vmac.c (73bf20ef3df262026c3470241ae4ac8196943ffa) vmac.c (bb29648102335586e9a66289a1d98a0cb392b6e5)
1/*
1/*
2 * Modified to interface to the Linux kernel
2 * VMAC: Message Authentication Code using Universal Hashing
3 *
4 * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
5 *
3 * Copyright (c) 2009, Intel Corporation.
6 * Copyright (c) 2009, Intel Corporation.
7 * Copyright (c) 2018, Google Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 */
18
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
20 * Place - Suite 330, Boston, MA 02111-1307 USA.
21 */
22
19/* --------------------------------------------------------------------------
20 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
21 * This implementation is herby placed in the public domain.
22 * The authors offers no warranty. Use at your own risk.
23 * Please send bug reports to the authors.
24 * Last modified: 17 APR 08, 1700 PDT
25 * ----------------------------------------------------------------------- */
23/*
24 * Derived from:
25 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
26 * This implementation is herby placed in the public domain.
27 * The authors offers no warranty. Use at your own risk.
28 * Last modified: 17 APR 08, 1700 PDT
29 */
26
30
31#include <asm/unaligned.h>
27#include <linux/init.h>
28#include <linux/types.h>
29#include <linux/crypto.h>
30#include <linux/module.h>
31#include <linux/scatterlist.h>
32#include <asm/byteorder.h>
33#include <crypto/scatterwalk.h>
32#include <linux/init.h>
33#include <linux/types.h>
34#include <linux/crypto.h>
35#include <linux/module.h>
36#include <linux/scatterlist.h>
37#include <asm/byteorder.h>
38#include <crypto/scatterwalk.h>
34#include <crypto/vmac.h>
35#include <crypto/internal/hash.h>
36
37/*
39#include <crypto/internal/hash.h>
40
41/*
42 * User definable settings.
43 */
44#define VMAC_TAG_LEN 64
45#define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */
46#define VMAC_KEY_LEN (VMAC_KEY_SIZE/8)
47#define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/
48
49/* per-transform (per-key) context */
50struct vmac_tfm_ctx {
51 struct crypto_cipher *cipher;
52 u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
53 u64 polykey[2*VMAC_TAG_LEN/64];
54 u64 l3key[2*VMAC_TAG_LEN/64];
55};
56
57/* per-request context */
58struct vmac_desc_ctx {
59 union {
60 u8 partial[VMAC_NHBYTES]; /* partial block */
61 __le64 partial_words[VMAC_NHBYTES / 8];
62 };
63 unsigned int partial_size; /* size of the partial block */
64 bool first_block_processed;
65 u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */
66};
67
68/*
38 * Constants and masks
39 */
40#define UINT64_C(x) x##ULL
41static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
42static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
43static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
44static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
45static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */

--- 267 unchanged lines hidden (view full) ---

313#ifndef nh_vmac_nhbytes_2
314#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
315 do { \
316 nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
317 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
318 } while (0)
319#endif
320
69 * Constants and masks
70 */
71#define UINT64_C(x) x##ULL
72static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
73static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
74static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
75static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
76static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */

--- 267 unchanged lines hidden (view full) ---

344#ifndef nh_vmac_nhbytes_2
345#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
346 do { \
347 nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
348 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
349 } while (0)
350#endif
351
321static void vhash_abort(struct vmac_ctx *ctx)
322{
323 ctx->polytmp[0] = ctx->polykey[0] ;
324 ctx->polytmp[1] = ctx->polykey[1] ;
325 ctx->first_block_processed = 0;
326}
327
328static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
329{
330 u64 rh, rl, t, z = 0;
331
332 /* fully reduce (p1,p2)+(len,0) mod p127 */
333 t = p1 >> 63;
334 p1 &= m63;
335 ADD128(p1, p2, len, t);

--- 23 unchanged lines hidden (view full) ---

359 ADD128(t, rl, z, rh);
360 t += t << 8;
361 rl += t;
362 rl += (0 - (rl < t)) & 257;
363 rl += (0 - (rl > p64-1)) & 257;
364 return rl;
365}
366
352static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
353{
354 u64 rh, rl, t, z = 0;
355
356 /* fully reduce (p1,p2)+(len,0) mod p127 */
357 t = p1 >> 63;
358 p1 &= m63;
359 ADD128(p1, p2, len, t);

