xref: /openbmc/linux/arch/x86/coco/tdx/tdx.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3 
4 #undef pr_fmt
5 #define pr_fmt(fmt)     "tdx: " fmt
6 
7 #include <linux/cpufeature.h>
8 #include <linux/export.h>
9 #include <linux/io.h>
10 #include <asm/coco.h>
11 #include <asm/tdx.h>
12 #include <asm/vmx.h>
13 #include <asm/ia32.h>
14 #include <asm/insn.h>
15 #include <asm/insn-eval.h>
16 #include <asm/paravirt_types.h>
17 #include <asm/pgtable.h>
18 #include <asm/traps.h>
19 
20 /* MMIO direction */
21 #define EPT_READ	0
22 #define EPT_WRITE	1
23 
24 /* Port I/O direction */
25 #define PORT_READ	0
26 #define PORT_WRITE	1
27 
28 /* See Exit Qualification for I/O Instructions in VMX documentation */
29 #define VE_IS_IO_IN(e)		((e) & BIT(3))
30 #define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
31 #define VE_GET_PORT_NUM(e)	((e) >> 16)
32 #define VE_IS_IO_STRING(e)	((e) & BIT(4))
33 
34 #define ATTR_DEBUG		BIT(0)
35 #define ATTR_SEPT_VE_DISABLE	BIT(28)
36 
37 /* TDX Module call error codes */
38 #define TDCALL_RETURN_CODE(a)	((a) >> 32)
39 #define TDCALL_INVALID_OPERAND	0xc0000100
40 
41 #define TDREPORT_SUBTYPE_0	0
42 
43 /* Called from __tdx_hypercall() for unrecoverable failure */
__tdx_hypercall_failed(void)44 noinstr void __tdx_hypercall_failed(void)
45 {
46 	instrumentation_begin();
47 	panic("TDVMCALL failed. TDX module bug?");
48 }
49 
50 #ifdef CONFIG_KVM_GUEST
tdx_kvm_hypercall(unsigned int nr,unsigned long p1,unsigned long p2,unsigned long p3,unsigned long p4)51 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
52 		       unsigned long p3, unsigned long p4)
53 {
54 	struct tdx_hypercall_args args = {
55 		.r10 = nr,
56 		.r11 = p1,
57 		.r12 = p2,
58 		.r13 = p3,
59 		.r14 = p4,
60 	};
61 
62 	return __tdx_hypercall(&args);
63 }
64 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
65 #endif
66 
67 /*
68  * Used for TDX guests to make calls directly to the TD module.  This
69  * should only be used for calls that have no legitimate reason to fail
70  * or where the kernel can not survive the call failing.
71  */
tdcall(u64 fn,struct tdx_module_args * args)72 static inline void tdcall(u64 fn, struct tdx_module_args *args)
73 {
74 	if (__tdcall_ret(fn, args))
75 		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
76 }
77 
78 /* Read TD-scoped metadata */
tdg_vm_rd(u64 field,u64 * value)79 static inline u64 tdg_vm_rd(u64 field, u64 *value)
80 {
81 	struct tdx_module_args args = {
82 		.rdx = field,
83 	};
84 	u64 ret;
85 
86 	ret = __tdcall_ret(TDG_VM_RD, &args);
87 	*value = args.r8;
88 
89 	return ret;
90 }
91 
92 /* Write TD-scoped metadata */
tdg_vm_wr(u64 field,u64 value,u64 mask)93 static inline u64 tdg_vm_wr(u64 field, u64 value, u64 mask)
94 {
95 	struct tdx_module_args args = {
96 		.rdx = field,
97 		.r8 = value,
98 		.r9 = mask,
99 	};
100 
101 	return __tdcall(TDG_VM_WR, &args);
102 }
103 
104 /**
105  * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
106  *                           subtype 0) using TDG.MR.REPORT TDCALL.
107  * @reportdata: Address of the input buffer which contains user-defined
108  *              REPORTDATA to be included into TDREPORT.
109  * @tdreport: Address of the output buffer to store TDREPORT.
110  *
111  * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
112  * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
113  * It is used in the TDX guest driver module to get the TDREPORT0.
