
1034 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1035 			set_opt(sbi, DISABLE_CHECKPOINT);
1036 			break;
1037 		case Opt_checkpoint_disable_cap:
1038 			if (args->from && match_int(args, &arg))
1039 				return -EINVAL;
1040 			F2FS_OPTION(sbi).unusable_cap = arg;
1041 			set_opt(sbi, DISABLE_CHECKPOINT);
1042 			break;
1043 		case Opt_checkpoint_disable:
1044 			set_opt(sbi, DISABLE_CHECKPOINT);
1045 			break;
1046 		case Opt_checkpoint_enable:
1047 			clear_opt(sbi, DISABLE_CHECKPOINT);
1048 			break;
1049 		case Opt_checkpoint_merge:
1050 			set_opt(sbi, MERGE_CHECKPOINT);
1051 			break;
1052 		case Opt_nocheckpoint_merge:
1053 			clear_opt(sbi, MERGE_CHECKPOINT);
1054 			break;
1055 #ifdef CONFIG_F2FS_FS_COMPRESSION
1056 		case Opt_compress_algorithm:
1057 			if (!f2fs_sb_has_compression(sbi)) {
1058 				f2fs_info(sbi, "Image doesn't support compression");
1059 				break;
1060 			}
1061 			name = match_strdup(&args[0]);
1062 			if (!name)
1063 				return -ENOMEM;
1064 			if (!strcmp(name, "lzo")) {
1065 #ifdef CONFIG_F2FS_FS_LZO
1066 				F2FS_OPTION(sbi).compress_level = 0;
1067 				F2FS_OPTION(sbi).compress_algorithm =
1068 								COMPRESS_LZO;
1069 #else
1070 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1071 #endif
1072 			} else if (!strncmp(name, "lz4", 3)) {
1073 #ifdef CONFIG_F2FS_FS_LZ4
1074 				ret = f2fs_set_lz4hc_level(sbi, name);
1075 				if (ret) {
1076 					kfree(name);
1077 					return -EINVAL;
1078 				}
1079 				F2FS_OPTION(sbi).compress_algorithm =
1080 								COMPRESS_LZ4;
1081 #else
1082 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1083 #endif
1084 			} else if (!strncmp(name, "zstd", 4)) {
1085 #ifdef CONFIG_F2FS_FS_ZSTD
1086 				ret = f2fs_set_zstd_level(sbi, name);
1087 				if (ret) {
1088 					kfree(name);
1089 					return -EINVAL;
1090 				}
1091 				F2FS_OPTION(sbi).compress_algorithm =
1092 								COMPRESS_ZSTD;
1093 #else
1094 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1095 #endif
1096 			} else if (!strcmp(name, "lzo-rle")) {
1097 #ifdef CONFIG_F2FS_FS_LZORLE
1098 				F2FS_OPTION(sbi).compress_level = 0;
1099 				F2FS_OPTION(sbi).compress_algorithm =
1100 								COMPRESS_LZORLE;
1101 #else
1102 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1103 #endif
1104 			} else {
1105 				kfree(name);
1106 				return -EINVAL;
1107 			}
1108 			kfree(name);
1109 			break;
1110 		case Opt_compress_log_size:
1111 			if (!f2fs_sb_has_compression(sbi)) {
1112 				f2fs_info(sbi, "Image doesn't support compression");
1113 				break;
1114 			}
1115 			if (args->from && match_int(args, &arg))
1116 				return -EINVAL;
1117 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1118 				arg > MAX_COMPRESS_LOG_SIZE) {
1119 				f2fs_err(sbi,
1120 					"Compress cluster log size is out of range");
1121 				return -EINVAL;
1122 			}
1123 			F2FS_OPTION(sbi).compress_log_size = arg;
1124 			break;
1125 		case Opt_compress_extension:
1126 			if (!f2fs_sb_has_compression(sbi)) {
1127 				f2fs_info(sbi, "Image doesn't support compression");
1128 				break;
1129 			}
1130 			name = match_strdup(&args[0]);
1131 			if (!name)
1132 				return -ENOMEM;
1133 
1134 			ext = F2FS_OPTION(sbi).extensions;
1135 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1136 
1137 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1138 				ext_cnt >= COMPRESS_EXT_NUM) {
1139 				f2fs_err(sbi,
1140 					"invalid extension length/number");
1141 				kfree(name);
1142 				return -EINVAL;
1143 			}
1144 
1145 			if (is_compress_extension_exist(sbi, name, true)) {
1146 				kfree(name);
1147 				break;
1148 			}
1149 
1150 			strcpy(ext[ext_cnt], name);
1151 			F2FS_OPTION(sbi).compress_ext_cnt++;
1152 			kfree(name);
1153 			break;
1154 		case Opt_nocompress_extension:
1155 			if (!f2fs_sb_has_compression(sbi)) {
1156 				f2fs_info(sbi, "Image doesn't support compression");
1157 				break;
1158 			}
1159 			name = match_strdup(&args[0]);
1160 			if (!name)
1161 				return -ENOMEM;
1162 
1163 			noext = F2FS_OPTION(sbi).noextensions;
1164 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1165 
1166 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1167 				noext_cnt >= COMPRESS_EXT_NUM) {
1168 				f2fs_err(sbi,
1169 					"invalid extension length/number");
1170 				kfree(name);
1171 				return -EINVAL;
1172 			}
1173 
1174 			if (is_compress_extension_exist(sbi, name, false)) {
1175 				kfree(name);
1176 				break;
1177 			}
1178 
1179 			strcpy(noext[noext_cnt], name);
1180 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1181 			kfree(name);
1182 			break;
1183 		case Opt_compress_chksum:
1184 			if (!f2fs_sb_has_compression(sbi)) {
1185 				f2fs_info(sbi, "Image doesn't support compression");
1186 				break;
1187 			}
1188 			F2FS_OPTION(sbi).compress_chksum = true;
1189 			break;
1190 		case Opt_compress_mode:
1191 			if (!f2fs_sb_has_compression(sbi)) {
1192 				f2fs_info(sbi, "Image doesn't support compression");
1193 				break;
1194 			}
1195 			name = match_strdup(&args[0]);
1196 			if (!name)
1197 				return -ENOMEM;
1198 			if (!strcmp(name, "fs")) {
1199 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1200 			} else if (!strcmp(name, "user")) {
1201 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1202 			} else {
1203 				kfree(name);
1204 				return -EINVAL;
1205 			}
1206 			kfree(name);
1207 			break;
1208 		case Opt_compress_cache:
1209 			if (!f2fs_sb_has_compression(sbi)) {
1210 				f2fs_info(sbi, "Image doesn't support compression");
1211 				break;
1212 			}
1213 			set_opt(sbi, COMPRESS_CACHE);
1214 			break;
1215 #else
1216 		case Opt_compress_algorithm:
1217 		case Opt_compress_log_size:
1218 		case Opt_compress_extension:
1219 		case Opt_nocompress_extension:
1220 		case Opt_compress_chksum:
1221 		case Opt_compress_mode:
1222 		case Opt_compress_cache:
1223 			f2fs_info(sbi, "compression options not supported");
1224 			break;
1225 #endif
1226 		case Opt_atgc:
1227 			set_opt(sbi, ATGC);
1228 			break;
1229 		case Opt_gc_merge:
1230 			set_opt(sbi, GC_MERGE);
1231 			break;
1232 		case Opt_nogc_merge:
1233 			clear_opt(sbi, GC_MERGE);
1234 			break;
1235 		case Opt_discard_unit:
1236 			name = match_strdup(&args[0]);
1237 			if (!name)
1238 				return -ENOMEM;
1239 			if (!strcmp(name, "block")) {
1240 				F2FS_OPTION(sbi).discard_unit =
1241 						DISCARD_UNIT_BLOCK;
1242 			} else if (!strcmp(name, "segment")) {
1243 				F2FS_OPTION(sbi).discard_unit =
1244 						DISCARD_UNIT_SEGMENT;
1245 			} else if (!strcmp(name, "section")) {
1246 				F2FS_OPTION(sbi).discard_unit =
1247 						DISCARD_UNIT_SECTION;
1248 			} else {
1249 				kfree(name);
1250 				return -EINVAL;
1251 			}
1252 			kfree(name);
1253 			break;
1254 		case Opt_memory_mode:
1255 			name = match_strdup(&args[0]);
1256 			if (!name)
1257 				return -ENOMEM;
1258 			if (!strcmp(name, "normal")) {
1259 				F2FS_OPTION(sbi).memory_mode =
1260 						MEMORY_MODE_NORMAL;
1261 			} else if (!strcmp(name, "low")) {
1262 				F2FS_OPTION(sbi).memory_mode =
1263 						MEMORY_MODE_LOW;
1264 			} else {
1265 				kfree(name);
1266 				return -EINVAL;
1267 			}
1268 			kfree(name);
1269 			break;
1270 		case Opt_age_extent_cache:
1271 			set_opt(sbi, AGE_EXTENT_CACHE);
1272 			break;
1273 		case Opt_errors:
1274 			name = match_strdup(&args[0]);
1275 			if (!name)
1276 				return -ENOMEM;
1277 			if (!strcmp(name, "remount-ro")) {
1278 				F2FS_OPTION(sbi).errors =
1279 						MOUNT_ERRORS_READONLY;
1280 			} else if (!strcmp(name, "continue")) {
1281 				F2FS_OPTION(sbi).errors =
1282 						MOUNT_ERRORS_CONTINUE;
1283 			} else if (!strcmp(name, "panic")) {
1284 				F2FS_OPTION(sbi).errors =
1285 						MOUNT_ERRORS_PANIC;
1286 			} else {
1287 				kfree(name);
1288 				return -EINVAL;
1289 			}
1290 			kfree(name);
1291 			break;
1292 		default:
1293 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1294 				 p);
1295 			return -EINVAL;
1296 		}
1297 	}
1298 default_check:
1299 #ifdef CONFIG_QUOTA
1300 	if (f2fs_check_quota_options(sbi))
1301 		return -EINVAL;
1302 #else
1303 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1304 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1305 		return -EINVAL;
1306 	}
1307 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1308 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1309 		return -EINVAL;
1310 	}
1311 #endif
1312 #if !IS_ENABLED(CONFIG_UNICODE)
1313 	if (f2fs_sb_has_casefold(sbi)) {
1314 		f2fs_err(sbi,
1315 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1316 		return -EINVAL;
1317 	}
1318 #endif
1319 	/*
1320 	 * The BLKZONED feature indicates that the drive was formatted with
1321 	 * zone alignment optimization. This is optional for host-aware
1322 	 * devices, but mandatory for host-managed zoned block devices.
1323 	 */
1324 	if (f2fs_sb_has_blkzoned(sbi)) {
1325 #ifdef CONFIG_BLK_DEV_ZONED
1326 		if (F2FS_OPTION(sbi).discard_unit !=
1327 						DISCARD_UNIT_SECTION) {
1328 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1329 			F2FS_OPTION(sbi).discard_unit =
1330 					DISCARD_UNIT_SECTION;
1331 		}
1332 
1333 		if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) {
1334 			f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature");
1335 			return -EINVAL;
1336 		}
1337 #else
1338 		f2fs_err(sbi, "Zoned block device support is not enabled");
1339 		return -EINVAL;
1340 #endif
1341 	}
1342 
1343 #ifdef CONFIG_F2FS_FS_COMPRESSION
1344 	if (f2fs_test_compress_extension(sbi)) {
1345 		f2fs_err(sbi, "invalid compress or nocompress extension");
1346 		return -EINVAL;
1347 	}
1348 #endif
1349 
1350 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1351 		int min_size, max_size;
1352 
1353 		if (!f2fs_sb_has_extra_attr(sbi) ||
1354 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1355 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1356 			return -EINVAL;
1357 		}
1358 		if (!test_opt(sbi, INLINE_XATTR)) {
1359 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1360 			return -EINVAL;
1361 		}
1362 
1363 		min_size = MIN_INLINE_XATTR_SIZE;
1364 		max_size = MAX_INLINE_XATTR_SIZE;
1365 
1366 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1367 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1368 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1369 				 min_size, max_size);
1370 			return -EINVAL;
1371 		}
1372 	}
1373 
1374 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1375 		f2fs_err(sbi, "LFS is not compatible with checkpoint=disable");
1376 		return -EINVAL;
1377 	}
1378 
1379 	if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) {
1380 		f2fs_err(sbi, "LFS is not compatible with ATGC");
1381 		return -EINVAL;
1382 	}
1383 
1384 	if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) {
1385 		f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode");
1386 		return -EINVAL;
1387 	}
1388 
1389 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1390 		f2fs_err(sbi, "Allow to mount readonly mode only");
1391 		return -EROFS;
1392 	}
1393 	return 0;
1394 }
1395 
f2fs_alloc_inode(struct super_block * sb)1396 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1397 {
1398 	struct f2fs_inode_info *fi;
1399 
1400 	if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC))
1401 		return NULL;
1402 
1403 	fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1404 	if (!fi)
1405 		return NULL;
1406 
1407 	init_once((void *) fi);
1408 
1409 	/* Initialize f2fs-specific inode info */
1410 	atomic_set(&fi->dirty_pages, 0);
1411 	atomic_set(&fi->i_compr_blocks, 0);
1412 	init_f2fs_rwsem(&fi->i_sem);
1413 	spin_lock_init(&fi->i_size_lock);
1414 	INIT_LIST_HEAD(&fi->dirty_list);
1415 	INIT_LIST_HEAD(&fi->gdirty_list);
1416 	init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1417 	init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1418 	init_f2fs_rwsem(&fi->i_xattr_sem);
1419 
1420 	/* Will be used by directory only */
1421 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1422 
1423 	return &fi->vfs_inode;
1424 }
1425 
f2fs_drop_inode(struct inode * inode)1426 static int f2fs_drop_inode(struct inode *inode)
1427 {
1428 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1429 	int ret;
1430 
1431 	/*
1432 	 * during filesystem shutdown, if checkpoint is disabled,
1433 	 * drop useless meta/node dirty pages.
1434 	 */
1435 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1436 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1437 			inode->i_ino == F2FS_META_INO(sbi)) {
1438 			trace_f2fs_drop_inode(inode, 1);
1439 			return 1;
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * This is to avoid a deadlock condition like below.
1445 	 * writeback_single_inode(inode)
1446 	 *  - f2fs_write_data_page
1447 	 *    - f2fs_gc -> iput -> evict
1448 	 *       - inode_wait_for_writeback(inode)
1449 	 */
1450 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1451 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1452 			/* to avoid evict_inode call simultaneously */
1453 			atomic_inc(&inode->i_count);
1454 			spin_unlock(&inode->i_lock);
1455 
1456 			/* should remain fi->extent_tree for writepage */
1457 			f2fs_destroy_extent_node(inode);
1458 
1459 			sb_start_intwrite(inode->i_sb);
1460 			f2fs_i_size_write(inode, 0);
1461 
1462 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1463 					inode, NULL, 0, DATA);
1464 			truncate_inode_pages_final(inode->i_mapping);
1465 
1466 			if (F2FS_HAS_BLOCKS(inode))
1467 				f2fs_truncate(inode);
1468 
1469 			sb_end_intwrite(inode->i_sb);
1470 
1471 			spin_lock(&inode->i_lock);
1472 			atomic_dec(&inode->i_count);
1473 		}
1474 		trace_f2fs_drop_inode(inode, 0);
1475 		return 0;
1476 	}
1477 	ret = generic_drop_inode(inode);
1478 	if (!ret)
1479 		ret = fscrypt_drop_inode(inode);
1480 	trace_f2fs_drop_inode(inode, ret);
1481 	return ret;
1482 }
1483 
f2fs_inode_dirtied(struct inode * inode,bool sync)1484 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1485 {
1486 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1487 	int ret = 0;
1488 
1489 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1490 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1491 		ret = 1;
1492 	} else {
1493 		set_inode_flag(inode, FI_DIRTY_INODE);
1494 		stat_inc_dirty_inode(sbi, DIRTY_META);
1495 	}
1496 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1497 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1498 				&sbi->inode_list[DIRTY_META]);
1499 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1500 	}
1501 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1502 
1503 	/* if atomic write is not committed, set inode w/ atomic dirty */
1504 	if (!ret && f2fs_is_atomic_file(inode) &&
1505 			!is_inode_flag_set(inode, FI_ATOMIC_COMMITTED))
1506 		set_inode_flag(inode, FI_ATOMIC_DIRTIED);
1507 
1508 	return ret;
1509 }
1510 
f2fs_inode_synced(struct inode * inode)1511 void f2fs_inode_synced(struct inode *inode)
1512 {
1513 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1514 
1515 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1516 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1517 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1518 		return;
1519 	}
1520 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1521 		list_del_init(&F2FS_I(inode)->gdirty_list);
1522 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1523 	}
1524 	clear_inode_flag(inode, FI_DIRTY_INODE);
1525 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1526 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1527 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1528 }
1529 
1530 /*
1531  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1532  *
1533  * We should call set_dirty_inode to write the dirty inode through write_inode.
