xref: /openbmc/qemu/hw/timer/aspeed_timer.c (revision d34fea6cce319c54ff09f96a2e74fb5a2d50affa)
1 /*
2  * ASPEED AST2400 Timer
3  *
4  * Andrew Jeffery <andrew@aj.id.au>
5  *
6  * Copyright (C) 2016 IBM Corp.
7  *
8  * This code is licensed under the GPL version 2 or later.  See
9  * the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qapi/error.h"
14 #include "hw/irq.h"
15 #include "hw/sysbus.h"
16 #include "hw/timer/aspeed_timer.h"
17 #include "migration/vmstate.h"
18 #include "qemu/bitops.h"
19 #include "qemu/timer.h"
20 #include "qemu/log.h"
21 #include "qemu/module.h"
22 #include "hw/qdev-properties.h"
23 #include "trace.h"
24 
25 #define TIMER_NR_REGS 4
26 
27 #define TIMER_CTRL_BITS 4
28 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
29 
30 #define TIMER_CLOCK_USE_EXT true
31 #define TIMER_CLOCK_EXT_HZ 1000000
32 #define TIMER_CLOCK_USE_APB false
33 
34 #define TIMER_REG_STATUS 0
35 #define TIMER_REG_RELOAD 1
36 #define TIMER_REG_MATCH_FIRST 2
37 #define TIMER_REG_MATCH_SECOND 3
38 
39 #define TIMER_FIRST_CAP_PULSE 4
40 
41 enum timer_ctrl_op {
42     op_enable = 0,
43     op_external_clock,
44     op_overflow_interrupt,
45     op_pulse_enable
46 };
47 
48 /*
49  * Minimum value of the reload register to filter out short period
50  * timers which have a noticeable impact in emulation. 5us should be
51  * enough, use 20us for "safety".
52  */
53 #define TIMER_MIN_NS (20 * SCALE_US)
54 
55 /**
56  * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
57  * structs, as it's a waste of memory. The ptimer BH callback needs to know
58  * whether a specific AspeedTimer is enabled, but this information is held in
59  * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
60  * arbitrary AspeedTimer to AspeedTimerCtrlState.
61  */
timer_to_ctrl(AspeedTimer * t)62 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
63 {
64     const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
65     return container_of(timers, AspeedTimerCtrlState, timers);
66 }
67 
timer_ctrl_status(AspeedTimer * t,enum timer_ctrl_op op)68 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
69 {
70     return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
71 }
72 
timer_enabled(AspeedTimer * t)73 static inline bool timer_enabled(AspeedTimer *t)
74 {
75     return timer_ctrl_status(t, op_enable);
76 }
77 
timer_overflow_interrupt(AspeedTimer * t)78 static inline bool timer_overflow_interrupt(AspeedTimer *t)
79 {
80     return timer_ctrl_status(t, op_overflow_interrupt);
81 }
82 
timer_can_pulse(AspeedTimer * t)83 static inline bool timer_can_pulse(AspeedTimer *t)
84 {
85     return t->id >= TIMER_FIRST_CAP_PULSE;
86 }
87 
timer_external_clock(AspeedTimer * t)88 static inline bool timer_external_clock(AspeedTimer *t)
89 {
90     return timer_ctrl_status(t, op_external_clock);
91 }
92 
calculate_rate(struct AspeedTimer * t)93 static inline uint32_t calculate_rate(struct AspeedTimer *t)
94 {
95     AspeedTimerCtrlState *s = timer_to_ctrl(t);
96 
97     return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ :
98         aspeed_scu_get_apb_freq(s->scu);
99 }
100 
calculate_ticks(struct AspeedTimer * t,uint64_t now_ns)101 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
102 {
103     uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
104     uint32_t rate = calculate_rate(t);
105     uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
106 
107     return t->reload - MIN(t->reload, ticks);
108 }
109 
calculate_min_ticks(AspeedTimer * t,uint32_t value)110 static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
111 {
112     uint32_t rate = calculate_rate(t);
113     uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
114 
115     return  value < min_ticks ? min_ticks : value;
116 }
117 
calculate_time(struct AspeedTimer * t,uint32_t ticks)118 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
119 {
120     uint64_t delta_ns;
121     uint64_t delta_ticks;
122 
123     delta_ticks = t->reload - MIN(t->reload, ticks);
124     delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
125 
126     return t->start + delta_ns;
127 }
128 
calculate_match(struct AspeedTimer * t,int i)129 static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
130 {
131     return t->match[i] < t->reload ? t->match[i] : 0;
132 }
133 
calculate_next(struct AspeedTimer * t)134 static uint64_t calculate_next(struct AspeedTimer *t)
135 {
136     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
137     uint64_t next;
138 
139     /*
140      * We don't know the relationship between the values in the match
141      * registers, so sort using MAX/MIN/zero. We sort in that order as
142      * the timer counts down to zero.