114  *
115  * Return 0 on success, -EINVAL for invalid operands, or -EIO on
116  * other TDCALL failures.
117  */
tdx_mcall_get_report0(u8 * reportdata,u8 * tdreport)118 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
119 {
120 	struct tdx_module_args args = {
121 		.rcx = virt_to_phys(tdreport),
122 		.rdx = virt_to_phys(reportdata),
123 		.r8 = TDREPORT_SUBTYPE_0,
124 	};
125 	u64 ret;
126 
127 	ret = __tdcall(TDG_MR_REPORT, &args);
128 	if (ret) {
129 		if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
130 			return -EINVAL;
131 		return -EIO;
132 	}
133 
134 	return 0;
135 }
136 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
137 
tdx_panic(const char * msg)138 static void __noreturn tdx_panic(const char *msg)
139 {
140 	struct tdx_hypercall_args args = {
141 		.r10 = TDX_HYPERCALL_STANDARD,
142 		.r11 = TDVMCALL_REPORT_FATAL_ERROR,
143 		.r12 = 0, /* Error code: 0 is Panic */
144 	};
145 	union {
146 		/* Define register order according to the GHCI */
147 		struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
148 
149 		char str[64];
150 	} message;
151 
152 	/* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
153 	strncpy(message.str, msg, 64);
154 
155 	args.r8  = message.r8;
156 	args.r9  = message.r9;
157 	args.r14 = message.r14;
158 	args.r15 = message.r15;
159 	args.rdi = message.rdi;
160 	args.rsi = message.rsi;
161 	args.rbx = message.rbx;
162 	args.rdx = message.rdx;
163 
164 	/*
165 	 * This hypercall should never return and it is not safe
166 	 * to keep the guest running. Call it forever if it
167 	 * happens to return.
168 	 */
169 	while (1)
170 		__tdx_hypercall(&args);
171 }
172 
173 /*
174  * The kernel cannot handle #VEs when accessing normal kernel memory. Ensure
175  * that no #VE will be delivered for accesses to TD-private memory.
176  *
177  * TDX 1.0 does not allow the guest to disable SEPT #VE on its own. The VMM
178  * controls if the guest will receive such #VE with TD attribute
179  * ATTR_SEPT_VE_DISABLE.
180  *
181  * Newer TDX modules allow the guest to control if it wants to receive SEPT
182  * violation #VEs.
183  *
184  * Check if the feature is available and disable SEPT #VE if possible.
185  *
186  * If the TD is allowed to disable/enable SEPT #VEs, the ATTR_SEPT_VE_DISABLE
187  * attribute is no longer reliable. It reflects the initial state of the
188  * control for the TD, but it will not be updated if someone (e.g. bootloader)
189  * changes it before the kernel starts. Kernel must check TDCS_TD_CTLS bit to
190  * determine if SEPT #VEs are enabled or disabled.
191  */
disable_sept_ve(u64 td_attr)192 static void disable_sept_ve(u64 td_attr)
193 {
194 	const char *msg = "TD misconfiguration: SEPT #VE has to be disabled";
195 	bool debug = td_attr & ATTR_DEBUG;
196 	u64 config, controls;
197 
198 	/* Is this TD allowed to disable SEPT #VE */
199 	tdg_vm_rd(TDCS_CONFIG_FLAGS, &config);
200 	if (!(config & TDCS_CONFIG_FLEXIBLE_PENDING_VE)) {
201 		/* No SEPT #VE controls for the guest: check the attribute */
202 		if (td_attr & ATTR_SEPT_VE_DISABLE)
203 			return;
204 
205 		/* Relax SEPT_VE_DISABLE check for debug TD for backtraces */
206 		if (debug)
207 			pr_warn("%s\n", msg);
208 		else
209 			tdx_panic(msg);
210 		return;
211 	}
212 
213 	/* Check if SEPT #VE has been disabled before us */
214 	tdg_vm_rd(TDCS_TD_CTLS, &controls);
215 	if (controls & TD_CTLS_PENDING_VE_DISABLE)
216 		return;
217 
218 	/* Keep #VEs enabled for splats in debugging environments */
219 	if (debug)
220 		return;
221 
222 	/* Disable SEPT #VEs */
223 	tdg_vm_wr(TDCS_TD_CTLS, TD_CTLS_PENDING_VE_DISABLE,
224 		  TD_CTLS_PENDING_VE_DISABLE);
225 }
226 
tdx_setup(u64 * cc_mask)227 static void tdx_setup(u64 *cc_mask)
228 {
229 	struct tdx_module_args args = {};
230 	unsigned int gpa_width;
231 	u64 td_attr;
232 
233 	/*
234 	 * TDINFO TDX module call is used to get the TD execution environment
235 	 * information like GPA width, number of available vcpus, debug mode
236 	 * information, etc. More details about the ABI can be found in TDX
237 	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
238 	 * [TDG.VP.INFO].