1534  */
f2fs_dirty_inode(struct inode * inode,int flags)1535 static void f2fs_dirty_inode(struct inode *inode, int flags)
1536 {
1537 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1538 
1539 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1540 			inode->i_ino == F2FS_META_INO(sbi))
1541 		return;
1542 
1543 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1544 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1545 
1546 	f2fs_inode_dirtied(inode, false);
1547 }
1548 
f2fs_free_inode(struct inode * inode)1549 static void f2fs_free_inode(struct inode *inode)
1550 {
1551 	fscrypt_free_inode(inode);
1552 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1553 }
1554 
destroy_percpu_info(struct f2fs_sb_info * sbi)1555 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1556 {
1557 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1558 	percpu_counter_destroy(&sbi->rf_node_block_count);
1559 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1560 }
1561 
destroy_device_list(struct f2fs_sb_info * sbi)1562 static void destroy_device_list(struct f2fs_sb_info *sbi)
1563 {
1564 	int i;
1565 
1566 	for (i = 0; i < sbi->s_ndevs; i++) {
1567 		if (i > 0)
1568 			blkdev_put(FDEV(i).bdev, sbi->sb);
1569 #ifdef CONFIG_BLK_DEV_ZONED
1570 		kvfree(FDEV(i).blkz_seq);
1571 #endif
1572 	}
1573 	kvfree(sbi->devs);
1574 }
1575 
f2fs_put_super(struct super_block * sb)1576 static void f2fs_put_super(struct super_block *sb)
1577 {
1578 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1579 	int i;
1580 	int err = 0;
1581 	bool done;
1582 
1583 	/* unregister procfs/sysfs entries in advance to avoid race case */
1584 	f2fs_unregister_sysfs(sbi);
1585 
1586 	f2fs_quota_off_umount(sb);
1587 
1588 	/* prevent remaining shrinker jobs */
1589 	mutex_lock(&sbi->umount_mutex);
1590 
1591 	/*
1592 	 * flush all issued checkpoints and stop checkpoint issue thread.
1593 	 * after then, all checkpoints should be done by each process context.
1594 	 */
1595 	f2fs_stop_ckpt_thread(sbi);
1596 
1597 	/*
1598 	 * We don't need to do checkpoint when superblock is clean.
1599 	 * But, the previous checkpoint was not done by umount, it needs to do
1600 	 * clean checkpoint again.
1601 	 */
1602 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1603 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1604 		struct cp_control cpc = {
1605 			.reason = CP_UMOUNT,
1606 		};
1607 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1608 		err = f2fs_write_checkpoint(sbi, &cpc);
1609 	}
1610 
1611 	/* be sure to wait for any on-going discard commands */
1612 	done = f2fs_issue_discard_timeout(sbi);
1613 	if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) {
1614 		struct cp_control cpc = {
1615 			.reason = CP_UMOUNT | CP_TRIMMED,
1616 		};
1617 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1618 		err = f2fs_write_checkpoint(sbi, &cpc);
1619 	}
1620 
1621 	/*
1622 	 * normally superblock is clean, so we need to release this.
1623 	 * In addition, EIO will skip do checkpoint, we need this as well.
1624 	 */
1625 	f2fs_release_ino_entry(sbi, true);
1626 
1627 	f2fs_leave_shrinker(sbi);
1628 	mutex_unlock(&sbi->umount_mutex);
1629 
1630 	/* our cp_error case, we can wait for any writeback page */
1631 	f2fs_flush_merged_writes(sbi);
1632 
1633 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1634 
1635 	if (err || f2fs_cp_error(sbi)) {
1636 		truncate_inode_pages_final(NODE_MAPPING(sbi));
1637 		truncate_inode_pages_final(META_MAPPING(sbi));
1638 	}
1639 
1640 	for (i = 0; i < NR_COUNT_TYPE; i++) {
1641 		if (!get_pages(sbi, i))
1642 			continue;
1643 		f2fs_err(sbi, "detect filesystem reference count leak during "
1644 			"umount, type: %d, count: %lld", i, get_pages(sbi, i));
1645 		f2fs_bug_on(sbi, 1);
1646 	}
1647 
1648 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1649 
1650 	f2fs_destroy_compress_inode(sbi);
1651 
1652 	iput(sbi->node_inode);
1653 	sbi->node_inode = NULL;
1654 
1655 	iput(sbi->meta_inode);
1656 	sbi->meta_inode = NULL;
1657 
1658 	/*
1659 	 * iput() can update stat information, if f2fs_write_checkpoint()
1660 	 * above failed with error.
1661 	 */
1662 	f2fs_destroy_stats(sbi);
1663 
1664 	/* destroy f2fs internal modules */
1665 	f2fs_destroy_node_manager(sbi);
1666 	f2fs_destroy_segment_manager(sbi);
1667 
1668 	/* flush s_error_work before sbi destroy */
1669 	flush_work(&sbi->s_error_work);
1670 
1671 	f2fs_destroy_post_read_wq(sbi);
1672 
1673 	kvfree(sbi->ckpt);
1674 
1675 	sb->s_fs_info = NULL;
1676 	if (sbi->s_chksum_driver)
1677 		crypto_free_shash(sbi->s_chksum_driver);
1678 	kfree(sbi->raw_super);
1679 
1680 	destroy_device_list(sbi);
1681 	f2fs_destroy_page_array_cache(sbi);
1682 	f2fs_destroy_xattr_caches(sbi);
1683 #ifdef CONFIG_QUOTA
1684 	for (i = 0; i < MAXQUOTAS; i++)
1685 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1686 #endif
1687 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1688 	destroy_percpu_info(sbi);
1689 	f2fs_destroy_iostat(sbi);
1690 	for (i = 0; i < NR_PAGE_TYPE; i++)
1691 		kvfree(sbi->write_io[i]);
1692 #if IS_ENABLED(CONFIG_UNICODE)
1693 	utf8_unload(sb->s_encoding);
1694 #endif
1695 	kfree(sbi);
1696 }
1697 
f2fs_sync_fs(struct super_block * sb,int sync)1698 int f2fs_sync_fs(struct super_block *sb, int sync)
1699 {
1700 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1701 	int err = 0;
1702 
1703 	if (unlikely(f2fs_cp_error(sbi)))
1704 		return 0;
1705 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1706 		return 0;
1707 
1708 	trace_f2fs_sync_fs(sb, sync);
1709 
1710 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1711 		return -EAGAIN;
1712 
1713 	if (sync) {
1714 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1715 		err = f2fs_issue_checkpoint(sbi);
1716 	}
1717 
1718 	return err;
1719 }
1720 
f2fs_freeze(struct super_block * sb)1721 static int f2fs_freeze(struct super_block *sb)
1722 {
1723 	if (f2fs_readonly(sb))
1724 		return 0;
1725 
1726 	/* IO error happened before */
1727 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1728 		return -EIO;
1729 
1730 	/* must be clean, since sync_filesystem() was already called */
1731 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1732 		return -EINVAL;
1733 
1734 	/* Let's flush checkpoints and stop the thread. */
1735 	f2fs_flush_ckpt_thread(F2FS_SB(sb));
1736 
1737 	/* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
1738 	set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1739 	return 0;
1740 }
1741 
f2fs_unfreeze(struct super_block * sb)1742 static int f2fs_unfreeze(struct super_block *sb)
1743 {
1744 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1745 
1746 	/*
1747 	 * It will update discard_max_bytes of mounted lvm device to zero
1748 	 * after creating snapshot on this lvm device, let's drop all
1749 	 * remained discards.
1750 	 * We don't need to disable real-time discard because discard_max_bytes
1751 	 * will recover after removal of snapshot.
1752 	 */
1753 	if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi))
1754 		f2fs_issue_discard_timeout(sbi);
1755 
1756 	clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1757 	return 0;
1758 }
1759 
1760 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1761 static int f2fs_statfs_project(struct super_block *sb,
1762 				kprojid_t projid, struct kstatfs *buf)
1763 {
1764 	struct kqid qid;
1765 	struct dquot *dquot;
1766 	u64 limit;
1767 	u64 curblock;
1768 
1769 	qid = make_kqid_projid(projid);
1770 	dquot = dqget(sb, qid);
1771 	if (IS_ERR(dquot))
1772 		return PTR_ERR(dquot);
1773 	spin_lock(&dquot->dq_dqb_lock);
1774 
1775 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1776 					dquot->dq_dqb.dqb_bhardlimit);
1777 	if (limit)
1778 		limit >>= sb->s_blocksize_bits;
1779 
1780 	if (limit && buf->f_blocks > limit) {
1781 		curblock = (dquot->dq_dqb.dqb_curspace +
1782 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1783 		buf->f_blocks = limit;
1784 		buf->f_bfree = buf->f_bavail =
1785 			(buf->f_blocks > curblock) ?
1786 			 (buf->f_blocks - curblock) : 0;
1787 	}
1788 
1789 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1790 					dquot->dq_dqb.dqb_ihardlimit);
1791 
1792 	if (limit && buf->f_files > limit) {
1793 		buf->f_files = limit;
1794 		buf->f_ffree =
1795 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1796 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1797 	}
1798 
1799 	spin_unlock(&dquot->dq_dqb_lock);
1800 	dqput(dquot);
1801 	return 0;
1802 }
1803 #endif
1804 
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1805 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1806 {
1807 	struct super_block *sb = dentry->d_sb;
1808 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1809 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1810 	block_t total_count, user_block_count, start_count;
1811 	u64 avail_node_count;
1812 	unsigned int total_valid_node_count;
1813 
1814 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1815 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1816 	buf->f_type = F2FS_SUPER_MAGIC;
1817 	buf->f_bsize = sbi->blocksize;
1818 
1819 	buf->f_blocks = total_count - start_count;
1820 
1821 	spin_lock(&sbi->stat_lock);
1822 
1823 	user_block_count = sbi->user_block_count;
1824 	total_valid_node_count = valid_node_count(sbi);
1825 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1826 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1827 						sbi->current_reserved_blocks;
1828 
1829 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1830 		buf->f_bfree = 0;
1831 	else
1832 		buf->f_bfree -= sbi->unusable_block_count;
1833 	spin_unlock(&sbi->stat_lock);
1834 
1835 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1836 		buf->f_bavail = buf->f_bfree -
1837 				F2FS_OPTION(sbi).root_reserved_blocks;
1838 	else
1839 		buf->f_bavail = 0;
1840 
1841 	if (avail_node_count > user_block_count) {
1842 		buf->f_files = user_block_count;
1843 		buf->f_ffree = buf->f_bavail;
1844 	} else {
1845 		buf->f_files = avail_node_count;
1846 		buf->f_ffree = min(avail_node_count - total_valid_node_count,
1847 					buf->f_bavail);
1848 	}
1849 
1850 	buf->f_namelen = F2FS_NAME_LEN;
1851 	buf->f_fsid    = u64_to_fsid(id);
1852 
1853 #ifdef CONFIG_QUOTA
1854 	if (is_inode_flag_set(d_inode(dentry), FI_PROJ_INHERIT) &&
1855 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1856 		f2fs_statfs_project(sb, F2FS_I(d_inode(dentry))->i_projid, buf);
1857 	}
1858 #endif
1859 	return 0;
1860 }
1861 
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1862 static inline void f2fs_show_quota_options(struct seq_file *seq,
1863 					   struct super_block *sb)
1864 {
1865 #ifdef CONFIG_QUOTA
1866 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1867 
1868 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1869 		char *fmtname = "";
1870 
1871 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1872 		case QFMT_VFS_OLD:
1873 			fmtname = "vfsold";
1874 			break;
1875 		case QFMT_VFS_V0:
1876 			fmtname = "vfsv0";
1877 			break;
1878 		case QFMT_VFS_V1:
1879 			fmtname = "vfsv1";
1880 			break;
1881 		}
1882 		seq_printf(seq, ",jqfmt=%s", fmtname);
1883 	}
1884 
1885 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1886 		seq_show_option(seq, "usrjquota",
1887 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1888 
1889 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1890 		seq_show_option(seq, "grpjquota",
1891 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1892 
1893 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1894 		seq_show_option(seq, "prjjquota",
1895 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1896 #endif
1897 }
1898 
1899 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_show_compress_options(struct seq_file * seq,struct super_block * sb)1900 static inline void f2fs_show_compress_options(struct seq_file *seq,
1901 							struct super_block *sb)
1902 {
1903 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1904 	char *algtype = "";
1905 	int i;
1906 
1907 	if (!f2fs_sb_has_compression(sbi))
1908 		return;
1909 
1910 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1911 	case COMPRESS_LZO:
1912 		algtype = "lzo";
1913 		break;
1914 	case COMPRESS_LZ4:
1915 		algtype = "lz4";
1916 		break;
1917 	case COMPRESS_ZSTD:
1918 		algtype = "zstd";
1919 		break;
1920 	case COMPRESS_LZORLE:
1921 		algtype = "lzo-rle";
1922 		break;
1923 	}
1924 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1925 
1926 	if (F2FS_OPTION(sbi).compress_level)
1927 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1928 
1929 	seq_printf(seq, ",compress_log_size=%u",
1930 			F2FS_OPTION(sbi).compress_log_size);
1931 
1932 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1933 		seq_printf(seq, ",compress_extension=%s",
1934 			F2FS_OPTION(sbi).extensions[i]);
1935 	}
1936 
1937 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1938 		seq_printf(seq, ",nocompress_extension=%s",
1939 			F2FS_OPTION(sbi).noextensions[i]);
1940 	}
1941 
1942 	if (F2FS_OPTION(sbi).compress_chksum)
1943 		seq_puts(seq, ",compress_chksum");
1944 
1945 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1946 		seq_printf(seq, ",compress_mode=%s", "fs");
1947 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1948 		seq_printf(seq, ",compress_mode=%s", "user");
1949 
1950 	if (test_opt(sbi, COMPRESS_CACHE))
1951 		seq_puts(seq, ",compress_cache");
1952 }
1953 #endif
1954 
f2fs_show_options(struct seq_file * seq,struct dentry * root)1955 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1956 {
1957 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1958 
1959 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1960 		seq_printf(seq, ",background_gc=%s", "sync");
1961 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1962 		seq_printf(seq, ",background_gc=%s", "on");
1963 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1964 		seq_printf(seq, ",background_gc=%s", "off");
1965 
1966 	if (test_opt(sbi, GC_MERGE))
1967 		seq_puts(seq, ",gc_merge");
1968 	else
1969 		seq_puts(seq, ",nogc_merge");
1970 
1971 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1972 		seq_puts(seq, ",disable_roll_forward");
1973 	if (test_opt(sbi, NORECOVERY))
1974 		seq_puts(seq, ",norecovery");
1975 	if (test_opt(sbi, DISCARD)) {
1976 		seq_puts(seq, ",discard");
1977 		if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
1978 			seq_printf(seq, ",discard_unit=%s", "block");
1979 		else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
1980 			seq_printf(seq, ",discard_unit=%s", "segment");
1981 		else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
1982 			seq_printf(seq, ",discard_unit=%s", "section");
1983 	} else {
1984 		seq_puts(seq, ",nodiscard");
1985 	}
1986 #ifdef CONFIG_F2FS_FS_XATTR
1987 	if (test_opt(sbi, XATTR_USER))
1988 		seq_puts(seq, ",user_xattr");
1989 	else
1990 		seq_puts(seq, ",nouser_xattr");
1991 	if (test_opt(sbi, INLINE_XATTR))
1992 		seq_puts(seq, ",inline_xattr");
1993 	else
1994 		seq_puts(seq, ",noinline_xattr");
1995 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1996 		seq_printf(seq, ",inline_xattr_size=%u",
1997 					F2FS_OPTION(sbi).inline_xattr_size);
1998 #endif
1999 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2000 	if (test_opt(sbi, POSIX_ACL))
2001 		seq_puts(seq, ",acl");
2002 	else
2003 		seq_puts(seq, ",noacl");
2004 #endif
2005 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
2006 		seq_puts(seq, ",disable_ext_identify");
2007 	if (test_opt(sbi, INLINE_DATA))
2008 		seq_puts(seq, ",inline_data");
2009 	else