143      */
144 
145     next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
146     if (now < next) {
147         return next;
148     }
149 
150     next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
151     if (now < next) {
152         return next;
153     }
154 
155     next = calculate_time(t, 0);
156     if (now < next) {
157         return next;
158     }
159 
160     /* We've missed all deadlines, fire interrupt and try again */
161     timer_del(&t->timer);
162 
163     if (timer_overflow_interrupt(t)) {
164         AspeedTimerCtrlState *s = timer_to_ctrl(t);
165         t->level = !t->level;
166         s->irq_sts |= BIT(t->id);
167         qemu_set_irq(t->irq, t->level);
168     }
169 
170     next = MAX(calculate_match(t, 0), calculate_match(t, 1));
171     t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
172 
173     return calculate_time(t, next);
174 }
175 
aspeed_timer_mod(AspeedTimer * t)176 static void aspeed_timer_mod(AspeedTimer *t)
177 {
178     uint64_t next = calculate_next(t);
179     if (next) {
180         timer_mod(&t->timer, next);
181     }
182 }
183 
aspeed_timer_expire(void * opaque)184 static void aspeed_timer_expire(void *opaque)
185 {
186     AspeedTimer *t = opaque;
187     bool interrupt = false;
188     uint32_t ticks;
189 
190     if (!timer_enabled(t)) {
191         return;
192     }
193 
194     ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
195 
196     if (!ticks) {
197         interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
198     } else if (ticks <= MIN(t->match[0], t->match[1])) {
199         interrupt = true;
200     } else if (ticks <= MAX(t->match[0], t->match[1])) {
201         interrupt = true;
202     }
203 
204     if (interrupt) {
205         AspeedTimerCtrlState *s = timer_to_ctrl(t);
206         t->level = !t->level;
207         s->irq_sts |= BIT(t->id);
208         qemu_set_irq(t->irq, t->level);
209     }
210 
211     aspeed_timer_mod(t);
212 }
213 
aspeed_timer_get_value(AspeedTimer * t,int reg)214 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
215 {
216     uint64_t value;
217 
218     switch (reg) {
219     case TIMER_REG_STATUS:
220         if (timer_enabled(t)) {
221             value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
222         } else {
223             value = t->reload;
224         }
225         break;
226     case TIMER_REG_RELOAD:
227         value = t->reload;
228         break;
229     case TIMER_REG_MATCH_FIRST:
230     case TIMER_REG_MATCH_SECOND:
231         value = t->match[reg - 2];
232         break;
233     default:
234         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
235                       __func__, reg);
236         value = 0;
237         break;
238     }
239     return value;
240 }
241 
aspeed_timer_read(void * opaque,hwaddr offset,unsigned size)242 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
243 {
244     AspeedTimerCtrlState *s = opaque;
245     const int reg = (offset & 0xf) / 4;
246     uint64_t value;
247 
248     switch (offset) {
249     case 0x30: /* Control Register */
250         value = s->ctrl;
251         break;
252     case 0x00 ... 0x2c: /* Timers 1 - 4 */
253         value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
254         break;
255     case 0x40 ... 0x8c: /* Timers 5 - 8 */
256         value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
257         break;
258     default:
259         value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset);
260         break;
261     }
262     trace_aspeed_timer_read(offset, size, value);
263     return value;
264 }
265 
aspeed_timer_set_value(AspeedTimerCtrlState * s,int timer,int reg,uint32_t value)266 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
267                                    uint32_t value)
268 {
269     AspeedTimer *t;
270     uint32_t old_reload;
271 
272     trace_aspeed_timer_set_value(timer, reg, value);
273     t = &s->timers[timer];
274     switch (reg) {
275     case TIMER_REG_RELOAD:
276         old_reload = t->reload;
277         t->reload = calculate_min_ticks(t, value);
278 
279         /*
280          * If the reload value was not previously set, or zero, and
281          * the current value is valid, try to start the timer if it is
282          * enabled.