239 	 */
240 	tdcall(TDG_VP_INFO, &args);
241 
242 	/*
243 	 * The highest bit of a guest physical address is the "sharing" bit.
244 	 * Set it for shared pages and clear it for private pages.
245 	 *
246 	 * The GPA width that comes out of this call is critical. TDX guests
247 	 * can not meaningfully run without it.
248 	 */
249 	gpa_width = args.rcx & GENMASK(5, 0);
250 	*cc_mask = BIT_ULL(gpa_width - 1);
251 
252 	td_attr = args.rdx;
253 
254 	/* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
255 	tdg_vm_wr(TDCS_NOTIFY_ENABLES, 0, -1ULL);
256 
257 	disable_sept_ve(td_attr);
258 }
259 
260 /*
261  * The TDX module spec states that #VE may be injected for a limited set of
262  * reasons:
263  *
264  *  - Emulation of the architectural #VE injection on EPT violation;
265  *
266  *  - As a result of guest TD execution of a disallowed instruction,
267  *    a disallowed MSR access, or CPUID virtualization;
268  *
269  *  - A notification to the guest TD about anomalous behavior;
270  *
271  * The last one is opt-in and is not used by the kernel.
272  *
273  * The Intel Software Developer's Manual describes cases when instruction
274  * length field can be used in section "Information for VM Exits Due to
275  * Instruction Execution".
276  *
277  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
278  * information if #VE occurred due to instruction execution, but not for EPT
279  * violations.
280  */
ve_instr_len(struct ve_info * ve)281 static int ve_instr_len(struct ve_info *ve)
282 {
283 	switch (ve->exit_reason) {
284 	case EXIT_REASON_HLT:
285 	case EXIT_REASON_MSR_READ:
286 	case EXIT_REASON_MSR_WRITE:
287 	case EXIT_REASON_CPUID:
288 	case EXIT_REASON_IO_INSTRUCTION:
289 		/* It is safe to use ve->instr_len for #VE due instructions */
290 		return ve->instr_len;
291 	case EXIT_REASON_EPT_VIOLATION:
292 		/*
293 		 * For EPT violations, ve->insn_len is not defined. For those,
294 		 * the kernel must decode instructions manually and should not
295 		 * be using this function.
296 		 */
297 		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
298 		return 0;
299 	default:
300 		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
301 		return ve->instr_len;
302 	}
303 }
304 
__halt(const bool irq_disabled)305 static u64 __cpuidle __halt(const bool irq_disabled)
306 {
307 	struct tdx_hypercall_args args = {
308 		.r10 = TDX_HYPERCALL_STANDARD,
309 		.r11 = hcall_func(EXIT_REASON_HLT),
310 		.r12 = irq_disabled,
311 	};
312 
313 	/*
314 	 * Emulate HLT operation via hypercall. More info about ABI
315 	 * can be found in TDX Guest-Host-Communication Interface
316 	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
317 	 *
318 	 * The VMM uses the "IRQ disabled" param to understand IRQ
319 	 * enabled status (RFLAGS.IF) of the TD guest and to determine
320 	 * whether or not it should schedule the halted vCPU if an
321 	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
322 	 * can keep the vCPU in virtual HLT, even if an IRQ is
323 	 * pending, without hanging/breaking the guest.