--- 23 unchanged lines hidden (view full) ---

383 ADD128(t, rl, z, rh);
384 t += t << 8;
385 rl += t;
386 rl += (0 - (rl < t)) & 257;
387 rl += (0 - (rl > p64-1)) & 257;
388 return rl;
389}
390
367static void vhash_update(const unsigned char *m,
368 unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
369 struct vmac_ctx *ctx)
391/* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
392static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
393 struct vmac_desc_ctx *dctx,
394 const __le64 *mptr, unsigned int blocks)
370{
395{
371 u64 rh, rl, *mptr;
372 const u64 *kptr = (u64 *)ctx->nhkey;
373 int i;
374 u64 ch, cl;
375 u64 pkh = ctx->polykey[0];
376 u64 pkl = ctx->polykey[1];
396 const u64 *kptr = tctx->nhkey;
397 const u64 pkh = tctx->polykey[0];
398 const u64 pkl = tctx->polykey[1];
399 u64 ch = dctx->polytmp[0];
400 u64 cl = dctx->polytmp[1];
401 u64 rh, rl;
377
402
378 if (!mbytes)
379 return;
380
381 BUG_ON(mbytes % VMAC_NHBYTES);
382
383 mptr = (u64 *)m;
384 i = mbytes / VMAC_NHBYTES; /* Must be non-zero */
385
386 ch = ctx->polytmp[0];
387 cl = ctx->polytmp[1];
388
389 if (!ctx->first_block_processed) {
390 ctx->first_block_processed = 1;
403 if (!dctx->first_block_processed) {
404 dctx->first_block_processed = true;
391 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
392 rh &= m62;
393 ADD128(ch, cl, rh, rl);
394 mptr += (VMAC_NHBYTES/sizeof(u64));
405 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
406 rh &= m62;
407 ADD128(ch, cl, rh, rl);
408 mptr += (VMAC_NHBYTES/sizeof(u64));
395 i--;
409 blocks--;
396 }
397
410 }
411
398 while (i--) {
412 while (blocks--) {
399 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
400 rh &= m62;
401 poly_step(ch, cl, pkh, pkl, rh, rl);
402 mptr += (VMAC_NHBYTES/sizeof(u64));
403 }
404
413 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
414 rh &= m62;
415 poly_step(ch, cl, pkh, pkl, rh, rl);
416 mptr += (VMAC_NHBYTES/sizeof(u64));
417 }
418
405 ctx->polytmp[0] = ch;
406 ctx->polytmp[1] = cl;
419 dctx->polytmp[0] = ch;
420 dctx->polytmp[1] = cl;
407}
408
421}
422
409static u64 vhash(unsigned char m[], unsigned int mbytes,
410 u64 *tagl, struct vmac_ctx *ctx)
423static int vmac_setkey(struct crypto_shash *tfm,
424 const u8 *key, unsigned int keylen)
411{
425{
412 u64 rh, rl, *mptr;
413 const u64 *kptr = (u64 *)ctx->nhkey;
414 int i, remaining;
415 u64 ch, cl;
416 u64 pkh = ctx->polykey[0];
417 u64 pkl = ctx->polykey[1];
426 struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
427 __be64 out[2];
428 u8 in[16] = { 0 };
429 unsigned int i;
430 int err;
418
431
419 mptr = (u64 *)m;
420 i = mbytes / VMAC_NHBYTES;
421 remaining = mbytes % VMAC_NHBYTES;
422
423 if (ctx->first_block_processed) {
424 ch = ctx->polytmp[0];
425 cl = ctx->polytmp[1];
426 } else if (i) {
427 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
428 ch &= m62;
429 ADD128(ch, cl, pkh, pkl);
430 mptr += (VMAC_NHBYTES/sizeof(u64));
431 i--;
432 } else if (remaining) {
433 nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
434 ch &= m62;
435 ADD128(ch, cl, pkh, pkl);
436 mptr += (VMAC_NHBYTES/sizeof(u64));
437 goto do_l3;
438 } else {/* Empty String */
439 ch = pkh; cl = pkl;
440 goto do_l3;
432 if (keylen != VMAC_KEY_LEN) {
433 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
434 return -EINVAL;
441 }
442
435 }
436
443 while (i--) {
444 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
445 rh &= m62;
446 poly_step(ch, cl, pkh, pkl, rh, rl);
447 mptr += (VMAC_NHBYTES/sizeof(u64));
448 }
449 if (remaining) {
450 nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
451 rh &= m62;
452 poly_step(ch, cl, pkh, pkl, rh, rl);
453 }
454
455do_l3:
456 vhash_abort(ctx);
457 remaining *= 8;
458 return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
459}
460
461static u64 vmac(unsigned char m[], unsigned int mbytes,
462 const unsigned char n[16], u64 *tagl,
463 struct vmac_ctx_t *ctx)
464{
465 u64 *in_n, *out_p;
466 u64 p, h;
467 int i;
468
469 in_n = ctx->__vmac_ctx.cached_nonce;
470 out_p = ctx->__vmac_ctx.cached_aes;
471
472 i = n[15] & 1;
473 if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
474 in_n[0] = *(u64 *)(n);
475 in_n[1] = *(u64 *)(n+8);
476 ((unsigned char *)in_n)[15] &= 0xFE;
477 crypto_cipher_encrypt_one(ctx->child,
478 (unsigned char *)out_p, (unsigned char *)in_n);
479
480 ((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
481 }
482 p = be64_to_cpup(out_p + i);
483 h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
484 return le64_to_cpu(p + h);
485}
486
487static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