283          */
284         if (old_reload || !t->reload) {
285             break;
286         }
287         /* fall through to re-enable */
288     case TIMER_REG_STATUS:
289         if (timer_enabled(t)) {
290             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
291             int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
292             uint32_t rate = calculate_rate(t);
293 
294             if (delta >= 0) {
295                 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
296             } else {
297                 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
298             }
299             aspeed_timer_mod(t);
300         }
301         break;
302     case TIMER_REG_MATCH_FIRST:
303     case TIMER_REG_MATCH_SECOND:
304         t->match[reg - 2] = value;
305         if (timer_enabled(t)) {
306             aspeed_timer_mod(t);
307         }
308         break;
309     default:
310         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
311                       __func__, reg);
312         break;
313     }
314 }
315 
316 /*
317  * Control register operations are broken out into helpers that can be
318  * explicitly called on aspeed_timer_reset(), but also from
319  * aspeed_timer_ctrl_op().
320  */
321 
aspeed_timer_ctrl_enable(AspeedTimer * t,bool enable)322 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
323 {
324     trace_aspeed_timer_ctrl_enable(t->id, enable);
325     if (enable) {
326         t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
327         aspeed_timer_mod(t);
328     } else {
329         timer_del(&t->timer);
330     }
331 }
332 
aspeed_timer_ctrl_external_clock(AspeedTimer * t,bool enable)333 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
334 {
335     trace_aspeed_timer_ctrl_external_clock(t->id, enable);
336 }
337 
aspeed_timer_ctrl_overflow_interrupt(AspeedTimer * t,bool enable)338 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
339 {
340     trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
341 }
342 
aspeed_timer_ctrl_pulse_enable(AspeedTimer * t,bool enable)343 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
344 {
345     if (timer_can_pulse(t)) {
346         trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
347     } else {
348         qemu_log_mask(LOG_GUEST_ERROR,
349                 "%s: Timer does not support pulse mode\n", __func__);
350     }
351 }
352 
353 /**
354  * Given the actions are fixed in number and completely described in helper
355  * functions, dispatch with a lookup table rather than manage control flow with
356  * a switch statement.
357  */
358 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
359     [op_enable] = aspeed_timer_ctrl_enable,
360     [op_external_clock] = aspeed_timer_ctrl_external_clock,
361     [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
362     [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
363 };
364 
365 /**
366  * Conditionally affect changes chosen by a timer's control bit.
367  *
368  * The aspeed_timer_ctrl_op() interface is convenient for the
369  * aspeed_timer_set_ctrl() function as the "no change" early exit can be
370  * calculated for all operations, which cleans up the caller code. However the
371  * interface isn't convenient for the reset function where we want to enter a
372  * specific state without artificially constructing old and new values that
373  * will fall through the change guard (and motivates extracting the actions
374  * out to helper functions).