2010 		seq_puts(seq, ",noinline_data");
2011 	if (test_opt(sbi, INLINE_DENTRY))
2012 		seq_puts(seq, ",inline_dentry");
2013 	else
2014 		seq_puts(seq, ",noinline_dentry");
2015 	if (test_opt(sbi, FLUSH_MERGE))
2016 		seq_puts(seq, ",flush_merge");
2017 	else
2018 		seq_puts(seq, ",noflush_merge");
2019 	if (test_opt(sbi, NOBARRIER))
2020 		seq_puts(seq, ",nobarrier");
2021 	else
2022 		seq_puts(seq, ",barrier");
2023 	if (test_opt(sbi, FASTBOOT))
2024 		seq_puts(seq, ",fastboot");
2025 	if (test_opt(sbi, READ_EXTENT_CACHE))
2026 		seq_puts(seq, ",extent_cache");
2027 	else
2028 		seq_puts(seq, ",noextent_cache");
2029 	if (test_opt(sbi, AGE_EXTENT_CACHE))
2030 		seq_puts(seq, ",age_extent_cache");
2031 	if (test_opt(sbi, DATA_FLUSH))
2032 		seq_puts(seq, ",data_flush");
2033 
2034 	seq_puts(seq, ",mode=");
2035 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
2036 		seq_puts(seq, "adaptive");
2037 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
2038 		seq_puts(seq, "lfs");
2039 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
2040 		seq_puts(seq, "fragment:segment");
2041 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2042 		seq_puts(seq, "fragment:block");
2043 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
2044 	if (test_opt(sbi, RESERVE_ROOT))
2045 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
2046 				F2FS_OPTION(sbi).root_reserved_blocks,
2047 				from_kuid_munged(&init_user_ns,
2048 					F2FS_OPTION(sbi).s_resuid),
2049 				from_kgid_munged(&init_user_ns,
2050 					F2FS_OPTION(sbi).s_resgid));
2051 #ifdef CONFIG_F2FS_FAULT_INJECTION
2052 	if (test_opt(sbi, FAULT_INJECTION)) {
2053 		seq_printf(seq, ",fault_injection=%u",
2054 				F2FS_OPTION(sbi).fault_info.inject_rate);
2055 		seq_printf(seq, ",fault_type=%u",
2056 				F2FS_OPTION(sbi).fault_info.inject_type);
2057 	}
2058 #endif
2059 #ifdef CONFIG_QUOTA
2060 	if (test_opt(sbi, QUOTA))
2061 		seq_puts(seq, ",quota");
2062 	if (test_opt(sbi, USRQUOTA))
2063 		seq_puts(seq, ",usrquota");
2064 	if (test_opt(sbi, GRPQUOTA))
2065 		seq_puts(seq, ",grpquota");
2066 	if (test_opt(sbi, PRJQUOTA))
2067 		seq_puts(seq, ",prjquota");
2068 #endif
2069 	f2fs_show_quota_options(seq, sbi->sb);
2070 
2071 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
2072 
2073 	if (sbi->sb->s_flags & SB_INLINECRYPT)
2074 		seq_puts(seq, ",inlinecrypt");
2075 
2076 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
2077 		seq_printf(seq, ",alloc_mode=%s", "default");
2078 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2079 		seq_printf(seq, ",alloc_mode=%s", "reuse");
2080 
2081 	if (test_opt(sbi, DISABLE_CHECKPOINT))
2082 		seq_printf(seq, ",checkpoint=disable:%u",
2083 				F2FS_OPTION(sbi).unusable_cap);
2084 	if (test_opt(sbi, MERGE_CHECKPOINT))
2085 		seq_puts(seq, ",checkpoint_merge");
2086 	else
2087 		seq_puts(seq, ",nocheckpoint_merge");
2088 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2089 		seq_printf(seq, ",fsync_mode=%s", "posix");
2090 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2091 		seq_printf(seq, ",fsync_mode=%s", "strict");
2092 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2093 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2094 
2095 #ifdef CONFIG_F2FS_FS_COMPRESSION
2096 	f2fs_show_compress_options(seq, sbi->sb);
2097 #endif
2098 
2099 	if (test_opt(sbi, ATGC))
2100 		seq_puts(seq, ",atgc");
2101 
2102 	if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
2103 		seq_printf(seq, ",memory=%s", "normal");
2104 	else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
2105 		seq_printf(seq, ",memory=%s", "low");
2106 
2107 	if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2108 		seq_printf(seq, ",errors=%s", "remount-ro");
2109 	else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE)
2110 		seq_printf(seq, ",errors=%s", "continue");
2111 	else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC)
2112 		seq_printf(seq, ",errors=%s", "panic");
2113 
2114 	return 0;
2115 }
2116 
default_options(struct f2fs_sb_info * sbi,bool remount)2117 static void default_options(struct f2fs_sb_info *sbi, bool remount)
2118 {
2119 	/* init some FS parameters */
2120 	if (!remount) {
2121 		set_opt(sbi, READ_EXTENT_CACHE);
2122 		clear_opt(sbi, DISABLE_CHECKPOINT);
2123 
2124 		if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2125 			set_opt(sbi, DISCARD);
2126 
2127 		if (f2fs_sb_has_blkzoned(sbi))
2128 			F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2129 		else
2130 			F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2131 	}
2132 
2133 	if (f2fs_sb_has_readonly(sbi))
2134 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2135 	else
2136 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2137 
2138 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2139 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <=
2140 							SMALL_VOLUME_SEGMENTS)
2141 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2142 	else
2143 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2144 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2145 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2146 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2147 	if (f2fs_sb_has_compression(sbi)) {
2148 		F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2149 		F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2150 		F2FS_OPTION(sbi).compress_ext_cnt = 0;
2151 		F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2152 	}
2153 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2154 	F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
2155 	F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE;
2156 
2157 	set_opt(sbi, INLINE_XATTR);
2158 	set_opt(sbi, INLINE_DATA);
2159 	set_opt(sbi, INLINE_DENTRY);
2160 	set_opt(sbi, MERGE_CHECKPOINT);
2161 	F2FS_OPTION(sbi).unusable_cap = 0;
2162 	sbi->sb->s_flags |= SB_LAZYTIME;
2163 	if (!f2fs_is_readonly(sbi))
2164 		set_opt(sbi, FLUSH_MERGE);
2165 	if (f2fs_sb_has_blkzoned(sbi))
2166 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2167 	else
2168 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2169 
2170 #ifdef CONFIG_F2FS_FS_XATTR
2171 	set_opt(sbi, XATTR_USER);
2172 #endif
2173 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2174 	set_opt(sbi, POSIX_ACL);
2175 #endif
2176 
2177 	f2fs_build_fault_attr(sbi, 0, 0);
2178 }
2179 
2180 #ifdef CONFIG_QUOTA
2181 static int f2fs_enable_quotas(struct super_block *sb);
2182 #endif
2183 
f2fs_disable_checkpoint(struct f2fs_sb_info * sbi)2184 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2185 {
2186 	unsigned int s_flags = sbi->sb->s_flags;
2187 	struct cp_control cpc;
2188 	unsigned int gc_mode = sbi->gc_mode;
2189 	int err = 0;
2190 	int ret;
2191 	block_t unusable;
2192 
2193 	if (s_flags & SB_RDONLY) {
2194 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2195 		return -EINVAL;
2196 	}
2197 	sbi->sb->s_flags |= SB_ACTIVE;
2198 
2199 	/* check if we need more GC first */
2200 	unusable = f2fs_get_unusable_blocks(sbi);
2201 	if (!f2fs_disable_cp_again(sbi, unusable))
2202 		goto skip_gc;
2203 
2204 	f2fs_update_time(sbi, DISABLE_TIME);
2205 
2206 	sbi->gc_mode = GC_URGENT_HIGH;
2207 
2208 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2209 		struct f2fs_gc_control gc_control = {
2210 			.victim_segno = NULL_SEGNO,
2211 			.init_gc_type = FG_GC,
2212 			.should_migrate_blocks = false,
2213 			.err_gc_skipped = true,
2214 			.nr_free_secs = 1 };
2215 
2216 		f2fs_down_write(&sbi->gc_lock);
2217 		stat_inc_gc_call_count(sbi, FOREGROUND);
2218 		err = f2fs_gc(sbi, &gc_control);
2219 		if (err == -ENODATA) {
2220 			err = 0;
2221 			break;
2222 		}
2223 		if (err && err != -EAGAIN)
2224 			break;
2225 	}
2226 
2227 	ret = sync_filesystem(sbi->sb);
2228 	if (ret || err) {
2229 		err = ret ? ret : err;
2230 		goto restore_flag;
2231 	}
2232 
2233 	unusable = f2fs_get_unusable_blocks(sbi);
2234 	if (f2fs_disable_cp_again(sbi, unusable)) {
2235 		err = -EAGAIN;
2236 		goto restore_flag;
2237 	}
2238 
2239 skip_gc:
2240 	f2fs_down_write(&sbi->gc_lock);
2241 	cpc.reason = CP_PAUSE;
2242 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2243 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
2244 	err = f2fs_write_checkpoint(sbi, &cpc);
2245 	if (err)
2246 		goto out_unlock;
2247 
2248 	spin_lock(&sbi->stat_lock);
2249 	sbi->unusable_block_count = unusable;
2250 	spin_unlock(&sbi->stat_lock);
2251 
2252 out_unlock:
2253 	f2fs_up_write(&sbi->gc_lock);
2254 restore_flag:
2255 	sbi->gc_mode = gc_mode;
2256 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2257 	return err;
2258 }
2259 
f2fs_enable_checkpoint(struct f2fs_sb_info * sbi)2260 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2261 {
2262 	int retry = DEFAULT_RETRY_IO_COUNT;
2263 
2264 	/* we should flush all the data to keep data consistency */
2265 	do {
2266 		sync_inodes_sb(sbi->sb);
2267 		f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2268 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2269 
2270 	if (unlikely(retry < 0))
2271 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2272 
2273 	f2fs_down_write(&sbi->gc_lock);
2274 	f2fs_dirty_to_prefree(sbi);
2275 
2276 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2277 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2278 	f2fs_up_write(&sbi->gc_lock);
2279 
2280 	f2fs_sync_fs(sbi->sb, 1);
2281 
2282 	/* Let's ensure there's no pending checkpoint anymore */
2283 	f2fs_flush_ckpt_thread(sbi);
2284 }
2285 
f2fs_remount(struct super_block * sb,int * flags,char * data)2286 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2287 {
2288 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2289 	struct f2fs_mount_info org_mount_opt;
2290 	unsigned long old_sb_flags;
2291 	int err;
2292 	bool need_restart_gc = false, need_stop_gc = false;
2293 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2294 	bool need_restart_flush = false, need_stop_flush = false;
2295 	bool need_restart_discard = false, need_stop_discard = false;
2296 	bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
2297 	bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
2298 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2299 	bool no_atgc = !test_opt(sbi, ATGC);
2300 	bool no_discard = !test_opt(sbi, DISCARD);
2301 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2302 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2303 #ifdef CONFIG_QUOTA
2304 	int i, j;
2305 #endif
2306 
2307 	/*
2308 	 * Save the old mount options in case we
2309 	 * need to restore them.
2310 	 */
2311 	org_mount_opt = sbi->mount_opt;
2312 	old_sb_flags = sb->s_flags;
2313 
2314 #ifdef CONFIG_QUOTA
2315 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2316 	for (i = 0; i < MAXQUOTAS; i++) {
2317 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2318 			org_mount_opt.s_qf_names[i] =
2319 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2320 				GFP_KERNEL);
2321 			if (!org_mount_opt.s_qf_names[i]) {
2322 				for (j = 0; j < i; j++)
2323 					kfree(org_mount_opt.s_qf_names[j]);
2324 				return -ENOMEM;
2325 			}
2326 		} else {
2327 			org_mount_opt.s_qf_names[i] = NULL;
2328 		}
2329 	}
2330 #endif
2331 
2332 	/* recover superblocks we couldn't write due to previous RO mount */
2333 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2334 		err = f2fs_commit_super(sbi, false);
2335 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2336 			  err);
2337 		if (!err)
2338 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2339 	}
2340 
2341 	default_options(sbi, true);
2342 
2343 	/* parse mount options */
2344 	err = parse_options(sb, data, true);
2345 	if (err)
2346 		goto restore_opts;
2347 
2348 	/* flush outstanding errors before changing fs state */
2349 	flush_work(&sbi->s_error_work);
2350 
2351 	/*
2352 	 * Previous and new state of filesystem is RO,
2353 	 * so skip checking GC and FLUSH_MERGE conditions.
2354 	 */
2355 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2356 		goto skip;
2357 
2358 	if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) {
2359 		err = -EROFS;
2360 		goto restore_opts;
2361 	}
2362 
2363 #ifdef CONFIG_QUOTA
2364 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2365 		err = dquot_suspend(sb, -1);
2366 		if (err < 0)
2367 			goto restore_opts;
2368 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2369 		/* dquot_resume needs RW */
2370 		sb->s_flags &= ~SB_RDONLY;
2371 		if (sb_any_quota_suspended(sb)) {
2372 			dquot_resume(sb, -1);
2373 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2374 			err = f2fs_enable_quotas(sb);
2375 			if (err)
2376 				goto restore_opts;
2377 		}
2378 	}
2379 #endif
2380 	if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) {
2381 		err = -EINVAL;
2382 		f2fs_warn(sbi, "LFS is not compatible with IPU");
2383 		goto restore_opts;
2384 	}
2385 
2386 	/* disallow enable atgc dynamically */
2387 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2388 		err = -EINVAL;
2389 		f2fs_warn(sbi, "switch atgc option is not allowed");
2390 		goto restore_opts;
2391 	}
2392 
2393 	/* disallow enable/disable extent_cache dynamically */
2394 	if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
2395 		err = -EINVAL;
2396 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2397 		goto restore_opts;
2398 	}
2399 	/* disallow enable/disable age extent_cache dynamically */
2400 	if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
2401 		err = -EINVAL;
2402 		f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
2403 		goto restore_opts;
2404 	}
2405 
2406 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2407 		err = -EINVAL;
2408 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2409 		goto restore_opts;
2410 	}
2411 
2412 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2413 		err = -EINVAL;
2414 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2415 		goto restore_opts;
2416 	}
2417 
2418 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2419 		err = -EINVAL;
2420 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2421 		goto restore_opts;
2422 	}
2423 
2424 	/*
2425 	 * We stop the GC thread if FS is mounted as RO
2426 	 * or if background_gc = off is passed in mount
2427 	 * option. Also sync the filesystem.
2428 	 */
2429 	if ((*flags & SB_RDONLY) ||
2430 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2431 			!test_opt(sbi, GC_MERGE))) {
2432 		if (sbi->gc_thread) {
2433 			f2fs_stop_gc_thread(sbi);
2434 			need_restart_gc = true;
2435 		}
2436 	} else if (!sbi->gc_thread) {
2437 		err = f2fs_start_gc_thread(sbi);
2438 		if (err)
2439 			goto restore_opts;
2440 		need_stop_gc = true;
2441 	}
2442 
2443 	if (*flags & SB_RDONLY) {
2444 		sync_inodes_sb(sb);
2445 
2446 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2447 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2448 		f2fs_sync_fs(sb, 1);
2449 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2450 	}
2451 
2452 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2453 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2454 		f2fs_stop_ckpt_thread(sbi);
2455 		need_restart_ckpt = true;
2456 	} else {
2457 		/* Flush if the prevous checkpoint, if exists. */
2458 		f2fs_flush_ckpt_thread(sbi);
2459 
2460 		err = f2fs_start_ckpt_thread(sbi);
2461 		if (err) {
2462 			f2fs_err(sbi,
2463 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2464 			    err);
2465 			goto restore_gc;
2466 		}
2467 		need_stop_ckpt = true;
2468 	}
2469 
2470 	/*
2471 	 * We stop issue flush thread if FS is mounted as RO
2472 	 * or if flush_merge is not passed in mount option.
