xref: /openbmc/linux/fs/f2fs/super.c (revision d32fd6bb9f2bc8178cdd65ebec1ad670a8bfa241)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/fs_context.h>
12 #include <linux/sched/mm.h>
13 #include <linux/statfs.h>
14 #include <linux/buffer_head.h>
15 #include <linux/kthread.h>
16 #include <linux/parser.h>
17 #include <linux/mount.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/random.h>
21 #include <linux/exportfs.h>
22 #include <linux/blkdev.h>
23 #include <linux/quotaops.h>
24 #include <linux/f2fs_fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/quota.h>
27 #include <linux/unicode.h>
28 #include <linux/part_stat.h>
29 #include <linux/zstd.h>
30 #include <linux/lz4.h>
31 
32 #include "f2fs.h"
33 #include "node.h"
34 #include "segment.h"
35 #include "xattr.h"
36 #include "gc.h"
37 #include "iostat.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/f2fs.h>
41 
42 static struct kmem_cache *f2fs_inode_cachep;
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 
46 const char *f2fs_fault_name[FAULT_MAX] = {
47 	[FAULT_KMALLOC]		= "kmalloc",
48 	[FAULT_KVMALLOC]	= "kvmalloc",
49 	[FAULT_PAGE_ALLOC]	= "page alloc",
50 	[FAULT_PAGE_GET]	= "page get",
51 	[FAULT_ALLOC_NID]	= "alloc nid",
52 	[FAULT_ORPHAN]		= "orphan",
53 	[FAULT_BLOCK]		= "no more block",
54 	[FAULT_DIR_DEPTH]	= "too big dir depth",
55 	[FAULT_EVICT_INODE]	= "evict_inode fail",
56 	[FAULT_TRUNCATE]	= "truncate fail",
57 	[FAULT_READ_IO]		= "read IO error",
58 	[FAULT_CHECKPOINT]	= "checkpoint error",
59 	[FAULT_DISCARD]		= "discard error",
60 	[FAULT_WRITE_IO]	= "write IO error",
61 	[FAULT_SLAB_ALLOC]	= "slab alloc",
62 	[FAULT_DQUOT_INIT]	= "dquot initialize",
63 	[FAULT_LOCK_OP]		= "lock_op",
64 	[FAULT_BLKADDR]		= "invalid blkaddr",
65 };
66 
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)67 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
68 							unsigned long type)
69 {
70 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
71 
72 	if (rate) {
73 		if (rate > INT_MAX)
74 			return -EINVAL;
75 		atomic_set(&ffi->inject_ops, 0);
76 		ffi->inject_rate = (int)rate;
77 	}
78 
79 	if (type) {
80 		if (type >= BIT(FAULT_MAX))
81 			return -EINVAL;
82 		ffi->inject_type = (unsigned int)type;
83 	}
84 
85 	if (!rate && !type)
86 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
87 	else
88 		f2fs_info(sbi,
89 			"build fault injection attr: rate: %lu, type: 0x%lx",
90 								rate, type);
91 	return 0;
92 }
93 #endif
94 
95 /* f2fs-wide shrinker description */
96 static struct shrinker f2fs_shrinker_info = {
97 	.scan_objects = f2fs_shrink_scan,
98 	.count_objects = f2fs_shrink_count,
99 	.seeks = DEFAULT_SEEKS,
100 };
101 
102 enum {
103 	Opt_gc_background,
104 	Opt_disable_roll_forward,
105 	Opt_norecovery,
106 	Opt_discard,
107 	Opt_nodiscard,
108 	Opt_noheap,
109 	Opt_heap,
110 	Opt_user_xattr,
111 	Opt_nouser_xattr,
112 	Opt_acl,
113 	Opt_noacl,
114 	Opt_active_logs,
115 	Opt_disable_ext_identify,
116 	Opt_inline_xattr,
117 	Opt_noinline_xattr,
118 	Opt_inline_xattr_size,
119 	Opt_inline_data,
120 	Opt_inline_dentry,
121 	Opt_noinline_dentry,
122 	Opt_flush_merge,
123 	Opt_noflush_merge,
124 	Opt_barrier,
125 	Opt_nobarrier,
126 	Opt_fastboot,
127 	Opt_extent_cache,
128 	Opt_noextent_cache,
129 	Opt_noinline_data,
130 	Opt_data_flush,
131 	Opt_reserve_root,
132 	Opt_resgid,
133 	Opt_resuid,
134 	Opt_mode,
135 	Opt_fault_injection,
136 	Opt_fault_type,
137 	Opt_lazytime,
138 	Opt_nolazytime,
139 	Opt_quota,
140 	Opt_noquota,
141 	Opt_usrquota,
142 	Opt_grpquota,
143 	Opt_prjquota,
144 	Opt_usrjquota,
145 	Opt_grpjquota,
146 	Opt_prjjquota,
147 	Opt_offusrjquota,
148 	Opt_offgrpjquota,
149 	Opt_offprjjquota,
150 	Opt_jqfmt_vfsold,
151 	Opt_jqfmt_vfsv0,
152 	Opt_jqfmt_vfsv1,
153 	Opt_alloc,
154 	Opt_fsync,
155 	Opt_test_dummy_encryption,
156 	Opt_inlinecrypt,
157 	Opt_checkpoint_disable,
158 	Opt_checkpoint_disable_cap,
159 	Opt_checkpoint_disable_cap_perc,
160 	Opt_checkpoint_enable,
161 	Opt_checkpoint_merge,
162 	Opt_nocheckpoint_merge,
163 	Opt_compress_algorithm,
164 	Opt_compress_log_size,
165 	Opt_compress_extension,
166 	Opt_nocompress_extension,
167 	Opt_compress_chksum,
168 	Opt_compress_mode,
169 	Opt_compress_cache,
170 	Opt_atgc,
171 	Opt_gc_merge,
172 	Opt_nogc_merge,
173 	Opt_discard_unit,
174 	Opt_memory_mode,
175 	Opt_age_extent_cache,
176 	Opt_errors,
177 	Opt_err,
178 };
179 
180 static match_table_t f2fs_tokens = {
181 	{Opt_gc_background, "background_gc=%s"},
182 	{Opt_disable_roll_forward, "disable_roll_forward"},
183 	{Opt_norecovery, "norecovery"},
184 	{Opt_discard, "discard"},
185 	{Opt_nodiscard, "nodiscard"},
186 	{Opt_noheap, "no_heap"},
187 	{Opt_heap, "heap"},
188 	{Opt_user_xattr, "user_xattr"},
189 	{Opt_nouser_xattr, "nouser_xattr"},
190 	{Opt_acl, "acl"},
191 	{Opt_noacl, "noacl"},
192 	{Opt_active_logs, "active_logs=%u"},
193 	{Opt_disable_ext_identify, "disable_ext_identify"},
194 	{Opt_inline_xattr, "inline_xattr"},
195 	{Opt_noinline_xattr, "noinline_xattr"},
196 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
197 	{Opt_inline_data, "inline_data"},
198 	{Opt_inline_dentry, "inline_dentry"},
199 	{Opt_noinline_dentry, "noinline_dentry"},
200 	{Opt_flush_merge, "flush_merge"},
201 	{Opt_noflush_merge, "noflush_merge"},
202 	{Opt_barrier, "barrier"},
203 	{Opt_nobarrier, "nobarrier"},
204 	{Opt_fastboot, "fastboot"},
205 	{Opt_extent_cache, "extent_cache"},
206 	{Opt_noextent_cache, "noextent_cache"},
207 	{Opt_noinline_data, "noinline_data"},
208 	{Opt_data_flush, "data_flush"},
209 	{Opt_reserve_root, "reserve_root=%u"},
210 	{Opt_resgid, "resgid=%u"},
211 	{Opt_resuid, "resuid=%u"},
212 	{Opt_mode, "mode=%s"},
213 	{Opt_fault_injection, "fault_injection=%u"},
214 	{Opt_fault_type, "fault_type=%u"},
215 	{Opt_lazytime, "lazytime"},
216 	{Opt_nolazytime, "nolazytime"},
217 	{Opt_quota, "quota"},
218 	{Opt_noquota, "noquota"},
219 	{Opt_usrquota, "usrquota"},
220 	{Opt_grpquota, "grpquota"},
221 	{Opt_prjquota, "prjquota"},
222 	{Opt_usrjquota, "usrjquota=%s"},
223 	{Opt_grpjquota, "grpjquota=%s"},
224 	{Opt_prjjquota, "prjjquota=%s"},
225 	{Opt_offusrjquota, "usrjquota="},
226 	{Opt_offgrpjquota, "grpjquota="},
227 	{Opt_offprjjquota, "prjjquota="},
228 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
229 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
230 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
231 	{Opt_alloc, "alloc_mode=%s"},
232 	{Opt_fsync, "fsync_mode=%s"},
233 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
234 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
235 	{Opt_inlinecrypt, "inlinecrypt"},
236 	{Opt_checkpoint_disable, "checkpoint=disable"},
237 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
238 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
239 	{Opt_checkpoint_enable, "checkpoint=enable"},
240 	{Opt_checkpoint_merge, "checkpoint_merge"},
241 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
242 	{Opt_compress_algorithm, "compress_algorithm=%s"},
243 	{Opt_compress_log_size, "compress_log_size=%u"},
244 	{Opt_compress_extension, "compress_extension=%s"},
245 	{Opt_nocompress_extension, "nocompress_extension=%s"},
246 	{Opt_compress_chksum, "compress_chksum"},
247 	{Opt_compress_mode, "compress_mode=%s"},
248 	{Opt_compress_cache, "compress_cache"},
249 	{Opt_atgc, "atgc"},
250 	{Opt_gc_merge, "gc_merge"},
251 	{Opt_nogc_merge, "nogc_merge"},
252 	{Opt_discard_unit, "discard_unit=%s"},
253 	{Opt_memory_mode, "memory=%s"},
254 	{Opt_age_extent_cache, "age_extent_cache"},
255 	{Opt_errors, "errors=%s"},
256 	{Opt_err, NULL},
257 };
258 
f2fs_printk(struct f2fs_sb_info * sbi,bool limit_rate,const char * fmt,...)259 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate,
260 						const char *fmt, ...)
261 {
262 	struct va_format vaf;
263 	va_list args;
264 	int level;
265 
266 	va_start(args, fmt);
267 
268 	level = printk_get_level(fmt);
269 	vaf.fmt = printk_skip_level(fmt);
270 	vaf.va = &args;
271 	if (limit_rate)
272 		printk_ratelimited("%c%cF2FS-fs (%s): %pV\n",
273 			KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
274 	else
275 		printk("%c%cF2FS-fs (%s): %pV\n",
276 			KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
277 
278 	va_end(args);
279 }
280 
281 #if IS_ENABLED(CONFIG_UNICODE)
282 static const struct f2fs_sb_encodings {
283 	__u16 magic;
284 	char *name;
285 	unsigned int version;
286 } f2fs_sb_encoding_map[] = {
287 	{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
288 };
289 
290 static const struct f2fs_sb_encodings *
f2fs_sb_read_encoding(const struct f2fs_super_block * sb)291 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
292 {
293 	__u16 magic = le16_to_cpu(sb->s_encoding);
294 	int i;
295 
296 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
297 		if (magic == f2fs_sb_encoding_map[i].magic)
298 			return &f2fs_sb_encoding_map[i];
299 
300 	return NULL;
301 }
302 
303 struct kmem_cache *f2fs_cf_name_slab;
f2fs_create_casefold_cache(void)304 static int __init f2fs_create_casefold_cache(void)
305 {
306 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
307 							F2FS_NAME_LEN);
308 	return f2fs_cf_name_slab ? 0 : -ENOMEM;
309 }
310 
f2fs_destroy_casefold_cache(void)311 static void f2fs_destroy_casefold_cache(void)
312 {
313 	kmem_cache_destroy(f2fs_cf_name_slab);
314 }
315 #else
f2fs_create_casefold_cache(void)316 static int __init f2fs_create_casefold_cache(void) { return 0; }
f2fs_destroy_casefold_cache(void)317 static void f2fs_destroy_casefold_cache(void) { }
318 #endif
319 
limit_reserve_root(struct f2fs_sb_info * sbi)320 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
321 {
322 	block_t limit = min((sbi->user_block_count >> 3),
323 			sbi->user_block_count - sbi->reserved_blocks);
324 
325 	/* limit is 12.5% */
326 	if (test_opt(sbi, RESERVE_ROOT) &&
327 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
328 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
329 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
330 			  F2FS_OPTION(sbi).root_reserved_blocks);
331 	}
332 	if (!test_opt(sbi, RESERVE_ROOT) &&
333 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
334 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
335 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
336 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
337 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
338 			  from_kuid_munged(&init_user_ns,
339 					   F2FS_OPTION(sbi).s_resuid),
340 			  from_kgid_munged(&init_user_ns,
341 					   F2FS_OPTION(sbi).s_resgid));
342 }
343 
adjust_unusable_cap_perc(struct f2fs_sb_info * sbi)344 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
345 {
346 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
347 		return;
348 
349 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
350 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
351 	else
352 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
353 					F2FS_OPTION(sbi).unusable_cap_perc;
354 
355 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
356 			F2FS_OPTION(sbi).unusable_cap,
357 			F2FS_OPTION(sbi).unusable_cap_perc);
358 }
359 
init_once(void * foo)360 static void init_once(void *foo)
361 {
362 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
363 
364 	inode_init_once(&fi->vfs_inode);
365 }
366 
367 #ifdef CONFIG_QUOTA
368 static const char * const quotatypes[] = INITQFNAMES;
369 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)370 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
371 							substring_t *args)
372 {
373 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
374 	char *qname;
375 	int ret = -EINVAL;
376 
377 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
378 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
379 		return -EINVAL;
380 	}
381 	if (f2fs_sb_has_quota_ino(sbi)) {
382 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
383 		return 0;
384 	}
385 
386 	qname = match_strdup(args);
387 	if (!qname) {
388 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
389 		return -ENOMEM;
390 	}
391 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
392 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
393 			ret = 0;
394 		else
395 			f2fs_err(sbi, "%s quota file already specified",
396 				 QTYPE2NAME(qtype));
397 		goto errout;
398 	}
399 	if (strchr(qname, '/')) {
400 		f2fs_err(sbi, "quotafile must be on filesystem root");
401 		goto errout;
402 	}
403 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
404 	set_opt(sbi, QUOTA);
405 	return 0;
406 errout:
407 	kfree(qname);
408 	return ret;
409 }
410 
f2fs_clear_qf_name(struct super_block * sb,int qtype)411 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
412 {
413 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
414 
415 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
416 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
417 		return -EINVAL;
418 	}
419 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
420 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
421 	return 0;
422 }
423 
f2fs_check_quota_options(struct f2fs_sb_info * sbi)424 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
425 {
426 	/*
427 	 * We do the test below only for project quotas. 'usrquota' and
428 	 * 'grpquota' mount options are allowed even without quota feature
429 	 * to support legacy quotas in quota files.
430 	 */
431 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
432 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
433 		return -1;
434 	}
435 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
436 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
437 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
438 		if (test_opt(sbi, USRQUOTA) &&
439 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
440 			clear_opt(sbi, USRQUOTA);
441 
442 		if (test_opt(sbi, GRPQUOTA) &&
443 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
444 			clear_opt(sbi, GRPQUOTA);
445 
446 		if (test_opt(sbi, PRJQUOTA) &&
447 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
448 			clear_opt(sbi, PRJQUOTA);
449 
450 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
451 				test_opt(sbi, PRJQUOTA)) {
452 			f2fs_err(sbi, "old and new quota format mixing");
453 			return -1;
454 		}
455 
456 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
457 			f2fs_err(sbi, "journaled quota format not specified");
458 			return -1;
459 		}
460 	}
461 
462 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
463 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
464 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
465 	}
466 	return 0;
467 }
468 #endif
469 
f2fs_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)470 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
471 					  const char *opt,
472 					  const substring_t *arg,
473 					  bool is_remount)
474 {
475 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
476 	struct fs_parameter param = {
477 		.type = fs_value_is_string,
478 		.string = arg->from ? arg->from : "",
479 	};
480 	struct fscrypt_dummy_policy *policy =
481 		&F2FS_OPTION(sbi).dummy_enc_policy;
482 	int err;
483 
484 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
485 		f2fs_warn(sbi, "test_dummy_encryption option not supported");
486 		return -EINVAL;
487 	}
488 
489 	if (!f2fs_sb_has_encrypt(sbi)) {
490 		f2fs_err(sbi, "Encrypt feature is off");
491 		return -EINVAL;
492 	}
493 
494 	/*
495 	 * This mount option is just for testing, and it's not worthwhile to
496 	 * implement the extra complexity (e.g. RCU protection) that would be
497 	 * needed to allow it to be set or changed during remount.  We do allow
498 	 * it to be specified during remount, but only if there is no change.
499 	 */
500 	if (is_remount && !fscrypt_is_dummy_policy_set(policy)) {
501 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
502 		return -EINVAL;
503 	}
504 
505 	err = fscrypt_parse_test_dummy_encryption(&param, policy);
506 	if (err) {
507 		if (err == -EEXIST)
508 			f2fs_warn(sbi,
509 				  "Can't change test_dummy_encryption on remount");
510 		else if (err == -EINVAL)
511 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
512 				  opt);
513 		else
514 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
515 				  opt, err);
516 		return -EINVAL;
517 	}
518 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
519 	return 0;
520 }
521 
522 #ifdef CONFIG_F2FS_FS_COMPRESSION
is_compress_extension_exist(struct f2fs_sb_info * sbi,const char * new_ext,bool is_ext)523 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi,
524 					const char *new_ext, bool is_ext)
525 {
526 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
527 	int ext_cnt;
528 	int i;
529 
530 	if (is_ext) {
531 		ext = F2FS_OPTION(sbi).extensions;
532 		ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
533 	} else {
534 		ext = F2FS_OPTION(sbi).noextensions;
535 		ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
536 	}
537 
538 	for (i = 0; i < ext_cnt; i++) {
539 		if (!strcasecmp(new_ext, ext[i]))
540 			return true;
541 	}
542 
543 	return false;
544 }
545 
546 /*
547  * 1. The same extension name cannot not appear in both compress and non-compress extension
548  * at the same time.
549  * 2. If the compress extension specifies all files, the types specified by the non-compress
550  * extension will be treated as special cases and will not be compressed.
551  * 3. Don't allow the non-compress extension specifies all files.
552  */
f2fs_test_compress_extension(struct f2fs_sb_info * sbi)553 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
554 {
555 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
556 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
557 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
558 
559 	ext = F2FS_OPTION(sbi).extensions;
560 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
561 	noext = F2FS_OPTION(sbi).noextensions;
562 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
563 
564 	if (!noext_cnt)
565 		return 0;
566 
567 	for (no_index = 0; no_index < noext_cnt; no_index++) {
568 		if (!strcasecmp("*", noext[no_index])) {
569 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
570 			return -EINVAL;
571 		}
572 		for (index = 0; index < ext_cnt; index++) {
573 			if (!strcasecmp(ext[index], noext[no_index])) {
574 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
575 						ext[index]);
576 				return -EINVAL;
577 			}
578 		}
579 	}
580 	return 0;
581 }
582 
583 #ifdef CONFIG_F2FS_FS_LZ4
f2fs_set_lz4hc_level(struct f2fs_sb_info * sbi,const char * str)584 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
585 {
586 #ifdef CONFIG_F2FS_FS_LZ4HC
587 	unsigned int level;
588 
589 	if (strlen(str) == 3) {
590 		F2FS_OPTION(sbi).compress_level = 0;
591 		return 0;
592 	}
593 
594 	str += 3;
595 
596 	if (str[0] != ':') {
597 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
598 		return -EINVAL;
599 	}
600 	if (kstrtouint(str + 1, 10, &level))
601 		return -EINVAL;
602 
603 	if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) {
604 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
605 		return -EINVAL;
606 	}
607 
608 	F2FS_OPTION(sbi).compress_level = level;
609 	return 0;
610 #else
611 	if (strlen(str) == 3) {
612 		F2FS_OPTION(sbi).compress_level = 0;
613 		return 0;
614 	}
615 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
616 	return -EINVAL;
617 #endif
618 }
619 #endif
620 
621 #ifdef CONFIG_F2FS_FS_ZSTD
f2fs_set_zstd_level(struct f2fs_sb_info * sbi,const char * str)622 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
623 {
624 	int level;
625 	int len = 4;
626 
627 	if (strlen(str) == len) {
628 		F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
629 		return 0;
630 	}
631 
632 	str += len;
633 
634 	if (str[0] != ':') {
635 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
636 		return -EINVAL;
637 	}
638 	if (kstrtoint(str + 1, 10, &level))
639 		return -EINVAL;
640 
641 	/* f2fs does not support negative compress level now */
642 	if (level < 0) {
643 		f2fs_info(sbi, "do not support negative compress level: %d", level);
644 		return -ERANGE;
645 	}
646 
647 	if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) {
648 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
649 		return -EINVAL;
650 	}
651 
652 	F2FS_OPTION(sbi).compress_level = level;
653 	return 0;
654 }
655 #endif
656 #endif
657 
parse_options(struct super_block * sb,char * options,bool is_remount)658 static int parse_options(struct super_block *sb, char *options, bool is_remount)
659 {
660 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
661 	substring_t args[MAX_OPT_ARGS];
662 #ifdef CONFIG_F2FS_FS_COMPRESSION
663 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
664 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
665 	int ext_cnt, noext_cnt;
666 #endif
667 	char *p, *name;
668 	int arg = 0;
669 	kuid_t uid;
670 	kgid_t gid;
671 	int ret;
672 
673 	if (!options)
674 		goto default_check;
675 
676 	while ((p = strsep(&options, ",")) != NULL) {
677 		int token;
678 
679 		if (!*p)
680 			continue;
681 		/*
682 		 * Initialize args struct so we know whether arg was
683 		 * found; some options take optional arguments.