324 	 */
325 	return __tdx_hypercall(&args);
326 }
327 
handle_halt(struct ve_info * ve)328 static int handle_halt(struct ve_info *ve)
329 {
330 	const bool irq_disabled = irqs_disabled();
331 
332 	if (__halt(irq_disabled))
333 		return -EIO;
334 
335 	return ve_instr_len(ve);
336 }
337 
tdx_halt(void)338 void __cpuidle tdx_halt(void)
339 {
340 	const bool irq_disabled = false;
341 
342 	/*
343 	 * Use WARN_ONCE() to report the failure.
344 	 */
345 	if (__halt(irq_disabled))
346 		WARN_ONCE(1, "HLT instruction emulation failed\n");
347 }
348 
tdx_safe_halt(void)349 static void __cpuidle tdx_safe_halt(void)
350 {
351 	tdx_halt();
352 	/*
353 	 * "__cpuidle" section doesn't support instrumentation, so stick
354 	 * with raw_* variant that avoids tracing hooks.
355 	 */
356 	raw_local_irq_enable();
357 }
358 
read_msr(struct pt_regs * regs,struct ve_info * ve)359 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
360 {
361 	struct tdx_hypercall_args args = {
362 		.r10 = TDX_HYPERCALL_STANDARD,
363 		.r11 = hcall_func(EXIT_REASON_MSR_READ),
364 		.r12 = regs->cx,
365 	};
366 
367 	/*
368 	 * Emulate the MSR read via hypercall. More info about ABI
369 	 * can be found in TDX Guest-Host-Communication Interface
370 	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
371 	 */
372 	if (__tdx_hypercall_ret(&args))
373 		return -EIO;
374 
375 	regs->ax = lower_32_bits(args.r11);
376 	regs->dx = upper_32_bits(args.r11);
377 	return ve_instr_len(ve);
378 }
379 
write_msr(struct pt_regs * regs,struct ve_info * ve)380 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
381 {
382 	struct tdx_hypercall_args args = {
383 		.r10 = TDX_HYPERCALL_STANDARD,
384 		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
385 		.r12 = regs->cx,
386 		.r13 = (u64)regs->dx << 32 | regs->ax,
387 	};
388 
389 	/*
390 	 * Emulate the MSR write via hypercall. More info about ABI
391 	 * can be found in TDX Guest-Host-Communication Interface
392 	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
393 	 */
394 	if (__tdx_hypercall(&args))
395 		return -EIO;
396 
397 	return ve_instr_len(ve);
398 }
399 
handle_cpuid(struct pt_regs * regs,struct ve_info * ve)400 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
401 {
402 	struct tdx_hypercall_args args = {
403 		.r10 = TDX_HYPERCALL_STANDARD,
404 		.r11 = hcall_func(EXIT_REASON_CPUID),
405 		.r12 = regs->ax,
406 		.r13 = regs->cx,
407 	};
408 
409 	/*
410 	 * Only allow VMM to control range reserved for hypervisor
411 	 * communication.
412 	 *
413 	 * Return all-zeros for any CPUID outside the range. It matches CPU
414 	 * behaviour for non-supported leaf.
415 	 */
416 	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
417 		regs->ax = regs->bx = regs->cx = regs->dx = 0;
418 		return ve_instr_len(ve);
419 	}
420 
421 	/*
422 	 * Emulate the CPUID instruction via a hypercall. More info about
423 	 * ABI can be found in TDX Guest-Host-Communication Interface
424 	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
425 	 */
426 	if (__tdx_hypercall_ret(&args))
427 		return -EIO;
428 
429 	/*
430 	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
431 	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
432 	 * So copy the register contents back to pt_regs.