2473 	 */
2474 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2475 		clear_opt(sbi, FLUSH_MERGE);
2476 		f2fs_destroy_flush_cmd_control(sbi, false);
2477 		need_restart_flush = true;
2478 	} else {
2479 		err = f2fs_create_flush_cmd_control(sbi);
2480 		if (err)
2481 			goto restore_ckpt;
2482 		need_stop_flush = true;
2483 	}
2484 
2485 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2486 		if (test_opt(sbi, DISCARD)) {
2487 			err = f2fs_start_discard_thread(sbi);
2488 			if (err)
2489 				goto restore_flush;
2490 			need_stop_discard = true;
2491 		} else {
2492 			f2fs_stop_discard_thread(sbi);
2493 			f2fs_issue_discard_timeout(sbi);
2494 			need_restart_discard = true;
2495 		}
2496 	}
2497 
2498 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2499 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2500 			err = f2fs_disable_checkpoint(sbi);
2501 			if (err)
2502 				goto restore_discard;
2503 		} else {
2504 			f2fs_enable_checkpoint(sbi);
2505 		}
2506 	}
2507 
2508 skip:
2509 #ifdef CONFIG_QUOTA
2510 	/* Release old quota file names */
2511 	for (i = 0; i < MAXQUOTAS; i++)
2512 		kfree(org_mount_opt.s_qf_names[i]);
2513 #endif
2514 	/* Update the POSIXACL Flag */
2515 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2516 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2517 
2518 	limit_reserve_root(sbi);
2519 	adjust_unusable_cap_perc(sbi);
2520 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2521 	return 0;
2522 restore_discard:
2523 	if (need_restart_discard) {
2524 		if (f2fs_start_discard_thread(sbi))
2525 			f2fs_warn(sbi, "discard has been stopped");
2526 	} else if (need_stop_discard) {
2527 		f2fs_stop_discard_thread(sbi);
2528 	}
2529 restore_flush:
2530 	if (need_restart_flush) {
2531 		if (f2fs_create_flush_cmd_control(sbi))
2532 			f2fs_warn(sbi, "background flush thread has stopped");
2533 	} else if (need_stop_flush) {
2534 		clear_opt(sbi, FLUSH_MERGE);
2535 		f2fs_destroy_flush_cmd_control(sbi, false);
2536 	}
2537 restore_ckpt:
2538 	if (need_restart_ckpt) {
2539 		if (f2fs_start_ckpt_thread(sbi))
2540 			f2fs_warn(sbi, "background ckpt thread has stopped");
2541 	} else if (need_stop_ckpt) {
2542 		f2fs_stop_ckpt_thread(sbi);
2543 	}
2544 restore_gc:
2545 	if (need_restart_gc) {
2546 		if (f2fs_start_gc_thread(sbi))
2547 			f2fs_warn(sbi, "background gc thread has stopped");
2548 	} else if (need_stop_gc) {
2549 		f2fs_stop_gc_thread(sbi);
2550 	}
2551 restore_opts:
2552 #ifdef CONFIG_QUOTA
2553 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2554 	for (i = 0; i < MAXQUOTAS; i++) {
2555 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2556 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2557 	}
2558 #endif
2559 	sbi->mount_opt = org_mount_opt;
2560 	sb->s_flags = old_sb_flags;
2561 	return err;
2562 }
2563 
f2fs_shutdown(struct super_block * sb)2564 static void f2fs_shutdown(struct super_block *sb)
2565 {
2566 	f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false);
2567 }
2568 
2569 #ifdef CONFIG_QUOTA
f2fs_need_recovery(struct f2fs_sb_info * sbi)2570 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi)
2571 {
2572 	/* need to recovery orphan */
2573 	if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
2574 		return true;
2575 	/* need to recovery data */
2576 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
2577 		return false;
2578 	if (test_opt(sbi, NORECOVERY))
2579 		return false;
2580 	return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG);
2581 }
2582 
f2fs_recover_quota_begin(struct f2fs_sb_info * sbi)2583 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi)
2584 {
2585 	bool readonly = f2fs_readonly(sbi->sb);
2586 
2587 	if (!f2fs_need_recovery(sbi))
2588 		return false;
2589 
2590 	/* it doesn't need to check f2fs_sb_has_readonly() */
2591 	if (f2fs_hw_is_readonly(sbi))
2592 		return false;
2593 
2594 	if (readonly) {
2595 		sbi->sb->s_flags &= ~SB_RDONLY;
2596 		set_sbi_flag(sbi, SBI_IS_WRITABLE);
2597 	}
2598 
2599 	/*
2600 	 * Turn on quotas which were not enabled for read-only mounts if
2601 	 * filesystem has quota feature, so that they are updated correctly.
2602 	 */
2603 	return f2fs_enable_quota_files(sbi, readonly);
2604 }
2605 
f2fs_recover_quota_end(struct f2fs_sb_info * sbi,bool quota_enabled)2606 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi,
2607 						bool quota_enabled)
2608 {
2609 	if (quota_enabled)
2610 		f2fs_quota_off_umount(sbi->sb);
2611 
2612 	if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) {
2613 		clear_sbi_flag(sbi, SBI_IS_WRITABLE);
2614 		sbi->sb->s_flags |= SB_RDONLY;
2615 	}
2616 }
2617 
2618 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)2619 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2620 			       size_t len, loff_t off)
2621 {
2622 	struct inode *inode = sb_dqopt(sb)->files[type];
2623 	struct address_space *mapping = inode->i_mapping;
2624 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2625 	int offset = off & (sb->s_blocksize - 1);
2626 	int tocopy;
2627 	size_t toread;
2628 	loff_t i_size = i_size_read(inode);
2629 	struct page *page;
2630 
2631 	if (off > i_size)
2632 		return 0;
2633 
2634 	if (off + len > i_size)
2635 		len = i_size - off;
2636 	toread = len;
2637 	while (toread > 0) {
2638 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2639 repeat:
2640 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2641 		if (IS_ERR(page)) {
2642 			if (PTR_ERR(page) == -ENOMEM) {
2643 				memalloc_retry_wait(GFP_NOFS);
2644 				goto repeat;
2645 			}
2646 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2647 			return PTR_ERR(page);
2648 		}
2649 
2650 		lock_page(page);
2651 
2652 		if (unlikely(page->mapping != mapping)) {
2653 			f2fs_put_page(page, 1);
2654 			goto repeat;
2655 		}
2656 		if (unlikely(!PageUptodate(page))) {
2657 			f2fs_put_page(page, 1);
2658 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2659 			return -EIO;
2660 		}
2661 
2662 		memcpy_from_page(data, page, offset, tocopy);
2663 		f2fs_put_page(page, 1);
2664 
2665 		offset = 0;
2666 		toread -= tocopy;
2667 		data += tocopy;
2668 		blkidx++;
2669 	}
2670 	return len;
2671 }
2672 
2673 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)2674 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2675 				const char *data, size_t len, loff_t off)
2676 {
2677 	struct inode *inode = sb_dqopt(sb)->files[type];
2678 	struct address_space *mapping = inode->i_mapping;
2679 	const struct address_space_operations *a_ops = mapping->a_ops;
2680 	int offset = off & (sb->s_blocksize - 1);
2681 	size_t towrite = len;
2682 	struct page *page;
2683 	void *fsdata = NULL;
2684 	int err = 0;
2685 	int tocopy;
2686 
2687 	while (towrite > 0) {
2688 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2689 								towrite);
2690 retry:
2691 		err = a_ops->write_begin(NULL, mapping, off, tocopy,
2692 							&page, &fsdata);
2693 		if (unlikely(err)) {
2694 			if (err == -ENOMEM) {
2695 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2696 				goto retry;
2697 			}
2698 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2699 			break;
2700 		}
2701 
2702 		memcpy_to_page(page, offset, data, tocopy);
2703 
2704 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2705 						page, fsdata);
2706 		offset = 0;
2707 		towrite -= tocopy;
2708 		off += tocopy;
2709 		data += tocopy;
2710 		cond_resched();
2711 	}
2712 
2713 	if (len == towrite)
2714 		return err;
2715 	inode->i_mtime = inode_set_ctime_current(inode);
2716 	f2fs_mark_inode_dirty_sync(inode, false);
2717 	return len - towrite;
2718 }
2719 
f2fs_dquot_initialize(struct inode * inode)2720 int f2fs_dquot_initialize(struct inode *inode)
2721 {
2722 	if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT))
2723 		return -ESRCH;
2724 
2725 	return dquot_initialize(inode);
2726 }
2727 
f2fs_get_dquots(struct inode * inode)2728 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode)
2729 {
2730 	return F2FS_I(inode)->i_dquot;
2731 }
2732 
f2fs_get_reserved_space(struct inode * inode)2733 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2734 {
2735 	return &F2FS_I(inode)->i_reserved_quota;
2736 }
2737 
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)2738 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2739 {
2740 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2741 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2742 		return 0;
2743 	}
2744 
2745 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2746 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2747 }
2748 
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)2749 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2750 {
2751 	int enabled = 0;
2752 	int i, err;
2753 
2754 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2755 		err = f2fs_enable_quotas(sbi->sb);
2756 		if (err) {
2757 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2758 			return 0;
2759 		}
2760 		return 1;
2761 	}
2762 
2763 	for (i = 0; i < MAXQUOTAS; i++) {
2764 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2765 			err = f2fs_quota_on_mount(sbi, i);
2766 			if (!err) {
2767 				enabled = 1;
2768 				continue;
2769 			}
2770 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2771 				 err, i);
2772 		}
2773 	}
2774 	return enabled;
2775 }
2776 
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)2777 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2778 			     unsigned int flags)
2779 {
2780 	struct inode *qf_inode;
2781 	unsigned long qf_inum;
2782 	unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL;
2783 	int err;
2784 
2785 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2786 
2787 	qf_inum = f2fs_qf_ino(sb, type);
2788 	if (!qf_inum)
2789 		return -EPERM;
2790 
2791 	qf_inode = f2fs_iget(sb, qf_inum);
2792 	if (IS_ERR(qf_inode)) {
2793 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2794 		return PTR_ERR(qf_inode);
2795 	}
2796 
2797 	/* Don't account quota for quota files to avoid recursion */
2798 	inode_lock(qf_inode);
2799 	qf_inode->i_flags |= S_NOQUOTA;
2800 
2801 	if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) {
2802 		F2FS_I(qf_inode)->i_flags |= qf_flag;
2803 		f2fs_set_inode_flags(qf_inode);
2804 	}
2805 	inode_unlock(qf_inode);
2806 
2807 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2808 	iput(qf_inode);
2809 	return err;
2810 }
2811 
f2fs_enable_quotas(struct super_block * sb)2812 static int f2fs_enable_quotas(struct super_block *sb)
2813 {
2814 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2815 	int type, err = 0;
2816 	unsigned long qf_inum;
2817 	bool quota_mopt[MAXQUOTAS] = {
2818 		test_opt(sbi, USRQUOTA),
2819 		test_opt(sbi, GRPQUOTA),
2820 		test_opt(sbi, PRJQUOTA),
2821 	};
2822 
2823 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2824 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2825 		return 0;
2826 	}
2827 
2828 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2829 
2830 	for (type = 0; type < MAXQUOTAS; type++) {
2831 		qf_inum = f2fs_qf_ino(sb, type);
2832 		if (qf_inum) {
2833 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2834 				DQUOT_USAGE_ENABLED |
2835 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2836 			if (err) {
2837 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2838 					 type, err);
2839 				for (type--; type >= 0; type--)
2840 					dquot_quota_off(sb, type);
2841 				set_sbi_flag(F2FS_SB(sb),
2842 						SBI_QUOTA_NEED_REPAIR);
2843 				return err;
2844 			}
2845 		}
2846 	}
2847 	return 0;
2848 }
2849 
f2fs_quota_sync_file(struct f2fs_sb_info * sbi,int type)2850 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2851 {
2852 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2853 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2854 	int ret = 0;
2855 
2856 	ret = dquot_writeback_dquots(sbi->sb, type);
2857 	if (ret)
2858 		goto out;
2859 
2860 	ret = filemap_fdatawrite(mapping);
2861 	if (ret)
2862 		goto out;
2863 
2864 	/* if we are using journalled quota */
2865 	if (is_journalled_quota(sbi))
2866 		goto out;
2867 
2868 	ret = filemap_fdatawait(mapping);
2869 
2870 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2871 out:
2872 	if (ret)
2873 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2874 	return ret;
2875 }
2876 
f2fs_quota_sync(struct super_block * sb,int type)2877 int f2fs_quota_sync(struct super_block *sb, int type)
2878 {
2879 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2880 	struct quota_info *dqopt = sb_dqopt(sb);
2881 	int cnt;
2882 	int ret = 0;
2883 
2884 	/*
2885 	 * Now when everything is written we can discard the pagecache so
2886 	 * that userspace sees the changes.
2887 	 */
2888 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2889 
2890 		if (type != -1 && cnt != type)
2891 			continue;
2892 
2893 		if (!sb_has_quota_active(sb, cnt))
2894 			continue;
2895 
2896 		if (!f2fs_sb_has_quota_ino(sbi))
2897 			inode_lock(dqopt->files[cnt]);
2898 
2899 		/*
2900 		 * do_quotactl
2901 		 *  f2fs_quota_sync
2902 		 *  f2fs_down_read(quota_sem)
2903 		 *  dquot_writeback_dquots()
2904 		 *  f2fs_dquot_commit
2905 		 *			      block_operation
2906 		 *			      f2fs_down_read(quota_sem)
2907 		 */
2908 		f2fs_lock_op(sbi);
2909 		f2fs_down_read(&sbi->quota_sem);
2910 
2911 		ret = f2fs_quota_sync_file(sbi, cnt);
2912 
2913 		f2fs_up_read(&sbi->quota_sem);
2914 		f2fs_unlock_op(sbi);
2915 
2916 		if (!f2fs_sb_has_quota_ino(sbi))
2917 			inode_unlock(dqopt->files[cnt]);
2918 
2919 		if (ret)
2920 			break;
2921 	}
2922 	return ret;
2923 }
2924 
f2fs_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)2925 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2926 							const struct path *path)
2927 {
2928 	struct inode *inode;
2929 	int err;
2930 
2931 	/* if quota sysfile exists, deny enabling quota with specific file */
2932 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2933 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2934 		return -EBUSY;
2935 	}
2936 
2937 	if (path->dentry->d_sb != sb)
2938 		return -EXDEV;
2939 
2940 	err = f2fs_quota_sync(sb, type);
2941 	if (err)
2942 		return err;
2943 
2944 	inode = d_inode(path->dentry);
2945 
2946 	err = filemap_fdatawrite(inode->i_mapping);
2947 	if (err)
2948 		return err;
2949 
2950 	err = filemap_fdatawait(inode->i_mapping);
2951 	if (err)
2952 		return err;
2953 
2954 	err = dquot_quota_on(sb, type, format_id, path);
2955 	if (err)
2956 		return err;
2957 
2958 	inode_lock(inode);
2959 	F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL;
2960 	f2fs_set_inode_flags(inode);
2961 	inode_unlock(inode);
2962 	f2fs_mark_inode_dirty_sync(inode, false);
2963 
2964 	return 0;
2965 }
2966 
__f2fs_quota_off(struct super_block * sb,int type)2967 static int __f2fs_quota_off(struct super_block *sb, int type)
2968 {
2969 	struct inode *inode = sb_dqopt(sb)->files[type];
2970 	int err;
2971 
2972 	if (!inode || !igrab(inode))
2973 		return dquot_quota_off(sb, type);
2974 
2975 	err = f2fs_quota_sync(sb, type);
2976 	if (err)
2977 		goto out_put;
2978 
2979 	err = dquot_quota_off(sb, type);
2980 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2981 		goto out_put;
2982 
2983 	inode_lock(inode);
2984 	F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL;
2985 	f2fs_set_inode_flags(inode);
2986 	inode_unlock(inode);
2987 	f2fs_mark_inode_dirty_sync(inode, false);
2988 out_put:
2989 	iput(inode);
2990 	return err;
2991 }
2992 
f2fs_quota_off(struct super_block * sb,int type)2993 static int f2fs_quota_off(struct super_block *sb, int type)
2994 {
2995 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2996 	int err;
2997 
2998 	err = __f2fs_quota_off(sb, type);
2999 
3000 	/*
3001 	 * quotactl can shutdown journalled quota, result in inconsistence
3002 	 * between quota record and fs data by following updates, tag the
3003 	 * flag to let fsck be aware of it.
3004 	 */
3005 	if (is_journalled_quota(sbi))
3006 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3007 	return err;
3008 }
3009 
f2fs_quota_off_umount(struct super_block * sb)3010 void f2fs_quota_off_umount(struct super_block *sb)
3011 {
3012 	int type;
3013 	int err;
3014 
3015 	for (type = 0; type < MAXQUOTAS; type++) {
3016 		err = __f2fs_quota_off(sb, type);
3017 		if (err) {
3018 			int ret = dquot_quota_off(sb, type);
3019 
3020 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
3021 				 type, err, ret);
3022 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
3023 		}
3024 	}
3025 	/*
3026 	 * In case of checkpoint=disable, we must flush quota blocks.