488{
489 u64 in[2] = {0}, out[2];
490 unsigned i;
491 int err = 0;
492
493 err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
437 err = crypto_cipher_setkey(tctx->cipher, key, keylen);
494 if (err)
495 return err;
496
497 /* Fill nh key */
438 if (err)
439 return err;
440
441 /* Fill nh key */
498 ((unsigned char *)in)[0] = 0x80;
499 for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
500 crypto_cipher_encrypt_one(ctx->child,
501 (unsigned char *)out, (unsigned char *)in);
502 ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
503 ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
504 ((unsigned char *)in)[15] += 1;
442 in[0] = 0x80;
443 for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
444 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
445 tctx->nhkey[i] = be64_to_cpu(out[0]);
446 tctx->nhkey[i+1] = be64_to_cpu(out[1]);
447 in[15]++;
505 }
506
507 /* Fill poly key */
448 }
449
450 /* Fill poly key */
508 ((unsigned char *)in)[0] = 0xC0;
509 in[1] = 0;
510 for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
511 crypto_cipher_encrypt_one(ctx->child,
512 (unsigned char *)out, (unsigned char *)in);
513 ctx->__vmac_ctx.polytmp[i] =
514 ctx->__vmac_ctx.polykey[i] =
515 be64_to_cpup(out) & mpoly;
516 ctx->__vmac_ctx.polytmp[i+1] =
517 ctx->__vmac_ctx.polykey[i+1] =
518 be64_to_cpup(out+1) & mpoly;
519 ((unsigned char *)in)[15] += 1;
451 in[0] = 0xC0;
452 in[15] = 0;
453 for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
454 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
455 tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
456 tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
457 in[15]++;
520 }
521
522 /* Fill ip key */
458 }
459
460 /* Fill ip key */
523 ((unsigned char *)in)[0] = 0xE0;
524 in[1] = 0;
525 for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
461 in[0] = 0xE0;
462 in[15] = 0;
463 for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
526 do {
464 do {
527 crypto_cipher_encrypt_one(ctx->child,
528 (unsigned char *)out, (unsigned char *)in);
529 ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
530 ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
531 ((unsigned char *)in)[15] += 1;
532 } while (ctx->__vmac_ctx.l3key[i] >= p64
533 || ctx->__vmac_ctx.l3key[i+1] >= p64);
465 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
466 tctx->l3key[i] = be64_to_cpu(out[0]);
467 tctx->l3key[i+1] = be64_to_cpu(out[1]);
468 in[15]++;
469 } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
534 }
535
470 }
471
536 /* Invalidate nonce/aes cache and reset other elements */
537 ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
538 ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */
539 ctx->__vmac_ctx.first_block_processed = 0;
540
541 return err;
472 return 0;
542}
543
473}
474
544static int vmac_setkey(struct crypto_shash *parent,
545 const u8 *key, unsigned int keylen)
475static int vmac_init(struct shash_desc *desc)
546{
476{
547 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
477 const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
478 struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
548
479
549 if (keylen != VMAC_KEY_LEN) {
550 crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
551 return -EINVAL;
552 }
553
554 return vmac_set_key((u8 *)key, ctx);
555}
556
557static int vmac_init(struct shash_desc *pdesc)
558{
480 dctx->partial_size = 0;
481 dctx->first_block_processed = false;
482 memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
559 return 0;
560}
561
483 return 0;
484}
485
562static int vmac_update(struct shash_desc *pdesc, const u8 *p,
563 unsigned int len)
486static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
564{
487{
565 struct crypto_shash *parent = pdesc->tfm;
566 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
567 int expand;
568 int min;
488 const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
489 struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
490 unsigned int n;
569
491
570 expand = VMAC_NHBYTES - ctx->partial_size > 0 ?
571 VMAC_NHBYTES - ctx->partial_size : 0;
492 if (dctx->partial_size) {
493 n = min(len, VMAC_NHBYTES - dctx->partial_size);
494 memcpy(&dctx->partial[dctx->partial_size], p, n);
495 dctx->partial_size += n;
496 p += n;
497 len -= n;
498 if (dctx->partial_size == VMAC_NHBYTES) {
499 vhash_blocks(tctx, dctx, dctx->partial_words, 1);
500 dctx->partial_size = 0;
501 }
502 }
572
503
573 min = len < expand ? len : expand;
504 if (len >= VMAC_NHBYTES) {
505 n = round_down(len, VMAC_NHBYTES);