433 	 */
434 	regs->ax = args.r12;
435 	regs->bx = args.r13;
436 	regs->cx = args.r14;
437 	regs->dx = args.r15;
438 
439 	return ve_instr_len(ve);
440 }
441 
mmio_read(int size,unsigned long addr,unsigned long * val)442 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
443 {
444 	struct tdx_hypercall_args args = {
445 		.r10 = TDX_HYPERCALL_STANDARD,
446 		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
447 		.r12 = size,
448 		.r13 = EPT_READ,
449 		.r14 = addr,
450 	};
451 
452 	if (__tdx_hypercall_ret(&args))
453 		return false;
454 	*val = args.r11;
455 	return true;
456 }
457 
mmio_write(int size,unsigned long addr,unsigned long val)458 static bool mmio_write(int size, unsigned long addr, unsigned long val)
459 {
460 	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
461 			       EPT_WRITE, addr, val);
462 }
463 
handle_mmio(struct pt_regs * regs,struct ve_info * ve)464 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
465 {
466 	unsigned long *reg, val, vaddr;
467 	char buffer[MAX_INSN_SIZE];
468 	enum insn_mmio_type mmio;
469 	struct insn insn = {};
470 	int size, extend_size;
471 	u8 extend_val = 0;
472 
473 	/* Only in-kernel MMIO is supported */
474 	if (WARN_ON_ONCE(user_mode(regs)))
475 		return -EFAULT;
476 
477 	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
478 		return -EFAULT;
479 
480 	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
481 		return -EINVAL;
482 
483 	mmio = insn_decode_mmio(&insn, &size);
484 	if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
485 		return -EINVAL;
486 
487 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
488 		reg = insn_get_modrm_reg_ptr(&insn, regs);
489 		if (!reg)
490 			return -EINVAL;
491 	}
492 
493 	if (!fault_in_kernel_space(ve->gla)) {
494 		WARN_ONCE(1, "Access to userspace address is not supported");
495 		return -EINVAL;
496 	}
497 
498 	/*
499 	 * Reject EPT violation #VEs that split pages.
500 	 *
501 	 * MMIO accesses are supposed to be naturally aligned and therefore
502 	 * never cross page boundaries. Seeing split page accesses indicates
503 	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
504 	 *
505 	 * load_unaligned_zeropad() will recover using exception fixups.
506 	 */
507 	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
508 	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
509 		return -EFAULT;
510 
511 	/* Handle writes first */
512 	switch (mmio) {
513 	case INSN_MMIO_WRITE:
514 		memcpy(&val, reg, size);
515 		if (!mmio_write(size, ve->gpa, val))
516 			return -EIO;
517 		return insn.length;
518 	case INSN_MMIO_WRITE_IMM:
519 		val = insn.immediate.value;
520 		if (!mmio_write(size, ve->gpa, val))
521 			return -EIO;
522 		return insn.length;
523 	case INSN_MMIO_READ:
524 	case INSN_MMIO_READ_ZERO_EXTEND:
525 	case INSN_MMIO_READ_SIGN_EXTEND:
526 		/* Reads are handled below */
527 		break;
528 	case INSN_MMIO_MOVS:
529 	case INSN_MMIO_DECODE_FAILED:
530 		/*
531 		 * MMIO was accessed with an instruction that could not be
532 		 * decoded or handled properly. It was likely not using io.h
533 		 * helpers or accessed MMIO accidentally.
534 		 */
535 		return -EINVAL;
536 	default:
537 		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
538 		return -EINVAL;
539 	}
540 
541 	/* Handle reads */
542 	if (!mmio_read(size, ve->gpa, &val))
543 		return -EIO;
544 
545 	switch (mmio) {
546 	case INSN_MMIO_READ:
547 		/* Zero-extend for 32-bit operation */
548 		extend_size = size == 4 ? sizeof(*reg) : 0;
549 		break;
550 	case INSN_MMIO_READ_ZERO_EXTEND:
551 		/* Zero extend based on operand size */
552 		extend_size = insn.opnd_bytes;
553 		break;
554 	case INSN_MMIO_READ_SIGN_EXTEND:
555 		/* Sign extend based on operand size */
556 		extend_size = insn.opnd_bytes;
557 		if (size == 1 && val & BIT(7))
558 			extend_val = 0xFF;
559 		else if (size > 1 && val & BIT(15))
560 			extend_val = 0xFF;
561 		break;
562 	default:
563 		/* All other cases has to be covered with the first switch() */
564 		WARN_ON_ONCE(1);
565 		return -EINVAL;
566 	}
567 
568 	if (extend_size)
569 		memset(reg, extend_val, extend_size);
570 	memcpy(reg, &val, size);
571 	return insn.length;
572 }
573 
handle_in(struct pt_regs * regs,int size,int port)574 static bool handle_in(struct pt_regs *regs, int size, int port)
575 {
576 	struct tdx_hypercall_args args = {
577 		.r10 = TDX_HYPERCALL_STANDARD,
578 		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
579 		.r12 = size,
580 		.r13 = PORT_READ,
581 		.r14 = port,
582 	};
583 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
584 	bool success;
585 
586 	/*
587 	 * Emulate the I/O read via hypercall. More info about ABI can be found
588 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
589 	 * "TDG.VP.VMCALL<Instruction.IO>".
