1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 #include "cpu-features.h"
12
13 /* internal defines */
14
15 /*
16 * Save pc_save across a branch, so that we may restore the value from
17 * before the branch at the point the label is emitted.
18 */
19 typedef struct DisasLabel {
20 TCGLabel *label;
21 target_ulong pc_save;
22 } DisasLabel;
23
24 typedef struct DisasContext {
25 DisasContextBase base;
26 const ARMISARegisters *isar;
27
28 /* The address of the current instruction being translated. */
29 target_ulong pc_curr;
30 /*
31 * For CF_PCREL, the full value of cpu_pc is not known
32 * (although the page offset is known). For convenience, the
33 * translation loop uses the full virtual address that triggered
34 * the translation, from base.pc_start through pc_curr.
35 * For efficiency, we do not update cpu_pc for every instruction.
36 * Instead, pc_save has the value of pc_curr at the time of the
37 * last update to cpu_pc, which allows us to compute the addend
38 * needed to bring cpu_pc current: pc_curr - pc_save.
39 * If cpu_pc now contains the destination of an indirect branch,
40 * pc_save contains -1 to indicate that relative updates are no
41 * longer possible.
42 */
43 target_ulong pc_save;
44 target_ulong page_start;
45 uint32_t insn;
46 /* Nonzero if this instruction has been conditionally skipped. */
47 int condjmp;
48 /* The label that will be jumped to when the instruction is skipped. */
49 DisasLabel condlabel;
50 /* Thumb-2 conditional execution bits. */
51 int condexec_mask;
52 int condexec_cond;
53 /* M-profile ECI/ICI exception-continuable instruction state */
54 int eci;
55 /*
56 * trans_ functions for insns which are continuable should set this true
57 * after decode (ie after any UNDEF checks)
58 */
59 bool eci_handled;
60 int sctlr_b;
61 MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63 int user;
64 #endif
65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66 uint8_t tbii; /* TBI1|TBI0 for insns */
67 uint8_t tbid; /* TBI1|TBI0 for data */
68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */
69 bool ns; /* Use non-secure CPREG bank on access */
70 int fp_excp_el; /* FP exception EL or 0 if enabled */
71 int sve_excp_el; /* SVE exception EL or 0 if enabled */
72 int sme_excp_el; /* SME exception EL or 0 if enabled */
73 int vl; /* current vector length in bytes */
74 int svl; /* current streaming vector length in bytes */
75 bool vfp_enabled; /* FP enabled via FPSCR.EN */
76 int vec_len;
77 int vec_stride;
78 bool v7m_handler_mode;
79 bool v8m_secure; /* true if v8M and we're in Secure mode */
80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83 bool v7m_lspact; /* FPCCR.LSPACT set */
84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85 * so that top level loop can generate correct syndrome information.
86 */
87 uint32_t svc_imm;
88 int current_el;
89 GHashTable *cp_regs;
90 uint64_t features; /* CPU features bits */
91 bool aarch64;
92 bool thumb;
93 bool lse2;
94 /*
95 * Because unallocated encodings generate different exception syndrome
96 * information from traps due to FP being disabled, we can't do a single
97 * "is fp access disabled" check at a high level in the decode tree.
98 * To help in catching bugs where the access check was forgotten in some
99 * code path, we set this flag when the access check is done, and assert
100 * that it is set at the point where we actually touch the FP regs.
101 * 0: not checked,
102 * 1: checked, access ok
103 * -1: checked, access denied
104 */
105 int8_t fp_access_checked;
106 int8_t sve_access_checked;
107 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
108 * single-step support).