684 		 */
685 		args[0].to = args[0].from = NULL;
686 		token = match_token(p, f2fs_tokens, args);
687 
688 		switch (token) {
689 		case Opt_gc_background:
690 			name = match_strdup(&args[0]);
691 
692 			if (!name)
693 				return -ENOMEM;
694 			if (!strcmp(name, "on")) {
695 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
696 			} else if (!strcmp(name, "off")) {
697 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
698 			} else if (!strcmp(name, "sync")) {
699 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
700 			} else {
701 				kfree(name);
702 				return -EINVAL;
703 			}
704 			kfree(name);
705 			break;
706 		case Opt_disable_roll_forward:
707 			set_opt(sbi, DISABLE_ROLL_FORWARD);
708 			break;
709 		case Opt_norecovery:
710 			/* this option mounts f2fs with ro */
711 			set_opt(sbi, NORECOVERY);
712 			if (!f2fs_readonly(sb))
713 				return -EINVAL;
714 			break;
715 		case Opt_discard:
716 			if (!f2fs_hw_support_discard(sbi)) {
717 				f2fs_warn(sbi, "device does not support discard");
718 				break;
719 			}
720 			set_opt(sbi, DISCARD);
721 			break;
722 		case Opt_nodiscard:
723 			if (f2fs_hw_should_discard(sbi)) {
724 				f2fs_warn(sbi, "discard is required for zoned block devices");
725 				return -EINVAL;
726 			}
727 			clear_opt(sbi, DISCARD);
728 			break;
729 		case Opt_noheap:
730 		case Opt_heap:
731 			f2fs_warn(sbi, "heap/no_heap options were deprecated");
732 			break;
733 #ifdef CONFIG_F2FS_FS_XATTR
734 		case Opt_user_xattr:
735 			set_opt(sbi, XATTR_USER);
736 			break;
737 		case Opt_nouser_xattr:
738 			clear_opt(sbi, XATTR_USER);
739 			break;
740 		case Opt_inline_xattr:
741 			set_opt(sbi, INLINE_XATTR);
742 			break;
743 		case Opt_noinline_xattr:
744 			clear_opt(sbi, INLINE_XATTR);
745 			break;
746 		case Opt_inline_xattr_size:
747 			if (args->from && match_int(args, &arg))
748 				return -EINVAL;
749 			set_opt(sbi, INLINE_XATTR_SIZE);
750 			F2FS_OPTION(sbi).inline_xattr_size = arg;
751 			break;
752 #else
753 		case Opt_user_xattr:
754 			f2fs_info(sbi, "user_xattr options not supported");
755 			break;
756 		case Opt_nouser_xattr:
757 			f2fs_info(sbi, "nouser_xattr options not supported");
758 			break;
759 		case Opt_inline_xattr:
760 			f2fs_info(sbi, "inline_xattr options not supported");
761 			break;
762 		case Opt_noinline_xattr:
763 			f2fs_info(sbi, "noinline_xattr options not supported");
764 			break;
765 #endif
766 #ifdef CONFIG_F2FS_FS_POSIX_ACL
767 		case Opt_acl:
768 			set_opt(sbi, POSIX_ACL);
769 			break;
770 		case Opt_noacl:
771 			clear_opt(sbi, POSIX_ACL);
772 			break;
773 #else
774 		case Opt_acl:
775 			f2fs_info(sbi, "acl options not supported");
776 			break;
777 		case Opt_noacl:
778 			f2fs_info(sbi, "noacl options not supported");
779 			break;
780 #endif
781 		case Opt_active_logs:
782 			if (args->from && match_int(args, &arg))
783 				return -EINVAL;
784 			if (arg != 2 && arg != 4 &&
785 				arg != NR_CURSEG_PERSIST_TYPE)
786 				return -EINVAL;
787 			F2FS_OPTION(sbi).active_logs = arg;
788 			break;
789 		case Opt_disable_ext_identify:
790 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
791 			break;
792 		case Opt_inline_data:
793 			set_opt(sbi, INLINE_DATA);
794 			break;
795 		case Opt_inline_dentry:
796 			set_opt(sbi, INLINE_DENTRY);
797 			break;
798 		case Opt_noinline_dentry:
799 			clear_opt(sbi, INLINE_DENTRY);
800 			break;
801 		case Opt_flush_merge:
802 			set_opt(sbi, FLUSH_MERGE);
803 			break;
804 		case Opt_noflush_merge:
805 			clear_opt(sbi, FLUSH_MERGE);
806 			break;
807 		case Opt_nobarrier:
808 			set_opt(sbi, NOBARRIER);
809 			break;
810 		case Opt_barrier:
811 			clear_opt(sbi, NOBARRIER);
812 			break;
813 		case Opt_fastboot:
814 			set_opt(sbi, FASTBOOT);
815 			break;
816 		case Opt_extent_cache:
817 			set_opt(sbi, READ_EXTENT_CACHE);
818 			break;
819 		case Opt_noextent_cache:
820 			clear_opt(sbi, READ_EXTENT_CACHE);
821 			break;
822 		case Opt_noinline_data:
823 			clear_opt(sbi, INLINE_DATA);
824 			break;
825 		case Opt_data_flush:
826 			set_opt(sbi, DATA_FLUSH);
827 			break;
828 		case Opt_reserve_root:
829 			if (args->from && match_int(args, &arg))
830 				return -EINVAL;
831 			if (test_opt(sbi, RESERVE_ROOT)) {
832 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
833 					  F2FS_OPTION(sbi).root_reserved_blocks);
834 			} else {
835 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
836 				set_opt(sbi, RESERVE_ROOT);
837 			}
838 			break;
839 		case Opt_resuid:
840 			if (args->from && match_int(args, &arg))
841 				return -EINVAL;
842 			uid = make_kuid(current_user_ns(), arg);
843 			if (!uid_valid(uid)) {
844 				f2fs_err(sbi, "Invalid uid value %d", arg);
845 				return -EINVAL;
846 			}
847 			F2FS_OPTION(sbi).s_resuid = uid;
848 			break;
849 		case Opt_resgid:
850 			if (args->from && match_int(args, &arg))
851 				return -EINVAL;
852 			gid = make_kgid(current_user_ns(), arg);
853 			if (!gid_valid(gid)) {
854 				f2fs_err(sbi, "Invalid gid value %d", arg);
855 				return -EINVAL;
856 			}
857 			F2FS_OPTION(sbi).s_resgid = gid;
858 			break;
859 		case Opt_mode:
860 			name = match_strdup(&args[0]);
861 
862 			if (!name)
863 				return -ENOMEM;
864 			if (!strcmp(name, "adaptive")) {
865 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
866 			} else if (!strcmp(name, "lfs")) {
867 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
868 			} else if (!strcmp(name, "fragment:segment")) {
869 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
870 			} else if (!strcmp(name, "fragment:block")) {
871 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
872 			} else {
873 				kfree(name);
874 				return -EINVAL;
875 			}
876 			kfree(name);
877 			break;
878 #ifdef CONFIG_F2FS_FAULT_INJECTION
879 		case Opt_fault_injection:
880 			if (args->from && match_int(args, &arg))
881 				return -EINVAL;
882 			if (f2fs_build_fault_attr(sbi, arg,
883 					F2FS_ALL_FAULT_TYPE))
884 				return -EINVAL;
885 			set_opt(sbi, FAULT_INJECTION);
886 			break;
887 
888 		case Opt_fault_type:
889 			if (args->from && match_int(args, &arg))
890 				return -EINVAL;
891 			if (f2fs_build_fault_attr(sbi, 0, arg))
892 				return -EINVAL;
893 			set_opt(sbi, FAULT_INJECTION);
894 			break;
895 #else
896 		case Opt_fault_injection:
897 			f2fs_info(sbi, "fault_injection options not supported");
898 			break;
899 
900 		case Opt_fault_type:
901 			f2fs_info(sbi, "fault_type options not supported");
902 			break;
903 #endif
904 		case Opt_lazytime:
905 			sb->s_flags |= SB_LAZYTIME;
906 			break;
907 		case Opt_nolazytime:
908 			sb->s_flags &= ~SB_LAZYTIME;
909 			break;
910 #ifdef CONFIG_QUOTA
911 		case Opt_quota:
912 		case Opt_usrquota:
913 			set_opt(sbi, USRQUOTA);
914 			break;
915 		case Opt_grpquota:
916 			set_opt(sbi, GRPQUOTA);
917 			break;
918 		case Opt_prjquota:
919 			set_opt(sbi, PRJQUOTA);
920 			break;
921 		case Opt_usrjquota:
922 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
923 			if (ret)
924 				return ret;
925 			break;
926 		case Opt_grpjquota:
927 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
928 			if (ret)
929 				return ret;
930 			break;
931 		case Opt_prjjquota:
932 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
933 			if (ret)
934 				return ret;
935 			break;
936 		case Opt_offusrjquota:
937 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
938 			if (ret)
939 				return ret;
940 			break;
941 		case Opt_offgrpjquota:
942 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
943 			if (ret)
944 				return ret;
945 			break;
946 		case Opt_offprjjquota:
947 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
948 			if (ret)
949 				return ret;
950 			break;
951 		case Opt_jqfmt_vfsold:
952 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
953 			break;
954 		case Opt_jqfmt_vfsv0:
955 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
956 			break;
957 		case Opt_jqfmt_vfsv1:
958 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
959 			break;
960 		case Opt_noquota:
961 			clear_opt(sbi, QUOTA);
962 			clear_opt(sbi, USRQUOTA);
963 			clear_opt(sbi, GRPQUOTA);
964 			clear_opt(sbi, PRJQUOTA);
965 			break;
966 #else
967 		case Opt_quota:
968 		case Opt_usrquota:
969 		case Opt_grpquota:
970 		case Opt_prjquota:
971 		case Opt_usrjquota:
972 		case Opt_grpjquota:
973 		case Opt_prjjquota:
974 		case Opt_offusrjquota:
975 		case Opt_offgrpjquota:
976 		case Opt_offprjjquota:
977 		case Opt_jqfmt_vfsold:
978 		case Opt_jqfmt_vfsv0:
979 		case Opt_jqfmt_vfsv1:
980 		case Opt_noquota:
981 			f2fs_info(sbi, "quota operations not supported");
982 			break;
983 #endif
984 		case Opt_alloc:
985 			name = match_strdup(&args[0]);
986 			if (!name)
987 				return -ENOMEM;
988 
989 			if (!strcmp(name, "default")) {
990 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
991 			} else if (!strcmp(name, "reuse")) {
992 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
993 			} else {
994 				kfree(name);
995 				return -EINVAL;
996 			}
997 			kfree(name);
998 			break;
999 		case Opt_fsync:
1000 			name = match_strdup(&args[0]);
1001 			if (!name)
1002 				return -ENOMEM;
1003 			if (!strcmp(name, "posix")) {
1004 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1005 			} else if (!strcmp(name, "strict")) {
1006 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
1007 			} else if (!strcmp(name, "nobarrier")) {
1008 				F2FS_OPTION(sbi).fsync_mode =
1009 							FSYNC_MODE_NOBARRIER;
1010 			} else {
1011 				kfree(name);
1012 				return -EINVAL;
1013 			}
1014 			kfree(name);
1015 			break;
1016 		case Opt_test_dummy_encryption:
1017 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
1018 							     is_remount);
1019 			if (ret)
1020 				return ret;
1021 			break;
1022 		case Opt_inlinecrypt:
1023 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1024 			sb->s_flags |= SB_INLINECRYPT;
1025 #else
1026 			f2fs_info(sbi, "inline encryption not supported");
1027 #endif
1028 			break;
1029 		case Opt_checkpoint_disable_cap_perc:
1030 			if (args->from && match_int(args, &arg))
1031 				return -EINVAL;
1032 			if (arg < 0 || arg > 100)
1033 				return -EINVAL;
1034 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1035 			set_opt(sbi, DISABLE_CHECKPOINT);
1036 			break;
1037 		case Opt_checkpoint_disable_cap:
1038 			if (args->from && match_int(args, &arg))
1039 				return -EINVAL;
1040 			F2FS_OPTION(sbi).unusable_cap = arg;
1041 			set_opt(sbi, DISABLE_CHECKPOINT);
1042 			break;
1043 		case Opt_checkpoint_disable:
1044 			set_opt(sbi, DISABLE_CHECKPOINT);
1045 			break;
1046 		case Opt_checkpoint_enable:
1047 			clear_opt(sbi, DISABLE_CHECKPOINT);
1048 			break;
1049 		case Opt_checkpoint_merge:
1050 			set_opt(sbi, MERGE_CHECKPOINT);
1051 			break;
1052 		case Opt_nocheckpoint_merge:
1053 			clear_opt(sbi, MERGE_CHECKPOINT);
1054 			break;
1055 #ifdef CONFIG_F2FS_FS_COMPRESSION
1056 		case Opt_compress_algorithm:
1057 			if (!f2fs_sb_has_compression(sbi)) {
1058 				f2fs_info(sbi, "Image doesn't support compression");
1059 				break;
1060 			}
1061 			name = match_strdup(&args[0]);
1062 			if (!name)
1063 				return -ENOMEM;
1064 			if (!strcmp(name, "lzo")) {
1065 #ifdef CONFIG_F2FS_FS_LZO
1066 				F2FS_OPTION(sbi).compress_level = 0;
1067 				F2FS_OPTION(sbi).compress_algorithm =
1068 								COMPRESS_LZO;
1069 #else
1070 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1071 #endif
1072 			} else if (!strncmp(name, "lz4", 3)) {
1073 #ifdef CONFIG_F2FS_FS_LZ4
1074 				ret = f2fs_set_lz4hc_level(sbi, name);
1075 				if (ret) {
1076 					kfree(name);
1077 					return -EINVAL;
1078 				}
1079 				F2FS_OPTION(sbi).compress_algorithm =
1080 								COMPRESS_LZ4;
1081 #else
1082 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1083 #endif
1084 			} else if (!strncmp(name, "zstd", 4)) {
1085 #ifdef CONFIG_F2FS_FS_ZSTD
1086 				ret = f2fs_set_zstd_level(sbi, name);
1087 				if (ret) {
1088 					kfree(name);
1089 					return -EINVAL;
1090 				}
1091 				F2FS_OPTION(sbi).compress_algorithm =
1092 								COMPRESS_ZSTD;
1093 #else
1094 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1095 #endif
1096 			} else if (!strcmp(name, "lzo-rle")) {
1097 #ifdef CONFIG_F2FS_FS_LZORLE
1098 				F2FS_OPTION(sbi).compress_level = 0;
1099 				F2FS_OPTION(sbi).compress_algorithm =
1100 								COMPRESS_LZORLE;
1101 #else
1102 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1103 #endif
1104 			} else {
1105 				kfree(name);
1106 				return -EINVAL;
1107 			}
1108 			kfree(name);
1109 			break;
1110 		case Opt_compress_log_size:
1111 			if (!f2fs_sb_has_compression(sbi)) {
1112 				f2fs_info(sbi, "Image doesn't support compression");
1113 				break;
1114 			}
1115 			if (args->from && match_int(args, &arg))
1116 				return -EINVAL;
1117 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1118 				arg > MAX_COMPRESS_LOG_SIZE) {
1119 				f2fs_err(sbi,
1120 					"Compress cluster log size is out of range");
1121 				return -EINVAL;
1122 			}
1123 			F2FS_OPTION(sbi).compress_log_size = arg;
1124 			break;
1125 		case Opt_compress_extension:
1126 			if (!f2fs_sb_has_compression(sbi)) {
1127 				f2fs_info(sbi, "Image doesn't support compression");
1128 				break;
1129 			}
1130 			name = match_strdup(&args[0]);
1131 			if (!name)
1132 				return -ENOMEM;
1133 
1134 			ext = F2FS_OPTION(sbi).extensions;
1135 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1136 
1137 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1138 				ext_cnt >= COMPRESS_EXT_NUM) {
1139 				f2fs_err(sbi,
1140 					"invalid extension length/number");
1141 				kfree(name);
1142 				return -EINVAL;
1143 			}
1144 
1145 			if (is_compress_extension_exist(sbi, name, true)) {
1146 				kfree(name);
1147 				break;
1148 			}
1149 
1150 			strcpy(ext[ext_cnt], name);
1151 			F2FS_OPTION(sbi).compress_ext_cnt++;
1152 			kfree(name);
1153 			break;
1154 		case Opt_nocompress_extension:
1155 			if (!f2fs_sb_has_compression(sbi)) {
1156 				f2fs_info(sbi, "Image doesn't support compression");
1157 				break;
1158 			}
1159 			name = match_strdup(&args[0]);
1160 			if (!name)
1161 				return -ENOMEM;
1162 
1163 			noext = F2FS_OPTION(sbi).noextensions;
1164 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1165 
1166 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1167 				noext_cnt >= COMPRESS_EXT_NUM) {
1168 				f2fs_err(sbi,
1169 					"invalid extension length/number");
1170 				kfree(name);
1171 				return -EINVAL;
1172 			}
1173 
1174 			if (is_compress_extension_exist(sbi, name, false)) {
1175 				kfree(name);
1176 				break;
1177 			}
1178 
1179 			strcpy(noext[noext_cnt], name);
1180 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1181 			kfree(name);
1182 			break;
1183 		case Opt_compress_chksum:
1184 			if (!f2fs_sb_has_compression(sbi)) {
1185 				f2fs_info(sbi, "Image doesn't support compression");
1186 				break;
1187 			}
1188 			F2FS_OPTION(sbi).compress_chksum = true;
1189 			break;
1190 		case Opt_compress_mode:
1191 			if (!f2fs_sb_has_compression(sbi)) {
1192 				f2fs_info(sbi, "Image doesn't support compression");
1193 				break;
1194 			}
1195 			name = match_strdup(&args[0]);
1196 			if (!name)
1197 				return -ENOMEM;
1198 			if (!strcmp(name, "fs")) {
1199 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1200 			} else if (!strcmp(name, "user")) {
1201 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1202 			} else {
1203 				kfree(name);
1204 				return -EINVAL;
1205 			}
1206 			kfree(name);
1207 			break;
1208 		case Opt_compress_cache:
1209 			if (!f2fs_sb_has_compression(sbi)) {
1210 				f2fs_info(sbi, "Image doesn't support compression");
1211 				break;
1212 			}
1213 			set_opt(sbi, COMPRESS_CACHE);
1214 			break;
1215 #else
1216 		case Opt_compress_algorithm:
1217 		case Opt_compress_log_size:
1218 		case Opt_compress_extension:
1219 		case Opt_nocompress_extension:
1220 		case Opt_compress_chksum:
1221 		case Opt_compress_mode:
1222 		case Opt_compress_cache:
1223 			f2fs_info(sbi, "compression options not supported");
1224 			break;
1225 #endif
1226 		case Opt_atgc:
1227 			set_opt(sbi, ATGC);
1228 			break;
1229 		case Opt_gc_merge:
1230 			set_opt(sbi, GC_MERGE);
1231 			break;
1232 		case Opt_nogc_merge:
1233 			clear_opt(sbi, GC_MERGE);
1234 			break;
1235 		case Opt_discard_unit:
1236 			name = match_strdup(&args[0]);
1237 			if (!name)
1238 				return -ENOMEM;
1239 			if (!strcmp(name, "block")) {
1240 				F2FS_OPTION(sbi).discard_unit =
1241 						DISCARD_UNIT_BLOCK;
1242 			} else if (!strcmp(name, "segment")) {
1243 				F2FS_OPTION(sbi).discard_unit =
1244 						DISCARD_UNIT_SEGMENT;
1245 			} else if (!strcmp(name, "section")) {
1246 				F2FS_OPTION(sbi).discard_unit =
1247 						DISCARD_UNIT_SECTION;
1248 			} else {
1249 				kfree(name);
1250 				return -EINVAL;
1251 			}
1252 			kfree(name);
1253 			break;
1254 		case Opt_memory_mode:
1255 			name = match_strdup(&args[0]);
1256 			if (!name)
1257 				return -ENOMEM;
1258 			if (!strcmp(name, "normal")) {
1259 				F2FS_OPTION(sbi).memory_mode =
1260 						MEMORY_MODE_NORMAL;
1261 			} else if (!strcmp(name, "low")) {
1262 				F2FS_OPTION(sbi).memory_mode =
1263 						MEMORY_MODE_LOW;
1264 			} else {
1265 				kfree(name);
1266 				return -EINVAL;
1267 			}
1268 			kfree(name);
1269 			break;
1270 		case Opt_age_extent_cache:
1271 			set_opt(sbi, AGE_EXTENT_CACHE);
1272 			break;
1273 		case Opt_errors:
1274 			name = match_strdup(&args[0]);
1275 			if (!name)
1276 				return -ENOMEM;
1277 			if (!strcmp(name, "remount-ro")) {
1278 				F2FS_OPTION(sbi).errors =
1279 						MOUNT_ERRORS_READONLY;
1280 			} else if (!strcmp(name, "continue")) {
1281 				F2FS_OPTION(sbi).errors =
1282 						MOUNT_ERRORS_CONTINUE;
1283 			} else if (!strcmp(name, "panic")) {
1284 				F2FS_OPTION(sbi).errors =
1285 						MOUNT_ERRORS_PANIC;
1286 			} else {
1287 				kfree(name);
1288 				return -EINVAL;
1289 			}
1290 			kfree(name);
1291 			break;
1292 		default:
1293 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1294 				 p);
1295 			return -EINVAL;
1296 		}
1297 	}
1298 default_check:
1299 #ifdef CONFIG_QUOTA
1300 	if (f2fs_check_quota_options(sbi))
1301 		return -EINVAL;
1302 #else
1303 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1304 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1305 		return -EINVAL;
1306 	}
1307 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1308 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1309 		return -EINVAL;
1310 	}
1311 #endif
1312 #if !IS_ENABLED(CONFIG_UNICODE)
1313 	if (f2fs_sb_has_casefold(sbi)) {
1314 		f2fs_err(sbi,
1315 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1316 		return -EINVAL;
1317 	}
1318 #endif
1319 	/*
1320 	 * The BLKZONED feature indicates that the drive was formatted with
1321 	 * zone alignment optimization. This is optional for host-aware
1322 	 * devices, but mandatory for host-managed zoned block devices.
