History log of /openbmc/linux/arch/x86/include/asm/shstk.h (Results 1 – 9 of 9)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: v6.6.67, v6.6.66, v6.6.65, v6.6.64, v6.6.63, v6.6.62, v6.6.61, v6.6.60, v6.6.59, v6.6.58, v6.6.57, v6.6.56, v6.6.55, v6.6.54, v6.6.53, v6.6.52, v6.6.51, v6.6.50, v6.6.49, v6.6.48, v6.6.47, v6.6.46, v6.6.45
# 7e24a55b 04-Aug-2024 Andrew Jeffery <andrew@codeconstruct.com.au>

Merge tag 'v6.6.44' into for/openbmc/dev-6.6

This is the 6.6.44 stable release


Revision tags: v6.6.44, v6.6.43, v6.6.42, v6.6.41, v6.6.40, v6.6.39, v6.6.38, v6.6.37, v6.6.36, v6.6.35, v6.6.34, v6.6.33
# 27465601 11-Jun-2024 Jiri Olsa <jolsa@kernel.org>

x86/shstk: Make return uprobe work with shadow stack

[ Upstream commit 1713b63a07a28a475de94664f783b4cfd2e4fa90 ]

Currently the application with enabled shadow stack will crash
if it sets up return

x86/shstk: Make return uprobe work with shadow stack

[ Upstream commit 1713b63a07a28a475de94664f783b4cfd2e4fa90 ]

Currently the application with enabled shadow stack will crash
if it sets up return uprobe. The reason is the uretprobe kernel
code changes the user space task's stack, but does not update
shadow stack accordingly.

Adding new functions to update values on shadow stack and using
them in uprobe code to keep shadow stack in sync with uretprobe
changes to user stack.

Link: https://lore.kernel.org/all/20240611112158.40795-2-jolsa@kernel.org/

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Fixes: 488af8ea7131 ("x86/shstk: Wire in shadow stack interface")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


Revision tags: v6.6.32, v6.6.31, v6.6.30, v6.6.29, v6.6.28, v6.6.27, v6.6.26, v6.6.25, v6.6.24, v6.6.23, v6.6.16, v6.6.15, v6.6.14, v6.6.13, v6.6.12, v6.6.11, v6.6.10, v6.6.9, v6.6.8, v6.6.7, v6.6.6, v6.6.5, v6.6.4, v6.6.3, v6.6.2, v6.5.11, v6.6.1, v6.5.10, v6.6, v6.5.9, v6.5.8, v6.5.7, v6.5.6, v6.5.5, v6.5.4, v6.5.3
# c900529f 12-Sep-2023 Thomas Zimmermann <tzimmermann@suse.de>

Merge drm/drm-fixes into drm-misc-fixes

Forwarding to v6.6-rc1.

Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>


Revision tags: v6.5.2, v6.1.51, v6.5.1
# df57721f 31-Aug-2023 Linus Torvalds <torvalds@linux-foundation.org>

Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 shadow stack support from Dave Hansen:
"This is the long awaited x86 shadow stack support, part o

Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 shadow stack support from Dave Hansen:
"This is the long awaited x86 shadow stack support, part of Intel's
Control-flow Enforcement Technology (CET).

CET consists of two related security features: shadow stacks and
indirect branch tracking. This series implements just the shadow stack
part of this feature, and just for userspace.

The main use case for shadow stack is providing protection against
return oriented programming attacks. It works by maintaining a
secondary (shadow) stack using a special memory type that has
protections against modification. When executing a CALL instruction,
the processor pushes the return address to both the normal stack and
to the special permission shadow stack. Upon RET, the processor pops
the shadow stack copy and compares it to the normal stack copy.

For more information, refer to the links below for the earlier
versions of this patch set"

Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/

* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
x86/shstk: Change order of __user in type
x86/ibt: Convert IBT selftest to asm
x86/shstk: Don't retry vm_munmap() on -EINTR
x86/kbuild: Fix Documentation/ reference
x86/shstk: Move arch detail comment out of core mm
x86/shstk: Add ARCH_SHSTK_STATUS
x86/shstk: Add ARCH_SHSTK_UNLOCK
x86: Add PTRACE interface for shadow stack
selftests/x86: Add shadow stack test
x86/cpufeatures: Enable CET CR4 bit for shadow stack
x86/shstk: Wire in shadow stack interface
x86: Expose thread features in /proc/$PID/status
x86/shstk: Support WRSS for userspace
x86/shstk: Introduce map_shadow_stack syscall
x86/shstk: Check that signal frame is shadow stack mem
x86/shstk: Check that SSP is aligned on sigreturn
x86/shstk: Handle signals for shadow stack
x86/shstk: Introduce routines modifying shstk
x86/shstk: Handle thread shadow stack
x86/shstk: Add user-mode shadow stack support
...

show more ...


Revision tags: v6.1.50, v6.5, v6.1.49, v6.1.48, v6.1.46, v6.1.45, v6.1.44, v6.1.43, v6.1.42, v6.1.41, v6.1.40, v6.1.39, v6.1.38, v6.1.37, v6.1.36, v6.4, v6.1.35, v6.1.34
# 67840ad0 12-Jun-2023 Rick Edgecombe <rick.p.edgecombe@intel.com>

x86/shstk: Add ARCH_SHSTK_STATUS

CRIU and GDB need to get the current shadow stack and WRSS enablement
status. This information is already available via /proc/pid/status, but
this is inconvenient fo

x86/shstk: Add ARCH_SHSTK_STATUS

CRIU and GDB need to get the current shadow stack and WRSS enablement
status. This information is already available via /proc/pid/status, but
this is inconvenient for CRIU because it involves parsing the text output
in an area of the code where this is difficult. Provide a status
arch_prctl(), ARCH_SHSTK_STATUS for retrieving the status. Have arg2 be a
userspace address, and make the new arch_prctl simply copy the features
out to userspace.