590 	 */
591 	success = !__tdx_hypercall_ret(&args);
592 
593 	/* Update part of the register affected by the emulated instruction */
594 	regs->ax &= ~mask;
595 	if (success)
596 		regs->ax |= args.r11 & mask;
597 
598 	return success;
599 }
600 
handle_out(struct pt_regs * regs,int size,int port)601 static bool handle_out(struct pt_regs *regs, int size, int port)
602 {
603 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
604 
605 	/*
606 	 * Emulate the I/O write via hypercall. More info about ABI can be found
607 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
608 	 * "TDG.VP.VMCALL<Instruction.IO>".
609 	 */
610 	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
611 			       PORT_WRITE, port, regs->ax & mask);
612 }
613 
614 /*
615  * Emulate I/O using hypercall.
616  *
617  * Assumes the IO instruction was using ax, which is enforced
618  * by the standard io.h macros.
619  *
620  * Return True on success or False on failure.
621  */
handle_io(struct pt_regs * regs,struct ve_info * ve)622 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
623 {
624 	u32 exit_qual = ve->exit_qual;
625 	int size, port;
626 	bool in, ret;
627 
628 	if (VE_IS_IO_STRING(exit_qual))
629 		return -EIO;
630 
631 	in   = VE_IS_IO_IN(exit_qual);
632 	size = VE_GET_IO_SIZE(exit_qual);
633 	port = VE_GET_PORT_NUM(exit_qual);
634 
635 
636 	if (in)
637 		ret = handle_in(regs, size, port);
638 	else
639 		ret = handle_out(regs, size, port);
640 	if (!ret)
641 		return -EIO;
642 
643 	return ve_instr_len(ve);
644 }
645 
646 /*
647  * Early #VE exception handler. Only handles a subset of port I/O.
648  * Intended only for earlyprintk. If failed, return false.
649  */
tdx_early_handle_ve(struct pt_regs * regs)650 __init bool tdx_early_handle_ve(struct pt_regs *regs)
651 {
652 	struct ve_info ve;
653 	int insn_len;
654 
655 	tdx_get_ve_info(&ve);
656 
657 	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
658 		return false;
659 
660 	insn_len = handle_io(regs, &ve);
661 	if (insn_len < 0)
662 		return false;
663 
664 	regs->ip += insn_len;
665 	return true;
666 }
667 
tdx_get_ve_info(struct ve_info * ve)668 void tdx_get_ve_info(struct ve_info *ve)
669 {
670 	struct tdx_module_args args = {};
671 
672 	/*
673 	 * Called during #VE handling to retrieve the #VE info from the
674 	 * TDX module.
675 	 *
676 	 * This has to be called early in #VE handling.  A "nested" #VE which
677 	 * occurs before this will raise a #DF and is not recoverable.
678 	 *
679 	 * The call retrieves the #VE info from the TDX module, which also
680 	 * clears the "#VE valid" flag. This must be done before anything else
681 	 * because any #VE that occurs while the valid flag is set will lead to
682 	 * #DF.
683 	 *
684 	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
685 	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
686 	 */
687 	tdcall(TDG_VP_VEINFO_GET, &args);
688 
689 	/* Transfer the output parameters */
690 	ve->exit_reason = args.rcx;
691 	ve->exit_qual   = args.rdx;
692 	ve->gla         = args.r8;
693 	ve->gpa         = args.r9;
694 	ve->instr_len   = lower_32_bits(args.r10);
695 	ve->instr_info  = upper_32_bits(args.r10);
696 }
697 
698 /*
699  * Handle the user initiated #VE.