1323 	 */
1324 	if (f2fs_sb_has_blkzoned(sbi)) {
1325 #ifdef CONFIG_BLK_DEV_ZONED
1326 		if (F2FS_OPTION(sbi).discard_unit !=
1327 						DISCARD_UNIT_SECTION) {
1328 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1329 			F2FS_OPTION(sbi).discard_unit =
1330 					DISCARD_UNIT_SECTION;
1331 		}
1332 
1333 		if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) {
1334 			f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature");
1335 			return -EINVAL;
1336 		}
1337 #else
1338 		f2fs_err(sbi, "Zoned block device support is not enabled");
1339 		return -EINVAL;
1340 #endif
1341 	}
1342 
1343 #ifdef CONFIG_F2FS_FS_COMPRESSION
1344 	if (f2fs_test_compress_extension(sbi)) {
1345 		f2fs_err(sbi, "invalid compress or nocompress extension");
1346 		return -EINVAL;
1347 	}
1348 #endif
1349 
1350 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1351 		int min_size, max_size;
1352 
1353 		if (!f2fs_sb_has_extra_attr(sbi) ||
1354 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1355 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1356 			return -EINVAL;
1357 		}
1358 		if (!test_opt(sbi, INLINE_XATTR)) {
1359 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1360 			return -EINVAL;
1361 		}
1362 
1363 		min_size = MIN_INLINE_XATTR_SIZE;
1364 		max_size = MAX_INLINE_XATTR_SIZE;
1365 
1366 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1367 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1368 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1369 				 min_size, max_size);
1370 			return -EINVAL;
1371 		}
1372 	}
1373 
1374 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1375 		f2fs_err(sbi, "LFS is not compatible with checkpoint=disable");
1376 		return -EINVAL;
1377 	}
1378 
1379 	if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) {
1380 		f2fs_err(sbi, "LFS is not compatible with ATGC");
1381 		return -EINVAL;
1382 	}
1383 
1384 	if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) {
1385 		f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode");
1386 		return -EINVAL;
1387 	}
1388 
1389 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1390 		f2fs_err(sbi, "Allow to mount readonly mode only");
1391 		return -EROFS;
1392 	}
1393 	return 0;
1394 }
1395 
f2fs_alloc_inode(struct super_block * sb)1396 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1397 {
1398 	struct f2fs_inode_info *fi;
1399 
1400 	if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC))
1401 		return NULL;
1402 
1403 	fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1404 	if (!fi)
1405 		return NULL;
1406 
1407 	init_once((void *) fi);
1408 
1409 	/* Initialize f2fs-specific inode info */
1410 	atomic_set(&fi->dirty_pages, 0);
1411 	atomic_set(&fi->i_compr_blocks, 0);
1412 	init_f2fs_rwsem(&fi->i_sem);
1413 	spin_lock_init(&fi->i_size_lock);
1414 	INIT_LIST_HEAD(&fi->dirty_list);
1415 	INIT_LIST_HEAD(&fi->gdirty_list);
1416 	init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1417 	init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1418 	init_f2fs_rwsem(&fi->i_xattr_sem);
1419 
1420 	/* Will be used by directory only */
1421 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1422 
1423 	return &fi->vfs_inode;
1424 }
1425 
f2fs_drop_inode(struct inode * inode)1426 static int f2fs_drop_inode(struct inode *inode)
1427 {
1428 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1429 	int ret;
1430 
1431 	/*
1432 	 * during filesystem shutdown, if checkpoint is disabled,
1433 	 * drop useless meta/node dirty pages.
1434 	 */
1435 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1436 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1437 			inode->i_ino == F2FS_META_INO(sbi)) {
1438 			trace_f2fs_drop_inode(inode, 1);
1439 			return 1;
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * This is to avoid a deadlock condition like below.
1445 	 * writeback_single_inode(inode)
1446 	 *  - f2fs_write_data_page
1447 	 *    - f2fs_gc -> iput -> evict
1448 	 *       - inode_wait_for_writeback(inode)
1449 	 */
1450 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1451 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1452 			/* to avoid evict_inode call simultaneously */
1453 			atomic_inc(&inode->i_count);
1454 			spin_unlock(&inode->i_lock);
1455 
1456 			/* should remain fi->extent_tree for writepage */
1457 			f2fs_destroy_extent_node(inode);
1458 
1459 			sb_start_intwrite(inode->i_sb);
1460 			f2fs_i_size_write(inode, 0);
1461 
1462 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1463 					inode, NULL, 0, DATA);
1464 			truncate_inode_pages_final(inode->i_mapping);
1465 
1466 			if (F2FS_HAS_BLOCKS(inode))
1467 				f2fs_truncate(inode);
1468 
1469 			sb_end_intwrite(inode->i_sb);
1470 
1471 			spin_lock(&inode->i_lock);
1472 			atomic_dec(&inode->i_count);
1473 		}
1474 		trace_f2fs_drop_inode(inode, 0);
1475 		return 0;
1476 	}
1477 	ret = generic_drop_inode(inode);
1478 	if (!ret)
1479 		ret = fscrypt_drop_inode(inode);
1480 	trace_f2fs_drop_inode(inode, ret);
1481 	return ret;
1482 }
1483 
f2fs_inode_dirtied(struct inode * inode,bool sync)1484 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1485 {
1486 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1487 	int ret = 0;
1488 
1489 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1490 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1491 		ret = 1;
1492 	} else {
1493 		set_inode_flag(inode, FI_DIRTY_INODE);
1494 		stat_inc_dirty_inode(sbi, DIRTY_META);
1495 	}
1496 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1497 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1498 				&sbi->inode_list[DIRTY_META]);
1499 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1500 	}
1501 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1502 	return ret;
1503 }
1504 
f2fs_inode_synced(struct inode * inode)1505 void f2fs_inode_synced(struct inode *inode)
1506 {
1507 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1508 
1509 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1510 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1511 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1512 		return;
1513 	}
1514 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1515 		list_del_init(&F2FS_I(inode)->gdirty_list);
1516 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1517 	}
1518 	clear_inode_flag(inode, FI_DIRTY_INODE);
1519 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1520 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1521 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1522 }
1523 
1524 /*
1525  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1526  *
1527  * We should call set_dirty_inode to write the dirty inode through write_inode.
1528  */
f2fs_dirty_inode(struct inode * inode,int flags)1529 static void f2fs_dirty_inode(struct inode *inode, int flags)
1530 {
1531 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1532 
1533 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1534 			inode->i_ino == F2FS_META_INO(sbi))
1535 		return;
1536 
1537 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1538 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1539 
1540 	f2fs_inode_dirtied(inode, false);
1541 }
1542 
f2fs_free_inode(struct inode * inode)1543 static void f2fs_free_inode(struct inode *inode)
1544 {
1545 	fscrypt_free_inode(inode);
1546 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1547 }
1548 
destroy_percpu_info(struct f2fs_sb_info * sbi)1549 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1550 {
1551 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1552 	percpu_counter_destroy(&sbi->rf_node_block_count);
1553 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1554 }
1555 
destroy_device_list(struct f2fs_sb_info * sbi)1556 static void destroy_device_list(struct f2fs_sb_info *sbi)
1557 {
1558 	int i;
1559 
1560 	for (i = 0; i < sbi->s_ndevs; i++) {
1561 		if (i > 0)
1562 			blkdev_put(FDEV(i).bdev, sbi->sb);
1563 #ifdef CONFIG_BLK_DEV_ZONED
1564 		kvfree(FDEV(i).blkz_seq);
1565 #endif
1566 	}
1567 	kvfree(sbi->devs);
1568 }
1569 
f2fs_put_super(struct super_block * sb)1570 static void f2fs_put_super(struct super_block *sb)
1571 {
1572 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1573 	int i;
1574 	int err = 0;
1575 	bool done;
1576 
1577 	/* unregister procfs/sysfs entries in advance to avoid race case */
1578 	f2fs_unregister_sysfs(sbi);
1579 
1580 	f2fs_quota_off_umount(sb);
1581 
1582 	/* prevent remaining shrinker jobs */
1583 	mutex_lock(&sbi->umount_mutex);
1584 
1585 	/*
1586 	 * flush all issued checkpoints and stop checkpoint issue thread.
1587 	 * after then, all checkpoints should be done by each process context.
1588 	 */
1589 	f2fs_stop_ckpt_thread(sbi);
1590 
1591 	/*
1592 	 * We don't need to do checkpoint when superblock is clean.
1593 	 * But, the previous checkpoint was not done by umount, it needs to do
1594 	 * clean checkpoint again.
1595 	 */
1596 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1597 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1598 		struct cp_control cpc = {
1599 			.reason = CP_UMOUNT,
1600 		};
1601 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1602 		err = f2fs_write_checkpoint(sbi, &cpc);
1603 	}
1604 
1605 	/* be sure to wait for any on-going discard commands */
1606 	done = f2fs_issue_discard_timeout(sbi);
1607 	if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) {
1608 		struct cp_control cpc = {
1609 			.reason = CP_UMOUNT | CP_TRIMMED,
1610 		};
1611 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1612 		err = f2fs_write_checkpoint(sbi, &cpc);
1613 	}
1614 
1615 	/*
1616 	 * normally superblock is clean, so we need to release this.
1617 	 * In addition, EIO will skip do checkpoint, we need this as well.
1618 	 */
1619 	f2fs_release_ino_entry(sbi, true);
1620 
1621 	f2fs_leave_shrinker(sbi);
1622 	mutex_unlock(&sbi->umount_mutex);
1623 
1624 	/* our cp_error case, we can wait for any writeback page */
1625 	f2fs_flush_merged_writes(sbi);
1626 
1627 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1628 
1629 	if (err || f2fs_cp_error(sbi)) {
1630 		truncate_inode_pages_final(NODE_MAPPING(sbi));
1631 		truncate_inode_pages_final(META_MAPPING(sbi));
1632 	}
1633 
1634 	for (i = 0; i < NR_COUNT_TYPE; i++) {
1635 		if (!get_pages(sbi, i))
1636 			continue;
1637 		f2fs_err(sbi, "detect filesystem reference count leak during "
1638 			"umount, type: %d, count: %lld", i, get_pages(sbi, i));
1639 		f2fs_bug_on(sbi, 1);
1640 	}
1641 
1642 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1643 
1644 	f2fs_destroy_compress_inode(sbi);
1645 
1646 	iput(sbi->node_inode);
1647 	sbi->node_inode = NULL;
1648 
1649 	iput(sbi->meta_inode);
1650 	sbi->meta_inode = NULL;
1651 
1652 	/*
1653 	 * iput() can update stat information, if f2fs_write_checkpoint()
1654 	 * above failed with error.
1655 	 */
1656 	f2fs_destroy_stats(sbi);
1657 
1658 	/* destroy f2fs internal modules */
1659 	f2fs_destroy_node_manager(sbi);
1660 	f2fs_destroy_segment_manager(sbi);
1661 
1662 	/* flush s_error_work before sbi destroy */
1663 	flush_work(&sbi->s_error_work);
1664 
1665 	f2fs_destroy_post_read_wq(sbi);
1666 
1667 	kvfree(sbi->ckpt);
1668 
1669 	sb->s_fs_info = NULL;
1670 	if (sbi->s_chksum_driver)
1671 		crypto_free_shash(sbi->s_chksum_driver);
1672 	kfree(sbi->raw_super);
1673 
1674 	destroy_device_list(sbi);
1675 	f2fs_destroy_page_array_cache(sbi);
1676 	f2fs_destroy_xattr_caches(sbi);
1677 #ifdef CONFIG_QUOTA
1678 	for (i = 0; i < MAXQUOTAS; i++)
1679 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1680 #endif
1681 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1682 	destroy_percpu_info(sbi);
1683 	f2fs_destroy_iostat(sbi);
1684 	for (i = 0; i < NR_PAGE_TYPE; i++)
1685 		kvfree(sbi->write_io[i]);
1686 #if IS_ENABLED(CONFIG_UNICODE)
1687 	utf8_unload(sb->s_encoding);
1688 #endif
1689 	kfree(sbi);
1690 }
1691 
f2fs_sync_fs(struct super_block * sb,int sync)1692 int f2fs_sync_fs(struct super_block *sb, int sync)
1693 {
1694 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1695 	int err = 0;
1696 
1697 	if (unlikely(f2fs_cp_error(sbi)))
1698 		return 0;
1699 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1700 		return 0;
1701 
1702 	trace_f2fs_sync_fs(sb, sync);
1703 
1704 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1705 		return -EAGAIN;
1706 
1707 	if (sync) {
1708 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1709 		err = f2fs_issue_checkpoint(sbi);
1710 	}
1711 
1712 	return err;
1713 }
1714 
f2fs_freeze(struct super_block * sb)1715 static int f2fs_freeze(struct super_block *sb)
1716 {
1717 	if (f2fs_readonly(sb))
1718 		return 0;
1719 
1720 	/* IO error happened before */
1721 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1722 		return -EIO;
1723 
1724 	/* must be clean, since sync_filesystem() was already called */
1725 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1726 		return -EINVAL;
1727 
1728 	/* Let's flush checkpoints and stop the thread. */
1729 	f2fs_flush_ckpt_thread(F2FS_SB(sb));
1730 
1731 	/* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
1732 	set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1733 	return 0;
1734 }
1735 
f2fs_unfreeze(struct super_block * sb)1736 static int f2fs_unfreeze(struct super_block *sb)
1737 {
1738 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1739 
1740 	/*
1741 	 * It will update discard_max_bytes of mounted lvm device to zero
1742 	 * after creating snapshot on this lvm device, let's drop all
1743 	 * remained discards.
1744 	 * We don't need to disable real-time discard because discard_max_bytes
1745 	 * will recover after removal of snapshot.
1746 	 */
1747 	if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi))
1748 		f2fs_issue_discard_timeout(sbi);
1749 
1750 	clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1751 	return 0;
1752 }
1753 
1754 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1755 static int f2fs_statfs_project(struct super_block *sb,
1756 				kprojid_t projid, struct kstatfs *buf)
1757 {
1758 	struct kqid qid;
1759 	struct dquot *dquot;
1760 	u64 limit;
1761 	u64 curblock;
1762 
1763 	qid = make_kqid_projid(projid);
1764 	dquot = dqget(sb, qid);
1765 	if (IS_ERR(dquot))
1766 		return PTR_ERR(dquot);
1767 	spin_lock(&dquot->dq_dqb_lock);
1768 
1769 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1770 					dquot->dq_dqb.dqb_bhardlimit);
1771 	if (limit)
1772 		limit >>= sb->s_blocksize_bits;
1773 
1774 	if (limit && buf->f_blocks > limit) {
1775 		curblock = (dquot->dq_dqb.dqb_curspace +
1776 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1777 		buf->f_blocks = limit;
1778 		buf->f_bfree = buf->f_bavail =
1779 			(buf->f_blocks > curblock) ?