375  *
376  * @t: The timer to manipulate
377  * @op: The type of operation to be performed
378  * @old: The old state of the timer's control bits
379  * @new: The incoming state for the timer's control bits
380  */
aspeed_timer_ctrl_op(AspeedTimer * t,enum timer_ctrl_op op,uint8_t old,uint8_t new)381 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
382                                  uint8_t old, uint8_t new)
383 {
384     const uint8_t mask = BIT(op);
385     const bool enable = !!(new & mask);
386     const bool changed = ((old ^ new) & mask);
387     if (!changed) {
388         return;
389     }
390     ctrl_ops[op](t, enable);
391 }
392 
aspeed_timer_set_ctrl(AspeedTimerCtrlState * s,uint32_t reg)393 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
394 {
395     int i;
396     int shift;
397     uint8_t t_old, t_new;
398     AspeedTimer *t;
399     const uint8_t enable_mask = BIT(op_enable);
400 
401     /*
402      * Handle a dependency between the 'enable' and remaining three
403      * configuration bits - i.e. if more than one bit in the control set has
404      * changed, including the 'enable' bit, then we want either disable the
405      * timer and perform configuration, or perform configuration and then
406      * enable the timer
407      */
408     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
409         t = &s->timers[i];
410         shift = (i * TIMER_CTRL_BITS);
411         t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
412         t_new = (reg >> shift) & TIMER_CTRL_MASK;
413 
414         /* If we are disabling, do so first */
415         if ((t_old & enable_mask) && !(t_new & enable_mask)) {
416             aspeed_timer_ctrl_enable(t, false);
417         }
418         aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
419         aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
420         aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
421         /* If we are enabling, do so last */
422         if (!(t_old & enable_mask) && (t_new & enable_mask)) {
423             aspeed_timer_ctrl_enable(t, true);
424         }
425     }
426     s->ctrl = reg;
427 }
428 
aspeed_timer_set_ctrl2(AspeedTimerCtrlState * s,uint32_t value)429 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
430 {
431     trace_aspeed_timer_set_ctrl2(value);
432 }
433 
aspeed_timer_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)434 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
435                                unsigned size)
436 {
437     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
438     const int reg = (offset & 0xf) / 4;
439     AspeedTimerCtrlState *s = opaque;
440 
441     switch (offset) {
442     /* Control Registers */
443     case 0x30:
444         aspeed_timer_set_ctrl(s, tv);
445         break;
446     /* Timer Registers */
447     case 0x00 ... 0x2c:
448         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
449         break;
450     case 0x40 ... 0x8c:
451         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
452         break;
453     default:
454         ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value);
455         break;
456     }
457 }
458 
459 static const MemoryRegionOps aspeed_timer_ops = {
460     .read = aspeed_timer_read,
461     .write = aspeed_timer_write,
462     .endianness = DEVICE_LITTLE_ENDIAN,
463     .valid.min_access_size = 1,
464     .valid.max_access_size = 4,
465     .valid.unaligned = false,
466 };
467 
aspeed_2400_timer_read(AspeedTimerCtrlState * s,hwaddr offset)468 static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
469 {
470     uint64_t value;
471 
472     switch (offset) {
473     case 0x34:
474         value = s->ctrl2;
475         break;
476     case 0x38:
477     case 0x3C:
478     default:
479         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
480                 __func__, offset);
481         value = 0;
482         break;
483     }
484     return value;
485 }
486 
aspeed_2400_timer_write(AspeedTimerCtrlState * s,hwaddr offset,uint64_t value)487 static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
488                                     uint64_t value)
489 {
490     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
491 
492     switch (offset) {
493     case 0x34:
494         aspeed_timer_set_ctrl2(s, tv);
495         break;
496     case 0x38:
497     case 0x3C:
498     default:
499         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
500                 __func__, offset);
501         break;
502     }
503 }
504 
aspeed_2500_timer_read(AspeedTimerCtrlState * s,hwaddr offset)505 static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