3027 	 * This can cause NULL exception for node_inode in end_io, since
3028 	 * put_super already dropped it.
3029 	 */
3030 	sync_filesystem(sb);
3031 }
3032 
f2fs_truncate_quota_inode_pages(struct super_block * sb)3033 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
3034 {
3035 	struct quota_info *dqopt = sb_dqopt(sb);
3036 	int type;
3037 
3038 	for (type = 0; type < MAXQUOTAS; type++) {
3039 		if (!dqopt->files[type])
3040 			continue;
3041 		f2fs_inode_synced(dqopt->files[type]);
3042 	}
3043 }
3044 
f2fs_dquot_commit(struct dquot * dquot)3045 static int f2fs_dquot_commit(struct dquot *dquot)
3046 {
3047 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3048 	int ret;
3049 
3050 	f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
3051 	ret = dquot_commit(dquot);
3052 	if (ret < 0)
3053 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3054 	f2fs_up_read(&sbi->quota_sem);
3055 	return ret;
3056 }
3057 
f2fs_dquot_acquire(struct dquot * dquot)3058 static int f2fs_dquot_acquire(struct dquot *dquot)
3059 {
3060 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3061 	int ret;
3062 
3063 	f2fs_down_read(&sbi->quota_sem);
3064 	ret = dquot_acquire(dquot);
3065 	if (ret < 0)
3066 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3067 	f2fs_up_read(&sbi->quota_sem);
3068 	return ret;
3069 }
3070 
f2fs_dquot_release(struct dquot * dquot)3071 static int f2fs_dquot_release(struct dquot *dquot)
3072 {
3073 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3074 	int ret = dquot_release(dquot);
3075 
3076 	if (ret < 0)
3077 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3078 	return ret;
3079 }
3080 
f2fs_dquot_mark_dquot_dirty(struct dquot * dquot)3081 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
3082 {
3083 	struct super_block *sb = dquot->dq_sb;
3084 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3085 	int ret = dquot_mark_dquot_dirty(dquot);
3086 
3087 	/* if we are using journalled quota */
3088 	if (is_journalled_quota(sbi))
3089 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
3090 
3091 	return ret;
3092 }
3093 
f2fs_dquot_commit_info(struct super_block * sb,int type)3094 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
3095 {
3096 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3097 	int ret = dquot_commit_info(sb, type);
3098 
3099 	if (ret < 0)
3100 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3101 	return ret;
3102 }
3103 
f2fs_get_projid(struct inode * inode,kprojid_t * projid)3104 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
3105 {
3106 	*projid = F2FS_I(inode)->i_projid;
3107 	return 0;
3108 }
3109 
3110 static const struct dquot_operations f2fs_quota_operations = {
3111 	.get_reserved_space = f2fs_get_reserved_space,
3112 	.write_dquot	= f2fs_dquot_commit,
3113 	.acquire_dquot	= f2fs_dquot_acquire,
3114 	.release_dquot	= f2fs_dquot_release,
3115 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
3116 	.write_info	= f2fs_dquot_commit_info,
3117 	.alloc_dquot	= dquot_alloc,
3118 	.destroy_dquot	= dquot_destroy,
3119 	.get_projid	= f2fs_get_projid,
3120 	.get_next_id	= dquot_get_next_id,
3121 };
3122 
3123 static const struct quotactl_ops f2fs_quotactl_ops = {
3124 	.quota_on	= f2fs_quota_on,
3125 	.quota_off	= f2fs_quota_off,
3126 	.quota_sync	= f2fs_quota_sync,
3127 	.get_state	= dquot_get_state,
3128 	.set_info	= dquot_set_dqinfo,
3129 	.get_dqblk	= dquot_get_dqblk,
3130 	.set_dqblk	= dquot_set_dqblk,
3131 	.get_nextdqblk	= dquot_get_next_dqblk,
3132 };
3133 #else
f2fs_dquot_initialize(struct inode * inode)3134 int f2fs_dquot_initialize(struct inode *inode)
3135 {
3136 	return 0;
3137 }
3138 
f2fs_quota_sync(struct super_block * sb,int type)3139 int f2fs_quota_sync(struct super_block *sb, int type)
3140 {
3141 	return 0;
3142 }
3143 
f2fs_quota_off_umount(struct super_block * sb)3144 void f2fs_quota_off_umount(struct super_block *sb)
3145 {
3146 }
3147 #endif
3148 
3149 static const struct super_operations f2fs_sops = {
3150 	.alloc_inode	= f2fs_alloc_inode,
3151 	.free_inode	= f2fs_free_inode,
3152 	.drop_inode	= f2fs_drop_inode,
3153 	.write_inode	= f2fs_write_inode,
3154 	.dirty_inode	= f2fs_dirty_inode,
3155 	.show_options	= f2fs_show_options,
3156 #ifdef CONFIG_QUOTA
3157 	.quota_read	= f2fs_quota_read,
3158 	.quota_write	= f2fs_quota_write,
3159 	.get_dquots	= f2fs_get_dquots,
3160 #endif
3161 	.evict_inode	= f2fs_evict_inode,
3162 	.put_super	= f2fs_put_super,
3163 	.sync_fs	= f2fs_sync_fs,
3164 	.freeze_fs	= f2fs_freeze,
3165 	.unfreeze_fs	= f2fs_unfreeze,
3166 	.statfs		= f2fs_statfs,
3167 	.remount_fs	= f2fs_remount,
3168 	.shutdown	= f2fs_shutdown,
3169 };
3170 
3171 #ifdef CONFIG_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)3172 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
3173 {
3174 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3175 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3176 				ctx, len, NULL);
3177 }
3178 
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)3179 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
3180 							void *fs_data)
3181 {
3182 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3183 
3184 	/*
3185 	 * Encrypting the root directory is not allowed because fsck
3186 	 * expects lost+found directory to exist and remain unencrypted
3187 	 * if LOST_FOUND feature is enabled.
3188 	 *
3189 	 */
3190 	if (f2fs_sb_has_lost_found(sbi) &&
3191 			inode->i_ino == F2FS_ROOT_INO(sbi))
3192 		return -EPERM;
3193 
3194 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3195 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3196 				ctx, len, fs_data, XATTR_CREATE);
3197 }
3198 
f2fs_get_dummy_policy(struct super_block * sb)3199 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3200 {
3201 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3202 }
3203 
f2fs_has_stable_inodes(struct super_block * sb)3204 static bool f2fs_has_stable_inodes(struct super_block *sb)
3205 {
3206 	return true;
3207 }
3208 
f2fs_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)3209 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
3210 				       int *ino_bits_ret, int *lblk_bits_ret)
3211 {
3212 	*ino_bits_ret = 8 * sizeof(nid_t);
3213 	*lblk_bits_ret = 8 * sizeof(block_t);
3214 }
3215 
f2fs_get_devices(struct super_block * sb,unsigned int * num_devs)3216 static struct block_device **f2fs_get_devices(struct super_block *sb,
3217 					      unsigned int *num_devs)
3218 {
3219 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3220 	struct block_device **devs;
3221 	int i;
3222 
3223 	if (!f2fs_is_multi_device(sbi))
3224 		return NULL;
3225 
3226 	devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
3227 	if (!devs)
3228 		return ERR_PTR(-ENOMEM);
3229 
3230 	for (i = 0; i < sbi->s_ndevs; i++)
3231 		devs[i] = FDEV(i).bdev;
3232 	*num_devs = sbi->s_ndevs;
3233 	return devs;
3234 }
3235 
3236 static const struct fscrypt_operations f2fs_cryptops = {
3237 	.key_prefix		= "f2fs:",
3238 	.get_context		= f2fs_get_context,
3239 	.set_context		= f2fs_set_context,
3240 	.get_dummy_policy	= f2fs_get_dummy_policy,
3241 	.empty_dir		= f2fs_empty_dir,
3242 	.has_stable_inodes	= f2fs_has_stable_inodes,
3243 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
3244 	.get_devices		= f2fs_get_devices,
3245 };
3246 #endif
3247 
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)3248 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3249 		u64 ino, u32 generation)
3250 {
3251 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3252 	struct inode *inode;
3253 
3254 	if (f2fs_check_nid_range(sbi, ino))
3255 		return ERR_PTR(-ESTALE);
3256 
3257 	/*
3258 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
3259 	 * However f2fs_iget currently does appropriate checks to handle stale
3260 	 * inodes so everything is OK.
3261 	 */
3262 	inode = f2fs_iget(sb, ino);
3263 	if (IS_ERR(inode))
3264 		return ERR_CAST(inode);
3265 	if (unlikely(generation && inode->i_generation != generation)) {
3266 		/* we didn't find the right inode.. */
3267 		iput(inode);
3268 		return ERR_PTR(-ESTALE);
3269 	}
3270 	return inode;
3271 }
3272 
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3273 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3274 		int fh_len, int fh_type)
3275 {
3276 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3277 				    f2fs_nfs_get_inode);
3278 }
3279 
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3280 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3281 		int fh_len, int fh_type)
3282 {
3283 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3284 				    f2fs_nfs_get_inode);
3285 }
3286 
3287 static const struct export_operations f2fs_export_ops = {
3288 	.fh_to_dentry = f2fs_fh_to_dentry,
3289 	.fh_to_parent = f2fs_fh_to_parent,
3290 	.get_parent = f2fs_get_parent,
3291 };
3292 
max_file_blocks(struct inode * inode)3293 loff_t max_file_blocks(struct inode *inode)
3294 {
3295 	loff_t result = 0;
3296 	loff_t leaf_count;
3297 
3298 	/*
3299 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3300 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3301 	 * space in inode.i_addr, it will be more safe to reassign
3302 	 * result as zero.
3303 	 */
3304 
3305 	if (inode && f2fs_compressed_file(inode))
3306 		leaf_count = ADDRS_PER_BLOCK(inode);
3307 	else
3308 		leaf_count = DEF_ADDRS_PER_BLOCK;
3309 
3310 	/* two direct node blocks */
3311 	result += (leaf_count * 2);
3312 
3313 	/* two indirect node blocks */
3314 	leaf_count *= NIDS_PER_BLOCK;
3315 	result += (leaf_count * 2);
3316 
3317 	/* one double indirect node block */
3318 	leaf_count *= NIDS_PER_BLOCK;
3319 	result += leaf_count;
3320 
3321 	return result;
3322 }
3323 
__f2fs_commit_super(struct buffer_head * bh,struct f2fs_super_block * super)3324 static int __f2fs_commit_super(struct buffer_head *bh,
3325 			struct f2fs_super_block *super)
3326 {
3327 	lock_buffer(bh);
3328 	if (super)
3329 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3330 	set_buffer_dirty(bh);
3331 	unlock_buffer(bh);
3332 
3333 	/* it's rare case, we can do fua all the time */
3334 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3335 }
3336 
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct buffer_head * bh)3337 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3338 					struct buffer_head *bh)
3339 {
3340 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3341 					(bh->b_data + F2FS_SUPER_OFFSET);
3342 	struct super_block *sb = sbi->sb;
3343 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3344 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3345 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3346 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3347 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3348 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3349 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3350 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3351 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3352 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3353 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3354 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3355 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3356 	u64 main_end_blkaddr = main_blkaddr +
3357 				((u64)segment_count_main << log_blocks_per_seg);
3358 	u64 seg_end_blkaddr = segment0_blkaddr +
3359 				((u64)segment_count << log_blocks_per_seg);
3360 
3361 	if (segment0_blkaddr != cp_blkaddr) {
3362 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3363 			  segment0_blkaddr, cp_blkaddr);
3364 		return true;
3365 	}
3366 
3367 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3368 							sit_blkaddr) {
3369 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3370 			  cp_blkaddr, sit_blkaddr,
3371 			  segment_count_ckpt << log_blocks_per_seg);
3372 		return true;
3373 	}
3374 
3375 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3376 							nat_blkaddr) {
3377 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3378 			  sit_blkaddr, nat_blkaddr,
3379 			  segment_count_sit << log_blocks_per_seg);
3380 		return true;
3381 	}
3382 
3383 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3384 							ssa_blkaddr) {
3385 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3386 			  nat_blkaddr, ssa_blkaddr,
3387 			  segment_count_nat << log_blocks_per_seg);
3388 		return true;
3389 	}
3390 
3391 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3392 							main_blkaddr) {
3393 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3394 			  ssa_blkaddr, main_blkaddr,
3395 			  segment_count_ssa << log_blocks_per_seg);
3396 		return true;
3397 	}
3398 
3399 	if (main_end_blkaddr > seg_end_blkaddr) {
3400 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3401 			  main_blkaddr, seg_end_blkaddr,
3402 			  segment_count_main << log_blocks_per_seg);
3403 		return true;
3404 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3405 		int err = 0;
3406 		char *res;
3407 
3408 		/* fix in-memory information all the time */
3409 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3410 				segment0_blkaddr) >> log_blocks_per_seg);
3411 
3412 		if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) {
3413 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3414 			res = "internally";
3415 		} else {
3416 			err = __f2fs_commit_super(bh, NULL);
3417 			res = err ? "failed" : "done";
3418 		}
3419 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3420 			  res, main_blkaddr, seg_end_blkaddr,
3421 			  segment_count_main << log_blocks_per_seg);
3422 		if (err)
3423 			return true;
3424 	}
3425 	return false;
3426 }
3427 
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct buffer_head * bh)3428 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3429 				struct buffer_head *bh)
3430 {
3431 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3432 	block_t total_sections, blocks_per_seg;
3433 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3434 					(bh->b_data + F2FS_SUPER_OFFSET);
3435 	size_t crc_offset = 0;
3436 	__u32 crc = 0;
3437 
3438 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3439 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3440 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3441 		return -EINVAL;
3442 	}
3443 
3444 	/* Check checksum_offset and crc in superblock */
3445 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3446 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3447 		if (crc_offset !=
3448 			offsetof(struct f2fs_super_block, crc)) {
3449 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3450 				  crc_offset);
3451 			return -EFSCORRUPTED;
3452 		}
3453 		crc = le32_to_cpu(raw_super->crc);
3454 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3455 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3456 			return -EFSCORRUPTED;
3457 		}
3458 	}
3459 
3460 	/* Currently, support only 4KB block size */
3461 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3462 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3463 			  le32_to_cpu(raw_super->log_blocksize),
3464 			  F2FS_BLKSIZE_BITS);
3465 		return -EFSCORRUPTED;
3466 	}
3467 
3468 	/* check log blocks per segment */
3469 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3470 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3471 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3472 		return -EFSCORRUPTED;
3473 	}
3474 
3475 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3476 	if (le32_to_cpu(raw_super->log_sectorsize) >
3477 				F2FS_MAX_LOG_SECTOR_SIZE ||
3478 		le32_to_cpu(raw_super->log_sectorsize) <
3479 				F2FS_MIN_LOG_SECTOR_SIZE) {
3480 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3481 			  le32_to_cpu(raw_super->log_sectorsize));
3482 		return -EFSCORRUPTED;
3483 	}
3484 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3485 		le32_to_cpu(raw_super->log_sectorsize) !=
3486 			F2FS_MAX_LOG_SECTOR_SIZE) {
3487 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3488 			  le32_to_cpu(raw_super->log_sectors_per_block),
3489 			  le32_to_cpu(raw_super->log_sectorsize));
3490 		return -EFSCORRUPTED;
3491 	}
3492 
3493 	segment_count = le32_to_cpu(raw_super->segment_count);
3494 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3495 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3496 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3497 	total_sections = le32_to_cpu(raw_super->section_count);
3498 
3499 	/* blocks_per_seg should be 512, given the above check */
3500 	blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg));
3501 
3502 	if (segment_count > F2FS_MAX_SEGMENT ||
3503 				segment_count < F2FS_MIN_SEGMENTS) {
3504 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3505 		return -EFSCORRUPTED;
3506 	}
3507 
3508 	if (total_sections > segment_count_main || total_sections < 1 ||
3509 			segs_per_sec > segment_count || !segs_per_sec) {
3510 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3511 			  segment_count, total_sections, segs_per_sec);
3512 		return -EFSCORRUPTED;
3513 	}
3514 
3515 	if (segment_count_main != total_sections * segs_per_sec) {
3516 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3517 			  segment_count_main, total_sections, segs_per_sec);
3518 		return -EFSCORRUPTED;
3519 	}
3520 
3521 	if ((segment_count / segs_per_sec) < total_sections) {
3522 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3523 			  segment_count, segs_per_sec, total_sections);
3524 		return -EFSCORRUPTED;
3525 	}
3526 
3527 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3528 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3529 			  segment_count, le64_to_cpu(raw_super->block_count));
3530 		return -EFSCORRUPTED;
3531 	}
3532 
3533 	if (RDEV(0).path[0]) {
3534 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3535 		int i = 1;
3536 
3537 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3538 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3539 			i++;
3540 		}
3541 		if (segment_count != dev_seg_count) {
3542 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3543 					segment_count, dev_seg_count);
3544 			return -EFSCORRUPTED;
3545 		}
3546 	} else {
3547 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3548 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3549 			f2fs_info(sbi, "Zoned block device path is missing");
3550 			return -EFSCORRUPTED;
3551 		}
3552 	}
3553 
3554 	if (secs_per_zone > total_sections || !secs_per_zone) {
3555 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3556 			  secs_per_zone, total_sections);
3557 		return -EFSCORRUPTED;
3558 	}
3559 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3560 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3561 			(le32_to_cpu(raw_super->extension_count) +
3562 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3563 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3564 			  le32_to_cpu(raw_super->extension_count),
3565 			  raw_super->hot_ext_count,
3566 			  F2FS_MAX_EXTENSION);
3567 		return -EFSCORRUPTED;
3568 	}
3569 
3570 	if (le32_to_cpu(raw_super->cp_payload) >=
3571 				(blocks_per_seg - F2FS_CP_PACKS -
3572 				NR_CURSEG_PERSIST_TYPE)) {
3573 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3574 			  le32_to_cpu(raw_super->cp_payload),
3575 			  blocks_per_seg - F2FS_CP_PACKS -