1780 			 (buf->f_blocks - curblock) : 0;
1781 	}
1782 
1783 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1784 					dquot->dq_dqb.dqb_ihardlimit);
1785 
1786 	if (limit && buf->f_files > limit) {
1787 		buf->f_files = limit;
1788 		buf->f_ffree =
1789 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1790 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1791 	}
1792 
1793 	spin_unlock(&dquot->dq_dqb_lock);
1794 	dqput(dquot);
1795 	return 0;
1796 }
1797 #endif
1798 
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1799 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1800 {
1801 	struct super_block *sb = dentry->d_sb;
1802 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1803 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1804 	block_t total_count, user_block_count, start_count;
1805 	u64 avail_node_count;
1806 	unsigned int total_valid_node_count;
1807 
1808 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1809 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1810 	buf->f_type = F2FS_SUPER_MAGIC;
1811 	buf->f_bsize = sbi->blocksize;
1812 
1813 	buf->f_blocks = total_count - start_count;
1814 
1815 	spin_lock(&sbi->stat_lock);
1816 
1817 	user_block_count = sbi->user_block_count;
1818 	total_valid_node_count = valid_node_count(sbi);
1819 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1820 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1821 						sbi->current_reserved_blocks;
1822 
1823 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1824 		buf->f_bfree = 0;
1825 	else
1826 		buf->f_bfree -= sbi->unusable_block_count;
1827 	spin_unlock(&sbi->stat_lock);
1828 
1829 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1830 		buf->f_bavail = buf->f_bfree -
1831 				F2FS_OPTION(sbi).root_reserved_blocks;
1832 	else
1833 		buf->f_bavail = 0;
1834 
1835 	if (avail_node_count > user_block_count) {
1836 		buf->f_files = user_block_count;
1837 		buf->f_ffree = buf->f_bavail;
1838 	} else {
1839 		buf->f_files = avail_node_count;
1840 		buf->f_ffree = min(avail_node_count - total_valid_node_count,
1841 					buf->f_bavail);
1842 	}
1843 
1844 	buf->f_namelen = F2FS_NAME_LEN;
1845 	buf->f_fsid    = u64_to_fsid(id);
1846 
1847 #ifdef CONFIG_QUOTA
1848 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1849 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1850 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1851 	}
1852 #endif
1853 	return 0;
1854 }
1855 
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1856 static inline void f2fs_show_quota_options(struct seq_file *seq,
1857 					   struct super_block *sb)
1858 {
1859 #ifdef CONFIG_QUOTA
1860 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1861 
1862 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1863 		char *fmtname = "";
1864 
1865 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1866 		case QFMT_VFS_OLD:
1867 			fmtname = "vfsold";
1868 			break;
1869 		case QFMT_VFS_V0:
1870 			fmtname = "vfsv0";
1871 			break;
1872 		case QFMT_VFS_V1:
1873 			fmtname = "vfsv1";
1874 			break;
1875 		}
1876 		seq_printf(seq, ",jqfmt=%s", fmtname);
1877 	}
1878 
1879 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1880 		seq_show_option(seq, "usrjquota",
1881 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1882 
1883 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1884 		seq_show_option(seq, "grpjquota",
1885 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1886 
1887 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1888 		seq_show_option(seq, "prjjquota",
1889 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1890 #endif
1891 }
1892 
1893 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_show_compress_options(struct seq_file * seq,struct super_block * sb)1894 static inline void f2fs_show_compress_options(struct seq_file *seq,
1895 							struct super_block *sb)
1896 {
1897 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1898 	char *algtype = "";
1899 	int i;
1900 
1901 	if (!f2fs_sb_has_compression(sbi))
1902 		return;
1903 
1904 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1905 	case COMPRESS_LZO:
1906 		algtype = "lzo";
1907 		break;
1908 	case COMPRESS_LZ4:
1909 		algtype = "lz4";
1910 		break;
1911 	case COMPRESS_ZSTD:
1912 		algtype = "zstd";
1913 		break;
1914 	case COMPRESS_LZORLE:
1915 		algtype = "lzo-rle";
1916 		break;
1917 	}
1918 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1919 
1920 	if (F2FS_OPTION(sbi).compress_level)
1921 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1922 
1923 	seq_printf(seq, ",compress_log_size=%u",
1924 			F2FS_OPTION(sbi).compress_log_size);
1925 
1926 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1927 		seq_printf(seq, ",compress_extension=%s",
1928 			F2FS_OPTION(sbi).extensions[i]);
1929 	}
1930 
1931 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1932 		seq_printf(seq, ",nocompress_extension=%s",
1933 			F2FS_OPTION(sbi).noextensions[i]);
1934 	}
1935 
1936 	if (F2FS_OPTION(sbi).compress_chksum)
1937 		seq_puts(seq, ",compress_chksum");
1938 
1939 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1940 		seq_printf(seq, ",compress_mode=%s", "fs");
1941 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1942 		seq_printf(seq, ",compress_mode=%s", "user");
1943 
1944 	if (test_opt(sbi, COMPRESS_CACHE))
1945 		seq_puts(seq, ",compress_cache");
1946 }
1947 #endif
1948 
f2fs_show_options(struct seq_file * seq,struct dentry * root)1949 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1950 {
1951 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1952 
1953 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1954 		seq_printf(seq, ",background_gc=%s", "sync");
1955 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1956 		seq_printf(seq, ",background_gc=%s", "on");
1957 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1958 		seq_printf(seq, ",background_gc=%s", "off");
1959 
1960 	if (test_opt(sbi, GC_MERGE))
1961 		seq_puts(seq, ",gc_merge");
1962 	else
1963 		seq_puts(seq, ",nogc_merge");
1964 
1965 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1966 		seq_puts(seq, ",disable_roll_forward");
1967 	if (test_opt(sbi, NORECOVERY))
1968 		seq_puts(seq, ",norecovery");
1969 	if (test_opt(sbi, DISCARD)) {
1970 		seq_puts(seq, ",discard");
1971 		if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
1972 			seq_printf(seq, ",discard_unit=%s", "block");
1973 		else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
1974 			seq_printf(seq, ",discard_unit=%s", "segment");
1975 		else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
1976 			seq_printf(seq, ",discard_unit=%s", "section");
1977 	} else {
1978 		seq_puts(seq, ",nodiscard");
1979 	}
1980 #ifdef CONFIG_F2FS_FS_XATTR
1981 	if (test_opt(sbi, XATTR_USER))
1982 		seq_puts(seq, ",user_xattr");
1983 	else
1984 		seq_puts(seq, ",nouser_xattr");
1985 	if (test_opt(sbi, INLINE_XATTR))
1986 		seq_puts(seq, ",inline_xattr");
1987 	else
1988 		seq_puts(seq, ",noinline_xattr");
1989 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1990 		seq_printf(seq, ",inline_xattr_size=%u",
1991 					F2FS_OPTION(sbi).inline_xattr_size);
1992 #endif
1993 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1994 	if (test_opt(sbi, POSIX_ACL))
1995 		seq_puts(seq, ",acl");
1996 	else
1997 		seq_puts(seq, ",noacl");
1998 #endif
1999 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
2000 		seq_puts(seq, ",disable_ext_identify");
2001 	if (test_opt(sbi, INLINE_DATA))
2002 		seq_puts(seq, ",inline_data");
2003 	else
2004 		seq_puts(seq, ",noinline_data");
2005 	if (test_opt(sbi, INLINE_DENTRY))
2006 		seq_puts(seq, ",inline_dentry");
2007 	else
2008 		seq_puts(seq, ",noinline_dentry");
2009 	if (test_opt(sbi, FLUSH_MERGE))
2010 		seq_puts(seq, ",flush_merge");
2011 	else
2012 		seq_puts(seq, ",noflush_merge");
2013 	if (test_opt(sbi, NOBARRIER))
2014 		seq_puts(seq, ",nobarrier");
2015 	else
2016 		seq_puts(seq, ",barrier");
2017 	if (test_opt(sbi, FASTBOOT))
2018 		seq_puts(seq, ",fastboot");
2019 	if (test_opt(sbi, READ_EXTENT_CACHE))
2020 		seq_puts(seq, ",extent_cache");
2021 	else
2022 		seq_puts(seq, ",noextent_cache");
2023 	if (test_opt(sbi, AGE_EXTENT_CACHE))
2024 		seq_puts(seq, ",age_extent_cache");
2025 	if (test_opt(sbi, DATA_FLUSH))
2026 		seq_puts(seq, ",data_flush");
2027 
2028 	seq_puts(seq, ",mode=");
2029 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
2030 		seq_puts(seq, "adaptive");
2031 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
2032 		seq_puts(seq, "lfs");
2033 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
2034 		seq_puts(seq, "fragment:segment");
2035 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2036 		seq_puts(seq, "fragment:block");
2037 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
2038 	if (test_opt(sbi, RESERVE_ROOT))
2039 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
2040 				F2FS_OPTION(sbi).root_reserved_blocks,
2041 				from_kuid_munged(&init_user_ns,
2042 					F2FS_OPTION(sbi).s_resuid),
2043 				from_kgid_munged(&init_user_ns,
2044 					F2FS_OPTION(sbi).s_resgid));
2045 #ifdef CONFIG_F2FS_FAULT_INJECTION
2046 	if (test_opt(sbi, FAULT_INJECTION)) {
2047 		seq_printf(seq, ",fault_injection=%u",
2048 				F2FS_OPTION(sbi).fault_info.inject_rate);
2049 		seq_printf(seq, ",fault_type=%u",
2050 				F2FS_OPTION(sbi).fault_info.inject_type);
2051 	}
2052 #endif
2053 #ifdef CONFIG_QUOTA
2054 	if (test_opt(sbi, QUOTA))
2055 		seq_puts(seq, ",quota");
2056 	if (test_opt(sbi, USRQUOTA))
2057 		seq_puts(seq, ",usrquota");
2058 	if (test_opt(sbi, GRPQUOTA))
2059 		seq_puts(seq, ",grpquota");
2060 	if (test_opt(sbi, PRJQUOTA))
2061 		seq_puts(seq, ",prjquota");
2062 #endif
2063 	f2fs_show_quota_options(seq, sbi->sb);
2064 
2065 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
2066 
2067 	if (sbi->sb->s_flags & SB_INLINECRYPT)
2068 		seq_puts(seq, ",inlinecrypt");
2069 
2070 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
2071 		seq_printf(seq, ",alloc_mode=%s", "default");
2072 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2073 		seq_printf(seq, ",alloc_mode=%s", "reuse");
2074 
2075 	if (test_opt(sbi, DISABLE_CHECKPOINT))
2076 		seq_printf(seq, ",checkpoint=disable:%u",
2077 				F2FS_OPTION(sbi).unusable_cap);
2078 	if (test_opt(sbi, MERGE_CHECKPOINT))
2079 		seq_puts(seq, ",checkpoint_merge");
2080 	else
2081 		seq_puts(seq, ",nocheckpoint_merge");
2082 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2083 		seq_printf(seq, ",fsync_mode=%s", "posix");
2084 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2085 		seq_printf(seq, ",fsync_mode=%s", "strict");
2086 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2087 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2088 
2089 #ifdef CONFIG_F2FS_FS_COMPRESSION
2090 	f2fs_show_compress_options(seq, sbi->sb);
2091 #endif
2092 
2093 	if (test_opt(sbi, ATGC))
2094 		seq_puts(seq, ",atgc");
2095 
2096 	if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
2097 		seq_printf(seq, ",memory=%s", "normal");
2098 	else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
2099 		seq_printf(seq, ",memory=%s", "low");
2100 
2101 	if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2102 		seq_printf(seq, ",errors=%s", "remount-ro");
2103 	else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE)
2104 		seq_printf(seq, ",errors=%s", "continue");
2105 	else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC)
2106 		seq_printf(seq, ",errors=%s", "panic");
2107 
2108 	return 0;
2109 }
2110 
default_options(struct f2fs_sb_info * sbi,bool remount)2111 static void default_options(struct f2fs_sb_info *sbi, bool remount)
2112 {
2113 	/* init some FS parameters */
2114 	if (!remount) {
2115 		set_opt(sbi, READ_EXTENT_CACHE);
2116 		clear_opt(sbi, DISABLE_CHECKPOINT);
2117 
2118 		if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2119 			set_opt(sbi, DISCARD);
2120 
2121 		if (f2fs_sb_has_blkzoned(sbi))
2122 			F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2123 		else
2124 			F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2125 	}
2126 
2127 	if (f2fs_sb_has_readonly(sbi))
2128 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2129 	else
2130 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2131 
2132 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2133 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <=
2134 							SMALL_VOLUME_SEGMENTS)
2135 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2136 	else
2137 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2138 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2139 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2140 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2141 	if (f2fs_sb_has_compression(sbi)) {
2142 		F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2143 		F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2144 		F2FS_OPTION(sbi).compress_ext_cnt = 0;
2145 		F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2146 	}
2147 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2148 	F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
2149 	F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE;
2150 
2151 	set_opt(sbi, INLINE_XATTR);
2152 	set_opt(sbi, INLINE_DATA);
2153 	set_opt(sbi, INLINE_DENTRY);
2154 	set_opt(sbi, MERGE_CHECKPOINT);
2155 	F2FS_OPTION(sbi).unusable_cap = 0;
2156 	sbi->sb->s_flags |= SB_LAZYTIME;
2157 	if (!f2fs_is_readonly(sbi))
2158 		set_opt(sbi, FLUSH_MERGE);
2159 	if (f2fs_sb_has_blkzoned(sbi))
2160 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2161 	else
2162 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2163 
2164 #ifdef CONFIG_F2FS_FS_XATTR
2165 	set_opt(sbi, XATTR_USER);
2166 #endif
2167 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2168 	set_opt(sbi, POSIX_ACL);
2169 #endif
2170 
2171 	f2fs_build_fault_attr(sbi, 0, 0);
2172 }
2173 
2174 #ifdef CONFIG_QUOTA
2175 static int f2fs_enable_quotas(struct super_block *sb);
2176 #endif
2177 
f2fs_disable_checkpoint(struct f2fs_sb_info * sbi)2178 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2179 {
2180 	unsigned int s_flags = sbi->sb->s_flags;
2181 	struct cp_control cpc;
2182 	unsigned int gc_mode = sbi->gc_mode;
2183 	int err = 0;
2184 	int ret;
2185 	block_t unusable;
2186 
2187 	if (s_flags & SB_RDONLY) {
2188 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2189 		return -EINVAL;
2190 	}
2191 	sbi->sb->s_flags |= SB_ACTIVE;
2192 
2193 	/* check if we need more GC first */
2194 	unusable = f2fs_get_unusable_blocks(sbi);
2195 	if (!f2fs_disable_cp_again(sbi, unusable))
2196 		goto skip_gc;
2197 
2198 	f2fs_update_time(sbi, DISABLE_TIME);
2199 
2200 	sbi->gc_mode = GC_URGENT_HIGH;
2201 
2202 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2203 		struct f2fs_gc_control gc_control = {
2204 			.victim_segno = NULL_SEGNO,
2205 			.init_gc_type = FG_GC,
2206 			.should_migrate_blocks = false,
2207 			.err_gc_skipped = true,
2208 			.nr_free_secs = 1 };
2209 
2210 		f2fs_down_write(&sbi->gc_lock);
2211 		stat_inc_gc_call_count(sbi, FOREGROUND);
2212 		err = f2fs_gc(sbi, &gc_control);
2213 		if (err == -ENODATA) {
2214 			err = 0;
2215 			break;
2216 		}
2217 		if (err && err != -EAGAIN)
2218 			break;
2219 	}
2220 
2221 	ret = sync_filesystem(sbi->sb);
2222 	if (ret || err) {
2223 		err = ret ? ret : err;
2224 		goto restore_flag;
2225 	}
2226 
2227 	unusable = f2fs_get_unusable_blocks(sbi);
2228 	if (f2fs_disable_cp_again(sbi, unusable)) {
2229 		err = -EAGAIN;
2230 		goto restore_flag;
2231 	}
2232 
2233 skip_gc:
2234 	f2fs_down_write(&sbi->gc_lock);
2235 	cpc.reason = CP_PAUSE;
2236 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2237 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
2238 	err = f2fs_write_checkpoint(sbi, &cpc);
2239 	if (err)
2240 		goto out_unlock;
2241 
2242 	spin_lock(&sbi->stat_lock);
2243 	sbi->unusable_block_count = unusable;
2244 	spin_unlock(&sbi->stat_lock);
2245 
2246 out_unlock:
2247 	f2fs_up_write(&sbi->gc_lock);
2248 restore_flag:
2249 	sbi->gc_mode = gc_mode;
2250 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2251 	return err;
2252 }
2253 
f2fs_enable_checkpoint(struct f2fs_sb_info * sbi)2254 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2255 {
2256 	int retry = DEFAULT_RETRY_IO_COUNT;
2257 
2258 	/* we should flush all the data to keep data consistency */
2259 	do {
2260 		sync_inodes_sb(sbi->sb);
2261 		f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2262 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2263 
2264 	if (unlikely(retry < 0))
2265 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2266 
2267 	f2fs_down_write(&sbi->gc_lock);
2268 	f2fs_dirty_to_prefree(sbi);
2269 
2270 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2271 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2272 	f2fs_up_write(&sbi->gc_lock);
2273 
2274 	f2fs_sync_fs(sbi->sb, 1);
2275 
2276 	/* Let's ensure there's no pending checkpoint anymore */
2277 	f2fs_flush_ckpt_thread(sbi);
2278 }
2279 
f2fs_remount(struct super_block * sb,int * flags,char * data)2280 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2281 {
2282 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2283 	struct f2fs_mount_info org_mount_opt;
2284 	unsigned long old_sb_flags;
2285 	int err;
2286 	bool need_restart_gc = false, need_stop_gc = false;
2287 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2288 	bool need_restart_flush = false, need_stop_flush = false;
2289 	bool need_restart_discard = false, need_stop_discard = false;
2290 	bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
2291 	bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
2292 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2293 	bool no_atgc = !test_opt(sbi, ATGC);
2294 	bool no_discard = !test_opt(sbi, DISCARD);
2295 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2296 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2297 #ifdef CONFIG_QUOTA
2298 	int i, j;
2299 #endif
2300 
2301 	/*
2302 	 * Save the old mount options in case we
2303 	 * need to restore them.
2304 	 */
2305 	org_mount_opt = sbi->mount_opt;
2306 	old_sb_flags = sb->s_flags;
2307 
2308 #ifdef CONFIG_QUOTA
2309 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2310 	for (i = 0; i < MAXQUOTAS; i++) {
2311 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2312 			org_mount_opt.s_qf_names[i] =
2313 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2314 				GFP_KERNEL);
2315 			if (!org_mount_opt.s_qf_names[i]) {
2316 				for (j = 0; j < i; j++)
2317 					kfree(org_mount_opt.s_qf_names[j]);
2318 				return -ENOMEM;
2319 			}
2320 		} else {
2321 			org_mount_opt.s_qf_names[i] = NULL;
2322 		}
2323 	}
2324 #endif
2325 
2326 	/* recover superblocks we couldn't write due to previous RO mount */
2327 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2328 		err = f2fs_commit_super(sbi, false);
2329 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2330 			  err);
2331 		if (!err)
2332 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2333 	}
2334 
2335 	default_options(sbi, true);
2336 
2337 	/* parse mount options */
2338 	err = parse_options(sb, data, true);
2339 	if (err)
2340 		goto restore_opts;
2341 
2342 	/* flush outstanding errors before changing fs state */
2343 	flush_work(&sbi->s_error_work);
2344 
2345 	/*
2346 	 * Previous and new state of filesystem is RO,
2347 	 * so skip checking GC and FLUSH_MERGE conditions.
2348 	 */
2349 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2350 		goto skip;
2351 
2352 	if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) {
2353 		err = -EROFS;
2354 		goto restore_opts;
2355 	}
2356 
2357 #ifdef CONFIG_QUOTA
2358 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2359 		err = dquot_suspend(sb, -1);
2360 		if (err < 0)
2361 			goto restore_opts;
2362 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2363 		/* dquot_resume needs RW */
2364 		sb->s_flags &= ~SB_RDONLY;
2365 		if (sb_any_quota_suspended(sb)) {
2366 			dquot_resume(sb, -1);
2367 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2368 			err = f2fs_enable_quotas(sb);
2369 			if (err)
2370 				goto restore_opts;
2371 		}
2372 	}
2373 #endif
2374 	if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) {
2375 		err = -EINVAL;
2376 		f2fs_warn(sbi, "LFS is not compatible with IPU");
2377 		goto restore_opts;
2378 	}
2379 
2380 	/* disallow enable atgc dynamically */
2381 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2382 		err = -EINVAL;
2383 		f2fs_warn(sbi, "switch atgc option is not allowed");
2384 		goto restore_opts;
2385 	}
2386 
2387 	/* disallow enable/disable extent_cache dynamically */
2388 	if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
2389 		err = -EINVAL;
2390 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2391 		goto restore_opts;
2392 	}
2393 	/* disallow enable/disable age extent_cache dynamically */
2394 	if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
2395 		err = -EINVAL;
2396 		f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
2397 		goto restore_opts;
2398 	}
2399 
2400 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2401 		err = -EINVAL;
2402 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2403 		goto restore_opts;
2404 	}
2405 
2406 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2407 		err = -EINVAL;
2408 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2409 		goto restore_opts;
2410 	}
2411 
2412 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2413 		err = -EINVAL;
2414 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2415 		goto restore_opts;
2416 	}
2417 
2418 	/*
2419 	 * We stop the GC thread if FS is mounted as RO
2420 	 * or if background_gc = off is passed in mount
2421 	 * option. Also sync the filesystem.
2422 	 */
2423 	if ((*flags & SB_RDONLY) ||
2424 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2425 			!test_opt(sbi, GC_MERGE))) {
2426 		if (sbi->gc_thread) {
2427 			f2fs_stop_gc_thread(sbi);
2428 			need_restart_gc = true;
2429 		}
2430 	} else if (!sbi->gc_thread) {
2431 		err = f2fs_start_gc_thread(sbi);
2432 		if (err)
2433 			goto restore_opts;
2434 		need_stop_gc = true;
2435 	}
2436 
2437 	if (*flags & SB_RDONLY) {
2438 		sync_inodes_sb(sb);
2439 
2440 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2441 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2442 		f2fs_sync_fs(sb, 1);
2443 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2444 	}
2445 
2446 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2447 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2448 		f2fs_stop_ckpt_thread(sbi);
2449 		need_restart_ckpt = true;
2450 	} else {
2451 		/* Flush if the prevous checkpoint, if exists. */
2452 		f2fs_flush_ckpt_thread(sbi);
2453 
2454 		err = f2fs_start_ckpt_thread(sbi);
2455 		if (err) {
2456 			f2fs_err(sbi,
2457 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2458 			    err);
2459 			goto restore_gc;
2460 		}
2461 		need_stop_ckpt = true;
2462 	}
2463 
2464 	/*
2465 	 * We stop issue flush thread if FS is mounted as RO
2466 	 * or if flush_merge is not passed in mount option.