109 */
110 bool ss_active;
111 bool pstate_ss;
112 /* True if the insn just emitted was a load-exclusive instruction
113 * (necessary for syndrome information for single step exceptions),
114 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
115 */
116 bool is_ldex;
117 /* True if AccType_UNPRIV should be used for LDTR et al */
118 bool unpriv;
119 /* True if v8.3-PAuth is active. */
120 bool pauth_active;
121 /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */
122 bool ata[2];
123 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */
124 bool mte_active[2];
125 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */
126 bool bt;
127 /* True if any CP15 access is trapped by HSTR_EL2 */
128 bool hstr_active;
129 /* True if memory operations require alignment */
130 bool align_mem;
131 /* True if PSTATE.IL is set */
132 bool pstate_il;
133 /* True if PSTATE.SM is set. */
134 bool pstate_sm;
135 /* True if PSTATE.ZA is set. */
136 bool pstate_za;
137 /* True if non-streaming insns should raise an SME Streaming exception. */
138 bool sme_trap_nonstreaming;
139 /* True if the current instruction is non-streaming. */
140 bool is_nonstreaming;
141 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
142 bool mve_no_pred;
143 /* True if fine-grained traps are active */
144 bool fgt_active;
145 /* True if fine-grained trap on SVC is enabled */
146 bool fgt_svc;
147 /* True if a trap on ERET is enabled (FGT or NV) */
148 bool trap_eret;
149 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
150 bool naa;
151 /* True if FEAT_NV HCR_EL2.NV is enabled */
152 bool nv;
153 /* True if NV enabled and HCR_EL2.NV1 is set */
154 bool nv1;
155 /* True if NV enabled and HCR_EL2.NV2 is set */
156 bool nv2;
157 /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */
158 bool nv2_mem_e20;
159 /* True if NV2 enabled and NV2 RAM accesses are big-endian */
160 bool nv2_mem_be;
161 /*
162 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
163 * < 0, set by the current instruction.
164 */
165 int8_t btype;
166 /* A copy of cpu->dcz_blocksize. */
167 uint8_t dcz_blocksize;
168 /* A copy of cpu->gm_blocksize. */
169 uint8_t gm_blocksize;
170 /* True if the current insn_start has been updated. */
171 bool insn_start_updated;
172 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
173 int c15_cpar;
174 /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */
175 uint32_t nv2_redirect_offset;
176 } DisasContext;
177
178 typedef struct DisasCompare {
179 TCGCond cond;
180 TCGv_i32 value;
181 } DisasCompare;
182
183 /* Share the TCG temporaries common between 32 and 64 bit modes. */
184 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
185 extern TCGv_i64 cpu_exclusive_addr;
186 extern TCGv_i64 cpu_exclusive_val;
187
188 /*
189 * Constant expanders for the decoders.
190 */
191
negate(DisasContext * s,int x)192 static inline int negate(DisasContext *s, int x)
193 {
194 return -x;
195 }
196
plus_1(DisasContext * s,int x)197 static inline int plus_1(DisasContext *s, int x)
198 {
199 return x + 1;
200 }
201
plus_2(DisasContext * s,int x)202 static inline int plus_2(DisasContext *s, int x)
203 {
204 return x + 2;
205 }
206
plus_12(DisasContext * s,int x)207 static inline int plus_12(DisasContext *s, int x)
208 {
209 return x + 12;
210 }
211
times_2(DisasContext * s,int x)212 static inline int times_2(DisasContext *s, int x)
213 {
214 return x * 2;
215 }
216
times_4(DisasContext * s,int x)217 static inline int times_4(DisasContext *s, int x)
218 {
219 return x * 4;
220 }
221
times_8(DisasContext * s,int x)222 static inline int times_8(DisasContext *s, int x)
223 {
224 return x * 8;
225 }
226
times_2_plus_1(DisasContext * s,int x)227 static inline int times_2_plus_1(DisasContext *s, int x)
228 {
229 return x * 2 + 1;
230 }
231
rsub_64(DisasContext * s,int x)232 static inline int rsub_64(DisasContext *s, int x)
233 {
234 return 64 - x;
235 }
236
rsub_32(DisasContext * s,int x)237 static inline int rsub_32(DisasContext *s, int x)
238 {
239 return 32 - x;
240 }
241
rsub_16(DisasContext * s,int x)242 static inline int rsub_16(DisasContext *s, int x)
243 {
244 return 16 - x;
245 }
246
rsub_8(DisasContext * s,int x)247 static inline int rsub_8(DisasContext *s, int x)
248 {
249 return 8 - x;
250 }
251
shl_12(DisasContext * s,int x)252 static inline int shl_12(DisasContext *s, int x)
253 {
254 return x << 12;
255 }
256
xor_2(DisasContext * s,int x)257 static inline int xor_2(DisasContext *s, int x)
258 {
259 return x ^ 2;
260 }
261
neon_3same_fp_size(DisasContext * s,int x)262 static inline int neon_3same_fp_size(DisasContext *s, int x)
263 {
264 /* Convert 0==fp32, 1==fp16 into a MO_* value */
265 return MO_32 - x;
266 }
267
arm_dc_feature(DisasContext * dc,int feature)268 static inline int arm_dc_feature(DisasContext *dc, int feature)
269 {
270 return (dc->features & (1ULL << feature)) != 0;
271 }
272
get_mem_index(DisasContext * s)273 static inline int get_mem_index(DisasContext *s)
274 {
275 return arm_to_core_mmu_idx(s->mmu_idx);
276 }
277
disas_set_insn_syndrome(DisasContext * s,uint32_t syn)278 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
279 {
280 /* We don't need to save all of the syndrome so we mask and shift
281 * out unneeded bits to help the sleb128 encoder do a better job.