3576 			  NR_CURSEG_PERSIST_TYPE);
3577 		return -EFSCORRUPTED;
3578 	}
3579 
3580 	/* check reserved ino info */
3581 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3582 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3583 		le32_to_cpu(raw_super->root_ino) != 3) {
3584 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3585 			  le32_to_cpu(raw_super->node_ino),
3586 			  le32_to_cpu(raw_super->meta_ino),
3587 			  le32_to_cpu(raw_super->root_ino));
3588 		return -EFSCORRUPTED;
3589 	}
3590 
3591 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3592 	if (sanity_check_area_boundary(sbi, bh))
3593 		return -EFSCORRUPTED;
3594 
3595 	return 0;
3596 }
3597 
f2fs_sanity_check_ckpt(struct f2fs_sb_info * sbi)3598 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3599 {
3600 	unsigned int total, fsmeta;
3601 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3602 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3603 	unsigned int ovp_segments, reserved_segments;
3604 	unsigned int main_segs, blocks_per_seg;
3605 	unsigned int sit_segs, nat_segs;
3606 	unsigned int sit_bitmap_size, nat_bitmap_size;
3607 	unsigned int log_blocks_per_seg;
3608 	unsigned int segment_count_main;
3609 	unsigned int cp_pack_start_sum, cp_payload;
3610 	block_t user_block_count, valid_user_blocks;
3611 	block_t avail_node_count, valid_node_count;
3612 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3613 	unsigned int sit_blk_cnt;
3614 	int i, j;
3615 
3616 	total = le32_to_cpu(raw_super->segment_count);
3617 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3618 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3619 	fsmeta += sit_segs;
3620 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3621 	fsmeta += nat_segs;
3622 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3623 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3624 
3625 	if (unlikely(fsmeta >= total))
3626 		return 1;
3627 
3628 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3629 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3630 
3631 	if (!f2fs_sb_has_readonly(sbi) &&
3632 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3633 			ovp_segments == 0 || reserved_segments == 0)) {
3634 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3635 		return 1;
3636 	}
3637 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3638 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3639 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3640 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3641 	if (!user_block_count || user_block_count >=
3642 			segment_count_main << log_blocks_per_seg) {
3643 		f2fs_err(sbi, "Wrong user_block_count: %u",
3644 			 user_block_count);
3645 		return 1;
3646 	}
3647 
3648 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3649 	if (valid_user_blocks > user_block_count) {
3650 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3651 			 valid_user_blocks, user_block_count);
3652 		return 1;
3653 	}
3654 
3655 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3656 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3657 	if (valid_node_count > avail_node_count) {
3658 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3659 			 valid_node_count, avail_node_count);
3660 		return 1;
3661 	}
3662 
3663 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3664 	blocks_per_seg = BLKS_PER_SEG(sbi);
3665 
3666 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3667 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3668 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3669 			return 1;
3670 
3671 		if (f2fs_sb_has_readonly(sbi))
3672 			goto check_data;
3673 
3674 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3675 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3676 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3677 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3678 					 i, j,
3679 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3680 				return 1;
3681 			}
3682 		}
3683 	}
3684 check_data:
3685 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3686 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3687 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3688 			return 1;
3689 
3690 		if (f2fs_sb_has_readonly(sbi))
3691 			goto skip_cross;
3692 
3693 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3694 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3695 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3696 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3697 					 i, j,
3698 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3699 				return 1;
3700 			}
3701 		}
3702 	}
3703 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3704 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3705 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3706 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3707 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3708 					 i, j,
3709 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3710 				return 1;
3711 			}
3712 		}
3713 	}
3714 skip_cross:
3715 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3716 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3717 
3718 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3719 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3720 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3721 			 sit_bitmap_size, nat_bitmap_size);
3722 		return 1;
3723 	}
3724 
3725 	sit_blk_cnt = DIV_ROUND_UP(main_segs, SIT_ENTRY_PER_BLOCK);
3726 	if (sit_bitmap_size * 8 < sit_blk_cnt) {
3727 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, sit_blk_cnt:%u",
3728 			 sit_bitmap_size, sit_blk_cnt);
3729 		return 1;
3730 	}
3731 
3732 	cp_pack_start_sum = __start_sum_addr(sbi);
3733 	cp_payload = __cp_payload(sbi);
3734 	if (cp_pack_start_sum < cp_payload + 1 ||
3735 		cp_pack_start_sum > blocks_per_seg - 1 -
3736 			NR_CURSEG_PERSIST_TYPE) {
3737 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3738 			 cp_pack_start_sum);
3739 		return 1;
3740 	}
3741 
3742 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3743 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3744 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3745 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3746 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3747 			  le32_to_cpu(ckpt->checksum_offset));
3748 		return 1;
3749 	}
3750 
3751 	nat_blocks = nat_segs << log_blocks_per_seg;
3752 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3753 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3754 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3755 		(cp_payload + F2FS_CP_PACKS +
3756 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3757 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3758 			  cp_payload, nat_bits_blocks);
3759 		return 1;
3760 	}
3761 
3762 	if (unlikely(f2fs_cp_error(sbi))) {
3763 		f2fs_err(sbi, "A bug case: need to run fsck");
3764 		return 1;
3765 	}
3766 	return 0;
3767 }
3768 
init_sb_info(struct f2fs_sb_info * sbi)3769 static void init_sb_info(struct f2fs_sb_info *sbi)
3770 {
3771 	struct f2fs_super_block *raw_super = sbi->raw_super;
3772 	int i;
3773 
3774 	sbi->log_sectors_per_block =
3775 		le32_to_cpu(raw_super->log_sectors_per_block);
3776 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3777 	sbi->blocksize = BIT(sbi->log_blocksize);
3778 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3779 	sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg);
3780 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3781 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3782 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3783 	sbi->total_node_count =
3784 		((le32_to_cpu(raw_super->segment_count_nat) / 2) *
3785 		NAT_ENTRY_PER_BLOCK) << sbi->log_blocks_per_seg;
3786 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3787 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3788 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3789 	sbi->cur_victim_sec = NULL_SECNO;
3790 	sbi->gc_mode = GC_NORMAL;
3791 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3792 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3793 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3794 	sbi->migration_granularity = SEGS_PER_SEC(sbi);
3795 	sbi->seq_file_ra_mul = MIN_RA_MUL;
3796 	sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3797 	sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3798 	spin_lock_init(&sbi->gc_remaining_trials_lock);
3799 	atomic64_set(&sbi->current_atomic_write, 0);
3800 
3801 	sbi->dir_level = DEF_DIR_LEVEL;
3802 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3803 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3804 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3805 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3806 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3807 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3808 				DEF_UMOUNT_DISCARD_TIMEOUT;
3809 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3810 
3811 	for (i = 0; i < NR_COUNT_TYPE; i++)
3812 		atomic_set(&sbi->nr_pages[i], 0);
3813 
3814 	for (i = 0; i < META; i++)
3815 		atomic_set(&sbi->wb_sync_req[i], 0);
3816 
3817 	INIT_LIST_HEAD(&sbi->s_list);
3818 	mutex_init(&sbi->umount_mutex);
3819 	init_f2fs_rwsem(&sbi->io_order_lock);
3820 	spin_lock_init(&sbi->cp_lock);
3821 
3822 	sbi->dirty_device = 0;
3823 	spin_lock_init(&sbi->dev_lock);
3824 
3825 	init_f2fs_rwsem(&sbi->sb_lock);
3826 	init_f2fs_rwsem(&sbi->pin_sem);
3827 }
3828 
init_percpu_info(struct f2fs_sb_info * sbi)3829 static int init_percpu_info(struct f2fs_sb_info *sbi)
3830 {
3831 	int err;
3832 
3833 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3834 	if (err)
3835 		return err;
3836 
3837 	err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
3838 	if (err)
3839 		goto err_valid_block;
3840 
3841 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3842 								GFP_KERNEL);
3843 	if (err)
3844 		goto err_node_block;
3845 	return 0;
3846 
3847 err_node_block:
3848 	percpu_counter_destroy(&sbi->rf_node_block_count);
3849 err_valid_block:
3850 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
3851 	return err;
3852 }
3853 
3854 #ifdef CONFIG_BLK_DEV_ZONED
3855 
3856 struct f2fs_report_zones_args {
3857 	struct f2fs_sb_info *sbi;
3858 	struct f2fs_dev_info *dev;
3859 };
3860 
f2fs_report_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)3861 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3862 			      void *data)
3863 {
3864 	struct f2fs_report_zones_args *rz_args = data;
3865 	block_t unusable_blocks = (zone->len - zone->capacity) >>
3866 					F2FS_LOG_SECTORS_PER_BLOCK;
3867 
3868 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3869 		return 0;
3870 
3871 	set_bit(idx, rz_args->dev->blkz_seq);
3872 	if (!rz_args->sbi->unusable_blocks_per_sec) {
3873 		rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
3874 		return 0;
3875 	}
3876 	if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
3877 		f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
3878 		return -EINVAL;
3879 	}
3880 	return 0;
3881 }
3882 
init_blkz_info(struct f2fs_sb_info * sbi,int devi)3883 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3884 {
3885 	struct block_device *bdev = FDEV(devi).bdev;
3886 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3887 	struct f2fs_report_zones_args rep_zone_arg;
3888 	u64 zone_sectors;
3889 	int ret;
3890 
3891 	if (!f2fs_sb_has_blkzoned(sbi))
3892 		return 0;
3893 
3894 	zone_sectors = bdev_zone_sectors(bdev);
3895 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3896 				SECTOR_TO_BLOCK(zone_sectors))
3897 		return -EINVAL;
3898 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
3899 	FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors),
3900 					sbi->blocks_per_blkz);
3901 	if (nr_sectors & (zone_sectors - 1))
3902 		FDEV(devi).nr_blkz++;
3903 
3904 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3905 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3906 					* sizeof(unsigned long),
3907 					GFP_KERNEL);
3908 	if (!FDEV(devi).blkz_seq)
3909 		return -ENOMEM;
3910 
3911 	rep_zone_arg.sbi = sbi;
3912 	rep_zone_arg.dev = &FDEV(devi);
3913 
3914 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3915 				  &rep_zone_arg);
3916 	if (ret < 0)
3917 		return ret;
3918 	return 0;
3919 }
3920 #endif
3921 
3922 /*
3923  * Read f2fs raw super block.
3924  * Because we have two copies of super block, so read both of them
3925  * to get the first valid one. If any one of them is broken, we pass
3926  * them recovery flag back to the caller.
3927  */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)3928 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3929 			struct f2fs_super_block **raw_super,
3930 			int *valid_super_block, int *recovery)
3931 {
3932 	struct super_block *sb = sbi->sb;
3933 	int block;
3934 	struct buffer_head *bh;
3935 	struct f2fs_super_block *super;
3936 	int err = 0;
3937 
3938 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3939 	if (!super)
3940 		return -ENOMEM;
3941 
3942 	for (block = 0; block < 2; block++) {
3943 		bh = sb_bread(sb, block);
3944 		if (!bh) {
3945 			f2fs_err(sbi, "Unable to read %dth superblock",
3946 				 block + 1);
3947 			err = -EIO;
3948 			*recovery = 1;
3949 			continue;
3950 		}
3951 
3952 		/* sanity checking of raw super */
3953 		err = sanity_check_raw_super(sbi, bh);
3954 		if (err) {
3955 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3956 				 block + 1);
3957 			brelse(bh);
3958 			*recovery = 1;
3959 			continue;
3960 		}
3961 
3962 		if (!*raw_super) {
3963 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3964 							sizeof(*super));
3965 			*valid_super_block = block;
3966 			*raw_super = super;
3967 		}
3968 		brelse(bh);
3969 	}
3970 
3971 	/* No valid superblock */
3972 	if (!*raw_super)
3973 		kfree(super);
3974 	else
3975 		err = 0;
3976 
3977 	return err;
3978 }
3979 
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)3980 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3981 {
3982 	struct buffer_head *bh;
3983 	__u32 crc = 0;
3984 	int err;
3985 
3986 	if ((recover && f2fs_readonly(sbi->sb)) ||
3987 				f2fs_hw_is_readonly(sbi)) {
3988 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3989 		return -EROFS;
3990 	}
3991 
3992 	/* we should update superblock crc here */
3993 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3994 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3995 				offsetof(struct f2fs_super_block, crc));
3996 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3997 	}
3998 
3999 	/* write back-up superblock first */
4000 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
4001 	if (!bh)
4002 		return -EIO;
4003 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
4004 	brelse(bh);
4005 
4006 	/* if we are in recovery path, skip writing valid superblock */
4007 	if (recover || err)
4008 		return err;
4009 
4010 	/* write current valid superblock */
4011 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
4012 	if (!bh)
4013 		return -EIO;
4014 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
4015 	brelse(bh);
4016 	return err;
4017 }
4018 
save_stop_reason(struct f2fs_sb_info * sbi,unsigned char reason)4019 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason)
4020 {
4021 	unsigned long flags;
4022 
4023 	spin_lock_irqsave(&sbi->error_lock, flags);
4024 	if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0))
4025 		sbi->stop_reason[reason]++;
4026 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4027 }
4028 
f2fs_record_stop_reason(struct f2fs_sb_info * sbi)4029 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi)
4030 {
4031 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4032 	unsigned long flags;
4033 	int err;
4034 
4035 	f2fs_down_write(&sbi->sb_lock);
4036 
4037 	spin_lock_irqsave(&sbi->error_lock, flags);
4038 	if (sbi->error_dirty) {
4039 		memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4040 							MAX_F2FS_ERRORS);
4041 		sbi->error_dirty = false;
4042 	}
4043 	memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON);
4044 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4045 
4046 	err = f2fs_commit_super(sbi, false);
4047 
4048 	f2fs_up_write(&sbi->sb_lock);
4049 	if (err)
4050 		f2fs_err(sbi, "f2fs_commit_super fails to record err:%d", err);
4051 }
4052 
f2fs_save_errors(struct f2fs_sb_info * sbi,unsigned char flag)4053 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag)
4054 {
4055 	unsigned long flags;
4056 
4057 	spin_lock_irqsave(&sbi->error_lock, flags);
4058 	if (!test_bit(flag, (unsigned long *)sbi->errors)) {
4059 		set_bit(flag, (unsigned long *)sbi->errors);
4060 		sbi->error_dirty = true;
4061 	}
4062 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4063 }
4064 
f2fs_update_errors(struct f2fs_sb_info * sbi)4065 static bool f2fs_update_errors(struct f2fs_sb_info *sbi)
4066 {
4067 	unsigned long flags;
4068 	bool need_update = false;
4069 
4070 	spin_lock_irqsave(&sbi->error_lock, flags);
4071 	if (sbi->error_dirty) {
4072 		memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4073 							MAX_F2FS_ERRORS);
4074 		sbi->error_dirty = false;
4075 		need_update = true;
4076 	}
4077 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4078 
4079 	return need_update;
4080 }
4081 
f2fs_record_errors(struct f2fs_sb_info * sbi,unsigned char error)4082 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error)
4083 {
4084 	int err;
4085 
4086 	f2fs_down_write(&sbi->sb_lock);
4087 
4088 	if (!f2fs_update_errors(sbi))
4089 		goto out_unlock;
4090 
4091 	err = f2fs_commit_super(sbi, false);
4092 	if (err)
4093 		f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d",
4094 								error, err);
4095 out_unlock:
4096 	f2fs_up_write(&sbi->sb_lock);
4097 }
4098 
f2fs_handle_error(struct f2fs_sb_info * sbi,unsigned char error)4099 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error)
4100 {
4101 	f2fs_save_errors(sbi, error);
4102 	f2fs_record_errors(sbi, error);
4103 }
4104 
f2fs_handle_error_async(struct f2fs_sb_info * sbi,unsigned char error)4105 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error)
4106 {
4107 	f2fs_save_errors(sbi, error);
4108 
4109 	if (!sbi->error_dirty)
4110 		return;
4111 	if (!test_bit(error, (unsigned long *)sbi->errors))
4112 		return;
4113 	schedule_work(&sbi->s_error_work);
4114 }
4115 
system_going_down(void)4116 static bool system_going_down(void)
4117 {
4118 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
4119 		|| system_state == SYSTEM_RESTART;
4120 }
4121 
f2fs_handle_critical_error(struct f2fs_sb_info * sbi,unsigned char reason)4122 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason)
4123 {
4124 	struct super_block *sb = sbi->sb;
4125 	bool shutdown = reason == STOP_CP_REASON_SHUTDOWN;
4126 	bool continue_fs = !shutdown &&
4127 			F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE;
4128 
4129 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
4130 
4131 	if (!f2fs_hw_is_readonly(sbi)) {
4132 		save_stop_reason(sbi, reason);
4133 
4134 		/*
4135 		 * always create an asynchronous task to record stop_reason
4136 		 * in order to avoid potential deadlock when running into
4137 		 * f2fs_record_stop_reason() synchronously.