2467 	 */
2468 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2469 		clear_opt(sbi, FLUSH_MERGE);
2470 		f2fs_destroy_flush_cmd_control(sbi, false);
2471 		need_restart_flush = true;
2472 	} else {
2473 		err = f2fs_create_flush_cmd_control(sbi);
2474 		if (err)
2475 			goto restore_ckpt;
2476 		need_stop_flush = true;
2477 	}
2478 
2479 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2480 		if (test_opt(sbi, DISCARD)) {
2481 			err = f2fs_start_discard_thread(sbi);
2482 			if (err)
2483 				goto restore_flush;
2484 			need_stop_discard = true;
2485 		} else {
2486 			f2fs_stop_discard_thread(sbi);
2487 			f2fs_issue_discard_timeout(sbi);
2488 			need_restart_discard = true;
2489 		}
2490 	}
2491 
2492 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2493 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2494 			err = f2fs_disable_checkpoint(sbi);
2495 			if (err)
2496 				goto restore_discard;
2497 		} else {
2498 			f2fs_enable_checkpoint(sbi);
2499 		}
2500 	}
2501 
2502 skip:
2503 #ifdef CONFIG_QUOTA
2504 	/* Release old quota file names */
2505 	for (i = 0; i < MAXQUOTAS; i++)
2506 		kfree(org_mount_opt.s_qf_names[i]);
2507 #endif
2508 	/* Update the POSIXACL Flag */
2509 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2510 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2511 
2512 	limit_reserve_root(sbi);
2513 	adjust_unusable_cap_perc(sbi);
2514 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2515 	return 0;
2516 restore_discard:
2517 	if (need_restart_discard) {
2518 		if (f2fs_start_discard_thread(sbi))
2519 			f2fs_warn(sbi, "discard has been stopped");
2520 	} else if (need_stop_discard) {
2521 		f2fs_stop_discard_thread(sbi);
2522 	}
2523 restore_flush:
2524 	if (need_restart_flush) {
2525 		if (f2fs_create_flush_cmd_control(sbi))
2526 			f2fs_warn(sbi, "background flush thread has stopped");
2527 	} else if (need_stop_flush) {
2528 		clear_opt(sbi, FLUSH_MERGE);
2529 		f2fs_destroy_flush_cmd_control(sbi, false);
2530 	}
2531 restore_ckpt:
2532 	if (need_restart_ckpt) {
2533 		if (f2fs_start_ckpt_thread(sbi))
2534 			f2fs_warn(sbi, "background ckpt thread has stopped");
2535 	} else if (need_stop_ckpt) {
2536 		f2fs_stop_ckpt_thread(sbi);
2537 	}
2538 restore_gc:
2539 	if (need_restart_gc) {
2540 		if (f2fs_start_gc_thread(sbi))
2541 			f2fs_warn(sbi, "background gc thread has stopped");
2542 	} else if (need_stop_gc) {
2543 		f2fs_stop_gc_thread(sbi);
2544 	}
2545 restore_opts:
2546 #ifdef CONFIG_QUOTA
2547 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2548 	for (i = 0; i < MAXQUOTAS; i++) {
2549 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2550 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2551 	}
2552 #endif
2553 	sbi->mount_opt = org_mount_opt;
2554 	sb->s_flags = old_sb_flags;
2555 	return err;
2556 }
2557 
f2fs_shutdown(struct super_block * sb)2558 static void f2fs_shutdown(struct super_block *sb)
2559 {
2560 	f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false);
2561 }
2562 
2563 #ifdef CONFIG_QUOTA
f2fs_need_recovery(struct f2fs_sb_info * sbi)2564 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi)
2565 {
2566 	/* need to recovery orphan */
2567 	if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
2568 		return true;
2569 	/* need to recovery data */
2570 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
2571 		return false;
2572 	if (test_opt(sbi, NORECOVERY))
2573 		return false;
2574 	return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG);
2575 }
2576 
f2fs_recover_quota_begin(struct f2fs_sb_info * sbi)2577 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi)
2578 {
2579 	bool readonly = f2fs_readonly(sbi->sb);
2580 
2581 	if (!f2fs_need_recovery(sbi))
2582 		return false;
2583 
2584 	/* it doesn't need to check f2fs_sb_has_readonly() */
2585 	if (f2fs_hw_is_readonly(sbi))
2586 		return false;
2587 
2588 	if (readonly) {
2589 		sbi->sb->s_flags &= ~SB_RDONLY;
2590 		set_sbi_flag(sbi, SBI_IS_WRITABLE);
2591 	}
2592 
2593 	/*
2594 	 * Turn on quotas which were not enabled for read-only mounts if
2595 	 * filesystem has quota feature, so that they are updated correctly.
2596 	 */
2597 	return f2fs_enable_quota_files(sbi, readonly);
2598 }
2599 
f2fs_recover_quota_end(struct f2fs_sb_info * sbi,bool quota_enabled)2600 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi,
2601 						bool quota_enabled)
2602 {
2603 	if (quota_enabled)
2604 		f2fs_quota_off_umount(sbi->sb);
2605 
2606 	if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) {
2607 		clear_sbi_flag(sbi, SBI_IS_WRITABLE);
2608 		sbi->sb->s_flags |= SB_RDONLY;
2609 	}
2610 }
2611 
2612 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)2613 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2614 			       size_t len, loff_t off)
2615 {
2616 	struct inode *inode = sb_dqopt(sb)->files[type];
2617 	struct address_space *mapping = inode->i_mapping;
2618 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2619 	int offset = off & (sb->s_blocksize - 1);
2620 	int tocopy;
2621 	size_t toread;
2622 	loff_t i_size = i_size_read(inode);
2623 	struct page *page;
2624 
2625 	if (off > i_size)
2626 		return 0;
2627 
2628 	if (off + len > i_size)
2629 		len = i_size - off;
2630 	toread = len;
2631 	while (toread > 0) {
2632 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2633 repeat:
2634 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2635 		if (IS_ERR(page)) {
2636 			if (PTR_ERR(page) == -ENOMEM) {
2637 				memalloc_retry_wait(GFP_NOFS);
2638 				goto repeat;
2639 			}
2640 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2641 			return PTR_ERR(page);
2642 		}
2643 
2644 		lock_page(page);
2645 
2646 		if (unlikely(page->mapping != mapping)) {
2647 			f2fs_put_page(page, 1);
2648 			goto repeat;
2649 		}
2650 		if (unlikely(!PageUptodate(page))) {
2651 			f2fs_put_page(page, 1);
2652 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2653 			return -EIO;
2654 		}
2655 
2656 		memcpy_from_page(data, page, offset, tocopy);
2657 		f2fs_put_page(page, 1);
2658 
2659 		offset = 0;
2660 		toread -= tocopy;
2661 		data += tocopy;
2662 		blkidx++;
2663 	}
2664 	return len;
2665 }
2666 
2667 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)2668 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2669 				const char *data, size_t len, loff_t off)
2670 {
2671 	struct inode *inode = sb_dqopt(sb)->files[type];
2672 	struct address_space *mapping = inode->i_mapping;
2673 	const struct address_space_operations *a_ops = mapping->a_ops;
2674 	int offset = off & (sb->s_blocksize - 1);
2675 	size_t towrite = len;
2676 	struct page *page;
2677 	void *fsdata = NULL;
2678 	int err = 0;
2679 	int tocopy;
2680 
2681 	while (towrite > 0) {
2682 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2683 								towrite);
2684 retry:
2685 		err = a_ops->write_begin(NULL, mapping, off, tocopy,
2686 							&page, &fsdata);
2687 		if (unlikely(err)) {
2688 			if (err == -ENOMEM) {
2689 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2690 				goto retry;
2691 			}
2692 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2693 			break;
2694 		}
2695 
2696 		memcpy_to_page(page, offset, data, tocopy);
2697 
2698 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2699 						page, fsdata);
2700 		offset = 0;
2701 		towrite -= tocopy;
2702 		off += tocopy;
2703 		data += tocopy;
2704 		cond_resched();
2705 	}
2706 
2707 	if (len == towrite)
2708 		return err;
2709 	inode->i_mtime = inode_set_ctime_current(inode);
2710 	f2fs_mark_inode_dirty_sync(inode, false);
2711 	return len - towrite;
2712 }
2713 
f2fs_dquot_initialize(struct inode * inode)2714 int f2fs_dquot_initialize(struct inode *inode)
2715 {
2716 	if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT))
2717 		return -ESRCH;
2718 
2719 	return dquot_initialize(inode);
2720 }
2721 
f2fs_get_dquots(struct inode * inode)2722 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode)
2723 {
2724 	return F2FS_I(inode)->i_dquot;
2725 }
2726 
f2fs_get_reserved_space(struct inode * inode)2727 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2728 {
2729 	return &F2FS_I(inode)->i_reserved_quota;
2730 }
2731 
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)2732 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2733 {
2734 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2735 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2736 		return 0;
2737 	}
2738 
2739 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2740 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2741 }
2742 
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)2743 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2744 {
2745 	int enabled = 0;
2746 	int i, err;
2747 
2748 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2749 		err = f2fs_enable_quotas(sbi->sb);
2750 		if (err) {
2751 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2752 			return 0;
2753 		}
2754 		return 1;
2755 	}
2756 
2757 	for (i = 0; i < MAXQUOTAS; i++) {
2758 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2759 			err = f2fs_quota_on_mount(sbi, i);
2760 			if (!err) {
2761 				enabled = 1;
2762 				continue;
2763 			}
2764 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2765 				 err, i);
2766 		}
2767 	}
2768 	return enabled;
2769 }
2770 
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)2771 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2772 			     unsigned int flags)
2773 {
2774 	struct inode *qf_inode;
2775 	unsigned long qf_inum;
2776 	unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL;
2777 	int err;
2778 
2779 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2780 
2781 	qf_inum = f2fs_qf_ino(sb, type);
2782 	if (!qf_inum)
2783 		return -EPERM;
2784 
2785 	qf_inode = f2fs_iget(sb, qf_inum);
2786 	if (IS_ERR(qf_inode)) {
2787 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2788 		return PTR_ERR(qf_inode);
2789 	}
2790 
2791 	/* Don't account quota for quota files to avoid recursion */
2792 	inode_lock(qf_inode);
2793 	qf_inode->i_flags |= S_NOQUOTA;
2794 
2795 	if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) {
2796 		F2FS_I(qf_inode)->i_flags |= qf_flag;
2797 		f2fs_set_inode_flags(qf_inode);
2798 	}
2799 	inode_unlock(qf_inode);
2800 
2801 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2802 	iput(qf_inode);
2803 	return err;
2804 }
2805 
f2fs_enable_quotas(struct super_block * sb)2806 static int f2fs_enable_quotas(struct super_block *sb)
2807 {
2808 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2809 	int type, err = 0;
2810 	unsigned long qf_inum;
2811 	bool quota_mopt[MAXQUOTAS] = {
2812 		test_opt(sbi, USRQUOTA),
2813 		test_opt(sbi, GRPQUOTA),
2814 		test_opt(sbi, PRJQUOTA),
2815 	};
2816 
2817 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2818 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2819 		return 0;
2820 	}
2821 
2822 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2823 
2824 	for (type = 0; type < MAXQUOTAS; type++) {
2825 		qf_inum = f2fs_qf_ino(sb, type);
2826 		if (qf_inum) {
2827 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2828 				DQUOT_USAGE_ENABLED |
2829 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2830 			if (err) {
2831 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2832 					 type, err);
2833 				for (type--; type >= 0; type--)
2834 					dquot_quota_off(sb, type);
2835 				set_sbi_flag(F2FS_SB(sb),
2836 						SBI_QUOTA_NEED_REPAIR);
2837 				return err;
2838 			}
2839 		}
2840 	}
2841 	return 0;
2842 }
2843 
f2fs_quota_sync_file(struct f2fs_sb_info * sbi,int type)2844 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2845 {
2846 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2847 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2848 	int ret = 0;
2849 
2850 	ret = dquot_writeback_dquots(sbi->sb, type);
2851 	if (ret)
2852 		goto out;
2853 
2854 	ret = filemap_fdatawrite(mapping);
2855 	if (ret)
2856 		goto out;
2857 
2858 	/* if we are using journalled quota */
2859 	if (is_journalled_quota(sbi))
2860 		goto out;
2861 
2862 	ret = filemap_fdatawait(mapping);
2863 
2864 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2865 out:
2866 	if (ret)
2867 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2868 	return ret;
2869 }
2870 
f2fs_quota_sync(struct super_block * sb,int type)2871 int f2fs_quota_sync(struct super_block *sb, int type)
2872 {
2873 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2874 	struct quota_info *dqopt = sb_dqopt(sb);
2875 	int cnt;
2876 	int ret = 0;
2877 
2878 	/*
2879 	 * Now when everything is written we can discard the pagecache so
2880 	 * that userspace sees the changes.
2881 	 */
2882 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2883 
2884 		if (type != -1 && cnt != type)
2885 			continue;
2886 
2887 		if (!sb_has_quota_active(sb, cnt))
2888 			continue;
2889 
2890 		if (!f2fs_sb_has_quota_ino(sbi))
2891 			inode_lock(dqopt->files[cnt]);
2892 
2893 		/*
2894 		 * do_quotactl
2895 		 *  f2fs_quota_sync
2896 		 *  f2fs_down_read(quota_sem)
2897 		 *  dquot_writeback_dquots()
2898 		 *  f2fs_dquot_commit
2899 		 *			      block_operation
2900 		 *			      f2fs_down_read(quota_sem)
2901 		 */
2902 		f2fs_lock_op(sbi);
2903 		f2fs_down_read(&sbi->quota_sem);
2904 
2905 		ret = f2fs_quota_sync_file(sbi, cnt);
2906 
2907 		f2fs_up_read(&sbi->quota_sem);
2908 		f2fs_unlock_op(sbi);
2909 
2910 		if (!f2fs_sb_has_quota_ino(sbi))
2911 			inode_unlock(dqopt->files[cnt]);
2912 
2913 		if (ret)
2914 			break;
2915 	}
2916 	return ret;
2917 }
2918 
f2fs_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)2919 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2920 							const struct path *path)
2921 {
2922 	struct inode *inode;
2923 	int err;
2924 
2925 	/* if quota sysfile exists, deny enabling quota with specific file */
2926 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2927 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2928 		return -EBUSY;
2929 	}
2930 
2931 	if (path->dentry->d_sb != sb)
2932 		return -EXDEV;
2933 
2934 	err = f2fs_quota_sync(sb, type);
2935 	if (err)
2936 		return err;
2937 
2938 	inode = d_inode(path->dentry);
2939 
2940 	err = filemap_fdatawrite(inode->i_mapping);
2941 	if (err)
2942 		return err;
2943 
2944 	err = filemap_fdatawait(inode->i_mapping);
2945 	if (err)
2946 		return err;
2947 
2948 	err = dquot_quota_on(sb, type, format_id, path);
2949 	if (err)
2950 		return err;
2951 
2952 	inode_lock(inode);
2953 	F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL;
2954 	f2fs_set_inode_flags(inode);
2955 	inode_unlock(inode);
2956 	f2fs_mark_inode_dirty_sync(inode, false);
2957 
2958 	return 0;
2959 }
2960 
__f2fs_quota_off(struct super_block * sb,int type)2961 static int __f2fs_quota_off(struct super_block *sb, int type)
2962 {
2963 	struct inode *inode = sb_dqopt(sb)->files[type];
2964 	int err;
2965 
2966 	if (!inode || !igrab(inode))
2967 		return dquot_quota_off(sb, type);
2968 
2969 	err = f2fs_quota_sync(sb, type);
2970 	if (err)
2971 		goto out_put;
2972 
2973 	err = dquot_quota_off(sb, type);
2974 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2975 		goto out_put;
2976 
2977 	inode_lock(inode);
2978 	F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL;
2979 	f2fs_set_inode_flags(inode);
2980 	inode_unlock(inode);
2981 	f2fs_mark_inode_dirty_sync(inode, false);
2982 out_put:
2983 	iput(inode);
2984 	return err;
2985 }
2986 
f2fs_quota_off(struct super_block * sb,int type)2987 static int f2fs_quota_off(struct super_block *sb, int type)
2988 {
2989 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2990 	int err;
2991 
2992 	err = __f2fs_quota_off(sb, type);
2993 
2994 	/*
2995 	 * quotactl can shutdown journalled quota, result in inconsistence
2996 	 * between quota record and fs data by following updates, tag the
2997 	 * flag to let fsck be aware of it.
2998 	 */
2999 	if (is_journalled_quota(sbi))
3000 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3001 	return err;
3002 }
3003 
f2fs_quota_off_umount(struct super_block * sb)3004 void f2fs_quota_off_umount(struct super_block *sb)
3005 {
3006 	int type;
3007 	int err;
3008 
3009 	for (type = 0; type < MAXQUOTAS; type++) {
3010 		err = __f2fs_quota_off(sb, type);
3011 		if (err) {
3012 			int ret = dquot_quota_off(sb, type);
3013 
3014 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
3015 				 type, err, ret);
3016 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
3017 		}
3018 	}
3019 	/*
3020 	 * In case of checkpoint=disable, we must flush quota blocks.
3021 	 * This can cause NULL exception for node_inode in end_io, since
3022 	 * put_super already dropped it.
3023 	 */
3024 	sync_filesystem(sb);
3025 }
3026 
f2fs_truncate_quota_inode_pages(struct super_block * sb)3027 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
3028 {
3029 	struct quota_info *dqopt = sb_dqopt(sb);
3030 	int type;
3031 
3032 	for (type = 0; type < MAXQUOTAS; type++) {
3033 		if (!dqopt->files[type])
3034 			continue;
3035 		f2fs_inode_synced(dqopt->files[type]);
3036 	}
3037 }
3038 
f2fs_dquot_commit(struct dquot * dquot)3039 static int f2fs_dquot_commit(struct dquot *dquot)
3040 {
3041 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3042 	int ret;
3043 
3044 	f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
3045 	ret = dquot_commit(dquot);
3046 	if (ret < 0)
3047 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3048 	f2fs_up_read(&sbi->quota_sem);
3049 	return ret;
3050 }
3051 
f2fs_dquot_acquire(struct dquot * dquot)3052 static int f2fs_dquot_acquire(struct dquot *dquot)
3053 {
3054 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3055 	int ret;
3056 
3057 	f2fs_down_read(&sbi->quota_sem);
3058 	ret = dquot_acquire(dquot);
3059 	if (ret < 0)
3060 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3061 	f2fs_up_read(&sbi->quota_sem);
3062 	return ret;
3063 }
3064 
f2fs_dquot_release(struct dquot * dquot)3065 static int f2fs_dquot_release(struct dquot *dquot)
3066 {
3067 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3068 	int ret = dquot_release(dquot);
3069 
3070 	if (ret < 0)
3071 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3072 	return ret;
3073 }
3074 
f2fs_dquot_mark_dquot_dirty(struct dquot * dquot)3075 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
3076 {
3077 	struct super_block *sb = dquot->dq_sb;
3078 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3079 	int ret = dquot_mark_dquot_dirty(dquot);
3080 
3081 	/* if we are using journalled quota */
3082 	if (is_journalled_quota(sbi))
3083 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
3084 
3085 	return ret;
3086 }
3087 
f2fs_dquot_commit_info(struct super_block * sb,int type)3088 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
3089 {
3090 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3091 	int ret = dquot_commit_info(sb, type);
3092 
3093 	if (ret < 0)
3094 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3095 	return ret;
3096 }
3097 
f2fs_get_projid(struct inode * inode,kprojid_t * projid)3098 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
3099 {
3100 	*projid = F2FS_I(inode)->i_projid;
3101 	return 0;
3102 }
3103 
3104 static const struct dquot_operations f2fs_quota_operations = {
3105 	.get_reserved_space = f2fs_get_reserved_space,
3106 	.write_dquot	= f2fs_dquot_commit,
3107 	.acquire_dquot	= f2fs_dquot_acquire,
3108 	.release_dquot	= f2fs_dquot_release,
3109 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
3110 	.write_info	= f2fs_dquot_commit_info,
3111 	.alloc_dquot	= dquot_alloc,
3112 	.destroy_dquot	= dquot_destroy,
3113 	.get_projid	= f2fs_get_projid,
3114 	.get_next_id	= dquot_get_next_id,
3115 };
3116 
3117 static const struct quotactl_ops f2fs_quotactl_ops = {
3118 	.quota_on	= f2fs_quota_on,
3119 	.quota_off	= f2fs_quota_off,
3120 	.quota_sync	= f2fs_quota_sync,
3121 	.get_state	= dquot_get_state,
3122 	.set_info	= dquot_set_dqinfo,
3123 	.get_dqblk	= dquot_get_dqblk,
3124 	.set_dqblk	= dquot_set_dqblk,
3125 	.get_nextdqblk	= dquot_get_next_dqblk,
3126 };
3127 #else
f2fs_dquot_initialize(struct inode * inode)3128 int f2fs_dquot_initialize(struct inode *inode)
3129 {
3130 	return 0;
3131 }
3132 
f2fs_quota_sync(struct super_block * sb,int type)3133 int f2fs_quota_sync(struct super_block *sb, int type)
3134 {
3135 	return 0;
3136 }
3137 
f2fs_quota_off_umount(struct super_block * sb)3138 void f2fs_quota_off_umount(struct super_block *sb)
3139 {
3140 }
3141 #endif
3142 
3143 static const struct super_operations f2fs_sops = {
3144 	.alloc_inode	= f2fs_alloc_inode,
3145 	.free_inode	= f2fs_free_inode,
3146 	.drop_inode	= f2fs_drop_inode,
3147 	.write_inode	= f2fs_write_inode,
3148 	.dirty_inode	= f2fs_dirty_inode,
3149 	.show_options	= f2fs_show_options,
3150 #ifdef CONFIG_QUOTA
3151 	.quota_read	= f2fs_quota_read,
3152 	.quota_write	= f2fs_quota_write,
3153 	.get_dquots	= f2fs_get_dquots,
3154 #endif
3155 	.evict_inode	= f2fs_evict_inode,
3156 	.put_super	= f2fs_put_super,
3157 	.sync_fs	= f2fs_sync_fs,
3158 	.freeze_fs	= f2fs_freeze,
3159 	.unfreeze_fs	= f2fs_unfreeze,
3160 	.statfs		= f2fs_statfs,
3161 	.remount_fs	= f2fs_remount,
3162 	.shutdown	= f2fs_shutdown,
3163 };
3164 
3165 #ifdef CONFIG_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)3166 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
3167 {
3168 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3169 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3170 				ctx, len, NULL);
3171 }
3172 
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)3173 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
3174 							void *fs_data)
3175 {
3176 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3177 
3178 	/*
3179 	 * Encrypting the root directory is not allowed because fsck
3180 	 * expects lost+found directory to exist and remain unencrypted
3181 	 * if LOST_FOUND feature is enabled.