282 */
283 syn &= ARM_INSN_START_WORD2_MASK;
284 syn >>= ARM_INSN_START_WORD2_SHIFT;
285
286 /* Check for multiple updates. */
287 assert(!s->insn_start_updated);
288 s->insn_start_updated = true;
289 tcg_set_insn_start_param(s->base.insn_start, 2, syn);
290 }
291
curr_insn_len(DisasContext * s)292 static inline int curr_insn_len(DisasContext *s)
293 {
294 return s->base.pc_next - s->pc_curr;
295 }
296
297 /* is_jmp field values */
298 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
299 /* CPU state was modified dynamically; exit to main loop for interrupts. */
300 #define DISAS_UPDATE_EXIT DISAS_TARGET_1
301 /* These instructions trap after executing, so the A32/T32 decoder must
302 * defer them until after the conditional execution state has been updated.
303 * WFI also needs special handling when single-stepping.
304 */
305 #define DISAS_WFI DISAS_TARGET_2
306 #define DISAS_SWI DISAS_TARGET_3
307 /* WFE */
308 #define DISAS_WFE DISAS_TARGET_4
309 #define DISAS_HVC DISAS_TARGET_5
310 #define DISAS_SMC DISAS_TARGET_6
311 #define DISAS_YIELD DISAS_TARGET_7
312 /* M profile branch which might be an exception return (and so needs
313 * custom end-of-TB code)
314 */
315 #define DISAS_BX_EXCRET DISAS_TARGET_8
316 /*
317 * For instructions which want an immediate exit to the main loop, as opposed
318 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this
319 * doesn't write the PC on exiting the translation loop so you need to ensure
320 * something (gen_a64_update_pc or runtime helper) has done so before we reach
321 * return from cpu_tb_exec.
322 */
323 #define DISAS_EXIT DISAS_TARGET_9
324 /* CPU state was modified dynamically; no need to exit, but do not chain. */
325 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10
326
327 #ifdef TARGET_AARCH64
328 void a64_translate_init(void);
329 void gen_a64_update_pc(DisasContext *s, target_long diff);
330 extern const TranslatorOps aarch64_translator_ops;
331 #else
a64_translate_init(void)332 static inline void a64_translate_init(void)
333 {
334 }
335
gen_a64_update_pc(DisasContext * s,target_long diff)336 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
337 {
338 }
339 #endif
340
341 void arm_test_cc(DisasCompare *cmp, int cc);
342 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
343 void arm_gen_test_cc(int cc, TCGLabel *label);
344 MemOp pow2_align(unsigned i);
345 void unallocated_encoding(DisasContext *s);
346 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
347 uint32_t syn, uint32_t target_el);
348 void gen_exception_insn(DisasContext *s, target_long pc_diff,
349 int excp, uint32_t syn);
350
351 /* Return state of Alternate Half-precision flag, caller frees result */
get_ahp_flag(void)352 static inline TCGv_i32 get_ahp_flag(void)
353 {
354 TCGv_i32 ret = tcg_temp_new_i32();
355
356 tcg_gen_ld_i32(ret, tcg_env, offsetoflow32(CPUARMState, vfp.fpcr));
357 tcg_gen_extract_i32(ret, ret, 26, 1);
358
359 return ret;
360 }
361
362 /* Set bits within PSTATE. */
set_pstate_bits(uint32_t bits)363 static inline void set_pstate_bits(uint32_t bits)
364 {
365 TCGv_i32 p = tcg_temp_new_i32();
366
367 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
368
369 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
370 tcg_gen_ori_i32(p, p, bits);
371 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
372 }
373
374 /* Clear bits within PSTATE. */
clear_pstate_bits(uint32_t bits)375 static inline void clear_pstate_bits(uint32_t bits)
376 {
377 TCGv_i32 p = tcg_temp_new_i32();
378
379 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
380
381 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
382 tcg_gen_andi_i32(p, p, ~bits);
383 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
384 }
385
386 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
gen_ss_advance(DisasContext * s)387 static inline void gen_ss_advance(DisasContext *s)
388 {
389 if (s->ss_active) {
390 s->pstate_ss = 0;
391 clear_pstate_bits(PSTATE_SS);
392 }
393 }
394
395 /* Generate an architectural singlestep exception */
gen_swstep_exception(DisasContext * s,int isv,int ex)396 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
397 {
398 /* Fill in the same_el field of the syndrome in the helper. */
399 uint32_t syn = syn_swstep(false, isv, ex);
400 gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
401 }
402
403 /*
404 * Given a VFP floating point constant encoded into an 8 bit immediate in an
405 * instruction, expand it to the actual constant value of the specified
406 * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
407 */
408 uint64_t vfp_expand_imm(int size, uint8_t imm8);
409
gen_vfp_absh(TCGv_i32 d,TCGv_i32 s)410 static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s)
411 {
412 tcg_gen_andi_i32(d, s, INT16_MAX);
413 }
414
gen_vfp_abss(TCGv_i32 d,TCGv_i32 s)415 static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s)
416 {
417 tcg_gen_andi_i32(d, s, INT32_MAX);
418 }
419
gen_vfp_absd(TCGv_i64 d,TCGv_i64 s)420 static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s)
421 {
422 tcg_gen_andi_i64(d, s, INT64_MAX);
423 }
424
gen_vfp_negh(TCGv_i32 d,TCGv_i32 s)425 static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s)
426 {
427 tcg_gen_xori_i32(d, s, 1u << 15);
428 }
429
gen_vfp_negs(TCGv_i32 d,TCGv_i32 s)430 static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s)
431 {
432 tcg_gen_xori_i32(d, s, 1u << 31);
433 }
434
gen_vfp_negd(TCGv_i64 d,TCGv_i64 s)435 static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s)
436 {
437 tcg_gen_xori_i64(d, s, 1ull << 63);
438 }
439
440 /* Vector operations shared between ARM and AArch64. */
441 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
442 uint32_t opr_sz, uint32_t max_sz);
443 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
444 uint32_t opr_sz, uint32_t max_sz);
445 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
446 uint32_t opr_sz, uint32_t max_sz);
447 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
448 uint32_t opr_sz, uint32_t max_sz);
449 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
450 uint32_t opr_sz, uint32_t max_sz);
451
452 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
453 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
454 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
455 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
456
457 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
458 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
459 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