4138 		 */
4139 		schedule_work(&sbi->s_error_work);
4140 	}
4141 
4142 	/*
4143 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
4144 	 * could panic during 'reboot -f' as the underlying device got already
4145 	 * disabled.
4146 	 */
4147 	if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC &&
4148 				!shutdown && !system_going_down() &&
4149 				!is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
4150 		panic("F2FS-fs (device %s): panic forced after error\n",
4151 							sb->s_id);
4152 
4153 	if (shutdown)
4154 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
4155 
4156 	/*
4157 	 * Continue filesystem operators if errors=continue. Should not set
4158 	 * RO by shutdown, since RO bypasses thaw_super which can hang the
4159 	 * system.
4160 	 */
4161 	if (continue_fs || f2fs_readonly(sb) || shutdown) {
4162 		f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason);
4163 		return;
4164 	}
4165 
4166 	f2fs_warn(sbi, "Remounting filesystem read-only");
4167 
4168 	/*
4169 	 * We have already set CP_ERROR_FLAG flag to stop all updates
4170 	 * to filesystem, so it doesn't need to set SB_RDONLY flag here
4171 	 * because the flag should be set covered w/ sb->s_umount semaphore
4172 	 * via remount procedure, otherwise, it will confuse code like
4173 	 * freeze_super() which will lead to deadlocks and other problems.
4174 	 */
4175 }
4176 
f2fs_record_error_work(struct work_struct * work)4177 static void f2fs_record_error_work(struct work_struct *work)
4178 {
4179 	struct f2fs_sb_info *sbi = container_of(work,
4180 					struct f2fs_sb_info, s_error_work);
4181 
4182 	f2fs_record_stop_reason(sbi);
4183 }
4184 
f2fs_scan_devices(struct f2fs_sb_info * sbi)4185 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
4186 {
4187 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4188 	unsigned int max_devices = MAX_DEVICES;
4189 	unsigned int logical_blksize;
4190 	blk_mode_t mode = sb_open_mode(sbi->sb->s_flags);
4191 	int i;
4192 
4193 	/* Initialize single device information */
4194 	if (!RDEV(0).path[0]) {
4195 		if (!bdev_is_zoned(sbi->sb->s_bdev))
4196 			return 0;
4197 		max_devices = 1;
4198 	}
4199 
4200 	/*
4201 	 * Initialize multiple devices information, or single
4202 	 * zoned block device information.
4203 	 */
4204 	sbi->devs = f2fs_kzalloc(sbi,
4205 				 array_size(max_devices,
4206 					    sizeof(struct f2fs_dev_info)),
4207 				 GFP_KERNEL);
4208 	if (!sbi->devs)
4209 		return -ENOMEM;
4210 
4211 	logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
4212 	sbi->aligned_blksize = true;
4213 
4214 	for (i = 0; i < max_devices; i++) {
4215 		if (i == 0)
4216 			FDEV(0).bdev = sbi->sb->s_bdev;
4217 		else if (!RDEV(i).path[0])
4218 			break;
4219 
4220 		if (max_devices > 1) {
4221 			/* Multi-device mount */
4222 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
4223 			FDEV(i).total_segments =
4224 				le32_to_cpu(RDEV(i).total_segments);
4225 			if (i == 0) {
4226 				FDEV(i).start_blk = 0;
4227 				FDEV(i).end_blk = FDEV(i).start_blk +
4228 				    (FDEV(i).total_segments <<
4229 				    sbi->log_blocks_per_seg) - 1 +
4230 				    le32_to_cpu(raw_super->segment0_blkaddr);
4231 			} else {
4232 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
4233 				FDEV(i).end_blk = FDEV(i).start_blk +
4234 					(FDEV(i).total_segments <<
4235 					sbi->log_blocks_per_seg) - 1;
4236 				FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
4237 					mode, sbi->sb, NULL);
4238 			}
4239 		}
4240 		if (IS_ERR(FDEV(i).bdev))
4241 			return PTR_ERR(FDEV(i).bdev);
4242 
4243 		/* to release errored devices */
4244 		sbi->s_ndevs = i + 1;
4245 
4246 		if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
4247 			sbi->aligned_blksize = false;
4248 
4249 #ifdef CONFIG_BLK_DEV_ZONED
4250 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
4251 				!f2fs_sb_has_blkzoned(sbi)) {
4252 			f2fs_err(sbi, "Zoned block device feature not enabled");
4253 			return -EINVAL;
4254 		}
4255 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
4256 			if (init_blkz_info(sbi, i)) {
4257 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
4258 				return -EINVAL;
4259 			}
4260 			if (max_devices == 1)
4261 				break;
4262 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
4263 				  i, FDEV(i).path,
4264 				  FDEV(i).total_segments,
4265 				  FDEV(i).start_blk, FDEV(i).end_blk,
4266 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
4267 				  "Host-aware" : "Host-managed");
4268 			continue;
4269 		}
4270 #endif
4271 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
4272 			  i, FDEV(i).path,
4273 			  FDEV(i).total_segments,
4274 			  FDEV(i).start_blk, FDEV(i).end_blk);
4275 	}
4276 	return 0;
4277 }
4278 
f2fs_setup_casefold(struct f2fs_sb_info * sbi)4279 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
4280 {
4281 #if IS_ENABLED(CONFIG_UNICODE)
4282 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
4283 		const struct f2fs_sb_encodings *encoding_info;
4284 		struct unicode_map *encoding;
4285 		__u16 encoding_flags;
4286 
4287 		encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
4288 		if (!encoding_info) {
4289 			f2fs_err(sbi,
4290 				 "Encoding requested by superblock is unknown");
4291 			return -EINVAL;
4292 		}
4293 
4294 		encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
4295 		encoding = utf8_load(encoding_info->version);
4296 		if (IS_ERR(encoding)) {
4297 			f2fs_err(sbi,
4298 				 "can't mount with superblock charset: %s-%u.%u.%u "
4299 				 "not supported by the kernel. flags: 0x%x.",
4300 				 encoding_info->name,
4301 				 unicode_major(encoding_info->version),
4302 				 unicode_minor(encoding_info->version),
4303 				 unicode_rev(encoding_info->version),
4304 				 encoding_flags);
4305 			return PTR_ERR(encoding);
4306 		}
4307 		f2fs_info(sbi, "Using encoding defined by superblock: "
4308 			 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4309 			 unicode_major(encoding_info->version),
4310 			 unicode_minor(encoding_info->version),
4311 			 unicode_rev(encoding_info->version),
4312 			 encoding_flags);
4313 
4314 		sbi->sb->s_encoding = encoding;
4315 		sbi->sb->s_encoding_flags = encoding_flags;
4316 	}
4317 #else
4318 	if (f2fs_sb_has_casefold(sbi)) {
4319 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
4320 		return -EINVAL;
4321 	}
4322 #endif
4323 	return 0;
4324 }
4325 
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)4326 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
4327 {
4328 	/* adjust parameters according to the volume size */
4329 	if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) {
4330 		if (f2fs_block_unit_discard(sbi))
4331 			SM_I(sbi)->dcc_info->discard_granularity =
4332 						MIN_DISCARD_GRANULARITY;
4333 		if (!f2fs_lfs_mode(sbi))
4334 			SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) |
4335 						BIT(F2FS_IPU_HONOR_OPU_WRITE);
4336 	}
4337 
4338 	sbi->readdir_ra = true;
4339 }
4340 
f2fs_fill_super(struct super_block * sb,void * data,int silent)4341 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
4342 {
4343 	struct f2fs_sb_info *sbi;
4344 	struct f2fs_super_block *raw_super;
4345 	struct inode *root;
4346 	int err;
4347 	bool skip_recovery = false, need_fsck = false;
4348 	char *options = NULL;
4349 	int recovery, i, valid_super_block;
4350 	struct curseg_info *seg_i;
4351 	int retry_cnt = 1;
4352 #ifdef CONFIG_QUOTA
4353 	bool quota_enabled = false;
4354 #endif
4355 
4356 try_onemore:
4357 	err = -EINVAL;
4358 	raw_super = NULL;
4359 	valid_super_block = -1;
4360 	recovery = 0;
4361 
4362 	/* allocate memory for f2fs-specific super block info */
4363 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4364 	if (!sbi)
4365 		return -ENOMEM;
4366 
4367 	sbi->sb = sb;
4368 
4369 	/* initialize locks within allocated memory */
4370 	init_f2fs_rwsem(&sbi->gc_lock);
4371 	mutex_init(&sbi->writepages);
4372 	init_f2fs_rwsem(&sbi->cp_global_sem);
4373 	init_f2fs_rwsem(&sbi->node_write);
4374 	init_f2fs_rwsem(&sbi->node_change);
4375 	spin_lock_init(&sbi->stat_lock);
4376 	init_f2fs_rwsem(&sbi->cp_rwsem);
4377 	init_f2fs_rwsem(&sbi->quota_sem);
4378 	init_waitqueue_head(&sbi->cp_wait);
4379 	spin_lock_init(&sbi->error_lock);
4380 
4381 	for (i = 0; i < NR_INODE_TYPE; i++) {
4382 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4383 		spin_lock_init(&sbi->inode_lock[i]);
4384 	}
4385 	mutex_init(&sbi->flush_lock);
4386 
4387 	/* Load the checksum driver */
4388 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
4389 	if (IS_ERR(sbi->s_chksum_driver)) {
4390 		f2fs_err(sbi, "Cannot load crc32 driver.");
4391 		err = PTR_ERR(sbi->s_chksum_driver);
4392 		sbi->s_chksum_driver = NULL;
4393 		goto free_sbi;
4394 	}
4395 
4396 	/* set a block size */
4397 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4398 		f2fs_err(sbi, "unable to set blocksize");
4399 		goto free_sbi;
4400 	}
4401 
4402 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4403 								&recovery);
4404 	if (err)
4405 		goto free_sbi;
4406 
4407 	sb->s_fs_info = sbi;
4408 	sbi->raw_super = raw_super;
4409 
4410 	INIT_WORK(&sbi->s_error_work, f2fs_record_error_work);
4411 	memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS);
4412 	memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON);
4413 
4414 	/* precompute checksum seed for metadata */
4415 	if (f2fs_sb_has_inode_chksum(sbi))
4416 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
4417 						sizeof(raw_super->uuid));
4418 
4419 	default_options(sbi, false);
4420 	/* parse mount options */
4421 	options = kstrdup((const char *)data, GFP_KERNEL);
4422 	if (data && !options) {
4423 		err = -ENOMEM;
4424 		goto free_sb_buf;
4425 	}
4426 
4427 	err = parse_options(sb, options, false);
4428 	if (err)
4429 		goto free_options;
4430 
4431 	sb->s_maxbytes = max_file_blocks(NULL) <<
4432 				le32_to_cpu(raw_super->log_blocksize);
4433 	sb->s_max_links = F2FS_LINK_MAX;
4434 
4435 	err = f2fs_setup_casefold(sbi);
4436 	if (err)
4437 		goto free_options;
4438 
4439 #ifdef CONFIG_QUOTA
4440 	sb->dq_op = &f2fs_quota_operations;
4441 	sb->s_qcop = &f2fs_quotactl_ops;
4442 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4443 
4444 	if (f2fs_sb_has_quota_ino(sbi)) {
4445 		for (i = 0; i < MAXQUOTAS; i++) {
4446 			if (f2fs_qf_ino(sbi->sb, i))
4447 				sbi->nquota_files++;
4448 		}
4449 	}
4450 #endif
4451 
4452 	sb->s_op = &f2fs_sops;
4453 #ifdef CONFIG_FS_ENCRYPTION
4454 	sb->s_cop = &f2fs_cryptops;
4455 #endif
4456 #ifdef CONFIG_FS_VERITY
4457 	sb->s_vop = &f2fs_verityops;
4458 #endif
4459 	sb->s_xattr = f2fs_xattr_handlers;
4460 	sb->s_export_op = &f2fs_export_ops;
4461 	sb->s_magic = F2FS_SUPER_MAGIC;
4462 	sb->s_time_gran = 1;
4463 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4464 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4465 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
4466 	sb->s_iflags |= SB_I_CGROUPWB;
4467 
4468 	/* init f2fs-specific super block info */
4469 	sbi->valid_super_block = valid_super_block;
4470 
4471 	/* disallow all the data/node/meta page writes */
4472 	set_sbi_flag(sbi, SBI_POR_DOING);
4473 
4474 	err = f2fs_init_write_merge_io(sbi);
4475 	if (err)
4476 		goto free_bio_info;
4477 
4478 	init_sb_info(sbi);
4479 
4480 	err = f2fs_init_iostat(sbi);
4481 	if (err)
4482 		goto free_bio_info;
4483 
4484 	err = init_percpu_info(sbi);
4485 	if (err)
4486 		goto free_iostat;
4487 
4488 	/* init per sbi slab cache */
4489 	err = f2fs_init_xattr_caches(sbi);
4490 	if (err)
4491 		goto free_percpu;
4492 	err = f2fs_init_page_array_cache(sbi);
4493 	if (err)
4494 		goto free_xattr_cache;
4495 
4496 	/* get an inode for meta space */
4497 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4498 	if (IS_ERR(sbi->meta_inode)) {
4499 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4500 		err = PTR_ERR(sbi->meta_inode);
4501 		goto free_page_array_cache;
4502 	}
4503 
4504 	err = f2fs_get_valid_checkpoint(sbi);
4505 	if (err) {
4506 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4507 		goto free_meta_inode;
4508 	}
4509 
4510 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4511 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4512 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4513 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4514 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4515 	}
4516 
4517 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4518 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4519 
4520 	/* Initialize device list */
4521 	err = f2fs_scan_devices(sbi);
4522 	if (err) {
4523 		f2fs_err(sbi, "Failed to find devices");
4524 		goto free_devices;
4525 	}
4526 
4527 	err = f2fs_init_post_read_wq(sbi);
4528 	if (err) {
4529 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4530 		goto free_devices;
4531 	}
4532 
4533 	sbi->total_valid_node_count =
4534 				le32_to_cpu(sbi->ckpt->valid_node_count);
4535 	percpu_counter_set(&sbi->total_valid_inode_count,
4536 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4537 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4538 	sbi->total_valid_block_count =
4539 				le64_to_cpu(sbi->ckpt->valid_block_count);
4540 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4541 	sbi->reserved_blocks = 0;
4542 	sbi->current_reserved_blocks = 0;
4543 	limit_reserve_root(sbi);
4544 	adjust_unusable_cap_perc(sbi);
4545 
4546 	f2fs_init_extent_cache_info(sbi);
4547 
4548 	f2fs_init_ino_entry_info(sbi);
4549 
4550 	f2fs_init_fsync_node_info(sbi);
4551 
4552 	/* setup checkpoint request control and start checkpoint issue thread */
4553 	f2fs_init_ckpt_req_control(sbi);
4554 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4555 			test_opt(sbi, MERGE_CHECKPOINT)) {
4556 		err = f2fs_start_ckpt_thread(sbi);
4557 		if (err) {
4558 			f2fs_err(sbi,
4559 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4560 			    err);
4561 			goto stop_ckpt_thread;
4562 		}
4563 	}
4564 
4565 	/* setup f2fs internal modules */
4566 	err = f2fs_build_segment_manager(sbi);
4567 	if (err) {
4568 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4569 			 err);
4570 		goto free_sm;
4571 	}
4572 	err = f2fs_build_node_manager(sbi);
4573 	if (err) {
4574 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4575 			 err);
4576 		goto free_nm;
4577 	}
4578 
4579 	/* For write statistics */
4580 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4581 
4582 	/* Read accumulated write IO statistics if exists */
4583 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4584 	if (__exist_node_summaries(sbi))
4585 		sbi->kbytes_written =
4586 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4587 
4588 	f2fs_build_gc_manager(sbi);
4589 
4590 	err = f2fs_build_stats(sbi);
4591 	if (err)
4592 		goto free_nm;
4593 
4594 	/* get an inode for node space */
4595 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4596 	if (IS_ERR(sbi->node_inode)) {
4597 		f2fs_err(sbi, "Failed to read node inode");
4598 		err = PTR_ERR(sbi->node_inode);
4599 		goto free_stats;
4600 	}
4601 
4602 	/* read root inode and dentry */
4603 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4604 	if (IS_ERR(root)) {
4605 		f2fs_err(sbi, "Failed to read root inode");
4606 		err = PTR_ERR(root);
4607 		goto free_node_inode;
4608 	}
4609 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4610 			!root->i_size || !root->i_nlink) {
4611 		iput(root);
4612 		err = -EINVAL;
4613 		goto free_node_inode;
4614 	}
4615 
4616 	sb->s_root = d_make_root(root); /* allocate root dentry */
4617 	if (!sb->s_root) {
4618 		err = -ENOMEM;
4619 		goto free_node_inode;
4620 	}
4621 
4622 	err = f2fs_init_compress_inode(sbi);
4623 	if (err)
4624 		goto free_root_inode;
4625 
4626 	err = f2fs_register_sysfs(sbi);
4627 	if (err)
4628 		goto free_compress_inode;
4629 
4630 #ifdef CONFIG_QUOTA
4631 	/* Enable quota usage during mount */
4632 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4633 		err = f2fs_enable_quotas(sb);
4634 		if (err)
4635 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4636 	}
4637 
4638 	quota_enabled = f2fs_recover_quota_begin(sbi);
4639 #endif
4640 	/* if there are any orphan inodes, free them */
4641 	err = f2fs_recover_orphan_inodes(sbi);
4642 	if (err)
4643 		goto free_meta;
4644 
4645 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4646 		goto reset_checkpoint;
4647 
4648 	/* recover fsynced data */
4649 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4650 			!test_opt(sbi, NORECOVERY)) {
4651 		/*
4652 		 * mount should be failed, when device has readonly mode, and
4653 		 * previous checkpoint was not done by clean system shutdown.