3182 	 *
3183 	 */
3184 	if (f2fs_sb_has_lost_found(sbi) &&
3185 			inode->i_ino == F2FS_ROOT_INO(sbi))
3186 		return -EPERM;
3187 
3188 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3189 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3190 				ctx, len, fs_data, XATTR_CREATE);
3191 }
3192 
f2fs_get_dummy_policy(struct super_block * sb)3193 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3194 {
3195 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3196 }
3197 
f2fs_has_stable_inodes(struct super_block * sb)3198 static bool f2fs_has_stable_inodes(struct super_block *sb)
3199 {
3200 	return true;
3201 }
3202 
f2fs_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)3203 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
3204 				       int *ino_bits_ret, int *lblk_bits_ret)
3205 {
3206 	*ino_bits_ret = 8 * sizeof(nid_t);
3207 	*lblk_bits_ret = 8 * sizeof(block_t);
3208 }
3209 
f2fs_get_devices(struct super_block * sb,unsigned int * num_devs)3210 static struct block_device **f2fs_get_devices(struct super_block *sb,
3211 					      unsigned int *num_devs)
3212 {
3213 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3214 	struct block_device **devs;
3215 	int i;
3216 
3217 	if (!f2fs_is_multi_device(sbi))
3218 		return NULL;
3219 
3220 	devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
3221 	if (!devs)
3222 		return ERR_PTR(-ENOMEM);
3223 
3224 	for (i = 0; i < sbi->s_ndevs; i++)
3225 		devs[i] = FDEV(i).bdev;
3226 	*num_devs = sbi->s_ndevs;
3227 	return devs;
3228 }
3229 
3230 static const struct fscrypt_operations f2fs_cryptops = {
3231 	.key_prefix		= "f2fs:",
3232 	.get_context		= f2fs_get_context,
3233 	.set_context		= f2fs_set_context,
3234 	.get_dummy_policy	= f2fs_get_dummy_policy,
3235 	.empty_dir		= f2fs_empty_dir,
3236 	.has_stable_inodes	= f2fs_has_stable_inodes,
3237 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
3238 	.get_devices		= f2fs_get_devices,
3239 };
3240 #endif
3241 
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)3242 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3243 		u64 ino, u32 generation)
3244 {
3245 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3246 	struct inode *inode;
3247 
3248 	if (f2fs_check_nid_range(sbi, ino))
3249 		return ERR_PTR(-ESTALE);
3250 
3251 	/*
3252 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
3253 	 * However f2fs_iget currently does appropriate checks to handle stale
3254 	 * inodes so everything is OK.
3255 	 */
3256 	inode = f2fs_iget(sb, ino);
3257 	if (IS_ERR(inode))
3258 		return ERR_CAST(inode);
3259 	if (unlikely(generation && inode->i_generation != generation)) {
3260 		/* we didn't find the right inode.. */
3261 		iput(inode);
3262 		return ERR_PTR(-ESTALE);
3263 	}
3264 	return inode;
3265 }
3266 
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3267 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3268 		int fh_len, int fh_type)
3269 {
3270 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3271 				    f2fs_nfs_get_inode);
3272 }
3273 
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3274 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3275 		int fh_len, int fh_type)
3276 {
3277 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3278 				    f2fs_nfs_get_inode);
3279 }
3280 
3281 static const struct export_operations f2fs_export_ops = {
3282 	.fh_to_dentry = f2fs_fh_to_dentry,
3283 	.fh_to_parent = f2fs_fh_to_parent,
3284 	.get_parent = f2fs_get_parent,
3285 };
3286 
max_file_blocks(struct inode * inode)3287 loff_t max_file_blocks(struct inode *inode)
3288 {
3289 	loff_t result = 0;
3290 	loff_t leaf_count;
3291 
3292 	/*
3293 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3294 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3295 	 * space in inode.i_addr, it will be more safe to reassign
3296 	 * result as zero.
3297 	 */
3298 
3299 	if (inode && f2fs_compressed_file(inode))
3300 		leaf_count = ADDRS_PER_BLOCK(inode);
3301 	else
3302 		leaf_count = DEF_ADDRS_PER_BLOCK;
3303 
3304 	/* two direct node blocks */
3305 	result += (leaf_count * 2);
3306 
3307 	/* two indirect node blocks */
3308 	leaf_count *= NIDS_PER_BLOCK;
3309 	result += (leaf_count * 2);
3310 
3311 	/* one double indirect node block */
3312 	leaf_count *= NIDS_PER_BLOCK;
3313 	result += leaf_count;
3314 
3315 	return result;
3316 }
3317 
__f2fs_commit_super(struct buffer_head * bh,struct f2fs_super_block * super)3318 static int __f2fs_commit_super(struct buffer_head *bh,
3319 			struct f2fs_super_block *super)
3320 {
3321 	lock_buffer(bh);
3322 	if (super)
3323 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3324 	set_buffer_dirty(bh);
3325 	unlock_buffer(bh);
3326 
3327 	/* it's rare case, we can do fua all the time */
3328 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3329 }
3330 
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct buffer_head * bh)3331 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3332 					struct buffer_head *bh)
3333 {
3334 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3335 					(bh->b_data + F2FS_SUPER_OFFSET);
3336 	struct super_block *sb = sbi->sb;
3337 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3338 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3339 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3340 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3341 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3342 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3343 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3344 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3345 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3346 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3347 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3348 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3349 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3350 	u64 main_end_blkaddr = main_blkaddr +
3351 				((u64)segment_count_main << log_blocks_per_seg);
3352 	u64 seg_end_blkaddr = segment0_blkaddr +
3353 				((u64)segment_count << log_blocks_per_seg);
3354 
3355 	if (segment0_blkaddr != cp_blkaddr) {
3356 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3357 			  segment0_blkaddr, cp_blkaddr);
3358 		return true;
3359 	}
3360 
3361 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3362 							sit_blkaddr) {
3363 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3364 			  cp_blkaddr, sit_blkaddr,
3365 			  segment_count_ckpt << log_blocks_per_seg);
3366 		return true;
3367 	}
3368 
3369 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3370 							nat_blkaddr) {
3371 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3372 			  sit_blkaddr, nat_blkaddr,
3373 			  segment_count_sit << log_blocks_per_seg);
3374 		return true;
3375 	}
3376 
3377 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3378 							ssa_blkaddr) {
3379 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3380 			  nat_blkaddr, ssa_blkaddr,
3381 			  segment_count_nat << log_blocks_per_seg);
3382 		return true;
3383 	}
3384 
3385 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3386 							main_blkaddr) {
3387 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3388 			  ssa_blkaddr, main_blkaddr,
3389 			  segment_count_ssa << log_blocks_per_seg);
3390 		return true;
3391 	}
3392 
3393 	if (main_end_blkaddr > seg_end_blkaddr) {
3394 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3395 			  main_blkaddr, seg_end_blkaddr,
3396 			  segment_count_main << log_blocks_per_seg);
3397 		return true;
3398 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3399 		int err = 0;
3400 		char *res;
3401 
3402 		/* fix in-memory information all the time */
3403 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3404 				segment0_blkaddr) >> log_blocks_per_seg);
3405 
3406 		if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) {
3407 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3408 			res = "internally";
3409 		} else {
3410 			err = __f2fs_commit_super(bh, NULL);
3411 			res = err ? "failed" : "done";
3412 		}
3413 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3414 			  res, main_blkaddr, seg_end_blkaddr,
3415 			  segment_count_main << log_blocks_per_seg);
3416 		if (err)
3417 			return true;
3418 	}
3419 	return false;
3420 }
3421 
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct buffer_head * bh)3422 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3423 				struct buffer_head *bh)
3424 {
3425 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3426 	block_t total_sections, blocks_per_seg;
3427 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3428 					(bh->b_data + F2FS_SUPER_OFFSET);
3429 	size_t crc_offset = 0;
3430 	__u32 crc = 0;
3431 
3432 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3433 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3434 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3435 		return -EINVAL;
3436 	}
3437 
3438 	/* Check checksum_offset and crc in superblock */
3439 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3440 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3441 		if (crc_offset !=
3442 			offsetof(struct f2fs_super_block, crc)) {
3443 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3444 				  crc_offset);
3445 			return -EFSCORRUPTED;
3446 		}
3447 		crc = le32_to_cpu(raw_super->crc);
3448 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3449 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3450 			return -EFSCORRUPTED;
3451 		}
3452 	}
3453 
3454 	/* Currently, support only 4KB block size */
3455 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3456 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3457 			  le32_to_cpu(raw_super->log_blocksize),
3458 			  F2FS_BLKSIZE_BITS);
3459 		return -EFSCORRUPTED;
3460 	}
3461 
3462 	/* check log blocks per segment */
3463 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3464 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3465 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3466 		return -EFSCORRUPTED;
3467 	}
3468 
3469 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3470 	if (le32_to_cpu(raw_super->log_sectorsize) >
3471 				F2FS_MAX_LOG_SECTOR_SIZE ||
3472 		le32_to_cpu(raw_super->log_sectorsize) <
3473 				F2FS_MIN_LOG_SECTOR_SIZE) {
3474 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3475 			  le32_to_cpu(raw_super->log_sectorsize));
3476 		return -EFSCORRUPTED;
3477 	}
3478 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3479 		le32_to_cpu(raw_super->log_sectorsize) !=
3480 			F2FS_MAX_LOG_SECTOR_SIZE) {
3481 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3482 			  le32_to_cpu(raw_super->log_sectors_per_block),
3483 			  le32_to_cpu(raw_super->log_sectorsize));
3484 		return -EFSCORRUPTED;
3485 	}
3486 
3487 	segment_count = le32_to_cpu(raw_super->segment_count);
3488 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3489 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3490 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3491 	total_sections = le32_to_cpu(raw_super->section_count);
3492 
3493 	/* blocks_per_seg should be 512, given the above check */
3494 	blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg));
3495 
3496 	if (segment_count > F2FS_MAX_SEGMENT ||
3497 				segment_count < F2FS_MIN_SEGMENTS) {
3498 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3499 		return -EFSCORRUPTED;
3500 	}
3501 
3502 	if (total_sections > segment_count_main || total_sections < 1 ||
3503 			segs_per_sec > segment_count || !segs_per_sec) {
3504 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3505 			  segment_count, total_sections, segs_per_sec);
3506 		return -EFSCORRUPTED;
3507 	}
3508 
3509 	if (segment_count_main != total_sections * segs_per_sec) {
3510 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3511 			  segment_count_main, total_sections, segs_per_sec);
3512 		return -EFSCORRUPTED;
3513 	}
3514 
3515 	if ((segment_count / segs_per_sec) < total_sections) {
3516 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3517 			  segment_count, segs_per_sec, total_sections);
3518 		return -EFSCORRUPTED;
3519 	}
3520 
3521 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3522 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3523 			  segment_count, le64_to_cpu(raw_super->block_count));
3524 		return -EFSCORRUPTED;
3525 	}
3526 
3527 	if (RDEV(0).path[0]) {
3528 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3529 		int i = 1;
3530 
3531 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3532 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3533 			i++;
3534 		}
3535 		if (segment_count != dev_seg_count) {
3536 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3537 					segment_count, dev_seg_count);
3538 			return -EFSCORRUPTED;
3539 		}
3540 	} else {
3541 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3542 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3543 			f2fs_info(sbi, "Zoned block device path is missing");
3544 			return -EFSCORRUPTED;
3545 		}
3546 	}
3547 
3548 	if (secs_per_zone > total_sections || !secs_per_zone) {
3549 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3550 			  secs_per_zone, total_sections);
3551 		return -EFSCORRUPTED;
3552 	}
3553 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3554 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3555 			(le32_to_cpu(raw_super->extension_count) +
3556 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3557 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3558 			  le32_to_cpu(raw_super->extension_count),
3559 			  raw_super->hot_ext_count,
3560 			  F2FS_MAX_EXTENSION);
3561 		return -EFSCORRUPTED;
3562 	}
3563 
3564 	if (le32_to_cpu(raw_super->cp_payload) >=
3565 				(blocks_per_seg - F2FS_CP_PACKS -
3566 				NR_CURSEG_PERSIST_TYPE)) {
3567 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3568 			  le32_to_cpu(raw_super->cp_payload),
3569 			  blocks_per_seg - F2FS_CP_PACKS -
3570 			  NR_CURSEG_PERSIST_TYPE);
3571 		return -EFSCORRUPTED;
3572 	}
3573 
3574 	/* check reserved ino info */
3575 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3576 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3577 		le32_to_cpu(raw_super->root_ino) != 3) {
3578 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3579 			  le32_to_cpu(raw_super->node_ino),
3580 			  le32_to_cpu(raw_super->meta_ino),
3581 			  le32_to_cpu(raw_super->root_ino));
3582 		return -EFSCORRUPTED;
3583 	}
3584 
3585 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3586 	if (sanity_check_area_boundary(sbi, bh))
3587 		return -EFSCORRUPTED;
3588 
3589 	return 0;
3590 }
3591 
f2fs_sanity_check_ckpt(struct f2fs_sb_info * sbi)3592 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3593 {
3594 	unsigned int total, fsmeta;
3595 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3596 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3597 	unsigned int ovp_segments, reserved_segments;
3598 	unsigned int main_segs, blocks_per_seg;
3599 	unsigned int sit_segs, nat_segs;
3600 	unsigned int sit_bitmap_size, nat_bitmap_size;
3601 	unsigned int log_blocks_per_seg;
3602 	unsigned int segment_count_main;
3603 	unsigned int cp_pack_start_sum, cp_payload;
3604 	block_t user_block_count, valid_user_blocks;
3605 	block_t avail_node_count, valid_node_count;
3606 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3607 	int i, j;
3608 
3609 	total = le32_to_cpu(raw_super->segment_count);
3610 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3611 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3612 	fsmeta += sit_segs;
3613 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3614 	fsmeta += nat_segs;
3615 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3616 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3617 
3618 	if (unlikely(fsmeta >= total))
3619 		return 1;
3620 
3621 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3622 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3623 
3624 	if (!f2fs_sb_has_readonly(sbi) &&
3625 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3626 			ovp_segments == 0 || reserved_segments == 0)) {
3627 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3628 		return 1;
3629 	}
3630 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3631 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3632 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3633 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3634 	if (!user_block_count || user_block_count >=
3635 			segment_count_main << log_blocks_per_seg) {
3636 		f2fs_err(sbi, "Wrong user_block_count: %u",
3637 			 user_block_count);
3638 		return 1;
3639 	}
3640 
3641 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3642 	if (valid_user_blocks > user_block_count) {
3643 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3644 			 valid_user_blocks, user_block_count);
3645 		return 1;
3646 	}
3647 
3648 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3649 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3650 	if (valid_node_count > avail_node_count) {
3651 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3652 			 valid_node_count, avail_node_count);
3653 		return 1;
3654 	}
3655 
3656 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3657 	blocks_per_seg = BLKS_PER_SEG(sbi);
3658 
3659 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3660 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3661 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3662 			return 1;
3663 
3664 		if (f2fs_sb_has_readonly(sbi))
3665 			goto check_data;
3666 
3667 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3668 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3669 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3670 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3671 					 i, j,
3672 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3673 				return 1;
3674 			}
3675 		}
3676 	}
3677 check_data:
3678 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3679 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3680 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3681 			return 1;
3682 
3683 		if (f2fs_sb_has_readonly(sbi))
3684 			goto skip_cross;
3685 
3686 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3687 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3688 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3689 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3690 					 i, j,
3691 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3692 				return 1;
3693 			}
3694 		}
3695 	}
3696 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3697 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3698 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3699 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3700 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3701 					 i, j,
3702 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3703 				return 1;
3704 			}
3705 		}
3706 	}
3707 skip_cross:
3708 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3709 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3710 
3711 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3712 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3713 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3714 			 sit_bitmap_size, nat_bitmap_size);
3715 		return 1;
3716 	}
3717 
3718 	cp_pack_start_sum = __start_sum_addr(sbi);
3719 	cp_payload = __cp_payload(sbi);
3720 	if (cp_pack_start_sum < cp_payload + 1 ||
3721 		cp_pack_start_sum > blocks_per_seg - 1 -
3722 			NR_CURSEG_PERSIST_TYPE) {
3723 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3724 			 cp_pack_start_sum);
3725 		return 1;
3726 	}
3727 
3728 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3729 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3730 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3731 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3732 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3733 			  le32_to_cpu(ckpt->checksum_offset));
3734 		return 1;
3735 	}
3736 
3737 	nat_blocks = nat_segs << log_blocks_per_seg;
3738 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3739 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3740 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3741 		(cp_payload + F2FS_CP_PACKS +
3742 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3743 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3744 			  cp_payload, nat_bits_blocks);
3745 		return 1;
3746 	}
3747 
3748 	if (unlikely(f2fs_cp_error(sbi))) {
3749 		f2fs_err(sbi, "A bug case: need to run fsck");
3750 		return 1;
3751 	}
3752 	return 0;
3753 }
3754 
init_sb_info(struct f2fs_sb_info * sbi)3755 static void init_sb_info(struct f2fs_sb_info *sbi)
3756 {
3757 	struct f2fs_super_block *raw_super = sbi->raw_super;
3758 	int i;
3759 
3760 	sbi->log_sectors_per_block =
3761 		le32_to_cpu(raw_super->log_sectors_per_block);
3762 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3763 	sbi->blocksize = BIT(sbi->log_blocksize);
3764 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3765 	sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg);
3766 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3767 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3768 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3769 	sbi->total_node_count =
3770 		((le32_to_cpu(raw_super->segment_count_nat) / 2) *
3771 		NAT_ENTRY_PER_BLOCK) << sbi->log_blocks_per_seg;
3772 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3773 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3774 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3775 	sbi->cur_victim_sec = NULL_SECNO;
3776 	sbi->gc_mode = GC_NORMAL;
3777 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3778 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3779 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3780 	sbi->migration_granularity = SEGS_PER_SEC(sbi);
3781 	sbi->seq_file_ra_mul = MIN_RA_MUL;
3782 	sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3783 	sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3784 	spin_lock_init(&sbi->gc_remaining_trials_lock);
3785 	atomic64_set(&sbi->current_atomic_write, 0);
3786 
3787 	sbi->dir_level = DEF_DIR_LEVEL;
3788 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3789 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3790 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3791 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3792 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3793 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3794 				DEF_UMOUNT_DISCARD_TIMEOUT;
3795 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3796 
3797 	for (i = 0; i < NR_COUNT_TYPE; i++)
3798 		atomic_set(&sbi->nr_pages[i], 0);
3799 
3800 	for (i = 0; i < META; i++)
3801 		atomic_set(&sbi->wb_sync_req[i], 0);
3802 
3803 	INIT_LIST_HEAD(&sbi->s_list);
3804 	mutex_init(&sbi->umount_mutex);
3805 	init_f2fs_rwsem(&sbi->io_order_lock);
3806 	spin_lock_init(&sbi->cp_lock);
3807 
3808 	sbi->dirty_device = 0;
3809 	spin_lock_init(&sbi->dev_lock);
3810 
3811 	init_f2fs_rwsem(&sbi->sb_lock);
3812 	init_f2fs_rwsem(&sbi->pin_sem);
3813 }
3814 
init_percpu_info(struct f2fs_sb_info * sbi)3815 static int init_percpu_info(struct f2fs_sb_info *sbi)
3816 {
3817 	int err;
3818 
3819 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3820 	if (err)
3821 		return err;
3822 
3823 	err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
3824 	if (err)
3825 		goto err_valid_block;
3826 
3827 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3828 								GFP_KERNEL);
3829 	if (err)
3830 		goto err_node_block;
3831 	return 0;
3832 
3833 err_node_block:
3834 	percpu_counter_destroy(&sbi->rf_node_block_count);
3835 err_valid_block:
3836 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
3837 	return err;
3838 }
3839 
3840 #ifdef CONFIG_BLK_DEV_ZONED
3841 
3842 struct f2fs_report_zones_args {
3843 	struct f2fs_sb_info *sbi;
3844 	struct f2fs_dev_info *dev;
3845 };
3846 
f2fs_report_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)3847 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3848 			      void *data)
3849 {
3850 	struct f2fs_report_zones_args *rz_args = data;
3851 	block_t unusable_blocks = (zone->len - zone->capacity) >>
3852 					F2FS_LOG_SECTORS_PER_BLOCK;
3853 
3854 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3855 		return 0;
3856 
3857 	set_bit(idx, rz_args->dev->blkz_seq);
3858 	if (!rz_args->sbi->unusable_blocks_per_sec) {
3859 		rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
3860 		return 0;
3861 	}
3862 	if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
3863 		f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
3864 		return -EINVAL;
3865 	}
3866 	return 0;
3867 }
3868 
init_blkz_info(struct f2fs_sb_info * sbi,int devi)3869 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3870 {
3871 	struct block_device *bdev = FDEV(devi).bdev;
3872 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3873 	struct f2fs_report_zones_args rep_zone_arg;
3874 	u64 zone_sectors;
3875 	int ret;
3876 
3877 	if (!f2fs_sb_has_blkzoned(sbi))
3878 		return 0;
3879 
3880 	zone_sectors = bdev_zone_sectors(bdev);
3881 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3882 				SECTOR_TO_BLOCK(zone_sectors))
3883 		return -EINVAL;
3884 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
3885 	FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors),
3886 					sbi->blocks_per_blkz);
3887 	if (nr_sectors & (zone_sectors - 1))
3888 		FDEV(devi).nr_blkz++;
3889 
3890 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3891 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3892 					* sizeof(unsigned long),
3893 					GFP_KERNEL);
3894 	if (!FDEV(devi).blkz_seq)
3895 		return -ENOMEM;
3896 
3897 	rep_zone_arg.sbi = sbi;
3898 	rep_zone_arg.dev = &FDEV(devi);
3899 
3900 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3901 				  &rep_zone_arg);
3902 	if (ret < 0)
3903 		return ret;
3904 	return 0;
3905 }
3906 #endif
3907 
3908 /*
3909  * Read f2fs raw super block.