460 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
461 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
462 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
463 void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
464 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
465 void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
466 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
467 void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
468 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
469 void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
470 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
471 void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
472 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
473 void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
474 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
475
476 void gen_neon_sqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
477 int64_t c, uint32_t opr_sz, uint32_t max_sz);
478 void gen_neon_uqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
479 int64_t c, uint32_t opr_sz, uint32_t max_sz);
480 void gen_neon_sqshlui(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
481 int64_t c, uint32_t opr_sz, uint32_t max_sz);
482
483 void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
484 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
485 void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
486 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
487 void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
488 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
489 void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
490 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
491 void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
492 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
493 void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
494 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
495
496 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
497 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
498 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
499 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
500 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
501
502 void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
503 TCGv_i64 a, TCGv_i64 b, MemOp esz);
504 void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
505 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
506 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
507
508 void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
509 TCGv_i64 a, TCGv_i64 b, MemOp esz);
510 void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
511 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
512 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
513
514 void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
515 TCGv_i64 a, TCGv_i64 b, MemOp esz);
516 void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
517 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
518 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
519
520 void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
521 TCGv_i64 a, TCGv_i64 b, MemOp esz);
522 void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
523 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
524 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
525
526 void gen_gvec_sshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
527 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
528 void gen_gvec_ushr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
529 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
530
531 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
532 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
533 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
534 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
535
536 void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
537 void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
538 void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
539 void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
540
541 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
542 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
543 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
544 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
545 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
546 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
547 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
548 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
549
550 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
551 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
552 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
553 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
554
555 void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
556 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
557 void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
558 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
559 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
560 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
561 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
562 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
563
564 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
565 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
566 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
567 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
568
569 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
570 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
571 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
572 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
573
574 void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
575 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
576 void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
577 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
578 void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
579 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
580 void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
581 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
582 void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
583 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
584
585 /*
586 * Forward to the isar_feature_* tests given a DisasContext pointer.