506 /* TODO: 'p' may be misaligned here */
507 vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
508 p += n;
509 len -= n;
510 }
574
511
575 memcpy(ctx->partial + ctx->partial_size, p, min);
576 ctx->partial_size += min;
512 if (len) {
513 memcpy(dctx->partial, p, len);
514 dctx->partial_size = len;
515 }
577
516
578 if (len < expand)
579 return 0;
517 return 0;
518}
580
519
581 vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx);
582 ctx->partial_size = 0;
520static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
521 struct vmac_desc_ctx *dctx)
522{
523 unsigned int partial = dctx->partial_size;
524 u64 ch = dctx->polytmp[0];
525 u64 cl = dctx->polytmp[1];
583
526
584 len -= expand;
585 p += expand;
527 /* L1 and L2-hash the final block if needed */
528 if (partial) {
529 /* Zero-pad to next 128-bit boundary */
530 unsigned int n = round_up(partial, 16);
531 u64 rh, rl;
586
532
587 if (len % VMAC_NHBYTES) {
588 memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES),
589 len % VMAC_NHBYTES);
590 ctx->partial_size = len % VMAC_NHBYTES;
533 memset(&dctx->partial[partial], 0, n - partial);
534 nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
535 rh &= m62;
536 if (dctx->first_block_processed)
537 poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
538 rh, rl);
539 else
540 ADD128(ch, cl, rh, rl);
591 }
592
541 }
542
593 vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx);
594
595 return 0;
543 /* L3-hash the 128-bit output of L2-hash */
544 return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
596}
597
545}
546
598static int vmac_final(struct shash_desc *pdesc, u8 *out)
547static int vmac_final(struct shash_desc *desc, u8 *out)
599{
548{
600 struct crypto_shash *parent = pdesc->tfm;
601 struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
602 vmac_t mac;
603 u8 nonce[16] = {};
549 const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
550 struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
551 static const u8 nonce[16] = {}; /* TODO: this is insecure */
552 union {
553 u8 bytes[16];
554 __be64 pads[2];
555 } block;
556 int index;
557 u64 hash, pad;
604
558
605 /* vmac() ends up accessing outside the array bounds that
606 * we specify. In appears to access up to the next 2-word
607 * boundary. We'll just be uber cautious and zero the
608 * unwritten bytes in the buffer.
609 */
610 if (ctx->partial_size) {
611 memset(ctx->partial + ctx->partial_size, 0,
612 VMAC_NHBYTES - ctx->partial_size);
613 }
614 mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx);
615 memcpy(out, &mac, sizeof(vmac_t));
616 memzero_explicit(&mac, sizeof(vmac_t));
617 memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
618 ctx->partial_size = 0;
559 /* Finish calculating the VHASH of the message */
560 hash = vhash_final(tctx, dctx);
561
562 /* Generate pseudorandom pad by encrypting the nonce */
563 memcpy(&block, nonce, 16);
564 index = block.bytes[15] & 1;
565 block.bytes[15] &= ~1;
566 crypto_cipher_encrypt_one(tctx->cipher, block.bytes, block.bytes);
567 pad = be64_to_cpu(block.pads[index]);
568
569 /* The VMAC is the sum of VHASH and the pseudorandom pad */
570 put_unaligned_le64(hash + pad, out);
619 return 0;
620}
621
622static int vmac_init_tfm(struct crypto_tfm *tfm)
623{
571 return 0;
572}
573
574static int vmac_init_tfm(struct crypto_tfm *tfm)
575{
624 struct crypto_cipher *cipher;
625 struct crypto_instance *inst = (void *)tfm->__crt_alg;
576 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
626 struct crypto_spawn *spawn = crypto_instance_ctx(inst);
577 struct crypto_spawn *spawn = crypto_instance_ctx(inst);
627 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
578 struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
579 struct crypto_cipher *cipher;
628
629 cipher = crypto_spawn_cipher(spawn);
630 if (IS_ERR(cipher))
631 return PTR_ERR(cipher);
632
580
581 cipher = crypto_spawn_cipher(spawn);
582 if (IS_ERR(cipher))
583 return PTR_ERR(cipher);
584
633 ctx->child = cipher;
585 tctx->cipher = cipher;
634 return 0;
635}
636
637static void vmac_exit_tfm(struct crypto_tfm *tfm)
638{
586 return 0;
587}
588
589static void vmac_exit_tfm(struct crypto_tfm *tfm)
590{
639 struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
640 crypto_free_cipher(ctx->child);
591 struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
592
593 crypto_free_cipher(tctx->cipher);
641}
642
643static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
644{
645 struct shash_instance *inst;
646 struct crypto_alg *alg;
647 int err;
648