700  *
701  * On success, returns the number of bytes RIP should be incremented (>=0)
702  * or -errno on error.
703  */
virt_exception_user(struct pt_regs * regs,struct ve_info * ve)704 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
705 {
706 	switch (ve->exit_reason) {
707 	case EXIT_REASON_CPUID:
708 		return handle_cpuid(regs, ve);
709 	default:
710 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
711 		return -EIO;
712 	}
713 }
714 
is_private_gpa(u64 gpa)715 static inline bool is_private_gpa(u64 gpa)
716 {
717 	return gpa == cc_mkenc(gpa);
718 }
719 
720 /*
721  * Handle the kernel #VE.
722  *
723  * On success, returns the number of bytes RIP should be incremented (>=0)
724  * or -errno on error.
725  */
virt_exception_kernel(struct pt_regs * regs,struct ve_info * ve)726 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
727 {
728 	switch (ve->exit_reason) {
729 	case EXIT_REASON_HLT:
730 		return handle_halt(ve);
731 	case EXIT_REASON_MSR_READ:
732 		return read_msr(regs, ve);
733 	case EXIT_REASON_MSR_WRITE:
734 		return write_msr(regs, ve);
735 	case EXIT_REASON_CPUID:
736 		return handle_cpuid(regs, ve);
737 	case EXIT_REASON_EPT_VIOLATION:
738 		if (is_private_gpa(ve->gpa))
739 			panic("Unexpected EPT-violation on private memory.");
740 		return handle_mmio(regs, ve);
741 	case EXIT_REASON_IO_INSTRUCTION:
742 		return handle_io(regs, ve);
743 	default:
744 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
745 		return -EIO;
746 	}
747 }
748 
tdx_handle_virt_exception(struct pt_regs * regs,struct ve_info * ve)749 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
750 {
751 	int insn_len;
752 
753 	if (user_mode(regs))
754 		insn_len = virt_exception_user(regs, ve);
755 	else
756 		insn_len = virt_exception_kernel(regs, ve);
757 	if (insn_len < 0)
758 		return false;
759 
760 	/* After successful #VE handling, move the IP */
761 	regs->ip += insn_len;
762 
763 	return true;
764 }
765 
tdx_tlb_flush_required(bool private)766 static bool tdx_tlb_flush_required(bool private)
767 {
768 	/*
769 	 * TDX guest is responsible for flushing TLB on private->shared
770 	 * transition. VMM is responsible for flushing on shared->private.
771 	 *
772 	 * The VMM _can't_ flush private addresses as it can't generate PAs
773 	 * with the guest's HKID.  Shared memory isn't subject to integrity
774 	 * checking, i.e. the VMM doesn't need to flush for its own protection.
775 	 *
776 	 * There's no need to flush when converting from shared to private,
777 	 * as flushing is the VMM's responsibility in this case, e.g. it must
778 	 * flush to avoid integrity failures in the face of a buggy or
779 	 * malicious guest.
780 	 */
781 	return !private;
782 }
783 
tdx_cache_flush_required(void)784 static bool tdx_cache_flush_required(void)
785 {
786 	/*
787 	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
788 	 * TDX doesn't have such capability.
789 	 *
790 	 * Flush cache unconditionally.
791 	 */
792 	return true;
793 }
794 
795 /*
796  * Inform the VMM of the guest's intent for this physical page: shared with
797  * the VMM or private to the guest.  The VMM is expected to change its mapping
798  * of the page in response.
799  */
tdx_enc_status_changed(unsigned long vaddr,int numpages,bool enc)800 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
801 {
802 	phys_addr_t start = __pa(vaddr);
803 	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
804 
805 	if (!enc) {
806 		/* Set the shared (decrypted) bits: */
807 		start |= cc_mkdec(0);
808 		end   |= cc_mkdec(0);
809 	}
810 
811 	/*
812 	 * Notify the VMM about page mapping conversion. More info about ABI
813 	 * can be found in TDX Guest-Host-Communication Interface (GHCI),
814 	 * section "TDG.VP.VMCALL<MapGPA>"
815 	 */
816 	if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
817 		return false;
818 
819 	/* shared->private conversion requires memory to be accepted before use */
820 	if (enc)
821 		return tdx_accept_memory(start, end);
822 
823 	return true;
824 }
825 
tdx_enc_status_change_prepare(unsigned long vaddr,int numpages,bool enc)826 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
827 					  bool enc)
828 {
829 	/*
830 	 * Only handle shared->private conversion here.