3910  * Because we have two copies of super block, so read both of them
3911  * to get the first valid one. If any one of them is broken, we pass
3912  * them recovery flag back to the caller.
3913  */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)3914 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3915 			struct f2fs_super_block **raw_super,
3916 			int *valid_super_block, int *recovery)
3917 {
3918 	struct super_block *sb = sbi->sb;
3919 	int block;
3920 	struct buffer_head *bh;
3921 	struct f2fs_super_block *super;
3922 	int err = 0;
3923 
3924 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3925 	if (!super)
3926 		return -ENOMEM;
3927 
3928 	for (block = 0; block < 2; block++) {
3929 		bh = sb_bread(sb, block);
3930 		if (!bh) {
3931 			f2fs_err(sbi, "Unable to read %dth superblock",
3932 				 block + 1);
3933 			err = -EIO;
3934 			*recovery = 1;
3935 			continue;
3936 		}
3937 
3938 		/* sanity checking of raw super */
3939 		err = sanity_check_raw_super(sbi, bh);
3940 		if (err) {
3941 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3942 				 block + 1);
3943 			brelse(bh);
3944 			*recovery = 1;
3945 			continue;
3946 		}
3947 
3948 		if (!*raw_super) {
3949 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3950 							sizeof(*super));
3951 			*valid_super_block = block;
3952 			*raw_super = super;
3953 		}
3954 		brelse(bh);
3955 	}
3956 
3957 	/* No valid superblock */
3958 	if (!*raw_super)
3959 		kfree(super);
3960 	else
3961 		err = 0;
3962 
3963 	return err;
3964 }
3965 
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)3966 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3967 {
3968 	struct buffer_head *bh;
3969 	__u32 crc = 0;
3970 	int err;
3971 
3972 	if ((recover && f2fs_readonly(sbi->sb)) ||
3973 				f2fs_hw_is_readonly(sbi)) {
3974 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3975 		return -EROFS;
3976 	}
3977 
3978 	/* we should update superblock crc here */
3979 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3980 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3981 				offsetof(struct f2fs_super_block, crc));
3982 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3983 	}
3984 
3985 	/* write back-up superblock first */
3986 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3987 	if (!bh)
3988 		return -EIO;
3989 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3990 	brelse(bh);
3991 
3992 	/* if we are in recovery path, skip writing valid superblock */
3993 	if (recover || err)
3994 		return err;
3995 
3996 	/* write current valid superblock */
3997 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3998 	if (!bh)
3999 		return -EIO;
4000 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
4001 	brelse(bh);
4002 	return err;
4003 }
4004 
save_stop_reason(struct f2fs_sb_info * sbi,unsigned char reason)4005 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason)
4006 {
4007 	unsigned long flags;
4008 
4009 	spin_lock_irqsave(&sbi->error_lock, flags);
4010 	if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0))
4011 		sbi->stop_reason[reason]++;
4012 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4013 }
4014 
f2fs_record_stop_reason(struct f2fs_sb_info * sbi)4015 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi)
4016 {
4017 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4018 	unsigned long flags;
4019 	int err;
4020 
4021 	f2fs_down_write(&sbi->sb_lock);
4022 
4023 	spin_lock_irqsave(&sbi->error_lock, flags);
4024 	if (sbi->error_dirty) {
4025 		memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4026 							MAX_F2FS_ERRORS);
4027 		sbi->error_dirty = false;
4028 	}
4029 	memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON);
4030 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4031 
4032 	err = f2fs_commit_super(sbi, false);
4033 
4034 	f2fs_up_write(&sbi->sb_lock);
4035 	if (err)
4036 		f2fs_err(sbi, "f2fs_commit_super fails to record err:%d", err);
4037 }
4038 
f2fs_save_errors(struct f2fs_sb_info * sbi,unsigned char flag)4039 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag)
4040 {
4041 	unsigned long flags;
4042 
4043 	spin_lock_irqsave(&sbi->error_lock, flags);
4044 	if (!test_bit(flag, (unsigned long *)sbi->errors)) {
4045 		set_bit(flag, (unsigned long *)sbi->errors);
4046 		sbi->error_dirty = true;
4047 	}
4048 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4049 }
4050 
f2fs_update_errors(struct f2fs_sb_info * sbi)4051 static bool f2fs_update_errors(struct f2fs_sb_info *sbi)
4052 {
4053 	unsigned long flags;
4054 	bool need_update = false;
4055 
4056 	spin_lock_irqsave(&sbi->error_lock, flags);
4057 	if (sbi->error_dirty) {
4058 		memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4059 							MAX_F2FS_ERRORS);
4060 		sbi->error_dirty = false;
4061 		need_update = true;
4062 	}
4063 	spin_unlock_irqrestore(&sbi->error_lock, flags);
4064 
4065 	return need_update;
4066 }
4067 
f2fs_record_errors(struct f2fs_sb_info * sbi,unsigned char error)4068 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error)
4069 {
4070 	int err;
4071 
4072 	f2fs_down_write(&sbi->sb_lock);
4073 
4074 	if (!f2fs_update_errors(sbi))
4075 		goto out_unlock;
4076 
4077 	err = f2fs_commit_super(sbi, false);
4078 	if (err)
4079 		f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d",
4080 								error, err);
4081 out_unlock:
4082 	f2fs_up_write(&sbi->sb_lock);
4083 }
4084 
f2fs_handle_error(struct f2fs_sb_info * sbi,unsigned char error)4085 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error)
4086 {
4087 	f2fs_save_errors(sbi, error);
4088 	f2fs_record_errors(sbi, error);
4089 }
4090 
f2fs_handle_error_async(struct f2fs_sb_info * sbi,unsigned char error)4091 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error)
4092 {
4093 	f2fs_save_errors(sbi, error);
4094 
4095 	if (!sbi->error_dirty)
4096 		return;
4097 	if (!test_bit(error, (unsigned long *)sbi->errors))
4098 		return;
4099 	schedule_work(&sbi->s_error_work);
4100 }
4101 
system_going_down(void)4102 static bool system_going_down(void)
4103 {
4104 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
4105 		|| system_state == SYSTEM_RESTART;
4106 }
4107 
f2fs_handle_critical_error(struct f2fs_sb_info * sbi,unsigned char reason)4108 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason)
4109 {
4110 	struct super_block *sb = sbi->sb;
4111 	bool shutdown = reason == STOP_CP_REASON_SHUTDOWN;
4112 	bool continue_fs = !shutdown &&
4113 			F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE;
4114 
4115 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
4116 
4117 	if (!f2fs_hw_is_readonly(sbi)) {
4118 		save_stop_reason(sbi, reason);
4119 
4120 		/*
4121 		 * always create an asynchronous task to record stop_reason
4122 		 * in order to avoid potential deadlock when running into
4123 		 * f2fs_record_stop_reason() synchronously.
4124 		 */
4125 		schedule_work(&sbi->s_error_work);
4126 	}
4127 
4128 	/*
4129 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
4130 	 * could panic during 'reboot -f' as the underlying device got already
4131 	 * disabled.
4132 	 */
4133 	if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC &&
4134 				!shutdown && !system_going_down() &&
4135 				!is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
4136 		panic("F2FS-fs (device %s): panic forced after error\n",
4137 							sb->s_id);
4138 
4139 	if (shutdown)
4140 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
4141 
4142 	/*
4143 	 * Continue filesystem operators if errors=continue. Should not set
4144 	 * RO by shutdown, since RO bypasses thaw_super which can hang the
4145 	 * system.
4146 	 */
4147 	if (continue_fs || f2fs_readonly(sb) || shutdown) {
4148 		f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason);
4149 		return;
4150 	}
4151 
4152 	f2fs_warn(sbi, "Remounting filesystem read-only");
4153 
4154 	/*
4155 	 * We have already set CP_ERROR_FLAG flag to stop all updates
4156 	 * to filesystem, so it doesn't need to set SB_RDONLY flag here
4157 	 * because the flag should be set covered w/ sb->s_umount semaphore
4158 	 * via remount procedure, otherwise, it will confuse code like
4159 	 * freeze_super() which will lead to deadlocks and other problems.
4160 	 */
4161 }
4162 
f2fs_record_error_work(struct work_struct * work)4163 static void f2fs_record_error_work(struct work_struct *work)
4164 {
4165 	struct f2fs_sb_info *sbi = container_of(work,
4166 					struct f2fs_sb_info, s_error_work);
4167 
4168 	f2fs_record_stop_reason(sbi);
4169 }
4170 
f2fs_scan_devices(struct f2fs_sb_info * sbi)4171 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
4172 {
4173 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4174 	unsigned int max_devices = MAX_DEVICES;
4175 	unsigned int logical_blksize;
4176 	blk_mode_t mode = sb_open_mode(sbi->sb->s_flags);
4177 	int i;
4178 
4179 	/* Initialize single device information */
4180 	if (!RDEV(0).path[0]) {
4181 		if (!bdev_is_zoned(sbi->sb->s_bdev))
4182 			return 0;
4183 		max_devices = 1;
4184 	}
4185 
4186 	/*
4187 	 * Initialize multiple devices information, or single
4188 	 * zoned block device information.
4189 	 */
4190 	sbi->devs = f2fs_kzalloc(sbi,
4191 				 array_size(max_devices,
4192 					    sizeof(struct f2fs_dev_info)),
4193 				 GFP_KERNEL);
4194 	if (!sbi->devs)
4195 		return -ENOMEM;
4196 
4197 	logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
4198 	sbi->aligned_blksize = true;
4199 
4200 	for (i = 0; i < max_devices; i++) {
4201 		if (i == 0)
4202 			FDEV(0).bdev = sbi->sb->s_bdev;
4203 		else if (!RDEV(i).path[0])
4204 			break;
4205 
4206 		if (max_devices > 1) {
4207 			/* Multi-device mount */
4208 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
4209 			FDEV(i).total_segments =
4210 				le32_to_cpu(RDEV(i).total_segments);
4211 			if (i == 0) {
4212 				FDEV(i).start_blk = 0;
4213 				FDEV(i).end_blk = FDEV(i).start_blk +
4214 				    (FDEV(i).total_segments <<
4215 				    sbi->log_blocks_per_seg) - 1 +
4216 				    le32_to_cpu(raw_super->segment0_blkaddr);
4217 			} else {
4218 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
4219 				FDEV(i).end_blk = FDEV(i).start_blk +
4220 					(FDEV(i).total_segments <<
4221 					sbi->log_blocks_per_seg) - 1;
4222 				FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
4223 					mode, sbi->sb, NULL);
4224 			}
4225 		}
4226 		if (IS_ERR(FDEV(i).bdev))
4227 			return PTR_ERR(FDEV(i).bdev);
4228 
4229 		/* to release errored devices */
4230 		sbi->s_ndevs = i + 1;
4231 
4232 		if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
4233 			sbi->aligned_blksize = false;
4234 
4235 #ifdef CONFIG_BLK_DEV_ZONED
4236 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
4237 				!f2fs_sb_has_blkzoned(sbi)) {
4238 			f2fs_err(sbi, "Zoned block device feature not enabled");
4239 			return -EINVAL;
4240 		}
4241 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
4242 			if (init_blkz_info(sbi, i)) {
4243 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
4244 				return -EINVAL;
4245 			}
4246 			if (max_devices == 1)
4247 				break;
4248 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
4249 				  i, FDEV(i).path,
4250 				  FDEV(i).total_segments,
4251 				  FDEV(i).start_blk, FDEV(i).end_blk,
4252 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
4253 				  "Host-aware" : "Host-managed");
4254 			continue;
4255 		}
4256 #endif
4257 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
4258 			  i, FDEV(i).path,
4259 			  FDEV(i).total_segments,
4260 			  FDEV(i).start_blk, FDEV(i).end_blk);
4261 	}
4262 	return 0;
4263 }
4264 
f2fs_setup_casefold(struct f2fs_sb_info * sbi)4265 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
4266 {
4267 #if IS_ENABLED(CONFIG_UNICODE)
4268 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
4269 		const struct f2fs_sb_encodings *encoding_info;
4270 		struct unicode_map *encoding;
4271 		__u16 encoding_flags;
4272 
4273 		encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
4274 		if (!encoding_info) {
4275 			f2fs_err(sbi,
4276 				 "Encoding requested by superblock is unknown");
4277 			return -EINVAL;
4278 		}
4279 
4280 		encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
4281 		encoding = utf8_load(encoding_info->version);
4282 		if (IS_ERR(encoding)) {
4283 			f2fs_err(sbi,
4284 				 "can't mount with superblock charset: %s-%u.%u.%u "
4285 				 "not supported by the kernel. flags: 0x%x.",
4286 				 encoding_info->name,
4287 				 unicode_major(encoding_info->version),
4288 				 unicode_minor(encoding_info->version),
4289 				 unicode_rev(encoding_info->version),
4290 				 encoding_flags);
4291 			return PTR_ERR(encoding);
4292 		}
4293 		f2fs_info(sbi, "Using encoding defined by superblock: "
4294 			 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4295 			 unicode_major(encoding_info->version),
4296 			 unicode_minor(encoding_info->version),
4297 			 unicode_rev(encoding_info->version),
4298 			 encoding_flags);
4299 
4300 		sbi->sb->s_encoding = encoding;
4301 		sbi->sb->s_encoding_flags = encoding_flags;
4302 	}
4303 #else
4304 	if (f2fs_sb_has_casefold(sbi)) {
4305 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
4306 		return -EINVAL;
4307 	}
4308 #endif
4309 	return 0;
4310 }
4311 
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)4312 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
4313 {
4314 	/* adjust parameters according to the volume size */
4315 	if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) {
4316 		if (f2fs_block_unit_discard(sbi))
4317 			SM_I(sbi)->dcc_info->discard_granularity =
4318 						MIN_DISCARD_GRANULARITY;
4319 		if (!f2fs_lfs_mode(sbi))
4320 			SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) |
4321 						BIT(F2FS_IPU_HONOR_OPU_WRITE);
4322 	}
4323 
4324 	sbi->readdir_ra = true;
4325 }
4326 
f2fs_fill_super(struct super_block * sb,void * data,int silent)4327 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
4328 {
4329 	struct f2fs_sb_info *sbi;
4330 	struct f2fs_super_block *raw_super;
4331 	struct inode *root;
4332 	int err;
4333 	bool skip_recovery = false, need_fsck = false;
4334 	char *options = NULL;
4335 	int recovery, i, valid_super_block;
4336 	struct curseg_info *seg_i;
4337 	int retry_cnt = 1;
4338 #ifdef CONFIG_QUOTA
4339 	bool quota_enabled = false;
4340 #endif
4341 
4342 try_onemore:
4343 	err = -EINVAL;
4344 	raw_super = NULL;
4345 	valid_super_block = -1;
4346 	recovery = 0;
4347 
4348 	/* allocate memory for f2fs-specific super block info */
4349 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4350 	if (!sbi)
4351 		return -ENOMEM;
4352 
4353 	sbi->sb = sb;
4354 
4355 	/* initialize locks within allocated memory */
4356 	init_f2fs_rwsem(&sbi->gc_lock);
4357 	mutex_init(&sbi->writepages);
4358 	init_f2fs_rwsem(&sbi->cp_global_sem);
4359 	init_f2fs_rwsem(&sbi->node_write);
4360 	init_f2fs_rwsem(&sbi->node_change);
4361 	spin_lock_init(&sbi->stat_lock);
4362 	init_f2fs_rwsem(&sbi->cp_rwsem);
4363 	init_f2fs_rwsem(&sbi->quota_sem);
4364 	init_waitqueue_head(&sbi->cp_wait);
4365 	spin_lock_init(&sbi->error_lock);
4366 
4367 	for (i = 0; i < NR_INODE_TYPE; i++) {
4368 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4369 		spin_lock_init(&sbi->inode_lock[i]);
4370 	}
4371 	mutex_init(&sbi->flush_lock);
4372 
4373 	/* Load the checksum driver */
4374 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
4375 	if (IS_ERR(sbi->s_chksum_driver)) {
4376 		f2fs_err(sbi, "Cannot load crc32 driver.");
4377 		err = PTR_ERR(sbi->s_chksum_driver);
4378 		sbi->s_chksum_driver = NULL;
4379 		goto free_sbi;
4380 	}
4381 
4382 	/* set a block size */
4383 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4384 		f2fs_err(sbi, "unable to set blocksize");
4385 		goto free_sbi;
4386 	}
4387 
4388 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4389 								&recovery);
4390 	if (err)
4391 		goto free_sbi;
4392 
4393 	sb->s_fs_info = sbi;
4394 	sbi->raw_super = raw_super;
4395 
4396 	INIT_WORK(&sbi->s_error_work, f2fs_record_error_work);
4397 	memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS);
4398 	memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON);
4399 
4400 	/* precompute checksum seed for metadata */
4401 	if (f2fs_sb_has_inode_chksum(sbi))
4402 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
4403 						sizeof(raw_super->uuid));
4404 
4405 	default_options(sbi, false);
4406 	/* parse mount options */
4407 	options = kstrdup((const char *)data, GFP_KERNEL);
4408 	if (data && !options) {
4409 		err = -ENOMEM;
4410 		goto free_sb_buf;
4411 	}
4412 
4413 	err = parse_options(sb, options, false);
4414 	if (err)
4415 		goto free_options;
4416 
4417 	sb->s_maxbytes = max_file_blocks(NULL) <<
4418 				le32_to_cpu(raw_super->log_blocksize);
4419 	sb->s_max_links = F2FS_LINK_MAX;
4420 
4421 	err = f2fs_setup_casefold(sbi);
4422 	if (err)
4423 		goto free_options;
4424 
4425 #ifdef CONFIG_QUOTA
4426 	sb->dq_op = &f2fs_quota_operations;
4427 	sb->s_qcop = &f2fs_quotactl_ops;
4428 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4429 
4430 	if (f2fs_sb_has_quota_ino(sbi)) {
4431 		for (i = 0; i < MAXQUOTAS; i++) {
4432 			if (f2fs_qf_ino(sbi->sb, i))
4433 				sbi->nquota_files++;
4434 		}
4435 	}
4436 #endif
4437 
4438 	sb->s_op = &f2fs_sops;
4439 #ifdef CONFIG_FS_ENCRYPTION
4440 	sb->s_cop = &f2fs_cryptops;
4441 #endif
4442 #ifdef CONFIG_FS_VERITY
4443 	sb->s_vop = &f2fs_verityops;
4444 #endif
4445 	sb->s_xattr = f2fs_xattr_handlers;
4446 	sb->s_export_op = &f2fs_export_ops;
4447 	sb->s_magic = F2FS_SUPER_MAGIC;
4448 	sb->s_time_gran = 1;