Suggested-by: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-43-rick.p.edgecombe%40intel.com

show more ...


# 05e36022 12-Jun-2023 Rick Edgecombe <rick.p.edgecombe@intel.com>

x86/shstk: Handle signals for shadow stack

When a signal is handled, the context is pushed to the stack before
handling it. For shadow stacks, since the shadow stack only tracks return
addresses, th

x86/shstk: Handle signals for shadow stack

When a signal is handled, the context is pushed to the stack before
handling it. For shadow stacks, since the shadow stack only tracks return
addresses, there isn't any state that needs to be pushed. However, there
are still a few things that need to be done. These things are visible to
userspace and which will be kernel ABI for shadow stacks.

One is to make sure the restorer address is written to shadow stack, since
the signal handler (if not changing ucontext) returns to the restorer, and
the restorer calls sigreturn. So add the restorer on the shadow stack
before handling the signal, so there is not a conflict when the signal
handler returns to the restorer.

The other thing to do is to place some type of checkable token on the
thread's shadow stack before handling the signal and check it during
sigreturn. This is an extra layer of protection to hamper attackers
calling sigreturn manually as in SROP-like attacks.

For this token the shadow stack data format defined earlier can be used.
Have the data pushed be the previous SSP. In the future the sigreturn
might want to return back to a different stack. Storing the SSP (instead
of a restore offset or something) allows for future functionality that
may want to restore to a different stack.

So, when handling a signal push
- the SSP pointing in the shadow stack data format
- the restorer address below the restore token.

In sigreturn, verify SSP is stored in the data format and pop the shadow
stack.

Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-32-rick.p.edgecombe%40intel.com

show more ...


# b2926a36 12-Jun-2023 Rick Edgecombe <rick.p.edgecombe@intel.com>

x86/shstk: Handle thread shadow stack

When a process is duplicated, but the child shares the address space with
the parent, there is potential for the threads sharing a single stack to
cause conflic

x86/shstk: Handle thread shadow stack

When a process is duplicated, but the child shares the address space with
the parent, there is potential for the threads sharing a single stack to
cause conflicts for each other. In the normal non-CET case this is handled
in two ways.

With regular CLONE_VM a new stack is provided by userspace such that the
parent and child have different stacks.

For vfork, the parent is suspended until the child exits. So as long as
the child doesn't return from the vfork()/CLONE_VFORK calling function and
sticks to a limited set of operations, the parent and child can share the
same stack.

For shadow stack, these scenarios present similar sharing problems. For the
CLONE_VM case, the child and the parent must have separate shadow stacks.
Instead of changing clone to take a shadow stack, have the kernel just
allocate one and switch to it.

Use stack_size passed from clone3() syscall for thread shadow stack size. A
compat-mode thread shadow stack size is further reduced to 1/4. This
allows more threads to run in a 32-bit address space. The clone() does not
pass stack_size, which was added to clone3(). In that case, use
RLIMIT_STACK size and cap to 4 GB.

For shadow stack enabled vfork(), the parent and child can share the same
shadow stack, like they can share a normal stack. Since the parent is
suspended until the child terminates, the child will not interfere with
the parent while executing as long as it doesn't return from the vfork()
and overwrite up the shadow stack. The child can safely overwrite down
the shadow stack, as the parent can just overwrite this later. So CET does
not add any additional limitations for vfork().

Free the shadow stack on thread exit by doing it in mm_release(). Skip
this when exiting a vfork() child since the stack is shared in the
parent.

During this operation, the shadow stack pointer of the new thread needs
to be updated to point to the newly allocated shadow stack. Since the
ability to do this is confined to the FPU subsystem, change
fpu_clone() to take the new shadow stack pointer, and update it
internally inside the FPU subsystem. This part was suggested by Thomas
Gleixner.

Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-30-rick.p.edgecombe%40intel.com

show more ...


# 2d39a6ad 12-Jun-2023 Rick Edgecombe <rick.p.edgecombe@intel.com>

x86/shstk: Add user-mode shadow stack support

Introduce basic shadow stack enabling/disabling/allocation routines.
A task's shadow stack is allocated from memory with VM_SHADOW_STACK flag
and has a

x86/shstk: Add user-mode shadow stack support

Introduce basic shadow stack enabling/disabling/allocation routines.
A task's shadow stack is allocated from memory with VM_SHADOW_STACK flag
and has a fixed size of min(RLIMIT_STACK, 4GB).

Keep the task's shadow stack address and size in thread_struct. This will
be copied when cloning new threads, but needs to be cleared during exec,
so add a function to do this.

32 bit shadow stack is not expected to have many users and it will
complicate the signal implementation. So do not support IA32 emulation
or x32.

Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-29-rick.p.edgecombe%40intel.com

show more ...


# 98cfa463 12-Jun-2023 Rick Edgecombe <rick.p.edgecombe@intel.com>

x86: Introduce userspace API for shadow stack

Add three new arch_prctl() handles:

- ARCH_SHSTK_ENABLE/DISABLE enables or disables the specified
feature. Returns 0 on success or a negative value

x86: Introduce userspace API for shadow stack

Add three new arch_prctl() handles:

- ARCH_SHSTK_ENABLE/DISABLE enables or disables the specified
feature. Returns 0 on success or a negative value on error.

- ARCH_SHSTK_LOCK prevents future disabling or enabling of the
specified feature. Returns 0 on success or a negative value
on error.

The features are handled per-thread and inherited over fork(2)/clone(2),
but reset on exec().

Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-27-rick.p.edgecombe%40intel.com

show more ...