831 	 * See the comment in tdx_early_init().
832 	 */
833 	if (enc)
834 		return tdx_enc_status_changed(vaddr, numpages, enc);
835 	return true;
836 }
837 
tdx_enc_status_change_finish(unsigned long vaddr,int numpages,bool enc)838 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
839 					 bool enc)
840 {
841 	/*
842 	 * Only handle private->shared conversion here.
843 	 * See the comment in tdx_early_init().
844 	 */
845 	if (!enc)
846 		return tdx_enc_status_changed(vaddr, numpages, enc);
847 	return true;
848 }
849 
tdx_early_init(void)850 void __init tdx_early_init(void)
851 {
852 	u64 cc_mask;
853 	u32 eax, sig[3];
854 
855 	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
856 
857 	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
858 		return;
859 
860 	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
861 
862 	cc_vendor = CC_VENDOR_INTEL;
863 
864 	/* Configure the TD */
865 	tdx_setup(&cc_mask);
866 
867 	cc_set_mask(cc_mask);
868 
869 	/*
870 	 * All bits above GPA width are reserved and kernel treats shared bit
871 	 * as flag, not as part of physical address.
872 	 *
873 	 * Adjust physical mask to only cover valid GPA bits.
874 	 */
875 	physical_mask &= cc_mask - 1;
876 
877 	/*
878 	 * The kernel mapping should match the TDX metadata for the page.
879 	 * load_unaligned_zeropad() can touch memory *adjacent* to that which is
880 	 * owned by the caller and can catch even _momentary_ mismatches.  Bad
881 	 * things happen on mismatch:
882 	 *
883 	 *   - Private mapping => Shared Page  == Guest shutdown
884          *   - Shared mapping  => Private Page == Recoverable #VE
885 	 *
886 	 * guest.enc_status_change_prepare() converts the page from
887 	 * shared=>private before the mapping becomes private.
888 	 *
889 	 * guest.enc_status_change_finish() converts the page from
890 	 * private=>shared after the mapping becomes private.
891 	 *
892 	 * In both cases there is a temporary shared mapping to a private page,
893 	 * which can result in a #VE.  But, there is never a private mapping to
894 	 * a shared page.
895 	 */
896 	x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
897 	x86_platform.guest.enc_status_change_finish  = tdx_enc_status_change_finish;
898 
899 	x86_platform.guest.enc_cache_flush_required  = tdx_cache_flush_required;
900 	x86_platform.guest.enc_tlb_flush_required    = tdx_tlb_flush_required;
901 
902 	/*
903 	 * Avoid "sti;hlt" execution in TDX guests as HLT induces a #VE that
904 	 * will enable interrupts before HLT TDCALL invocation if executed
905 	 * in STI-shadow, possibly resulting in missed wakeup events.
906 	 *
907 	 * Modify all possible HLT execution paths to use TDX specific routines
908 	 * that directly execute TDCALL and toggle the interrupt state as
909 	 * needed after TDCALL completion. This also reduces HLT related #VEs
910 	 * in addition to having a reliable halt logic execution.
911 	 */
912 	pv_ops.irq.safe_halt = tdx_safe_halt;
913 	pv_ops.irq.halt = tdx_halt;
914 
915 	/*
916 	 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel
917 	 * bringup low level code. That raises #VE which cannot be handled
918 	 * there.
919 	 *
920 	 * Intel-TDX has a secure RDMSR hypercall, but that needs to be
921 	 * implemented seperately in the low level startup ASM code.
922 	 * Until that is in place, disable parallel bringup for TDX.
923 	 */
924 	x86_cpuinit.parallel_bringup = false;
925 
926 	pr_info("Guest detected\n");
927 }
928