History log of /openbmc/linux/arch/x86/coco/tdx/tdx.c (Results 151 – 156 of 156)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
# bfe6ed0c 05-Apr-2022 Kirill A. Shutemov <kirill.shutemov@linux.intel.com>

x86/tdx: Add HLT support for TDX guests

The HLT instruction is a privileged instruction, executing it stops
instruction execution and places the processor in a HALT state. It
is used in kernel for c

x86/tdx: Add HLT support for TDX guests

The HLT instruction is a privileged instruction, executing it stops
instruction execution and places the processor in a HALT state. It
is used in kernel for cases like reboot, idle loop and exception fixup
handlers. For the idle case, interrupts will be enabled (using STI)
before the HLT instruction (this is also called safe_halt()).

To support the HLT instruction in TDX guests, it needs to be emulated
using TDVMCALL (hypercall to VMM). More details about it can be found
in Intel Trust Domain Extensions (Intel TDX) Guest-Host-Communication
Interface (GHCI) specification, section TDVMCALL[Instruction.HLT].

In TDX guests, executing HLT instruction will generate a #VE, which is
used to emulate the HLT instruction. But #VE based emulation will not
work for the safe_halt() flavor, because it requires STI instruction to
be executed just before the TDCALL. Since idle loop is the only user of
safe_halt() variant, handle it as a special case.

To avoid *safe_halt() call in the idle function, define the
tdx_guest_idle() and use it to override the "x86_idle" function pointer
for a valid TDX guest.

Alternative choices like PV ops have been considered for adding
safe_halt() support. But it was rejected because HLT paravirt calls
only exist under PARAVIRT_XXL, and enabling it in TDX guest just for
safe_halt() use case is not worth the cost.

Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-9-kirill.shutemov@linux.intel.com

show more ...


# 9a22bf6d 05-Apr-2022 Kirill A. Shutemov <kirill.shutemov@linux.intel.com>

x86/traps: Add #VE support for TDX guest

Virtualization Exceptions (#VE) are delivered to TDX guests due to
specific guest actions which may happen in either user space or the
kernel:

* Specific i

x86/traps: Add #VE support for TDX guest

Virtualization Exceptions (#VE) are delivered to TDX guests due to
specific guest actions which may happen in either user space or the
kernel:

* Specific instructions (WBINVD, for example)
* Specific MSR accesses
* Specific CPUID leaf accesses
* Access to specific guest physical addresses

Syscall entry code has a critical window where the kernel stack is not
yet set up. Any exception in this window leads to hard to debug issues
and can be exploited for privilege escalation. Exceptions in the NMI
entry code also cause issues. Returning from the exception handler with
IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.

For these reasons, the kernel avoids #VEs during the syscall gap and
the NMI entry code. Entry code paths do not access TD-shared memory,
MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
that might generate #VE. VMM can remove memory from TD at any point,
but access to unaccepted (or missing) private memory leads to VM
termination, not to #VE.

Similarly to page faults and breakpoints, #VEs are allowed in NMI
handlers once the kernel is ready to deal with nested NMIs.

During #VE delivery, all interrupts, including NMIs, are blocked until
TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
the VE info.

TDGETVEINFO retrieves the #VE info from the TDX module, which also
clears the "#VE valid" flag. This must be done before anything else as
any #VE that occurs while the valid flag is set escalates to #DF by TDX
module. It will result in an oops.

Virtual NMIs are inhibited if the #VE valid flag is set. NMI will not be
delivered until TDGETVEINFO is called.

For now, convert unhandled #VE's (everything, until later in this
series) so that they appear just like a #GP by calling the
ve_raise_fault() directly. The ve_raise_fault() function is similar
to #GP handler and is responsible for sending SIGSEGV to userspace
and CPU die and notifying debuggers and other die chain users.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-8-kirill.shutemov@linux.intel.com

show more ...


# 65fab5bc 05-Apr-2022 Kirill A. Shutemov <kirill.shutemov@linux.intel.com>

x86/tdx: Exclude shared bit from __PHYSICAL_MASK

In TDX guests, by default memory is protected from host access. If a
guest needs to communicate with the VMM (like the I/O use case), it uses
a singl

x86/tdx: Exclude shared bit from __PHYSICAL_MASK

In TDX guests, by default memory is protected from host access. If a
guest needs to communicate with the VMM (like the I/O use case), it uses
a single bit in the physical address to communicate the protected/shared
attribute of the given page.