587 */
588 #define dc_isar_feature(name, ctx) \
589 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
590
591 /* Note that the gvec expanders operate on offsets + sizes. */
592 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
593 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
594 uint32_t, uint32_t);
595 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
596 uint32_t, uint32_t, uint32_t);
597 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
598 uint32_t, uint32_t, uint32_t);
599
600 /* Function prototype for gen_ functions for calling Neon helpers */
601 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
602 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
603 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
604 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
605 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
606 TCGv_i32, TCGv_i32);
607 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
608 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
609 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
610 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
611 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
612 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
613 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
614 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
615 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
616 typedef void NeonGenOne64OpEnvFn(TCGv_i64, TCGv_env, TCGv_i64);
617 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
618 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
619 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
620 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
621 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
622 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
623 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
624 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
625
626 /**
627 * arm_tbflags_from_tb:
628 * @tb: the TranslationBlock
629 *
630 * Extract the flag values from @tb.
631 */
arm_tbflags_from_tb(const TranslationBlock * tb)632 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
633 {
634 return (CPUARMTBFlags){ tb->flags, tb->cs_base };
635 }
636
637 /*
638 * Enum for argument to fpstatus_ptr().
639 */
640 typedef enum ARMFPStatusFlavour {
641 FPST_FPCR,
642 FPST_FPCR_F16,
643 FPST_STD,
644 FPST_STD_F16,
645 } ARMFPStatusFlavour;
646
647 /**
648 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
649 *
650 * We have multiple softfloat float_status fields in the Arm CPU state struct
651 * (see the comment in cpu.h for details). Return a TCGv_ptr which has
652 * been set up to point to the requested field in the CPU state struct.
653 * The options are:
654 *
655 * FPST_FPCR
656 * for non-FP16 operations controlled by the FPCR
657 * FPST_FPCR_F16
658 * for operations controlled by the FPCR where FPCR.FZ16 is to be used
659 * FPST_STD
660 * for A32/T32 Neon operations using the "standard FPSCR value"
661 * FPST_STD_F16
662 * as FPST_STD, but where FPCR.FZ16 is to be used
663 */
fpstatus_ptr(ARMFPStatusFlavour flavour)664 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
665 {
666 TCGv_ptr statusptr = tcg_temp_new_ptr();
667 int offset;
668
669 switch (flavour) {
670 case FPST_FPCR:
671 offset = offsetof(CPUARMState, vfp.fp_status);
672 break;
673 case FPST_FPCR_F16:
674 offset = offsetof(CPUARMState, vfp.fp_status_f16);
675 break;
676 case FPST_STD:
677 offset = offsetof(CPUARMState, vfp.standard_fp_status);
678 break;
679 case FPST_STD_F16:
680 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
681 break;
682 default:
683 g_assert_not_reached();
684 }
685 tcg_gen_addi_ptr(statusptr, tcg_env, offset);
686 return statusptr;
687 }
688
689 /**
690 * finalize_memop_atom:
691 * @s: DisasContext
692 * @opc: size+sign+align of the memory operation
693 * @atom: atomicity of the memory operation
694 *
695 * Build the complete MemOp for a memory operation, including alignment,
696 * endianness, and atomicity.
697 *
698 * If (op & MO_AMASK) then the operation already contains the required
699 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally
700 * unaligned operation, e.g. for AccType_NORMAL.