506 {
507     uint64_t value;
508 
509     switch (offset) {
510     case 0x34:
511         value = s->ctrl2;
512         break;
513     case 0x38:
514         value = s->ctrl3 & BIT(0);
515         break;
516     case 0x3C:
517     default:
518         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
519                 __func__, offset);
520         value = 0;
521         break;
522     }
523     return value;
524 }
525 
aspeed_2500_timer_write(AspeedTimerCtrlState * s,hwaddr offset,uint64_t value)526 static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
527                                     uint64_t value)
528 {
529     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
530     uint8_t command;
531 
532     switch (offset) {
533     case 0x34:
534         aspeed_timer_set_ctrl2(s, tv);
535         break;
536     case 0x38:
537         command = (value >> 1) & 0xFF;
538         if (command == 0xAE) {
539             s->ctrl3 = 0x1;
540         } else if (command == 0xEA) {
541             s->ctrl3 = 0x0;
542         }
543         break;
544     case 0x3C:
545         if (s->ctrl3 & BIT(0)) {
546             aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
547         }
548         break;
549 
550     default:
551         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
552                 __func__, offset);
553         break;
554     }
555 }
556 
aspeed_2600_timer_read(AspeedTimerCtrlState * s,hwaddr offset)557 static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
558 {
559     uint64_t value;
560 
561     switch (offset) {
562     case 0x34:
563         value = s->irq_sts;
564         break;
565     case 0x38:
566     case 0x3C:
567     default:
568         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
569                 __func__, offset);
570         value = 0;
571         break;
572     }
573     return value;
574 }
575 
aspeed_2600_timer_write(AspeedTimerCtrlState * s,hwaddr offset,uint64_t value)576 static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
577                                     uint64_t value)
578 {
579     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
580 
581     switch (offset) {
582     case 0x34:
583         s->irq_sts &= ~tv;
584         break;
585     case 0x3C:
586         aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
587         break;
588     case 0x38:
589     default:
590         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
591                 __func__, offset);
592         break;
593     }
594 }
595 
aspeed_init_one_timer(AspeedTimerCtrlState * s,uint8_t id)596 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
597 {
598     AspeedTimer *t = &s->timers[id];
599 
600     t->id = id;
601     timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
602 }
603 
aspeed_timer_realize(DeviceState * dev,Error ** errp)604 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
605 {
606     int i;
607     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
608     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
609 
610     assert(s->scu);
611 
612     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
613         aspeed_init_one_timer(s, i);
614         sysbus_init_irq(sbd, &s->timers[i].irq);
615     }
616     memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
617                           TYPE_ASPEED_TIMER, 0x1000);
618     sysbus_init_mmio(sbd, &s->iomem);
619 }
620 
aspeed_timer_reset(DeviceState * dev)621 static void aspeed_timer_reset(DeviceState *dev)
622 {
623     int i;
624     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
625 
626     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
627         AspeedTimer *t = &s->timers[i];
628         /*
629          * Explicitly call helpers to avoid any conditional behaviour through
630          * aspeed_timer_set_ctrl().
631          */
632         aspeed_timer_ctrl_enable(t, false);
633         aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
634         aspeed_timer_ctrl_overflow_interrupt(t, false);
635         aspeed_timer_ctrl_pulse_enable(t, false);
636         t->level = 0;
637         t->reload = 0;
638         t->match[0] = 0;
639         t->match[1] = 0;
640     }
641     s->ctrl = 0;
642     s->ctrl2 = 0;
643     s->ctrl3 = 0;
644     s->irq_sts = 0;
645 }
646 
647 static const VMStateDescription vmstate_aspeed_timer = {
648     .name = "aspeed.timer",
649     .version_id = 2,
650     .minimum_version_id = 2,
651     .fields = (const VMStateField[]) {
652         VMSTATE_UINT8(id, AspeedTimer),
653         VMSTATE_INT32(level, AspeedTimer),