4654 		 */
4655 		if (f2fs_hw_is_readonly(sbi)) {
4656 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4657 				err = f2fs_recover_fsync_data(sbi, true);
4658 				if (err > 0) {
4659 					err = -EROFS;
4660 					f2fs_err(sbi, "Need to recover fsync data, but "
4661 						"write access unavailable, please try "
4662 						"mount w/ disable_roll_forward or norecovery");
4663 				}
4664 				if (err < 0)
4665 					goto free_meta;
4666 			}
4667 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4668 			goto reset_checkpoint;
4669 		}
4670 
4671 		if (need_fsck)
4672 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4673 
4674 		if (skip_recovery)
4675 			goto reset_checkpoint;
4676 
4677 		err = f2fs_recover_fsync_data(sbi, false);
4678 		if (err < 0) {
4679 			if (err != -ENOMEM)
4680 				skip_recovery = true;
4681 			need_fsck = true;
4682 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4683 				 err);
4684 			goto free_meta;
4685 		}
4686 	} else {
4687 		err = f2fs_recover_fsync_data(sbi, true);
4688 
4689 		if (!f2fs_readonly(sb) && err > 0) {
4690 			err = -EINVAL;
4691 			f2fs_err(sbi, "Need to recover fsync data");
4692 			goto free_meta;
4693 		}
4694 	}
4695 
4696 #ifdef CONFIG_QUOTA
4697 	f2fs_recover_quota_end(sbi, quota_enabled);
4698 #endif
4699 
4700 	/*
4701 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4702 	 * check zoned block devices' write pointer consistency.
4703 	 */
4704 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4705 		err = f2fs_check_write_pointer(sbi);
4706 		if (err)
4707 			goto free_meta;
4708 	}
4709 
4710 reset_checkpoint:
4711 	f2fs_init_inmem_curseg(sbi);
4712 
4713 	/* f2fs_recover_fsync_data() cleared this already */
4714 	clear_sbi_flag(sbi, SBI_POR_DOING);
4715 
4716 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4717 		err = f2fs_disable_checkpoint(sbi);
4718 		if (err)
4719 			goto sync_free_meta;
4720 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4721 		f2fs_enable_checkpoint(sbi);
4722 	}
4723 
4724 	/*
4725 	 * If filesystem is not mounted as read-only then
4726 	 * do start the gc_thread.
4727 	 */
4728 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4729 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4730 		/* After POR, we can run background GC thread.*/
4731 		err = f2fs_start_gc_thread(sbi);
4732 		if (err)
4733 			goto sync_free_meta;
4734 	}
4735 	kvfree(options);
4736 
4737 	/* recover broken superblock */
4738 	if (recovery) {
4739 		err = f2fs_commit_super(sbi, true);
4740 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4741 			  sbi->valid_super_block ? 1 : 2, err);
4742 	}
4743 
4744 	f2fs_join_shrinker(sbi);
4745 
4746 	f2fs_tuning_parameters(sbi);
4747 
4748 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4749 		    cur_cp_version(F2FS_CKPT(sbi)));
4750 	f2fs_update_time(sbi, CP_TIME);
4751 	f2fs_update_time(sbi, REQ_TIME);
4752 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4753 	return 0;
4754 
4755 sync_free_meta:
4756 	/* safe to flush all the data */
4757 	sync_filesystem(sbi->sb);
4758 	retry_cnt = 0;
4759 
4760 free_meta:
4761 #ifdef CONFIG_QUOTA
4762 	f2fs_truncate_quota_inode_pages(sb);
4763 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4764 		f2fs_quota_off_umount(sbi->sb);
4765 #endif
4766 	/*
4767 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4768 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4769 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4770 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4771 	 */
4772 	truncate_inode_pages_final(META_MAPPING(sbi));
4773 	/* evict some inodes being cached by GC */
4774 	evict_inodes(sb);
4775 	f2fs_unregister_sysfs(sbi);
4776 free_compress_inode:
4777 	f2fs_destroy_compress_inode(sbi);
4778 free_root_inode:
4779 	dput(sb->s_root);
4780 	sb->s_root = NULL;
4781 free_node_inode:
4782 	f2fs_release_ino_entry(sbi, true);
4783 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4784 	iput(sbi->node_inode);
4785 	sbi->node_inode = NULL;
4786 free_stats:
4787 	f2fs_destroy_stats(sbi);
4788 free_nm:
4789 	/* stop discard thread before destroying node manager */
4790 	f2fs_stop_discard_thread(sbi);
4791 	f2fs_destroy_node_manager(sbi);
4792 free_sm:
4793 	f2fs_destroy_segment_manager(sbi);
4794 stop_ckpt_thread:
4795 	f2fs_stop_ckpt_thread(sbi);
4796 	/* flush s_error_work before sbi destroy */
4797 	flush_work(&sbi->s_error_work);
4798 	f2fs_destroy_post_read_wq(sbi);
4799 free_devices:
4800 	destroy_device_list(sbi);
4801 	kvfree(sbi->ckpt);
4802 free_meta_inode:
4803 	make_bad_inode(sbi->meta_inode);
4804 	iput(sbi->meta_inode);
4805 	sbi->meta_inode = NULL;
4806 free_page_array_cache:
4807 	f2fs_destroy_page_array_cache(sbi);
4808 free_xattr_cache:
4809 	f2fs_destroy_xattr_caches(sbi);
4810 free_percpu:
4811 	destroy_percpu_info(sbi);
4812 free_iostat:
4813 	f2fs_destroy_iostat(sbi);
4814 free_bio_info:
4815 	for (i = 0; i < NR_PAGE_TYPE; i++)
4816 		kvfree(sbi->write_io[i]);
4817 
4818 #if IS_ENABLED(CONFIG_UNICODE)
4819 	utf8_unload(sb->s_encoding);
4820 	sb->s_encoding = NULL;
4821 #endif
4822 free_options:
4823 #ifdef CONFIG_QUOTA
4824 	for (i = 0; i < MAXQUOTAS; i++)
4825 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4826 #endif
4827 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4828 	kvfree(options);
4829 free_sb_buf:
4830 	kfree(raw_super);
4831 free_sbi:
4832 	if (sbi->s_chksum_driver)
4833 		crypto_free_shash(sbi->s_chksum_driver);
4834 	kfree(sbi);
4835 
4836 	/* give only one another chance */
4837 	if (retry_cnt > 0 && skip_recovery) {
4838 		retry_cnt--;
4839 		shrink_dcache_sb(sb);
4840 		goto try_onemore;
4841 	}
4842 	return err;
4843 }
4844 
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4845 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4846 			const char *dev_name, void *data)
4847 {
4848 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4849 }
4850 
kill_f2fs_super(struct super_block * sb)4851 static void kill_f2fs_super(struct super_block *sb)
4852 {
4853 	if (sb->s_root) {
4854 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4855 
4856 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4857 		f2fs_stop_gc_thread(sbi);
4858 		f2fs_stop_discard_thread(sbi);
4859 
4860 #ifdef CONFIG_F2FS_FS_COMPRESSION
4861 		/*
4862 		 * latter evict_inode() can bypass checking and invalidating
4863 		 * compress inode cache.
4864 		 */
4865 		if (test_opt(sbi, COMPRESS_CACHE))
4866 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4867 #endif
4868 
4869 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4870 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4871 			struct cp_control cpc = {
4872 				.reason = CP_UMOUNT,
4873 			};
4874 			stat_inc_cp_call_count(sbi, TOTAL_CALL);
4875 			f2fs_write_checkpoint(sbi, &cpc);
4876 		}
4877 
4878 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4879 			sb->s_flags &= ~SB_RDONLY;
4880 	}
4881 	kill_block_super(sb);
4882 }
4883 
4884 static struct file_system_type f2fs_fs_type = {
4885 	.owner		= THIS_MODULE,
4886 	.name		= "f2fs",
4887 	.mount		= f2fs_mount,
4888 	.kill_sb	= kill_f2fs_super,
4889 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
4890 };
4891 MODULE_ALIAS_FS("f2fs");
4892 
init_inodecache(void)4893 static int __init init_inodecache(void)
4894 {
4895 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4896 			sizeof(struct f2fs_inode_info), 0,
4897 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4898 	return f2fs_inode_cachep ? 0 : -ENOMEM;
4899 }
4900 
destroy_inodecache(void)4901 static void destroy_inodecache(void)
4902 {
4903 	/*
4904 	 * Make sure all delayed rcu free inodes are flushed before we
4905 	 * destroy cache.
4906 	 */
4907 	rcu_barrier();
4908 	kmem_cache_destroy(f2fs_inode_cachep);
4909 }
4910 
init_f2fs_fs(void)4911 static int __init init_f2fs_fs(void)
4912 {
4913 	int err;
4914 
4915 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4916 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4917 				PAGE_SIZE, F2FS_BLKSIZE);
4918 		return -EINVAL;
4919 	}
4920 
4921 	err = init_inodecache();
4922 	if (err)
4923 		goto fail;
4924 	err = f2fs_create_node_manager_caches();
4925 	if (err)
4926 		goto free_inodecache;
4927 	err = f2fs_create_segment_manager_caches();
4928 	if (err)
4929 		goto free_node_manager_caches;
4930 	err = f2fs_create_checkpoint_caches();
4931 	if (err)
4932 		goto free_segment_manager_caches;
4933 	err = f2fs_create_recovery_cache();
4934 	if (err)
4935 		goto free_checkpoint_caches;
4936 	err = f2fs_create_extent_cache();
4937 	if (err)
4938 		goto free_recovery_cache;
4939 	err = f2fs_create_garbage_collection_cache();
4940 	if (err)
4941 		goto free_extent_cache;
4942 	err = f2fs_init_sysfs();
4943 	if (err)
4944 		goto free_garbage_collection_cache;
4945 	err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker");
4946 	if (err)
4947 		goto free_sysfs;
4948 	f2fs_create_root_stats();
4949 	err = f2fs_init_post_read_processing();
4950 	if (err)
4951 		goto free_root_stats;
4952 	err = f2fs_init_iostat_processing();
4953 	if (err)
4954 		goto free_post_read;
4955 	err = f2fs_init_bio_entry_cache();
4956 	if (err)
4957 		goto free_iostat;
4958 	err = f2fs_init_bioset();
4959 	if (err)
4960 		goto free_bio_entry_cache;
4961 	err = f2fs_init_compress_mempool();
4962 	if (err)
4963 		goto free_bioset;
4964 	err = f2fs_init_compress_cache();
4965 	if (err)
4966 		goto free_compress_mempool;
4967 	err = f2fs_create_casefold_cache();
4968 	if (err)
4969 		goto free_compress_cache;
4970 	err = register_filesystem(&f2fs_fs_type);
4971 	if (err)
4972 		goto free_casefold_cache;
4973 	return 0;
4974 free_casefold_cache:
4975 	f2fs_destroy_casefold_cache();
4976 free_compress_cache:
4977 	f2fs_destroy_compress_cache();
4978 free_compress_mempool:
4979 	f2fs_destroy_compress_mempool();
4980 free_bioset:
4981 	f2fs_destroy_bioset();
4982 free_bio_entry_cache:
4983 	f2fs_destroy_bio_entry_cache();
4984 free_iostat:
4985 	f2fs_destroy_iostat_processing();
4986 free_post_read:
4987 	f2fs_destroy_post_read_processing();
4988 free_root_stats:
4989 	f2fs_destroy_root_stats();
4990 	unregister_shrinker(&f2fs_shrinker_info);
4991 free_sysfs:
4992 	f2fs_exit_sysfs();
4993 free_garbage_collection_cache:
4994 	f2fs_destroy_garbage_collection_cache();
4995 free_extent_cache:
4996 	f2fs_destroy_extent_cache();
4997 free_recovery_cache:
4998 	f2fs_destroy_recovery_cache();
4999 free_checkpoint_caches:
5000 	f2fs_destroy_checkpoint_caches();
5001 free_segment_manager_caches:
5002 	f2fs_destroy_segment_manager_caches();
5003 free_node_manager_caches:
5004 	f2fs_destroy_node_manager_caches();
5005 free_inodecache:
5006 	destroy_inodecache();
5007 fail:
5008 	return err;
5009 }
5010 
exit_f2fs_fs(void)5011 static void __exit exit_f2fs_fs(void)
5012 {
5013 	unregister_filesystem(&f2fs_fs_type);
5014 	f2fs_destroy_casefold_cache();
5015 	f2fs_destroy_compress_cache();
5016 	f2fs_destroy_compress_mempool();
5017 	f2fs_destroy_bioset();
5018 	f2fs_destroy_bio_entry_cache();
5019 	f2fs_destroy_iostat_processing();
5020 	f2fs_destroy_post_read_processing();
5021 	f2fs_destroy_root_stats();
5022 	unregister_shrinker(&f2fs_shrinker_info);
5023 	f2fs_exit_sysfs();
5024 	f2fs_destroy_garbage_collection_cache();
5025 	f2fs_destroy_extent_cache();
5026 	f2fs_destroy_recovery_cache();
5027 	f2fs_destroy_checkpoint_caches();
5028 	f2fs_destroy_segment_manager_caches();
5029 	f2fs_destroy_node_manager_caches();
5030 	destroy_inodecache();
5031 }
5032 
5033 module_init(init_f2fs_fs)
5034 module_exit(exit_f2fs_fs)
5035 
5036 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
5037 MODULE_DESCRIPTION("Flash Friendly File System");
5038 MODULE_LICENSE("GPL");
5039 MODULE_SOFTDEP("pre: crc32");
5040 
5041