701 *
702 * In the latter case, there are configuration bits that require alignment,
703 * and this is applied here. Note that there is no way to indicate that
704 * no alignment should ever be enforced; this must be handled manually.
705 */
finalize_memop_atom(DisasContext * s,MemOp opc,MemOp atom)706 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
707 {
708 if (s->align_mem && !(opc & MO_AMASK)) {
709 opc |= MO_ALIGN;
710 }
711 return opc | atom | s->be_data;
712 }
713
714 /**
715 * finalize_memop:
716 * @s: DisasContext
717 * @opc: size+sign+align of the memory operation
718 *
719 * Like finalize_memop_atom, but with default atomicity.
720 */
finalize_memop(DisasContext * s,MemOp opc)721 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
722 {
723 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
724 return finalize_memop_atom(s, opc, atom);
725 }
726
727 /**
728 * finalize_memop_pair:
729 * @s: DisasContext
730 * @opc: size+sign+align of the memory operation
731 *
732 * Like finalize_memop_atom, but with atomicity for a pair.
733 * C.f. Pseudocode for Mem[], operand ispair.
734 */
finalize_memop_pair(DisasContext * s,MemOp opc)735 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
736 {
737 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
738 return finalize_memop_atom(s, opc, atom);
739 }
740
741 /**
742 * finalize_memop_asimd:
743 * @s: DisasContext
744 * @opc: size+sign+align of the memory operation
745 *
746 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
747 */
finalize_memop_asimd(DisasContext * s,MemOp opc)748 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
749 {
750 /*
751 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
752 * if IsAligned(8), the first case provides separate atomicity for
753 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases
754 * do not apply, and we're left with the final case of no atomicity.
755 * Thus MO_ATOM_IFALIGN_PAIR.
756 *
757 * For other sizes, normal LSE2 rules apply.
758 */
759 if ((opc & MO_SIZE) == MO_128) {
760 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
761 }
762 return finalize_memop(s, opc);
763 }
764
765 /**
766 * asimd_imm_const: Expand an encoded SIMD constant value
767 *
768 * Expand a SIMD constant value. This is essentially the pseudocode
769 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
770 * VMVN and VBIC (when cmode < 14 && op == 1).
771 *
772 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
773 * callers must catch this; we return the 64-bit constant value defined
774 * for AArch64.
775 *
776 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
777 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
778 * we produce an immediate constant value of 0 in these cases.
779 */
780 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
781
782 /*
783 * gen_disas_label:
784 * Create a label and cache a copy of pc_save.
785 */
gen_disas_label(DisasContext * s)786 static inline DisasLabel gen_disas_label(DisasContext *s)
787 {
788 return (DisasLabel){
789 .label = gen_new_label(),
790 .pc_save = s->pc_save,
791 };
792 }
793
794 /*
795 * set_disas_label:
796 * Emit a label and restore the cached copy of pc_save.
797 */
set_disas_label(DisasContext * s,DisasLabel l)798 static inline void set_disas_label(DisasContext *s, DisasLabel l)
799 {
800 gen_set_label(l.label);
801 s->pc_save = l.pc_save;
802 }
803
gen_lookup_cp_reg(uint32_t key)804 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
805 {
806 TCGv_ptr ret = tcg_temp_new_ptr();
807 gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
808 return ret;
809 }
810
811 /*
812 * Set and reset rounding mode around another operation.
813 */
gen_set_rmode(ARMFPRounding rmode,TCGv_ptr fpst)814 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
815 {
816 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
817 TCGv_i32 old = tcg_temp_new_i32();
818
819 gen_helper_set_rmode(old, new, fpst);
820 return old;
821 }
822
gen_restore_rmode(TCGv_i32 old,TCGv_ptr fpst)823 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
824 {
825 gen_helper_set_rmode(old, old, fpst);
826 }
827
828 /*
829 * Helpers for implementing sets of trans_* functions.
830 * Defer the implementation of NAME to FUNC, with optional extra arguments.
831 */
832 #define TRANS(NAME, FUNC, ...) \
833 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
834 { return FUNC(s, __VA_ARGS__); }
835 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
836 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
837 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
838
839 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \
840 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
841 { \
842 s->is_nonstreaming = true; \
843 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \
844 }
845
846 #endif /* TARGET_ARM_TRANSLATE_H */
847