654         VMSTATE_TIMER(timer, AspeedTimer),
655         VMSTATE_UINT32(reload, AspeedTimer),
656         VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
657         VMSTATE_END_OF_LIST()
658     }
659 };
660 
661 static const VMStateDescription vmstate_aspeed_timer_state = {
662     .name = "aspeed.timerctrl",
663     .version_id = 2,
664     .minimum_version_id = 2,
665     .fields = (const VMStateField[]) {
666         VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
667         VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
668         VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState),
669         VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState),
670         VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
671                              ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
672                              AspeedTimer),
673         VMSTATE_END_OF_LIST()
674     }
675 };
676 
677 static Property aspeed_timer_properties[] = {
678     DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU,
679                      AspeedSCUState *),
680     DEFINE_PROP_END_OF_LIST(),
681 };
682 
timer_class_init(ObjectClass * klass,void * data)683 static void timer_class_init(ObjectClass *klass, void *data)
684 {
685     DeviceClass *dc = DEVICE_CLASS(klass);
686 
687     dc->realize = aspeed_timer_realize;
688     device_class_set_legacy_reset(dc, aspeed_timer_reset);
689     dc->desc = "ASPEED Timer";
690     dc->vmsd = &vmstate_aspeed_timer_state;
691     device_class_set_props(dc, aspeed_timer_properties);
692 }
693 
694 static const TypeInfo aspeed_timer_info = {
695     .name = TYPE_ASPEED_TIMER,
696     .parent = TYPE_SYS_BUS_DEVICE,
697     .instance_size = sizeof(AspeedTimerCtrlState),
698     .class_init = timer_class_init,
699     .class_size = sizeof(AspeedTimerClass),
700     .abstract   = true,
701 };
702 
aspeed_2400_timer_class_init(ObjectClass * klass,void * data)703 static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data)
704 {
705     DeviceClass *dc = DEVICE_CLASS(klass);
706     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
707 
708     dc->desc = "ASPEED 2400 Timer";
709     awc->read = aspeed_2400_timer_read;
710     awc->write = aspeed_2400_timer_write;
711 }
712 
713 static const TypeInfo aspeed_2400_timer_info = {
714     .name = TYPE_ASPEED_2400_TIMER,
715     .parent = TYPE_ASPEED_TIMER,
716     .class_init = aspeed_2400_timer_class_init,
717 };
718 
aspeed_2500_timer_class_init(ObjectClass * klass,void * data)719 static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data)
720 {
721     DeviceClass *dc = DEVICE_CLASS(klass);
722     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
723 
724     dc->desc = "ASPEED 2500 Timer";
725     awc->read = aspeed_2500_timer_read;
726     awc->write = aspeed_2500_timer_write;
727 }
728 
729 static const TypeInfo aspeed_2500_timer_info = {
730     .name = TYPE_ASPEED_2500_TIMER,
731     .parent = TYPE_ASPEED_TIMER,
732     .class_init = aspeed_2500_timer_class_init,
733 };
734 
aspeed_2600_timer_class_init(ObjectClass * klass,void * data)735 static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data)
736 {
737     DeviceClass *dc = DEVICE_CLASS(klass);
738     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
739 
740     dc->desc = "ASPEED 2600 Timer";
741     awc->read = aspeed_2600_timer_read;
742     awc->write = aspeed_2600_timer_write;
743 }
744 
745 static const TypeInfo aspeed_2600_timer_info = {
746     .name = TYPE_ASPEED_2600_TIMER,
747     .parent = TYPE_ASPEED_TIMER,
748     .class_init = aspeed_2600_timer_class_init,
749 };
750 
aspeed_1030_timer_class_init(ObjectClass * klass,void * data)751 static void aspeed_1030_timer_class_init(ObjectClass *klass, void *data)
752 {
753     DeviceClass *dc = DEVICE_CLASS(klass);
754     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
755 
756     dc->desc = "ASPEED 1030 Timer";
757     awc->read = aspeed_2600_timer_read;
758     awc->write = aspeed_2600_timer_write;
759 }
760 
761 static const TypeInfo aspeed_1030_timer_info = {
762     .name = TYPE_ASPEED_1030_TIMER,
763     .parent = TYPE_ASPEED_TIMER,
764     .class_init = aspeed_1030_timer_class_init,
765 };
766 
aspeed_timer_register_types(void)767 static void aspeed_timer_register_types(void)
768 {
769     type_register_static(&aspeed_timer_info);
770     type_register_static(&aspeed_2400_timer_info);
771     type_register_static(&aspeed_2500_timer_info);
772     type_register_static(&aspeed_2600_timer_info);
773     type_register_static(&aspeed_1030_timer_info);
774 }
775 
776 type_init(aspeed_timer_register_types)
777