4449 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4450 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4451 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
4452 	sb->s_iflags |= SB_I_CGROUPWB;
4453 
4454 	/* init f2fs-specific super block info */
4455 	sbi->valid_super_block = valid_super_block;
4456 
4457 	/* disallow all the data/node/meta page writes */
4458 	set_sbi_flag(sbi, SBI_POR_DOING);
4459 
4460 	err = f2fs_init_write_merge_io(sbi);
4461 	if (err)
4462 		goto free_bio_info;
4463 
4464 	init_sb_info(sbi);
4465 
4466 	err = f2fs_init_iostat(sbi);
4467 	if (err)
4468 		goto free_bio_info;
4469 
4470 	err = init_percpu_info(sbi);
4471 	if (err)
4472 		goto free_iostat;
4473 
4474 	/* init per sbi slab cache */
4475 	err = f2fs_init_xattr_caches(sbi);
4476 	if (err)
4477 		goto free_percpu;
4478 	err = f2fs_init_page_array_cache(sbi);
4479 	if (err)
4480 		goto free_xattr_cache;
4481 
4482 	/* get an inode for meta space */
4483 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4484 	if (IS_ERR(sbi->meta_inode)) {
4485 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4486 		err = PTR_ERR(sbi->meta_inode);
4487 		goto free_page_array_cache;
4488 	}
4489 
4490 	err = f2fs_get_valid_checkpoint(sbi);
4491 	if (err) {
4492 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4493 		goto free_meta_inode;
4494 	}
4495 
4496 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4497 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4498 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4499 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4500 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4501 	}
4502 
4503 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4504 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4505 
4506 	/* Initialize device list */
4507 	err = f2fs_scan_devices(sbi);
4508 	if (err) {
4509 		f2fs_err(sbi, "Failed to find devices");
4510 		goto free_devices;
4511 	}
4512 
4513 	err = f2fs_init_post_read_wq(sbi);
4514 	if (err) {
4515 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4516 		goto free_devices;
4517 	}
4518 
4519 	sbi->total_valid_node_count =
4520 				le32_to_cpu(sbi->ckpt->valid_node_count);
4521 	percpu_counter_set(&sbi->total_valid_inode_count,
4522 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4523 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4524 	sbi->total_valid_block_count =
4525 				le64_to_cpu(sbi->ckpt->valid_block_count);
4526 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4527 	sbi->reserved_blocks = 0;
4528 	sbi->current_reserved_blocks = 0;
4529 	limit_reserve_root(sbi);
4530 	adjust_unusable_cap_perc(sbi);
4531 
4532 	f2fs_init_extent_cache_info(sbi);
4533 
4534 	f2fs_init_ino_entry_info(sbi);
4535 
4536 	f2fs_init_fsync_node_info(sbi);
4537 
4538 	/* setup checkpoint request control and start checkpoint issue thread */
4539 	f2fs_init_ckpt_req_control(sbi);
4540 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4541 			test_opt(sbi, MERGE_CHECKPOINT)) {
4542 		err = f2fs_start_ckpt_thread(sbi);
4543 		if (err) {
4544 			f2fs_err(sbi,
4545 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4546 			    err);
4547 			goto stop_ckpt_thread;
4548 		}
4549 	}
4550 
4551 	/* setup f2fs internal modules */
4552 	err = f2fs_build_segment_manager(sbi);
4553 	if (err) {
4554 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4555 			 err);
4556 		goto free_sm;
4557 	}
4558 	err = f2fs_build_node_manager(sbi);
4559 	if (err) {
4560 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4561 			 err);
4562 		goto free_nm;
4563 	}
4564 
4565 	/* For write statistics */
4566 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4567 
4568 	/* Read accumulated write IO statistics if exists */
4569 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4570 	if (__exist_node_summaries(sbi))
4571 		sbi->kbytes_written =
4572 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4573 
4574 	f2fs_build_gc_manager(sbi);
4575 
4576 	err = f2fs_build_stats(sbi);
4577 	if (err)
4578 		goto free_nm;
4579 
4580 	/* get an inode for node space */
4581 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4582 	if (IS_ERR(sbi->node_inode)) {
4583 		f2fs_err(sbi, "Failed to read node inode");
4584 		err = PTR_ERR(sbi->node_inode);
4585 		goto free_stats;
4586 	}
4587 
4588 	/* read root inode and dentry */
4589 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4590 	if (IS_ERR(root)) {
4591 		f2fs_err(sbi, "Failed to read root inode");
4592 		err = PTR_ERR(root);
4593 		goto free_node_inode;
4594 	}
4595 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4596 			!root->i_size || !root->i_nlink) {
4597 		iput(root);
4598 		err = -EINVAL;
4599 		goto free_node_inode;
4600 	}
4601 
4602 	sb->s_root = d_make_root(root); /* allocate root dentry */
4603 	if (!sb->s_root) {
4604 		err = -ENOMEM;
4605 		goto free_node_inode;
4606 	}
4607 
4608 	err = f2fs_init_compress_inode(sbi);
4609 	if (err)
4610 		goto free_root_inode;
4611 
4612 	err = f2fs_register_sysfs(sbi);
4613 	if (err)
4614 		goto free_compress_inode;
4615 
4616 #ifdef CONFIG_QUOTA
4617 	/* Enable quota usage during mount */
4618 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4619 		err = f2fs_enable_quotas(sb);
4620 		if (err)
4621 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4622 	}
4623 
4624 	quota_enabled = f2fs_recover_quota_begin(sbi);
4625 #endif
4626 	/* if there are any orphan inodes, free them */
4627 	err = f2fs_recover_orphan_inodes(sbi);
4628 	if (err)
4629 		goto free_meta;
4630 
4631 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4632 		goto reset_checkpoint;
4633 
4634 	/* recover fsynced data */
4635 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4636 			!test_opt(sbi, NORECOVERY)) {
4637 		/*
4638 		 * mount should be failed, when device has readonly mode, and
4639 		 * previous checkpoint was not done by clean system shutdown.
4640 		 */
4641 		if (f2fs_hw_is_readonly(sbi)) {
4642 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4643 				err = f2fs_recover_fsync_data(sbi, true);
4644 				if (err > 0) {
4645 					err = -EROFS;
4646 					f2fs_err(sbi, "Need to recover fsync data, but "
4647 						"write access unavailable, please try "
4648 						"mount w/ disable_roll_forward or norecovery");
4649 				}
4650 				if (err < 0)
4651 					goto free_meta;
4652 			}
4653 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4654 			goto reset_checkpoint;
4655 		}
4656 
4657 		if (need_fsck)
4658 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4659 
4660 		if (skip_recovery)
4661 			goto reset_checkpoint;
4662 
4663 		err = f2fs_recover_fsync_data(sbi, false);
4664 		if (err < 0) {
4665 			if (err != -ENOMEM)
4666 				skip_recovery = true;
4667 			need_fsck = true;
4668 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4669 				 err);
4670 			goto free_meta;
4671 		}
4672 	} else {
4673 		err = f2fs_recover_fsync_data(sbi, true);
4674 
4675 		if (!f2fs_readonly(sb) && err > 0) {
4676 			err = -EINVAL;
4677 			f2fs_err(sbi, "Need to recover fsync data");
4678 			goto free_meta;
4679 		}
4680 	}
4681 
4682 #ifdef CONFIG_QUOTA
4683 	f2fs_recover_quota_end(sbi, quota_enabled);
4684 #endif
4685 
4686 	/*
4687 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4688 	 * check zoned block devices' write pointer consistency.
4689 	 */
4690 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4691 		err = f2fs_check_write_pointer(sbi);
4692 		if (err)
4693 			goto free_meta;
4694 	}
4695 
4696 reset_checkpoint:
4697 	f2fs_init_inmem_curseg(sbi);
4698 
4699 	/* f2fs_recover_fsync_data() cleared this already */
4700 	clear_sbi_flag(sbi, SBI_POR_DOING);
4701 
4702 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4703 		err = f2fs_disable_checkpoint(sbi);
4704 		if (err)
4705 			goto sync_free_meta;
4706 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4707 		f2fs_enable_checkpoint(sbi);
4708 	}
4709 
4710 	/*
4711 	 * If filesystem is not mounted as read-only then
4712 	 * do start the gc_thread.
4713 	 */
4714 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4715 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4716 		/* After POR, we can run background GC thread.*/
4717 		err = f2fs_start_gc_thread(sbi);
4718 		if (err)
4719 			goto sync_free_meta;
4720 	}
4721 	kvfree(options);
4722 
4723 	/* recover broken superblock */
4724 	if (recovery) {
4725 		err = f2fs_commit_super(sbi, true);
4726 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4727 			  sbi->valid_super_block ? 1 : 2, err);
4728 	}
4729 
4730 	f2fs_join_shrinker(sbi);
4731 
4732 	f2fs_tuning_parameters(sbi);
4733 
4734 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4735 		    cur_cp_version(F2FS_CKPT(sbi)));
4736 	f2fs_update_time(sbi, CP_TIME);
4737 	f2fs_update_time(sbi, REQ_TIME);
4738 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4739 	return 0;
4740 
4741 sync_free_meta:
4742 	/* safe to flush all the data */
4743 	sync_filesystem(sbi->sb);
4744 	retry_cnt = 0;
4745 
4746 free_meta:
4747 #ifdef CONFIG_QUOTA
4748 	f2fs_truncate_quota_inode_pages(sb);
4749 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4750 		f2fs_quota_off_umount(sbi->sb);
4751 #endif
4752 	/*
4753 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4754 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4755 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4756 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4757 	 */
4758 	truncate_inode_pages_final(META_MAPPING(sbi));
4759 	/* evict some inodes being cached by GC */
4760 	evict_inodes(sb);
4761 	f2fs_unregister_sysfs(sbi);
4762 free_compress_inode:
4763 	f2fs_destroy_compress_inode(sbi);
4764 free_root_inode:
4765 	dput(sb->s_root);
4766 	sb->s_root = NULL;
4767 free_node_inode:
4768 	f2fs_release_ino_entry(sbi, true);
4769 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4770 	iput(sbi->node_inode);
4771 	sbi->node_inode = NULL;
4772 free_stats:
4773 	f2fs_destroy_stats(sbi);
4774 free_nm:
4775 	/* stop discard thread before destroying node manager */
4776 	f2fs_stop_discard_thread(sbi);
4777 	f2fs_destroy_node_manager(sbi);
4778 free_sm:
4779 	f2fs_destroy_segment_manager(sbi);
4780 stop_ckpt_thread:
4781 	f2fs_stop_ckpt_thread(sbi);
4782 	/* flush s_error_work before sbi destroy */
4783 	flush_work(&sbi->s_error_work);
4784 	f2fs_destroy_post_read_wq(sbi);
4785 free_devices:
4786 	destroy_device_list(sbi);
4787 	kvfree(sbi->ckpt);
4788 free_meta_inode:
4789 	make_bad_inode(sbi->meta_inode);
4790 	iput(sbi->meta_inode);
4791 	sbi->meta_inode = NULL;
4792 free_page_array_cache:
4793 	f2fs_destroy_page_array_cache(sbi);
4794 free_xattr_cache:
4795 	f2fs_destroy_xattr_caches(sbi);
4796 free_percpu:
4797 	destroy_percpu_info(sbi);
4798 free_iostat:
4799 	f2fs_destroy_iostat(sbi);
4800 free_bio_info:
4801 	for (i = 0; i < NR_PAGE_TYPE; i++)
4802 		kvfree(sbi->write_io[i]);
4803 
4804 #if IS_ENABLED(CONFIG_UNICODE)
4805 	utf8_unload(sb->s_encoding);
4806 	sb->s_encoding = NULL;
4807 #endif
4808 free_options:
4809 #ifdef CONFIG_QUOTA
4810 	for (i = 0; i < MAXQUOTAS; i++)
4811 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4812 #endif
4813 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4814 	kvfree(options);
4815 free_sb_buf:
4816 	kfree(raw_super);
4817 free_sbi:
4818 	if (sbi->s_chksum_driver)
4819 		crypto_free_shash(sbi->s_chksum_driver);
4820 	kfree(sbi);
4821 
4822 	/* give only one another chance */
4823 	if (retry_cnt > 0 && skip_recovery) {
4824 		retry_cnt--;
4825 		shrink_dcache_sb(sb);
4826 		goto try_onemore;
4827 	}
4828 	return err;
4829 }
4830 
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4831 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4832 			const char *dev_name, void *data)
4833 {
4834 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4835 }
4836 
kill_f2fs_super(struct super_block * sb)4837 static void kill_f2fs_super(struct super_block *sb)
4838 {
4839 	if (sb->s_root) {
4840 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4841 
4842 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4843 		f2fs_stop_gc_thread(sbi);
4844 		f2fs_stop_discard_thread(sbi);
4845 
4846 #ifdef CONFIG_F2FS_FS_COMPRESSION
4847 		/*
4848 		 * latter evict_inode() can bypass checking and invalidating
4849 		 * compress inode cache.
4850 		 */
4851 		if (test_opt(sbi, COMPRESS_CACHE))
4852 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4853 #endif
4854 
4855 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4856 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4857 			struct cp_control cpc = {
4858 				.reason = CP_UMOUNT,
4859 			};
4860 			stat_inc_cp_call_count(sbi, TOTAL_CALL);
4861 			f2fs_write_checkpoint(sbi, &cpc);
4862 		}
4863 
4864 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4865 			sb->s_flags &= ~SB_RDONLY;
4866 	}
4867 	kill_block_super(sb);
4868 }
4869 
4870 static struct file_system_type f2fs_fs_type = {
4871 	.owner		= THIS_MODULE,
4872 	.name		= "f2fs",
4873 	.mount		= f2fs_mount,
4874 	.kill_sb	= kill_f2fs_super,
4875 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
4876 };
4877 MODULE_ALIAS_FS("f2fs");
4878 
init_inodecache(void)4879 static int __init init_inodecache(void)
4880 {
4881 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4882 			sizeof(struct f2fs_inode_info), 0,
4883 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4884 	return f2fs_inode_cachep ? 0 : -ENOMEM;
4885 }
4886 
destroy_inodecache(void)4887 static void destroy_inodecache(void)
4888 {
4889 	/*
4890 	 * Make sure all delayed rcu free inodes are flushed before we
4891 	 * destroy cache.
4892 	 */
4893 	rcu_barrier();
4894 	kmem_cache_destroy(f2fs_inode_cachep);
4895 }
4896 
init_f2fs_fs(void)4897 static int __init init_f2fs_fs(void)
4898 {
4899 	int err;
4900 
4901 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4902 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4903 				PAGE_SIZE, F2FS_BLKSIZE);
4904 		return -EINVAL;
4905 	}
4906 
4907 	err = init_inodecache();
4908 	if (err)
4909 		goto fail;
4910 	err = f2fs_create_node_manager_caches();
4911 	if (err)
4912 		goto free_inodecache;
4913 	err = f2fs_create_segment_manager_caches();
4914 	if (err)
4915 		goto free_node_manager_caches;
4916 	err = f2fs_create_checkpoint_caches();
4917 	if (err)
4918 		goto free_segment_manager_caches;
4919 	err = f2fs_create_recovery_cache();
4920 	if (err)
4921 		goto free_checkpoint_caches;
4922 	err = f2fs_create_extent_cache();
4923 	if (err)
4924 		goto free_recovery_cache;
4925 	err = f2fs_create_garbage_collection_cache();
4926 	if (err)
4927 		goto free_extent_cache;
4928 	err = f2fs_init_sysfs();
4929 	if (err)
4930 		goto free_garbage_collection_cache;
4931 	err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker");
4932 	if (err)
4933 		goto free_sysfs;
4934 	f2fs_create_root_stats();
4935 	err = f2fs_init_post_read_processing();
4936 	if (err)
4937 		goto free_root_stats;
4938 	err = f2fs_init_iostat_processing();
4939 	if (err)
4940 		goto free_post_read;
4941 	err = f2fs_init_bio_entry_cache();
4942 	if (err)
4943 		goto free_iostat;
4944 	err = f2fs_init_bioset();
4945 	if (err)
4946 		goto free_bio_entry_cache;
4947 	err = f2fs_init_compress_mempool();
4948 	if (err)
4949 		goto free_bioset;
4950 	err = f2fs_init_compress_cache();
4951 	if (err)
4952 		goto free_compress_mempool;
4953 	err = f2fs_create_casefold_cache();
4954 	if (err)
4955 		goto free_compress_cache;
4956 	err = register_filesystem(&f2fs_fs_type);
4957 	if (err)
4958 		goto free_casefold_cache;
4959 	return 0;
4960 free_casefold_cache:
4961 	f2fs_destroy_casefold_cache();
4962 free_compress_cache:
4963 	f2fs_destroy_compress_cache();
4964 free_compress_mempool:
4965 	f2fs_destroy_compress_mempool();
4966 free_bioset:
4967 	f2fs_destroy_bioset();
4968 free_bio_entry_cache:
4969 	f2fs_destroy_bio_entry_cache();
4970 free_iostat:
4971 	f2fs_destroy_iostat_processing();
4972 free_post_read:
4973 	f2fs_destroy_post_read_processing();
4974 free_root_stats:
4975 	f2fs_destroy_root_stats();
4976 	unregister_shrinker(&f2fs_shrinker_info);
4977 free_sysfs:
4978 	f2fs_exit_sysfs();
4979 free_garbage_collection_cache:
4980 	f2fs_destroy_garbage_collection_cache();
4981 free_extent_cache:
4982 	f2fs_destroy_extent_cache();
4983 free_recovery_cache:
4984 	f2fs_destroy_recovery_cache();
4985 free_checkpoint_caches:
4986 	f2fs_destroy_checkpoint_caches();
4987 free_segment_manager_caches:
4988 	f2fs_destroy_segment_manager_caches();
4989 free_node_manager_caches:
4990 	f2fs_destroy_node_manager_caches();
4991 free_inodecache:
4992 	destroy_inodecache();
4993 fail:
4994 	return err;
4995 }
4996 
exit_f2fs_fs(void)4997 static void __exit exit_f2fs_fs(void)
4998 {
4999 	unregister_filesystem(&f2fs_fs_type);
5000 	f2fs_destroy_casefold_cache();
5001 	f2fs_destroy_compress_cache();
5002 	f2fs_destroy_compress_mempool();
5003 	f2fs_destroy_bioset();
5004 	f2fs_destroy_bio_entry_cache();
5005 	f2fs_destroy_iostat_processing();
5006 	f2fs_destroy_post_read_processing();
5007 	f2fs_destroy_root_stats();
5008 	unregister_shrinker(&f2fs_shrinker_info);
5009 	f2fs_exit_sysfs();
5010 	f2fs_destroy_garbage_collection_cache();
5011 	f2fs_destroy_extent_cache();
5012 	f2fs_destroy_recovery_cache();
5013 	f2fs_destroy_checkpoint_caches();
5014 	f2fs_destroy_segment_manager_caches();
5015 	f2fs_destroy_node_manager_caches();
5016 	destroy_inodecache();
5017 }
5018 
5019 module_init(init_f2fs_fs)
5020 module_exit(exit_f2fs_fs)
5021 
5022 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
5023 MODULE_DESCRIPTION("Flash Friendly File System");
5024 MODULE_LICENSE("GPL");
5025 MODULE_SOFTDEP("pre: crc32");
5026 
5027