--- 20 unchanged lines hidden (view full) ---

669 CRYPTO_ALG_TYPE_MASK);
670 if (err)
671 goto out_free_inst;
672
673 inst->alg.base.cra_priority = alg->cra_priority;
674 inst->alg.base.cra_blocksize = alg->cra_blocksize;
675 inst->alg.base.cra_alignmask = alg->cra_alignmask;
676
594}
595
596static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
597{
598 struct shash_instance *inst;
599 struct crypto_alg *alg;
600 int err;
601

--- 20 unchanged lines hidden (view full) ---

622 CRYPTO_ALG_TYPE_MASK);
623 if (err)
624 goto out_free_inst;
625
626 inst->alg.base.cra_priority = alg->cra_priority;
627 inst->alg.base.cra_blocksize = alg->cra_blocksize;
628 inst->alg.base.cra_alignmask = alg->cra_alignmask;
629
677 inst->alg.digestsize = sizeof(vmac_t);
678 inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
630 inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
679 inst->alg.base.cra_init = vmac_init_tfm;
680 inst->alg.base.cra_exit = vmac_exit_tfm;
681
631 inst->alg.base.cra_init = vmac_init_tfm;
632 inst->alg.base.cra_exit = vmac_exit_tfm;
633
634 inst->alg.descsize = sizeof(struct vmac_desc_ctx);
635 inst->alg.digestsize = VMAC_TAG_LEN / 8;
682 inst->alg.init = vmac_init;
683 inst->alg.update = vmac_update;
684 inst->alg.final = vmac_final;
685 inst->alg.setkey = vmac_setkey;
686
687 err = shash_register_instance(tmpl, inst);
688 if (err) {
689out_free_inst:

--- 31 unchanged lines hidden ---
636 inst->alg.init = vmac_init;
637 inst->alg.update = vmac_update;
638 inst->alg.final = vmac_final;
639 inst->alg.setkey = vmac_setkey;
640
641 err = shash_register_instance(tmpl, inst);
642 if (err) {
643out_free_inst:

--- 31 unchanged lines hidden ---