In the x86 ARCH code, __PHYSICAL_MASK macro represents the width of the
physical address in the given architecture. It is used in creating
physical PAGE_MASK for address bits in the kernel. Since in TDX guest,
a single bit is used as metadata, it needs to be excluded from valid
physical address bits to avoid using incorrect addresses bits in the
kernel.

Enable DYNAMIC_PHYSICAL_MASK to support updating the __PHYSICAL_MASK.

Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-6-kirill.shutemov@linux.intel.com

show more ...


# 41394e33 05-Apr-2022 Kirill A. Shutemov <kirill.shutemov@linux.intel.com>

x86/tdx: Extend the confidential computing API to support TDX guests

Confidential Computing (CC) features (like string I/O unroll support,
memory encryption/decryption support, etc) are conditionall

x86/tdx: Extend the confidential computing API to support TDX guests

Confidential Computing (CC) features (like string I/O unroll support,
memory encryption/decryption support, etc) are conditionally enabled
in the kernel using cc_platform_has() API. Since TDX guests also need
to use these CC features, extend cc_platform_has() API and add TDX
guest-specific CC attributes support.

CC API also provides an interface to deal with encryption mask. Extend
it to cover TDX.

Details about which bit in the page table entry to be used to indicate
shared/private state is determined by using the TDINFO TDCALL.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-5-kirill.shutemov@linux.intel.com

show more ...


# eb94f1b6 05-Apr-2022 Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>

x86/tdx: Add __tdx_module_call() and __tdx_hypercall() helper functions

Guests communicate with VMMs with hypercalls. Historically, these
are implemented using instructions that are known to cause V

x86/tdx: Add __tdx_module_call() and __tdx_hypercall() helper functions

Guests communicate with VMMs with hypercalls. Historically, these
are implemented using instructions that are known to cause VMEXITs
like VMCALL, VMLAUNCH, etc. However, with TDX, VMEXITs no longer
expose the guest state to the host. This prevents the old hypercall
mechanisms from working. So, to communicate with VMM, TDX
specification defines a new instruction called TDCALL.

In a TDX based VM, since the VMM is an untrusted entity, an intermediary
layer -- TDX module -- facilitates secure communication between the host
and the guest. TDX module is loaded like a firmware into a special CPU
mode called SEAM. TDX guests communicate with the TDX module using the
TDCALL instruction.

A guest uses TDCALL to communicate with both the TDX module and VMM.
The value of the RAX register when executing the TDCALL instruction is
used to determine the TDCALL type. A leaf of TDCALL used to communicate
with the VMM is called TDVMCALL.

Add generic interfaces to communicate with the TDX module and VMM
(using the TDCALL instruction).

__tdx_module_call() - Used to communicate with the TDX module (via
TDCALL instruction).
__tdx_hypercall() - Used by the guest to request services from
the VMM (via TDVMCALL leaf of TDCALL).

Also define an additional wrapper _tdx_hypercall(), which adds error
handling support for the TDCALL failure.

The __tdx_module_call() and __tdx_hypercall() helper functions are
implemented in assembly in a .S file. The TDCALL ABI requires
shuffling arguments in and out of registers, which proved to be
awkward with inline assembly.

Just like syscalls, not all TDVMCALL use cases need to use the same
number of argument registers. The implementation here picks the current
worst-case scenario for TDCALL (4 registers). For TDCALLs with fewer
than 4 arguments, there will end up being a few superfluous (cheap)
instructions. But, this approach maximizes code reuse.

For registers used by the TDCALL instruction, please check TDX GHCI
specification, the section titled "TDCALL instruction" and "TDG.VP.VMCALL
Interface".

Based on previous patch by Sean Christopherson.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-4-kirill.shutemov@linux.intel.com

show more ...


# 59bd54a8 05-Apr-2022 Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>

x86/tdx: Detect running as a TDX guest in early boot

In preparation of extending cc_platform_has() API to support TDX guest,
use CPUID instruction to detect support for TDX guests in the early
boot

x86/tdx: Detect running as a TDX guest in early boot

In preparation of extending cc_platform_has() API to support TDX guest,
use CPUID instruction to detect support for TDX guests in the early
boot code (via tdx_early_init()). Since copy_bootdata() is the first
user of cc_platform_has() API, detect the TDX guest status before it.

Define a synthetic feature flag (X86_FEATURE_TDX_GUEST) and set this
bit in a valid TDX guest platform.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-2-kirill.shutemov@linux.intel.com

show more ...


1234567